
Compositionality and Syntactic Structure

Marcus Kracht

Department of Linguistics

UCLA

3125 Campbell Hall

405 Hilgard Avenue

Los Angeles, CA 90095–1543

kracht@humnet.ucla.edu



§1. The Questions

➀ Why does language have structure?

➁ What does the structure consist in?

➂ Which structure does a given language have?

➃ ... and how do we know?



§2. My Answers

➊ Structure exists because there is no other way to get the meanings

assembled.

➋ Structure is the way constituents are assembled into bigger units.

Structure need not be recorded (by using brackets).

➌ There may be alternative structures for sentences. We know things

only within bounds.

➍ The method of inquiry is to posit a few intuitive assumptions (eg

compositionality). The rest follows by straightforward reasoning.



§3. Example

What structure does the following string have?

(1) 12+7+41+3

and how about this one:

(2) ((12+(7+41))+3)

NB: Brackets are to be seen as actual alphabetic symbols. �

Question: Was your answer informed by the meaning these things

normally have?



§4. English

What is the structure of

Alice, Bert and Cindy sang, danced and jumped,(3)

respectively.

and why?



§5. Definition

A language L is weakly context free (weakly CF) if its associated

string language is CF. L is strongly CF if there is a compositional CF

grammar for L.

Is there a difference between the notion of weak CF language

and the notion of strongly CF language? In other words: could

it be that the semantics constrains the way in which syntactic

functions operate? And how about natural languages?



§6. Problem Case: Dutch

Dutch shows the following dependencies:

dat Jan1 Piet2 Marie3 de kinderen4 zag1 laten2(4)

leren3 zwemmen4

that Jan saw Piet let Marie teach the children to swim

Huybregts (1984) has claimed that Dutch is not strongly CF even if

it is weakly CF. But:

✰ How can we distinguish weak and strong CF languages? What is

a ‘correct’ analysis?



§7. Verb Cluster Analysis

(LFG/Generative Grammar/CCG/TAG; many different derivations are

conceivable, see Haider (2003).)

➀ With NP-cluster (GB/LFG)

dat [Jan1 [Piet2 [Marie3 [de kinderen4]]](5)

[zag1 [laten2 [leren3 zwemmen4]]]]

➁ Right branching (CCG/TAG)

dat [Jan1 [Piet2 [Marie3 [de kinderen4(6)

[zag1 [laten2 [leren3 zwemmen4]]]]]]]

Generative grammar used D-structure to generate a center embedding

structure.



§8. Crossed Dependencies

Subject and (complex) infinitive form a (discontinuous!) constituent.

➀ Local nonlinearity (Ojeda 1988): using a GPSG backbone, but

allows nonlinearity of daughters.

➁ Calcagno (1986) uses a categorial grammar backbone, but pairs of

strings as constituents (head-grammars, LCFRSs).

dat Jan Piet Marie de kinderen zag laten(7)

leren zwemmen



§9. But ...

why not propose a center embedding?

dat Jan Piet Marie de kinderen zag laten(8)

leren zwemmen

Intuition tells us that this is wrong for semantic reasons—but is there �

a formal proof?



§10. Signs

A sign is a pair σ = 〈e, m〉, where e is the exponent of σ and m its

meaning . A language is a set L of signs.

ε[L] := {e : there is m:〈e, m〉 ∈ L}

µ[L] := {m : there is e:〈e, m〉 ∈ L}

What I shall not use (but one might):

A c-sign is a pair σ = 〈e, c, m〉, where e is the exponent of σ, c its

category and m its meaning . A c-language is a set L of c-signs.



§11. Grammars

➀ Languages are sets of signs.

➁ grammars are devices to generate languages.

➂ grammars consist in certain functions that take signs as input and

output a sign. For example, concatenative MERGE:

MERGE(〈~x, m〉, 〈~y, m′〉) := 〈~xa

2
a~y, g(~x, ~y, m, m′)〉

(Notice that MERGE does not insert anything, not even bound-

aries! Also: g may depend on all four input parameters.)

➃ a lexicon is a set of signs.



§12. Independence I

Let S = E × M . Then for every f there are partial functions f ε and

fµ such that

(9) I(f)(σ0, · · · , σn−1) = 〈f ε(~σ), fµ(~σ)〉

G is autonomous if for all f , f ε is independent of the meanings of

the input signs, G is compositional if for all f , fµ is independent

of the exponents of the input signs. G is independent if it is both

autonomous and compositional.



§13. Independence II

If G is independent in the strong sense then there are f ε
∗ and f

µ
∗ such

that

I(f)(〈e0, m0〉, 〈e1, m1〉, · · · , en−1, mn−1〉)

= 〈f ε
∗(e0, e1, · · · , en−1), f

µ
∗ (m0, m1, · · · , mn−1)〉

Given independence, constituent formation fails exactly if:

1. the syntactic parts ei cannot be combined via f ε or

2. the meanings mi cannot be combined via fµ.

Argumentation must separate syntactic and semantic reasons of fail-

ure. (See the recent paper by Pullum & Rawlins on the ‘X or no �

X’-construction.)



§14. Independence III

➀ MERGE is autonomous (by definition).

➁ MERGE is compositional iff there is a g∗ such that

g(~x, ~y, m, m′) = g∗(m, m′)

If MERGE is compositional:

MERGE(〈~x, m〉, 〈~y, m′〉) := 〈~xa

2
a~y, g∗(m, m′)〉



§15. Meanings and Expressions

I assume the following:

☞ Syntax is about expressions and only about them.

☞ Semantics is about meaning and only meaning.

☞ There is no deletion of anything in syntax.

☞ Semantic operations are restricted to identification of variables and

‘cylindrification’. Other meanings are lexical.



§16. Consequences

• There are no indices, no structural devices (brackets) in syntax

unless they exist in the surface string. What is not seen has never

been there! Categorial labels are abstract. AGR, NEG, C(OMP)

etc are mnemonic at best! (This excludes many brands of genera-

tive grammar.)

• Meanings are ‘alphabetically innocent’ (Kit Fine). Names of un-

bound variables must be immaterial up to renaming. (This ex-

cludes most popular versions of DRT.)

• Types exist only up to ontological difference; type raising and other

operations are not for free. (This excludes most brands of Catego-

rial Grammar.)



§17. Why Is Dutch Not CF?

It is reasonable to suppose that the Dutch crossed dependencies satisfy

the following.

Theorem 1 Suppose that L ⊆ E×R is such that if 〈e, m〉, 〈e, m′〉 ∈

L then m = m′. If L is weakly CF then it is also strongly CF.

Proof. By assumption, there are CF functions f ε
∗ which generate the

set ε[L]. There is a bijection π : ε[L] → µ[L]. Now put

(10) fµ
∗ (m0, · · · , mn−1) := π(f ε

∗(π
−1(m0), · · · , π−1(mn−1)))

This grammar is compositional, CF, and generates L. QED

So why is Dutch nevertheless not weakly CF?



§18. Alphabetical Innocence

Basic signs:

〈Jan, x0 = j〉

〈de kinderen, x0 = c〉

〈zwemmen, swim(e0) ∧ act(e0) = x0〉

〈laten, let(e0) ∧ act(e0) = x0 ∧ thm(e0) = e1 ∧ ben(e0) = x1〉

However, any (injective) renaming of the variables is equally ‘the’

meaning, eg 〈zwemmen, swim(e7) ∧ act(e7) = x19〉.



§19. Computing Meanings

Using ‘Zeevat Merge’ (= Plain conjunction):

MERGE(〈de kinderen, x0 = c〉,(11)

〈zwemmen, swim(e0) ∧ act(e0) = x0〉)

=〈de kinderen zwemmen, x0 = c ∧ swim(e0) ∧ act(e0) = x0〉)

...or...:

MERGE(〈de kinderen, x0 = c〉,(12)

〈zwemmen, swim(e7) ∧ act(e7) = x19〉)

=〈de kinderen zwemmen, x0 = c ∧ swim(e7) ∧ act(e7) = x19〉)

No renaming derives (11) from (10)!



§20. CF structure

CF analyses more or less require the following derivation:

(dat)[7Jan [6[5Piet [4[3Marie [2[1de kinderen(13)

zag]1 laten]2]3 leren]4]5 zwemmen]6]7

σ1 :=MERGE(〈de kinderen, m0〉, 〈zag, m1〉)

σ2 :=MERGE(σ1, 〈laten, m2〉)

σ3 :=MERGE(〈Marie, m3〉, σ2〉)

σ4 :=MERGE(σ3, 〈leren, m4〉)

σ5 :=MERGE(〈Piet, m5〉, σ4)

σ6 :=MERGE(σ5, 〈zwemmen, m6〉)

σ7 :=MERGE(〈Jan, m7〉, σ6)



§21. CF Structure

One can show that no matter how one assigns structure it is impos-

sible to correctly manage the variables! A polyadic merge does not

help, clever variable management does not help either. So we have a

‘theorem’:

Theorem 2 Dutch is not strongly CF.



§22. Conclusion

➀ Syntactic structure is not form. Is is not represented, it simply is

the derivation tree of a sentence.

➁ Structure must be recovered from form. Often the evidence for

syntactic structure is less clear than we think (Dowty, Sternefeld).

There also are many competing analyses.

➂ Syntactic structure can however be motivated from purely seman-

tic constraints.

➃ The ‘proof’ for structure can only work if we do not conflate syntax

and semantics. Syntax does not delete.

➄ Indices aren’t part of semantics (‘Alphabetic innocence’; Fine vs.

Fiengo and May on identity). By nondeletion they are also not

part of syntax.



➅ Assume this and Dutch is not strongly CF.


