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Abstract. We continue the investigations begun in [10]. We shall define a semantics that is
built on a new kind of frames, called coherence frames. In these frames, objects are transcendental
(world-independent), as in the standard constant-domain semantics. This will remove the asym-
metry between constants and variables of the counterpart semantics of [10]. We demonstrate the
completeness of (general) coherence frames with respect to first- and certain weak second-order
logics and we shall compare this notion of a frame to counterpart frames as introduced in [10] and
the metaframe semantics of [13].

§1. Introduction. In [10] we have developed a semantics that is complete
with respect to first- and weak second-order modal predicate logics. This
semantics was in addition quite elementary, which was already a great step
forward from the previous semantics by Ghilardi [6] and by Skvortsov and
Shehtman [13]. Still, from a philosophical point of view this semantics left
much to be desired. The introduction of counterpart relations — although in
line with at least some philosophical ideas, notably by Lewis — is not always
very satisfactory since it makes the notion of an object a derived one. The
things we see become strictly world bound: there is no sense in which we can
talk of, say, the town hall of Berlin, rather than the town hall of Berlin in
a particular world, at a particular point of time. The traditional semantics
for modal predicate logic held the complete opposite view. There, objects are
transcendental entities. They are not world bound, since they do not belong
to the worlds. The difference between these views becomes clear when we
look at the way in which the formula 3ϕ(~x) is evaluated. In the standard
semantics, we simply go to some accessible world and see whether ϕ(~x) holds.
In counterpart semantics, we not only have to choose another world but also
some counterparts for the things that we have chosen as values for the variables
in this world. In the traditional semantics the question of counterparts does
not arise because of the transcendental status of objects. We may view this
as a limiting case of counterpart semantics, in which the counterpart relation
always is the identity.
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Note that the addition of constant symbols to the language introduces fur-
ther complications. In counterpart semantics, it is far from straightforward to
interpret constant symbols, because we need to give an interpretation of these
symbols across possible worlds that respects the counterpart relations in some
appropriate sense. Variables on the other hand simply denote “objects” in the
domain of a given world. In the case of traditional semantics this asymmetry
appears in a similar fashion if one allows constant symbols to be non-rigid,
as has been done e.g. in [5]. Then, variables denote transcendental entities,
whereas constants denote something like individual concepts, i.e. functions
from possible worlds to a domain. Facing this dilemma, one solution is to
completely move to a higher-order setting, where constants and variables can
be of various higher types, e.g. type-0 constants denote objects, type-1 con-
stants individual concepts etc. (cf. [3]). In this paper, we will follow a different
approach, treating constants and variables in the same way, but assuming a
more sophisticated notion of a modal individual and identity-at-a-world.

It remains unsatisfactory having to choose between these competing se-
mantics. Moreover, it would be nice if the difference between these semantics
was better understood. Certainly, much research has been done into standard
semantics and it is known to be highly incomplete if one aims for frame-
completeness results.

However, it is known that completeness with respect to models is as easy to
show as in predicate logic but that if the language contains equality, different
semantics have to be chosen for different theories/logics of identity (cf. e.g.
[7]). The present paper developed from the insight that if the proper semantics
is introduced, modal predicate logics with different logics of identity can
be treated within the same semantical framework. We call this semantics
coherence semantics. Completeness with respect to models is then uniformly
shown for all modal predicate logics that are extensions of free quantified
K together with the predicate logical axioms of equality. We continue by
investigating the relationships between coherence frames, counterpart frames
and metaframes, discuss the treatment of identity in each of the semantics as
well as the interpretation of constant symbols and finally derive a completeness
result for so-called cubic generalized metaframes.

§2. Preliminaries. The language has the following symbols. Following
Scott [12] we shall work with nonobjectual (possibilist) quantifiers plus an
existence predicate. This allows to eliminate the objectual (actualist) quanti-
fiers (they are now definable), and straightens the theory considerably. The
existence predicate is a unary predicate whose interpretation — unlike the
identity symbol — is completely standard, i.e. does not have to meet extra
conditions. Hence it can actually be suppressed in the notation, making
proofs even more simple.
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Definition 1 (Symbols and Languages). The languages of modal predi-
cate logic contain the following symbols.

1. A denumerable set V := {xi : i ∈ ù} of object variables.
2. A denumerable set C := {ci : i ∈ ù} of constants.
3. A set Π of predicate constants containing the unary existence predicate
E.

4. The boolean functors ⊥, ∧, ¬.
5. The possibilist quantifiers

∨
,
∧

.
6. A set M := {2ë : ë < κ} of modal operators.

Furthermore, each symbol from Π has an arity, denoted by Ω(P). In partic-
ular, Ω(E) = 1.

The variables are called xi , i ∈ ù. We therefore use x (without subscript!),
y, yj or z, zk , as metavariables. We assume throughout that we have no
function symbols of arity greater than 0. However, this is only a technical
simplification. Notice that in [10] we even had no constants. This was so
because the treatment of constants in the counterpart semantics is a very
delicate affair, which we will discuss below. Moreover, for simplicity we
assume that there is only one modal operator, denoted by 2 rather than 20.
Nothing depends on this choice. The standard quantifiers ∀ and ∃ are treated
as abbreviations.

(∀y)ϕ :=
∧
y.E(y) → ϕ,

(∃y)ϕ :=
∨
y.E(y) ∧ ϕ.

Moreover, 3ϕ abbreviates ¬2¬ϕ. The sets of formulae and terms in this
language are built in the usual way. Unless otherwise stated, equality ( .=) is
not a symbol of the language.

Definition 2 (First-Order MPLs). A first-order modal predicate logic is a
set L of formulae satisfying the following conditions.

1. L contains all instances of axioms of first-order logic.
2. L is closed under all rules of first-order logic.
3. L contains all instances of axioms of the modal logic K.
4. L is closed under the rule ϕ/2ϕ.
5. 3

∨
y.ϕ ↔ ∨

y.3ϕ ∈ L.

Notice that the last of the postulates ensures that in a Hilbert-style proof all
instances of the rule (MN) can be assumed to be at the beginning of the proof.
((MN) “commutes” with (MP), as is easily seen. However, it commutes with
(UG) only in presence of the postulate (5).) To eliminate some uncertainties
we shall note that the notions of free and bound occurrences of a variable
are exactly the same as in ordinary first-order logic. A variable x occurs
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bound if this occurrence is in the scope of a quantifier
∧
x or

∨
x. We

denote the simultaneous replacement of the terms si for xi (i < n) in ÷ by
[s0/x0, . . . , sn−1/xn−1]÷. Or, writing ~s = 〈si : i < n〉 and ~x = 〈xi : i < n〉, we
abbreviate this further to [~s/~x]÷.

If the language contains equality, the following is required of L.

Eq1.
∧
x.x

.= x ∈ L.
Eq2.

∧
x.
∧
y.x

.= y → y
.= x ∈ L.

Eq3.
∧
x.
∧
y.
∧
z.x

.= y ∧ y .= z → x
.= z ∈ L.

Eq4.
∧
y0.
∧
y1. · · ·

∧
yn.yi

.= yn → {P(y0, . . . , yn−1) ↔ [yn/yi ]P(y0, . . . ,
yn−1)} ∈ L if P ∈ Π, n = Ω(P).

The axioms Eq1–Eq3 ensure that equality is interpreted by an equivalence
relation. Note that the axiom Eq4 is weaker than the usual Leibniz’ Law,
because it only allows for the substitutability of identicals in atomic predicates.
We start with a very basic semantics, standard constant-domain semantics.
Recall that we assume no equality.

Definition 3 (Frames, Structures and Models). A triple W = 〈W,�, U 〉 is
called a predicate Kripke-frame, where W is a set (the set of worlds), � ⊆
W ×W a binary relation on W (the accessibility relation), and U a set (the
universe). A modal first-order structure is a pair 〈W, I〉, where W is a predicate
Kripke-frame and I a function mapping a predicate P to a function assigning
to each worldw an Ω(P)-relation onU and a constant symbol c to a member
ofU . I is called an interpretation. Further, Iw is the relativized interpretation
function at w, which assigns to each P ∈ Π the value I(P)(w) and to each
constant symbol c the value I(c). A valuation is a function â : V → U .
A model is a triple 〈F, â, w〉 such that F is a modal first-order structure, â a
valuation into it and w a world of F.

As usual, ã ∼x â means that ã(y) = â(y) for all y ∈ V different from x. If
P is a predicate symbol and 〈t0, . . . , tΩ(P)−1〉 an Ω(P)-tuple of terms, let ε be
the function that assigns the tuple 〈ε0(t0), . . . , εΩ(P)−1(tΩ(P)−1)〉, where εi = â
if ti ∈ V and ε = I if ti ∈ C .

Definition 4 (Truth in a Model). Given some modal first-order structure
F = 〈W, I〉, a model 〈F, â, w〉, and a formula ϕ, we define 〈F, â, w〉 � ϕ as
follows.

〈F, â, w〉 � P(~t ) :⇐⇒ ε(~t ) ∈ Iw(P),

〈F, â, w〉 � ϕ ∧ ÷ :⇐⇒ 〈F, â, w〉 � ÷;ϕ,

〈F, â, w〉 � ¬ϕ :⇐⇒ 〈F, â, w〉 2 ϕ,
〈F, â, w〉 �

∨
x.ϕ :⇐⇒ for some ã with ã ∼x â : 〈F, ã, w〉 � ϕ,

〈F, â, w〉 � 3ϕ :⇐⇒ exists w ′ such that w �w ′ and 〈F, â, w ′〉 � ϕ.
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§3. Completeness. In this section we sketch a proof of the well-known
result that every MPL as defined above can be characterized by a canonical
structure. The proof presented below is a variation of proofs that can be
found in the literature, see e.g. [7], and is based on the use of special, maximal-
consistent sets of formulae, namely Henkin-complete maximal consistent sets
in an extended language. This kind of completeness proof in modal predicate
logic goes back to [14]. We present only the basic steps here. But note that
the proof depends on the presence of the Barcan formulae for the possibilist
quantifiers.

Definition 5. A set T of formulae of some language L of MPL is called
Henkin-complete, if for all

∨
y.÷ in L there exists a constant c such that∨

y.÷ ↔ [c/y]÷ ∈ T . Let L∗ result from a language L by adding infinitely
many new constant symbols; call L∗ a Henkin-language for L.

In what is to follow we will assume that given a language L, a Henkin-
language L∗ is fixed once and for all.

Definition 6. LetL be an MPL in L. A Henkin-world is a maximalL-con-
sistent, Henkin-complete set of formulae in the language L∗.

Lemma 7. Every L-consistent set of formulae in language L is contained in
some Henkin-world.

Proof. Let ∆ be L-consistent in language L and let ø1, ø2, . . . be an enu-
meration of the formulae of type

∨
x.ϕi (x) in the language L∗. For øi

define äi :=
∨
y.ϕi ↔ [ci/y]ϕi , where ci is a new constant not appear-

ing in any äj , j < i . This is possible because we have an infinite supply
of new variables. Define ∆∗ :=

⋃
i∈ù ∆i , where ∆i := ∆ ∪ {äj : j < i}.

Then ∆0 = ∆. ∆∗ is clearly Henkin-complete. By compactness, it is also
L-consistent if all ∆k are. Now, suppose there is a k such that ∆k is in-
consistent. Choose k minimal with this property. By assumption, k > 0.
There is a finite set ∆′ ⊆ ∆ such that L ` ∧ϕ∈∆′ ϕ ∧

∧
i<k äi → ¬äk . But

then L ` ∧ϕ∈∆′ ϕ ∧
∧
i<k äi → (

∨
y.ϕk ∧ ¬[ck/y]ϕk) where the constant

ck does not appear in any äi , i < k. Hence, by first-order logic, we have
L ` ∧ϕ∈∆′ ϕ∧

∧
i<k äi → (

∨
y.ϕk ∧

∧
y.¬ϕk), whence ∆k−1 isL-inconsistent,

contrary to the choice of k.
Next, by a standard argument, we can turn ∆∗ into a maximal L-consistent

set in language L∗ without loosing the property of Henkin-completeness. a
Notice that this method of Henkin-closure does not work for the counter-

part semantics of [10]. The reason is the asymmetry between variables and
constants. Instead, a slightly different definition was used, where instead of
constants variables were used as witnesses.
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Let CL∗ be the set of constant terms of L∗. Now define WL∗ to be the set
of all Henkin-worlds. If ∆ ∈WL∗ , the following interpretation is defined.

I∆(P) :=
{
〈ci : i < Ω(P)〉 : P(~c) ∈ ∆

}
and I(c) = c.

This defines a first-order model on the world ∆. Finally, we put ∆ � Σ if for
all 2ä ∈ ∆ we have ä ∈ Σ. IL∗ is defined by piecing the I∆ together; it assigns
to each world ∆ the function I∆. Then we put

CanL∗ :=
〈〈
WL∗ ,�, CL∗

〉
, IL∗

〉
.

This is a modal first-order structure, called the canonical structure for L. The
following is immediate from the definitions.

Lemma 8. Let ∆ be a Henkin-world. Then if
∨
y.÷ ∈ ∆, there is a constant

d such that [d/y]÷ ∈ ∆.
Before we can prove the main result of this section, we need one more lemma

whose proof does indeed depend on the presence of the Barcan formulae for
the possibilist quantifiers. To state the lemma, let ∆2 := {ϕ : 2ϕ ∈ ∆}.

Lemma 9. For every Henkin-world ∆ with 3÷ ∈ ∆, there is a Henkin-world
Γ such that ∆2 ∪ {÷} ⊂ Γ.

Proof. By a standard argument from propositional modal logic, the set
∆∗ := ∆2∪{÷} is L-consistent. We have to show that ∆∗ can be extended to a
Henkin-world. Note first that this set already contains all the constants from
the Henkin-language L∗. Let ø1, ø2, . . . be an enumeration of the formulae
of type

∨
x.ϕi (x) in the language L∗. For øi define äi :=

∨
y.ϕi ↔ [ci/y]ϕi ,

where ci is the first new constant such that ∆i := ∆∗ ∪ {äj : j < i} is L-con-
sistent. If such a constant always exists we can define Γ as the completion
of
⋃
i∈ù ∆i which is a Henkin-world. So suppose that ∆i is L-consistent but

there is no constant ci+1 such that ∆i+1 is. Then there are, for every constant
c of L∗, formulae α0, . . . , αn−1 ∈ ∆2 such that

L `
∧

k≤n
αk →

((
÷ ∧

∧

j<i

äi

)
→
(∨

y.ϕi+1 ∧ ¬[c/y]ϕi+1

))
.

Since 2αi ∈ ∆ for all i , it follows that

2

((
÷ ∧

∧

j<i

äi

)
→
(∨

y.ϕi+1 ∧ ¬[c/y]ϕi
))
∈ ∆

for every constant c. Since ∆ is Henkin-complete we can “quantify away” the
constant with a variable not appearing in the formula (by using the appropriate
Henkin-axiom) and apply the Barcan formula and thus obtain:

2
∧
z.

((
÷ ∧

∧

j<i

äi

)
→
(∨

y.ϕi ∧ ¬
[
z/y
]
ϕi

))
∈ ∆.
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Distributing the quantifier, applying modus tollens and then Box-distribution
we arrive at:

2¬
(∨

y.ϕi ∧
∧
z.¬
[
z/y
]
ϕi

)
→ 2¬

(
÷ ∧

∧

j<i

äi

)
∈ ∆.

Now, since 2(
∧
y.¬ϕi ∨

∨
z.[z/y]ϕi ) belongs to every MPL, we thus obtain

2¬(÷ ∧∧j<i äi ) ∈ ∆, which makes ∆i inconsistent, contradiction. a
Lemma 10. Let ϕ be a sentence in the language L∗ and ∆ a Henkin-world.

Then
〈CanL∗ ,∆〉 � ϕ ⇐⇒ ϕ ∈ ∆.

Proof. The base case, ϕ = P(~c), follows trivially from the definition of
I∆. The induction steps for ⊥, ¬ and ∧ are routine as well. Now, let ϕ =∨
y.÷. Suppose that ϕ ∈ ∆. Then, since ∆ is Henkin-complete, there exists

a constant d such that [d/x]÷ ∈ ∆. This is a sentence, and by induction
hypothesis 〈CanL∗ ,∆〉 � [d/x]÷. Hence, by definition, 〈CanL∗ ,∆〉 �

∨
y.÷.

This argument is reversible. Finally, let ϕ = 3÷. Assume that 〈CanL∗ ,∆〉 �
3÷. Then there exists a Σ such that ∆ � Σ and 〈CanL∗ ,Σ〉 � ÷. By induction
hypothesis, ÷ ∈ Σ. By definition of �, 3÷ ∈ ∆.

Now assume 3÷ ∈ ∆. By Lemma 9 there is a Henkin-world Σ such
that ∆2 ∪ {÷} ⊂ Σ. Hence ∆ � Σ by definition. By induction hypothesis,
〈CanL∗ ,Σ〉 � ÷. So, 〈CanL∗ ,∆〉 � 3÷, as had to be shown. a

Now we have given all the ingredients for a proof of the main result.
Theorem 11. Every modal predicate logic without equality is complete with

respect to modal first-order structures, in particular

CanL∗ � ϕ ⇐⇒ ϕ ∈ L.

§4. Coherence structures. Let us now see what happens if equality is intro-
duced into the language. Evidently, if equality is just a member of Π instead
of being a logical symbol, the previous proofs go through. Then the interpre-
tation of equality is an equivalence relation in each world. But generally one
requires that equality must be interpreted as identity. Nonetheless, we must
ask: identity of what? Think about the example of Hesperus and Phosphorus.
As for the real world they are identical, but there are some people for whom
they are not. Let George be such a person. Then there is a belief world of
George’s in which Hesperus and Phosphorus are not identical. Many have
argued that George’s beliefs are inconsistent. This is what comes out if we
assume standard semantics. But we could turn this around in the following
way. We say that equality does not denote identity of objects but of some-
thing else, which we shall call the object trace. We say that Hesperus and
Phosphorus are different objects, which happen to have the same trace in this
world, but nonidentical traces in each of George’s belief worlds. To make this
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distinction between object and object trace more acceptable we shall give a
different example. Suppose someone owns a bicycle b and he has it repaired.
The next day he picks it up; but then it has a different front wheel. Surely, he
would consent to the statement that the bicycle he now has is that bicycle that
he gave to the repair shop yesterday. But its front wheel isn’t. Let’s assume for
simplicity that atoms are permanent, they will never cease to exist nor come
into existence. Next, let us assume (again simplifying things considerably)
that the trace of an object is just the collection of atoms of which it consists.
Then, while the object b continued to exist, its trace has changed from one
day to the other. In order not to get confused with the problem of transworld
identity let us stress that we think of the objects as transcendental. b is neither
a citizen of this world today nor of yesterday’s world, nor of any other world.
But its trace in this world does belong to this world. We may or may not
assume that object traces are shared across worlds. Technically matters are
simpler if they are not, but nothing hinges on that. So, in addition to the
bicycle b we have two wheelsw andw ′, and the trace of b contained the object
trace ofw yesterday, and it contains the trace ofw ′ today. In the light of these
examples it seems sensible to distinguish an object from its trace. Of course,
we are not committed to any particular view of traces and certainly do not
want to assume that object traces are simply conglomerates of atoms.

Now, in the classical semantics, identity across worlds was a trivial matter.
Objects were transcendental, and in using the same letter we always refer to
the same object across worlds. However, identity is not relative to worlds. If
Hesperus is the same object as Phosphorus in one world, it is the same in all
worlds. The distinction between object and trace gets us around this problem
as follows. Denote the objects by h and p; further, let this world be w0 and let
w1 be one of George’s belief worlds. Then the traces of h and p are the same
in this world, but different in w1. This solves the apparent problem. In our
words, equality does not denote identity of two objects, but only identity of
their traces in a particular world.

Definition 12 (Coherence Frames and Structures). By a coherence frame
we understand a quintuple 〈W,�, U, T, ô〉 where 〈W,�, U 〉 is a predicate
Kripke-frame, T a set, the set of things, and ô : U × W → T a surjec-
tive function. We call ô the trace function and ô(o, w) the trace of o in w. An
interpretation is a function I mapping each P ∈ Π to a function from W to
UΩ(P) and each constant symbol c to a member ofU . I is called equivalential
if for all ~a,~b ∈ UΩ(P) andw ∈W , if ô(ai , w) = ô(bi , w) for all i < Ω(P) then
~a ∈ I(P)(w) iff ~b ∈ I(P)(w). A coherence structure is a pair 〈W, I〉 where W
is a coherence frame and I an equivalential interpretation.

Note that since trace functions are assumed to be surjective, every trace has
to be the trace of some object. This is a natural condition, because objects are
considered to be the primary entity, and traces a derived notion. The notion of
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equivalence is perhaps a curious one. It says that the basic properties of objects
cannot discriminate between objects of equal trace. So, if Pierre believes that
London is beautiful and Londres is not, we have two objects which happen to
have the same trace in this world. Hence they must share all properties in this
world. So, London and Londres can only be both beautiful or both ugly. This
seems very plausible indeed. From a technical point of view, however, the
fact that they cannot simply have different properties is a mere stipulation on
our part. On the other hand, it is conceivable that there are basic predicates
that are actually intensional, which would mean that they fail the substitution
under (extensional) equality.

An alternative setup for strictly extensional basic predicates is the following.
An interpretation is a function assigning to predicates in a world not tuples of
objects but tuples of things. Then an object has a property if and only if its
trace does. This approach is certainly more transparent because it attributes
the fact that an object bears a property only to the fact that its trace does. Yet,
technically it amounts to the same.

Definition 13 (Coherence Models). A coherence model is a triple 〈C, â, w〉,
where C is a coherence structure, â : V → U a valuation, w ∈W and ε as in
Definition 4. We define the truth of a formula inductively as follows.

〈C, â, w〉 � P(~t ) :⇐⇒ ε(~t ) ∈ Iw(P),

〈C, â, w〉 � s .= t :⇐⇒ ô(ε(s), w) = ô(ε(t), w),

〈C, â, w〉 � ÷ ∧ ϕ :⇐⇒ 〈C, â, w〉 � ÷;ϕ,

〈C, â, w〉 � ¬ϕ :⇐⇒ 〈C, â, w〉 2 ϕ,
〈C, â, w〉 �

∨
x.ϕ :⇐⇒ for some ã with ã ∼x â : 〈C, ã, w〉 � ϕ,

〈C, â, w〉 � 3ϕ :⇐⇒ there is w ′ such that w �w ′ and 〈C, â, w ′〉 � ϕ.

C � ϕ if for all valuations â and all worlds v : 〈C, â, v〉 � ϕ.

It is a matter of straightforward verification to show that all axioms and
rules of the minimal MPL are valid in a coherence frame. Moreover, the
set of formulae valid in a coherence structure constitute a first-order MPL.
Notice that the fourth postulate for equality holds in virtue of the special
clause for equality and the condition that the interpretation must be equiv-
alential. For if 〈C, â, w〉 � yi .= yn , then ô(â(yi ), w) = ô(â(yn), w). So,
if 〈C, â, w〉 � P(y0, . . . , yn−1) for P ∈ Π, then 〈â(yi ) : i < n〉 ∈ I(P)(w).
Let â ′ ∼yi â be such that â ′(yi ) = â(yn). By equivalentiality, 〈â ′(yi ) :
i < n〉 ∈ I(P)(w). This means that 〈C, â ′, w〉 � P(y0, . . . , yn−1), and so
〈C, â, w〉 � [yn/yi ]P(y0, . . . , yn−1). If F is a coherence frame, put F � ϕ if
〈F, I〉 � ϕ for all equivalential interpretations I. Evidently, {ϕ : F � ϕ} is a
first-order MPL.
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The difference with the counterpart semantics is that we have disentangled
the quantification over objects from the quantification over worlds. Moreover,
objects exist independently of worlds. Each object leaves a trace in a given
world, though it need not exist there. Furthermore, two objects can have the
same trace in any given world without being identical. However, identity of
two objects holds in a world if and only if they have the same trace in it. If we
also have function symbols, the clauses for basic predicates and equality will
have to be generalized in the obvious direction.

To derive a completeness result for coherence structures we have to revise
the construction from Section 3 only slightly, namely we have to define what
the traces of objects are. To do this, let ∆ ∈ WL∗ be a Henkin-world and c a
constant. Then put [c]∆ := {d ∈ CL∗ : c .= d ∈ ∆}. Now set

ôL∗(c,∆) :=
〈
[c]∆,∆

〉
.

Then let
TL∗ :=

{〈
[c]∆,∆

〉
: ∆ ∈WL∗ , c ∈ CL∗

}
.

Finally, put
CohL∗ :=

〈〈
WL∗ ,�, CL∗ , TL∗ , ôL∗

〉
, IL∗

〉
.

This is a coherence structure. For by Eq4, IL∗ is equivalential, as is easily
checked. Since 〈[c]∆,∆〉 = 〈[d ]∆,∆〉 iff [c]∆ = [d ]∆ iff c .= d ∈ ∆, the following
is immediate:

Lemma 14. Let ϕ be a sentence and ∆ a Henkin-world. Then
〈
CohL∗ ,∆

〉
� ϕ ⇐⇒ ϕ ∈ ∆.

Theorem 15. Every modal predicate logic with or without equality is complete
with respect to coherence structures.

In his [11], Gerhard Schurz introduced a semantics, called worldline se-
mantics, in the context of analyzing Hume’s is-ought thesis, i.e. the logical
problem whether one may infer ethical value (normative) statements from
factual (descriptive) statements. This semantics is very close to the co-
herence semantics defined in this paper. A worldline frame is a quintuple
〈W,R,L,U,Df〉, where W is a set of worlds, R the accessibility relation,
U 6= ∅ a non-empty set of possible objects, ∅ 6= L ⊆ UW a set of functions
from possible worlds to possible objects (members of L are called worldlines),
Df : W → ℘(U ) a domain function such that Df(w) =: Dw ⊆ Uw , where
Uw := {d ∈ U : ∃l ∈ L (l(w) = d )} (the set of term extensions at world w)
andLw = {l ∈ L : ∃d ∈ Dw (l(w) = d )} (the set of worldlines with extension
in Dw). An interpretation V into a worldline frame is a function such that
V (t) ∈ L for any term t and Vw(Q) ⊆ U n

w for any n-ary predicate Q. If V
is a worldline interpretation denote by V [l/x] the interpretation that is like
V except that it assigns worldline l to the variable x. Since, unlike Schurz,
we assume that free logical quantifiers are a defined notion, we suppose in the
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following that Dw = Uw for all w. Then, in particular, Df(w) = Uw and
Lw = L for all w, which means thatDf can be omitted. The truth relation in
worldline semantics can now be defined as follows:

Definition 16 (Truth in Worldline Semantics). Let F = 〈W,R,L,U 〉 be a
worldline frame, V an interpretation and w a world, define

〈F, V, w〉 � P(~t ) :⇐⇒ Vw(~t ) ∈ Vw(P),
〈F, V, w〉 � s .= t :⇐⇒ V (s)(w) = V (t)(w),
〈F, V, w〉 � ÷ ∧ ϕ :⇐⇒ 〈F, V, w〉 � ÷;ϕ,
〈F, V, w〉 � ¬ϕ :⇐⇒ 〈F, V, w〉 2 ϕ,

〈F, V, w〉 �
∨
x.ϕ :⇐⇒ for some l ∈ L :

〈
F, V

[
l/x
]
, w
〉
� ϕ,

〈F, V, w〉 � 3ϕ :⇐⇒ there is w ′ such that w �w ′ and 〈F, V, w ′〉 � ϕ.

It should be rather clear that the main difference between worldline and
coherence semantics is terminological. While in worldline semantics one
quantifies over worldlines and evaluates predicates and identity statements
with respect to the value of a worldline at a particular world, in coherence
semantics we quantify over modal individuals without specifying their internal
structure, but assume a trace function that maps an individual at a world to
its trace. So we can give the following translation. Given a coherence model
〈F, I, â, w〉 based on the coherence frame 〈W,�, U, T, ô〉, define a worldline
model 〈G, V, w ′〉 based on the worldline frame 〈W ′, R, L,U ′〉 as follows. Set
W ′ := W , R := �, U ′ := T , and w ′ := w. Further, given u ∈ U , define
fu : W ′ → U ′ by lettingfu(w) := t if ô(u,w) = t and setL := {fu : u ∈ U}.
Then, for v ∈W ′, we have

U ′v := {t ∈ U ′ : ∃l ∈ L (l(v) = t)} = {t ∈ T : ∃u ∈ U (ô(u, v) = t)}.

Call G the worldline companion of F.

Proposition 17. For every coherence frame F and its worldline companion G
and for all ϕ:

F � ϕ ⇐⇒ G � ϕ.

In particular, if a logic L is frame complete with respect to coherence frames, it
is frame complete with respect to worldline frames.

Proof. The proof is by a rather straightforward structural induction on ϕ.
The only task is to define appropriate interpretations, so we only consider
the atomic cases. Fix a coherence frame F and its worldline companion G.
Suppose ϕ = P(x0, . . . , xn−1) and that 〈F, I, â, w〉 2 ϕ for some equivalential
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interpretation I, valuation â and world w. Define

〈t0, . . . , tn−1〉 ∈ Vw(P)⇐⇒ ti = ô(w, ui ) and 〈u0, . . . , un−1〉 ∈ Iw(P)(∗)
and âw(xi ) = Vw(xi ). Then, clearly, 〈G, V, w〉 2 P(x0, . . . , xn−1). Conversely,
given an interpretationV and 〈G, V, w〉 2 ϕ, we can define an interpretation I
and a valuation â as in (∗) such that I is equivalential and 〈〈F, I〉, â, w〉 2 ϕ.
The case ϕ = (xi

.= xj) is treated in the same way. a
Notice that worldline frames require no condition of equivalentiality.

§5. Coherence structures and counterpart structures. Counterpart frames
and structures were introduced in Kracht and Kutz [10]. They generalize the
functor-semantics of Ghilardi. Call a relation R ⊆M ×N a CE-relation (CE
stands for “counterpart existence”) if for all x ∈M there exists a y ∈ N such
that x R y and, likewise, for all y ∈ N there exists an x ∈M such that x R y.
This is a slight adaptation of the definition of that paper to take care of the
fact that we now deal with possibilist quantifiers plus an existence predicate
as opposed to “proper” free-logical quantifiers. Furthermore, we shall make
more explicit the world dependence of the universes.

Definition 18 (Counterpart Frames and Structures). A counterpart frame
is a quadruple 〈W,T,U,C〉, where W,T 6= ∅ are non-empty sets, U a func-
tion assigning to each v ∈ W a non-empty subset Uv of T (its domain) and,
finally, C a function assigning to each pair of worlds v, w a set C(v, w) of
CE-relations from Uv to Uw . A pair 〈W, I〉 is called a counterpart structure if
W is a counterpart frame and I an interpretation, that is, a function assigning
to each w ∈W and to each n-ary predicate letter a subset of Un

w .

We say that v sees w in F if C(v, w) 6= ∅. A valuation is a function ç
which assigns to every possible world v and every variable an element from
the universe Uv of v. We write çv for the valuation ç at v. A counterpart
model is a quadruple M = 〈F, I, ç, w〉, where F is a counterpart frame, I
an interpretation, ç a valuation and w ∈ W . Note that interpretations in
counterpart frames differ from interpretations in coherence frames in that
they do not assign values to constants. That is to say, unless otherwise stated,
when working with counterpart frames we assume that the language does not
contain constants.

Let v, w ∈W be given and ñ a CE-relation from Uv to Uw . We write ç
ñ→ ç̃

if for all x ∈ V : 〈çv(x), ç̃w(x)〉 ∈ ñ. In the context of counterpart frames,
ç̃ ∼vx ç denotes a local x-variant at the domain of world v, i.e., ç̃ is a valuation
that may differ from ç only in the values that it assigns to the variable x at
world v.

Definition 19 (Truth in a Counterpart Model). Let ϕ(~y) and ÷(~z) be mo-
dal formulae with the free variables y0, . . . , yn−1 and z0, . . . , zm−1, respectively.



72 MARCUS KRACHT AND OLIVER KUTZ

Let C be a counterpart structure, v a possible world and let ç be a valuation.
We define:

〈C, ç, v〉 � xi .= xj :⇐⇒ çv(xi ) = çv(xj),
〈C, ç, v〉 � R(~y) :⇐⇒

〈
çv(y0), . . . , çv(yn−1)

〉
∈ Iv(R),

〈C, ç, v〉 � ¬ϕ :⇐⇒ 〈C, ç, v〉 2 ϕ,
〈C, ç, v〉 � ϕ ∧ ÷ :⇐⇒ 〈C, ç, v〉 � ϕ; ÷,
〈C, ç, v〉 � 3ϕ(~y) :⇐⇒ there are w ∈W, ñ ∈ C(v, w) and

ç̃ such that ç
ñ→ ç̃ and 〈C, ç̃, w〉 � ϕ(~y),

〈C, ç, v〉 �
∨
x.ϕ(x) :⇐⇒ there is ç̃ ∼vx ç such that 〈C, ç̃, v〉 � ϕ(x).

Given a counterpart frame F, F � ϕ if for all interpretations I, all valuations
ç and worlds v, 〈〈F, I〉, ç, v〉 � ϕ.

The intuition behind counterpart frames is that objects do not exist; the
only things that exist are the object traces (which belong to the domains of the
worlds), and the counterpart relations. However, the notion of an object is
still definable, even though it shall turn out that counterpart frames can have
very few objects in this sense.

Definition 20. Let F = 〈W,T,U,C〉 be a counterpart frame. An object is a
function f : W → T such that (i) f(v) ∈ Uv for all v ∈W , (ii) for each pair
v, w ∈W with C(v, w) 6= ∅ there is ñ ∈ C(v, w) such that 〈f(v), f(w)〉 ∈ ñ.

So, objects are constructed using the counterpart relation. If the trace b
in world w is a counterpart of the trace a in world v, then there may be an
object leaving trace a in v and trace b in w. If not, then not. However,
there are frames which are not empty and possess no objects. Here is an
example. Let W = {v}, T = {a, b}, Uv = {a, b}, and C(v, v) = {ñ} with
ñ = {〈a, b〉, 〈b, a〉}. It is easy to see that this frame has no objects. The
crux is that we can only choose one trace per world, but when we pass to an
accessible world, we must choose a counterpart. This may become impossible
the moment we have cycles in the frame.

Counterpart frames show a different behaviour than coherence frames. As
we have shown above, for each modal predicate logic there exists an adequate
structure. However, counterpart structures satisfy a formula that is actually
not generally valid when one thinks of the quantifiers as quantifying over
intensional rather than extensional (trace-like) objects.

Proposition 21. Let F be a counterpart frame, x and y variables not occur-
ring in ~z . Then for all formulae ϕ(x, ~z)

F �
∧
x.
∧
y.(x .= y)→

(
ϕ(x, ~z)↔ ϕ(y, ~z)

)
.

Proof. Pick a valuation I, and let S := 〈F, I〉. It is clear that we can
restrict our attention to formulae of the type ϕ(x, ~z) = 3÷(x, ~z). Let ç be a
valuation and v a world. Assume that 〈S, ç, v〉 � x .= y. Then çv(x) = çv(y).
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We will show that 〈S, ç, v〉 � 3÷(x, ~z) → 3÷(y, ~z). Suppose that 〈S, ç, v〉 �
3÷(x, ~z). Then there exists a world w, a ñ ∈ C(v, w) and a valuation ç̃ such
that ç

ñ→ ç̃ and 〈S, ç̃, w〉 � ÷(x, ~z). Now define ç′ by ç′w(y) := ç̃w(x), and
ç′w′(y

′) := ç̃w′(y′) for all w ′ and y′ such that either w ′ 6= w or y′ 6= y. Then
〈S, ç′, w〉 � ÷(y, ~z). Furthermore, for all variables y ′ : 〈çv(y′), ç′w(y′)〉 ∈ ñ.
For if y′ 6= y this holds by definition of ç and choice of ç̃. And if y′ = y we
have çv(x) = çv(y), so that ñ 3 〈çv(x), ç̃w(x)〉 = 〈çv(y), ç′w (y)〉. It follows
that ç

ñ→ ç′ and therefore that 〈S, ç, v〉 � 3÷(y, ~z), as had to be shown. a
From the previous theorem we deduce that also the following holds.

∧
x.
∧
y.(x .= y ∧3>)→ 3(x .= y).(‡)

Namely, take
∧
x.
∧
y.x

.= y.→ .3(x .= z)↔ 3(y .= z).

By the above theorem, this is generally valid. Substituting x for z we get
∧
x.
∧
y.x

.= y.→ .3(x .= x)↔ 3(y .= x).

Applying standard laws of predicate logic yields (‡). We remark here that
the logics defined in the literature (for example Ghilardi [6], Skvortsov and
Shehtman [13] and Kracht and Kutz [10]), differ from modal predicate logics
as defined here only in the additional laws of equality that they assume.

The modal Leibniz law of [10] allows for simultaneous substitution of all
free occurrences of x by y in 3÷ (denoted by 3÷(y//x)), provided that x .= y
is true. ∧

x.
∧
y.x

.= y.→ .3÷(x)→ 3÷(y//x).

Now, notice that in a modal predicate logic as defined above, the rule of
replacing constants for universally quantified variables is valid. In counterpart
frames this creates unexpected difficulties. For, suppose we do have constants
and that they may be substituted for variables. Then we may derive from (‡),
using the substitution of c for x and d for y:

(c .= d ∧3>)→ 3(c .= d ).

Since a constant has a fixed interpretation in each world, this means that if
two constants are equal in a world and there exists some accessible world, then
there will also be some accessible world in which they are equal. This is not
generally valid. What is happening here is a shift from a de re to a de dicto
interpretation. If we follow the traces of the objects, the formula is valid, but
if we substitute intensional objects, namely constants, it becomes refutable.
Notice that this situation is also reflected in the way non-rigid constants are
treated in [5]. There, the two possible readings of the above formula, the de
dicto and de re reading, are distinguished by actually binding the interpretation
of the constants to the respective worlds by using the term-binding ë-operator.
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Applied to Hesperus and Phosphorus, this means that if they are equal,
then there is a belief world of George’s in which they are equal. However,
if George believes that they are different, this cannot be the case. So, the
counterpart semantics cannot handle constants correctly — at least not in a
straightforward way, i.e., without restricting the possible values of constants
in accessible worlds. This paradox is avoided in Kracht and Kutz [10] by
assuming that the language actually has no constants.

§6. Objectual counterpart structures. The connection between coherence
frames and counterpart frames is not at all straightforward. Since the logic of a
counterpart frame is a first-order modal predicate logic, one might expect that
for every counterpart frame there is a coherence frame having the same logic.
This is only approximately the case. It follows from Theorem 23 that for every
counterpart structure there is a coherence structure having the same theory.
This is not generally true for frames. However, adopting a modification
of coherence frames proposed by Melvin Fitting in [4], namely balanced
coherence frames (in [4] the corresponding frames are called Riemann FOIL
frames), it can indeed be shown that for every counterpart frame there is a
balanced coherence frame validating the same logic (under a translation).

Let us begin by elucidating some of the connections between counterpart
and coherence frames. Note again that since counterpart structures as defined
above do not interpret constants, we have to assume that the language does
not contain constants.

First, fix a coherence structure C = 〈W,�, U, T, ô, I〉. We put Uv :=
{ô(o, v) : o ∈ U}. This defines the domains of the world. Next, for v, w ∈W
we put ñ(v, w) := {〈ô(o, v), ô(o, w)〉 : o ∈ U} and C(v, w) := ∅ if v�w does
not obtain; otherwise, C(v, w) := {ñ(v, w)}. Finally,

〈ô(ai , w) : i < Ω(P)〉 ∈ I′(P)(w)⇐⇒ 〈ai : i < Ω(P)〉 ∈ I(P)(w).

Then 〈W,T,U,C, I′〉 is a counterpart structure. We shall denote it by CP(C).
Notice that there is at most one counterpart relation between any two worlds.

Conversely, let a counterpart structure N = 〈W,T,U,C, I〉 be given. We put
v � w iff C(v, w) 6= ∅. U := T . Let O be the set of all objects o : W → T .
Further, ô(o, w) := o(w). This defines a coherence frame if the set of objects
is nonempty.1 Finally,

〈oi : i < Ω(P)〉 ∈ I′(P)(w)⇐⇒ 〈oi (w) : i < n〉 ∈ I(P)(w).

It is easy to see that this is an equivalential interpretation. So, 〈W,�, O,U, ô, I′〉
is a coherence structure, which we denote by CH (N).

Unfortunately, the logical relation between these two types of structures is
rather opaque, not the least since the notion of satisfaction in them is different.

1Strictly speaking, we have to reduce the set U of traces to those elements t ∈ T that actually
are the trace of some object o, but this makes no difference semantically.
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Moreover, the operations just defined are not inverses of each other. For exam-
ple, as we have already seen, there exist counterpart structures with nonempty
domains which have no objects. In this case CP(CH (N)) � N. Also let C
be the following coherence frame. W := {v, w, x, y}, T := {1, 2, 3, 4, 5, 6},
U = {a, b}, � = {〈v, w〉, 〈w, x〉, 〈x, y〉}. Finally,

ô(a,−) : v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 5,

ô(b,−) : v 7→ 1, w 7→ 3, x 7→ 4, y 7→ 6.

Generating the counterpart frame we find that 2 and 3 are counterparts of
1, and 5 and 6 are counterparts of 4. Hence, there are more objects in
the counterpart frame than existed in the coherence frame, for example the
function v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 6.

Definition 22 (Threads). Let N be a counterpart frame. We call a sequence
〈(wi ,ti) : i < n〉 a thread if (1) for all i < n : wi ∈W , ti ∈ Uwi , and (2) for all
i < n − 1 : wi � wi+1 and 〈ti , ti+1〉 ∈ ñ for some ñ ∈ C(wi , wi+1). N is rich
in objects if for all threads there exists an object o such that o(wi ) = ti for all
i < n.

Notice that if � has the property that any path between two worlds is unique
then N is automatically object rich. Otherwise, when there are two paths
leading to the same world, we must be able to choose the same counterpart
in it. This is a rather strict condition. Nevertheless, we can use unravelling
to produce such a structure from a given one, which is then object rich.
Additionally, we can ensure that between any two worlds there is at most one
counterpart relation. We call counterpart frames that satisfy the condition
|C(v, w)| ≤ 1 for all worlds v, w ∈W Lewisian counterpart frames.

Theorem 23. For every counterpart structure N there exists a Lewisian coun-
terpart structure N′ rich in objects such that N and N′ have the same theory.

Proof. Let N = 〈〈W,T,U,C〉, I〉 be a counterpart structure. A path in N
is a sequence ð = 〈w0, 〈〈wi , ñi 〉 : 0 < i < n〉〉 such that ñi ∈ C(wi−1, wi )
for all 0 < i < n. We let e(ð) := wn−1 and r(ð) = ñn−1 and call these,
respectively, the end point and the end relation of ð. Let W ′ be the set of
all paths in N and T ′ := T . Further, let U′ð := Ue(ð) and for two paths
ð and ì put C′(ð, ì) := r(ì) if r(ì) ∈ C(e(ð), e(ì)) and empty otherwise.
Finally, let P be an n-ary predicate letter. Then I′(P)(ð) := I(P)(e(ð)). Now
let N′ = 〈〈W ′, T ′,U′,C′〉, I′〉. This is a Lewisian counterpart structure and
clearly rich in objects. The following can be verified by induction. If â is a
valuation on N, andw a world, and if â ′ is a valuation on N′ and ð a path such
that e(ð) = w and â ′ð(xi ) = âw(xi ), then 〈N, â, w〉 � ϕ iff 〈N′, â ′, ð〉 � ϕ for
all ϕ. The theorem now follows; for given â and w, â ′ and ð satisfying these
conditions can be found, and given â ′ and ð also â and w satisfying these
conditions can be found. a
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Notice by the way that in the propositional as well as the second-order case
this theorem is false. This is so because the interpretation of a predicate in ð
must be identical to that of ì if the two have identical end points. If this is not
the case, the previous theorem becomes false. However, if we are interested in
characterizing MPLs by means of models, it follows from the above result that
we can restrict ourselves in the discussion to Lewisian counterpart structures
that are rich in objects.

But we can also strike the following compromise. Let us keep the counter-
part semantics as it is, but interpret formulae in a different way. Specifically,
let us define the following.

Definition 24 (Objectual Counterpart Interpretations). We say that M =
〈〈F, I〉, â, v〉 is an objectual counterpart model, if F = 〈W,T,U,C〉 is a coun-
terpart frame as before, I is an objectual interpretation, that is, a counterpart
interpretation that additionally assigns objects to constant symbols, â an ob-
jectual valuation into F, i.e., a function that assigns to each variable an object
in a given a world. In this context, εv(o) := âv(o) if o is a variable and
εv(o) = I(o)(v) if o is a constant symbol.

Write â →~y
v,w â if for some ñ ∈ C(v, w) we have 〈âv(xi ), âw(xi )〉 ∈ ñ for

all xi ∈ ~y. Furthermore, write â →~y
v,w ã if for some ñ ∈ C(v, w) we have

〈âv(xi ), ãw (xi )〉 ∈ ñ for all xi ∈ ~y, where ã is an objectual valuation. Terms
ti denote either variables or constants, ~y tuples of variables and ~c tuples of
constants. The symbol �∗ is called the weak objectual truth-relation and is
defined thus (with M := 〈F, I〉):

〈M, â, v〉�∗ ti .= tj :⇐⇒ εv(ti ) = εv(tj)

〈M, â, v〉�∗R(~t ) :⇐⇒
〈
εv(t0), . . . , εv(tn−1)

〉
∈ Iv(R)

〈M, â, v〉�∗¬ϕ :⇐⇒〈M, â, v〉2∗ϕ
〈M, â, v〉�∗ϕ ∧ ÷ :⇐⇒〈M, â, v〉�∗ϕ; ÷

〈M, â, v〉�∗3ϕ(~y, ~c) :⇐⇒ there is â→~y
v,w ã such that 〈M, ã, w〉�∗ϕ(~y, ~c)

〈M, â, v〉�∗
∨
y.ϕ(y, ~c) :⇐⇒ there is ẫ ∼y â such that 〈M, ẫ , v〉�∗ϕ(y, ~c).

The strong objectual truth-relation �† is like �∗ except for the clause for 3

which is given by:

〈M, â, v〉 �† 3ϕ(~y, ~c) :⇐⇒ there is â →~y
v,w â and 〈M, â, w〉 �† ϕ(~y, ~c).

These interpretations remove the asymmetry between variables and con-
stants in the sense that constants and variables are now assigned the same
kind of values. However, while the strong objectual interpretation brings
us very close to coherence semantics, the weak interpretation still bears es-
sential properties of counterpart semantics, namely that we may move via a
counterpart relation to a new object. More precisely we have the following:
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Proposition 25. The rule of substituting constants for universally quantified
variables is valid in the strong objectual interpretation. More specifically, for
every counterpart frame F

F �†
(∧

x.ϕ
)
→
[
c/x

]
ϕ.

Furthermore, there is an objectual counterpart model M such that

M 2†
∧
x.
∧
y.(x .= y)→

(
ϕ(x, ~z)↔ ϕ(y, ~z)

)
.

Both claims are false for the weak objectual interpretation.
Proof. For the first claim suppose that â is an objectual valuation, I an

objectual interpretation, v a world and that 〈〈F, I〉, â, v〉 �† ∧x.ϕ. We only
need to consider the case whereϕ = 3ø. We then have that for everyx-variant
ẫ : 〈〈F, I〉, ẫ , v〉 �† 3ø(x). I.e., for every object o = ẫ(x) there is ẫ →x

v,w ẫ

and 〈〈F, I〉, ẫ , w〉 �∗ ø(x). Now I(c) = ẫ(x) for some x-variant ẫ of â from
which the claim follows immediately.

For the second claim, fix the following simple model M. Let W = {v, w},
T = {a, b, b′}, U(v) = {a}, U(w) = {b, b′}, C(v, w) = {ñ} where ñ =
{〈a, b〉, 〈a, b′〉} and I(P)(w) = {b} and â(x) = o with o(v) = a and
o(w) = b and â(y) = o′ with o′(v) = a and o′(w) = b′. o and o′ are
the only objects in this model. It should be obvious that M �† x .= y∧3P(x)
while M 2† 3P(y).

Consider now the weak objectual interpretation. Take the model just de-
fined and assume furthermore that I(c) = o′. Then clearly v �∗

∧
x.3P(x)

while w 2∗ 3P(c), which shows that the rule is not valid. That the formula in
the second claim is still valid under the weak objectual interpretation should
be clear. a

The following is also straightforward.

Theorem 26. Let N be a counterpart structure rich in objects, v a world
and let â be an objectual valuation and ẫ a counterpart valuation such that
âv(xi ) = ẫv(xi ) for all variables. Then for all ϕ:

〈N, â, v〉 �∗ ϕ ⇐⇒
〈
N, ẫ , v

〉
� ϕ.

The proof is by induction on ϕ. The two relations differ only with respect
to formulae of the form 3÷. Here, object richness assures that for each choice
of counterparts in the successor worlds an object exists. (Actually, for that we
only need that every element of a domain is the trace of some object.)

§7. Passing back and forth: balanced coherence frames. By the previous the-
orem we can introduce the notion of an object into counterpart frames, which
then makes them rather similar to coherence frames. However, counterpart
structures with object valuations are still different from coherence structures.
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A different approach is to translate 3 in order to accommodate the truth
relation �∗ within the language of counterpart structures.

(x .= y)ã := x
.= y,

P(~y)ã := P(~y),

(¬ϕ)ã := ¬ϕã ,
(ϕ ∧ ÷)ã := ϕã ∧ ÷ã ,(∨
x.ϕ
)ã

:=
∨
x.ϕã ,

(
3ϕ
(
y0, . . . , yn−1

))ã
:=
∨
z0. · · ·

∨
zn−1.

∧

i<n

zi
.= yi ∧3ϕ

(
~z/~y

)ã
.

Here, yi (i < n) are the free variables of ϕ and zi (i < n) distinct variables not
occurring inϕ. This is actually unique only up to renaming of bound variables.
Further, notice that

∧
i<n denotes a finite conjunction, not a quantifier. This

translation makes explicit the fact that variables inside a 3 are on a par with
bound variables. (In linguistics, one speaks of 3 in the context of counterpart
frames as an unselective binder.) Notice now that

(∧
x0.
∧
x1.x0

.= x1 → (3ϕ(x0)↔ 3ϕ(x1))
)ã

=
∧
x0.
∧
x1.x0

.= x1→
(
(3ϕ(x0))ã ↔ (3ϕ(x1))ã

)

=
∧
x0.
∧
x1.x0

.= x1→
((∨

x3.x3
.= x0 ∧3ϕ(x3)ã

)

↔
(∨

x3.x3
.= x1 ∧3ϕ(x3)ã

))
.

This principle is actually valid in coherence structures. For it is a substitution
instance of the following theorem of predicate logic.
∧
x0.
∧
x1.x0

.= x1 →
((∨

x3.x3
.= x0 ∧ ϕ

)
↔
(∨

x3.x3
.= x1 ∧ ϕ

))
.

Proposition 27. Let N be a counterpart structure and x a world. Then for
any ϕ:

〈N, x〉 � ϕã ⇐⇒ 〈N, x〉 � ϕ.
In object rich structures also � and �∗ coincide, which makes all four

notions the same. So, while in counterpart structures the formulae ϕ and ϕã

are equivalent, they are certainly not equivalent when interpreted in coherence
structures.

In [11] it is shown that worldline semantics provides for the same class of
frame complete logics in the absence of extra equality axioms as standard
constant domain semantics. It follows that the same holds for coherence
frames. This means that while coherence frames allow for a more natural
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treatment of non-rigid designation for example, unlike counterpart frames,
they do not enlarge the class of frame complete logics unless one moves to
the full second-order semantics as we will do in Section 10. But there is
a different approach to this problem. Instead of introducing algebras of
admissible interpretations we can assume that certain worlds are isomorphic
copies of each other. So, we add to the frames an equivalence relation between
worlds and require that predicates are always interpreted in the same way in
equivalent worlds. This idea is basically due to Melvin Fitting (see [4]). Here
we use a slightly different approach. Namely, we add a first-order bisimulation
to coherence frames. To be precise, let F be a coherence frame. Call a relation
E ⊆W ×W a world-mirror on F if E is an equivalence relation and whenever
v E w and v � u1, there is a u2 such that w � u2 and u1 E u2. Intuitively,
two mirrored worlds v and w may be understood as a situation seen from
two different perspectives (because v and w may have “different histories”,
but have the “same future”). In [9] world-mirrors are called nets, and it is
shown that an equivalence relation is a net if and only if it is induced by a
p-morphism.

Definition 28 (Balanced Coherence Frames). A balanced coherence frame
is a pair 〈F,E〉 where F = 〈W,�, U, T, ô〉 is a coherence frame and E is a
world-mirror on F. An interpretation I is called balanced, if it is equivalential
and 〈u0, . . . , un−1〉 ∈ Iv(P) iff 〈u0, . . . , un−1〉 ∈ Iw(P) for all n-ary relations
P and for all worlds v, w such that v E w. A balanced coherence model is
a triple 〈〈B, I〉, â, w〉, where B is a balanced coherence frame, I a balanced
interpretation, â a valuation and w a world.

The next theorem gives the connection between counterpart frames and
balanced coherence frames.

Theorem 29. For every counterpart frame F there exists a balanced coherence
frame F∗ such that for all formulae ϕ:

F � ϕ ⇐⇒ F∗ � ϕã .

Proof. Fix a counterpart frame F = 〈W,T,U,C〉. Let F′ := 〈W ′, T ′,U′,C′〉
be the unravelled Lewisian counterpart frame defined as in Theorem 23. We
define a balanced coherence frame F∗ = 〈〈W ∗,�, U ∗, T ∗, ô〉,E〉 from F′. Let
W ∗ = W ′, T ∗ = T ′ and define ð � í :⇔ C′(ð, í) 6= ∅. Since F′ is rich in
objects, there is an object o : W ′ → T for every thread in F′. Define U ∗

as the set of all objects in F′ and set ô∗(o, w) = t :⇔ o(w) = t. Finally,
for ð, í ∈ W ∗, set ð E í :⇔ e(ð) = e(í), where e(ð), e(í) again denote the
endpoints of e(ð) and e(í), respectively. Clearly, E is a world-mirror for it is
an equivalence relation and if ð � ì and ð E í, there is a path ì′ such that
r(ì) = r(ì′) and í � ì′, hence ì E ì′.
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Given a valuation â , an interpretation I and a world v of F, Theorem 23
yields 〈

〈F, I〉, â, v
〉
� ø ⇐⇒

〈
〈F′, I′〉, â ′, í

〉
� ø

for all ø, where I′(P)(ð) := I(P)(e(ð)) for all worlds ð, â ′ð(xi ) := âw(xi ) if
e(ð) = w and í is a world in F′ such that e(í) = v.

Set

I∗(P)(ð) :=
{〈
o0, . . . , on−1

〉
∈ (U ∗)n :

〈
o0(ð), . . . , on−1(ð)

〉
∈ I′(P)(ð)

}

and choose an object valuation â∗ on F∗ such that â∗(xi )(í) = â ′í(xi ). Such
a valuation exists because F′ is rich in objects, whence there is an object
leaving trace â ′í(xi ) in world í. Furthermore, I∗ is a balanced interpretation
by definition, so M∗ := 〈〈F∗, I∗〉, â∗, í〉 defines a balanced coherence model.
Finally note that every balanced interpretation in F∗ is of the form I∗ for some
interpretation I in F. Hence it suffices to show the following:

〈
〈F′, I′〉, â ′, í

〉
� ø ⇐⇒

〈
〈F∗, I∗〉, â∗, í

〉
� øã

for all ø. The claim is proved by induction. The atomic case follows from
the definitions of I∗ and ô∗ and the Boolean cases are trivial. The quan-
tificational case follows again from object richness. So, consider the case
ø = 3÷(y0, . . . , yn−1) and assume first that 〈〈F′, I′〉, â ′, í〉 2 ø. We have
to show that M∗ �

∧
z0. · · ·

∧
zn−1.(

∧
i<n zi

.= yi → �¬÷(~z/~y)ã). Choose

objects o0, . . . , on−1 and an objectual ~z-variant ẫ∗ such that ẫ∗(zi ) = oi
and oi (í) = â∗(yi )(í) for all i < n. Then 〈〈F∗, I∗〉, ẫ∗, í〉 � ∧i<n zi

.= yi .
Assume further that for some ð ∈ W ∗ we have í � ð, i.e. that there is a
ñ ∈ C′(í, ð). Then, since F′ is a Lewisian counterpart frame, ñ is unique
and hence 〈oi (í), oi (ð)〉 ∈ ñ for all i < n. Then, by assumption, we have
〈〈F′, I′〉, ẫ , ð〉 2 ÷, where ẫð(yi ) = ẫ∗(zi )(ð), so by induction it follows that
〈〈F∗, I∗〉, ẫ∗, ð〉 � ¬÷(~z/~y)ã .

Conversely, suppose that F∗ 2 ϕã . Again we consider only the case of

ϕã =
∨
z0. · · · .

∨
zn−1

(∧

i<n

zi
.= yi ∧3ø

(
~z/~y

)ã
)
.

Pick a balanced interpretation I∗, an object valuation â∗ and a world í such
that 〈〈F∗, I∗〉, â∗, í〉 2 ϕã . We need to show that 〈〈F′, I′〉, â ′, í〉 � �¬ø(~y).
Let ð be a world such that í � ð in F′. Then ä ∈ C(e(í), e(ð)) and ä = r(ð).

Suppose ẫ ′ is a counterpart valuation such that ẫ ′ : â ′ ä→ ẫ ′. By object
richness there are objects ui ∈ U ∗ (i < n) such that ui(í) = â ′í(yi ) and ui(ð) =
ẫ ′ð(yi ). Hence there is an objectual ~z-variant ẫ∗ such that ẫ∗(zi )(í) =
â∗(yi )(í) and ẫ∗(zi )(ð) = ẫ ′ð(yi ) for all i . Then 〈〈F∗, I∗〉, ẫ∗, í〉 � ∧i<n zi

.=

yi and thus 〈〈F∗, I∗〉, ẫ∗, ð〉 � ¬øã(~z/~y). But then 〈〈F′, I′〉, ẫ ′, ð〉 � ¬øã(~y)
by induction, and the claim follows. a
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This result has interesting consequences. For example, since counterpart
semantics is frame complete with respect to all first-order extensions QL of
canonical propositional modal logics L (compare [6]), the same holds true
for the translation QLã with respect to balanced coherence frames. Now
we noted above that coherence frames per se characterize the same logics
as standard constant domain semantics if no extra equality axioms are in-
volved. But it is known that already rather simple canonical propositional
logics have frame incomplete predicate extensions. In [2] it is shown that to
complete frame incomplete MPLs by adding appropriate axioms, one needs
mixed de re formulae rather than substitution instances of purely propositional
formulae. So, the above result gives a hint on where the source for frame in-
completeness with respect to standard semantics is to be found. In particular,
note that the translation .ã leaves propositional formulae untouched, whereas
de re formulae of the form 3ϕ(y0, . . . , yn−1) are transformed into formulae∨
z0. · · ·

∨
zn−1.

∧
i<n zi

.= yi ∧3ϕ(~z/~y)ã , which are de re formulae involving
equality.

So what we need if we want to use standard possible worlds semantics
to characterize a large class of logics via frame completeness are basically
three things: firstly, the distinction between trace and object, secondly a
different understanding of the modal operator as given by .ã , and, thirdly, the
assumption that certain worlds are copies of each other.

Let us make this claim more explicit. Given a standard constant domain
frame 〈W,�, U 〉, we may add, as before, an equivalence relation E relating
worlds. Furthermore, we technically do not need traces but can add a family
of equivalence relations (ìw)w∈W interpreting equality at each world. Let us
call frames of the form F = 〈W,�, U, (ìw )w∈W ,E〉 balanced standard frames.
An interpretation I is called admissible, if interpretations agree on worlds
related by E, and, moreover, they respect the equivalence relations ìw in the
sense that ~a ∈ I(w)(P) iff ~b ∈ I(w)(P) whenever aiìwbi for all i . We may
think of objects being related by ìw as indiscriminable with respect to worldw
and basic extensional predicates. Call a valuation ã̃ a w-ignorant ~x-variant of
ã , if ã̃(xi )ìwã(xi ) for all xi ∈ ~x. The truth definition for balanced standard
frames is as usual except for the equality and modal clauses, which are as
follows:

• 〈F, I, ã, w〉 � x .= y iff ã(x)ìwã(y);
• 〈F, I, ã, w〉 � 3ϕ(~x) iff there is a w-ignorant ~x-variant ã̃ and a world
v �w such that 〈F, I, ã̃ , v〉 � ϕ(~x);

It should be rather clear that there is a bijective correspondence between
balanced coherence frames and balanced interpretations on the one hand
and balanced standard frames and admissible interpretations on the other.
Furthermore, for every 〈W,�, U, T, ô,E〉 there is a 〈W,�, U, (ìw )w∈W ,E〉 such
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that for all ϕ

〈W,�, U, T, ô,E〉 � ϕã ⇐⇒
〈
W,�, U, (ìw)w∈W ,E

〉
� ϕ.

Hence, the following theorem is an immediate corollary to Theorem 29.

Theorem 30. For every counterpart frame there is a balanced standard frame
having the same logic.

§8. Varieties of equality. Scott [12] proposes various kinds of identity. The
first is the one we have discussed so far, namely identity in trace. The second,
stronger notion, is the inherent identity in trace, which we shall denote by .=?.
Two objects satisfy this at a world if they are identical in trace at all subsequent
worlds. The third is the global identity in trace, which we denote by ≈. Two
objects are globally identical in trace at w if their traces are identical in all
worlds that can be reached from w by either moving forward or backward
along the relations. The fourth is strong identity in trace, denoted by≈+. Two
objects are strongly identical in trace if they have identical trace in all worlds.
The fifth is identity as object, denoted by ≡. This is the numerical identity of
objects. The semantics can be formally defined as follows. Denote by T (w)
the set of all worlds which are accessible from w in a series of steps. More
formally, we define this as follows.

Definition 31 (Transits). Let C = 〈W,�, U, T, ô〉 be a coherence frame.
Then define v �n w inductively by (a) v �0 w iff v = w, (b) v �n+1 w iff there
is a u ∈ W such that v �n u � w. Further, put v �∗ w iff there is an n such
that v�nw. Define T (v) := {w : v�∗w}, andZ(v) := {w : v(�∪�`)∗w}.

Here, R` := {〈y, x〉 : 〈x, y〉 ∈ R} is the converse relation of R.

Definition 32 (Equality in Coherence Models). Let 〈C, â, v〉, be a coher-
ence model.

〈C, â, v〉 � x .= y :⇐⇒ ô(â(x), v) = ô(â(y), v),

〈C, â, v〉 � x .=∗ y :⇐⇒ for all w ∈ T (v) : ô(â(x), w) = ô(â(y), w),

〈C, â, v〉 � x ≈ y :⇐⇒ for all w ∈ Z(v) : ô(â(x), w) = ô(â(y), w),

〈C, â, v〉 � x ≈+ y :⇐⇒ for all w ∈W : ô(â(x), w) = ô(â(y), w),

〈C, â, v〉 � x ≡ y :⇐⇒ â(x) = â(y).

As it turns out, although all these notions are different semantically, we can
only distinguish simple identity in trace from the other relations, that is to say,
the latter four cannot be defined by means of modal axioms in the standard
modal language using .=. Metatheoretically, the interrelations between≈,≈+,
.=∗ and ≡ can — besides the usual axioms for identity (reflexivity, symmetry,
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transitivity) — be given by the following postulates.
∧
x.
∧
y.x ≡ y → x ≈+ y,

∧
x.
∧
y.x ≈+ y → x ≈ y,

∧
x.
∧
y.x ≈ y → x

.=∗ y,
∧
x.
∧
y.x

.=∗ y → x
.= y,

∧
x.
∧
y.x

.=∗ y → �(x .=∗ y).

Global identity in trace implies strong identity in trace if the frame is con-
nected. A frame is called cyclic if for all v : T (v) = Z(v). S5-frames are
cyclic. Tense frames are also cyclic. (Notice that we have not defined T (v) for
polymodal frames. See however [9] for a definition.) Inherent identity in trace
implies global identity in cyclic frames. Finally, notice that it is always possible
to factor out the equivalence relation ≡. That is to say, without changing the
logic we can identify all objects that have the same trace function. Effectively,
a coherence frame in which ≡ is the identity is the same as a worldline frame.
This is the content of Proposition 17.

§9. Objects in metaframes. Shehtman and Skvortsov have introduced in
[13] the metaframe semantics and shown that it is complete for all modal
predicate logics. Their results were stated and proved for superintuitionistic
logics and extensions of S4. However, by removing some of the category
theoretic definitions one can generalize these results easily to arbitrary modal
predicate logic.

Definition 33. Σ denotes the category of finite ordinals and functions be-
tween them.

Definition 34 (Metaframes). A general metaframe M is a contravariant
functor from the category Σ into the category of general frames. In particular,
for every n, M (n) = 〈Fn,�n,Fn〉 is a general frame, and for each ó : m → n,
M (ó) is a p-morphism from M (n) to M (m). A metaframe is a contravariant
functor from Σ into the category of Kripke-frames. We call the members of
Fn n-points.

The idea is this. M (0) represents the frame of possible worlds and M (n)
for n > 0 represents n-tuples over worlds. The arrows are needed to be able
to identify the worlds and the tuples. For example, there is a unique map
0n : 0→ n for each n. Consequently, we have a map M (0n) : M (n)→M (0).
Thus, for each a ∈ M (n), the world of a is M (0n)(a). Further, there is a
(unique) natural embedding in,n+1 : n → n + 1 : i 7→ i . Hence, we define
a projection of a ∈ M (n + 1) onto M (n) by M (in,n+1)(a). We shall write
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a ↓ b if a ∈ M (n + 1) for some n ∈ ù and b = M (in,n+1)(a). Further,
write pni : 1 → n for the unique map sending 0 to i and if ó : m → n, write
xó := 〈xó(0), xó(1), . . . , xó(m−1)〉.

Definition 35 (Interpretations). Let M be a general metaframe. An inter-
pretation on M is a function î assigning to each predicate letter P an internal
set of M (Ω(P)), i.e. î(P) ∈ FΩ(P).

For a ∈M (n) and ó : m → n, m = Ω(P) we define

〈M,î, a〉 � P(xó) :⇐⇒M (ó)(a) ∈ î(P),

〈M,î, a〉 � xi .= xj :⇐⇒M
(
pni
)
(a) = M

(
pnj
)
(a),

〈M,î, a〉 � ¬÷ :⇐⇒ 〈M,î, a〉 2 ÷,
〈M,î, a〉 � ϕ ∧ ÷ :⇐⇒ 〈M,î, a〉 � ϕ; ÷,

〈M,î, a〉 � 3÷ :⇐⇒ exists b �n a : 〈M,î, b〉 � ÷,
〈M,î, a〉 �

∨
xn.÷ :⇐⇒ exists b ↓a : 〈M,î, b〉 � ÷.

We can identifyM (0) with the sets of worlds, M (1) with the sets of objects,
M (2) with the sets of pairs of objects, and so on. Now, the definitions will not
suffice to define a MPL from a metaframe unless it satisfies a further condition.
Let ó : m → n. Write ó+ for the unique function from m + 1 to n + 1 such
that ó+ � m = ó and ó(m) = n. Further, for m ≤ n, im,n : m → n : j 7→ j is
the unique inclusion.

Definition 36 (Modal Metaframes). A metaframe satisfies the lift property
if for all ó : m → n and a ∈ M (n), b ∈ M (m + 1) such that M (ó)(a) =
M (im,m+1)(b) = d ∈M (m) there exists a c ∈M (n + 1) such that

a = M
(
in,n+1

)
(c) and b = M (ó+)(c).

A metaframe is a modal metaframe if it satisfies the lift property.

Shehtman and Skvortsov give a canonical procedure to obtain a modal
metaframe from a modal predicate logic, see also Bauer [1]. Let L be given.
We then let M (n) be the set of all complete n-types Γ = Γ(x0, . . . , xn−1).
They form a frame, where Γ �n ∆ iff for all �ϕ ∈ Γ we have ϕ ∈ ∆. Further,
if ó : m → n, then M (ó) : M (n)→M (m) is defined by

M (ó)(∆) :=
{
÷ :
[
xó(0)/x0, xó(1)/x1, . . . , xó(m−1)/xm−1

]
÷ ∈ ∆

}
.

Actually, the definition of truth in a model can be changed somewhat. First, it
can be shown that if the free variables of ÷ are in the set {xi : i < n}, we have

〈M,î, a〉 � ÷ ⇐⇒ for all b ↓a : 〈M,î, b〉 � ÷.
In this form we see that the truth of a formula is upward persistent. (The
above-mentioned conditions on metaframes are such that this holds.)
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Now write a ∼i c for the following. Let ó : n → n : i 7→ n − 1, n − 1 7→ i ,
j 7→ j (j 6∈ {i, n − 1}). (If i is not less than n − 1, this map is the identity.)
Then a ∼i c iff there exist b such that M (ó)(a) ↓ b and M (ó)(c) ↓ b. Then
we have

〈M,î, a〉 �
∨
xi .÷ ⇐⇒ there is c ∼i a : 〈M,î, c〉 � ÷.

This is the form that we shall use later on. (It is closer in spirit to cylindrifica-
tion.)

This construction is highly abstract. We shall illustrate it with a very simple
example. Our language contains only equality. Suppose that we have a logic
L which contains ϕ ↔ �ϕ for every formula ϕ. Then we have Γ �n ∆ iff
Γ = ∆ for all n-types Γ and ∆. So, the relations are trivial. Suppose also that
the logic contains the sentence saying that there are exactly three objects. We
shall calculate the cardinalities of the M (n). There is exactly one 0-type Γ0,
since the logic is POST-complete. There exists exactly one 1-type, since all
objects are indistinguishable. There exist 2 2-types, namely the type containing
x0

.= x1 and the other containing x0 6 .= x1. The general formula is as follows.
Let n be given. Choose a function f : {0, 1, . . . , n − 1} into the set {0, 1, 2}.
Then for this function the associated type is

tf :=
{
xi

.= xj : f(i) =f(j), i, j < n
}
∪
{
¬(xi

.= xj) : f(i) 6=f(j), i, j < n
}
.

Now let f ≈ g iff there is a permutation ð : {0, 1, 2} → {0, 1, 2} such that
f = ð ◦g. Obviously, tf = tg iff f ≈ g. (Case 1)f(i) = f(j) for all i, j < n.
There are 3 functions, all representing the same type. (Case 2) The image of
f has at least two members. There are 3n−3 many such functions. Each type
is represented by six functions. This gives (3n−1 − 1)/2 functions. In total we
have (3n−1 + 1)/2 functions. The series is

1, 2, 5, 14, 41, 122, . . . .

It is clear that the objects in such a frame are very difficult to recover. For
this reason, Shehtman and Skvortsov define a cartesian metaframe (see below
in Section 12 for a definition). This is a metaframe in which for each 0-type
Γ the set of all n-types ∆ with sentential reduct Γ is isomorphic to the n-fold
cartesian product of the set of 1-types with sentential reduct Γ. Moreover,
the projections are the maps M (éni ), where éni : 1 → n : 0 7→ i . As Bauer [1]
shows, each metaframe that allows to fuse types (a condition which we shall
not define here) has a logically equivalent cartesian metaframe. The canon-
ical metaframe defined above satisfies this condition. Thus, every logic is
complete with respect to cartesian metaframes. Still, these proofs are very
tedious. In the next section we shall show how the present results allow to
prove completeness with respect to metaframe semantics using the previous
completeness result.
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§10. Going second order. In Kracht and Kutz [10] we have defined a no-
tion of second order modal logics. Although they technically correspond to
Π1

1-formulae, we shall nevertheless call them second order logics. To be precise
we shall describe them as logics over a slightly different language. Namely,
while before we had a set Π of predicate symbols, now we assume to have
predicate variables of any given arity.

Definition 37 (Symbols and Languages). The languages of second order
modal predicate logic, abbreviated collectively by MPL2, contain the following
symbols.

1. A denumerable set V := {xi : i ∈ ù} of object variables.
2. A denumerable set C := {ci : i ∈ ù} of constants.
3. For each n ∈ ù, a denumerable set PV n := {Pn

i : i ∈ ù} of predicate
variables.

4. Boolean functors⊥, ∧, ¬.
5. Quantifiers

∨
,
∧

.
6. A set M := {�ë : ë < κ} of modal operators.

Furthermore, Ω(Pn
i ) = n for all n, i ∈ ù.

This language does not contain an existence predicate constant, but this
is only for convenience. There are no further complications in introducing
predicate constants as well, but we have omitted them here (with the exception
of equality) to keep the notation reasonably simple. As before, we deal with
only one modal operator. The generalization is obvious. The following
substitution principle has first been discussed by Steven Kleene in his [8].

Definition 38 (Second Order Substitution). Let ϕ and ÷ be formulae of
MPL2 and P be a predicate variable. Then [÷/P]ϕ denotes the formula that
is obtained by replacing every occurrence of [~y/~x]P by [~y/~x]÷, where bound
variables get replaced in the usual (first-order) way to prevent accidental
capture.

We shall describe this substitution principle in a little more detail. Notice
that ÷ can have free variables that are not among the variables x0, . . . , xΩ(P)−1.
Let ~z be these variables. Then we replace ϕ by a bound variantϕ ′, in which all
variables of ϕ occurring in ~z are replaced by suitable variables not occurring
in either ϕ or ÷. Next, we perform the replacement of any occurrence of
[~y/~x]P for some variables ~y by [~y/~x]÷. This time, no bound variant needs to
be chosen. For example, let

ϕ =
∨
x2.
∧
x0.
∧
x1.P

1
0 (x2) ∧ P2

1 (x0, x2)→ P2
1 (x1, x0).

Let ÷ =
∨
x1.P

3
0 (x2, x1, x0). Suppose that we want to replace P2

1 by ÷. Then
since x2 occurs free in ÷, we shall replace bound occurrences of x2 in ϕ by x4.
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This gives

ϕ′ =
∨
x4.
∧
x0.
∧
x1.P

1
0 (x2) ∧ P2

1 (x0, x4)→ P2
1 (x1, x0).

Finally, we have to replace P2
1 (x0, x4) by [x4/x1]÷ =

∨
x1.P

3
0 (x2, x1, x0) and

also P2
1 (x1, x0) by [x1/x0, x0/x1]÷ =

∨
x3.P

3
0 (x2, x3, x1).

[
÷/P2

1

]
ϕ =

∨
x4.
∧
x0.
∧
x1.P

1
0 (x2) ∧

∨
x1.P

3
0 (x2, x1, x0)

→
∨
x3.P

3
0 (x2, x3, x1).

The following definition is analogous to Skvortsov and Shehtman [13].

Definition 39 (Second Order MPLs). A second order MPL is a set L of
MPL2-formulae satisfying the following conditions.

1. L contains all instances of axioms of first-order logic.
2. L is closed under all rules of first-order logic.
3. L is closed under second-order substitution.
4. L contains all instances of axioms of the modal logic K.
5. L is closed under the rule ϕ/�ϕ.
6. 3

∨
y.ϕ ↔ ∨

y.3ϕ ∈ L.

Clearly, a second order MPL can be viewed as a special sort of a first-
order MPL, by taking Π to be the union of the sets PV m . This allows us
to speak, for example, of the canonical structure CanL∗ for L. However,
these languages are technically distinct, since the predicate variables are not
interpreted in the structure. Their value is not fixed in the structure, just like
the value of an object variable is not fixed in a first-order structure. This means
that technically we get a different notion of structure. However, the way we
get these structures is by abstracting them from the corresponding first-order
structures. Thus, we begin with a second order MPL L and interpret it as a
first-order MPL, also calledL, for which we then build the canonical structure
CanL∗ . Starting with this structure we shall define the second-order structure
for L∗.

Definition 40 (Second Order Coherence Frames). A second order coher-
ence frame is a triple 〈W,�, U 〉, where 〈W,�〉 is a Kripke-frame and U a
set.

Given a second order coherence frame, we call a member of W × U n an
n-point and a subset of W × U n an n-set. Let p = 〈v, ~a〉 and q = 〈w, ~c〉 be
n-points. We write p ∼k q if ai = ci for all i 6= k.

Vk(A) :=
{
q : exists p ∈ A : p ∼k q

}
.

(If k < n does not obtain, then we may put Vk(A) := A.) Next, let ó : m → n.
Then we define ó̂ on n-points as follows.

ó̂
(
〈v, ~a〉

)
:=
〈
v,
〈
a(ó(i)) : i < m

〉〉
.
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If p is an n-point, ó̂(p) is an m-point. So, −̂ is a contravariant functor from
Σ into the set of functions from points to points. This is also directly verified.
If ô : ` → m then

ó̂ ◦ ô(p) =
〈
v,
〈
a(ó ◦ ô(i)) : i < `

〉〉

= ó̂
(〈
v,
〈
a(ô(i)) : i < `

〉〉)

= ô̂(ó̂(p))

= ô̂ ◦ ó̂(p).

For an m-set A we put

Có(A) :=
{
p : ó̂(p) ∈ A

}
.

It is directly verified that C is covariant, that is, Có◦ô = Có ◦ Cô . For we have
for an `-set A:

Có◦ô(A) =
{
p : ó̂ ◦ ô(p) ∈ A

}

=
{
p : ô̂(ó̂(p)) ∈ A

}

=
{
p : ó̂(p) ∈ Cô(A)

}

= Có(Cô(A))

= Có ◦ Cô(A).

And finally we set

�A :=
{
〈w, ~a〉 : exists v �w : 〈v, ~a〉 ∈ A

}
.

Definition 41 (n-Complexes and Towers). An n-complex over a 2nd order
coherence frame is a set Cn of n-sets closed under intersection, complement,
the operations Vk , � and Có for every ó : n → n. A tower is a sequence
〈Cn : n ∈ ù〉 such thatCn is ann-complex for everyn, and for everyó : n → m,
Có : Cn → Cm .

Definition 42 (Generalized Second Order Coherence Frames). A general-
ized second order coherence frame is a quadruple S = 〈W,�, U,T〉, where
〈W,�, U 〉 is a second order coherence frame and T = 〈Ci : i ∈ ù〉 a tower
over it. A valuation into S is a pair î and â of mappings, where î is defined
on all predicate variables, and î(Pm

i ) ∈ Cm for all m, i ∈ ù and â assigns to
each xi ∈ V a member of U .

〈S, î, â, v〉 � Pm
i (~y) :⇐⇒ 〈â(yi ) : i < m〉 ∈ î

(
Pm
i

)
,

〈S, î, â, v〉 � ¬÷ :⇐⇒ 〈S, î, â, v〉 � ÷,
〈S, î, â, v〉 � ϕ ∧ ÷ :⇐⇒ 〈S, î, â, v〉 � ϕ; ÷,

〈S, î, â, v〉 �
∨
y.÷ :⇐⇒ for some â ′ ∼y â : 〈S, î, â ′, v〉 � ÷,

〈S, î, â, v〉 � 3÷ :⇐⇒ for some w � v : 〈S, î, â, w〉 � ÷.
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We write S � ϕ if for all valuations î, â and all worlds v : 〈S, î, â, v〉 � ϕ.
Notice that Shehtman and Skvortsov define the truth of a formula at an

n-point. We can do the same here. Namely, we set

〈
S, î, 〈v, ~a〉

〉
� ϕ

iff for any valuation â such that â(xi ) = ai for all i < n we have

〈S, î, â, v〉 � ϕ.

An inductive definition can be given as well. We can also define a valuation on
a metaframe in the following way. We say that a function â : V → ⋃

nM (n)
is a valuation if for every n ∈ ù (a) â(xn) ∈ M (n), and (b) â(xn+1) ↓ â(xn).
Thus, â(xn) is an n-point which is the projection of the n + 1-point â(xn+1).

We shall show that second order MPLs are complete with respect to this
semantics. So, let L be a second order MPL. We understand it as a first-
order MPL, which we denote by the same letter. Then we can construct the
canonical first-order coherence structure CanL∗ = 〈WL∗ ,�, CL∗ , IL∗〉. We
shall now define a second order canonical frame from it. This construction is
completely general. First, observe that we can transport the notion of n-point
as well as the satisfaction of a formula at an n-point to frames (and first-order
coherence frames).

Take a modal (first-order) structure S = 〈W,�, U, I〉. Let ϕ be a formula
such that the free variables occurring in it are contained in {xi : i < n}. Then
we write [ϕ]n for the set of n-points satisfying ϕ. Formally,

[ϕ]n :=
{
p : 〈S, p〉 � ϕ

}
.

Now set

Cn :=
{

[ϕ]n : fvar(ϕ) ⊆ {xi : i < n}
}
.

Finally, we put T := 〈Cn : n ∈ ù〉. Now let

S2 := 〈W,�, U,T〉.

Lemma 43. S2 is a second order generalized coherence frame. Furthermore,
with î(P) := I(P) we have for every n-point p and every formula ϕ with free
variables in {xi : i < n}:

〈S, p〉 � ϕ ⇐⇒
〈
S2, î, p

〉
� ϕ.
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Proof. We need to verify that T is a tower. This follows from the following
equations. (In the last clause, ó : n → m.)

[¬÷]n = −[÷]n ,[
ϕ ∧ ÷

]
n

= [ϕ]n ∩ [÷]n,[∨
xk .÷

]
n

= Vk

(
[÷]n

)
,

[
3÷
]
n

= �[÷]n ,[[
~xó/~x

]
÷
]
n

= Có

(
[÷]m

)
.

Only the last clause needs comment.
[[
~xó/~x

]
÷
]
n

=
{
p ∈ U ×W n : 〈S, p〉 �

[
~xó/~x

]
÷
}

=
{
p ∈ U ×W n : 〈S, ó̂(p)〉 � ÷

}

=
{
p ∈ U ×W n : ó̂(p) ∈ [÷]m

}

= Có

(
[÷]m

)
.

The second claim is immediate to verify. a
Theorem 44 (Second Order Completeness). Let L be a second order modal

logic without equality with the canonical structure CanL∗ andϕ a formula. Then
Can2

L∗ � ϕ iff ϕ ∈ L. It follows that L is complete with respect to second-order
generalized coherence frames.

Proof. We pass to the first-order canonical structure CanL∗ of the (first-
order) MPL L. Let îL∗ be defined by

îL∗
(
Pm
i

)
:=
[
Pm
i (x0, . . . , xm−1)

]
m
.

Then, by first order completeness and Lemma 43 we get
〈
Can2

L∗ , îL∗
〉
� ϕ ⇐⇒ ϕ ∈ L.

We have to show that if ϕ ∈ L then for every valuation î into Can2
L∗ we have

〈
Can2

L∗ , î
〉
� ϕ.

For this establishes Can2
L∗ � ϕ in case ϕ ∈ L. If ϕ 6∈ L then we have anyway

〈
Can2

L∗ , îL∗
〉
2 ϕ

by first-order completeness and Lemma 43. Now for the proof of the claimed
fact. Assume that î is given. By definition of the tower TL∗ there exists for
every predicate variable P a formula ðP(~x) such that

î(P) = îL∗
(
ðP(~x)

)
.

Let pvar(ϕ) denote the set of predicate variables occurring in ϕ. Define

ϕ∗ :=
[
ðP/P : P ∈ pvar(ϕ)

]
ϕ.
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This formula is unique up to renaming of bound variables. Then, by induction,
it is verified that

〈
Can2

L∗ , î,∆
〉
� ϕ ⇐⇒

〈
Can2

L∗ , îL∗ ,∆
〉
� ϕ∗.

Since ϕ ∈ L and L is closed under second order substitution we have ϕ∗ ∈ L
as well. Hence the right-hand side obtains, and therefore the left-hand side is
true as well. This is what we had to prove. a

This construction of retracting the valuation î and adding the tower of
definable sets is applicable to any first order coherence structure.

§11. A logic that is incomplete with respect to coherence frames. In this
section we will give an axiomatization of a 2nd order modal predicate logic
that is the logic of a single counterpart frame having two distinct counterpart
relations. This logic will also turn out not to be valid on any coherence frame.
Define the following counterpart frame F: let W = {w} be the set of worlds,
Uw = {a, b} be the universe ofw and C(w,w) = {f, g} the set of counterpart
relations from w to itself, where f : a → a, b → b and g : a → b, b → a.
Notice that this frame is not object rich, for 〈a, b〉 is a thread in F but there is
no object that leaves both a and b as its trace in w.

Call Λ the second order MPL axiomatized as follows:

(a) B: p → 23p, T: p → 3p, 4: 33p→ 3p,
(b) alt2 : 3p ∧3q ∧3r → 3(p ∧ q) ∨3(p ∧ r) ∨3(q ∧ r),
(c)

∧
x0, x1, x2.(x0

.= x1 ∨ x1
.= x2 ∨ x0

.= x2),
(d)

∨
x0, x1.¬(x0

.= x1),
(e)

∧
x0, x1.x0

.= x1 → 2(x0
.= x1),

(f)
∧
x0, x1.¬(x0

.= x1)→ 2¬(x0
.= x1),

(g)
∧
x0, x1.P(x0) ∧ ¬(x0

.= x1).→ .2(P(x0) ∨ P(x1)).

Clearly, F � Λ. In counterpart frames, the axioms (c) and (d) together state
that there exist exactly 2 things in each world. When interpreted in coherence
frames, they state that there are exactly two object traces in each world, but
there may still be infinitely many objects. However, by equivalentiality, this
implies that at most two objects are discriminable in each world.

Furthermore, (e) and (f) state that identity and difference are necessary.
Finally, (g) states that whatever applies to a given object either applies to
it in a successor world, or to the other object. It may be arguable from a
philosophical point of view whether Λ is a genuine logic, because it makes
existence assumptions about e.g. the number of objects or object traces in the
world. Nevertheless, it surely is a logic in the technical sense of Definition 2.

Theorem 45. There is no class K of Lewisian counterpart frames such that
Λ is the second order modal logic of K. There is no class C of coherence frames
such that Λ is the second order modal logic of C.
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Proof. The propositional reduct of this logic is the logic S5.alt2, which pos-
sesses exactly two nonisomorphic Kripke frames, namely the 1-point reflexive
frame and the 2-point frame, where accessibility is universal. Furthermore, by
necessity of identity and distinctness and the fact that the number of objects
is constant and finite, counterpart relations are bijective functions. Suppose
now that we have two worlds, v andw. Suppose further that there is a formula
ϕ that is true of a but not of b in v, where a and b are the objects of the domain
of v. Then, by virtue of (g), ϕ can be true only of one of the objects in w.
There is however nothing that guarantees this if v 6= w. This argument is valid
both for counterpart frames and coherence frames. So, we can have only one
world. It remains to show that if there is only one world then the logic of the
frame is stronger than Λ. Now, if C is a coherence frame containing only one
self-accessible world or if it is a counterpart frame containing only one world
with one counterpart relation, then C � 3p → 2p, which is not a theorem of
Λ, since F 2 3p → 2p. a

It follows that whereas Λ is characterized by its canonical coherence model,
compare Theorem 15, there is no coherence frame in which Λ is valid, that is
to say, Λ is coherence frame incomplete. Evidently, if we add the right towers,
completeness is regained (of course, with respect to generalized frames). On
the other hand, we have shown in Section 7 how the notion of coherence frame
can be modified to gain the same expressive power as counterpart semantics
without moving to the full second-order semantics.

§12. Cartesian metaframes. In this section we shall use the previous com-
pleteness proof to derive a very simple completeness proof for the metaframe
semantics. Shehtman and Skvortsov give the following definition.

Definition 46 (Cartesian Metaframes). A metaframeM is called cartesian
if the following holds.

1. There is a set U and a family {Wu : u ∈ U} of nonempty and pairwise
disjoint sets such that M (0) = U and M (n) =

⋃
u∈U (Wu)n for every n.

We write a �1 b iff there are u, v ∈ U such that a ∈Wu , b ∈Wv , u �0 y
and 〈u, a〉�1 〈v, b〉.

2. 〈v, ~a〉�n 〈w, ~c〉 iff
(a) v �0 w
(b) ai �1 ci for all i < n and
(c) for all i < j < n: if ai = aj then also ci = cj .

3. For every ó : n → m, m, n > 0, M (ó) = ó̂ : ~a 7→ 〈a(ó(i)) : i < n〉. For
ó : 0→ n, n > 0, M (ó) : ~a 7→ u, where u is such that ~a ∈ (Wu)n.

For ó : n → 0, there is no definition of M (ó) given. One possibility is to
choose an object u∗ ∈Wu for every u ∈ U and then let M (ó) : u 7→ (u∗)n. It
is an approximation of the idea that the elements of the nth frame are n-tuples.
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While cartesian metaframes assume that the n-tuples are tuples of things, we
shall offer another variant, where the idea is that the tuples are in fact tuples
of objects.

Definition 47 (Cubic Metaframes). A metaframe M is called cubic if the
following holds.

1. There are sets U and W such that M (0) = U and M (n) = U ×M n for
every n.

2. 〈u, ~a〉�n 〈v, ~c〉 iff ~c = ~a and u �0 v.
3. For every ó : n → m, M (ó) = ó̂ : 〈u, ~a〉 7→ 〈u, 〈a(ó(i)) : i < n〉〉.
It is first of all to be checked that the above requirements define a contravari-

ant functor from Σ to the class of generalized frames. (a) M (n) is a general
frame, as is easily seen. (b) for each ó : m → n, M (ó) is a p-morphism from
M (n) to M (m). Namely, suppose that p = 〈v, ~a〉�n 〈w, ~c〉 = q. Then ~c = ~a
and v�w. Hence 〈a(ó(i)) : i < m〉 = 〈c(ó(i)) : i < m〉, and so ó̂(p)�m ó̂(q).
Second, suppose that ó̂(p) �m q

′. Then q′ = 〈w ′, 〈c′(i) : i < m〉〉 for some
w ′ such that v �w ′ and c′(i) = a(ó(i)) for each i < m. So, put q := 〈w ′, ~a〉.
Then p �n q and M (ó)(q′) = q. Third, let A ∈ T(m). Then Có(A) ∈ T(n),
by definition of towers. This proves thatM (ó) is a p-morphism. (c) For each
ó : m → n and ô : n → q, M (ô ◦ ó) = M (ó) ◦M (ô). But by previous
calculations, M (ô ◦ ó)(p) = ó̂ ◦ ô̂(p) = M (ó) ◦M (ô)(p).

Proposition 48. For every cubic metaframe M there exists a semantically
equivalent cartesian metaframe N .

Proof. Let M be a cubic metaframe. Put N (0) := M (0) and Wu :=
{u} ×W for all u ∈ U and 〈u, a〉 �1 〈v, b〉 iff u �0 v and a = b. Then
N (n) := {〈〈u, ai 〉 : i < n〉 : ai ∈ W } for all n and ~a �n ~c iff there are u
and v such that u �0 v and ai = 〈u, oi〉, ci = 〈v, oi〉 for some o ∈ W . The
p-morphisms M (ó) are straightforwardly defined. a

The reason that this works is a construction that we have used before: the
trace of an object at u may be the pair consisting of u and the object itself. It is
easy to establish a bijective correspondence between second order generalized
coherence frames and cubic generalized metaframes. Given a second order
coherence frame 〈W,�, U,T〉, we simply defineM (n) := 〈W ×U n,�n,T(n)〉,
where 〈v, ~a〉 �n 〈w, ~c〉 iff ~a = ~c and v � w. This is a cubic generalized
metaframe. Conversely, letM be a cubic generalized metaframe, withM (n) =
〈W × U n,�n,Mn〉 for every n. Then let � := �0 and T(n) := Mn. Then it
is easily checked that 〈W,�, U,T〉 is a second order general coherence frame.
As an immediate consequence we get the following

Theorem 49. Every second order MPL without equality is complete with
respect to cubic generalized metaframes.

Notice that the way this result has been obtained is by abstraction from
the first-order case, rather than the first-order case being an application of
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the second-order case. Completeness with respect to cartesian generalized
metaframes now follows, given that cubic metaframes are special cartesian
metaframes.

§13. Equality. Let us turn to the treatment of equality in coherence frames
and metaframes. We have argued earlier that two objects may be equal in one
world and different in another. Equality in a world has been regulated by the
trace function. The most direct way to account for equality between objects
is therefore to add the trace function into the generalized coherence frame.
Another way is to add equality as a predicate constant whose interpretation is
a equivalence relation onU in each individual world. Thus, we add a constant
∆ ∈ C2 such that the following holds. Write a ∆w b iff 〈w, a, b〉 ∈ ∆.

1. a0 ∆w a0 for all w ∈W , a0 ∈ U .
2. If a0 ∆w a1 then a1 ∆w a0, for all w ∈W , a0, a1 ∈ U .
3. If a0 ∆w a1 and a1 ∆w a2 then a0 ∆w a2 for all w ∈W , a0, a1, a2 ∈ U .

Additionally, a valuation must satisfy the following property. Call A ∈ Cn
equivalential if for all p = 〈w, ~a〉 ∈ A, q = 〈w,~b〉 such that ai ∆w bi for all
i < n then q ∈ A. Then we require that for every predicate P, î(P) must
be an equivalential set. However, notice that equivalential sets are not closed
under �!

It may be disappointing to see that we have not been able to reduce .= to
simple identity. However, there is to our knowledge no semantics under which
this is so (and for reasons given below it is not to be expected either). Let
us look for example at metaframes. In a metaframe, 〈M,î, a〉 � xi

.= xj
if prn,i (a) = prn,j(a). Furthermore, a frame interpreting .= (called an m=-
metaframe) must satisfy the following requirement:

For all n and a, b ∈M (n) a = b ⇐⇒ prn,i(a) = prn,i(b).(0])

This condition effectively eliminates the distinction between object and trace.
However, in general metaframes the possibility of distinct developments for
identical objects still exists: let a be in M (2). Think of a as the pair 〈a0, a1〉.
If pr2,0(a) = pr2,1(a), then a0 = a1. Now, accessibility is a relation between
pairs, so if a �2 b = 〈b0, b1〉, we may or may not have b0 = b1. If we move to
cartesian metaframes, the situation is different, however. For now, if a0 �1 b0

and a1 �1 b1 then from a0 = a1 we expect a�2 〈b0, b0〉, 〈b1, b1〉, 〈b1, b0〉 as well.
Shehtman and Skvortsov make some maneuvers to avoid this consequence.

First, let us look at a definition of cartesian metaframes and assume that
the clause that ai = aj implies ci = cj was not there. Then the following
principle is valid. If ϕ(y, ~z) is a formula such that x0 and x1 do not occur in
~z then

M �
∧
x0.
∧
x1.x0

.= x1 →
(
3
[
x0/y

]
ϕ(y, ~z)↔ 3

[
x1/y

]
ϕ(y, ~z)

)
.
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For let î be a valuation and a ∈ M (n). Assume that 〈M,î, a〉 � x0
.= x1.

Then we have prn,0(a) = prn,1(a). Let α0 : n − 1 → n : i 7→ i + 1 and
α1 : n − 1 → n : 0 7→ 0, i 7→ i + 1 (i 6= 0). Put a0 := M (α0)(a),
a1 := M (α1)(a). Intuitively, a0 is a reduced by its 0th coordinate, a1 is a
reduced by its 1st coordinate. From this it follows that a0 = a1. Assume
next that 〈M,î, a〉 � 3[x0/y]ϕ(y, ~z). Then there is a b such that a �n b and
〈M,î, b〉 � [x0/y]ϕ(y, ~z). Put b0 := M (α0)(b) and b1 := M (α1)(b). We have
a0 �n−1 b0, since M (α0) is a p-morphism, and likewise a1 �n−1 b1. Since x0 is
not free in [x1/y]ϕ(y, ~z) we have 〈M,î, b1〉 � [x0/y]ϕ(y, ~z). From this follows
〈M,î, a1〉 � 3[x0/y]ϕ(y, ~z), and so 〈M,î, a〉 � 3[x1/y]ϕ(y, ~z). Likewise for
the other direction.

So we find, as indicated, that without the clause, metaframes imitate coun-
terpart semantics. However, Shehtman and Skvortsov have added it. Thereby
they avoid counterpart semantics, but there is a price to be paid.

Lemma 50. Let M be a cartesian m=-metaframe. Then

M �
∧
x0.
∧
x1.x0

.= x1 → �
(
x0

.= x1
)
.

So, neither of the alternatives is completely general. It turns out that
metaframe semantics could have been saved in the same way as coherence
semantics, namely by adding a constant interpreting equality. This seems to
be necessary. If we do not treat equality in this way, we must assume that the
interpretation of identity is an equivalence relation. Shehtman and Skvortsov
have shown that the condition (0]) makes the semantics less general: there are
formulae which are not generally valid but valid in all metaframes satisfying
(0]). This indicates that equating objects and object traces even done in
metaframes à la Shehtman and Skvortsov cannot eliminate the problems of
identity.

§14. Conclusion. In this paper we have defined a new semantics for modal
predicate logic, namely coherence frames. Coherence frames differ from coun-
terpart frames in that variables are interpreted in the same way as constants,
namely by objects. We have shown completeness both for first-order and for
second-order MPLs with respect to generalized coherence frames. From this
we have derived a completeness theorem for second order MPLs with respect
to generalized metaframe semantics. In fact, completeness with respect to
cubic generalized metaframes is obtained rather directly.

The proposal of distinguishing between an object and its trace is certainly
a very far reaching one but not without justification. Many philosophers
have argued that there may exist different identity criteria for objects (see van
Leeuwen [15] for a review of these ideas). A statue is not the same as the
material it is made of. Hence, though perhaps trace identical, the two are
not the same objects. There are predicates that are sensitive to this difference
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(again see [15]). These predicates reject the postulate Eq4. It goes beyond the
scope of this paper to review the possibilities that coherence structures offer
in this respect.
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