
ON STRINGS, BRACELETS AND BRACKETINGS

MARCUS KRACHT

1. The Problem

The problem is this: given a string of length n, how many binary
constituent structures exist for this string? Put differently: suppose
you want to insert brackets in such a way that a pair of bracket encloses
exactly two constituents, how many ways are there to insert brackets?

We suppose that the string is ~x = x0x1 · · ·xn−1. For n = 1 we set
the number to 1, even though no brackets can be added. If n = 2 there
is again just one solution, (x0x1). If n = 3 there are two solutions:
(x0(x1x2)) and ((x0x1)x2). For n = 4 we have five bracketings.

(1) (((x0x1)x2)x3), ((x0x1)(x2x3)), (x0(x1(x2x3))),

(x0((x1x2)x3)), ((x0(x1x2))x3)

Here is how the series develops:

(2)
length of string 1 2 3 4 5 6 7
number of bracketings 1 1 2 5 14 42 132

Call the numbers κn. There is a general solution to this sequence. We
cut the string in two parts, of length k and k−n, where 0 < k < n. We
know that there κk ways to analyse the first part and κn−k to analyze
the second. Thus we get

(3) κn =
n−1∑
k=1

κkκn−k

Notice that the right hand side has only occurrences of κk with k < n.
This recursion has a known solution, the so-called Catalan numbers.
These numbers are as follows.

(4) Cn =

(
2n

n

)
/(n + 1)

More exactly, we have

(5) κn = Cn−1

It is certainly possible to ascertain the correctness by showing that
the Catalan numbers satisfy the recursion. But there is another way to

1



2 MARCUS KRACHT

show this which teaches us much more about strings and their analysis.
The Calatalan number Cn describes the number of different bracelets
you can make from n red and n + 1 blue pearls. We shall see that that
this has a lot to do with our problem.

2. Polish Notation

We shall make a first step of transforming the problem. First, obvi-
ously the choice of the letters does not affect the problem, so we might
as well assume that the symbol is just the letter x, repeated n times.
The next simplification is this: instead of inserting brackets, we insert
the symbol o where the opening bracket was; the closing bracket is
omitted. Thus,

(((x0x1)x2)x3) 7→ oooxxxx(6)

((x0x1)(x2x3)) 7→ ooxxoxx(7)

(x0(x1(x2x3))) 7→ oxoxoxx(8)

(x0((x1x2)x3)) 7→ oxooxxx(9)

((x0(x1x2))x3) 7→ ooxoxxx(10)

In this way we transform the bracketed string of length n into a string of
length 2n−1 consisting of exactly n occurrences x and n−1 ocurrences
of o. However, not all such strings qualify, for example xxxxooo. So
our task is to count the strings that do.

One thing to note about these strings is that they correspond to the
terms in Polish Notation formed by using only the letter x denoting
a unary symbol (a constant or a variable) and the binary operation
symbol o. In general, Polish Notation is defined as follows. Given
some operation symbols fi, where fi has arity n(i), terms are nonzero
strings over these symbols, which have the form fi~x0~x1 · · · ~xn(i), where
for all j < n(i), ~xj is a term. Now, if in particular n(i) = 0 then fi

alone is a term. In out case, a string is a term iff (i) it is of the form x

or (ii) it is of the form o~x~y, where ~x and ~y are terms.
Strings in Polish Notation can be generated using context free gram-

mars. In our case, the terms are exactly the strings which are generated
by the following grammar:

(11) S→ x | oSS
Now, we need to see why writing just the opening bracket gives us
Polish Notation of some sort. There is a way to see this: think of the
opening bracket as a binary function symbol (so it needs two terms).
Of course, if we do this, we have to get rid of the closing brackets. You
can also think of it this way: keep the brackets, and insert the operator



ON STRINGS, BRACELETS AND BRACKETINGS 3

between the opening bracket and the next symbol. Finally, erase the
brackets.

(12) ((x(xx))x) 7→ (o(ox(oxx))x) 7→ ooxoxxx

The reason why one may erase the brackets without generating con-
fusion lies in a general property of Polish Notation that we now turn
to.

3. Unique Readability

Polish Notation needs no brackets. To see this, assign the following
weight to symbols: a variable is assigned −1. The weight of xi is
denoted by w(xi). An operator symbol of arity p is assigned the weight
p− 1. We write the weights under each symbol (second line) and add
them up (third line).

(13)
o o x o x x x

1 1 −1 1 −1 −1 −1
1 2 1 2 1 0 −1

Thus, given ~x, put

(14) γ(~x) :=
∑
i<n

w(xi)

γ(~x) is the weight of ~x. A prefix of ~x is a string of the form x0x1 · · ·xk,
k ≤ n. A suffix is a string of the form xixi+1 · · ·xn−1, i ≤ n.

Theorem 1. A string is a term iff (a) its weight is −1, and (b) the
weight of every proper prefix is ≥ 0.

Proof. By induction on the length of the string. Let ~x have length 1.
Then (b) is trivially satisfied, so only (a) is relevant. But clealry, it is
a term iff it is of the form xi, where xi has weight −1. Now let ~x have
length > 1. Suppose it is a term. Then it begins with an operational
symbol of arity n > 0 ,say f . Thus it has the form ft0t1 · · · tn−1. Then
γ(~x) = w(f)+

∑
i<n γ(ti) = (n−1)−n = −1. Furthermore, suppose you

take a proper prefix ~y of this string. It has the form ~y = ft0t1 · · · tj−1~u,
where ~u is either empty or a propoer prefix of tj, j < n. Then

(15) γ(~y) = (n− 1) + j(−1) + γ(~u) = (n− 1− j) + γ(~u) ≥ γ(~u) ≥ 0

This shows (b). Now, assume conversely that ~x satisfies (a) and (b).
Then its first symbol has weight ≥ 0, so it is a function symbol f of
arity > 0. Let us divide ~x as

(16) ~x = f~y0~y1 · · · ~ym−1



4 MARCUS KRACHT

where ~y0 is the smallest string starting after f of weight −1, ~y1 is the
smallest string starting after f~y0 having weight −1, and so on. (It is al-
ways possible to decompose ~x in this way; notice that γ(x1x2 · · ·xn−1) =
−w(f)−1 < 0. Because the accumulated weight can jump up any num-
ber, it can only go down by 1; thus, there is a j such that γ(x1x2 · · ·xj) =
−1. In general, any string with negative weight has a prefix that is a
term.) By construction, ~yi all satisfy (a) and (b), so they are terms.
Moreover, since the weight of ~x is −1, we have m = w(f) + 1, so ~x is
a term. �

This characterization is used to show unique readability.

Corollary 2. Let ~x be a term. Then it has a unique decomposition
~x = f~y0~y1 · · · ~yn−1 with n = w(f).

Proof. Clearly, f is unique, being the first symbol. Then n is fixed,
too. Now, suppose that we have a decomposition

(17) ~x = f~y0~y1 · · · ~yn−1 = f~z0~z1 · · ·~.n−1

Then ~y0 and ~z0 are both terms, and they are prefixes of each other.
Hence they are equal. Inductively one sees that ~y = ~z1 and so on. �

4. Cyclic Transpositions

Let ~x = x0x1 · · ·xn−1. Normally, we think of this as being written
on paper. Now however think of it as being written letter by letter on
the pearls of a bracelet. Then the string oxoxx represents the same
bracelet as does xoxxo, because the first letter of the string is thought
to follow the last. For reasons that will become clear we are interested
not in the strings but in the bracelets that can be formed from them.
Let ~x = xixi+1 · · ·xn−1x0x1 · · ·xi−1. Then put

(18) T (~x) = x1x2 · · ·xn−1x0

For example, T (fish) = ishf. If ~x has length n then T n(~x) = ~x.
It may happen, though, that T k(~x) = ~x even if k < n, for example
T 2(abab) = abab. As we shall see, this is not case for terms. Call a
cyclic transposition of ~x a string of the form T k(~x). For example,
the cyclic transpositions of abca are abca, bcaa, caab and aabc. We
shall use Theorem 1 to derive the following.

Corollary 3. Let ~x be a term and of length n. Then for no 0 < i < n,
is T i(~x) a term.

Proof. T i(~x) = xixi+1 · · ·xn−1x0x1 · · ·xi−1. Let ~y = x0x1 · · ·xi−1 and
~z = xixi+1 · · ·xn−1. Then γ(~y) + γ(~z) = −1 since ~x = ~y~z. Also,



ON STRINGS, BRACELETS AND BRACKETINGS 5

γ(~y) ≥ 0, by Theorem 1, and so γ(~z) < 0. Now T i(~x) = ~z~y, and it has
a proper prefix of weight < 0. Hence it is not a term, by Theorem 1. �

Moreover, here is a surprising fact:

Lemma 4. Every string with weight −1 has a cyclic transposition
which is a term.

Proof. Let x0x1 · · ·xn−1 be given. The sum of weights is −1, and this
is the case with all cyclic transpositions. Define µ(~x, j) :=

∑j
i=0 w(xi).

This is a function from the set of numbers < n into the integers, which
assumes a minimum µ∗ < 0. Let j be the least number such that
µ(~x, j) = µ∗. We claim that the desired string is

(19) ~y = T j+1(~x) = xj+1xj+2 · · ·xn−1x0x1 · · ·xj

To this end note that its weight is −1. We need to show therefore
that all proper prefixes have weight ≥ 0, that is, that µ(~y, i) ≥ 0
for all i < n. (Case 1.) i ≤ n − j. Then by choice of j, µ(~y, i) =
µ(~x, j + i) − µ(~x, j) = µ(~x, j + i) − µ∗ ≥ 0. (Case 2.) n > i > n − j.
Then

γ(xj+1xj+2 · · ·x0x1 · · ·xi−(n−j))

>γ(xj+1xj+2 · · ·x0x1 · · ·xn−(n−j))

=γ(~x)

=− 1

(20)

This is because the accumulated weight reaches its minimum first at
j = n− (n− j) so that the accumulated weight of the strings that are
shorter is > µ∗ = γ(x0x1 · · ·xj). This shows the claim. �

For example, take the string xoxxoox. Here is the sequence of accu-
mulated weights.

(21)

x o x x o o x

−1 1 −1 −1 1 1 −1
−1 0 −1 −2 1 1 0

∗
So, we choose j = 3. Now, T 4(xoxxoox) = ooxxoxx, which is a term.

Theorem 5. For given n there are exactly
(
2n−1
n−1

)
/n terms of length

2n− 1.

Proof. First we count the number of strings. These are of length 2n−1
and contain o exactly n − 1 times. There are

(
2n−1
n−1

)
many strings of

this form. To see this, notice that each string is uniquely characterized
by the set of positions which contain o. There are 2n − 1 available



6 MARCUS KRACHT

positions of which we choose n− 1. The symbol
(
2n−1
n−1

)
denotes exactly

that number.
Now, take an arbitrary string ~y. By Lemma 4 there is a j such that

~x = T j(~y) is a term. Also, we know that for all i < k < 2n − 1,
T i(~x) = T k(~x). (Otherwise, T k−j(~x) = ~x, so k − j must be a multiple
of 2n− 1, by Corollary 3. Contradiction.) Thus, the set of strings falls
into sets of 2n− 1 strings which are cyclic transpositions of each other.
Hence, there must be

(
2n−1
n−1

)
/(2n − 1) many terms. Finally, observe

that (
2n− 1

n− 1

)
/(2n− 1) =

(2n− 1)!

(n− 1)!n!(2n− 1)

=
(2n− 2)!

(n− 1)!(n− 1)!n

=

(
2n− 2

n− 1

)
/n

= Cn−1

(22)

�

5. Conclusion

Our method has shown a surprising connection between strings in
Polish Notation and bracelets. Also, it allowed a rather painless so-
lution to the counting of bracketed strings. Finally, let us briefly see
whether the results can be generalized somewhat. First, Lemma 4 is
completely general; we had to make no assumptions on the symbols
we use. Second, the result can be generalized to (exactly) ternary
branching, in general k–ary branching trees. However, generalizations
to flexible branching are not immediate.

Department of Linguistics, UCLA, 3125 Campbell Hall, Los Ange-
les, CA 90095-1543


