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Two Type 0-Variants of Minimalist

Grammars

Gregory M. Kobele and Jens Michaelis

Abstract
Minimalist grammars (Stabler 1997) capture some essential ideas about

the basic operations of sentence construction in the Chomskyian syntactic
tradition. Their affinity with the unformalized theories of working linguists
makes it easier to implement and thereby to better understand the operations
appealed to in neatly accounting for some of the regularities perceived in
language. Here we characterize the expressive power of two, apparently quite
different, variations on the basic minimalist grammar framework, gotten by:

1. adding a mechanism of ‘feature percolation’ (Kobele, forthcoming), or
2. instead of adding a central constraint on movement (the ‘specifier island

condition’, Stabler 1999), using it to replace another one (the ‘shortest
move condition’, Stabler 1997, 1999) (Gärtner and Michaelis 2005).

We demonstrate that both variants have equal, unbounded, computing power
by showing how each can simulate straightforwardly a 2-counter automaton.

Keywords minimalist grammars, 2-counter automata, local-
ity conditions, feature percolation

8.1 Introduction

Recently, two variants of the minimalist grammar (MG) formalism in-
troduced in Stabler 1997 have been discussed w.r.t. the issue of gener-
ative capacity (see Gärtner and Michaelis 2005 and Kobele, forthcom-
ing).

Seen from a linguistic perspective, the motivation for studying the
two variants arose from two rather different starting points: Kobele
(forthcoming), attempting to provide a formalization of mechanisms
used to account for pied-piping (Ross 1967), considers MGs endowed
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with feature percolation from specifiers to (attracting) heads. Gärtner
and Michaelis (2005), as part of a larger project to better understand
the effects of constraint interaction in minimalist syntax, study the
behaviour of the specifier island constraint (SPIC) in isolation from
Stabler’s original shortest move constraint (SMC).

What both variants have in common formally is that, in contrast to
the original MG-type, they allow the generation of non-mildly context-
sensitive languages: Kobele (forthcoming) shows how an arbitrary (in-
finite) abacus (Lambek 1961) can be simulated by an MG+perc, an MG
enriched with the corresponding mechanism of feature percolation. As
a corollary he shows how any arbitrary recursively enumerable subset
of the natural numbers can be derived as the string language of an
MG+perc. Thus, by means of an “MG-external” encoding (i.e. a com-
putable, bijective function fΣ : IN→ Σ∗ for any finite set Σ),1 MG+percs
can be seen as deriving the class of all type 0-languages over arbitrary
finite alphabets. However, the question of how to define an MG+perc

which directly derives an arbitrary type 0-language is left open.
Gärtner and Michaelis (2005) show that there is an MG-SMC,+SPIC,

an MG respecting the SPIC but not the SMC, which derives a non-
semilinear string language, and they conjecture that each type 0-
language is derivable by some MG-SMC,+SPIC.

In this paper we prove the full Turing power of MG-SMC,+SPICs as
well as MG+percs, showing that for each 2-counter automaton there is
an MG-SMC,+SPIC as well as an MG+perc which both generate exactly
the language accepted by the automaton. In fact, our construction of a
corresponding MG+perc is fully general, holding for all variants of the
feature percolation mechanism proposed in Kobele, forthcoming.

8.2 2-Counter Automata

Definition 13 A 2-counter automaton (2-CA) is given by a 7-tuple
M = 〈Q,Σ, {1,2}, δ, {#1, #2}, q0, Qf 〉, where Q and Σ are the finite
sets of states and input symbols, respectively. For i ∈ {1, 2}, i is the
i-th counter symbol, and #i is the i-th end of stack symbol. q0 ∈ Q is the
initial state, Qf ⊆ Q is the set of final states, δ is the transition function
from Q×Σǫ×{1, #1}×{2, #2} to Pfin (Q× 1∗ × 2∗).2 An instantaneous
configuration is a 4-tuple from Q× IN× IN× Σ∗. For a ∈ Σǫ we write
〈q, n1, n2, aw〉⊢M 〈q

′, n′1, n
′
2, w〉 just in case 〈q′, γ1, γ2〉 ∈ δ(〈q, a, g1, g2〉),

1Throughout, we take IN to denote the set of natural numbers, including 0. For
every set X, X∗ is the Kleene closure of X, including ǫ, the empty string.

2For each set X, Xǫ denotes the set X ∪ {ǫ}. Pfin(X) is the set of all finite
subsets of X. For a singleton set {x}, we often write x, if this does not cause
misunderstandings. Thus, x∗ denotes {x}∗ under this convention.
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where gi = #i iff ni = 0, and n′i = |γi| + (ni −· 1).3 ⊢∗
M

is the reflexive-
transitive closure of ⊢

M
. The language determined by M , L(M), is the

set {w | 〈q0, 0, 0, w〉 ⊢
∗

M
〈q, 0, 0, ǫ〉 for some q ∈ Qf}.

It is known (cf. Hopcroft and Ullman 1979) that the class of languages
determined by 2-CAs is exactly the class of type 0-languages.

8.3 Minimalist Grammars and Variations

It will be useful to explicitly mark the “outer complement line” and
the corresponding specifiers of a minimalist expression. To do this we
extend the notation from Stabler and Keenan 2003, introduced there
in order to reduce the presentation of minimalist expressions to “the
bare essentials.” Throughout we let Σ and Syn be disjoint sets, a finite
set of non-syntactic features, the (terminal) alphabet, and a finite set of
syntactic features, respectively, in accordance with (F1) and (F2). We
take Feat to be the set Σ ∪ Syn. Furthermore, we let ::, :, comp, spec
and − be pairwise distinct new symbols, where, in particular, :: and :
serve to denote lexical and derived types, respectively.

(F1) Syn is partitioned into five sets:4

Base
Select = { =x | x ∈ Base }
Licensees = { -x | x ∈ Base }
Licensors = { +x | x ∈ Base }
P-Licensors = { +x̂ | x ∈ Base }

a set of (basic) categories
a set of selectors
a set of licensees
a set of licensors
a set of p-licensors

(F2) Base includes at least the category c.

Definition 14 An element of Σ∗ ×{::, :}× Syn∗ ×{comp, spec,−} is
a chain (over Feat). Chains denotes the set of all chains over Feat .

An element of Chains∗\{ǫ} is an expression (over Feat). Exp denotes
the set of all expressions over Feat .

For given φ ∈ Syn∗, ·α ∈ {::, :}, and z ∈ {comp, spec,−}, the chain
〈s, ·α, φ, z〉 is usually denoted as 〈s ·αφ, z〉, and is said to display (open)
feature f if φ = fχ for some f ∈ Syn and χ ∈ Syn∗.

A classical MG in the sense of Stabler 1997 employs the functions merge
and move, creating minimalist expressions from a finite lexicon Lex.
The corresponding definitions are explicitly given w.r.t. trees, as in Sta-
bler 1999 too. There a revised MG-type is introduced, obeying, besides
the shortest move condition (SMC), a particular implementation of the
specifier island condition (SPIC): to be movable, a constituent must

3For each set M and each w ∈M∗, |w| denotes the length of w. For all x, y ∈ IN,
x−· y is defined by x−· y = x− y if x > y, and by x−· y = 0 otherwise.

4Elements from Syn will usually be typeset in typewriter font.
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belong to the transitive complement closure of a given tree, or be a
specifier of such a constituent.5 The SPIC crucially implies that mov-
ing or merging a constituent α into a specifier position blocks checking
(by later movement) of any licensee feature displayed by some proper
subconstituent of α. Thus in order to avoid “crashing” derivations, only
the lowest embedded complement within the complement closure dis-
playing some licensee can move, and then only if it contains no specifier
with an unchecked feature.6

The minimalist grammar (MG) types to be introduced below dif-
fer essentially in the definitions of their structure building functions.
Accordingly, we first introduce those. We let s, t ∈ Σ∗, ·α, ·β ∈ {::, :},
f ∈ Base, φ, χ ∈ Syn∗, z ∈ {comp, spec,−}, and α1, . . . , αk, β1, . . . ,
βl ∈ Chains for some k, l ∈ IN such that ·α =:: implies k = 0,
and we let i ∈ IN with i ≤ k. Also, relevant in (mo-fp⊗), we let
ψ ∈ (Syn \ Licensees)∗, and φ′, χ′ ∈ Licensees∗, and assume ⊗ to
be some linear, non-deleting function from Syn∗ × Syn∗ to Syn∗, i.e.,
⊗ neither deletes material nor inserts material not in its arguments.

(me) merge maps partially from Exp ×Exp to Exp such that the pair
〈α̂, β̂〉 built from the expressions α̂ = 〈〈s ·α =fφ,−〉, α1, . . . , αk〉

and β̂ = 〈〈t ·β fχ,−〉, β1, . . . , βl〉, belongs to Dom(merge),7 and
the value merge(α̂, β̂) is defined as

(me.1) 〈〈st : φ,−〉, β1, . . . , βl〉 if ·α =:: and χ = ǫ

(me.2) 〈〈s : φ,−〉, 〈t · χ, comp〉, β1, . . . , βl〉 if ·α =:: and χ 6= ǫ

(me.3) 〈〈ts : φ,−〉, β1, . . . , βl, α1, . . . , αk〉 if ·α =: and χ = ǫ

(me.4) 〈〈s : φ,−〉, 〈t · χ, spec〉, β1, . . . , βl, α1, . . . , αk〉 otherwise8

(me+SPIC) The partial mapping merge+SPIC from Exp × Exp to Exp

is defined such that the pair 〈α̂, β̂〉 built from the expressions
α̂ = 〈〈s ·α =fφ,−〉, α1, . . . , αk〉 and β̂ = 〈〈t ·β fχ,−〉, β1, . . . , βl〉,
belongs to Dom(merge) iff the specifier island condition on
merger as expressed in (SPIC.me) is satisfied, in which case
merge+SPIC(α̂, β̂) = merge(α̂, β̂). The specifier island condition on

5It can be shown that, in terms of derivable string languages, this revised type
defines a proper subclass of the original type (Michaelis 2005). That is to say, adding
the SPIC to the SMC, in fact, reduces the weak generative capacity of the formalism.

6Note that, in (me.2), respectively (me.4) and (mo-SMC) below, a constituent
displaying a further unchecked feature after merge or move has been applied, gets
marked as complement or specifier, respectively.

7For a partial function f from a set A into a set B, Dom(f) is the domain of f ,
i.e., the set of all x ∈ A for which f(x) is defined.

8Recall that by assumption, ·α =:: implies k = 0.
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merger in effect enforces a constraint against proper left branch
extraction, disallowing movement from inside a specifier (a left
branch), by prohibiting the merger of specifiers which contain
proper subconstituents potentially moving in a later derivation
step:

If ·α =: then l = 0. (SPIC.me)

(mo-SMC) move-SMC is a partial mapping from Exp to Pfin(Exp) such
that α̂ = 〈〈s ·α +fφ,−〉, α1, . . . , αi−1, 〈t ·β -fχ, z〉, αi+1, . . . , αk〉
belongs to Dom(move), and the value move-SMC(α̂) includes

(mo-SMC.1) 〈〈ts : φ,−〉, α1, . . . , αi−1, αi+1, . . . , αk〉 if χ = ǫ

(mo-SMC.2) 〈〈s : φ,−〉, 〈t : χ, spec〉, α1, . . . , αi−1, αi+1, . . . , αk〉 if χ 6= ǫ

(mo-SMC,+SPIC) move-SMC,+SPIC maps partially from Exp to Pfin(Exp)
with α̂ = 〈〈s ·α +fφ,−〉, α1, . . . , αi−1, 〈t ·β -fχ, z〉, αi+1, . . . , αk〉
belonging to Dom(move-SMC,+SPIC) iff the specifier island condi-
tion on movement as expressed in (SPIC.mo) is satisfied, and
then move-SMC,+SPIC(α̂) = move-SMC(α̂). In conjunction with
(SPIC.me), which ensures that the only way z can be comp is
if it was introduced by (me.2), the specifier island condition on
movement requires that all chains internal to the subtree whose
root is the chain in question have themselves moved out before it
is permitted to move.

If z = comp then i = k. (SPIC.mo)

(mo) move is a partial mapping from Exp to Pfin(Exp) such that
α̂ = 〈〈s ·α +fφ,−〉, α1, . . . , αi−1, 〈t ·β -fχ, z〉, αi+1, . . . , αk〉 be-
longs to Dom(move) iff the shortest move constraint as expressed
in (SMC) holds, in which case move(α̂) = move-SMC(α̂). The
shortest move constraint disallows ‘competition’ for the same
position—where there is competition, there is a loser, and thus
something that will move farther then it had to.

None of the chains α1, . . . , αi−1, αi+1, . . . , αk displays -f.
(SMC)

(mo-fp⊗) move-fp⊗ is a partial mapping from Exp to Pfin(Exp) with
α̂⊗ = 〈〈s : +f̂ψφ′,−〉, α1, . . . , αi−1, 〈t : -fχ′, z〉, αi+1, . . . , αk〉 be-
longing to Dom(move-fp-SMC

⊗ ) iff (SMC) is satisfied, and with
move-fp⊗(α̂) including the expression
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(—) 〈〈ts : ψ(φ′ ⊗ χ′),−〉, α1, . . . , αi−1, αi+1, . . . , αk〉.9

(mo+perc) move+perc
⊗ is the partial mapping from Exp to Pfin(Exp)

which results from the union of move and move-fp⊗.

In the following, Lex denotes a lexicon (over Feat), i.e., Lex is a finite
set of simple expressions of lexical type, more concretely, a finite subset
of Σ× {::} × Syn∗ × {−}.

Definition 15 (Gärtner and Michaelis 2005) An MG without
SMC, but obeying the SPIC (MG-SMC,+SPIC) is a tuple 〈Σ,Syn, {::, :
},Lex ,Ω, c〉 with Ω being the set {merge+SPIC,move-SMC,+SPIC}.

Definition 16 (Kobele, forthcoming) For a linear, non-deleting
mapping⊗ from Syn∗×Syn∗ to Syn∗, a 6-tuple 〈Σ,Syn, {::, :},Lex ,Ω, c〉
is called an MG with percolation from specifiers to heads (MG+perc) if
Ω = {merge,move+perc

⊗ }.

For G = 〈Σ,Syn, {::, :},Lex ,Ω, c〉, an MG-SMC,+SPIC, or MG+perc, the
closure of G, CL(G), is the set

⋃
k∈IN CLk(G), where CL0(G) = Lex ,

and for k ∈ IN, CLk+1(G) ⊆ Exp is recursively defined as

CLk(G) ∪ {merge′(υ, φ) | 〈υ, φ〉 ∈ Dom(merge′) ∩CLk(G)×CLk(G)}

∪
[

υ∈Dom(move′)∩CLk(G)
move ′(υ)

with merge ′ = merge+SPIC if G is an MG-SMC,+SPIC, and merge ′ = merge
otherwise, and with move ′ ∈ Ω\{merge ′}. The (string) language deriv-
able by G, L(G), is the set {s ∈ Σ∗ | 〈s · c,−〉 ∈ CL(G) for · ∈ {::, :}}.

8.4 Simulating a 2-Counter Automata

LetM = 〈Q,Σ, {1,2}, δ, {#1, #2}, q0, Qf 〉 be a 2-CA. In constructing an
MG-SMC,+SPIC, G1, and an MG+perc, G2, with L(G1) = L(G2) = L(M),
we take #Σ, 1 and 2 to be new, pairwise distinct symbols:

Base = {c, #Σ} ∪ {q | q ∈ Q} ∪ {1, 2}

∪ { 0qajkrγ1γ2
, 1(h)

qajkrγ1γ2
, 2(i)

qajkrγ1γ2
|

q, r ∈ Q , a ∈ Σǫ , j ∈ {1, #1} , k ∈ {2, #2} , γ1 ∈ 1∗ , γ2 ∈ 2∗

with 〈r, γ1, γ2〉 ∈ δ(〈q, a, j, k〉) , 0 ≤ h ≤ |γ1| , 0 ≤ i ≤ |γ2| }

For q, r ∈ Q, a ∈ Σǫ, j ∈ {1, #1}, k ∈ {2, #2}, γ1 ∈ 1∗, γ2 ∈ 2∗ such
that 〈r, γ1, γ2〉 ∈ δ(〈q, a, j, k〉), the categories 1

(|γ1|)

qajkrγ1γ2
and 2

(|γ2|)

qajkrγ1γ2

are likewise denoted by 1qajkrγ1γ2
and 2qajkrγ1γ2

, respectively.

9Note that move(bα) and move-fp⊗(bα), in (mo) and (mo-fp) respectively, both
are singleton sets because of (SMC). Thus, these functions can easily be identified
with one from Exp to Exp.
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An MG-SMC,+SPIC-expression which represents an instantaneous con-
figuration 〈q, n1, n2, t〉, derived from an initial configuration 〈q0, 0, 0, st〉
in a 2-CA will have the following shape:

(∗1) 〈 〈ǫ : q,−〉, 〈ǫ : -2, comp〉, . . .︸ ︷︷ ︸
n2 times

, 〈ǫ : -1, comp〉, . . .︸ ︷︷ ︸
n1 times

, 〈s : -#Σ, comp〉 〉

Construction 1 G1 = 〈Σ,Syn, {::, :},Lex 1,Ω, c〉 is the MG-SMC,+SPIC

with L(G1) = L(M) such that Lex1 contains exactly the items:

φ0 = 〈 ǫ :: q0-#Σ , −〉

For all q, r ∈ Q, a ∈ Σǫ, j ∈ {1, #1}, k ∈ {2, #2}, γ1 ∈
1∗, γ2 ∈ 2∗ such that 〈r, γ1, γ2〉 ∈ δ(〈q, a, j, k〉)

χqajkrγ1γ2
= 〈 a :: =q +#Σ 0qajkrγ1γ2

-#Σ , −〉

If j = #1 then
α0

qajkrγ1γ2
= 〈ǫ :: =0qajkrγ1γ2

1
(0)

qajkrγ1γ2
, −〉

else
α0′

qajkrγ1γ2
= 〈ǫ :: =0qajkrγ1γ2

+1 1
(0)

qajkrγ1γ2
, −〉

For 0 ≤ h < |γ1|

α
h+1

qajkrγ1γ2
= 〈ǫ :: =1(h)

qajkrγ1γ2
1

(h+1)

qajkrγ1γ2
-1 , −〉

α∼
qajkrγ1γ2

= 〈ǫ :: =1qajkrγ1γ2
+1 1qajkrγ1γ2

-1 , −〉

If k = #2 then
β0

qajkrγ1γ2
= 〈 ǫ :: =1qajkrγ1γ2

2
(0)

qajkrγ1γ2
, −〉

else
β0′

qajkrγ1γ2
= 〈 ǫ :: =1qajkrγ1γ2

+2 2
(0)

qajkrγ1γ2
, −〉

For 0 ≤ i < |γ2|

β
i+1

qajkrγ1γ2
= 〈ǫ :: =2(i)

qajkrγ1γ2
2

(i+1)

qajkrγ1γ2
-2 , −〉

β∼
qajkrγ1γ2

= 〈ǫ :: =2qajkrγ1γ2
+2 2qajkrγ1γ2

-2 , −〉

ψqajkrγ1γ2
= 〈 ǫ :: =2qajkrγ1γ2

r , −〉

For each q ∈ Qf ,
φq = 〈 ǫ :: =q +#Σ c , −〉

Each derivation necessarily starts with φ0 being selected, either by φq0

in case q0 ∈ Qf , or by χq0ajkrγ1γ2
for some r ∈ Q, a ∈ Σǫ, j ∈ {1, #1},

k ∈ {2, #2}, γ1 ∈ 1∗ and γ2 ∈ 2∗. Generally, when an expression is se-
lected by a lexical item of the form χqajkrγ1γ2

for some q, r ∈ Q, a ∈ Σǫ,
j ∈ {1, #1}, k ∈ {2, #2}, γ1 ∈ 1∗ and γ2 ∈ 2∗, G1 begins simulating the
CA’s application of δ to 〈q, a, j, k〉 with outcome 〈r, γ1, γ2〉 w.r.t. some
matching instantaneous configuration: the currently recognized a from
the input tape is introduced, and afterwards the already recognized pre-
fix (being the alphabetic string of the last chain within the currently
derived expression displaying -#Σ, cf. (∗1)) is moved to the left of a.
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This creates an expression whose first chain displays 0qajkrγ1γ2
. De-

pending on j, this expression is selected either by α0
qajkrγ1γ2

, which does
not consume an instance of 1 from the 1st CA-counter, or α0′

qajkrγ1γ2
,

which does by applying move-SMC,+SPIC in the next step. The result-
ing expression is selected successively by αh+1

qajkrγ1γ2
for 0 ≤ h < |γ1|,

each time introducing a new complement displaying -1, and finally
creating an expression whose first chain displays 1qajkrγ1γ2

. Thus, the
correct number of new instances of 1 on the 1st CA-counter are in-
troduced. Now, all the lower complements in the complement closure,
which display -1 (and which were created in an earlier cycle simulating
another application of δ) are cycled through to the top of the expres-
sion, first merging with α∼qajkrγ1γ2

, then applying move-SMC,+SPIC. This
ends in a configuration in which all chains displaying -1 are consecutive
components within the expression derived, immediately following the
first chain which still displays 1qajkrγ1γ2

. Analogously, proceeding from
here by means of the items β0′

qajkrγ1γ2
, βi

qajkrγ1γ2
for 0 ≤ i ≤ |γ2|, and

β∼qajkrγ1γ2
, the operation of the 2nd CA-counter is simulated. Merging

with ψqajkrγ1γ2
, this procedure results in an expression, the first chain

of which displays category r (which corresponds to the CA being in
state r), first followed by the “true” number of consecutive chains dis-
playing -2, then by the “true” number of consecutive chains displaying
-1, and finally by a chain which displays -#Σ, and contains as alpha-
betic material the prefix of the CA-input string recognized so far by
the 2-CA simulated. Relying on this, and recalling that, in particular,
(SPIC.mo) holds, it is rather easy to verify that a derivation ends in
a single-chain expression of the form 〈s · c,−〉 for some s ∈ Σ∗ and
· ∈ {::, :} if, and only if s ∈ L(M).

Constructing the MG+perc G2 (and arguing that it does its job) works
much the same as for the MG-SMC,+SPIC G1, and turns out to be even
somewhat more straightforward, since both the “α-” and “β-part” can
be reduced to just two alternative chains. This is due to the fact that
we can simulate the correct behavior of the i-th CA-counter, i = 1, 2,
in terms of feature percolation: all i-instances currently belonging to
the i-th counter appear as one string of -i-instances within one chain
representing the counter. Because of this, each CA transition is simu-
lated by just four applications of merge, and up to three applications
of move+perc

⊗ —one application of move+perc
⊗ is to properly order the

previously parsed word with the currently scanned symbol, and each
of the other two are to attract the chain with the appropriate licensee
features for percolation (and thus happen only when such chains exist,
cf. next paragraph including (∗2) and footnote 10).
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An MG+perc-expression representing an instantaneous configuration
〈q, n1, n2, t〉, derived from an initial configuration 〈q0, 0, 0, st〉 in a 2-CA
looks like the following, where (-i)n, i = 1, 2, is the string consisting
of n instances of -i:10

(∗2) 〈 〈ǫ : q,−〉, 〈ǫ : (-2)n2 , comp〉, 〈ǫ : (-1)n1 , comp〉, 〈s : -#Σ, comp〉 〉

Construction 2 Let G2 = 〈Σ,Syn, {::, :},Lex 2,Ω, c〉 be the MG+perc

with L(G2) = L(M) such that Lex2 contains exactly the items below:

φ0 = 〈 ǫ :: q0-#Σ , −〉

For all q, r ∈ Q, a ∈ Σǫ, j ∈ {1, #1}, k ∈ {2, #2}, γ1 ∈ 1∗, γ2 ∈
2∗

such that 〈r, γ1, γ2〉 ∈ δ(〈q, a, j, k〉)

χqajkrγ1γ2
= 〈 a :: =q +#Σ 0qajkrγ1γ2

-#Σ , −〉

If j = #1 then
αqajkrγ1γ2

= 〈ǫ :: =0qajkrγ1γ2
1qajkrγ1γ2

(-1)|γ1| , −〉

else
α′

qajkrγ1γ2
= 〈ǫ :: =0qajkrγ1γ2

+1̂ 1qajkrγ1γ2
(-1)|γ1| , −〉

If k = #2 then
βqajkrγ1γ2

= 〈 ǫ :: =1qajkrγ1γ2
2qajkrγ1γ2

(-2)|γ2| , −〉

else
β′

qajkrγ1γ2
= 〈 ǫ :: =1qajkrγ1γ2

+2̂ 2qajkrγ1γ2
(-2)|γ2| , −〉

ψqajkrγ1γ2
= 〈 ǫ :: =2qajkrγ1γ2

r , −〉

For each q ∈ Qf ,
φq = 〈 ǫ :: =q +#Σ c , −〉

Again, a derivation begins either with with some χq0ajkrγ1γ2
selecting

φ0, or with φq0
doing so in case q0 ∈ Qf (implying that ǫ belongs to

L(M)). As in the case of G1, in general, when—within a derivation—
an expression is selected by a lexical item φq for some q ∈ Qf , or a
lexical item χqajkrγ1γ2

for some r ∈ Q, a ∈ Σǫ, j ∈ {1, #1}, k ∈ {2, #2},
γ1 ∈ 1∗ and γ2 ∈ 2∗, the selected expression corresponds to an instanta-
neous configuration derived by the 2-CA from an initial configuration.
In both cases move+perc

⊗ applies to the resulting expression, checking
an instance of -#Σ. In the former case this ends in a complete expres-
sion, if there is no chain left displaying an unchecked licensee feature.
Otherwise further derivation steps are blocked. In the latter case G2

begins simulating the CA’s application of δ to 〈q, a, j, k〉 with outcome
〈r, γ1, γ2〉 w.r.t. some matching instantaneous configuration: after hav-
ing moved by means of move+perc

⊗ the already recognized prefix to the

10When ni = 0, the respective chain is not present in the expression.
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front of the newly scanned instance of a, the derivation continues by
merging an α-expression—note that if αqajkrγ1γ2

is merged with an
expression which itself contains a chain already in possession of -1 fea-
tures, the SMC will disallow further operations on the resulting expres-
sion (in essence, crashing the derivation).11 This ensures that only those
derivations involving αqajkγ1γ2r succeed, in which it combines with an
expression which is completely devoid of -1 features at the point of
merger. If α′qajkrγ1γ2

is merged instead, then the chain containing the
-1 features will move, and, as per the definition of move+perc

⊗ , percolate
its features (modulo the one checked) to the initial chain. In either case,
the initial chain comes to host all of the expression’s -1 features. We
then merge a β expression, where there transpires something similar.
The simulation of the 2-CA transition is complete once ψqajkrγ1γ2

is
merged, resulting in an expression which must once again be selected
by some φr or χrajkγ1γ2s.

Note that, involving feature percolation, G2 only creates chains in
which all licensee instances result from the same licensee, i.e., either -1
or -2. Thus, G2 is defined completely independently of the percolation
function ⊗ from Syn∗×Syn∗ to Syn∗ underlying move+perc

⊗ .

8.5 Conclusion

We reviewed two apparently unrelated extensions to minimalist gram-
mars, and showed that both of them can derive arbitrary r.e. sets of
strings. Moreover, much the same construction sufficed to show this for
each variant of MGs presented herein. This highlights that at least a
subpart of each of these extensions have similar strong generative capac-
ities. How similar these variants are is a matter left for another time. We
note here only that while the 2-CA simulation given for MG-SMC,+SPIC

extends straightforwardly to one of a queue automaton, no similarly
straightforward extension exists for the MG+perc, as we were able to
nullify our ignorance of the function ⊗ only by (in effect) reducing its
domain to strings over a single alphabetic symbol.
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