
On the Form-Meaning Relations Definable by CoTAGs

Gregory M. Kobele

University of Chicago

Chicago, Illinois

USA

Jens Michaelis

Bielefeld University

Bielefeld

Germany

Abstract

Adding cosubstitution to the classical TAG

operations of substitution and adjunction,

coTAGs have been proposed as an “alterna-

tive conceptualization” to resolve the ten-

sion between the TAG mantra of locality

of syntactic dependencies and the seeming

non-locality of quantifier scope. CoTAGs

follow the tradition of synchronous TAGs

(STAGs) in that they derive syntactic and

semantic representations simultaneously as

pairs. We demonstrate that the mappings

definable by coTAGs go beyond those of

“simple” STAGs. While with regard to the

first component, coTAGs are weakly and

strongly equivalent to classical TAGs, the

second projection of the synchronously de-

rived representations, can in particular be—

up to a homomorphism—the non-tree ad-

joining language MIX(k), for any k ≥ 3.

1 Introduction

Given a classical TAG as, e.g., defined in the

handbook article by Joshi and Schabes (1997), the

set of derivation trees constitutes a regular set of

unordered labeled trees with an additional label-

ing of the tree edges. The nodes of a derivation

tree are labeled with elementary trees, and each

edge is labeled with a Gorn address. Such an

address indicates the node of the elementary tree

(labeling the outgoing node of the corresponding

edge in the derivation tree) at which another el-

ementary tree (labeling the incoming node of the

corresponding edge in the derivation tree) was ad-

joined or substituted during the derivation repre-

sented by the derivation tree. The representation

of a TAG derivation in this way is independent of

the derivational order. This is the reason why the

set of derivation trees of a classical TAG consti-

tutes a regular tree set.

Work on semantics in the TAG framework of-

ten considers the derivation tree as a compact, or-

der independent representation of all derivations

yielding the same syntactic tree, but at the same

time as a compact representation of different se-

mantics associated with the same syntactic repre-

sentation. Work in this line, in particular includes

the extensive work of Kallmeyer and colleagues

as well as Nesson and Shieber.1

Suggesting an “alternative conceptualization”

to resolve the tension between the TAG mantra

of locality of syntactic dependencies and the

seeming non-locality of quantifier scope, Barker

(2010) proposes to add to the classical TAG op-

erations of substitution and adjunction as a third

operation a modified version of substitution. He

calls the resulting operation cosubstitution and the

version of TAGs incorporating this operation co-

TAGs.

CoTAGs are defined in the spirit of syn-

chronous TAGs (STAGs) as introduced by Shieber

and Schabes (1990), deriving syntactic and se-

mantic representations simultaneously as pairs.

Syntactically, cosubstitution can essentially be

understood as substitution, but with reversed roles

of functor and argument. Barker notes that for

this reason, from a purely syntactic perspective,

in the context of simple (i.e. not multicomponent)

TAGs, adding cosubstitution affects neither weak

nor strong generative capacity (in the sense of de-

rived string and tree languages).

Clearly, however, something is different: af-

ter adding the operation of cosubstitution, deriva-

tional order matters in the sense that one derived

syntactic representation can potentially be associ-

ated with more than one simultaneously derived

semantic representation. As Barker points out,

1See, e.g., Kallmeyer and Romero (2004) and Nesson

and Shieber (2007), and references cited therein.



the introduction of the cosubstitution operator al-

lows for a straightforward adaption of the notion

of derivation tree such that two derivation trees

can be different depending on when a cosubstitu-

tion step takes place.

We demonstrate that the form-meaning map-

pings definable by coTAGs go beyond those of

“simple” STAGs (Shieber, 1994; Shieber, 2006).2

In particular, the set of meanings, the second pro-

jection of the synchronously derived syntactic and

semantic representations, can be—up to a homo-

morphism abstracting away from instances of λ

and variables—the non-tree adjoining language

MIX(k), for any k ≥ 3. The complexity of the

corresponding set of meanings is a reflex of the

complexity of the connected derivation tree set,

whose path language—up to a homomorphism—

also provides the non-tree adjoining language

MIX(k). The result can already be established

when restricting the attention to coTSGs, under-

stood as coTAGs without classical adjunction.

From this perspective it could be argued that the

additional expressive power is really due to the

cosubstitution operation alone.

2 CoTAGs

From the perspective of lexical entries, each

coTAG consists of a finite set of pairs of la-

beled trees. The first component of such a pair

〈αsyn, αsem〉 provides a syntactic representation,

the second component a semantic representation

of the corresponding lexical entry. Nodes in αsyn

are uniquely linked to nodes in αsem. The label of

a node νsem from αsem linked to a node νsyn from

αsyn displays the semantic type of the correspond-

ing syntactic subconstituent dominated by νsyn.

An operation applying to νsyn must be accompa-

nied by a parallel operation applying to νsem.

Regarding the syntactic component of the

coTAG-relation, coTAGs are identical to classi-

cal TAGs except for the following difference:

whereas the roots of TAG-initial trees and sub-

stitution nodes of arbitrary TAG-elementary trees

are labeled with elements from Cat and Cat↓,

respectively,3 the roots of syntactic coTAG-initial

2While we focus here on coTAGs, the results herein

straightforwardly apply as well to limited delay vector TAGs

(LDV-TAGs) (Nesson, 2009) which would allow for a differ-

ent implementation of essentially the same mechanism.
3
Cat denotes the set of categories, i.e. the nonterminals,

of the grammar.
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Figure 1: Substitution schematically. Syntactically,

tree with root-label δ is substituted at leaf labeled δ↓;

while semantically, the corresponding tree with root-

label δ is substituted at the linked node labeled δ.

trees and substitution nodes of arbitrary syn-

tactic coTAG-elementary trees have labels from

the sets Cat(↑Cat)∗ and Cat(↑Cat)∗↓, respec-

tively. Expressions of the syntactic component

are constructed in very much the same manner as

in TAGs, with one important addition: a derived

structure βsyn with syntactic root-label δ↑B for

some B ∈ Cat and δ ∈ Cat(↑Cat)∗ can be co-

substituted into a derived syntactic structure αsyn

with syntactic root-label B and a leaf labeled δ↓
derived structure. The result of applying cosubsti-

tution in this situation is the same as substituting

β′

syn into αsyn at the corresponding leaf labeled δ↓,

where β′

syn results from βsyn by replacing the root-

label δ↑B of βsyn with δ. From this perspective,

cosubstitution can be understood as substitution

reversing the roles of argument and functor, i.e.,

αsyn is rather cosubstituted onto the root of βsyn.

As will become immediately clear, the “reversed

perspective” of argument and functor chimes in

with the operational semantic counterpart of ap-

plying cosubstitution.

Regarding the semantic component of the

coTAG-relation, the trees derived represent well-

typed lambda terms, which can be read off from

the yield.4 The matching semantic operation to

applying substitution and adjunction syntactically

is also substitution and adjunction, providing us

with “functional application” in terms of lambda

calculus, cf. Figure 1 for the case of substitution.5

4Arriving at a concrete lambda term is achieved by re-

placing each leaf-label which is a semantic type by a vari-

able of corresponding type, when reading off the leaf-labels

“from left to right.”
5For δ ∈ Cat(↑Cat)∗ and B ∈ Cat, the boldface ver-

sions δ and δ↑B denote the corresponding semantic types of
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Figure 2: Cosubstitution schematically. Syntactically,

tree with root-label with root-label δ↑B is cosubsti-

tuted into tree with root-label B at leaf labeled δ↓;

while semantically, the corresponding tree with root-

label δ ↑B is “quantified in” at the root of the corre-

sponding tree with root-label B.

The matching semantic operation to applying

cosubstitution syntactically consists of a “quanti-

fying in” step as outlined in Figure 2. Note that

within the resulting semantic representation, new

terminal leaves are introduced labeled by λ and a

variable x. The operation is set up such that x is

chosen to be “fresh.”

As a concrete example, consider the grammar

Gscope presented in Figure 3.6 One can start de-

riving the sentence “every boy loves some girl”

either by substituting boy into every, and then co-

substituting every boy into the subject position of

loves as shown in Figure 4, or by substituting girl

into some, and then cosubstituting some girl into

the object position of loves as shown in Figure

5. Both complete derivations of the sentence are

given in Figure 6. The derived syntactic trees are

identical, while the semantic trees are different,

because of the different order of the derivation

steps. Accordingly, we require a novel notion of

derivation to represent this “timing” information,

which we leave at an intuitive level in this paper

δ↓? and δ↑B, respectively. δ↑B is the lifted type (( δ B)B ).
6Links will usually be marked with diacritics of the form

n for some n ≥ 1. We may occasionally avoid explicitly

mentioning the links between nodes of the syntactic and the

semantic representation, when we think the canonical linking

is obvious.

(αevery ) , (αsome )

〈

1 DP↑S 1

3 ↓NP↓ 32 D 2

every | some

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

every | some

〉

(αboy ) , (αgirl )

〈
1 NP 1

boy | girl

,
1 (e t) 1

boy | girl

〉

(αloves )

〈

1 S 1

3 VP 3

5 ↓DP↓ 54 V 4
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2 ↓DP↓ 2
,

1 t 1

2(e 23 (e t) 3

5(e 54 (e (e t)) 4

lovesy

〉

Figure 3: The example coTAG Gscope

for reasons of space.

Displaying a derivation tree, we use a solid line

for drawing an edge in order to indicate an in-

stance of substitution, and the edge label marks

the address of the substitution site of the elemen-

tary tree into which substitution takes place. We

use a dashed line in order to indicate an instance

of cosubstitution, and the edge label marks the ad-

dress of the substitution site of the elementary tree

into which cosubstitution takes place. But in con-

trast to the case of substitution, this elementary

tree labels the incoming node of the edge.

3 Expressivity

For k ≥ 1, we now provide a coTAG Gk gener-

ating as its string language the regular language

{(a1 · · · ak)
m : m ≥ 1}, while the path language

of the set of derivation trees and the set of mean-

ings, up to a homomorphism, provide the lan-

guage MIX(k), i.e. the set {w ∈ {a1, . . . , ak}
∗ :

|w|ai = |w|aj , 1 ≤ i, j ≤ k}.

Gk consists of k+4 lexical entries, namely, the

entries α1, . . . , αk, βk, γk, τk and σk, and for each

entry, we use the (additional) subscripts syn and

sem in order to refer to the entry’s syntactic and

semantic component, respectively, cf. Figure 7. S
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Figure 4: Cosubstituting every boy into the subject position before filling the object position of loves, derived

syntactic tree and semantic tree, and derivation tree.
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Figure 5: Cosubstituting some girl into the object position before filling the subject position of loves, derived

syntactic and semantic tree, and derivation tree.
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Figure 6: The two complete derived pairs of structures of every boy loves some girl, and derivation trees.



T1

A1↓ 1 T2

A2↓ 2 Tk

Ak↓ k Uk↓ k+1

βk, syn:

S

A1↓ 1 T2

A2↓ 2 Tk

Ak↓ k Uk↓ k+1

σk, syn:

Uk

V k

ǫ

T 1↓
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ǫ
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Ai↑S
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αi, syn:

t

e 1 ( e t )

e 2 ( ek−1 t )

e k ( ek t ) k+1
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t
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( t ( ek t ))

ǫ

t
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( ek t )

ǫ
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(( e t ) t )

ai
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Figure 7: The syntactic and the semantic components of Gk.

is the start symbol of Gk.

For m ≥ 1, consider wk,m = (a1 . . . ak)
m.

Each derivation tree for wk,m is a single path. All

derivation trees for wk,m share a unique subtree,

cf. Figure 8. From a bottom-up perspective, the

derivation starts by substituting τk directly into σk
in case m = 1, or into βk otherwise. If m > 1,

the resulting tree is substituted into γk, and the re-

sult in its turn is substituted into βk again. This

procedure is repeated m− 1 times, before the re-

σk, syn

γk, syn

βk, syn

γk, syn

βk, syn

τk, syn

2k

2

2k

2

2k

Dk, sub:

σk, syn ( γk, syn (βk, syn (. . . ( γk, syn (βk, syn
︸ ︷︷ ︸

m− 1 times

( τk, syn ))) . . . )))

Figure 8: The unique subtree Dk, sub of any derivation

tree for wk,m = am
1
. . . amk .

sulting tree is substituted into σk. Note that the

substitution site in each of these derivation steps

is uniquely determined. Note also that we can-

not cosubstitute any instance of αi before we have

substituted into σk, because cosubstitution of an

αi demands the presence of a root labeled S.

The derived tree described by the derivation

tree Dk, sub contains exactly m substitution sites

for every Ai. We can now cosubstitute into any

of these sites in any order. Thus, for each per-

mutation of (a1 . . . ak)
m there is a derivation of

(a1 . . . ak)
m such that the permutation is reflected

in the corresponding derivation tree in terms of the

node labels αi,syn. More precisely, starting at the

root following down the unique path, the node la-

bels provide a permutation of (α1,syn . . . αk,syn)
m

before we hit the node label σk,syn.

4 Remarks on ACGs

The formalism of an abstract categorial gram-

mar (ACG) (de Groote, 2001) has been intro-

duced with the idea to provide a general frame-

work in terms of linear logic allowing the encod-

ing of existing grammatical models. An ACG dis-

tinguishes between an abstract language and an

object language each of which is a set of linear

lambda terms over some signature. Following the

presentation by, e.g., Pogodalla (2004b), an ACG

G defines 1) two sets of typed linear lambda terms,

namely, a set Λ1 based on the typed constant set

C1, and a set Λ2 based on the typed constant set

C2; 2) a morphism L : Λ1 → Λ2; and 3) and a dis-



tinguished type S. The abstract and the object lan-

guage of G are defined as A(G) = {t ∈ Λ1 | t : S}
and O(G) = {L(t) ∈ Λ2 | t ∈ A(G)}, respec-

tively.

In this way the ACG-framework, in particular,

provides a logical setting in which an abstract lan-

guage can be used as a specification of the deriva-

tion set of a grammar instantiation of some gram-

mar formalism, and by applying two different

morphisms to the abstract language, we can “si-

multaneously” obtain a syntactic object language

and a semantic object language.

The order of an ACG is the maximal order of

the types assigned to the abstract constants from

C1.7 As demonstrated by de Groote (2002), each

classical TAG can be encoded as second-order

ACGs realizing the object language as the set of

derived trees, and the set of derived strings can be

extracted from that object language by compos-

ing the first second-order ACG with a second one.

Salvati (2007) has shown more generally, that

second-order ACGs, where the object language

is realized over a string signature, derive exactly

the string languages generated by, e.g., set-local

multicomponent TAGs. Kanazawa (2010) has

shown, that second-order ACGs, where the ob-

ject language is realized over a tree signature,

derive exactly the string languages generated by,

e.g., context-free graph grammars (Bauderon and

Courcelle, 1987).

Of course, the notion of derivation (trees) and

derived trees we have informally presented in the

previous sections is essentially one making use of

binding and abstraction. Recasting the above no-

tation into the ACG-framework provides one way

of analyzing the properties of coTAGs, in partic-

ular, from the perspective of an comparison to

other formalisms and approaches which fit into

the ACG-shape.

Closer inspection reveals Barker’s accompany-

ing notion of derivation tree to be in line with the

abstract language of the TAG-guided, ACG-based

semantic analysis of Pogodalla (2004a; 2007),

where the abstract language is a set of lambda

terms containing third-order constants.

It is easy to see that, although as far as the

syntactic component is concerned, coTAGs are

strongly equivalent to TAGs, this is only be-

7The order an atomic type is 1. For two types ζ and η,

the order of (ζη) is defined as the maximum of the order of

ζ increased by 1 and the order of η.

cause the syntactic interpretation of the higher-

order derivations “goes through” the second-order

derivation trees of TAGs. Once we turn to the do-

main of meanings, where the higher-order deriva-

tion terms are used essentially, we obtain a greater

generative capacity. We have exemplified this

above with regard to the language MIX(k), for

k ≥ 3. Note that MIX(3) is not a tree adjoining

language (Kanazawa and Salvati, 2012), and that

for k ≥ 4, MIX(k) is conjectured to be beyond

the scope of set-local multicomponent TAGs.

5 Conclusion

As already mentioned in the introduction, Barker

intends to provide an “alternative conceptualiza-

tion” of TAG semantic computation. An ear-

lier approach to TAG semantics in explicit terms

of STAGs has been worked out by Nesson and

Shieber (2007, and follow-up work). But in con-

trast to Barker’s presentation, their initial version

does not exceed the expressivity of simple STAGs

(Shieber, 1994; Shieber, 2006), where also the

second component does not exceed the (weak)

generative capacity of TAGs.

The difference from coTAGs results from the

fact that the semantic component may constitute

a tree-local multicomponent TAG, which allows

Nesson and Shieber to lexically represent, e.g., a

scope-taking quantifier as a pair of an elementary

auxiliary tree and an elementary substitution tree.

Sticking to the realm of simple STAGs implies

that in the context of nested quantifiers and in-

verse linking, when there are more than two quan-

tifiers involved, not all logically possible readings

are derivable. Nesson and Shieber discuss this

point in the context of the example two politi-

cians spy on someone from every city. Their ap-

proach delivers four possible readings. A particu-

lar fifth reading, namely, the case of scope order-

ing every > two > some is not available, which

some authors, among them Barker, think is a pos-

sible reading, albeit hard to process.

Introducing limited delay vector TAGs (LDV-

TAGs), Nesson (2009) suggests a modification of

the earlier STAG approach which also allows the

derivation of the “fifth reading.” If for any given

LDV-TAG there is no hard upper bound on the

degree of delay and on the number of multiple ad-

junctions that can take place at a single node, our

argument for coTAG expressivity can be straight-

forwardly adapted to LDV-TAGs. That is to say,



we can write an LDV-TAG whose set of deriva-

tion trees and set of derived meanings is, up to a

homomorphism, MIX(k) for arbitrary, but fixed

k ≥ 1.

Arbitrary delay allows for a qualitative in-

crease in the relation-generating power of syn-

chronous TAGs, demonstrated above in terms of

coTAGs and the operation of cosubstitution. Re-

casting this in terms of ACGs allows for a fur-

ther characterization, which makes clear the in-

crease in derivational generative capacity by mov-

ing from second-order abstract constants to third-

order ones.
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