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Abstract

Modal logic is concerned with the analysis of sentential operators in the
widest sense. Originally invented to analyse the notion of necessity appli-
cations have been found in many areas of philosophy, logic, linguistics and
computer science. This in turn has led to an increased interest in the techni-
cal development of modal logic.

1 Introduction
Modal logic originated in the analysis of necessity. Write “it is necessary that p”
in the form “�p” and “it is possible that p” in the form “^p”. While at first the
interpretation of “�” as necessity prevailed, soon it appeared that there are many
more ways to read “�”, such as “it will always be the case that”, “it ought to be the
case that”, “it is provable that”, “everywhere it is the case that” and so on. If the
interpretation of “�” is thus up for grabs, the logic of this operator is completely
undetermined. What emerged from this was the study of modal logic as an abstract
discipline where only minimal conditions for the behaviour of “�” are given at the

∗Thanks to Michael Glanzberg for suggesting to me to write this article and to Frank Wolter as
well as Michael for helpful suggestions.
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Figure 1: A Kripke Frame and a Valuation
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	 β(p0):={0, 1, 3}
β(p1):={1, 2, 4}
β(p2):={1, 3, 4}
β(p3):=∅

· · ·

outset. In what follows below I shall outline some important results in the study
of modal logic. I shall restrict my exposition to propositional logics, specifically
to so-called normal modal logics.

Expositions of modern modal logic can be found in [Chagrov and Zakharyaschev,
1997], [Blackburn et al., 2001], and [Kracht, 1999b]. Furthermore, for a survey
on modern developments I refer to [Blackburn et al., 2007].

2 First Steps
The language L� of modal logic consists of full propositional logic (formulated
here only in ∧ and ¬) together with one unary sentential operator, �. The set of
variables is {pi : i ∈ N}, though I shall use p and q to denote variables if their exact
identity is irrelevant. ^ϕ is defined as ¬�¬ϕ. A Kripke-frame is a pair 〈W,R〉
where W is a set and R a binary relation on W (see Figure 1, the arrows encode
the relation). Let β be a valuation, that is, a map from the variables to subsets of
W, and let w ∈ W. Then 〈W,R, β,w〉 � ϕ is defined as follows.

(1)

〈W,R, β,w〉 � pi iff w ∈ β(pi)
〈W,R, β,w〉 � ¬ϕ iff 〈W,R, β,w〉 2 ϕ
〈W,R, β,w〉 � ϕ ∧ χ iff 〈W,R, β,w〉 � ϕ; χ
〈W,R, β,w〉 � �ϕ iff for all w′: if w R w′ then 〈W,R, β,w′〉 � ϕ

In Figure 1 we have, for example

(2) 〈W,R, β, 0〉 � ^�p2
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Figure 2: A Tolerance Relation
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since 0 R 3 and

(3) 〈W,R, β, 3〉 � �p2

which in turn is the case since 3 R 3, 4 and {3, 4} ⊆ β(p2).
In case that 〈W,R, β,w〉 � ϕ we say that ϕ is (locally) true at w under the

valuation β. ϕ is true globally (under β) if it is true everywhere (under β). In
the example, ¬p3 is globally true, and so is also p0 ∨ ^p1. ϕ is valid in the
frame if it is globally true under all valuations. We write 〈W,R〉 � ϕ. It is easily
noted that classical equivalences hold locally, that is, if ϕ and χ are equivalent in
propositional (nonmodal) calculus then

(4) 〈W,R, β,w〉 � ϕ ⇔ 〈W,R, β,w〉 � χ

But these equivalences hold even in the scope of modal operators. So, ¬�ϕ holds
at a world iff ^¬ϕ holds there. (Recall that the latter is short for ¬�¬¬ϕ and
that ϕ ↔ ¬¬ϕ is a classical tautology.) Consider the frame F = 〈W,R〉 where
W = {0, 1, 2} and

(5) W = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}〉

(See Figure 2.) The relation is reflexive and symmetric but not transitive. A
relation is called a tolerance if it is reflexive and symmetric; a tolerance need
not be transitive. The relation “is indistinguishable from” is a tolerance. Now
let β be a valuation and β(p0) = {2}. Then we have 〈F, β, 0〉 � ^^p0. For since
〈F, β, 2〉 � p0 and 1 R 2 we also have 〈F, β, 1〉 � ^p0. (Since p0 is not true at 1 we
have 〈F, β, 1〉 2 �p0, or 〈F, β, 1〉 � ¬�p0.) Now, 0 R 1 and so 〈F, β, 0〉 � ^^p0.
Yet, 〈F, β, 0〉 2 ^p0, and so 〈F, β, 0〉 � ¬^p0, or 〈F, β, 0〉 � �¬p0. It follows that

(6) F 2 ^^p0 → ^p0

Likewise one sees that

(7) F 2 �p0 → ��p0
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Consider now an interpretation of “�ϕ” as “almost certainly ϕ”. On the frame
side we think of this as being true in a world w if all worlds indistinguishable
from w satisfy ϕ. The relation of indistinguishability is a tolerance. It is reflexive,
and symmetric, but not always transitive. In measurements, you may not be able
to distinguish two points that are a tenth of a millimeter apart, but you may be
able to tell them apart if their distance is half a millimeter. The properties of
the indistinguishability relation reflect the fact that the following are always true:
p → �p and p → �¬�¬p (which is the same as p → �^p). The first now
reads “If p then almost certainly p” and the second “If p then almost certainly not
almost certainly not p”. However, as we have just seen, there is doubt whether “If
almost certainly p the almost certainly almost certainly p.” There is an intimate
relationship between requirements on the relation R and the logical postulates that
are valid in the frame. More on that below in Section 5.

Thus, as different interpretations of “�” yield different requirements on the
frame structure, so different formulae are valid under different interpretations. On
the one hand we have a class K of frames that are in some sense “right” for the
interpretation, on the other hand we have a set L of formulae that are considered
“valid”, or theorems, under the interpretation. This interplay between semantics
and syntax is characteristic of research into modern modal logic. If all goes well,
K and L are a complete match for each other in that L is precisely the set of
formulae valid in all frames of K and K is the class of frames in which all formulae
of L are valid. Unfortunately, contrary to initial hopes in modal logic, this is
not always the case. This is the source of many complications (as well as many
beautiful results).

3 Algebraic Semantics of Modal Logics
In this section I look at the interpretation of modal logic. We shall see what it can
mean that some proposition is “possible” or “necessary” as opposed to being true.
First we fix our language. As it shall turn out, there are various ways to understand
these notions. Let K be an arbitrary class of Kripke-frames (for example, the class
of all 〈W,R〉 such that R is a tolerance relation on W). The set of formulae valid
in all members of K is denoted by Th(K). It is a normal modal logic, where a
normal modal logic is a set L of formulae with the following properties.

À L contains all tautologies of the classical propositional calculus;

Á L contains the “box distribution” formula �(p→ q)→ (�p→ �q);
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Â L is closed under modus ponens: if ϕ→ χ ∈ L and ϕ ∈ L then χ ∈ L;

Ã L is closed under substitution: if ϕ ∈ L then s(ϕ) ∈ L;

Ä L is closed under necessitation: if ϕ ∈ L then also �ϕ ∈ L.

As usual, a substitution is the replacement of variables by formulae. We write
K ⊕ Γ for the least (normal modal) logic containing Γ (the letter ‘K’ stands for
‘Kripke’). K ⊕ ⊥ is the inconsistent logic: it contains every formula, that is,
K ⊕ ⊥ = L�. The inconsistent logic has no frames. It is easy to check that K ⊕ pi

is also the inconsistent logic. However K ⊕ �⊥ is not inconsistent. The frame
〈{0},∅〉 is a frame for this logic!

Given a logic L, we associate a consequence relation `L with L defined as
follows. Σ `L χ iff for some finite subset Σ′ ⊆ Σ we have

∧
Σ′ → χ ∈ L. This

consequence relation is also called the local consequence, to distinguish it from
the global consequence, of which more below. The definition is a brute reduction
to the logic as set; another option is to say that Σ `L χ if there is a proof of χ from
Σ∪ L using only modus ponens. This means that there is a sequence δ0, δ1, · · · , δn

of formulae such that (1) χ = δn, (2) for every i < n, either (2a) δi ∈ Σ ∪ L or (2b)
there are numbers j, k < i such that δk = δ j → δi. This means that δ j and δ j → δi

occur before δi. The global consequence, by contrast, allows as an additional rule
also necessitation (even on formulae from Σ). This means that there is a sequence
of formulae satisfying (1), and (2′) for every i < n: either (2a) or (2b) or (2′c)
there is j < i such that δi = �δ j.

Given a logic L and a formula ϕ, we form the following set

(8) CL(ϕ) := {χ : ϕ↔ χ ∈ L}

This is the equivalence class of ϕ in L. Algebraically speaking, the relation ΘL de-
fined by ϕΘL χ iff ϕ↔ χ ∈ L is a congruence. The congruence classes are the sets
CL(ϕ). Two formulae contained in a set are equivalent in L, and so substitutable
in the sense of Leibniz’ Criterion: if χ ∈ CL(ϕ), and τ′ results from τ by replacing
some occurrence of ϕ by χ then τ↔ τ′ ∈ L. It is therefore algebraically speaking
natural to consider each of these classes of expressions as a single object, and this
is what the following construction does. Technically, what we do is factor out the
congruence. Let AL := {CL(ϕ) : ϕ ∈ L�}. The equivalence classes form a boolean
algebra with the following operations.

(9)
1 := CL(>)

−CL(ϕ) := CL(ϕ)
CL(ϕ) ∩CL(χ) := CL(ϕ ∧ χ)
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Furthermore, we can define a unary operator � by

(10) �CL(ϕ) := CL(�ϕ)

� has the following properties: (a) �1 = 1, and (b) �(a ∩ b) = �a ∩ �b. The
structure 〈AL, 1,−,∩,�〉 is called a boolean algebra with operator (BAO). For
a BAO A, let β be a map from variables into A. This map can be extended as
follows.

(11)

β(pi) := β(pi)
β(¬ϕ) :=−β(ϕ)

β(ϕ ∧ χ) := β(ϕ) ∩ β(χ)
β(�ϕ) :=�β(ϕ)

A filter is a subset F such that (i) if a ∈ F and a ≤ b then b ∈ F, (ii) if a, b ∈ F
then a ∩ b ∈ F. An ultrafilter U is a maximal filter. We write 〈A, β,U〉 � ϕ if
β(ϕ) ∈ U. And we write A � ϕ if for all valuations β and all ultrafilters U we have
〈A, β,U〉 � ϕ. (Equivalently, for all β we have β(ϕ) = 1.)

Let A = 〈A, 1,−,∩,�〉 be a BAO. Then let U(A) be the set of ultrafilters. For
U,V ∈ U(A) put U R V if for all �a ∈ U we have a ∈ V . The pair 〈W,R〉 is a
Kripke-frame. Also, for a ∈ A put â := {U ∈ U(A) : a ∈ U}. The structure

(12) 〈W,R, {̂a : a ∈ A}〉

is a so-called generalized Kripke frame. This is a Kripke-frame 〈W,R〉 together
with a subset S ⊆ ℘(W) closed under intersection and complement and the oper-
ation

(13) �A := {x : for all y: if x R y then y ∈ A}

Valuations may only be into S . The clauses for � are as above with S added. It is
immediate that the set of worlds at which a given formula holds is a member of S .
A Kripke frame can be seen as a general frame with S = ℘(W). Clearly, we have
a BAO 〈S ,W,−,∩,�〉 (notice that the set W plays the role of the unit element).
Thus, we have a correspondence between BAOs and generalized Kripke frames
([Jónsson and Tarski, 1951], [Goldblatt, 1976a; Goldblatt, 1976b]).

Let’s return to the algebraAL. There is a valuation κ defined by κ(pi) := CL(pi).
With this valuation we get κ(ϕ) = CL(ϕ). Also, for every valuation β, there is a
substitution s such that β(ϕ) = κ(s(ϕ)). It follows that AL � ϕ iff κ(s(ϕ)) = 1 for
all substitutions s iff ϕ ∈ L. As a result we get the following.
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Theorem 1 For every modal logic L there exists a BAO A such that A � ϕ if and
only if ϕ ∈ L.

This can be improved somewhat. For a logic L, let Alg(L) be the class of BAOs A
such that A � ϕ for all ϕ ∈ L. It turns out that Alg(L) is a variety, that is, a class
of algebras closed under subalgebras, homomorphic images and products (“HSP
Theorem”, see [Burris and Sankappanavar, 1981]).

Theorem 2 For every normal modal logic L, Alg(L) is a variety of BAOs. For
every variety V of BAOs, Th(V) is a normal modal logic. These operators are
inverses of each other.

It so turns out that there is a tight correspondence between BAOs and generalized
frames. However, when we turn to Kripke frames, matters are different. Let
Frm(L) denote the class of Kripke frames for L. Conversely, let Th(K) be the
set of formulae valid in all frames of K. These maps are not inverses of each
other; there are logics L and L′ such that Frm(L) = Frm(L′). This phenomenon,
incompleteness, has meant that the Kripke-frames had to be generalised.

4 The Lattice of Modal Logics
As already said in the introduction there are different interpretations of “�”, and
they may give rise to different logics. Thus, even though we assume classical
logic as our basic logic we still have a multitude of logics. This multitude has
the structure of a lattice. We write NExt K for the set of all normal modal logics.
NExt K is partially ordered by set inclusion. If L1 and L2 are normal modal logics,
so is the intersection L1 ∩ L2. Also, the infinite intersection

⋂
i∈I Li of a family

of normal modal logics is again such. Given L1 and L2 we write L1 t L2 for the
least (normal modal) logic containing both L1 and L2. (In general this is not the
set union.) Similarly

⊔
i∈I Li is the least logic containing all Li. What we have,

in mathematical terms, is a lattice 〈NExt K,∩,t〉. (Since the infinitary operations
are also defined, this lattice is called complete.) There is a bottom element, K,
and a top element, the inconsistent logic, K ⊕ ⊥.

The lattice NExt K is distributive. Moreover, it satisfies an infinite law of dis-
tribution

(14)

⊔
i∈I

Li

 ∩ M =
⊔
i∈I

(Li ∩ M)
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There is no analogous law relating
⋂

and t, and this means that the lattice lacks
a certain duality. For example, there are two logics T1 and T2 which are lower
neighbours of the inconsistent logics (in other words they are maximally consis-
tent) and every consistent logic is contained in either T1 or T2 ([Makinson, 1971]).
On the other hand, NExt K has no atoms, that is elements x > 0 such that for no y,
0 < y < x.

An important lattice theoretic concept is that of a splitting. A splitting is a
pair 〈L, L′〉 so that for every logic M either M ⊆ L or M ⊇ L′ but not both. If L is
the logic of a single frameW, L′ is then the least logic not havingW as its frames.
An example is 〈L,K ⊕ ^>〉 where L is the logic of the frame 〈{0},∅〉 (which we
have identified above as K ⊕ �⊥). L′ has the following property: if L′ ⊆ K ⊕ Γ

then there exists a single γ ∈ Γ such that L′ ⊆ K ⊕ γ. It can be shown abstractly
that if L is an atom in the lattice NExt K then there is a logic L′ such that 〈L, L′〉 is
a splitting. Unfortunately, NExt K possesses no atoms.

Call a logic L complete if L = Th(Frm(L)), that is, whenever ϕ < L there
is a Kripke-frame 〈W,R〉 for L such that 〈W,R〉 2 ϕ. [Blok, 1980] investigated
the question how widespread completeness is. Say that L′ is a completion of
L if L′ = Th(Frm L), equivalently, if L′ is complete and has the same Kripke-
frames as L. The degree of incompleteness of L is the cardinality of the set {L′ :
L and L′ have the same completion}. If every logic were complete then the degree
of incompleteness would be 1 for all logics. [Blok, 1980] shows that the degree
of incompleteness is either 1 or 2ℵ0 . Moreover, it is 1 only for quite uninteresting
logics: the iterated splittings of K, which Blok also characterised (there are only
countably many of them). Thus, incompleteness is in some sense the norm rather
than the exception.

While the lattice of all logics is quite intricate, parts of it can be rather well
behaved. Write NExt L for the sublattice of all logics containing L. The logic Alt1
is characterised by the axiom ^p→ �p. The lattice NExt Alt1 contains only com-
plete logics; it is countable, and all logics have the finite model property and are
decidable. Another much studied lattice is NExt K4, where K4 = K⊕^^p→ ^p.
The interest in K4 is due in part because of the close connection with intuitionistic
logic.

Recall the so-called Gödel translation of intuitionistic formulae.

(15)
pτ :=�p
(¬ϕ)τ :=�(¬ϕτ)
(ϕ ∧ χ)τ:=ϕτ ∧ χτ

This translation sends an intuitionistic formula to a modal formula. The image of
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an intermediate logic is not a modal logic (some formulae are missing). (Recall
that an intermediate logic is a logic containing Int and being contained in the
classical calculus.) So we take as the image of a logic under this translation the
least modal logic containing all translations of the formulae. The image of Int is
the logic Grz, known as Grzegorczyk’s logic.

(16) Grz := K4 ⊕ {p→ ^p,�(�(p→ �p)→ p)→ p}

Grz is the logic of all Kripke-frames where the converse of R is the reflexive
closure of a well order. If I and I′ are distinct intuitionistic logics then Iτ , (I′)τ.
Moreover, every logic containing Grz is the image of some intermediate logic.
This means that the map is an isomorphism of the lattice of intermediate logics
onto the lattice NExt Grz of extensions of Grz ([Blok, 1976]).

5 Expressivity
An important question is how much we can express about our frames using modal
formulae. As is easily seen, modal logic is a fragment of monadic second order
logic. Namely, a modal formula ϕ can be translated into a second order formula as
follows. Assume for each variable pi a distinct monadic predicate letter Pi. Read
“Pi(x)” as “pi is true at x”. Now put

(17)

pσi (y) := Pi(y)
(¬ϕ)σ(y) :=¬(ϕσ)(y)
(ϕ ∧ χ)σ(y) :=ϕσ(y) ∧ χσ(y)
(�ϕ)σ(y) := (∀z)(y R z→ ϕσ(z))

Given a formula ϕ we can now express the fact that there is a valuation that makes
ϕ true at some point x by the following second order formula:

(18) (∃P1)(∃P2) · · · (∃Pn)ϕσ(x)

Hence, the condition that a modal formula is valid in a frame is also equivalent
to a (monadic) second order formula. Sometimes it happens that this formula is
equivalent to a first order formula. For example, ^^p→ ^p is valid in a frame iff
R is transitive. For if R is not transitive, say x R y z but not x R z we put β(p) := {z}
and ^^p and ¬^p are true at x. However, if R is transitive and x a point at which
^^p is true, there is a y with x R y at which ^p is true, and a point z with y R z
at which p is true. Now x R z and so ^p is true at x. Similarly, ^p → �p is
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valid in 〈W,R〉 iff R is a partial function on W. [Sahlqvist, 1975] describes a large
class of modal formulae that axiomatise logics with elementary frame conditions.
These logics also have another property, called canonicity. Let AL be the BAO
constructed above for L, and let 〈WL,RL, S L〉 be the generalised Kripke frame for
that algebra. L is called canonical if also 〈WL,RL〉 is a frame for L. Evidently, in
that case L is complete. This result has been treated extensively, among other in
[van Benthem, 1983], [Sambin and Vaccaro, 1989], [Kracht, 1993], [Goranko and
Vakarelov, 2006] (the latter managed to improved the result even). [Fine, 1975]
observed that if a logic is complete for an elementary class of Kripke-frames then
it is canonical. He asked about the converse. [Goldblatt et al., 2004] gave a neg-
ative answer: there is a canonical logic not characterised by an elementary class
of Kripke-frames. Given that we can express certain elementary formulae, which
ones are they? A characterisation is given in [Kracht, 1999b] for the Sahlqvist
class. There is however another way to look at the matter. In order to express
a complex elementary condition it may be necessary to add further operators, or
alternatively, to model the elementary relations indirectly. In that case it may be
possible to encode more first order conditions. Indeed, as [Kracht, 1999a] notes it
is possible to go as high as Π1

0 (this includes first order set theory with true second
order comprehension, for example).

6 Consequence
Up to now we have focussed on logics as sets of formulae. However, often we
need to generalise this and study what is known as consequence relations. It
so turns out that the same consequence relation can be related to several sets of
theorems. A consequence relation is a relation � between sets of formulae and a
single formula subject to the following requirements. 1

• If γ ∈ Γ then Γ � γ.

• If Γ � ϕ and Γ ⊆ Γ′ then Γ′ � γ.

• If Γ � δ for every δ ∈ ∆ and ∆ � γ then also Γ � γ.

• If Γ � γ and s is substitution then s(Γ) � s(γ).

A tautology of � is a formula γ such that ∅ � γ. Taut(�) denotes the set of
tautologies of �. A modal consequence relation is a consequence relation �

1This would more exactly be called a structural, normal consequence relation.
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such that Taut(�) is a normal modal logic, and such that {p, p→ q}�q. Above we
have seen the relation `L. This is the least modal consequence relation whose set
of tautologies is L. There are more. For example, a consequence relation is called
global if {p} � �p. The least global consequence with tautologies L is denoted by

L. It is distinct from `L just in case p→ �p is not in L. A rule is a pair ρ = 〈Γ, γ〉,
where Γ is a set of formulae and γ a single rule. ρ is a derived rule of � if ρ ∈ �.
It is admissible for L if for every substitution s if s(Γ) ⊆ L then s(γ) ∈ L. The
rule of denecessitation, 〈{�p}, p〉, is admissible for K. For assume that �ϕ is a
theorem. Then it holds in all frames. Let 〈W,R〉 be a frame; we need to show that
〈W,R〉 � ϕ. Add to W a new world w0 and expand R to R0 such that w0 R0 w for
all w ∈ R. Then 〈W0,R0〉 � �ϕ by assumption. It follows that 〈W,R〉 � ϕ (for a
syntactic proof see [Williamson, 1993]). The rule is however not derived in either
`K or 
K. The necessitation rule is admissible in any modal consequence relation
(by definition of a logic) but it is derived only if that relation is global. Given a
logic L with infinitely many constant formulae there are 2ℵ0 many consequence
relations whose set of tautologies is L.

[Rybakov, 1997] discusses the problem of characterising the admissible rules
for a logic. In the above terms, the objective is to characterise in terms of explicit
rules the maximal consequence relation � such that τ(�) = L. This question
is quite different from the axiomatization of L. For example, S4, the logic of
transitive and reflexive frames, is clearly finitely axiomatisable and decidable. Yet,
the admissible rules are not axiomatisable by finitely many rules, though it is
decidable whether a given rule is admissible.

7 Polymodal Logic
For many applications of modal logic we wish to have not just one but several
operators. Examples are constituted by tense logic, which uses two operators
(sharing the same accessibility relation), mixtures of tense and modality (as in
Montague Semantics), and Propositional Dynamic Logic ([Segerberg, 1977] and
[Fischer and Ladner, 1979]). Again, if the interpretation of the operators is arbi-
trary we are led to the study of the lattice NExt Kα of normal modal logics with
α many operators. It turns out that if α is finite there is an complete reduction of
polymodal logic to monomodal logic. I shall sketch how this works for α = 2.

I will not rehearse the definitions of logics and frames. The operators of the
bimodal logic are now called �1 and �2 while the operator of the monomodal
logics carries no index. Given two monomodal logics L1 and L2, the logic L1 ⊗ L2

11



is formed by interpreting the operator of L1 by �1 and the operator of L2 by �2.
This is the independent fusion of [Kracht and Wolter, 1991]. Unless L1 or L2 are
inconsistent, this operation is conservative. This is to say that if we look at the
theorems of L1 ⊗ L2 containing no occurrences of �2 we recover L1 (under the
interpretation of � as �1) and similarly for L2. The operation also has a number
of other properties. If L1 and L2 are complete, so is L1 ⊗ L2; if on the other hand
L1 ⊗ L2 is complete, so are both L1 and L2. The same holds for a number of
other properties (decidability, elementarity, having the finite model property and
more). Recall that if L is a monomodal logic the tense extension is defined by
Lt := (L⊗K)⊕{p→ �1^2 p, p→ �2^1 p}. The lattice NExt K2 contains the lattice
of tense logics, though not as a sublattice or interval. Moreover, the map is not
conservative ([Wolter, 1997]).

It is also possible to go the other way: to a bimodal frame 〈W,R1,R2〉 we
can associate a monomodal frame 〈Wµ,Rµ〉 in the following way. Wµ is defined as
{?}∪W×{1, 2} and x Rµ y if and only if (i) x = 〈u, 1〉, y = 〈u, 2〉, (ii) x = 〈u, 2〉, y =

〈u, 1〉, (iii) x = 〈u, 1〉, y = 〈v, 1〉 and u R1 v, (iv) x = 〈u, 2〉, y = 〈v, 2〉 and u R2 v, (v)
x = 〈u, 1〉 and y = ?. This is called the simulation frame. It is possible to express
the modal operators �1 and �2 in the new language. The set W×{1} is definable by
the formula w := ^�>, the set W×{2} by b := ^>∧�^>. We can thus recover R1

as follows. x R1 y iff x and y satisfy w and x R y. Similarly, x R2 y iff x and y satisfy
b and x R y. This can be lifted to a construction on general frames. Finally, given a
bimodal logic L, Ls is defined by the logic of the simulation frames of frames for
L. It turns out that the map L 7→ Ls is a lattice isomorphism from NExt K2 onto an
interval in the lattice NExt K. Again, many properties are preserved back and forth
under this isomorphism ([Kracht and Wolter, 1999]). I shall briefly return to the
question of expressivity. As we have seen, we need not model binary relations by
the one relation R, we can also define them by formula χ involving R. This allows
a single binary relation to encode any finite number of binary relations. Set theory
is based on a single binary relation as well, ∈. By introducing enough additional
relations we can encode set theory by means of binary relations based on modal
operators.
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