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Abstract. In this paper we investigate the weak generative capacity of
minimalist grammars with late adjunction. We show that by viewing the
Specifier Island Condition as the union of three separate constraints,
we obtain a more nuanced perspective on previous results on constraint
interaction in minimalist grammars, as well as the beginning of a map of
the interaction between late adjunction and movement constraints. Our
main result is that minimalist grammars with the SpIC on movement
generated specifiers only and with the Shortest Move Constraint, in
conjunction with late adjunction, can define languages whose intersection
with an appropriate regular language is not semilinear.

1 Introduction

In deviance from the type introduced by Stabler in [26], in [27] a revised type of
minimalist grammar was defined, which incorporated a general ban on movement
out from within a ‘specifier’ position. The effects of this restriction on movement,
called the Specifier Island Condition, have been studied in conjunction with
other constraints on movement [3, 4, 14, 20, 21]. These studies have all treated
the SpIC as a single constraint, barring extraction from certain geometrical
configurations. In so doing, they have failed to observe the fact that different kinds
of specifiers—base generated, movement generated, or adjoined—play different
roles in the context of different additional constraints on movement. For example,
the proof in [14], that minimalist grammars with no constraints but the SpIC are
turing complete makes use only of specifiers generated by movement, and thus,
a SpIC-variant applying only to movement generated specifiers were sufficient
in this connections. On the other hand, a closer look at the proof in [21], that
minimalist grammars with the SpIC and the Shortest Movement Constraint
are strictly weaker than those with only the SMC, reveals that the essential
restriction here is the SpIC applied to base generated specifiers.

Disentangling these notions of specifier impenetrability further, in Sec. 4 we
investigate the formal properties of minimalist grammars with late adjunction as
introduced in [5]. Our main result is that the interaction of all three the SMC,
the SpIC only applied to moved specifiers and the operation of late adjunction
allows the generation of a language L not derivable by any multiple context-free
grammar in the sense of [25], where the intersection of L with an appropriate
regular language is not semilinear.



2 Formal Preliminaries

Given a set A, 2A is its power set. We will think of relations over A and B as
functions f : A→ 2B, and write f(a)→ b in case b ∈ f(a). The set of numbers
{0, 1, 2, . . .} is denoted N. For n ∈ N, the set of numbers from 1 to n is denoted
[n], and so we have [0] = ∅. For non-empty, finite N ⊆ N, max(N) denotes
the greatest element of N . Given a finite set A, a sequence over A of length
n is a function f : [n] → A. Given a sequence f : [n] → A, with f(i) = ai for
i ∈ [n], we write a1 · · · an, (ai)i∈[n], or even a for f . The symbol ε denotes the
empty sequence, i.e. the sequence of length 0. A∗ denotes the set of all finite
sequences of elements over A. Given a ∈ A, and w ∈ A∗, |w|a denotes the number
of occurrences of the symbol a in w, in symbols |w|a :=

∣∣w−1(a)
∣∣. A ranked

alphabet is a finite set F together with a function rank : F → N mapping each
symbol in F to a natural number indicating its arity. Given f ∈ F with arity
n = rank(f), we will sometimes write f (n) to denote f while indicating that it
has arity n. The set TF of terms over a ranked alphabet F is the smallest subset
of F ∗ containing each f (0) ∈ F , and such that whenever it contains t1, . . . , tn, it
contains f (n)t1 · · · tn for each f (n) ∈ F . We will insert parentheses and commas
for readability, writing f(t1, . . . , tn) instead of ft1 · · · tn.

Let X = {x1, x2, . . .} be an enumerable set of variables. Then Xn := {xi :
i ∈ [n]} is the set of the first n elements of X. Treating X as a ranked alphabet
with only nullary symbols, TF (X) := TF∪X is the set of contexts over F . For
C ∈ TF (Xn), and ti ∈ TF (X) for i ∈ [n], C[t1, . . . , tn] denotes the result of
simultaneously substituting each xi in C with ti, i ∈ [n]. To save space, we will
sometimes write C[t] instead of C[t1, . . . , tn] when the intended assignment is
clear.

xj [t] := tj f (0)[t] := f

f (k)(s1, . . . , sk)[t] := f(s1[t], . . . , sk[t])

A context C ∈ TF (X) is linear just in case each x ∈ X occurs in C at most
once, i.e., max({|C|x : x ∈ X}) = 1. Given a term t ∈ TF (X), an occurrence
of t′ ∈ TF (X) in t is a linear context C ∈ TF∪X({x0}), where x0 /∈ X is a new
variable, such that C[t′] = t. The address of a node in a term t ∈ TF (X) is a
string over [n]

∗
, where n = max({rank(f) : f ∈ F}). The set of addresses in

t ∈ TF (X) is defined inductively as addr(f (0)) = {ε}, and addr(f(t1, . . . , tn)) =
{ε} ∪

⋃
i∈[n]{iu : u ∈ addr(ti)}. Given a term t = f(t1, . . . , tn) ∈ TF (X), and an

address iw ∈ addr(t), the occurrence at iw in t is the occurrence at w in ti, and
t is the occurrence at ε in itself.

2.1 Minimalist Grammars

A minimalist grammar (MG) is given by a 5-tuple G = 〈Σ, sel, lic,Lex, s〉 where
Σ is a finite set, sel and lic are finite sets of selection and licensing features,
respectively, which in their turn determine a set F := {=x,≈x, x : x ∈ sel} ∪
{+y, -y : y ∈ lic} of features, Lex ⊆ Σ × F+ is a finite set of lexical items,



and s ∈ F is the start symbol. Features of the form =x are selector features,
those of the form ≈x are adjunction features, those of the form +y are licensor
features, while those of the form x are selectee features, and those of the form
-y are licensee features. Treating elements of Σ as nullary symbols, we define
a ranked alphabet S := Σ ∪ {t(0), <(2), ◦(2), •(2), >(2)}. We are interested rather
in the ranked alphabet O := S × F∗ (here O stands for output) such that
rank(〈s, δ〉) = rank(s) for s ∈ S and δ ∈ F∗, and we usually write sδ instead of
〈s, δ〉.3

Given an element t ∈ TO, we write tδ only if the root of t is labeled with a
symbol sδ. In that case, tγ stands for the result of replacing the label at the root
of t with the label sγ . We write tε as t.

The set of expressions E(G) of an MG G is the smallest subset of TO containing
Lex and closed under the operations presented below.4,5

merge(t=xδ1 , txγ2 ) =

<δ(t1, t
xγ
2 ), if t1 ∈ Σ × F+

>δ(txγ2 , t1), otherwise

move(C[tγ-y]+yδ)→ ◦δ(tγ , C[t])

adjoin(t≈xδ1 , txγ2 ) = •xγ(tδ1, t2)

An element tc ∈ E(G) is a complete expression of category c iff every node in
it is of the form sε or sfs for some selectee feature fs. The derived (or surface)
tree language of G at selectee feature c is defined to be the set of complete
expressions of category c, Lc(G) := {tc ∈ E(G) : tc is complete}. We write
Str(G) := {yield(ts) : ts ∈ Ls(G)} to denote the string language of G at the start
category s.6

2.2 Late Adjunction

Following [5], we generalize the adjunction operation by relaxing the requirement
that the adjunct has to adjoin at the root of the tree it adjoins to. Instead, an
adjunct may adjoin late, in that the expression to which it adjoins is a proper
subtree of its coargument. This extension renders the adjunction operation
relational.

3 A note is in order: while O as defined is infinite, we will not be interested in function
symbols paired with feature strings longer than a fixed finite length k, where k is the
maximal number of feature instances had by some lexical item.

4 In contrast to other presentations of MGs, here licensee features are checked from
right to left, and selectee features are not deleted by merge.

5 The operator adjoin was introduced in [2] among the list of MG-operations.
6 For tδ ∈ E(G), yield(tδ) is inductively defined by yield(tδ) = t if t ∈ Σ, yield(tδ) = ε

if t = t, and yield(tδ) = yield(tδ11 ) · yield(tδ22 ) if tδ = 〈s, δ〉(tδ11 , t
δ2
2 ) for some s(2) ∈ S,

and tδ11 , t
δ2
2 ∈ E(G).



lateAdjoin(t≈xδ1 , C[txγ2 ])→ C[•xγ(tδ1, t2)]

The expressions derivable by a grammar G with late adjunction build the set
E+LA(G), and accordingly L+LA

c (G) denotes the set of complete expressions of
category c from E+LA(G), and Str+LA(G) denotes the set of yields of complete
expressions of start category s from E+LA(G).

2.3 Conditions on Rules

Salvati [24] shows that minimalist grammars as defined above have a member-
ship problem which is as hard as the reachability problem for vector addition
tree automata in the sense of [7]. This problem is equivalent to provability in
multiplicative exponential linear logic [6], the decidability of which is currently
open, and which has a lower bound of ExpSpace, cf. [16].

Shortest Move The canonical condition on the operations above is the Shortest
Move Constraint. The SMC is a restriction on the domain of the move oper-
ation, requiring that, for move(t+yγ) to be defined, there be exactly one node
sδ in t where the last feature of δ is -y. This restriction on the domain of
move makes it a function. We write E+SMC(G) to denote the expressions of
an MG, G, derivable using the SMC-restricted move operation, instead of
the general move operation presented above. L+SMC

c (G) denotes the subset of
E+SMC(G) consisting of all complete expressions of category c, and Str+SMC(G)
is the set {yield(ts) : ts ∈ L+SMC

s (G)}. Michaelis [17, 19] and Harkema [9] prove
ML+SMC := {Str+SMC(G) : G is an MG}, the class of minimalist string lan-
guages, to be identical to MCFL, the class of languages derivable by multiple
context-free grammars (MCFGs) in the sense of [25].

Specifier Impenetrability Stabler [27] restricts movement further, requiring
that the address of the moving subtree be either from 2∗ (so that the path from
the root to the moving subtree has only right branches) or from 2∗1 (so that the
path from the root to the moving subtree has exactly one left branch and this at
the end). This restriction is called the Specifier Island Condition in [3, 4].

By ML+SMC,+SpIC we denote the class of string languages of MGs with
both the SMC and the SpIC imposed as constraints on the move-operation.
Michaelis [18, 20] shows that ML+SMC,+SpIC consists of exactly those languages
generated by a subtype of MCFGs, called monadic branching MCFGs in [11].
These languages are shown to be properly included within the class of languages
generated by MCFGs in [21], and even within the class of languages generated
by well-nested MCFGs in [11].

Without the SMC, MGs with the SpIC generate all recursively enumerable
languages [14].



Adjunct Islandhood Finally, in an investigation of the operation of late
adjunction, Gärtner and Michaelis [4, p. 187] explicitly formulate the Adjunct
Island Condition, requiring that the first argument t≈xδ1 of either adjoin or
lateAdjoin has no nodes the second component of the label of which contains a
licensee feature (with the possible exception of the root).7 The AIC acting in
conjunction with the SMC ensures that ML+SMC,+AIC,+LA =ML+SMC.

3 A Closer Look at the SpIC

The SpIC forbids movement from targeting subtrees in certain geometric posi-
tions, namely, those subtrees whose roots have an address which is not in the set
2∗(1 + ε). These forbidden positions are occurrences of the form D[⊗(C[x0], t)],
where D and C are linear contexts, C is non-trivial (i.e. C 6= x0), and ⊗ ∈ {>, ◦, •}.
In the context D[⊗(t1, t)] (where again D is linear, and ⊗ ∈ {>, ◦, •}), we say
that t1 occurs in a specifier position (whence the name of the constraint). As this
presentation of the SpIC makes salient, we can restrict it to particular instan-
tiations of the connective ⊗ above, as per whether they originate from merge,
move, or lateAdjoin. We define accordingly SpICmrg, SpICmv, and SpICadj in
the following manner:

SpICmrg/mv/adj

move(C[tγ-y]+yδ) → ◦δ(tγ , C[t]) only if there are no linear contexts D,E
with E non-trivial and term t′ such that C[x0] = D[⊗(E[x0], t′)], where
⊗ = >/ ◦ / •.

In prose, the SpICmrg/mv/adj says that movement cannot take place out from
inside a specifier generated by a(n) merge / move / adjoin operation. The
restriction that E be non-trivial allows for movement of a specifier (of a particular
sort), as long as it is not properly contained within another (of the same type).

The rationale for splitting the monolithic SpIC into three independent con-
ditions comes from the observations

1. that the SpICadj is an equivalent re-implementation of the AIC,
2. that in the context of the SMC, the SpICmv has no effect, i.e.

ML+SMC,+SpICmv =ML+SMC , and

3. that without the SMC only the SpICmv plays a role in the proof of the
Turing completeness in [14], i.e.

ML+SpICmv =ML+SpIC = R.E .

We will discuss each of these observations in turn, and will then turn our attention
to the main novel contribution of this paper, which is the investigation of the
interaction of late adjunction and various forms of SpIC in Sec. 4.

7 Doing so, Gärtner and Michaelis generalize the AIC-definition proposed in [2] for
the purposes of controlling the effects of just the ‘simple’ adjoin-operation.



3.1 The relation between the SpICadj and the AIC

The SpICadj states that it is not possible to extract from an adjoined specifier
one of its proper subtrees even if the label of the root of such a subtree provides
a licensee feature which would allow movement of the subtree otherwise. The
focus of the AIC as formally defined in [4] is on a priori avoiding the creation
of expressions showing such a configuration, while under the SpICadj these
expressions can ‘simply’ not take part in a convergent derivation. In other words,
we have E+AIC(G) ⊆ E+SpICadj(G) for each MG G = 〈Σ, sel, lic,Lex, s〉, but, in

particular, we have L+AIC
s (G) = L

+SpICadj
s (G).

3.2 The SpICmv and the SMC

In the presence of the SMC, the SpICmv has no effect as to the class of
derivable string languages, more formally, ML+SMC,+SpICmv = ML+SMC and
ML+SMC,+SpIC =ML+SMC,+SpICmrg hold.

The first identity follows from the fact that for each MG G with the SMC,
but without the SpIC, we can define a weakly equivalent MG G′ such that (i)
and (ii) hold:

(i) For each v ∈ E+SMC(G′) and x ∈ lic, if there is some subtree tγ-x then the
address of tγ-x is from 2∗ or 2∗12∗.

(ii) Moreover, if for some v ∈ E+SMC(G′) and x ∈ lic, there is a subtree tγ-x

such that for some m,n ∈ N, the address of tγ-x is 2m12n then the label of
the node with address 2m is of the form >δ for some δ ∈ F∗.8

The line of argument here is the following: for each MG with the SMC there
is a non-deleting MCFG of rank 2 deriving the same string language [18]. For each
non-deleting MCFG of rank 2 there is a non-deleting and non-permuting MCFG
of rank 2 deriving the same string language [18, Corollary 2.4.4(a)]. Starting
from a non-deleting MCFG of rank 2, [19] presents a constructive method how to
convert this MCFG into an MG with the SMC deriving the same string language.
The fulfillment of (i) and (ii) by the resulting MG is an additional consequence,
when starting from a non-deleting and non-permuting MCFG of rank 2.9 From
(i) and (ii) it follows that E+SMC(G′) = E+SMC,+SpICmv(G′) holds.

The second identity, ML+SMC,+SpIC =ML+SMC,+SpICmrg , follows from the
fact that for each MG G with the SMC and with the SpIC, we can define a
weakly equivalent MG G′′ such that (iii) holds:

(iii) Whenever, for some u ∈ E+SMC,+SpIC(G′′) and x ∈ lic, there is some subtree
tγ-x of u then the address of the root of tγ-x is from 2∗.

8 That is, the subtree of v with address 2m1, the specifier which tγ-x is a subtree of,
has been built by an application of merge.

9 For concrete definitions of a non-permuting MCFG and a non-deleting MCFG see,
e.g., [10]. A non-permuting MCFG is an MCFG in monotone function form in the
sense of [18]; and a non-deleting and non-permuting MCFG is an ordered simple
RCG in the sense of [29, 30] as well as a monotone LCFRS in the sense of [15].



For each MG with both the SMC and the SpIC there is a non-deleting
monadic branching MCFG deriving the same string language [18, Corollary
4.1.14]. For each non-deleting monadic branching MCFG there is a non-deleting
and non-permuting monadic branching MCFG deriving the same string language
[18, Corollary 2.4.4(b)]. Each non-deleting and non-permuting monadic branching
MCFG can be transformed into an MG with both the SMC and the SpIC
fulfilling (iii), and deriving the same string language [20]. (iii), in fact, implies
that E+SMC,+SpIC(G′) = E+SMC,+SpICmrg(G′).

3.3 The SpIC without the SMC

Gärtner and Michaelis [3] show that MGs without the SMC but with the SpIC
are able to derive languages which do not have the constant growth property.
Kobele and Michaelis [14] show that, in fact, every language of type 0 can be
derived by some MG without the SMC but with the SpIC for essentially two
reasons: a) because of the SpIC, movement of a tree into a specifier position
freezes every proper subtree within the moved tree, and b) without the SMC,
therefore, the nodes of the rightmost branch of a tree, i.e., the nodes with
addresses from 2∗, can technically be employed as a queue.

4 Late Adjunction and Specifier Impenetrability

It is easy to see that, as long as the adjunct island condition is not in effect,
late adjunction allows the description of the commutation closure of any regular
language.10 We begin by presenting a construction associating each regular
language with an MG generating it.

Let L ⊆ Σ∗ be regular, and let PL : Σ∗ → 2Σ
∗

be the map associating with
each w ∈ Σ∗ the set of strings which can be prefixed to w to obtain a string in L,
i.e. PL(u) := {v ∈ Σ∗ : vu ∈ L} for u ∈ Σ∗. We define GL = 〈Σ, selL, ∅,LexL, s〉,
the MG allowing the generation of L, by giving the lexicon, LexL, as the union
of sets TransL, FinalsL, and StartL.11 The set selL is the disjoint union
of the range of PL and the singleton set containing the new symbol s, i.e.,
selL := {q : ∃w ∈ Σ∗. PL(w) = q} ∪ {s}. By the Myhill-Nerode theorem, selL is
finite.

StartL := { 〈ε, q〉 : q = PL(ε)}
FinalsL := { 〈ε, =r s〉 : r ∈ selL − {s} & ε ∈ r }
TransL := { 〈a, =r q〉 : a ∈ Σ & r ∈ selL − {s} & ∃w ∈ r. q = PL(aw) }

10 Given a string s : [n] → Σ, the set c(s) := {s ◦ π : π a bijection over [n]} is the
commutation closure of s. Given a language L ⊆ Σ∗, c(L) := {w ∈ c(s) : s ∈ L}
is the commutation closure of L. As every language in SL, the class of semilinear
languages, is letter equivalent to some language in REG, the class of regular languages,
c(L) = c(REG) for any REG ⊆ L ⊆ SL.

11 GL is the MG-representation of a canonical finite state automaton recognizing L.



We now take x to denote a new symbol, and in order to define the MG
cGL = 〈Σ, selL ∪ {x} ∪ Σ,Σ,cLexL, s〉 allowing the generation of c(L), the
commutation closure of L, we modify LexL in two ways. First, we define cTransL
to contain a lexical item 〈ε, =r +a q〉 iff TransL contains 〈a, =r q〉. Next, we
define cStartL to contain the lexical item 〈ε, =x q〉, instead of 〈ε, q〉. We define
cLexL := FinalsL∪cStartL∪cTransL∪AdjoinΣ , where the first three sets
are as defined above, and AdjoinΣ is defined as the disjoint union of the two
sets adjΣ and base:

adjΣ := {〈a, =a≈x〉, 〈ε, a -a〉 : a ∈ Σ}
base := {〈ε, x〉, 〈ε, =x x〉}

Theorem 1. For L ∈ REG let cGL be the MG as constructed above depending
on L. Then we have c(L) = Str+LA,α(cGL) for α not containing +SpICadj.

Proof. Repeated merger of lexical items in base generates the expressions
bn = <x(ε, <x(ε, · · · <x(ε, εx) · · · )), where |bn|ε = n. This expression is the ‘sand-
box’ wherein late merger of the expressions â = merge(〈a, =a ≈x〉, 〈ε, a -a〉) =
<≈x(a, εa -a) for a ∈ Σ will occur. Given such a bn, in order to obtain a complete ex-
pression of category s, we must merge it with the lexical item 〈ε, =x q〉 ∈ cStartL,
which results in the expression sn = <q(ε, bn) of category q.

If L 6= ∅, then there is a sequence of lexical items t1, . . . , tk ∈ cTransL which
describe an accepting path through the canonical automaton of L, where ti =
〈ε, =qi−1 +ai qi〉, where q0 = PL(ε), and ε ∈ qk. Letting t1, . . . , tk be such a path,
we describe a set of convergent derivations of cGL which generates c(ak · · · a1) ⊆
c(L). We define d0 = {sk}, and di = {move(merge(ti, lateAdjoin(âi, d))) : d ∈
di−1} for 1 ≤ i ≤ k. Note that for 0 ≤ i ≤ k, every d ∈ di is a complete expression
of category qi, and that {yield(d) : d ∈ di} = c(ai · · · a1). (This is due to the fact
that there are k positions which late adjunction can target in bk.)

Now let d ∈ dk, then there is a final lexical item 〈ε, =qk s〉 ∈ FinalsL which
can be merged with d to form a complete expression of category s. As the
derivation of d was consistent with the SMC, the SpICmv, and the SpICmrg,

and as yield(merge(〈ε, =qk s〉, d)) = yield(d), c(ak · · · a1) ⊆ Str+LA,α(cGL), for α
not containing +SpICadj.

To see that every w ∈ Str+LA,α(cGL) is in c(L), note that only (late)
adjunctions introduce overt material, and that these must be ‘licensed’ by some
transition. �

As an immediate corollary of the above theorem we note

Corollary 1. c(REG) ⊆ML+LA,α for α not containing +SpICadj.

4.1 Controlling Late Adjunction by the SpICmv

In this section we consider MGs with late adjunction, the SMC, and the SpICmv.
While adding the SpICmv to MGs with the SMC without late adjunction does



not change the generable string languages (cf. 3.2), in the presence of late
adjunction the SpICmv provides a way to control when and where late adjunction
may occur. This can be used to derive a language L ∈ ML+LA,+SMC,+SpICmv

such that L ∩ e∗d(b(ac)∗)∗ is a non-semilinear language.12 This proves that
ML+LA,+SMC,+SpICmv properly contains ML+SMC,+SpICmv =MCFL. It is not
known whether ML+LA,+SMC,+SpICmv is closed under intersection with regular
languages, or whether it is contained in the family of semilinear languages. We
will see however that it cannot be both. On the other hand, it is straightforward
to see that ML+LA,+SMC only contains semilinear languages. Whether it is also
closed under intersection with regular languages is an open question, as is whether
it properly contains MCFL.13

Proofs showing that certain MG variants can derive non-semilinear languages
[12, 13, 3, 14, 24] all have in common that they treat licensee features as resources
which can grow without bound.14 Imposing the SMC limits the amount of
licensee features an expression may have to just one of each type, and thus blocks
this approach to non-semilinearity. Late adjunction allows one to side-step the
SMC in the sense that any number of moving items might be late adjoined
into a particular subtree, giving rise to the ‘illusion’ that they were there all
along. This sword cuts both ways, however, as it seems to remove the possibility
of ‘testing for zero’ – of determining, explicitly in the cases of [13] and [14], or
implicitly in the case of [24], whether a particular expression has any features
of a certain type. The difficulty is simple: without limits on when something
may be late adjoined, an expression which can be late adjoined into, can be
late adjoined into at any time, including right after it had been determined not
to contain any features of a certain type! The SpICmv provides a way to limit
the use of adjunction in a way that allows an implicit test for zero – to block
later adjunction inside of an expression, all that need to be done is to move that
expression to a higher specifier position, at which point the SpICmv will—at least
with regard to convergent derivations—ensure that no future late adjunctions
may ‘add’ to the number of licensee features that expression contains.

We define here a language L which, when intersected with the regular language
e∗d(b(ac)∗)∗ contains only sentences where the number of instances of e is a
power of two. We first provide an intuition regarding the generation of L. The

12 Recall that the family of semilinear string languages is not closed under intersection
with regular string languages; a2n

b + ba∗ is semilinear, but its intersection with
a∗b is not.

13 To the best of our knowledge, whether c(MCFL) ⊆MCFL is also open. If it could
be proven that MCFL were not commutation closed, this would establish that
ML+LA,+SMC properly contains MCFL, by corollary 1.

14 While Kobele [12, 13] claims to impose ‘the SMC’, one way of looking at what is
done there (that is compatible with the generalizations expressed in this section) is
that what is expressed there as ‘feature percolation’ is better viewed as ‘pied piping’,
with a relaxed version of the SMC, which simply requires that the move function be
deterministic, along with the requirement that the features of expressions standing
in a certain geometrical relationship with the head of a subtree ‘count’ as belonging
to that head for the purposes of determining the target of movement.



MG GL generating L contains four lexical items which have adjunction features.
These lexical items are the sole source of the symbol a in the sentences of L, i.e.,
anywhere an a occurs, it was introduced via the (late) adjunction of an expression
derived by incorporating one of the four lexical items. Another important property
of the adjuncts is that each of them introduces two distinct movable subtrees.
Thus, because of the SMC, each late adjunction step must be followed by two
move-steps before another adjunction step with the same adjunct may occur.
The four lexical items with adjunction features are

〈a, =1 =3 ≈e〉 〈a, =1’ =3’ ≈e〉

〈a, =2 =4 ≈o〉 〈a, =2’ =4’ ≈o〉

and they select their arguments from the following list of lexical items:

〈c, 1 -1〉 〈c, 3 -3〉 〈e, 1’ -0〉 〈e, 3’ -5〉

〈c, 2 -2〉 〈c, 4 -4〉 〈e, 2’ -0〉 〈e, 4’ -5〉

In all expressions which can be constructed from the above eight lexical items,
i.e., in all expressions providing a possible adjunct, instances of c and e do not
co-occur:

>≈e(c-3, <(a, c-1)) >≈e(e-5, <(a, e-0))

>≈o(c-4, <(a, c-2)) >≈o(e-5, <(a, e-0))

Derivations proceed in cycles which will be referred to as ‘even’ and ‘odd’
(whence the names of the adjunction features, ≈e and ≈o). An odd cycle begins
with the successive merger of the two lexical items on the left, an even one with
the the successive merger of the two lexical items on the right:

〈ε, =n x -5 -0 -4 -2 -x〉 〈ε, =d y -5 -0 -3 -1 -y〉

〈ε, =x o〉 〈ε, =y e〉

During the cycle adjunction will only take place inside the complement
of the cycle-starting item. The SMC will ensure that only one of the four
generally possible adjunct expressions listed above provides a cycle-appropriate
adjunct. More precisely, the SMC will do so in collaboration with the somewhat
unwieldy looking sequence of licensee features appearing in the corresponding
cycle-starting item. Having started a cycle, we legitimate the repeated adjunction
of the appropriate (even or odd) adjunct expression by repeated merger of one of
the following items:

〈ε, =o +1 o〉 〈ε, =e +2 e〉

〈ε, =o +3 o〉 〈ε, =e +4 e〉

A cycle ends with the merger of one of the following two expressions, and
the subsequent movement of the cycle-starting constituent, thereby barring later



adjunctions inside of the moved constituent due to the SpICmv. An even cycle
ends in category n (even), and an odd one in category d (odd):

〈b, =o +x +2 +4 +0 +5 d〉 〈b, =e +y +1 +3 +0 +5 n〉

The cycles are initialized with the following two lexical items (the cycles begin
at ‘odd’).

〈c, =i o〉 〈ε, i -5 -0 -4 -2 -x〉

The final cycle begins with the merger of a d. This derives an expression of
the start category, s.

〈d, =n s〉 〈d, =d s〉

We continue by allowing the adjunction of an expression containing an a and
two instances of e.

〈ε, =s +0 +5 s〉

Theorem 2. The language derived by GL is the set L ⊆ e∗d(ba∗c)(b(a|c)∗)∗

such that within any sentence belonging to L, the number of instances of a between
any two subsequent instances of b is half the number of instances of c between
the following pair of subsequent instances of b (or, if there is no such pair, after
the last instance of b), and the number of instances of e is twice the number of
instances of a after the last instance of b.

Intersecting L with the regular language e∗d(b(ac)∗)∗ requires that within
any sentence of the resulting language, within any sentence of the resulting
language, the number of instances of a and instances of c between two neighboring
instances of b be the same, which means that the number of instances of c
between two neighboring instances of b is twice the number of instances of c
between the previous pair of neighboring instances of b. Then for any sentence
w ∈ L ∩ e∗d(b(ac)∗)∗, |w|e = 2|w|b .

Theorem 3. ML+LA,+SMC,+SpICmv properly containsMCFL.

Proof. To see the containment, note that every grammar G ∈MG+SMC,+SpICmv

is also a grammar in MG+LA,+SMC,+SpICmv .
To see that the containment is proper, note that MCFL constitutes a class

of semilinear languages, and is closed under intersection with regular languages.
Language L in Theorem 2 results in a non-semilinear language when intersected
with a particular regular language, and thus L /∈MCFL. �

The remainder of this section is devoted to a sketch of the proof of Theorem 2.
For convenience, the lexical items of GL are numbered in Fig. 1, and some useful
derived expressions are named in Fig. 2.

All derivations in GL begin with the merger of lexical item 1 and 2, deriving the
expression t̃ := <o(c, εi -5 -0 -4 -2 -x). There are three logically possible next steps,
before lexical item 9 is merged. Setting t = t̃, these possible next steps are:



1) 〈ε, i -5 -0 -4 -2 -x〉
2) 〈c, =i o〉
3) 〈ε, =x o〉 4) 〈ε, =y e〉
5) 〈ε, =o +1 o〉 6) 〈ε, =e +2 e〉
7) 〈ε, =o +3 o〉 8) 〈ε, =e +4 e〉
9) 〈b, =o +x +2 +4 +0 +5 d〉 10) 〈b, =e +y +1 +3 +0 +5 n〉

11) 〈ε, =d y -5 -0 -3 -1 -y〉 12) 〈ε, =n x -5 -0 -4 -2 -x〉
13) 〈d, =d s〉 14) 〈d, =n s〉
15) 〈ε, =s +0 +5 s〉
16) 〈a, =1 =3 ≈e〉 17) 〈a, =2 =4 ≈o〉
18) 〈c, 1 -1〉 19) 〈c, 2 -2〉
20) 〈c, 3 -3〉 21) 〈c, 4 -4〉
22) 〈a, =1′ =3′ ≈e〉 23) 〈a, =2′ =4′ ≈o〉
24) 〈e, 1’ -0〉 25) 〈e, 2’ -0〉
26) 〈e, 3’ -5〉 27) 〈e, 4’ -5〉

Fig. 1. The lexical items of GL

ec := >≈e(c3 -3, <(a, c1 -1)) oc := >≈o(c4 -4, <(a, c2 -2))

ee := >≈e(e3’ -5, <(a, e1’ -0)) oe := >≈o(e4’ -5, <(a, e2’ -0))

s1 := ◦d(εi, ◦(t, ◦(t, ◦(t, ◦(t, <(b, <o(c, t)))))))

Fig. 2. Derived expressions

1. t is merged with item 5, deriving the expression <+1 o(ε, t). However, t does
not contain any subexpression sγ-1, and none of the possible late adjuncts
oi do either. Thus, the +1 feature at the root of this expression cannot be
checked, and this expression can not participate in a derivation of a complete
expression of any category.

2. t is merged with item 7. This case is similar in all relevant respects to the
previous one.

3. One of the expressions oi (late) adjoins to t, resulting in the expression
•o(oεi , tε), which contains a subtree sγ-k for some k ∈ {0, 2, 4, 5}, and also the
subtree εi -5 -0 -4 -2 -x. Merging this expression with lexical item 9 will ulti-
mately result in an expression on which the SMC-restricted move operation
is not defined.

Merging t̃ with lexical item 9 results in <+x +2 +4 +0 +5 d(b, <o(c, εi -5 -0 -4 -2 -x)).
Continuing with this expression, five successive applications of move clearly result
in s1.

A cycle converts a complete expression si (ti) of category d (n) to a complete
expression ti (si+1) of category n (d). For si ∈ Lαd (GL) (ti ∈ Lαn (GL)), where
α = +LA, +SMC, +SpICmv, we write ti ∈ cycle(si) (sj+1 ∈ cycle(tj)) to indicate
that ti (sj+1) is derivable from si (tj) in one cycle. A cycle begins with the



merger of lexical item 11 (12) with si (tj), followed by the merger of lexical
item 4 (3), and a cycle ends with the merger of lexical item 10 (9) and five
successive applications of the move operation. In between, the adjunct oc (ec) is
late adjoined. Then one of lexical item 6 (5) and 8 (7) is merged, move applies,
the other of lexical item 6 (5) and 8 (7) is merged, and move applies again.
Starting with s = si, we obtain the following expressions:15

merge 11:
<y -5 -0 -3 -1 -y(ε, s)

merge 4:
<e(ε, <y -5 -0 -3 -1 -y(ε, s))

repeat k times:
lateAdjoin oc:

<e(ε, <y -5 -0 -3 -1 -y(ε,D[c2 -2, c4 -4]))

merge 6:
<+2 e(<e(ε, <y -5 -0 -3 -1 -y(ε,D[c2 -2, c4 -4])))

move:
◦e(c2, <(ε, <e(<y -5 -0 -3 -1 -y(ε,D[t, c4-4]))))

merge 8:
<+4 e(ε, ◦e(c2, <(ε, <e(<y -5 -0 -3 -1 -y(ε,D[t, c4-4])))))

move:
◦e(c4, <(ε, ◦e(c2, <(ε, <e(<y -5 -0 -3 -1 -y(ε,D[t, t]))))))

merge 10:
<+y +1 +3 +0 +5 n(b, ◦e(c4, <(ε, ◦e(c2, . . .︸ ︷︷ ︸

2k times

<(ε, <e(ε, <y -5 -0 -3 -1 -y(ε, E[t, . . . , t︸ ︷︷ ︸
2k times

]))) . . .))))

move 5 times:
ti = ◦n(<y(ε, E[t, . . . , t])︸ ︷︷ ︸

opaque by SpICmv

, ◦(t, ◦(t, ◦(t, ◦(t, <(b, ◦e(c4, <(ε, ◦e(c2, . . . <e(ε, t) . . .)))︸ ︷︷ ︸
available for appropriate adjunction

))))))

Within the expression ti (sj+1) derived from si (tj) in this manner, the only
nodes where adjunction may take place in the next cycle without corrupting the
cycle’s completion are amongst the mother node of the most embedded trace t

and the mother nodes of those instances of c introduced by (late) adjunction and
moved to a specifier position during the just completed cycle. The number of
these instances of c is 2k, where k is the number of times oc (ec) was adjoined
during the cycle. The selectee appearing in the label of the corresponding mother
nodes and allowing for adjunction is e (o).

Note that nothing stops adjuncts other than oc (ec) from adjoining during the
process above. But any such adjunct will introduce at least one feature -k for
some k ∈ {0, 1, 3, 5} (k ∈ {0, 2, 4, 5}) which will cause an SMC-violation in the
last step (move 5 times), thereby banning the adjunct’s containing expression
from ever becoming complete.

A variation on the above which is acceptable (but which does not affect the
finally derived expression) depends on the timing of the lateAdjoin operation.

15 Starting a cycle with the merger of lexical item 12 and tj works analogously.



The first adjunct oc can be late adjoined before the merger of lexical item 11
or the merger of lexical item 4 without affect. The first adjunct might even be
present already within si (tj), having been introduced at the end of the preceding
cycle. Put differently, regarding the cycle considered above, up to one of the
adjuncts ec (oc) can be adjoined after the feature +3 (+4) has been checked in
the last five movements, or alternatively up to one of the adjuncts ee (oe) can
be adjoined after the feature +5 has been checked in the last five movements.
The latter forces the initiation of the final cycle (see below) in order to derive a
complete expression.

Nothing else may happen during a cycle.

Proposition 1. For α = +LA, +SMC, +SpICmv consider a complete expression
si ∈ Lαd (GL) (tj ∈ Lαn (GL)) with yield(si) = ubcm (yield(tj) = ubcm) for some
u ∈ (b(a|c)∗)∗ and m ∈ N. Then for every ti ∈ cycle(si) (sj+1 ∈ cycle(tj))
it holds that yield(ti) = ubvbc2n (yield(sj+1) = ubvbc2n) for some n ∈ N and
v ∈ (a|c)∗ with |v|c = m and |v|a = n.

Proof. By induction we actually prove a somewhat stronger proposition: we
additionally show that for each si ∈ Lαd (GL) (tj ∈ Lαn (GL)) with yield(si) = ubcm

(yield(tj) = ubcm) for some u ∈ (b(a|c)∗)∗ and m ∈ N, we have si = ◦d(r′, r′′)
(ti = ◦d(r′, r′′)) such that yield(r′) = u, and adjunction must take place within
r′′ to the right of the leaf b in order to derive a complete expression.

Because we have s1 = ◦d(ε, ◦(t, ◦(t, ◦(t, ◦(t, <(b, <o(c, t))))))), we, in fact,
have s1 = ◦d(s′, s′′) such that yield(s′) = ε, and adjunction can only take place
within s′′ to the right of the leaf b.

Now define cycle(t0) := {s1}, and let si ∈ cycle(ti−1) be as in the assumption
of the proposition, i.e., such that yield(si) = ubcm for some u ∈ (b(a|c)∗)∗ and
m ∈ N. By hypothesis, we can even assume that si = ◦d(s′, s′′) with yield(s′) = u,
and adjunction must take place within s′′ to the right of the b leaf in order to
derive a complete expression. Inspection of the definition of cycle(si) therefore
yields that every ti ∈ cycle(si) has the desired form. The reasoning is similar for
si+1 ∈ cycle(ti). �

The final cycle turns a complete expression s (t) of category d (n) into a complete
expression of start category s. First the lexical item 13 (14) is merged, already
generating a complete expression of category s, and then for each late adjunction
of oe (ee), the lexical item 15 is merged, and the operation move applies twice,
generating another complete expression of category s. Starting with a complete
expression s of category d, we obtain the following expressions:

merge 13:
<s(d, s)

repeat:
lateAdjoin oe:

<s(d,D[e2’ -0, e4’ -5])
merge 15:

<+0 +5 s(ε, <s(d,D[e2’ -0, e4’ -5]))



move:
◦+5 s(e2, <(ε, <s(d,D[t, e4’ -5]))

move:
◦s(e4, ◦(e2<(ε, <s(d,D[t, t]))

Starting a final cycle with the merger of lexical item 14 and a complete
expression t of category n works analogously. Clearly, only oe (ee) can be late
adjoined in the cycle and lead to a complete expression, as only -0 and -5 features
can be checked.

Proof of Theorem 2. Let w.l.o.g. s ∈
⋃
i∈N cycle(ti). Then s = ◦d(s′, s′′) with

yield(s′) = u ∈ (b(a|c)∗)∗ and yield(s′′) = bck for some k ∈ N. Furthermore
r0 = merge(13, s) ∈ Lαs (GL) with yield(r0) = dubck. Define now R0 = {r0} and
Ri+1 =

⋃
{move(move(merge(15, lateAdjoin(oe, ri)))) : ri ∈ Ri}. Then it holds

that Ri ⊆ Lαs (GL), and each ri ∈ Ri is such that yield(ri) = e2idubv for some
v ∈ (a|c)∗ with |v|c = k and |v|a = i. By Proposition 1, the desired relation
between instances of a and instances of c obtains. �

5 Conclusion

We have argued that the SpIC is best understood formally as three separate
constraints on extraction, one for each ‘kind’ of specifier. Whatever the linguistic
merits of this proposal, it has allowed us a clearer perspective on previous
results, as well as given us a way forward to pursue novel ones. While our results
underscore the conclusion of Gärtner and Michaelis [3, p. 127] that

intuitions to the contrary notwithstanding, the imposition of [locality con-
ditions] on grammars [. . . ] does not automatically reduce their generative
capacity

what is still missing is a ‘big picture’ perspective as to why exactly certain
constraints interact with others in the way they do, which would allow us to
reason at a high level about constraint behavior in general in a minimalist setting.

Another result of the present paper is the beginnings of a classification of
the behavior of minimalist grammars with late adjunction. Late adjunction has
similarities with the kind of second order substitution found in macro grammars
[1], and thus minimalist grammars with late adjunction combine in a particular
way macros with tupling, cf. [22], as do (but differently) multi-component tree
adjoining grammars, cf. [28, 31]. We must leave it to future work to flesh out this
perspective.
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