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Abstract

In this paper we extend the work by Michaelis (1999) which shows how to encode an arbitrary
Minimalist Grammar in the sense of Stabler (1997) into a weakly equivalent multiple context-
free grammar (MCFG). By viewing MCFG-rules as terms in a free Lawvere theory we can
translate a given MCFG into a regular tree grammar. The latter is characterizable by both
a tree automaton and a corresponding formula in monadic second-order (MSO) logic. The
trees of the resulting regular tree language are then unpacked into the intended “linguistic”
trees both through an MSO transduction based upon tree-walking automata and through a
macro tree transduction. This two-step approach gives an operational as well as a logical
description of the tree sets involved. As an interlude we show that MCFGs can be regarded
as a particularly simple attribute grammar.

1 Introduction

Algebraic, logical and regular characterizations of (tree) languages provide a natural framework
for the denotational and operational semantics of grammar formalisms relying on the use of trees
for their intended models.

Over the last couple of years, a rich class of mildly context-sensitive grammar formalisms
has been proven to be weakly equivalent. Among others, the following families of (string) lan-
guages are identical: STR(HR) [languages generated by string generating hyperedge replacement
grammars], OUT (DTWT ) [output languages of deterministic tree-walking tree-to-string transduc-
ers], yDTfc(REGT ) [yields of images of regular tree languages under deterministic finite-copying
top-down tree transductions], MCFL [languages generated by multiple context-free grammars],
MCTAL [languages generated by multi-component tree adjoining grammars], LCFRL [languages
generated by linear context-free rewriting systems], LUSCL [languages generated by local un-
ordered scattered context grammars] (more on these equivalences can be found, e.g., in Engelfriet,
1997; Rambow and Satta, 1999; Weir, 1992). It has not been noted before that MCFLs are strongly
equivalent with a family of languages that are generated by a particularly simple form of attribute
grammars (AGs). AGs are a much more powerful device than MCFGs and can easily accommo-
date phenomena of natural languages that are beyond the reach of the mildly context-sensitive
grammar formalisms just enumerated. Analyzing multiple context-free grammars (MCFGs) as
a special type of AG makes for a smooth transition into higher echelons of a refined Chomsky
hierarchy without leaving the conceptual framework of AGs that has been successfully applied in
such diverse areas as compiler construction and recursive program schemes.

In the present context the combination of algebraic, logical and regular techniques does not
only add another characterization of mildly context-sensitive languages to the already long list of
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weak equivalences. It also makes available the whole body of techniques that have been developed
in the tradition of algebraic language theory, logic and automata theory.

In this paper we extend the work by Michaelis (1999) which shows how to encode an arbitrary
minimalist grammar (MG) in the sense of Stabler (1997) (and thus in the sense of Stabler (1999a),
the chain-based incarnation of the former) into a weakly equivalent linear context-free rewriting
system (LCFRS). We present a translation from the formalism of multiple context-free grammars
(MCFGs)—a weakly equivalent extension of LCFRSs—into regular tree grammars (RTGs). The
idea behind the translation is to “lift” the MCFG-rules to RTG-rules by viewing them as Lawvere
terms. Furthermore, we use the equivalence of RTGs, monadic second-order (MSO) logic (on
trees) and tree automata to give an algebraic and a logical description of the lifted trees. Since
the trees characterized by an RTG contain additional “non-linguistic” information they are then
unpacked with a monadic second-order (MSO) transduction thereby giving both an operational
and a denotational description of the tree sets involved. The MSO transduction is built upon a
tree-walking automaton (with tests).

In addition to the result just mentioned, we present a further implementation of the MSO
transduction by a very simple Macro Tree Transducer (MTT). MTTs are a powerful syntax-
directed translation device in which the translation of an input tree not only depends on its
subtrees but also on the context. The particular MTT we construct below takes the tree language
generated by the regular tree grammar referred to above as its input and transduces it into the
intended structures that are specified by the logical MSO transduction. It is worth mentioning that
the tree transduction is given in terms of the “lifted” terms of the Lawvere algebra. It would have
been possible to turn the MCFG—regarded as an AG—directly into an equivalent MTT. We hope
that the additional step via the RTG helps to clarify the operational aspect of the implementation
by means of the MTT.

We think that our approach has decisive advantages. First, the operations of the relevant
signature appear explicitly in the lifted trees and are not hidden in node labels coding instances
of rule application. Second, our path component is not dependent on the particular regular tree
family or, equivalently, the domain defined via the MSO formula. The instruction set of the
tree-walking automaton and the corresponding definition of the MSO transduction are universal
and only serve to reverse the lifting process. In that sense the instructions are nothing else but
a restatement of the unique homomorphism which exists between the free algebra and any other
algebra of the same signature. The same remarks hold for the instructions of the MTT. Thus, the
translation from MCFGs to RTGs constitutes a considerable simplification in comparison with
other characterizations since it is not built upon derivation trees using productions of the original
MCFG as node labels, but rather on the operations of projection, tuple-formation and composition
alone.

In the following sections we limit ourselves in the running example to the special case of
MCFG-rules with only one nonterminal on the right hand side (RHS). This allows a significant
simplification in the presentation since it requires only one level of tupling. The extension to the
general case of building tuples out of tuples is considerably more involved and would obfuscate
the presentation of the core ideas unnecessarily. The definitions are given for the general case,
though.

The structure of the paper is as follows. We start with some basic algebraic, logical and
automata-theoretic definitions before sketching some linguistic motivation why the formal coding
seems necessary, followed by the formal presentation of MGs. The succeeding sections then sketch
how to translate a given MG firstly into an MCFG (and an equivalent AG) and from there into
an RTG. Finally, in the last section, we transform the resulting trees back into a format which is
intended for linguistic analysis. We conclude with a brief outlook on further optimizations of the
presented technique.

2 Background and Basic Definitions

We are going to show how to code the grammar rules of a LCFRS (or better an MCFG) into rules
of an RTG. This is done via lifting by viewing MCFG rules as terms in a free Lawvere theory.
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Since this coding makes projection, tupling and composition explicit, the resulting trees contain
these operations as labeled nodes. Therefore we use on the logical side an MSO transduction—
where the regular tree language constitutes the domain—and on the operational side an MTT to
transform the “lifted” trees into the intended ones.

In this section we present the corresponding basic algebraic, logical and automata-theoretic
definitions before we proceed with the actual translation.

2.1 Basic Algebraic Definitions

Definition 2.1. For a given set of sorts S,1 a many-sorted signature Σ (over S) is an indexed
family 〈Σw,s |w ∈ S∗, s ∈ S〉 of disjoint sets. A symbol σ ∈ Σw,s is an operator of type 〈w, s〉,
arity w, sort s and rank |w|. The rank of σ is denoted by rank(σ).

The set of trees T (Σ) (over Σ) is built up using the operators in the usual way: If σ ∈ Σε,s
for some s ∈ S then σ is a (trivial) tree of sort s. If, for some s ∈ S and w = s1 · · · sn with si ∈ S,
σ ∈ Σw,s and t1, . . . , tn ∈ T (Σ) with ti of sort si then σ(t1, . . . , tn) is a tree of sort s.

In case S is a singleton {s}, i.e., in case Σ is a single-sorted signature (over sort s), we usually
write Σn to denote the (unique) set of operators of rank n ∈ IN.2

The operator symbols of a many-sorted signature Σ over some set of sorts S induce operations
on an algebra with the appropriate structure. A Σ-algebra A consists of an S-indexed family
〈As | s ∈ S〉 of disjoint sets, the carriers of A , and for each operator σ ∈ Σw,s, σA : Aw → As is a
function, where Aw = As1 × · · · ×Asn and w = s1 · · · sn with si ∈ S. The set T (Σ) can be made
into a Σ-algebra T by specifying the operations as follows. For every σ ∈ Σw,s, where s ∈ S and
w = s1 · · · sn with si ∈ S, and every t1, . . . , tn ∈ T (Σ) with ti of sort si we identify σT(t1, . . . , tn)
with σ(t1, . . . , tn).

Our main notion is that of an algebraic (Lawvere) theory.

Definition 2.2. Given a set of sorts S, an algebraic (Lawvere) theory, as an algebra, is an S∗×S∗-
sorted algebra A whose carriers 〈A〈u,v〉 |u, v ∈ S∗〉 consist of the morphisms of the theory and
whose operations are of the following types, where n ∈ IN, u = u1 · · ·un with ui ∈ S∗ for 1 ≤ i ≤ n

and v, w ∈ S∗,

projection: πui ∈ A〈u,ui〉

composition: c(u,v,w) ∈ A〈u,v〉 ×A〈v,w〉 → A〈u,w〉

target tupling: ( )(v,u) ∈ A〈v,u1〉 × · · · ×A〈v,un〉 → A〈v,u〉

The projections and the operations of target tupling are required to satisfy the obvious identities
for products. The composition operations must satisfy associativity, i.e.,

c(v,u,ui)

(

(α1, . . . , αn)(v,u), π
u
i

)

= αi for αi ∈ A〈v,ui〉, 1 ≤ i ≤ n

(

c(v,u,u1)(β, π
u
1 ), . . . , c(v,u,un)(β, π

u
n)
)

(v,u)
= β for β ∈ A〈v,u〉

c(u,v,z)
(

α, c(v,w,z)(β, γ)
)

= c(u,w,z)
(

c(u,v,w)(α, β), γ)
)

for α ∈ A〈u,v〉, β ∈ A〈v,w〉, γ ∈ A〈w,z〉

c(u,u,v)
(

(πu1 , . . . , π
u
n)(u,u), α

)

= α for α ∈ A〈u,v〉

where u = u1 · · ·un with ui ∈ S∗ for 1 ≤ i ≤ n and v, w, z ∈ S∗.

1Throughout the paper the following conventions apply. IN is the set of all non-negative integers. For any set
M , M∗ is the Kleene closure of M , i.e., the set of all finite strings over M . For m ∈ M∗, |m| ∈ IN denotes the
length of m. We will use Mε to denote the set M ∪ {ε}, where ε is the empty string (over M), i.e., ε ∈ M∗ with
|ε| = 0.

2 Note that for S = {s} each 〈w, s〉 ∈ S∗ × S is of the form 〈sn, s〉 for some n ∈ IN.
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Let Σ be a single-sorted signature and X = {x1, x2, x3, . . .} a countable set of variables. For k ∈ IN
define Xk ⊆ X as {x1, . . . , xk}. Then, the set of k-ary trees T (Σ,Xk) (over Σ) is the set of trees
T (Σ′) over the single-sorted signature Σ′ = 〈Σ′

n |n ∈ IN〉, where Σ′
0 = Σ0 ∪Xk and Σ′

n = Σn for
n > 0. Note that T (Σ,Xk) ⊆ T (Σ,Xl) for k ≤ l. Let T (Σ,X) =

⋃

k∈IN T (Σ,Xk).
The power set ℘(T (Σ,X)) of T (Σ,X) constitutes the central example of interest for formal lan-

guage theory. The carriers 〈℘(T (k,m)) | k,m ∈ IN〉 of the corresponding S∗×S∗-Lawvere algebra
are constituted by the power sets of the sets T (k,m), where each T (k,m) is the set of all m-tuples
of k-ary trees, i.e., T (k,m) = {(t1, . . . , tm) | ti ∈ T (Σ,Xk)}.

3 For i, k ∈ IN with 1 ≤ i ≤ k the
projection constant πki is defined as {xi}. Composition is defined as substitution of the projection
constants and target tupling is just tupling.

As remarked previously, an arbitrary number of nonterminals on the RHS of an MCFG-rule
entails the use of tuples of tuples in the definition of the corresponding mapping. That is to say,
each nonterminal on the RHS generates a tuple of terminal strings rather than a single string
(cf. Def. 5.1). Therefore we had to define the Lawvere algebra in such a way that each component
ui of any u is from S∗. Since in the running example we use only rules with one nonterminal on
the RHS, each ui we employ there is of length one (i.e., from S) such that we can safely ignore
the “outer” tupling.

More on Lawvere theories in general can be found in, e.g., Wagner (1994). More on the
connection to linguistics is elaborated in Mönnich (1998).

2.2 Attribute Grammars

In order to define an attribute grammar (AG) we follow Bloem and Engelfriet (1998) who in their
turn adopt the variant introduced in Fülöp (1981). Below we are interested only in AGs where
the set of inherited attributes is empty, i.e., in AGs which are only synthesized. Nevertheless, we
present the general definition of an AG in order to explicitly state the difference from the restricted
versions needed afterwards.

Definition 2.3. An attribute grammar (AG) is a 7-tuple G = 〈Σ,Asyn,Ain, Ω,W,R, αmean〉,
where Σ is a many-sorted signature of operation symbols, Asyn is a set of synthesized attributes,
Ain is a set of inherited attributes, Ω is a finite set of sets, the semantic domains of the attributes,
W , the domain assignment, is a function from A to Ω, αmean ∈ Asyn is the meaning attribute,
R =

⋃

σ∈Σ∪{root}R(σ) is the set of semantic rules, root a new symbol not appearing in Σ.

For each σ ∈ Σ, R(σ) is the set of internal rules (for σ) such that for each α0 ∈ A there is
one r ∈ R(σ) of the form 〈α0, i0〉 = f(〈α1, i1〉, . . . , 〈αk, ik〉), where either α0 ∈ Asyn and i0 = 0,
or α0 ∈ Ain and 1 ≤ i0 ≤ rank(σ). Furthermore we have k ∈ IN, α1, . . . , αk ∈ Asyn ∪ Ain,
i1, . . . , ik ∈ {0, . . . rank(σ)} such that the 〈αj , ij〉’s are pairwise distinct, and f is a function from
W (α1)× · · · ×W (αk) to W (α0).

R(root) is the set of root rules such that for each σ ∈ Σ and α0 ∈ Ain there is one r ∈ R(σ)
of the form 〈α0, 0〉 = f(〈α1, 0〉, . . . , 〈αk, 0〉), where k ∈ IN, α1, . . . , αk ∈ Asyn ∪ Ain, the αj ’s are
pairwise distinct, and f is a function from W (α1)× · · · ×W (αk) to W (α0).

Consider t ∈ T (Σ). We will identify t with its corresponding labeled tree domain 〈Vt, labt〉 here.4

A(t) = (Asyn ∪Ain)× Vt is the set of attributes of t. R(t) is the set of semantic instructions
of t which is defined as follows: Let u ∈ Vt with labt(u) = σ. If 〈α0, i0〉 = f(〈α1, i1〉, . . . , 〈αk, ik〉)
belongs to R(σ) then 〈α0, ui0〉 = f(〈α1, ui1〉, . . . , 〈αk, uik〉) is in R(t) and called an internal in-
struction (of t). Furthermore, if 〈α0, 0〉 = f(〈α1, 0〉, . . . , 〈αk, 0〉) is in R(root) then 〈α0, root(t)〉 =
f(〈α1, root(t)〉, . . . , 〈αk, root(t)〉) is in R(t) and called a root instruction (of t).

3Since S is a singleton, S∗ can be identified with IN, because up to length each w ∈ S∗ is uniquely specified (cf.
fn. 2).

4Thus, Vt is a unique prefix closed and left closed subset of (IN \ {0})∗, i.e., χ ∈ Vt if χχ′ ∈ Vt, and χi ∈ Vt
if χj ∈ Vt for χ, χ′ ∈ (IN \ {0})∗ and i, j ∈ IN \ {0} with i < j. labt is the labeling function from Vt to Σ which
canonically assigns to each node in Vt an element in Σ by “following bottom-up” the inductive definition of t. For
reasons of consistency we denote the empty string ε ∈ (IN \ {0})∗ by 0 in the context of tree domains.
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The dependency graph (of t) is the pair D(t) = 〈A(t), E〉, where E consists of all edges
〈〈α, u〉, 〈α′, u′〉〉 such that there is a 〈α′, u′〉 = f(〈α1, u1〉, . . . , 〈αk, uk〉) in R(t) with 〈α, u〉 = 〈αi, ui〉
for some 1 ≤ i ≤ k.

The values of the attributes of t are defined via a function dec from A(t) to
⋃

Ω such
that dec(〈α, u〉) ∈ W (α). The function dec is called a decoration (of t) if all semantic in-
structions are satisfied, i.e., for each 〈α0, u0〉 = f(〈α1, u1〉, . . . , 〈αk, uk〉) ∈ R(t), dec(〈α0, u0〉) =
f(dec(〈α1, u1〉), . . . , dec(〈αk, uk〉)) ∈ R(t). Note that, if the corresponding dependency graph of
D(t) is non-circular, t has a unique decoration.

2.3 Basic Logical Definitions

After these algebraic notions, we briefly present those related to monadic second-order (MSO)
logic. MSO logic is the extension of first-order predicate logic with monadic second-order variables
and quantification over them. In particular, we are using MSO logic on trees such that individual
variables x, y, . . . stand for nodes in trees and monadic second-order ones X,Y, . . . for sets of nodes
(for more details see, e.g., Rogers, 1998). It is well-known that MSO logic interpreted on trees
is decidable via a translation to finite-state (tree) automata (Rabin, 1969; Doner, 1970; Thatcher
and Wright, 1968). The decidability proof for MSO on finite trees gives us also a descriptive
complexity result: MSO on finite trees yields only recognizable trees which in turn yield context-
free string languages. These results are of particular interest, since finite trees are clearly relevant
for linguistic purposes, and therefore form the basis for our work.

The following paragraphs go directly back to Courcelle (1997). Recall that the representation
of objects within relational structures makes them available for the use of logical description
languages. Let R be a finite set of relation symbols with the corresponding arity for each r ∈ R

given by ρ(r). A relational structure R = 〈DR, (rR)r∈R〉 consists of the domain DR and the

ρ(r)-ary relations rR ⊆ D
ρ(r)
R . In our case we choose a finite tree as our domain and the relations

of immediate, proper and reflexive dominance and precedence.
The classical technique of interpreting a relational structure within another one forms the basis

for MSO transductions. Intuitively, the output tree is interpreted on the input tree. E.g., suppose
that we want to transduce the input tree t1 into the output tree t2. The nodes of the output tree
t2 will be a subset of the nodes from t1 specified with a unary MSO relation ranging over the
nodes of t1. The daughter relation will be specified with a binary MSO relation with free variables
x and y ranging over the nodes from t1. We will use this concept to transform the lifted trees into
the intended ones.

Definition 2.4. A (non-copying) MSO transduction of a relational structure R (with set of
relation symbols R) into another one Q (with set of relation symbols Q) is defined to be a tuple
(ϕ, ψ, (θq)q∈Q). It consists of the formulas ϕ defining the domain of the transduction in R and ψ
defining the resulting domain of Q and a family of formulas θq defining the new relations q ∈ Q

(using only definable formulas from the “old” structure R).

The result which gives rise to the fact that we can characterize a non-context-free tree set with
two devices which have only regular power is stated in Courcelle (1997). Viewing the relation
of intended dominance defined later by a tree-walking automaton as the cornerstone of an MSO
definable transduction, our description of non-context-free phenomena with two devices with only
regular power is an instance of the theorem that the image of an MSO-definable class of structures
under a definable transduction is not MSO definable in general (Courcelle, 1997).

2.4 Basic Automata-Theoretic Definitions

Tree automata are the result of generalizing the transition function of standard finite-state au-
tomata from (state-alphabet) symbol pairs to tuples of states. Intuitively, bottom-up tree au-
tomata creep up a tree from the leaves to the root by simultaneously taking the states of the
daughters and the alphabet symbol of the mother to make a transition to a new state. Since we
will not give an example of a tree automaton in this paper, we will not specify further details.
More on tree automata can be found in, e.g., Gécseg and Steinby (1984).
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Definition 2.5 (Tree Automaton). A (deterministic) bottom-up tree automaton A is a 5-tuple
〈A,Σ, δ, a0, F 〉 with A the (finite) set of states, Σ a ranked alphabet, a0 ∈ A the initial state,
F ⊆ A the final states and δ :

⋃

n(A
n ×Σn) → A the transition function.

We can extend the transition function inductively to trees by defining hδ(ε) = a0 and
hδ(σ(t1, . . . , tn)) = δ(hδ(t1), . . . , hδ(tn), σ), ti ∈ TΣ , 1 ≤ i ≤ n, σ ∈ Σn. An automaton A accepts
a tree t ∈ TΣ iff hδ(t) ∈ F . The language recognized by A is denoted by T (A) = {t |hδ(t) ∈ F}.

The sets of trees recognized by bottom-up tree automata are called recognizable, i.e., regu-
lar sets of trees, and, as mentioned previously, yield context-free string languages (Gécseg and
Steinby, 1984). The recognizable sets are closed under the boolean operations of conjunction,
disjunction and negation. The automaton constructions which underlie these closure results are
generalizations of the corresponding better-known constructions for finite state automata (FSA).
The recognizable sets are also closed under (inverse) projections, and again the construction is
essentially that for finite state automata. The projection construction yields a nondeterministic
automaton, but, again as for FSA’s, bottom-up tree automata can be made deterministic by a
straightforward generalization of the subset construction.5 Finally, tree automata can be mini-
mized by a construction which is, yet again, a straightforward generalization of well known FSA
techniques.

We need another type of finite-state machine later in the paper: Macro Tree Transducers
(MTTs). Since those are not so well known, we will introduce them via the more accessible
standard top-down tree transducers. These are not so different from the bottom-up tree automata
introduced above. Instead of working from the leaves towards the root, top-down tree transducers
start from the root and work their way downward to the leaves. And, of course, they produce an
output tree along the way. In the following paragraphs we will use the notation and presentation
introduced in Engelfriet and Vogler (1985). Our presentation is also inspired by Engelfriet and
Maneth (2000). A full introduction to tree transductions can be found in Gécseg and Steinby
(1997).

Intuitively, top-down tree transducers transform trees over a ranked alphabet Σ into ones over
a ranked alphabet Ω. They traverse a tree from the root to the leaves (the input tree) and output
on each transition a new tree whose nodes can contain labels from both alphabets, states and
variables. More formally, the RHSs of such a production are trees from TΩ(Σ(X) ∪ Q). For this
definition we assume that Q is a ranked alphabet containing only unary symbols.

Definition 2.6 (Top-Down Tree Transducer). A top-down tree transducer (TDTT) is a a
tuple T = 〈Q,Σ,Ω, q0, P 〉 with states Q, ranked alphabets Σ and Ω (input and output), initial
state q0 and a finite set of productions P of the form

q(σ(x1, . . . , xn)) −→ t

where n ≥ 0, σ ∈ Σn and t ∈ TΩ(Σ(X) ∪Q).

The transition relation (
T

=⇒) is defined as usual. The transduction realized by a top-down tree

transducer T is then defined to be {(t1, t2) ∈ TΣ × TΩ | q0(t1)
T

=⇒
∗

t2}.

Consider as a very simple example the transducer T which maps binary trees whose interior
nodes are labeled with a’s into ternary trees whose interior nodes are labeled with b’s. The leaves
are labeled with p and are transduced into q’s. Furthermore, new leaves labeled c are introduced
at every branching point. Σ consists of one binary symbol a and one constant p, Ω of one ternary
symbol b and two constants q and c. The transducer has only one state q0 and the two productions
below:

q0(a(x1, x2)) −→ b(q0(x1), c, q0(x2))

q0(p) −→ q

Fig. 1 shows one application of the nontrivial rule. The left hand side (LHS) displays the rule in
tree notation whereas the RHS displays an actual transition.

5Note that top-down tree automata do not have this property: deterministic top-down tree automata recognize
a strictly narrower family of tree sets.
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q0

a

x1 x2

−→

b

q0 c q0

x1 x2

β

q0

a

t1 t2

T
=⇒

β

b

q0 c q0

t1 t2

Figure 1: One step of an TDTT derivation

If we have already transduced a subtree β of the input and are in state q0 and currently
working on a node labeled with a with immediate subtrees t1 and t2, then we can rewrite it into
a tree labeled with b whose leftmost and rightmost daughter are in state q0 applied to t1 and t2
respectively and the middle daughter is labeled with the terminal symbol c.

By generalizing the set of states to a ranked alphabet, we can extend the notion of a top-down
tree transducer to a macro tree transducer. This allows to pass parameters—which contain a
limited amount of context information from the part of the input tree we have already seen—into
the RHSs. We formalize these new RHSs as follows:

Definition 2.7. Let Σ and Ω be ranked alphabets and n,m ≥ 0. The set of right hand sides
RHS(Σ,Ω, n,m) over Σ and Ω with n variables and m parameters is the smallest set rhs ⊆
TΣ∪Ω(Xn ∪ Ym) such that

1. Ym ⊆ rhs

2. For ω ∈ Ωk with k ≥ 0 and ϕ1, . . . , ϕk ∈ rhs, ω(ϕ1, . . . , ϕk) ∈ rhs

3. For q ∈ Qk+1 with k ≥ 0, xi ∈ Xn and ϕ1, . . . , ϕk ∈ rhs, q(xi, ϕ1, . . . , ϕk) ∈ rhs

The productions of MTTs contain one piece of “old” information (a symbol from the input
alphabet with the appropriate number of variables) and a number of context parameters.

Definition 2.8 (Macro Tree Transducer). A macro tree transducer (MTT) is a five-tuple
M = 〈Q,Σ,Ω, q0, P 〉 with Q a ranked alphabet of states, ranked alphabets Σ and Ω (input and
output), initial state q0 of rank 1, and a finite set of productions P of the form

q(σ(x1, . . . , xn), y1, . . . , ym) −→ t

where n,m ≥ 0, q ∈ Qm+1, σ ∈ Σn and t ∈ RHS(Σ,Ω, n,m).
The productions p ∈ P of M are used as term rewriting rules in the usual way. The transition

relation of M is denoted by
M
=⇒.

The transduction realized by M is the function {(t1, t2) ∈ TΣ × TΩ | (q0, t1)
M
=⇒

∗

t2}

Generally, a little care has to be taken in the definition of the transition relation with respect
to the occuring parameters yi. Derivations are dependent on the order of tree substitutions.
Inside-out (IO) means that trees from TΩ have to be substituted for the parameters whereas in
Outside-in (OI) derivations a subtree must not be rewritten if it is in some context parameter.
Again, as for context-free tree grammars, neither class of derivations contains the other. Since we
are only dealing with simple MTTs in our approach, all three modes are equivalent and can safely
be ignored.

An MTT is deterministic if for each pair q ∈ Qm+1 and σ ∈ Σn there is at most one rule in P
with q(σ(x1, . . . , xn), y1, . . . , ym) on the LHS.

An MTT is called simple if it is simple in the input (i.e., for every q ∈ Qm+1 and σ ∈ Σn,
each x ∈ Xk occurs exactly once in RHS(Σ,Ω, n,m)) and simple in the parameters (i.e., for
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every q ∈ Qm+1 and σ ∈ Σk, each y ∈ Ym occurs exactly once in RHS(Σ,Ω, n,m)). The MTTs
discussed in the remainder of the paper will all be simple.

Note that if we disregard the input, MTTs turn into context-free tree grammars.
Consider for example the following rule of an MTT M .

q0(a(x1, x2), y1, y2, y3) −→ b(x1, b(q0(y1)), q0(y2), y3, q0(x2))

Analogous to the presentation in Fig. 1, we illustrate the the rule above in Fig. 2 without being
too concerned about the formal details of specifying a full transducer.

q0

a y1 y2 y3

x1 x2

� !

b

x1 b q0 y3 q0

q0 y2 x2

y1

β

q0

a s1 s2 s3

t1 t2

M
=)

β

b

t1 b q0 s3 q0

q0 s2 t2

s1

Figure 2: One step of an MTT derivation

The only difference (apart from a totally different transduction) is that we now have parameters
which appear as trees s1 through s3. Those trees can also be freely used on the RHSs of the MTT
productions.

3 Linguistic Motivation: Verb Raising

The exercise in formal coding we present in this paper is made necessary by the fact that natural
language sports at least some constructions which lead (i) to non-context-free string languages, or
(ii) to at least non-recognizable tree languages (i.e., tree sets which cannot be generated by any
context-free string grammar or regular tree grammar), even though in the latter case the resulting
string languages may formally be context-free.6 Both phenomena show up in the West-Germanic
languages: the verbal complex of Züritüütsch is an example of (i), while (ii) is exhibited—for
different reasons—by the corresponding constructions of Dutch and Standard German (Huybregts,
1976; 1984):

(1) a. weil der Karl die Maria dem Peter den Hans schwimmen lehren helfen läßt
because Charles Mary1 Peter2 John3 swim3-inf teach2-inf help1-inf lets

(German fragment as string language: palindrome language—CF)

b. omdat Karel Marie Piet Jan laat helpen leren zwemmen
because Charles Mary1 Peter2 John3 lets help1-inf teach2-inf swim3-inf

(Dutch fragment as string language: anbn—CF)

c. wil de Karl d’Maria em Peter de Hans laat hälffe lärne schwüme
because Charles Mary1 Peter2 John3 lets help1-inf teach2-inf swim3-inf

(Züritüütsch fragment as string language: anbmcndm—Non-CF)

‘because Charles lets Mary help Peter to teach John to swim’

6Let us note here that it is not the goal of this section to attempt a linguistically relevant discussion of cross-
serial dependencies. All we want to show is that a formalism for natural languages has to handle non-context-free
structures. For a serious introduction of approaches to cross-serial dependencies see Pullum and Gazdar (1982).
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The structure of the preceding example illustrates non-context-free phenomena. On a close
look at, e.g., the Swiss German example, we note that the DP’s and the V’s of which the DP’s
are objects occur in cross-serial order. This is manifested by the case marking of the respective
objects. It appears that there are no limits on the length of such constructions in grammatical
sentences of Swiss German. This fact alone would not suffice to prove that Swiss German is not
a context-free string language. It could still be the case that Swiss German in toto is context-free
even though it subsumes an isolable context-sensitive fragment. Relying on the closure of context-
free languages under intersection with regular languages, Shieber (1985) was able to show that
not only the fragment exhibiting the cross-serial dependencies but the whole of the language has
to be assumed to be non-context-free.7

Abstracting from the details of the particular languages, the standard analyses of these con-
structions involve the following property which is problematic from the point of view of context-
freeness: In all cases they posit roughly a bipartite structure like the one in Fig. 3 with basically
all DP’s on one branch and all the verbs on the other – but with fixed syntactic and semantic
relations between the branches, whether visibly marked (as in Züritüütsch, Standard German) or
not (Dutch).

As is easily seen, there is no context-free device which could directly handle the unbounded
number of non-local dependencies the structural separation of the two “clusters” enforces. There-
fore MSO logic alone cannot be sufficient for linguistic reasons. In order to concentrate on the
relevant details, we will use as an artificial example a grammar generating the non-context-free
copy language ww presented in the following sections to illustrate our proposal.

4 Minimalist Grammars

We first give the definition of a minimalist grammar (MG) along the lines of Stabler (1997).
In order to keep the presentation simple, we omit the cases of strong selection (triggering head
movement), and covert movement. Thus the definition given here comes close to the one given in
Stabler (1999b), where some further restrictions are formulated as to which subtrees of a given tree
may move. In fact, the example MG which will be considered below respects both the definition
in Stabler (1997) as well as that in Stabler (1999b).

Definition 4.1. For a given set (of features), Feat, a five-tuple τ = (Nτ , ⊳
∗
τ ,≺τ , <τ , Labelτ)

fulfilling (E1)–(E3) is called an expression (over Feat).

(E1) (Nτ ,⊳
∗
τ ,≺τ ) is a finite, binary ordered tree (domain). Nτ denotes the non-empty set of nodes.

⊳∗τ and ≺τ denote the usual relations of dominance and precedence defined on a subset of
Nτ × Nτ , respectively. I.e., ⊳∗τ is the reflexive and transitive closure of ⊳τ , the relation of
immediate dominance.8

(E2) <τ⊆ Nτ × Nτ denotes the asymmetric relation of (immediate) projection which holds for
any two siblings in (Nτ ,⊳

∗
τ ,≺τ ), i.e., each node different from the root either (immediately)

projects over its sibling or vice versa.

(E3) The function Labelτ assigns a string from Feat∗ to every leaf of (Nτ ,⊳
∗
τ ,≺τ ), i.e., a leaf-label

is a finite sequence of features from Feat.

The set of all expressions over Feat is denoted by Exp(Feat).

Let Feat be a set of features. Consider τ =(Nτ ,⊳
∗
τ ,≺τ ,<τ ,Labelτ) ∈ Exp(Feat).

7Huybregts (1984) provides a similar argument for Dutch taking into account a particular fragment: in contrast
to Swiss German, Dutch does not show overt case-marking of objects. Huybregts’ argument crucially relies on a
given morphologized—and thus syntactical—difference between animate and inanimate pronominals.

8I.e., χ ⊳τψ iff ψ=χi for some i ∈ IN \ {0}, and χ≺τψ iff χ=ωiχ′ and ψ=ωjψ′ for some ω, χ′, ψ′ ∈ (IN \ {0})∗

and i, j ∈ IN \ {0} with i < j. Recall that Nτ is a unique prefix closed and left closed subset of (IN \ {0})∗ (cf.
fn. 4).
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Figure 3: The structure of Germanic VR
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Each x∈Nτ has a head h(x)∈Nτ , a leaf such that x ⊳∗τ h(x), and such that each y∈Nτ on the
path from x to h(x) with y 6=x projects over its sister. The head of τ is the head of τ ’s root.

A subtree υ of τ is a maximal projection (in τ), if the root of υ is a node x ∈ Nτ such that x
is the root of τ or x’s sister projects over x. The sister of the head of τ is the complement (of τ).
Each maximal projection in τ which is not dominated by the mother of the head of τ is a specifier
(of τ).

τ has feature f ∈ Feat if τ ’s head-label starts with f . τ is simple (a head) if it consists of
exactly one node, otherwise τ is complex (a non-head).

Let rτ be the root of τ . Suppose υ and ϕ ∈ Exp(Feat) to be subtrees of τ with roots rυ and
rϕ, respectively, such that rτ ⊳τ rυ, rϕ. Then we take [<υ, ϕ ] ( [>ϕ, υ ] ) to denote τ in case that
rυ <τ rϕ and rυ ≺τ rϕ (rϕ ≺τ rυ).

Definition 4.2 (Stabler, 1997). A 4-tuple G = 〈Non-Syn, Syn,Lex ,F〉 that obeys (M1)–(M4)
is called a minimalist grammar (MG).

(M1) Non-Syn is a finite set of non-syntactic features partitioned into a set Phon of phonetic
features and a set Sem of semantic features.

(M2) Syn is a finite set of syntactic features partitioned into the sets Base, Select, Licensees and
Licensors such that for each (basic) category x ∈ Base the existence of =x ∈ Select is possible,
and for each -x ∈ Licensees the existence of +X ∈ Licensors is possible. Moreover, the set
Base contains at least the category c.

(M3) Lex is a finite set of expressions over Feat = Non-Syn ∪ Syn such that for each
tree τ = 〈Nτ , ⊳∗τ ,≺τ , <τ , Labelτ〉 ∈ Lex the function Labelτ assigns a string from
Select∗LicensorsεSelect

∗BaseεLicensees
∗Phon∗Sem∗ ⊆ Feat∗ to each leaf in 〈Nτ , ⊳∗τ ,≺τ 〉.

(M4) The set F consists of the structure building functions merge and move as defined in (me)
and (mo), respectively.

(me) The function merge is a partial mapping from Exp(Feat)×Exp(Feat) to Exp(Feat). A pair of
expressions 〈υ, ϕ〉 belongs to Dom(merge) if υ has feature =x and ϕ has category x for some
x ∈ Base.9 Then,

(me.1) merge(υ, ϕ) = [<υ
′, ϕ′ ] if υ is simple and has feature =x,

where υ′ and ϕ′ are expressions resulting from υ and ϕ, respectively, by deleting the feature
the respective head-label starts with.

(me.2) merge(υ, ϕ) = [>ϕ
′, υ′ ] if υ is complex and has feature =x,

where υ′ and ϕ′ are expressions as in case (me.1).

(mo) The functionmove is a partially defined mapping from Exp(Feat) to Exp(Feat). An expression
υ belongs to Dom(move) in case that υ has feature +X ∈ Licensors , and υ has exactly one
subtree ϕ that is a maximal projection and has feature -x ∈ Licensees . Then,

move(υ) = [>ϕ
′, υ′ ] if υ has feature +X

Here υ′ results from υ by deleting the feature +X from υ’s head-label, while the subtree ϕ
is replaced by a single node labeled ε. ϕ′ is the expression resulting from ϕ just by deleting
the licensee feature -x that ϕ’s head-label starts with.

Note that, by (me.1) and (me.2), a simple tree (head) selects another tree as its complement to
the right, whereas a complex tree selects another tree as a specifier to the left.

9For each (partial) mapping f from a set M1 into a set M2 we take Dom(f) to denote the domain of f , the
subset of M1 for which f is defined.
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Example 4.3. Let Gww be the MG with Sem= ∅, Phon= {1, 2}, base= {c, a1, a2, b, c1, c2, d},
select= {=a1,

=a2,
=b, =c1,

=c2,
=d}, Licensors= {+L1, +L2}, Licensees= {-l1, -l2}, while Lex con-

sists of the following 10 simple expressions, where i ∈ {1, 2},10

αi = ai-l1i γi =
=b+L1ci-l1i ζ1 =

=b+L1d

βi =
=aib-l2i δi =

=ci+L2b-l2i ζ2 =
=d+L2c

Then e.g., for i, j ∈ {1, 2}, move(merge(δj ,move(merge(γj ,merge(βi, αi))))) ∈ Exp(Feat).

Let G = (Non-Syn, Syn,Lex ,F) be an MG. Then CL(G) =
⋃

k∈IN CL
k(G) is the closure of Lex

(under the functions in F). For k ∈ IN the sets CLk(G) ⊆ Exp(Feat) are inductively defined by

CL0(G) = Lex

CLk+1(G) = CLk(G)

∪ {merge(υ, ϕ) | (υ, ϕ)∈Dom(merge)∩CLk(G)×CLk(G)}

∪ {move(υ) | υ ∈Dom(move)∩CLk(G)}

Every τ ∈ CL(G) is called an expression in G. Such a τ is complete (in G) if its head-label is in
{c}Phon∗Sem∗ and each other of its leaf-labels is in Phon∗Sem∗. Hence, a complete expression has
category c, and this instance of c is the only instance of a syntactic feature within all leaf-labels.

The (phonetic) yield Y (τ) of an expression τ ∈ Exp(Feat) is the string created by concate-
nating τ ’s leaf-labels “from left to right” and stripping off all non-phonetic features. L(G) =
{Y (τ) | τ ∈ CL(G) with τ is complete} is the (string) language (derivable by G) and is called a
minimalist language.

Example 4.3 (continued) For i ∈ {1, 2} and u ∈ {1, 2}+ the expressions belonging to CL(Gww)
can recursively be defined by

(2a) ωi = merge(βi, αi)

(2b) ϕiu = merge(γi, ωu) (2b’) ηu = merge(ζ1, ωu)

(2c) χiu = move(ϕiu) (2c’) ϑu = move(ηu)

(2d) ψiu = merge(δi, χiu) (2d’) κu = merge(ζ2, ϑu)

(2e) ωiu = move(ψiu) (2e’) ξu = move(κu)

In more detail, we have

(3a) CL1(Gww) \ CL
0(Gww) = {ω1, ω2}

while for k ∈ IN we have

(3b) CL4k+2(Gww) \ CL
4k+1(Gww) = {ϕiu, ηu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(3c) CL4k+3(Gww) \ CL
4k+2(Gww) = {χiu, ϑu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(3d) CL4k+4(Gww) \ CL
4k+3(Gww) = {ψiu, κu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

(3e) CL4k+5(Gww) \ CL
4k+4(Gww) = {ωiu, ξu | i ∈ {1, 2}, u ∈ {1, 2}+ with |u| = k}

The set of complete expressions in Gww is {ξu |u ∈ {1, 2}+}. Each such ξu has the phonetic yield
Y (ξu) = uu, i.e., the string language derivable by Gww is {uu |u ∈ {1, 2}+}.

10Since all lexical entries are heads, we simply represent them by their respective (unique) labels.
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Definition 4.4. For each MG G = 〈Non-Syn, Syn,Lex ,F〉, an expression τ ∈ CL(G) is called
relevant (in G) if it has property (R).

(R) For any -x∈Licensees there is at most one maximal projection τ-x in τ that has feature
-x.11

For any given MG G, we take Rel(G) to be the set of all relevant expressions τ ∈ CL(G). Since
each complete τ ∈ CL(G) has property (R), we have L(G) = {Y (τ) | τ ∈ Rel(G), τ is complete}.

Remark 4.5. For Gww as in Example 4.3 we have Rel(Gww) = CL(Gww).

5 Translating MGs to MCFGs

In Michaelis (1999) an algorithm is given how to transform an arbitrary MG G into a weakly
equivalent MCFG. The core idea is that for Rel(G), i.e., the set of trees appearing as intermediate
steps in converging derivations of G, one can define a finite partition. The equivalence classes
of this partition are formed by sets of trees where the features triggering movement appear in
identical structural positions. Each nonterminal in a corresponding MCFG represents such an
equivalence class, i.e., an infinite set of trees. In this paper we will concentrate on the example
from above, adopting the methods from Michaelis (1999).

Definition 5.1. A multiple context-free grammar (MCFG) is defined as a five-tuple G =
〈VN , VT , VF , P, S〉 with VN , VT , VF and P being a finite set of nonterminals, terminals, linear
basic morphisms and productions, respectively. S ∈ VN is the start symbol. There is a function
d from VN to IN such that d(S) = 1. Each p ∈ P has the form A −→ f(A0, . . . , An−1) for

A,A0, . . . , An−1 ∈ VN and f ∈ F a function from (V ∗
T )

k to (V ∗
T )

d(A) with arity k =
∑n−1
i=0 d(Ai)

(cf. Seki et al. 1991). Recall that basic morphisms are those which use only variables, constants,
concatenation, composition and tupling.

The derivation-relation ⇒G for G is defined as follows: If A −→ f() ∈ P then A⇒G f(), where
f() ∈ (V ∗

T )
d(A) (i.e., f is some constant tuple of terminal strings). If A −→ f(A0, . . . , An−1) ∈ P

and Ai ⇒G ti for some ti ∈ (V ∗
T )

d(Ai) then Ai ⇒G f(t0, . . . , tn−1). The language generated by G
is L(G) = {t ∈ V ∗

T |S ⇒G t}.

Example 4.3 (continued) Let Gww be the MG as given in Example 4.3. In order to define
a weakly equivalent MCFG Gww = 〈VN , VT , VF , P, S〉, we first let Phon = {1, 2} be the set of
terminals VT and proceed by constructing the set of nonterminals VN .

Each nonterminal will either be the start symbol S or a 3-tuple from Syn∗×Syn∗×Syn∗. The
core idea is the following: Consider τ ∈ CL(Gww) \ CL0(Gww). For 1 ≤ i ≤ 2 take, if it exists,
τi to be a subtree of τ that is a maximal projection and has licensee -li.

12 Otherwise, take τi
to be a single node labeled ε. Set τ0 = τ . Let µi be the prefix of τi’s head-label consisting of
just the syntactic features. Then, 〈µ0, µ1, µ2〉 ∈ VN . The productions (and functions) of the
MCFG Gww will be defined in such a way that for each 〈p0, p1, p2〉 ∈ Phon∗ × Phon∗ × Phon∗,
〈µ0, µ1, µ2〉 ⇒Gww

〈p0, p1, p2〉 iff (wc) holds.

(wc) For 0 ≤ i ≤ 2, pi is the phonetic yield of τi except for each substring that is the phonetic
yield of some τj , 1 ≤ j ≤ 3 and i 6= j, being a proper subtree of τi.

Although CL(Gww)\CL0(Gww) is an infinite set, VN is finite. This is due to two reasons emerging
from the definition of merge and move. First, in each τ ∈ CL(Gww) at most 3 different leaves are
present which have syntactic features appearing in their labels.13 Second, for each MG G the set
of all leaf-labels of all τ ∈ CL(G) constitutes a finite set, because a leaf-label is always the suffix

11In fact, this kind of structure is characteristic of each τ ∈ CL(G) involved in creating a complete expression in
G. Recall that move(τ) is defined for τ ∈ CL(G) only in case that there is exactly one maximal subtree of τ that
has a particular licensee feature allowing the subtree’s “movement into specifier position.”

12Recall that Rel(Gww) = CL(Gww). Therefore, such a τi is unique. In order to ensure this in general, we would
have to reduce the closure of an MG G to what is defined as the relevant closure RCL(G) of G in Michaelis (1999).

13Recall again Remark 4.5.
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of some leaf-label of some lexical entry, i.e., a suffix of a finite string, and the lexicon of an MG
is a finite subset of Exp(Non-Syn ∪ Syn). In fact, we have exactly 10 nonterminals different from
the start symbol S, each of which corresponds to an infinite set of expressions from CL(Gww),
namely14

(4a) U = 〈b-l2, -l1,−〉 to {ωi | i ∈ {1, 2}}

(4b) Vi = 〈+L1ci-l1, -l1, -l2〉 to {ϕiu |u ∈ {1, 2}+} , where i ∈ {1, 2}

(4c) Ui = 〈ci-l1,−, -l2〉 to {χiu |u ∈ {1, 2}+} , where i ∈ {1, 2}

(4d) V = 〈+L2b-l2, -l1, -l2〉 to {ψiu |u ∈ {1, 2}+, i ∈ {1, 2}}

(4e) U = 〈b-l2, -l1,−〉 to {ωiu |u ∈ {1, 2}+, i ∈ {1, 2}}

(4b’) W1 = 〈+L1d, -l1, -l2〉 to {ηu |u ∈ {1, 2}+}

(4c’) X1 = 〈d,−, -l2〉 to {ϑu |u ∈ {1, 2}+}

(4d’) W2 = 〈+L2c,−, -l2〉 to {κu |u ∈ {1, 2}+}

(4e’) C = 〈c,−,−〉 to {ξu |u ∈ {1, 2}+}

Thus, the nonterminals different from S introduce a finite partition of CL(Gww) \ CL
0(Gww).

We now define P and F , the sets of productions and functions in Gww, respectively. Each p ∈ P

in a certain way simulates an application of merge and move in Gww, but operates w.r.t. the
equivalence classes of the induced partition, rather than on single expressions. As indicated in the
introduction, we present in this paper only the significantly simpler case of using only MCFG-rules
with one nonterminal on the RHS. Although merge in principle is a binary operation, i.e., would
require two nonterminals, we can in this special case partially evaluate the merge operation. This
becomes possible since we only have “simple merges,” i.e, we always merge a head with some
complex tree, as opposed to merging two complex trees.

Let i ∈ {1, 2}. P consists of 2 terminating rules,

(5a) U → merge〈βi,αi〉()

and 12 nonterminating rules,

(5b) Vi → merge〈γi,ω 〉(U) (5b’) W1 → merge〈ζ1,ω 〉(U)

(5c) Ui → move〈ϕ 〉(Vi) (5c’) X1 → move〈η 〉(W1)

(5d) V → merge〈δi,χ 〉(Ui) (5d’) W2 → merge〈ζ2,ϑ 〉(X1)

(5e) U → move〈ψ 〉(V ) (5e’) C → move〈κ 〉(W2)

(5f’) S → π3
1(C) (the initial rule)

The 9 basic functions in F are defined as follows:

14Here, we write − instead of ε.
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(6a) merge〈βi,αi〉 : ({1, 2}
∗)0 → ({1, 2}∗)3 with 〈 〉 7→ 〈i, i, ǫ〉 for i ∈ {1, 2}

(6b) merge〈γi,ω 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈i, x2, x1〉 for i ∈ {1, 2}

(6c) moveϕ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x2x1, ǫ, x3〉

(6d) merge〈δi,χ 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈i, x1, x3〉 for i ∈ {1, 2}

(6e) moveψ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x3x1, x2, ǫ〉

(6b’) merge〈ζ1,ω 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈ǫ, x2, x1〉

(6c’) moveη : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x2x1, ǫ, x3〉

(6d’) merge〈ζ2,ϑ 〉 : ({1, 2}
∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x1, ǫ, x3〉

(6e’) moveκ : ({1, 2}∗)3 → ({1, 2}∗)3 with 〈x1, x2, x3〉 7→ 〈x3x1, x2, ǫ〉

(6f’) π3
1 : ({1, 2}∗)3 → {1, 2}∗ with 〈x1, x2, x3〉 7→ x1

Note that moveϕ = moveη and moveψ = moveκ . The 3-tuples of terminal strings derivable
from the nonterminals different from S are the following, where i ∈ {1, 2} and u ∈ {1, 2}+,

(7a) U ⇒Gww
〈i, i, ǫ〉

(7b) Vi ⇒Gww
〈i, u, u〉 (7b’) W1 ⇒Gww

〈ǫ, u, u〉

(7c) Ui ⇒Gww
〈ui, ǫ, u〉 (7c’) X1 ⇒Gww

〈u, ǫ, u〉

(7d) V ⇒Gww
〈i, ui, u〉 (7d’) W2 ⇒Gww

〈u, ǫ, u〉

(7e) U ⇒Gww
〈iu, iu, ǫ〉 (7e’) C ⇒Gww

〈uu, ǫ, ǫ〉

Thus, we finally have: (7f’) S ⇒Gww
uu iff u ∈ {1, 2}+.

MCFGs can be interpreted as a restricted type of AGs according to their general definition given
in Sec. 2.2. Intuitively, an AG which corresponds to a given MCFG needs just a single synthesized
attribute for each nonterminal. The attribute evaluation proceeds via a depth-first left-to-right
tree traversal. The semantic domains are the sets of words and tuples of words over the terminal
alphabet of the MCFG. The semantic operations are “simple” functions on these domains, namely
those functions belonging to the MCFG.

Let G = 〈VN , VT , VF , P, S〉 be an MCFG. It is straightforward to formally convert G into
an AG Γ = 〈Σ,Asyn,Ain, Ω,W,R, αmean〉 with empty set of inherited attributes: First, for
d(G) = max{d(A) |A ∈ VN} we define Asyn = {1, . . . , d(G)} and Ω = {(V ∗

T )
i | 1 ≤ i ≤ d(G)}, and

we set αmean = 1.
The function W from Asyn to Ω maps each i to (V ∗

T )
i. Intuitively, each nonterminal A ∈ VN

will be “connected” with exactly one synthesized attribute, namely d(A).
Σ is a many-sorted signature over VN defined in parallel to R as follows: For each production

p = A0 −→ f(A1, . . . , Ak) ∈ P with A0, . . . , An ∈ VN and corresponding f ∈ VF we let σp ∈ Σw,s,
where w = A1 · · ·An and s = A0, and we let rp ∈ R(σp), where rp is of the form

〈α0, 0〉 = f(〈α1, 1〉, · · · , 〈αk, k〉)
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with αi = d(Ai) for 0 ≤ i ≤ k.
Since the corresponding AG is only synthesized, for each t ∈ T (Σ) the dependency graph is

non-circular. Thus, each t ∈ T (Σ) has a unique decoration. The string language generated by the
MCFG G is the set of root-values each of which belonging to some tree in t ∈ T (Σ) of sort S ∈ VN
such that t = σp(t1, . . . , t|w|) for some t1, . . . , t|w| ∈ T (Σ), i.e., σp arises from some p ∈ P whose
LHS is the start symbol S.

Example 4.3 (continued) As far as our example MCFG Gww is concerned, the corresponding
transformation results in the AG Γww = 〈Σ,Asyn,Ain, Ω,W,R, αmean〉 with in particular Asyn =
{1, 2, 3} and Ω = {({1, 2}∗)i | 1 ≤ i ≤ 3}. For i ∈ {1, 2}, Σ and R are defined by

(8a) σ(i)
a ∈ Σε,U and r(i)a ∈ R(σ(i)

a ) of the form 〈3, 0〉 = merge〈βi,αi〉()

(8b) σ
(i)
b ∈ ΣVi,U and r

(i)
b ∈ R(σ

(i)
b ) of the form 〈3, 0〉 = merge〈γi,ω 〉(〈3, 1〉)

(8c) σ(i)
c ∈ ΣUi,Vi

and r(i)c ∈ R(σ(i)
c ) of the form 〈3, 0〉 = move〈ϕ 〉(〈3, 1〉)

(8d) σ
(i)
d ∈ ΣV,Ui

and r
(i)
d ∈ R(σ

(i)
d ) of the form 〈3, 0〉 = merge〈δi,χ 〉(〈3, 1〉)

(8e) σe ∈ ΣU,V and re ∈ R(σe) of the form 〈3, 0〉 = move〈ψ 〉(〈3, 1〉)

(8b’) σ
(i)
b′ ∈ ΣW1,U and r

(i)
b′ ∈ R(σ

(i)
b′ ) of the form 〈3, 0〉 = merge〈ζ1,ω 〉(〈3, 1〉)

(8c’) σc′ ∈ ΣX1,W1 and rc′ ∈ R(σc′) of the form 〈3, 0〉 = move〈η 〉(〈3, 1〉)

(8d’) σd′ ∈ ΣW2,X1 and rd′ ∈ R(σd′) of the form 〈3, 0〉 = merge〈ζ2,ϑ 〉(〈3, 1〉)

(8e’) σe′ ∈ ΣC,W2 and re′ ∈ R(σe′) of the form 〈3, 0〉 = move〈κ 〉(〈3, 1〉)

(8f’) σf ′ ∈ ΣS,C and rf ′ ∈ R(σf ′) of the form 〈1, 0〉 = π3
1(〈3, 1〉)

where the corresponding functions occuring within the semantic rules of Γww are defined as in
(6a)-(6e) and (6b’)-(6f’).

As was mentioned in the introduction, AGs constitute a much more powerful device than
MCFGs. In particular, Duske et al. (1977) contains the result that the inside-out context-free tree
languages are contained in the output of attributed tree transducers. The latter are AGs where
all the attribute values are trees and where the operations in the semantic rules are restricted to
substitution of trees. Context-free tree grammars may be too strong for an adequate characteri-
zation of the complexity of natural languages. But, certain phenomena like the widely discussed
cases of Suffixaufnahme (multiple case-stacking) seem to indicate that natural languages are not
semilinear (cf. Michaelis and Kracht (1997)), and it is well known that the Parikh images of the
family of mildly context-sensitive languages listed in the introduction are semilinear. Inside-out
context-free tree languages in their turn are sufficiently powerful to handle the known cases of
Suffixaufnahme as has been shown in Mönnich (1997).

So, there are basically two reasons why one might want to use AGs instead of MCFGs. But since
we think that the presentation is more perspicuous using MCFGs with a fine-grained analysis via
Lawvere terms and we do not need the additional power of the AGs for our example, we continue
to use the more accessible formulation via MCFGs.
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6 Translating MCFGs to RTGs

In this section we will show how to translate the rules of a given MCFG into an RTG. We start
by giving a formal definition of regular tree grammars.

Definition 6.1. A regular tree grammar (RTG) is a 4-tuple G = 〈Σ, F0, S,P〉, where for some set of
sorts S, Σ = 〈Σw,s |w ∈ S∗, s ∈ S〉 is a many-sorted signature of inoperatives and F0 = 〈Fε,s | s ∈
S〉 a (reduced) many-sorted signature of operatives of rank 0. Moreover,

⋃

(w,s)∈S∗×S Σw,s and
⋃

s∈S Fε,s are finite. S ∈ F0 is the starting symbol and P is a finite set of productions. Each p ∈ P

has the form F −→ t, where F ∈ Fε,s for some s ∈ S and t ∈ T (Σ ∪ F0), i.e., a term (tree) over
Σ ∪ F0, such that t is of sort s.

Let t′, t′′ ∈ T (Σ ∪ F0) and p = F −→ t ∈ P . t′ directly derives t′′ (by the application of p), also
denoted by t′ ⇒G t

′′, if t′ has a leaf-node F and t′′ results from t′ by substituting this node F by
t. Let ⇒∗

G be the reflexive and transitive closure of ⇒G . The tree-language generated by G is the
set LT (G) = {t ∈ T (Σ) |S ⇒∗

G t}.
The yield Y (t) of a t ∈ T (Σ ∪ F0) is the string resulting from concatenating the leaf-nodes of

t “from left to right.” Thus, Y (t) ∈ (
⋃

s∈S Σε,s ∪
⋃

s∈S Fε,s)∗. The string-language generated by
G is the set LY = {Y (t) | t ∈ LT (G)} ⊆ (

⋃

s∈S Σε,s)
∗.

Since RTG-rules always just substitute some tree for a leaf-node, it is easy to see that they
generate recognizable sets of trees, i.e., context-free string languages (Mezei and Wright, 1967).

Now we turn to the actual translation. Each rule of a given MCFG is recursively transformed into a
RTG-rule by coding the implicit operations of projection, tupling and composition as nonterminals
or terminals. This becomes possible simply by viewing the terms appearing in the rules of the
MCFG as elements of a free IN×IN-sorted Lawvere algebra. The resulting RTG then “operates
on” this Lawvere algebra. Recall that we are using a simple example MCFG with maximally one
nonterminal on the RHSs and therefore do not have to build tuples from tuples.

Example 4.3 (continued) As an example, we show how to translate the MCFG Gww given
in Example 4.3 into the weakly equivalent RTG G′

ww. Intuitively, we have to make the implicit
operations which are “hidden” in the standard presentation of the MCFG-rules explicit. Simply
using a tuple, e.g., the pair 〈a, b〉, means that we need an explicit tupling operator ( ) to combine
a and b. In the same spirit, using x0x1 means that the values of the two variables are concatenated
with an implicit concatenation operator. And finally, applying a function to some arguments is
a composition ◦ of the function with its arguments. Note that thereby the function becomes a
constant, i.e., we reify the function. In this sense, a term such as f(a, b) becomes more complex: (f◦
(( )(x1, x2)))◦( )(a, b). Now we have to translate these single-sorted terms into the corresponding
many-sorted Lawvere algebra.

For 1 ≤ i ≤ 3, let π3
i denote the i-th projection which maps a 3-tuple of strings from V ∗

T to
its i-th component, i.e., a 1-tuple. Therefore the corresponding Lawvere arity of π3

1 , π
3
2 and π3

3

is (3, 1). Let • denote the usual binary operation of concatenation defined for strings from V ∗
T ,

i.e., • maps a 2-tuple to a 1-tuple. Thus • is of Lawvere arity (2, 1). Similarly, the corresponding
(Lawvere) arity of S, 1, 2 and ε is (0, 1) and of U, V, C,W1,W2, X1, Ui, Vi (0, 3).

We use the composition symbols c(i,j,k) introduced in Sec. 2.1 for the composition ◦.
Let Gww = 〈VN , VT , VF , P, S〉 be the MCFG successively constructed in the preceeding section.

Applying the translation T : P −→ F0 × T (Σ ∪ F0) given below to the rules of the MCFG Gww
results in the RTG G′

ww= 〈Σ, F0, S(0,1),P〉 with inoperatives Σ= 〈Σw,s |w∈ (IN×IN)∗, s∈ IN×IN〉,
operatives F0 of rank 0, and productions P which (in tree notation) look as given in Fig. 4, where
i ∈ {1, 2}.15 We have Σε,(3,0) = {( )(3,0)}, Σε,(2,1) = {•(2,1)}, Σε,(0,1) = {1(0,1), 2(0,1), ε(0,1)},

15Note that we simplified the presentation of the rules at two points: i(3,1) and ε(3,1) represent trees result-
ing from attributing to the “real” elements of Σε,(0,1) the simplified Lawvere arity (3, 1), i.e., i(3,1) stands for
c(3,0,1)(i(0,1), ( )(3,0)) and ε(3,1) for c(3,0,1)(ε(0,1), ( )(3,0)).
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U(0,3) −→
( )(0,3)

1(0,1) 1(0,1) ε(0,1)

|
( )(0,3)

2(0,1) 2(0,1) ε(0,1)

|

c(0,3,3)

( )(3,3) V(0,3)

c(3,2,1) π
3
2(3,1) ε(3,1)

•(2,1) ( )(3,2)

π3
3(3,1) π3

1(3,1)

Vi(0,3) −→

c(0,3,3)

( )(3,3) U(0,3)

i(3,1) π3
2(3,1) π

3
1(3,1)

X1(0,3) −→

c(0,3,3)

( )(3,3) W1(0,3)

c(3,2,1) ε(3,1) π3
3(3,1)

•(2,1) ( )(3,2)

π3
2(3,1) π3

1(3,1)

Ui(0,3) −→

c(0,3,3)

( )(3,3) Vi(0,3)

c(3,2,1) ε(3,1) π3
3(3,1)

•(2,1) ( )(3,2)

π3
2(3,1) π3

1(3,1)

W2(0,3) −→

c(0,3,3)

( )(3,3) X1(0,3)

π3
1(3,1) ε(3,1) π3

3(3,1)

V(0,3) −→

c(0,3,3)

( )(3,3) Ui(0,3)

i(3,1) π3
1(3,1) π

3
3(3,1)

C(0,3) −→

c(0,3,3)

( )(3,3) W2(0,3)

c(3,2,1) π
3
2(3,1) ε(3,1)

•(2,1) ( )(3,2)

π3
3(3,1) π3

1(3,1)

W1(0,3) −→

c(0,3,3)

( )(3,3) U(0,3)

ε(3,1) π3
2(3,1) π

3
1(3,1)

S(0,1) −→

c(0,3,1)

π3
1(3,1) C(0,3)

Figure 4: The translated example grammar G′
ww
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Σε,(3,1) = {π3
1(3,1), π

3
2 (3,1), π

3
3 (3,1)},

Σ(0,3)(3,3),(0,3) = {c(0,3,3)} Σ(3,1)(3,1),(3,2) = {( )(3,2)}
Σ(0,3)(3,1),(0,1) = {c(0,3,1)} Σ(0,1)(0,1)(0,1),(0,3) = {( )(0,3)}
Σ(3,2)(2,1),(3,1) = {c(3,2,1)} Σ(3,1)(3,1)(3,1),(3,3) = {( )(3,3)}
Σ(3,0)(0,1),(3,1) = {c(3,0,1)}

and F0 = Fε,(0,1) ∪ Fε,(0,3) with Fε,(0,1) = {S(0,1)} and Fε,(0,3) = {U(0,3), Ui(0,3), V(0,3), Vi(0,3),

W1(0,3), W2(0,3), X1(0,3), C(0,3)}.
16

As one can see in Fig. 4, the basic functions have been realized as terms with their respective
implicit operations as nonterminal (composition and tupling) or terminal (projection and empty
tupling) nodes. In the following paragraphs, we sketch the translation T from nonterminal rules of
the example MCFG to RTG-rules. T takes each rule X −→ f(Y ), where X,Y ∈ VN and f ∈ VF ,
of the MCFG including the corresponding definition of the mapping f(x1, . . . , xk) with k ≥ 0 and
transforms it into a RTG-rule as follows. We create a mother node labeled with the appropriate
binary composition c(j,k,l) such that the left daughter contains the “lifted” version of f(x1, . . . , xk)
under T and the right daughter the translation of the nonterminal Y . Both nonterminals X and
Y are used “unchanged”, but annotated with the corresponding Lawvere arity resulting in the
following schematic presentation of the translation: X(j,l) −→ c(j,k,l)(T(f(x1, . . . , xk)), Y(j,k)),
where f is a mapping from k-tuples to l-tuples of terminal strings.

Note that having more than one nonterminal on the RHS of an MCFG-rule leads to an RTG-
rule which requires an additional tupling node above the corresponding nonterminals in the second
argument of the composition. This tupling node has to contain the information how to compose
the tuples resulting from the computation of the nonterminals, e.g., if the tuple is of length four and
dominates two nonterminals, the first nonterminal could contribute one, two or three components
and correspondingly the second nonterminal three, two or one component. Suppose we indicate
this splitting with a superscript. So, there is no unique tupling node of a certain type anymore,
but a family of tupling operators of each type which can be differentiated via their superscripts.
We omit this—in our case trivial—tupling node in the example for better readability.

The easiest case of translating a mapping f ∈ F from our example via T is constituted by the
terminal U -rules (5a). We simply view the mapping as a Lawvere term. The function merge〈βi,αi〉

just returns a triple built from i, i and ε. The corresponding tree has a mother node labeled with
a ternary tupling symbol and the three unary arguments of the mapping as daughters.17 The
nonterminating U-rule (5e) is more complicated: the function move〈ψ 〉 takes three arguments,
concatenates the last and first one in the first argument slot, leaves the second slot untouched
and inserts ε into the last one. The definition of the function can be written explicitly as the
Lawvere term ( )(3,3)(c(3,2,1)(•(2,1), ( )(3,2)(π

3
3(3,1), π

3
1(3,1))), π

3
2(3,1), ε(3,1)). Note again that the im-

plicit binary concatenation • in move〈ψ 〉 now becomes the constant •(2,1). The variables are
simply replaced by the projections and are concatenated. The resulting term is then applied via
composition to the operative V(0,3) such that we get the RHS displayed in the last disjunct of the
U(0,3)-rule in Fig. 4. A comparable procedure is followed with respect to the other MCFG-rules.

Since RTGs can only generate recognizable (tree) languages, we can characterize them with
both MSO logic on trees and tree automata. The tree automaton AG′

ww
is constructed by trans-

forming the grammar into a normal form such that each RHS is of depth one by introducing
auxiliary operatives. Then we can easily construct appropriate transitions by basically reversing
the arrow: the nonterminals become state names and the mother node will be read as alphabet
symbol. It is know from Thomas (1990) how to transform this tree automaton into a Σ1

1-formula
ϕAG′

ww
by encoding its behaviour. In short, assuming an enumeration of A’s states {0, . . . ,m} such

that the initial state is represented by 0, the formula uses sets Xi to label the nodes where the

16For simplicity and readability we will sometimes drop the subscript notion (k,m) from the inoperatives and
operatives of rank 0, and sometimes even from the composition symbol c(k,l,m).

17Note that we do not need to use a further composition symbol dominating T(f) in case there is no nonterminal
on the RHS of the rule of the MCFG.
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automaton assumes state i. The first line of the formula says that we cannot have a node which
is in two states and that X0 is our “initial” set; the second one licenses the distribution of the
sets according to the transitions and says that we need a root node which is in a “final” set. Pa
stands for the predicate labeling a node with the symbol a. For n-ary tree automata the formula
ϕA looks as follows:

(∃X0, . . . , Xm)[
∧

i6=j

(¬∃y)[y ∈ Xi ∧ y ∈ Xj] ∧ (∀x)[(¬∃y)[x ⊳ y] → x ∈ X0] ∧

(∀x1, . . . , xn, y)[
∨

(i1 ,...,in,σ,j)∈α

1≤k≤n

xk ∈ Xik ∧ y ⊳ xk ∧ y ∈ Xj ∧ y ∈ Pσ]
∨

i∈F

(∃x∀y)[x ⊳∗ y ∧ x ∈ Xi]

A more detailed description how to construct both the tree automaton and the corresponding
MSO formula can be found in Kolb et al. (2000).

7 Reconstructing the Intended Trees

Unfortunately, the terminal tree in Fig. 5 generated/recognized by G′
ww given in Fig. 4, does not

seem to have much in common with the structures linguists want to talk about.
However, in some sense to be made operational, the G′

ww structures contain the intended
structures. As mentioned before, there is a mapping h from these explicit structures onto structures
interpreting the c(u,v,w), ( )(v,u) and the πui the way the names we have given them suggest, viz.
as compositions, tuplings and projections, respectively, which are, in fact, exactly the intended
structures.

On the denotational side, we will use an MSO definable tree transduction (as defined in Sec. 2.3)
and operationally we will use a Macro Tree Transducer (see Sec. 2.4) to transform the “lifted”
structures into the intended ones.

7.1 The MSO Transduction

Rogers (1998) has shown the suitability of an MSO description language L2
K,P for linguistics

which is based upon the primitive relations of immediate (⊳), proper (⊳+) and reflexive (⊳∗)
dominance and proper precedence (≺). We will show how to define these relations with an MSO
transduction thereby implementing the unique homomorphism mapping the terms into elements of
the corresponding multiple context-free tree language, i.e., the trees linguists want to talk about.

Put differently, it should be possible to define a set of relations RI = {⊳, ⊳+, ⊳∗,≺, . . . } holding
between the nodes of the explicit or “lifted” trees which carry a “linguistic” label in such a way,
that when interpreting ⊳∗ ∈ RI as a tree order on the set of “linguistic” nodes and ≺ ∈ RI as
the precedence relation on the resulting structure we have a “new” description language on the
intended structures.

We have shown in Michaelis et al. (2000a) how to give an operational account of an MSO
transduction to recover the intended relations via so called tree-walking automata with MSO
tests.18 In this paper, we will present the logical aspect of this transduction without going into
the details of how to generate the relevant formulas. The interested reader is referred to the
reference given above.

We will use transW⊳
(x, y) as the formula denoting immediate dominance (x ⊳ y) on the intended

structures. This formula was constructed recursively from the walking language of a tree-walking
automaton linking the appropriate nodes in the lifted tree. An example of these relations is
displayed graphically in Fig. 5 which contains a rendering of a simple tree generated by the RTG
G′
ww. The intended dominance relation marks the endpoints of these tree walks.
Suppose we want to find the two daughters of the leftmost concatenation symbol (•). What we

have to do is find its sister (a tupling node) and use the daughters of that node as the immediate

18A tree-walking automaton with MSO tests is a finite state automaton which can navigate through a tree by
following simple directives or by testing properties of nodes via MSO formulas. Bloem and Engelfriet (1997) show
that the relations between two nodes recognized by their walks is constructively MSO definable.
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daughters of the concatenation. These are indicated in the figure with the curved arrows. If these
nodes are labeled with a “linguistic” label, we are done, if not we have to find the appropriate
nodes recursively.19 The case of finding the appropriate filler for a node labeled with a projection
symbol is illustrated with the π3

3(3,1)-link where we have to recursively traverse the tree (more on

the details of how to find these can be found in Michaelis et al. (2000a,b); Kolb et al. (2000)). The
resulting immediate dominance links are indicated by the grey lines.

c(0,3,1) Immediate Dominance

π3
1(3,1) c(0,3,3) Intended Dominance

( )(3,3) c(0,3,3) π3
3(3,1)-link

c(3,2,1) π
3
2(3,1) ǫ(3,1) ( )(3,3) c(0,3,3)

( )(3,2) π3
1(3,1) ǫ(3,1) π3

3(3,1) ( )(3,3) c(0,3,3)

π3
3(3,1) π3

1(3,1) c(3,2,1) ǫ(3,1) π3
3(3,1) ( )(3,3) ( )(0,3)

•(2,1) •(2,1) ǫ(3,1)

( )(3,2) π3
2(3,1) π

3
1(3,1) ǫ(0,1)

possible daughters 1(0,1)

π3
2(3,1) π3

1(3,1) 1(0,1)

Figure 5: Intended relations on a lifted structure

Presupposing this definition of immediate dominance, we can define the other relations we
need for the MSO transduction as follows.

For the case of the recursion inherent in reflexive dominance a standard solution exists in MSO
logic on finite trees. It is a well-known fact (e.g., Courcelle 1990) that the reflexive transitive
closure R∗ of a binary relation R on nodes is (weakly) MSO-definable, if R itself is. This is done
via a second-order property which holds of the sets of nodes which are closed under R:

(9) R-closed(X)
def
⇐⇒ (∀x, y)[x ∈ X ∧R(x, y) → y ∈ X ]

Now, for any node n, the intersection of all such sets which contain n is exactly the set of m, such
that R∗(n,m). Since we are dealing with the (necessarily finite) trees generated by a context-free
grammar, this construction can be safely exploited for our purposes; ⊳∗ and ⊳+ can be defined as
follows:

(10)

Reflexive Dominance:

x ⊳∗ y
def
⇐⇒ (∀X)[⊳-closed(X) ∧ x ∈ X → y ∈ X ]

Proper dominance:

x ⊳+ y
def
⇐⇒ x ⊳∗ y ∧ x 6≈ y

19This recursion makes the use of the tree-walking automata imperative since in general MSO relations cannot
be defined recursively.
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Using the defined formula transW⊳
(x, y) for ⊳, the specific MSO transduction we need to trans-

form the “lifted” structures into the intended ones looks as follows:

(11)

(ϕ, ψ, (θq)q∈Q)

Q = {⊳, ⊳∗, ⊳+,≺, . . . }

ϕ ≡ ϕAG′
ww

ψ(x) ≡ (∃y)[x ⊳ y ∨ y ⊳ x]
θ⊳(x, y) ≡ transW⊳

(x, y)
θ⊳∗(x, y) ≡ (∀X)[⊳-closed(X) ∧ x ∈ X → y ∈ X ]
θ⊳+(x, y) ≡ x ⊳∗ y ∨ x 6≈ y

θ≺(x, y) ≡ transW≺
(x, y)

θL∈Labels(x) ≡ L(x)

As desired, the domain of the transduction is characterized by the MSO formula for the “lifted”
trees (see the end of Sec. 6). The domain, i.e., the set of nodes, of the intended tree is characterized
by the formula ψ which identifies the nodes with a “linguistic” label which stand indeed in the
new dominance relation to some other node. Building on it, we define the other primitives of
our description language analogous to the MSO language L2

K,P used to analyze large parts of GB
theory in Rogers (1998). For reasons of space, we have to leave the specification of the precedence
relation transW≺

(x, y) open. It is more complicated than dominance, but can be achieved with
another tree-walking automaton. Finally, the labeling information for the nodes is just taken over
from R.

Note also that while standardly “linguistic” relations like c-command or government would be
defined in terms of dominance, our approach allows the alternative route of taking, in the spirit
of Frank and Vijay-Shanker (1998), c-command as the primitive relation of linguistic structure by
defining, in a similar, though—since Chomsky’s (1985) distinction between segments and categories
has to be accommodated—somewhat more complicated fashion, an automaton Ac-command, which
computes the intended c-command relation directly, without recourse to dominance.

7.2 The Macro Tree Transducer

As stated previously, there is a unique morphism h from the “lifted” terms over the derived alpha-
bet Σ into the terms over the tree substitution algebra. The morphism h is defined inductively as
follows:

h(f ′) = f(x1, . . . , xn) for f ∈ Σw,s, |w| = n

h(πui ) = xi

h(( )(u,v)(t1, . . . , tu)) = (h(t1), . . . , h(tu))

h(c(u,v,w)(t1, t2)) = h(t1)[h(t2)]

(12)

where t[t1, · · · , tk] denotes the result of substituting ti for xi in t for t ∈ T (Σ,Xk), ti ∈ T (Σ,Xm).
20

This unique morphism h can be performed by a simple macro tree transducerM = 〈Q,Σ, VT ∪
{•}, q0, P 〉, where Q = {qu | for all c(u,v,w) ∈ Σ where the leftmost daughter is not a tupling node
} ∪ {qiu | for all c(u,v,w) ∈ Σ where the leftmost daughter is a tupling node ( )(r,s) ∈ Σ, i ∈
{1, . . . , s} } ∪ {qiv | for all ( )(v,u) ∈ Σ, i ∈ {1, . . . , u} },21 q0 is the initial state and P is a finite
family of rules. Recall, that we use only a simple example with just one nonterminal on the RHS
of the MCFG-rules. This simplifies the “lifted” trees as well as the MTT we have to define.

The MTT which we construct to carry out the transformation effected by the unique homo-
morphism h combines in a particularly perspicuous way the actions of a top-down finite tree

20It is immediately obvious how one can translate this recursive definition into a simple Prolog program. But
since we can simulate a Turing machine with Prolog, nothing much is gained on the formal side. In case one
considers implementing the approach, it makes sense to use this simple homomorphism directly.

21Note that this informal motivation for the needed states does not mean that the resulting transitions will refer
to information about particular daughters.
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transducer—based upon the syntactic structure of the “lifted” Lawvere alphabet Σ—and the pro-
duction aspect of the underlying MCFG via its (i.e., the MTT’s) dependence on the local context
(parameters): retrieving the “old” arity out of the new sorted constants of the signature Σ.

How can we construct the necessary productions to recover the intended trees? We take an
intuitive approach to explaining the construction of the needed MTT which is strongly dependent
on inspection of the tree in Fig. 5 and the given homomorphism h.

Before we proceed, we briefly review some notation for the states introduced above. For conve-
nience, the states have both sub- and superscripts. The subscripts convey information about the
number of parameters and the superscripts hint at computations which will return the particular
arguments of a tupling operation. Furthermore, we will also use variables with both super- and
subscripts. In this case, the superscripts indicate the type of the mother node of the tree which
has to be substituted, whereas the subscripts just give us new variables of the same type. This
typing of the variables is strictly speaking not necessary since one can either assume that the input
trees of the MTT have been generated with an appropriate RTG and therefore are well-typed; or,
alternatively, that we could change the definition of the MTT to an MTT with regular lookahead.
Then the lookahead—implemented with a tree automaton—ensures the well-typing of the input.

In general, in the first argument of a rule from P we will have a tree during a transduction. So
in the rules, we have to take care of all symbols which can appear as mothers of (possibly trivial)
trees with the number of variables xi corresponding to their arities in the first argument of any
LHS.

After careful inspection of the tree language generated by the lifted RTG G′
ww, the simplest case

is certainly when we are faced with a constant, i.e., with an element from Σ with rank 0. In this
case all we have to do is to map it back to the corresponding element from VT ∪ {•}, regardless
of the parameters, if there are any. In case we encounter a projection symbol we simply have
to return the corresponding parameter. Obviously, this presupposes that we stored the “right”
information there.

Furthermore, all rules with a constant symbol whose “unlifted” version was not a constant—in
this case only the concatenation symbol •—need as many parameters as are needed to compute
the corresponding function, e.g., • obviously is binary and therefore needs two parameters (see
the third rule in (13)). The resulting rule has, on the RHS, simply the “executed” function.

The more complicated cases involve branching nodes in the tree. Those are labeled with either
a tupling or a composition symbol introduced by the lifting process. Let us turn to the easier case
of tupling first.

We have to construct the rules for nodes labeled with a tupling symbol by inspecting the sort
information in the subscript. Furthermore, the state on the LHS is marked with a superscript
indicating along which branch of the tuple we have to descend, i.e., which argument/daughter of
the tupling node we are currently evaluating. Given a symbol ( )(v,u), we construct a transition
with state qiv of arity v + 1 which has as arguments a term labeled with ( )(v,u) which has an
appropriate number u of daughters xj , and v parameters on the LHS. On the RHS, we start a
“fresh” transducer (state qv) on argument xi of the term and the parameters, therefore qv is also
of arity v + 1.

For the rules headed by a composition symbol c(u,v,w) we need as many parameters on the
LHS as are prescribed by u and as many parameters on the RHS as prescribed by v. This is
due to the fact that while generally the relevant information in the lifted trees is on the leftmost
branch, we nevertheless need the other daughters to be able to unravel the projections. Basically,
we follow a depth-first strategy on the leftmost component of the lifted trees while still passing
the necessary context (i.e., the evaluation of the computation of the other daughters) down into
that computation. Similarly, we also get the necessary states from the arities of the composition
symbols. The rules then simply pass the state and the parameters of the LHS of the rule to the
arguments of the alphabet symbol while continuing to work on the first argument. As an example
consider a fork whose mother is labeled with c(u,v,w). Then we have to construct a rule which has
on the LHS state qu with arity u+1. It has as its first argument a term with functor c(u,v,w) and

two appropriately typed arguments x(v,w) and x(u,v). The other arguments are the parameters y1
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to yu. The RHS has state qv of arity v+1 with the first argument simply being the first daughter of
the composition symbol, i.e., x(v,w), and the other arguments being qi−1

u (x(u,v), y1, . . . , yu), (ilequ),
with the interpretation that we have no parameters if u < 1. Furthermore, we have to supplement
the state on the LHS with superscripts according to the typing information if the leftmost, i.e.,
the head-daughter carries a tupling symbol. More concretely, if the head-daughter of c(u,v,w) is
( )(s,t) we need t transitions with superscripts ranging from 1 to t, i.e., qiu where i ∈ {1, . . . , t}.
And then, if the state on the LHS had a superscript, i.e., we are working on the computation of
a value of an element of a tuple, we simply pass this superscript on to the state on the RHS.

For our concrete example, the set of rules P of the MTT M look as given below:22

q0(c(0,3,1)(x
(3,1)
1 , x

(0,3)
1 )) −→ q3(x

(3,1)
1 , q10(x

(0,3)
1 ), q20(x

(0,3)
1 ), q30(x

(0,3)
1 ))

q0(σ) −→ σ for σ ∈ {1(0,1), 2(0,1), ε(0,1)}

q2(•(2,1), y1, y2) −→ •(2,1) (y1, y2)

q3(Pi, y1, y2, y3) −→ yi for Pi = πi

q3(σ, y1, y2, y3) −→ σ for σ ∈ {1(3,1), 2(3,1), ε(3,1)}

q3(c(3,2,1)(x
(2,1)
1 , x

(3,2)
1 ), y1, y2, y3) −→ q2(x

(2,1)
1 , q13(x

(3,2)
1 , y1, y2, y3),

q23(x
(3,2)
1 , y1, y2, y3))

qi0(c(0,3,3)(x
(3,3)
1 , x

(0,3)
1 )) −→ qi3(x

(3,3)
1 , q10(x

(0,3)
1 ), q20(x

(0,3)
1 ), q30(x

(0,3)
1 ))

for i ∈ {1, 2, 3}

qi0(( )(0,3)(x
(0,1)
1 , x

(0,1)
2 , x

(0,1)
3 )) −→ q0(x

(0,1)
i ) for i ∈ {1, 2, 3}

qi3(( )(3,3)(x
(3,1)
1 , x

(3,1)
2 , x

(3,1)
3 ), y1, y2, y3) −→ q3(x

(3,1)
i , y1, y2, y3) for i ∈ {1, 2, 3}

qi3(( )(3,2)(x
(3,1)
1 , x

(3,1)
2 ), y1, y2, y3) −→ q3(x

(3,1)
i , y1, y2, y3) for i ∈ {1, 2}

(13)

As one can see, the only remaining tree forming symbol which remains on the RHSs is the
concatenation •. So, we are indeed back with our “old” alphabet. The parameters serve just as
memory slots to pass the necessary information for undoing the projections and explicit composi-
tions further down the tree.

Applying this MTT to the tree in Fig. 5 yields a final tree for a derivation of the MCFG
displayed in Example 4.3. Namely the one indicated by the grey lines in Fig. 5. To get the reader
started, let us consider the first rule in (13) beginning the transduction on the root of the tree
displayed in Fig. 5. We start in state q0 and our root is indeed labeled with c(0,3,1). Then we
continue in state q3 with its leftmost daughter and pass as parameter yi the result of computing qi0
of the second daughter (in this case with i ∈ {1, 2, 3}). These transductions have to be computed
separately and yield the input to the “final” projection π3

1 . The rest of the computation leading
to the final result is straightforward, if tedious, and left as an exercise.

8 Conclusion

Taking the result of Michaelis’ translation of MGs as the input we have shown how to define a
RTG by lifting the corresponding MCFG-rules into terms of a free Lawvere theory. This gives us
both a regular (via tree automata and macro tree transducers) and a logical description (via MSO
logic and an MSO definable transduction) of the intended syntactic trees. Equivalently, we provide
both an operational and a denotational account of Stabler’s version of Minimalism without having
to go via derivation trees.

In the wake of the celebrated result of Peters and Ritchie (1973) on the generative strength of
Transformational Grammars a great number of research activities were inspired by the so-called

22Note that the transitions leading to constant symbols of type (3, 1) are artifacts of the simplification we alluded
to in fn. 15. Note furthermore, that the use of more than one nonterminal on the RHS of an MCFG-rule entails,
as outlined in Sec. 6, extra tupling nodes which naturally have to be accommodated by the MTT. In particular, it
has to make use of the additional superscripts to determine the appropriate daughter to find the correct value.
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universal base hypothesis. One version of this hypothesis can be paraphrased as claiming that
there exists a fixed grammar G that plays the rôle of the base component of a Transformational
Grammar of any natural language. Adapting this methodological point to our result it can be
stated as follows: Empirical linguistic phenomena that can be accommodated within the framework
of MGs are amenable to a regular analysis followed by a fixed universal transduction.

Comparing this statement of the result of the paper with the characterization of context-free
graph languages by Engelfriet and van Oostrom (1996), we want to stress the point that our regular
description of MCFG languages does not provide a characterization of this language family in the
technical understanding of an equivalence between MCFG languages and languages defined by a
regular tree language/closed MSO formula and a macro tree transducer/MSO transduction. For
a recent result on the equivalence between regular tree languages followed by an MSO definable
tree transduction and the tree languages generated by context-free graph grammars see Engelfriet
and Maneth (1999).
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and Stephan Kepser for helpful discussions.

References

Bloem, R. and Engelfriet, J. (1997). Characterization of properties and relations defined in
Monadic Second Order logic on the nodes of trees. Technical Report 97-03, Dept. of Com-
puter Science, Leiden University.

Bloem, R. and Engelfriet, J. (1998). A comparison of tree transductions defined by monadic second
order logic and by attribute grammars. Technical Report 98-02, Leiden University Technical
Report.

Chomsky, N. (1985). Barriers. MIT Press, Cambridge, MA.

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In van Leeuwen, J.,
editor, Handbook of Theoretical Computer Science, volume B, pages 193–242. Elsevier.

Courcelle, B. (1997). The expression of graph properties and graph transformations in monadic
second-order logic. In Rozenberg, G., editor, Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. I: Foundations, chapter 5, pages 313–400. World Scientific.

Doner, J. E. (1970). Tree acceptors and some of their applications. J. Comput. System Sci.,
4:406–451.

Duske, J., Parchmann, R., Sedello, M., and Specht, J. (1977). IO-macrolanguages and attributed
translations. Information and Control, 35(2):87–105.

Engelfriet, J. (1997). Context-free graph grammars. In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages. Vol. III: Beyond Words, chapter 3, pages 125–213. Springer.

Engelfriet, J. and Maneth, S. (1999). Macro tree transducers, attribute grammars, and MSO
definable tree translations. Information and Computation, 154:34–91.

Engelfriet, J. and Maneth, S. (2000). Tree languages generated by context-free graph grammars. In
H. Ehrig, G. Engels, H.-J. K. and Rozenberg, G., editors, Proceedings of Theory and Applications
of Graph Transformations - TAGT’98, number 1764 in LNCS, pages 15–29.

Engelfriet, J. and van Oostrom, V. (1996). Regular description of context-free graph languages.
Journal Comp. & Syst. Sci., 53(3):556–574.

TCL Draft: teinach-a8.tex; 14/08/2000; 16:10; p.25



Engelfriet, J. and Vogler, H. (1985). Macro tree transducers. Journal of Computer and System
Sciences, 31(1):71–146.

Frank, R. and Vijay-Shanker, K. (1998). Primitive c-command. Ms., Johns Hopkins University &
Universtiy of Delaware.
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Gécseg, F. and Steinby, M. (1997). Tree languages. In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages: Beyond Words, volume 3, Berlin. Springer.

Huybregts, M. A. C. (1976). Overlapping dependencies in dutch. Utrecht Working Papers in
Linguistics, 1:24–65.

Huybregts, M. A. C. (1984). The weak adequacy of context-free phrase structure grammar. In
de Haan, G. J., Trommelen, M., and Zonneveld, W., editors, Van periferie naar kern, pages
81–99. Foris, Dordrecht.
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Mönnich, U. (1998). TAGs M-constructed. In TAG+ 4th Workshop, Philadelphia.

Peters, P. S. and Ritchie, R. W. (1973). On the generative power of transformational grammars.
Information Sciences, 6:49–83.

Pullum, G. and Gazdar, G. (1982). Natural languages and context-free languages. Linguistics and
Philosophy, 4(4):471–504.

Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite trees. Trans-
actions of the American Mathematical Society, 141:1–35.

Rambow, O. and Satta, G. (1999). Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science, 223(1–2):87–120.

TCL Draft: teinach-a8.tex; 14/08/2000; 16:10; p.26



Rogers, J. (1998). A Descriptive Approach to Language-Theoretic Complexity. Studies in Logic,
Language, and Information. CSLI Publications and FoLLI.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics &
Philosophy, 8(3):333–344.

Stabler, E. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Computa-
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