
A Model for Semantics and Pragmatics in
Communication

Christoph Brandt
Université du Luxembourg

SECAN-Lab, Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg-Kirchberg, EU
christoph.brandt@uni.lu

Marcus Kracht
Fakultät LiLi

Postfach 10 01 31
D-33501 Bielefeld

christoph.brandt@gmx.net

marcus.kracht@uni-bielefeld.de

March 25, 2009

Abstract

We define a formal model of situated agents with channels for commu-
nication that handles interaction between humans and machines alike. The
model develops a formal semantics that allows for agents to reason both
about their own situation as well as about the situation of other agents.

1

1. Introduction 2

1 Introduction

This paper describes a comprehensive scheme to define and model communication
between independent agents, which can be either humans or machines. Commu-
nication proceeds through various channels, between independent agents. Com-
munication is regulated through a set of rules protocol. Although in principle an
integrative approach, allowing both for actions and verbal exchanges, the primary
focus here is on the communicative aspect. We shall look in particular at the way
excanges are structured.

One of the main features of the present model are the following.

À Agents act independently; moreover, they each have their own private model
corresponding to the data directly accessible to them. This would be, for
example, a bank having access to various bank accounts but not to how
much cash their clients have, while clients have access to their own cash,
and to their bank account (via the bank). Whether or not the models are
seen as part of of a big model need not be a concern.

Á Agents exchange messages through various channels. The channels can be
physical (air, wires) or logical (ports). Channels are a way to select the
group of addressees. Sensitive information is protected either by encryption
or by using a particular channel.

Â Protocols regulate the sequence of messages and actions. Some transac-
tions require a cascade of both (see [Weigand and Van Den Heuvel, 1998].)
Protocols must be obeyed by each agent.

Ã Exchanges between agents allow each of them (and eavesdroppers) to gain
access to each others models. The present paper develops a framework to
study what knowledge the participants gain.

There are also certain aspects that we shall not deal with. We shall not engage in a
particular speech act classification, for example. Moreover, utterances by defini-
tion have exactly one force, which is given by the protocol (see also [Kimbrough
and Thornburg, 1989]). Thus we assume that what has the form of a question
also is a question if that is specified by the protocol. Thus indirect speech acts
are left out of consideration here. This allows to ignore the problem of speech

2. Channels, Networks and Messages 3

act recognition, a thorny issue. Second, we shall not deal with speech acts that
involve anything but factual talk. Thus, promises and obligations, for example,
are left out of consideration. Third, although the exchange proceeds using natural
language, underlyingly the meaning of the words is completely fixed. Thus what
we have effectively is a version of a FLBC (formal language for business com-
munication, [Kimbrough and Thornburg, 1989]).), though it is on the surface a
natural language.

Though each of these areas are interesting in their own right, it would compli-
cate the matter beyond need. For there are already numerous useful applications
for the present approach. We shall explore below one specific application in de-
tail. The scenario is that of several banks and clients. Clients can request banks
to perform various actions, such that opening and closing accounts, paying and
transferring money. Money transfer is perhaps the most interesting type of action.
For it involves not only several actions but also a chain of requests and acknowl-
edgments.

2 Channels, Networks and Messages

We begin by outlining the formal aspects of networks and the organisation of
communication in terms of a protocol. The basic framework is this. Agents can
communicate through channels. The communication is between different groups.

A communication network is a pair 〈A,C〉, where A is a set, the set of agents,
and C ⊆ ℘(A) a set of connections or channels. (℘(A) is the powerset of A.)
The sets describe the range of physical media through which messages can be
sent. These can be wires, or air to send radio waves or simply sound. We say
that a and b are connected if there is a C ∈ C that contains both a and b. If a
connection exists between a and b, either a may send a message to b or b may
send a message to a. Indeed, it is therefore assumed that the channel always
works both ways. Furthermore, it is assumed that if a uses C to communicate to
b then the message reaches all members of C indiscriminately, as in the case of
radio signals. One should distinguish this physical notion of a channel from the
notion of a logical channel, often used in computer science. In the latter, message
flow may be unidirectional. Unidirectional messaging can be seen instead as a
consequence of machine design (one machine is able to send, the other to receive,
but not vice versa) and not as a property of the (physical) channel. In actual fact,

2. Channels, Networks and Messages 4

the logical channel can be replicated here in the assignment of languages to sender
and addressee.

For this reason any message sent out by an agent will have to contain infor-
mation as to who sent it and to whom it is adressed. In practice the address is not
always a single agent but will specify a set that is more or less explicitly described
(think of an IP address). Thus, in addition to the network we also need a means to
identify addressees. In natural language this is either left implicit (through gaze
contact, for example) or given in the form of formal address (in an opening of
a letter), or in form of an apposition to the personal pronoun (/you, Martha,
will perform the next solo/). In an email, the recipient machine is speci-
fied in the header. Whatever the means, these methods rely on special devices to
single out a group of agents.

Definition 1 A communication structure is a quadruple 〈A,C,P, g〉, where 〈A,C〉
is a network, P a finite set, the set of predicates, and g : P → ℘(A), a function,
called a group intepretation.

Given a communication structure, we can form descriptions of agents. We shall
confine ourselves to a simple boolean structure. An agent selector is

• a member of P,

• of the form ¬e, where e is an agent selector,

• of the form (e ∧ e′) or (e ∨ e′), where e and e′ are agent selectors.

a satisfies e, in symbols a � e, if

• e ∈ L and a ∈ g(e),

• e = ¬e′, and a 2 e′,

• e = (e′ ∧ e′′) and a � e′ as well as a � e′′,

• e = (e′ ∨ e′′) and a � e′ or a � e′′ (or both).

We write g(e) is the set of all a that satisfy e. If e ∈ P this coincides with the
original function g.

2. Channels, Networks and Messages 5

We say that a message is a triple

(1) m = 〈a, e, s〉

where a is an agent, e an agent selector and s is the sentence or message body
(see below). a is the sender (or speaker) and e the address. From an address e the
set of addressees is calculated as g(e).

An utterance (or messaging event) is a triple

(2) u = 〈t,C,m〉

where t is a timestamp, C a channel, and m a message. We say that u is earlier
than u′ = 〈t′,C′,m′〉 if t < t′; in this case we write u < u′. We say that u and
u′ are concurrent, in symbols u ◦ u′, if t = t′. u is well addressed if m has the
form 〈a, e, p〉 and a ∈ C as well as g(e) ⊆ C. This is to say, all addressees must be
physically reachable via C from a, which requires that C contains a. In practice,
people allow the channel to implicitly restrict the set of addressees; rather than
saying whom they address, they simply let everyone in C be the addressee, and
only add as much information in e to narrow down that set to satisfaction. In these
circumstances, the intended set of recipients is C ∩ g(e). We shall opt here for the
strictier version for simplicity.

In terms of the previous we can now say the following. b , a is a recipient
of the message if b ∈ C. b is ratified b satisfies e ([McCawley, 1999]). Notice
that none of these concepts are applied to a. This gives us a fourfold classifica-
tion. There are ratified recipients, non-ratified recipients (eg bystanders), there are
ratified non-recipients and non-ratified non-recipients. (See [Goffmann, 1976] for
a finer classification.) As we have said, in natural conversation there is a possi-
bility that b is ratified but not a recipient. In this case a made an error of issuing
a message for a recipient that is unable to receive the message and the event is
unsuccessful. The notion of a ratified recipient is important for the following rea-
son. If a sends out a command to do something, then the obligation to perform the
action is only on the ratified recipients and not on any eavesdropper. If a promises
something to d then the promise is valid for any ratified recipient but not for a
non-ratified one.

We ignore logical complications of the following sort. English “you” means a
singular addressee or a plural addressee. The difference comes out in the promise I
will give you 5 Euros. We can understand “you” here in the singular, in which case

3. Dialogues and Protocols 6

any ratified recipient will receive 5 Euros, or we can understand it collectively (in
the plural that is), in which case the entire group will receive 5 Euros. In what is to
follow the second possibility is ignored. Thus, a promise is issued to any ratified
recipient indidually, a question is asked to any ratified recipient individually, and
so on. This is for the reason that in return the recipients must answer as a group.
However, the issuer of a message is a single agent. There is no equivalent of the
English expression “we”. This is not imlement because issuing a promise, say,
will require that not only the sender of the message but the enture group knows
about it, and so the sender must make the group aware of the promise.

For simplicity we assume that for each agent a there is a selector e such that
only a satisfies e. In this case the communication structure is called full. If that
is the case, we select for each a and expression ea that only a satisfies. A simple
message has the form

(3) m = 〈a, eb, p〉

for some b. This means that the address contains a single agent only, namely b.

3 Dialogues and Protocols

A dialogue is a sequence ∆ = 〈ui : i ∈ n〉 of distinct message events such that
if i < j then it is not the case that u j < ui. In other words, the dialogue is
chronologically ordered. (We could have said it is a set of message events and
leave the ordering implicit.) Notice that the same message can occur many times
in a dialogue. Notice that each agent may use its own clock. A protocol is a set of
conditions on dialogues (see [Fernandez and Endriss, 2007]). This usage differs
from usage in computer science where protocol is an observational record. Here it
is a set of normative statements. These conditions can be of various sorts and for
various reasons. There are conditions that are merely ensuring coherence; there
are others that ensure security.

Communication consists in a structured dialogue. The structure is defined by
certain ways in which messages must be sent around the network. Recall that
for example a question needs an answer. The pair of question and answer is also
called an adjacency pair. If a asks b for something, it is a violation of protocol
not to answer back. b may either answer the question or state that he cannot do so.

3. Dialogues and Protocols 7

We shall say, however, that not only questions but any type of message (command,
promise, statement) must be matched by another message that goes back to sender.
This means that the control structure for a dialogue between two people uses a
pushdown automaton (see [Fernandez and Endriss, 2007]). Here however we
prefer not to talk about control structure. Thus message types are distinguished
by what kind of answer they require. In electronic communication it is made clear
what message is a reply to what other message. We can implement this as follows.
A turn structure is a set τ of pairs {u, u′} of utterance events. Given two utterance
events it is clear that the later utterance is in reaction to the previous; for example,
if u occurs later than u′ then u cannot be a question, instead must be an answer
to u′. These properties are regulated by the protocol. A structured dialogue is a
pair 〈∆, τ〉 such that ∆ is a dialogue and τ ⊆ ℘(∆) is a turn structure.

Turn structures have to satisfy various restrictions, some of which will be
spelled out below.

In real situations, the turn structure is not always explicitly given, mostly only
partially. For example, in email communication each message has an identifier
and that identifier is used for reference when using the “reply” function. This then
establishes a turn. These turns can be used to create threads automatically. There
answering an email by using the “reply” option means that the email is flagged
as an answer to a specific email message. Alternatively, we can answer an email
by sending a new message and refer verbally to the previous message, but that
way the thread is no longer automatically recoverable. Notice that message can
in principle answer several previous messages; we ignore that point here. Rather
than taking the existence of a full turn connection for granted we allow for the
turn connection to be given only partially. In a real life dialogue the turns must be
reconstructed from the actual dialogue.

Definition 2 A protocol is a property Π of structured dialogues. A structured
dialogue 〈∆, τ〉 is said to fulfill Π if there is a τ′ ⊇ τ such that 〈∆, τ′〉 satisfies Π.

Thus, while satisfaction of the protocol means having the property Π, fulfillment
merely requires satisfaction of some extension. It is of course desired that there be
at most one τ′ such that τ′ ⊇ τ and 〈∆, τ′〉 satisfies Π. We call such protocols sta-
ble. Another property we want to have of a protocol is that it is locally testable.
This means that a dialogue satisfies Π if every agent agrees that it does. This is
nontrivial. If a asks a question into the network to a set of addressees then a can

3. Dialogues and Protocols 8

check whether every addressee answered it (we assume no data loss here). How-
ever, none of the other participants may be able to check that property (suppose,
for example, that each addressee sends his answer only to a). Thus, there is no
single agent that can check the satisfaction of the protocol. On the other hand, it
makes no sense to require properties of the dialogue that no one can effectively
check, although that is in principle possible. (An example: suppose that the pro-
tocol requires that a may ask b a question only if c does not know the answer.
Assume furthermore that a cannot come to know what c knows. Then it is not
possible for a to know whether he is permitted to ask b.)

In the rest of this section we shall look at the interaction between mood types
and protocol. A sentence is a pair 〈τ, p〉, where τ is a mood type and p an open
proposition, the content. Here is the list of mood types that we shall use in this
paper:

À Statement, abbreviated `.

Á Yes-No-Question, abbreviated ?.

Â Command, abbreviated !.

Ã Promise, abbreviated Z.

Ä Acknowledgment, abbreviated V.

In ordinary language, a command is accompanied either by the execution of the
order or by an acknowledgment. If John asks Peter to clean the bathroom, Peter
may respond /Yes./. This is both an acknowledgment of receipt of the command
and a commitment that he will perform the requested action. So, we may say that
the protocol contains a condition that for every command u = 〈t,C, 〈a, eb, 〈!, p〉〉〉
there is an acknowledgment u′ = 〈t′,C′, 〈b, ea, 〈V, Yes〉〉〉 such that {u, u′} ∈ τ and
t′ > t. (The fact that b has to perform an action is left out of consideration here.)
Note that there are several types of acknowledgments. There is /OK/ or /Yes./,
which signals receipt and compliance, but there are others, including those that
signal receipt and non-compliance or failure. If a orders b something, then b may
either comply, or refuse compliance, or tell a than he cannot comply, and so on.

A very important property of dialogues is the non-nestingness, which we shall
assume throughout.

3. Dialogues and Protocols 9

Definition 3 A structured dialogue 〈∆, τ〉 is said to be nesting if there are {u, u′}, {v, v′} ∈
τ such that u < v < u′ < v′.

It is known not to hold universally for human dialogues (see [Asher, 1998] and
[Ginzburg, 2008]).

As there can be several addressees of a single message we need to look more
closely at the way a protocol handles this situation. Suppose a sends out a question
to several people. Then it is not necessary for a to send the same question to each
and every addressee; nevertheless, every addressee has to answer that question.
The speech act is distributive: it distributes to all addressees. This is not always
the case. If I order a group of people to answer a rather complicated question then
I may have asked the entire group as a whole, and then only one person is asked
to reply for the whole group. This can be modeled only if we allow for groups of
speakers, which we did not. Instead, we assume here total distributivity. We shall
indicate a few consequences of this property.

In real situations, it is not the case that the protocol is used to check the well-
formedness of a dialogue; rather, the dialogue is structured with the help of pro-
tocol rules. The protocol defines what can constitute a reply to an utterance, and
the actual reply is taken to be the first such utterance. On the basis of the protocol
the utterance-reply pairs are defined and next it is checked that the utterance-reply
pairs never cross for each pair of agents. For example: a asks b whether he, a,
has to go shopping. Instead of issuing a statement (which would then constitute
a reply to that question), b responds with a question, asking a how late it is. a
answers that question upon which b says: /Yes./. This last statement can, and
therefore must be, seen as an answer to the first question of as. The dialogue is
transparent for both a and b since the protocol is something they both share.

Compliance with a protocol is a formal matter. It is not defined via content.
Thus, if b does not answer a’s question truthfully, say, if it is not the case that a
has to go shopping, then b has kept to the protocol but has not answered according
to fact. If additionally b knows that a does not have to go shopping then b has
certainly lied. Yet he has given an answer to the question so again he has kept the
protocol. In certain situations this is even to be expected. In a court hearing we
expect the defendant to lie. The protocol only enforces that the defendant answers
the questions put forward formally.

It is perhaps worthwhile to illustrate the necessity of protocols. Suppose that

4. Inside the Agents 10

a asks b two questions in a row: whether he, a, has to go shopping, and whether b
needs to go to the bank. If b simply answers /Yes./ then we are clueless which of
the questions has been answered. For in and of itself the answer /Yes./ does not
provide enough of a proposition. Formally, we represent this as

(4) 〈b, ea, 〈`, true〉〉

So, b simply says: true. Only because the message is read as a reply to a question
this statement can be interpreted approprately. We shall see how that kind of
dialogue interpretation can be achieved. Let us simply note here that protocol
failures lead to a different kind of violation than lying. If b has lied then the
proposition he has stated is known to be wrong to b; if he has not kept the protocol
we do not know what he actually said.

Alternatively, we may read b’s message as

(5) 〈b, ea, 〈`, p〉〉

where p is a variable that needs to be instantiated. Thus, b is herewith claiming the
truth of some proposition that needs to be established. In ordinary conversation
that may be a better way to proceed: for b may enclose some hints in his message
that allow to settle the question which of a’s questions b intends this message to
be a reply of (eg by saying /Yes, I have to./ or /Yes, you have to./). In
that case, one may dispense with the nesting rule. This is how human dialogue
proceeds ([Fernandez and Endriss, 2007]). However, for present purposes it is
better not to allow for this possibility.

4 Inside the Agents

With each agent we associate a language La and model structure Ma for the lan-
guage La. There are no conditions on the nature of this structure. We may have,
for example, a language that allows expressions of the form /The temperature

is 5 degrees./, and the model structure is simply a number. Or the language
is a first-order predicate language without functions and the model structure is a
relational database. It is important that the truth of an La expression in Ma be
defined. If ϕ is an La expression we write Ma � ϕ to say that ϕ is true in Ma. If
Ma � ϕ we also say that a knows that ϕ. For purposes of the present discussion,

4. Inside the Agents 11

a model structure is a function from La to {>,⊥}. It is not defined anywhere else.
Thus, effectively, the model structure decides for every string whether or not it
represents a true proposition. Ma interprets a string ϕ if it is defined on ϕ.

Several points need to be made about the languages and the models. The mod-
els correspond to the facts directly observable by the agent (similar the observables
of [Alechina and Logan, 2009]). Of course, the models can be seen as part of a
bigger reality. Let us imagine a general g sending out two spies s and s′ into two
different enemy camps. Imagine that the two spies cannot contact each other but
they can talk to the general. Then we have the network 〈{g, s, s′}, {{g, s}, {g, s′}}〉.
The general may know that the camp of s and that of s′ are within sight of each
other at some distance. He may now test his spies asking each whether they see a
camp nearby. Suppose each of them reports they can see just one, and that s says
that the camp is 5 km away while s′ reports it is 15 km away. This information
is incompatible. For the the models of each of the spies are part of one bigger
model, and distance is symmetric. Also, the camp about which s reports is the
camp that s′ sits in, and conversely the camp that s′ reports seeing is the one that
s is in. Thus, the language s and s′ use to talk is mapped to the same underlying
model, which could be the one of the general but need not be, in case

We shall suppress the discussion of compatibility of models. This means,
effectively, that the models are each disjoint. It does not mean, however, that the
languages are disjoint. It is certainly convenient to assume that when two models
are disjoint then so are the languages. We shall make no such assumption. This
has the effect that a message sent out to a group of recipients can be understood
by several of them. For example, the general can issue the same utterance to
both spies asking them to report what they are seeing. It is one utterance of a
message with two ratified recipients. We require that ratified recipients be able
to understand a message that is directed to them. For the purpose of the next
definition, a language is a set of strings.

Definition 4 A language community is a pair Λ = 〈S, L〉 where

1. S = 〈A,C,P, ι〉 is a communication structure; and

2. L a function assigning a language to each agent.

This is the definition of the model structure for independent agents. Each agent
therefore comes equipped with a model structure plus a first-order language to talk

5. Communicative Side Effects 12

about it. Of course it is possible to talk about more than what we directly know
about. So somewhere provision needs to be made for the fact that communication
involves passing on information about models that are not under an agent’s direct
control.

The solution adopted here is to allow the language of communication be the
union of all languages of the agents. Thus, it will be possible for a to talk about,
say, the account of b, even if a does not have it in his model structure. Thus, if b
says: /I have less than 1000 dollars in my account./, a understands
the message but cannot check whether it is true. Now, models determine the truth
of every proposition in the language. So even if a were to introduce a replica of bs
account into his domain he could not enter a specific amount there since the only
thing he has been told is that there is less than a thousand dollars in it. Thus we
assume that if anything, a will simply record bs statement as having been made
by b and being true, without looking into the model structure.

5 Communicative Side Effects

As we said earlier, protocols may also be a way to ensure security. In many
circumstances it is vital to know which information is accessible to what party
after a dialogue has taken place. For example, if a tells b a secret in presence of c
then not only does c now know that secret, it is common knowledge to all of them
that he now does. If such a situation is not supposed to arise, a must choose his
channel wisely.

If a intends to say something to b he may not be able to do so if he does not
know how to talk to b at all. If b speaks only Bengali and a does not, then that is
the end of the communication. Still, a may ratify b as recipient and talk English
to b hoping b will pick up something.

Under normal circumstances it may be unnecessary to keep track of the lan-
guages involved. However, natural languages allow for communication whose
side effect is the establishment of a new language. a, for example, may order b to
open a file and name it r2d2. Subsequently he may order b to write some lines
into the file. It may thus be common knowledge to both a and b that r2d2 is the
name of a file on b’s system. As we do not deal with shared models, the situation
is this: b interprets the name r2d2 as a file, while a only knows that b understands

5. Communicative Side Effects 13

that r2d2 is a file (and that one can ask b about its content). a can at any mo-
ment retrieve the content of this file from b. r2d2 has become a constant of b’s
language.

Of course, in the previous example b may know the content of the file by re-
membering what he asked b to put into it. (This of course requires that b complies
with everything.) Now suppose the following. Unbeknownst to a, c has also or-
dered a to open a file under the name rsd2, and write some lines into it. In that
situation neither a nor c fully know what the file contains, but each of them refers
with the name r2d2 to that same file. This frequently happens, for example when
several people have write access to some database then each of them can change
the content. On the other hand, it may be that b protects both parties from inter-
ference and creates a separate file for a and c. This situation is delicate. For now it
is both the case that only b interprets the utterances of a and c, and that utterances
of a are interpreted differently from utterances of c.

Third, when c orders to open a file r3d3 then a does not know about its exis-
tence, while c does. Thus, the languages of communication are relative not just to
one agent but to channels.

This creates a complication in the definition of a language community. Con-
sider a talking to b. Then we must ask which of the languages a must use. It can
be either L(a) or L(b). Which of them it is does actually depend on the type of
message. In a question we must assume that b knows the answer, so the language
will have to be L(b). In a statement it is different: it will come from L(a). This is
because the only source of factual knowledge is at this point the model structure.
As soon as the agents come equipped with knowledge about other agents, things
change. Then one can know facts without having first hand access.

Definition 5 The message type τ is speaker centered if τ ∈ {`,Z}. Otherwise it
is called adressee centered.

Definition 6 A message 〈a, e, 〈τ, ϕ〉〉 is ratified in a language community Λ if for
each b ∈ ι(e) and speaker oriented τ, ϕ ∈ L(a), and for each adressee oriented τ,
ϕ ∈ L(b).

The snag is that even though the languages are dependent on both agents interpre-
tation is still one sided.

5. Communicative Side Effects 14

Definition 7 A global Λ-state is a function σ, which assigns to each agent a an
L(a)-structure σ(a).

So global states encode the stored knowledge of each agent. The models µ(a) can
be regarded as local states.

Definition 8 A history is a sequence 〈Pi : i < n〉 where for evey i < n, Pi =

〈σi, µi〉, where σi is a global Λ-state, and µi is a message event such that if i < j
then the time stamp of mi may not be later than that of m j.

In place of a single message we can admit sets of messages, but this would compli-
cate the picture unnecessarily; for the set can easily be decomposed as a sequence.
Furthermore, the possibility of changing community structure is momentarily ex-
cluded.

The history is more than just a record of the dialogue. It also encodes the
knowledge states of the agents. In this way we can also talk about proper messag-
ing sequences. For example, if no message is sent out as an anwser to a question,
this is in violation of the protocol. Apart from the first-order model that the agents
keep they can gain additional knowledge about other agents and their models as
well. If b overhears a saying that he wants to open an account he can deduce that
a will have an account. Also, if a request his bank to disclose the balance of his
account then he can deduce that what he is told is the balance. All this is of course
subject to one important condition: that the protocol is honoured by all parties
involved.

An agent can make full use of the situation by additionally keeping score of
the communication. Thus agent a will essentially keep a transcript of the entire
dialogue; however, he can only gain access to messages that are sent through a
channel that he is in. So, a can record a message event 〈t,C,m〉 only if a ∈ C, that
is, if a is physically reachable via C. It is not necessary that a is a ratified recipient.
Any bystander can record a conversation. This complicates the situation for public
announcement logic (see [Balbiani et al., 2008]): a proposition is known between
everyone after public announcement, but that is true only for the group C. For
example, if I announce that there will be a test tomorrow, then this will be public
knowledge for everbody present in the room but not necessarily for all students.
If student a is absent then I cannot deduce that he or she knows about the test. We
shall return to these issues at the end.

6. Knowledge 15

6 Knowledge

Even though agents have limited access to other agent’s model structure, they
nevertheless can get information about it. In the scenario below the situation is
that the account balance is known effectively only to the bank, not the client.
If he wants to know what it is, he can ask the bank. After that he will know the
balance at that moment. Some moments later however his knowledge will become
obsolete. This is a situation we all know well.

First of all, to make all this work we assume that the languages used in com-
munication are open. We simply drop the requirement that the language can be
fully evaluated in the model. Alternatively, we introduce a common language for
all languages and say that the interpretation function is partial.

We make three assumptions: participants are not lying, they keep the protocol,
and messages are not encrypted. This means that if a sends out a message m at t
through channel C then any recipient now knows that m. To model this, we do the
following. All agents basically remember all messages they receive. This gives
them maximal memory. Thus, the effect of an utterance is not only that the ratified
receipient is obliged to perform certain actions, but also that all recipients, ratified
or not, update their message-log. In order to effectively reason with this kind of
knowledge they must of course know about the effects of actions. For example,
knowing my account balance is n euros, if I withdraw m euros, the balance will be
n − m. If someone paid into it without my knowledge then it may even be more.

Even if all agents record all messages they get it is not the case that they know
everything. Consider for example the following question: is it possible for b to
know how much a has in his account? To answer this question we must first of
all see where the information about the account resides. In the scenario below it
is as bank. Thus only the bank knows the balance (not even a). Then we shall
ask: how can that knowledge pass through the network? Here it is a matter of
channels and the communication protocol. If there is no channel connection from
the bank to b then no message ever reaches b. This however is unlikely. More
interesting is the case where it is the protocol that prevents certain information to
be passed. Looking at the protocol specification for /get/ we see that the request
for balance may be sent to anyone, but the bank may answer only if the sender is
the owner of the account. Similarly we must plough through all the specifications
to see how much information is disclosed and to whom. Finally, notice that even

7. An Application 16

if information may pass through the network, this consumes time and information
may be useless simply because it is out of date. For example b may inquire about
as account; if he has to wait 10 cycles to get the answer he knows the balance 10
cycles earlier, not the actual one.

7 An Application

We shall discuss a scenario that exemplifies the notions discussed above. The
communication structure consists of a number of banks, bi, i = 1, · · · ,m, and
a number of people p j for j = 1, · · · , n, who have accounts with either or the
banks. There is no limits on the number of accounts someone can have. The data
structure ∆i a bank keeps at any moment i is (a) a list of pairs (o, a) where a is
account number and o its owner (one of p1 through pn), and (b) a list containing
pairs (a, b), where a is the account number, and b the balance. To keep track of its
own actions a bank may keep a record of the ∆ for past moments. A person may
also have money.

There are various actions persons and banks can take. Accounts can be opened
and closed. Anyone can open an account, but the number of the account is chosen
by the bank (since it may not conflict with existing account numbers). The initial
balance is zero. Only an owner may close an account. Accounts can be closed
only if the balance is zero. Anyone can pay money into an account, but only
an owner can pay out of account; the owner can pay out of his account only by
ordering the bank to do so. The order is a one-time license for the bank to pay the
requested sum. Money can be paid either to a person or into an account. At any
stage the sum of money in the accounts and in all the person’s hands is the same.
Another action is a request for information. One may request the balance of an
account. However, the balance may be disclosed only to the owner of the account.
Generally, only information about accounts you own can be obtained.

In real life, communication with a bank is via a channel (eg the internet) and
since the channel is open to anyone you need to authorise yourself in order to
perform the actions. This will be ignored at the present stage. Communication
is not encrypted either. The communication network is known to all participants.
There are more interesting concepts left out of consideration such as the licence
given by an owner of an account to another person to charge that account.

7. An Application 17

Figure 1: Two Banks and Two People

p1 800 p2 524

b1 0 b2 0

p1 11
p2 14

11 2500
14 −70

p1 22
p2 27
p2 31

22 110
27 1345
31 31

Money transfer is a complex action. If pi wishes to transfer money to p j then
he chooses a bank b and an account a of his own, as well as a bank b′ and account
a′ of p j and orders the bank to pay out of a into the account a′ at bank b′. This
transaction is the combination of (a) taking money out of a, (b) paying that same
amount into a′. For action (a) the bank needs the permission of the owner, which
we treat as implicitly given through the order. For action (b) two cases arise:
b = b′, in which case the bank can simply write the amount into the account,
or b , b′ in which case b will have to ask b′ to put the requested amount into
the account a′. In the latter case the communication chain is as follows: (1) pi

requests from b the transfer; (2) b asks b′ to write into a′; (3) b′ acknowledges
to b; (4) b acknowledges to pi. This is also the temporal order. Once pi gets the
acknowledgment from the bank he knows that p j has received the money.

In practice there is a difference between on-line and off-line requests. Typi-
cally, off-line requests will not be explicitly answered. If the transaction fails, pi

will simply never see the amount deducted. We shall ignore this point, however.

Lets give an example. We have two persons, p1 and p2 and two banks, b1 and
b2. The network is {b1, b2, p1, p2} and C is the set of all subsets of cardinality at
least 2:

(6) C = {{b1, b2}, {p1, p2}, {b1, p1}, {b1, p2}, {b2, p1}, {b2, p2}, {b1, b2, p1},

{b1, b2, p2}, {b1, p1, p2}, {b2, p1, p2}, {b1, b2, p1, p2}}

7. An Application 18

We work with the following descriptors: P := {bk, pr, one, two}. We put

(7) g(x) :=


{b1, b2} if x = bk

{p1, p2} if x = pr

{b1, p1} if x = one

{b2, p2} if x = two

This defines the communication structure.

At any given moment, the state is a quadruple s = (m1,m2,∆1,∆2), where m1

is the money in p1’s pocket, m2 the money in p2’s pocket, and ∆1 and ∆2 are triples
〈p, k, b〉, where p contains a number, and k and b are lists. An example is given in
Figure 1. The following must be true:

1. k consists of pairs (p, n) such that p is either p1 or p2, and n is a number. No
other pair (p′, n) may be in k;

2. if b contains a pair (n, b) then k must contain a pair (p, n) for some p; in
other words, accounts must have an owner.

The first member, p, is a cash account (needed in transferring money).

A message event consists in an agent sending out a message m (= a string) via
channel C at a moment t. The message contains an envelope with two compo-
nents: sender (= a), adressee (= e) and message body. It is considered a protocol
violation if a is not the actual sender (as is often the case in fake emails). The
remaining string is like a natural language string, containing the mood type and
the proposition.

Language primitives: /open/, /close/, /get/, /pay/, /transfer/, /balance/,
/from/, /to/, /EURO/, /at/, /OK/, /fail/. Also, we have the digits and the blank to
form complex expressions and numbers.

In the semantics we have various types: π the type of person, β the type of
bank, σ the type of states, and ν the type of numbers. There are also the following
semantic primitives (types are written in right associative form; eg α → β → γ is
short for α→ (β→ γ)):

À open′ : π → β → σ → σ, a function from persons and banks to functions
from states to states;

7. An Application 19

Á bic′ : ν→ β, the bank identifier code;

Â close′ : β → ν → σ → σ, a function from banks and numbers to state
changers;

Ã balance′ : β→ ν→ σ→ ν, a function from banks and numbers and states
to numbers; this function is partial;

Ä pay′ : β → π → σ → σ, a function from banks and numbers to state
changers;

Å transfer′ : β → ν → ν → ν → ν → σ → σ, a function that takes a bank
and four numbers and changes the state.

The syntax, semantics and pragmatics of these primitives is now as follows. The
syntax is given through the following context free grammar.

(8)

<sent> → <command>! | <quest>? | <stat>. | <ackn>.
<quest> → What is the of<acct>
<ackn> → <iackn> | <tackn> <acct>
<iackn> → OK | Sorry

<tackn> → I opened | I closed

<command> → <itr> | <trs> <acct>
| <pay> <amount> into <acct>
| <pay> <amount> out of <acct>
| <dtrs> <amount> from <acct>
to <acct> at <bank>

<itr> → Open an account

<trs> → Close | Get the balance of

<dtrs> → Transfer

<amount> → <currency> <number>
<number> → <digit> | <digit><number>
<currency> → EURO

<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<acct> → account <number>
<bank> → bank <number>

7. An Application 20

This determines the syntax of messages. The following strings can be generated.

Open an account!(9)
Sorry.(10)
Transfer EURO 560 from account 017 to account 018 at(11)

bank 2!

Message events are constructed from these strings as above. Given an event
〈t,C, 〈a, e, ~x〉〉, where ~x is a string, this string is parsed and translated as follows.
Since ~x is a sentence, it can be decomposed into a mood marker τ and a string ~y.
The complete form is thus

(12) 〈t,C, 〈a, e, 〈τ,~y〉〉〉

In principle, one can write a Categorial Grammar for this. We prefer to spell out
the definitions in a different way. Before we do so, a few general rules of protocol.

À It is required that messages are well-adressed, that is, there are no ratified
non-recipients.

Á All speech acts are distributive. If someone is a non-ratified recipient he
must respond with a special message, say /Sorry./.

Â Acknowledgments have to be sent back in this example via a channel that
includes only the original sender and the recipient. This is due to privacy
requirements.

We shall detail below a few characteristics of the language elements.

/open/.

Protocol: If ∆ contains 〈t,C, 〈a, eb, 〈!, Open〉〉〉 then τ contains {u, u′} such that
u′ = 〈t′, {a, b}, 〈b, ea, 〈`, I opened ~x〉〉 or u′ = 〈t′, {a, b}, 〈b, ea, 〈`, Sorry〉〉
where t′ > t. (Issuing the response to recipients other than a is a violation
of protocol. Using a channel other than {a, b} in the response is likewise in
violation of protocol. Also, no bank may open an account without being
requested to do so.)

7. An Application 21

Semantics: For all b ∈ g(e′), the action open′(a)(b) is executed, where a is a
person and b is a bank. Here, open′(a)(b)(s) is the following state s′ =

(m1,m2,∆
′
1,∆

′
2). If b = b1 then ∆′2 = ∆2. Given ∆1 = 〈`1, `2, `3〉, we have

∆′1 = 〈`′1, `
′
2, `
′
3〉, where `′1 = `1, `′2 = `2 ∪ {〈a, ~x〉} and `′3 = `3 ∪ {〈i, 0〉},

where i is the smallest number not assigned in `2. If b = b2 then the result
is analogous with 1 and 2 interchanged. (This action is deterministics; one
need not do that but it is simpler.)

So, if a asks bank b to open an account, the bank opens an account and com-
municates the account number to a. If a asks a person, that person will respond
with a failure. Normally, banks may refuse to open an account, but this is not
allowed for here. Thus the protocol specifies that the request must be honoured.

/close/.

Protocol: If a person is the addressee, he must respond with fail. For a bank, the
appropriate response is either u′ = 〈t′, {b, a}, 〈b, ea, 〈`, closed ~x〉〉〉 where
~x is a number expression, or u′ = 〈t′, {b, a}, 〈b, ea, 〈`, fail〉〉〉. It is not licit
to use a channel other than {b, a} is a violation of protocol. (Notice that in
that case it is needless to specify the recipient.) The bank issues a failure
message (eg /Sorry/) if

1. the account balance is not 0 or

2. there is no account with that number or

3. the sender does not own the account.

Semantics: Let σ = (m1,m2,∆1,∆2). close′(b)(n)(σ) is the state (m1,m2,∆
′
1,∆

′
2)

such that if b = b1 then ∆′2 = ∆2. Furthermore, if ∆1 = 〈`1, `2, `2〉 and
〈a, n〉 ∈ `2 and 〈n, 0〉 ∈ `3 then ∆′1 := 〈`1, `2−{〈a, n〉}, `3−{〈n, 0〉}〉, otherwise
∆′1 := ∆1.

/get/.

Protocol: An appropriate response is either 〈t′, {a, b}, 〈b, ea, 〈`, ~y〉〉 where ~y is the
value of ~x or 〈b, ea, 〈`, fail〉〉. Using a channel other than {a, b} is prohib-
ited. Also, the account balance may not be communicated unless a owns
the account.

7. An Application 22

Semantics: balance′(b)(n)(σ) where σ = (m1,m2,∆1,∆2) is the unique number
m such that 〈n,m〉 ∈ `3, if it exists. Otherwise it is undefined.

If a asks b to get ~x (for example the balance of an account), the b tries to determine
the value of ~x. If b is not able to determine it, then the request is pragmatically
illicit. On the other hand, in certain cases a may request something that b can
determine but is not allowed to disclose (eg the balance of an account that a does
not own). In that case b will also issue a failure. In the present situation we
have made the choice of letting the function balance′ be defined but prohibit
the communication by the protocol. A different solution is to make balance′ be
a function that also takes a person argument and checks whether the person is
allowed to gain access to the balance.

There are more functions, which we shall describe more informally. First, one
can pay into an account and pay out of it. The syntax is that of a command, so it
is an order to the bank to pay. When the amount is positive, the bank is asked to
deduct the amount from the account and hand it to the person. When the amount
is negative, the person is passing that amount to the bank and it is written into the
account. To get money from an account you must be the owner. Transfer of an
amount n from an account c1 to an account c2 at bank β works as follows. If a
requests from β′ the transfer, a must own the account number c1 at β′ and there
must be enough money on it. In that case β′ pays the money into the cash account
of the bank β and sends a message to β asking it to write the amount into the
account c2. If such an account exists, β performs the requested action and sends
back an acknowledgment; if no account exists, it returns the money and sends
a failure notice, whereupon β′ writes the amount back into the original account.
Upon completion, β′ sends an acknowledgment to a. The bank β is found as
follows. When a issues the request, he names a bank via a number n. Then we
have β = bic′(n).

Notice also that the same account number can be used by different banks, as
is ordinarily the case. Thus, in a transfer the account numbers belong to accounts
of different banks.

We shall give an example. Suppose at t0, p1 issues the following string with
address /bk ∧ one/ via channel {p1, b1}.

(13) Open an account!

8. Modelling 23

This is then represented as

(14) 〈t0, {p1, b1}, 〈p1, bk ∧ one, 〈!, Open〉〉

b1 is a ratified receipient, and will therefore perform the requested action. It
chooses the number 1, adds the pair (p1, 1) to the list of accounts, and (1, 0) to
the account balance. Upon completion it returns acknowledgment, that is, we
have the utterance

(15) 〈t1, {p1, b1}, 〈b1, pr ∧ one, 〈V, I opened account 1〉〉

8 Modelling

We shall briefly say a few words about the actual modelling. Histories have been
defined above as sequences of pairs 〈σ, u〉, where σ is a state and u an utterance.
Because synchronicity is not of essence it is enough to consider just one utterance.
In the present circumstances actions are always performed by request. Thus, in
the present situation we can calculate the current state given only the protocol.

It would be nice if it were enough to just know the previous state and the pre-
vious utterance. However, this cannot be guaranteed. One problem is transfer of
money. Here, a bank requests another bank to write some money into an account
because a person has requested it to do so. The next step to be taken thus depends
on several steps before. Thus, we need the additional notion of session to predict
the next state. Notice also that the fact that answers cannot be adjacent to their
questions in a protocol means that it cannot be the physically previous question
but it must be the logically previous utterance (in terms of the turn structure) that
are taken into account. However, as the previous example showed, even that may
not be sufficient. Thus a session is defined to be a particular structure kept by each
agent in order to know what to do in the next state without taking recourse to the
previous states. A session is a pair consisting of (a) a stack of message events (“in-
box”) and (b) a queue of pairs of messages and channels (“outbox”). Each agent
has his own session. When a message comes in it is put on the session stack.
Furthermore, each time the agent is free to send a message, it outputs a message
from the queue. The agents monitor at each step their respective sessions. If a
message is on in the inbox stack they process it. Processing means several things;
on the one hand it may consist in doing what the protocol requires. On the other it

REFERENCES 24

may consist in deducing valuable information about the states of the others. The
message gets removed when the protocol allows to do so (for example, when an
answer is sent for a question, or an acknowledegment for a command). The nest-
ingness of the dialogue is automatically ensured by the architecture of the session
as a stack.

References

[Alechina and Logan, 2009] Natasha Alechina and Brian Logan. A Logic of Situ-
ated Resource-Bounded Agents. Journal of Logic, Language and Information,
18:79–95, 2009.

[Asher, 1998] Nicholas Asher. Varieties of Discourse Structure in Dialogues. In
Proceedings of the Second Workshop on the Semantics and Pragmatics of Di-
alogue (Twendial ’98), 1998.

[Balbiani et al., 2008] Philippe Balbiani, Alexandru Baltag, Hans van Ditmarsch,
Andreas Herzig, Tomohiro Hosi, and Santiago de Lima. ‘Knowable’ as
‘Known After An Announcement’. The Review of Symbolic Logic, 1:305–334,
2008.

[Fernandez and Endriss, 2007] Raquel Fernandez and Ulle Endriss. Abstract
models for dialogue protocols. Journal of Logic, Language and Information,
16:121–140, 2007.

[Ginzburg, 2008] Jonathan Ginzburg. Semantics for conversation. to appear,
2008.

[Goffmann, 1976] E. Goffmann. Replies and Responses. Language and Society,
5:257 – 313, 1976.

[Kimbrough and Thornburg, 1989] S.O. Kimbrough and M.J. Thornburg. On
semantically-accessible messaging in an office environment. In Proceedings
of the Twenty-Second Annual Hawaii International Conference on System Sci-
ences. Vol.III: Decision Support and Knowledge Based Systems Track, vol-
ume 3, pages 566 – 574, 1989.

[McCawley, 1999] James McCawley. Participant Roles, Frames, and Speech
Acts. Linguistics and Philosophy, 22:595–619, 1999.

REFERENCES 25

[Weigand and Van Den Heuvel, 1998] H. Weigand and W. Van Den Heuvel.
Meta-patterns for electronic commerce transactions based on FLBC. In Pro-
ceedings of the Thirty-First Hawaii International Conference on System Sci-
ences, volume 4, pages 261 – 270, 1998.

	Introduction
	Channels, Networks and Messages
	Dialogues and Protocols
	Inside the Agents
	Communicative Side Effects
	Knowledge
	An Application
	Modelling

