
CoTAGs and ACGs

Gregory M. Kobele1 and Jens Michaelis2

1 University of Chicago, Chicago, Illinois, USA
2 Bielefeld University, Bielefeld, Germany

A revised version is to appear in: D. Béchet and A. Dikovsky (eds.), Logical Aspects

of Computational Linguistics (LACL 2012), Lecture Notes in Artificial Intelligence

Vol. 7351, pp. xxx-xxx, Springer, Berlin, Heidelberg, 2012.

Abstract. Our main concern is to provide a complete picture of how
coTAGs, as a particular variant within the general framework of tree
adjoining grammars (TAGs), can be captured under the notion of abstract
categorial grammars (ACGs). coTAGs have been introduced by Barker
[1] as an “alternative conceptualization” in order to cope with the tension
between the TAG-mantra of the “locality of syntactic dependencies”
and the seeming non-locality of quantifier scope. We show how our
formalization of Barker’s proposal leads to a class of higher order ACGs.
By taking this particular perspective, Barker’s proposal turns out as a
straightforward extension of the proposal of Pogodalla [11], where the
former in addition to “simple” inverse scope phenomena also captures
inverse linking and non-inverse linking phenomena.

1 Introduction

In [1], Barker sketches an alternative approach to semantics in the tree adjoining
grammar (TAG)-framework,3 which he refers to as coTAG-approach, after the
extension of the modified substitution operation, cosubstitution. The presentation
in [1] is simple and intuitive, tying the scope of a quantificational noun phrase
together with its position in the derivation. The approach is presented via
examples, however, and is not formalized. As far as the syntactic component is
concerned, it does, interestingly, preserve the weak and strong generative capacity
of “classical” TAGs, though, clearly, not the derivation sets, as we will make
precise here.

Our contribution in this paper is to formalize coTAGs. We use the formalism
of abstract categorial grammars (ACGs) [3], which has already been used to
formalize TAGs in, e.g., [4, 10, 11]. We present a mapping from coTAG-lexica
to ACGs, and demonstrate that it coincides with the informal examples from
Barker’s paper. The mapping has as a special case the one of de Groote and
Pogodalla for TAGs. Of particular interest is the fact that our mapping reveals
Barker’s treatment of scope taking in coTAGs to be largely identical to the
TAG-inspired ACG-analysis of Pogodalla [11].

The paper is structured as follows. We begin with an (informal) introduction
to coTAGs in Sec. 2. Then, in Sec. 3, we present abstract categorial grammars,
which we use to formalize coTAGs in Sec. 4. Section 5 is the conclusion.

3 We assume the reader to be familiar with the basics of the TAG-framework. See e.g.
[6] or [7] for an introduction to TAGs.

2 CoTAGs

For A a set of atomic types, T (A) is the set of types over A, the smallest superset
of A closed under pair formation, i.e., A ⊆ T (A), and if α, β ∈ T (A) then (αβ) ∈
T (A). We sometimes omit outer parentheses when writing types. We sometimes
write α1 α2 α3 instead of α1(α2 α3), and α1 · · ·αk+1 instead of α1(α2 · · ·αk+1)
for k ≥ 2 and types α1, . . . , αk+1 ∈ T (A), where α1(α2 · · ·α3) = α1(α2 α3). We
write αk+1 β instead of ααkβ for k ≥ 1 and types α, β ∈ T (A), where α1 = α.

For Cat a set of categories, i.e., a set of non-terminals in the sense of a
classical TAG, let τCat : Cat → T (ACat) be a type assigning function with ACat a
set of atomic types. τCat uniquely determines the function τ̂Cat given next, which
assigns a type from T (ACat) to each δ ∈ Cat ({↑}Cat)∗{↓}?, where ↑ and ↓ are
two distinct new symbols not appearing in Cat .4 For each δ ∈ Cat ({↑}Cat)∗{↓}?,
we use its boldface variant, δ, to denote τ̂Cat (δ): if δ ∈ Cat , we have δ = τCat (δ).
If δ = ζ↓ for some ζ ∈ Cat ({↑}Cat)∗, we have δ = ζ. If δ = ζ↑γ for some
ζ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , we have δ = ((ζ γ)γ), and we often write ζ↑γ
instead of ((ζ γ)γ) in this case.

A coTAG can be defined as an octuple 〈VT , Cat , ACat , τ̂Cat , I × I ′,A×A′,_ ,S〉,
where VT , Cat and ACat are a set of terminals, a set of categories and a set of
atomic types, respectively. τ̂Cat is the extension to the domain Cat ({↑}Cat)∗{↓}?
of a type assigning function τCat : Cat → T (ACat) in the above sense. S is a
distinguished category from Cat , the start symbol. The set (I × I ′)∪ (A×A′) is
a finite set of pairs of finite labeled trees which supplies the lexical entries of G.

The first component of a pair 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A×A′) provides the
syntactic, the second component the semantic representation of the corresponding
lexical entry. Nodes in αsyn are linked to nodes in αsem by the relation _. An
operation applying to some node in αsyn must be accompanied by a parallel
operation applying to the linked node(s) in αsem. Regarding the projection to
the first component of this general connection between syntactic and semantic
representations, coTAGs are nearly identical to classical TAGs: labels of inner
nodes are always from Cat . The labels of the root and the foot node of a syntactic
coTAG-auxiliary tree are, as in the regular TAG-case, from Cat and Cat {?},
respectively, and up to the foot node indicating ?-suffix both labels coincide.
But whereas the root nodes of TAG-initial trees and the substitution nodes of
arbitrary TAG-trees are labeled with elements from Cat and Cat {↓}, respectively,
the root nodes of syntactic coTAG-initial trees and the substitution nodes of
arbitrary syntactic coTAG-trees have labels from the sets Cat ({↑}Cat)∗ and
Cat ({↑}Cat)∗{↓}, respectively.5 That is to say, except for the differences with
respect to the possible labeling of roots and substitution nodes, the 5-tuple

4 For any set A, A∗ is the set of all finite strings over A, including ε, the empty string.
We identify A with the set of strings of length 1 over A, and take A? to denote an
optional occurrence of an element from A (in a string), i.e., the set of strings A∪{ε}.

5 For δ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , we write δ↑ instead of δ↑γ, and δ↑ instead of
δ↑γ in case γ = S.

〈VT , Cat , I,A,S〉 constitutes a classical TAG, in particular providing a set of
initial elementary trees, I, and a set of auxiliary elementary trees, A.

In a somewhat relaxed sense, the projection to the second component provides
a TAG as well. Given a lexical entry 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A × A′) , the
relation _ links the root node of αsyn to the root node of αsem, terminal nodes
to terminal nodes, substitution nodes to substitution nodes and, in case αsyn is
an auxiliary tree, the foot node to the foot node. For these nodes it holds that,
if δ ∈ Cat ({↓}Cat)∗{↑}? is the syntactic label then δ = τ̂Cat (δ) is the semantic
label of the linked node, if w ∈ VT is the syntactic label then w ∈ VT is the
semantic label too. More concretely, up to a certain extent, we may think of the
5-tuple 〈V ′T , T (ACat), I ′,A′,S〉 as a TAG, where V ′T = VT ∪ X ∪ Con ∪ {λ} with
X being a denumerable set of variables, and Con being a set which consists at
least of the “usual” logical connectives and quantifiers of FOL.

For each αsem ∈ I ′ ∪ A′ the node-labeling is constrained via τ̂Cat by the
relation linking nodes of αsem to those of the syntactic tree paired to αsem in the
lexicon. The “plain” yield of a αsem is a string over V ′T ∪ T (ACat). By definition
we additionally demand the hierarchical tree structure to uniquely determine a
closed well-typed lambda-term associated with the yield: if ν is an interior node
in αsem then the label of ν, label(ν) is a type from T (ACat), and ν has either one,
two or three children. We distinguish these cases as i.1), i.2) and i.3), respectively.

i.1) Let µ be the single child of ν. µ’s label, label(µ), is always in V ′T . label(ν)
is virtually determining the type of label(µ), and for each node ν′ of some
α′ ∈ I ′ ∪ A′ with a child of ν′ labeled label(µ), label(ν) = label(ν′) holds.

i.2) Both children have a label from T (ACat). Say, the first child, µ1, has label
label(µ1), and the second, µ2, label label(µ2). The labels are compatible with
functional application in the sense that label(µ1) = label(µ2)label(ν) holds.

i.3) The first child, µ0, is labeled λ. The second child, µ1, and the third child,
µ2, are labeled by label(µ1) and label(µ2), respectively. As in i.2), label(µ1)
and label(µ2) are from T (ACat), but now they virtually cope for lambda
abstraction, i.e., label(ν) = (label(µ1)label(µ2)) holds. In addition, µ1, is
necessarily dominating a single node labeled by a variable x ∈ X . The logical
scope of the thus virtually instantiated lambda abstraction over x is given by
the subtree of ν rooted in µ2.

If ν is a terminal node in αsem ∈ I ′ ∪A′ and ν’s label, label(ν), is from V ′T , ν
is always the leftmost child of its parent node. In case label(ν) = λ, ν has exactly
two sister nodes. In case label(ν) ∈ V ′T − {λ}, ν is the unique child of its parent.
If ν is a terminal node in αsem and its label is not from V ′T , then its label is from
T (ACat).

In order to arrive at a closed well-typed lambda-term associated with the
yield of some αsem ∈ I ′∪A′, we have to replace each leaf-label from T (ACat) (i.e.,
each label of some substitution node and, if existing, the foot node) by a fresh
variable of the corresponding type, and to lambda-abstract over this variable
again.

As a “consequence” of the parallels between a TAG- and a coTAG-lexicon,
the metaphor of constructing expressions in a coTAG is very similar to how it

〈 γ

δ↓
,

γ

δ
〉

+

〈 δ
,

δ 〉
〈

γ

δ ,

γ

δ 〉

Fig. 1. Substitution schematically: syntactically, tree with root-label δ is substituted at
leaf labeled δ↓ in tree with root-label γ; while semantically, the corresponding tree with
root-label δ is substituted at leaf labeled δ in the corresponding tree with root-label γ.

〈
γ

δ ,

γ

δ 〉
+

〈 δ

δ?
,

δ

δ
〉

〈
γ

δ

δ
,

γ

δ

δ
〉

Fig. 2. Adjoining schematically: syntactically, tree with root-label δ and foot node-label
δ? is adjoined at interior node labeled δ in tree with root-label γ; while semantically,
the corresponding tree with root-label δ and foot node-label δ is adjoined at interior
node labeled δ in the corresponding tree with root-label γ.

is in regular TAGs with one important difference. More concretely, we have the
operations of substitution and adjunction in the “classical” sense, cf. Fig. 1 and
2. But in addition a derived structure with syntactic root-label δ↑γ for some
δ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , can be cosubstituted into a derived structure
with syntactic root-label γ at a leaf labeled δ↓ at any point in the derivation.
Within the resulting semantic representation, new terminal leaves are introduced
labeled by λ and a variable x. The operation is set up such that x is chosen to
be “fresh,” cf. Fig. 3.

〈 γ

δ↓
,

γ

δ
〉

+

〈 δ↑γ
,

δ↑γ 〉
〈

γ

δ ,

γ

δ↑γ (δ γ)

λ δ

x

γ

δ

x

〉

Fig. 3. Cosubstitution schematically: syntactically, tree with root-label δ↑γ is cosub-
stituted at leaf labeled δ↓ in tree with root-label γ ∈ Cat ; while semantically, the
corresponding tree with root-label δ↑γ is “quantified in” at the root of the correspond-
ing tree with root-label γ.

The semantic result of applying two cosubstitution steps depends on the
order in which those steps are applied, no matter whether the two steps do not
derivationally depend on each other. Accordingly, we require a novel notion of
derivation to represent this “timing” information. An ACG-based representation
of this notion we will be concerned with in Sec. 4. We defer a somewhat more
detailed semantic analysis to that section, but emphasize that—in the same way
as outlined above for elementary semantic trees—for any given derived semantic
tree, closed well-typed lambda-terms may be read off “left to right” from the
yield taking into account the hierarchical tree structure.

(αevery)

〈
1 ↑DP↑ 1

3 ↓NP↓ 32D 2

every

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

every

〉
(αsome)

〈
1 ↑DP↑ 1

3 ↓NP↓ 32D 2

ysome

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

ysome

〉
(αboy) (αgirl)〈 1NP 1

boy

,
1 (e t) 1

boy
〉 〈 1NP 1

girl

,
1 (e t) 1

girl
〉

(αloves)

〈
1S 1

3VP 3

5 ↓DP↓ 54V 4

lovesy

2 ↓DP↓ 2

,

1 t 1

2(e 23 (e t) 3

5(e 54 (e (e t)) 4

lovesy

〉

Fig. 4. The example coTAG Gscope (part 1)

As a concrete example, consider the grammar Gscope presented in Fig. 4 and
5, where S is supposed to be the start symbol, and e and t the atomic types.6

Part 1 of Gscope, as given in Fig. 4, allows deriving the sentence every boy loves
some girl. One can start deriving this sentence either by substituting boy into
every, and then cosubstituting every boy into the subject position of loves as
shown in Fig. 6, or by substituting girl into some, and then cosubstituting some
girl into the object position of loves as shown in Fig. 7. Both complete derived
pairs of structures for the sentence are given in Fig. 8. As desired, the derived
syntactic surface trees are identical.

Part 2 of Gscope, as given in Fig. 5, would in principle allow us to derive an
NP with an embedded PP like, e.g., senator from every city in two different ways

6 Links will usually be marked with diacritics of the form n for some n ≥ 1. We may
occasionally avoid explicitly mentioning the links between nodes of the syntactic
and the semantic representation, when we think the canonical linking is obvious.

(αfrom-inverse linking)

〈
1NP 1

3PP 3

5 ↓DP↓ 54P 4

fromy

2
?NP?

2

,

1 (e t) 1

t

t

e

x

(e t) 2

(t t)

t

e

x

3 (e t) 3

5(e 5(e (e t)) 4

fromy

(t(t t))

∧

e

x

λ

〉

(αfrom-linear scope)

〈
1NP 1

3PP 3

5 ↓↑DP↑↓ 54P 4

fromy

2
?NP?

2

,

1 (e t) 1

t

t

e

x

(e t) 2

(t t)

t

(e t)

t

e

x

3 (e t) 3

5(e 5

y

(e (e t)) 4

fromy

e

y

λ

5 ((e t) t) 5

(t(t t))

∧

e

x

λ

〉

Fig. 5. The example coTAG Gscope (part 2)

providing us with the two different scope readings in a sentence like a senator
from every city sleeps: the inverse linking-reading and the linear scope-reading.
Note that, though not strictly linear, the lambda-terms (implicitly) associated
with the semantic component are still almost linear, since the variables appearing
more than once are dominated by an atomic type.7

3 Abstract Categorial Grammars

An abstract categorial grammar (ACG) [3] is a quadruple 〈Σ1, Σ2,L, s〉 consist-
ing of an “alphabet” Σ1 from which underlying structures are determined, an
“alphabet” Σ2 from which possible surface structures are determined, a pair of
mappings L realizing underlying structures as surface structures, and a distin-
guished “start” symbol s provided by Σ1. Particular to ACGs is that underlying

Also recall our convention to write δ↑ instead of δ↑S, and δ↑ instead of δ↑S for
δ ∈ Cat ({↑}Cat)∗ and the start symbol S.

7 More concretely, the notion of almost linear employed here is the same as used by
Kanazawa [8]: a lambda-term is almost linear if it is a lambda I -term such that any
variable occurring free more than once in any subterm has an atomic type.

〈
1S 1

3VP 3

5 ↓DP↓ 54V 4

loves

2DP 2

7NP 7

boy

6D 6

every

,

1S 1

(DP S)

S

()DP

x

3VP 3

5()DP 54V 4

lovesy

DP

x

λ

2↑DP↑ 2

7NP 7

boy

6D 6

5 every 5
〉

Fig. 6. Cosubstituting every boy into the subject position before filling the object
position of loves: derived syntactic and semantic tree.

〈

1S 1

3VP 3

5DP 5

7NP 7

girl

6D 6

some

4V 4

loves

2 ↓DP↓ 2

,

1S 1

(DP S)

S

2()DP 23VP 3

()DP

y

4V 4

lovesy

DP

y

λ

5↑DP↑ 5

7NP 7

girl

6D 6

7 some 7
〉

Fig. 7. Cosubstituting some girl into the object position before filling the subject
position of loves: derived syntactic and semantic tree.

〈

1S 1

3VP 3

5DP 5

9NP 9

girl

8D 8

some

4V 4

loves

2DP 2

7NP 7

boy

6D 6

every

,

1S 1

(DP S)

S

(DP S)

S

()DP

x

3VP 3

()DP

y

4V 4

lovesy

DP

x

λ

2↑DP↑ 2

7NP 7

boy

6D 6

every

DP

y

λ

5↑DP↑ 5

9NP 9

girl

8D 8

some 〉

〈

1S 1

3VP 3

5DP 5

7NP 7

girl

6D 6

some

4V 4

loves

2DP 2

9NP 9

boy

8D 8

every

,

1S 1

(DP S)

S

(DP S)

S

()DP

x

3VP 3

()DP

y

4V 4

lovesy

DP

y

λ

5↑DP↑ 5

7NP 7

girl

6D 6

some

DP

x

λ

2↑DP↑ 2

9NP 9

boy

8D 8

every 〉

Fig. 8. The two complete derived pairs of structures of every boy loves some girl.

and surface structures are given as (almost) linear terms of the simply typed
lambda calculus.8 Accordingly, the “alphabets” are higher-order signatures of the
form Σ = 〈A,C, τ〉, where A is a finite set of atomic types, C is a finite set of con-
stants, and τ : C → T (A) assigns a type to each constant.9 Given a denumerably
infinite set X of variables, we define a (type) environment to be a partial, finite
mapping Γ : X → T (A), which we typically write as a list x1 : α1, . . . , xn : αn.
Given environments Γ and ∆, the composite type environment Γ,∆ is defined
iff their domains are (almost) disjoint, in which case Γ,∆ is the union of Γ and
∆.10 For Λ(Σ), the set of (untyped) lambda-terms build on Σ,11 we say that a
term M ∈ Λ(Σ) has type α ∈ T (A) in environment Γ (written Γ `Σ M : α) just
in case it is derivable using the inference rules in Figure 9.

`Σ c : τ(c) for c ∈ C x : α `Σ x : α for x ∈ X and α ∈ T (A)

Γ, x : α `Σ M : β

Γ `Σ (λx.M) : (αβ)

Γ `Σ M : (αβ) ∆ `Σ N : α

Γ,∆ `Σ (MN) : β

Fig. 9. ACG-inference rules

Given an ACG G = 〈Σ1, Σ2,L, s〉 with Σi = 〈Ai, Ci, τi〉 and s ∈ A1, the
abstract language of G, A(G), is the set {M | `Σ1

M : s}. The object language of

G, O(G), is the set {θ̂(M) |M ∈ A(G)}. More concretely, O(G) is the image of
A(G) under the pair of mappings L = 〈σ, θ〉, referred to as the lexicon from Σ1

to Σ2, which meets the conditions:

1. σ : A1 → T (A2) is the kernel of the type substitution σ̂ : T (A1) → T (A2)
obeying σ̂ � A1 = σ, and σ̂((αβ)) = (σ̂(α)σ̂(β))

2. θ : C1 → Λ(Σ2) specifies θ̂ : Λ(Σ1)→ Λ(Σ2) by setting θ̂(c) = θ(c), θ̂(x) = x,

θ̂(MN) = θ̂(M)θ̂(N), and θ̂(λx.M) = λx.θ̂(M)
3. `Σ2

θ(c) : σ̂(τ1(c)) for all c ∈ C1

By abuse of notation, L will usually be used to denote both σ and θ, and also
their respective extensions σ̂ and θ̂.

8 As to the notion of an almost linear lambda-term cf. fn. 7.
9 Recall that T (A) is the smallest superset of A closed under pair formation, i.e.,
A ⊆ T (A), and if α, β ∈ T (A) then (αβ) ∈ T (A).

10 Almost disjoint is meant to denote the restriction that, if x : α belongs to the
intersection Γ ∩∆ then the type assigned to x is atomic, i.e., α ∈ A.

11 That is, Λ(Σ) is the smallest set such that C∪X ⊆ Λ(Σ), and such that (MN) ∈ Λ(Σ),
and (λx.M) ∈ Λ(Σ) for M,N ∈ Λ(Σ) and x ∈ X . We omit outer parentheses
when writing lambda-terms, and we write M1M2M3 instead of (M1M2)M3, and
M1 · · ·Mn+1 instead of (M1 · · ·Mn)Mn+1 for n ≥ 2 and M1, . . . ,Mn+1 ∈ Λ(Σ),
where (M1 · · ·M2) = M1M2. We write λx.M N instead of λx.(M N), λx1x2.M
instead of λx1.λx2.M , and λx1 . . . xn+1.M instead of λx1.λx2 . . . λxn.M for n ≥ 2,
x, x1, . . . , xn ∈ X and M,N ∈ Λ(Σ), where λx2 . . . λx2.M = λx2.M .

An ACG G belongs to the class ACG(m,n) iff the maximal order of the types
of any of its abstract constants is less than or equal to m, and the maximal
order of the type assigned to any constant by the lexicon is less than or equal to
n. The order of a type α, ord(α), is given recursively: For each atomic type a,
ord(a) = 1. For each two types α and β, ord((αβ)) is the greater of ord(β) and
ord(α) + 1. For each m, ACG(m) denotes the class of all mth-order ACGs, i.e.,
ACG(m) =

⋃
n≥1ACG(m,n).

As shown by Salvati [12], if only ACGs of the form 〈Σ1, Σ2,L, s〉 are considered
where Σ2 is a string signature,12 ACG(2) derives exactly the string languages
generated by set-local multicomponent TAGs, or likewise, a series of other weakly
equivalent grammar formalisms. Kanazawa [9] proves that, similarly, if Σ2 is a
tree signature,13 ACG(2) derives exactly the tree languages generated by, e.g.,
context-free graph grammars [2], or likewise, hyperedge replacement grammars [5].

One of the advantages of ACGs is that they provide a logical setting in which
the abstract language can be used as a specification of the derivation set of a
grammar instantiation of some grammar formalism, and that by applying two
different lexicons to the abstract language, we can “simultaneously” obtain a
syntactic object language and a semantic object language.

4 CoTAGs as ACGs

In order to translate a coTAG into an ACG, we build on the methods previously
developed by de Groote and Pogodalla. De Groote [4] has shown how a regular
TAG can be translated into a second-order ACG on trees. Pogodalla [10, 11] has
shown how those techniques can be extended in order to define a third-order
ACG which, “in parallel” to the syntactic derivation, by means of a different
semantic object language provides the two different scope readings in a sentence
like every boy likes some girl.

Let GcoTAG = 〈VT , Cat , ACat , τ̂Cat , I × I ′,A×A′,_ ,S〉 be a coTAG.
For expository reasons we assume that no node-label of any tree from I ∪A is

of the form S↑γ or S↑γ↓ for some γ ∈ Cat ({↑}Cat)∗. In other words, the simple
category S “is never lifted.”

First let Σabs = 〈Aabs, Cabs, τabs〉 be the higher-order signature, where

Aabs = {δ•, δ•A | δ ∈ Cat }

∪
{
ζ↑δ•, ζ•, δ•

∣∣∣ ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat with
ζ↑δ or ζ↑δ↓ labeling a node of some α ∈ I ∪ A

}
,14

Cabs = {idX |X ∈ Cat } ∪ {α |α ∈ I ∪ A}
∪ {α |α ∈ I and α’s root-label belongs to Cat {↑}Cat ({↑}Cat)∗}

12 That is, Σ2 consists of the single atomic type o and assigns to each alphabet constant
a the type (o o)

13 That is, Σ2 consists of the single atomic type o and assigns to each constant a of
“rank” n the type on+1, where o1 = o and on+1 = (o on)

14 Following the notational convention introduced above, we write δ↑• instead of δ↑S•

for δ ∈ Cat ({↑}Cat)∗ and the start symbol S.

In order to make the typing function τabs more precise, consider α ∈ I ∪ A
with root-label γ ∈ Cat ({↑}Cat)∗. Let ν1, . . . , νm be the interior nodes of α
except for the root, and let νm+1, . . . , νm+n be the substitution sites of α.15

Furthermore, let γi ∈ Cat be the label of νi for 1 ≤ i ≤ m, and let δi↓ be the
label of νm+i for 1 ≤ i ≤ n, where δi ∈ Cat ({↑}Cat)∗. The type of the constant
α is defined as follows: for α ∈ I, let τabs(α) = γ•

Aγ
•
1A · · ·γ•

mAδ
•
1 · · · δ•nγ•. For

α ∈ A, let τabs(α) = γ•
Aγ

•
1A · · ·γ•

mAδ
•
1 · · · δ•nγ•

Aγ
•
A. If α ∈ I, and if γ = ζ↑δ

for some ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat , the type of the additionally existing
constant α is defined in the following way:16 τabs(α) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nγ◦.17

For each X ∈ Cat , the type of the constant idX is defined by τabs(idX) = X•
A.

In the way the abstract constants resulting from elementary trees are typed,
adjunction at the adjunction sites of an elementary tree becomes obligatory.
The abstract constants idX for X ∈ Cat have been introduced to provide the
possibility of “vacuous” adjunction.

As to our example coTAG Gscope, the abstract typing function τabs assigns
the following types to the abstract constants resulting from the lexical entries:18

τabs(αevery) = D•A NP• (DP• S•) S• τabs(αevery) = D•A NP• DP↑•

τabs(αsome) = D•A NP• (DP• S•) S• τabs(αsome) = D•A NP• DP↑•

τabs(αboy) = NP•A NP•

τabs(αgirl) = NP•A NP•

τabs(αloves) = S•A VP•A V•A DP• DP• S•

τabs(αfrom inverse linking) = NP•A PP•A P•A DP• NP•A NP•A

τabs(αfrom linear scope) = NP•A PP•A P•A DP↑• NP•A NP•A

Representing derivations We next give the ACGGder = 〈Σabs, Σder,Lder,S
•〉.

The higher-order signature Σabs provides us with an abstract language represent-
ing the coTAG-derivations including information on the derivational order. This
is achieved qua lambda-terms whose order are greater than 2. The higher-order
signature Σder provides us, via the lexicon Lder, with the object language. In
case we stick to coTAGs in a normalized form (see below), the object language
represents the “plain” TAG-derivation trees of the coTAG, i.e., the object lan-
guage provides representations of the derivations which (without distinguishing

15 Regarding the tree structure, we assume the interior nodes ν1, . . . , νm to be ordered
“top-down, left-to-right,” and the substitution nodes νm+1, . . . , νm+n “left-to-right.”.

16 For each γ ∈ Cat ({↑}Cat)∗ such that γ = ζ↑δ for some ζ ∈ Cat ({↑}Cat)∗ and
δ ∈ Cat , we take the “circled” boldface version γ◦ to denote the type (ζ•δ•) δ•.

17 That is, we allow adjunction at the root of an initial tree only if the root-label is a
“simple” category.

18 To avoid notational overload, we use the name of a lexical entry of Gscope, when
referring to the abstract constant typed with regard to the first, i.e. the syntactic,
component of the entry.

between the operations of substitution and cosubstitution) keep track only of
which operation was applied at which node by using which trees, and which do
not keep track of the relative order in which the operations took place.

More concretely, we have Σder = 〈Aabs, {β′ |β ∈ Cabs}, τder〉, and the lexicon
Lder of the ACG Gder and the typing function τder of the higher-order signature
Σder are given in the following way: as a mapping from types to types, Lder

functions as identity mapping. For each X ∈ Cat , the abstract constant idX
is mapped to λx. x under Lder. For α ∈ I ∪ A, we have τder(α

′) = τabs(α) and
Lder(α) = α′. For α ∈ I with root-label γ such that γ = ζ↑δ for some ζ ∈ Cat ({↑
}Cat)∗ and δ ∈ Cat , and with τabs(α) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nγ◦, we also have

τder(α
′) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nζ• and Lder(α) = λy1 . . . ym+nf. f(α′y1 · · · ym+n),

where the variable f is of type (ζ• δ•). That is, in case the root-label of an
elementary tree consists of a (possibly multiple) lifted type, we “undo” the (last)
type lifting.

Put differently, the lexicon Lder is quite simple, and is based on viewing higher-
order constants as literally type lifted versions of themselves:19 accordingly, an
abstract constant as, e.g., αeveryone of type ((DP• S•) S•) would be mapped to
λP.P α′everyone, where the variable P is of type (DP• S•), and where α′everyone is
the object constant of type DP• associated with the elementary tree for everyone
in the TAG-grammar obtained from the syntactic component of the corresponding
lexical entry αeveryone of the coTAG-grammar by removing all arrow annotations.
Abstract constants without arrow annotations are simply mapped to “themselves”
as is, e.g., demonstrated by Lder(αloves) = α′loves and τder(α

′
loves) = τabs(αloves).

Applying this lexicon to a simple example is illustrative:20

Lder(αeveryone(λx. αloves xαmary))

= Lder(αeveryone)Lder(λx. αloves xαmary)

= Lder(αeveryone) (λx.Lder(αloves)Lder(x)Lder(αmary))

= (λP. P α′everyone)(λx. α
′
loves xα

′
mary)

�β (λx. α′loves xα
′
mary)α′everyone

�β α′loves α
′
everyone α

′
mary

Semantic representations In Sec. 2 we have explained, how the derived
semantic trees of a coTAG determine closed well-typed lambda-terms associated
with the yields of the trees, cf. page 2. The ACG Gsem = 〈Σabs, Σsem,Lsem,S

•〉
will do nothing but making the lambda-terms of the finally derived semantic trees
concrete as its object language. Therefore, the “flat” lambda-term representation

19 In the same way as, e.g., the generalized quantifier λP.P (john) with variable P of
type (e t) is the type lifted version of the individual constant john.

20 If we were more precise, we would actually be concerned with a lambda-term like
αeveryone(λx. αloves idS idVP idV xαmary). For better readability we leave out any pos-
sible instantiations of “vacuous” adjunction indicated by a functional application to
a constant idX .

of intermediately derived semantic trees—which takes into account only the
“open slots” of the yield provided by coTAG-nonterminals—has to be enriched
by information about those interior nodes which allow adjunction. We have to
lambda-abstract about those sites by variables of appropriate type as well. As
far as the general case is concerned, we will skip further technical details how to
arrive at those lambda-terms, and look at our coTAG Gscope as an example case
below. Let us assume here, that for each semantic elementary tree αsem ∈ I ′ ∪A′,
(αsem)λ is the corresponding lambda-term.

We set Σsem = 〈ACat , {a | a ∈ VT ∪ Con}, τsem〉. In order to define τsem we
assume, without loss of generality, that each a ∈ VT ∪ Con appears as the leaf-
label of some elementary semantic tree of our coTAG-lexicon. For a ∈ VT ∪ Con,
we choose a node ν of some elementary semantic tree labeled a and let label(µ)
be the label of the parent node of ν, µ. We set τsem(a) = label(µ).21

Defining the lexicon Lsem, for each abstract atomic type δ• arising from
some δ ∈ Cat ({↑}Cat)∗, we let Lsem(δ•) = τ̂Cat (δ), and if δ ∈ Cat , we also let
Lsem(δ•A) = τ̂Cat (δ) τ̂Cat (δ). For each abstract constant αsyn, respectively, αsyn,
arising from some lexical coTAG-entry 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A ∪A′) with
αsyn ∈ I ∪ A and αsem ∈ I ′ ∪ A′ , we let Lsem(αsyn) = (αsem)λ, respectively,
Lsem(αsyn) = (αsem)λ.

As an example consider the coTAG Gscope as given in Fig. 4 and 5. The
function τsem assigning types to the (semantic) object constants is given by:

τsem(every) = (e t) (e t) t

τsem(some) = (e t) (e t) t

τsem(boy) = e t

τsem(girl) = e t

τsem(∧) = t t t

τsem(loves) = e e t

τsem(from) = e e t

The lexicon, Lsem, connecting abstract atomic types with (semantic) object
types and abstract constants with (semantic) object lambda-terms is given by

Lsem(D•) = (e t) (e t) t

Lsem(DP•) = e

Lsem(DP↑•) = (e t) t

Lsem(P•) = e e t

Lsem(PP•) = e t

Lsem(V•) = e e t

Lsem(VP•) = e t

Lsem(NP•) = e t

Lsem(S•) = t

Lsem(D•A) = Lsem(D•) Lsem(D•)

Lsem(DP•A) = Lsem(DP•) Lsem(DP•)

Lsem(P•A) = Lsem(P•) Lsem(P•)

Lsem(PP•A) = Lsem(PP•) Lsem(PP•)

Lsem(V•A) = Lsem(V•) Lsem(V•)

Lsem(VP•A) = Lsem(VP•) Lsem(VP•)

Lsem(NP•A) = Lsem(NP•) Lsem(NP•)

Lsem(S•A) = Lsem(S•) Lsem(S•)

and furthermore, for

21 By i.1) on page 2, label(µ) is uniquely determined independently of the choice of ν.

d := Lsem(D•)

dp := Lsem(DP•)

dp↑ := Lsem(DP↑•)

p := Lsem(P•)

pp := Lsem(PP•)

v := Lsem(V•)

vp := Lsem(VP•)

np := Lsem(NP•)

s := Lsem(S•)

by22

Lsem(αevery) = Lsem(αevery) = λF (d d)xnp. (F every)x

Lsem(αsome) = Lsem(αsome) = λF (d d)xnp. (F some)x

Lsem(αboy) = λF (np np). F boy

Lsem(αgirl) = λF (np np). F girl

Lsem(αloves) = λF (s s)G(vp vp)H(v v)ydpxdp. F ((G ((H loves) y))x)

Lsem(αfrom inverse linking) = λF (np np)G(pp pp)H(p p)Pnpydp.
F (λxdp. ∧ (G ((H from) y)x) (P x))

Lsem(αfrom linear scope) = λF (np np)G(pp pp)H(p p)Qdp↑Pnp.
F (λxdp. ∧ (Q (λydp. G ((H from) y)x)) (P x))

while, finally, we have

Lsem(idX) = λxLsem(X•). x for X ∈ Cat

On (co)substitution nodes For 〈VT , Cat , ACat , τ̂Cat , I ×I ′,A×A′,_ ,S〉, the
coTAG GcoTAG we started with, the nodes of the derivable syntactic trees are
labeled with strings from Cat ({↑}Cat)∗{↓}?. These labels come with seemingly
implicit compositional structure by means of the occurrences of ↑ (and ↓): given
some set of atomic types ATypes, and assigning a type γ� from T (ATypes) to each
γ ∈ Cat , it is straightforward to interpret ↑ as a type lifting operation (and ↓ as
the identity function on types), thereby recursively assigning the type ζ↓� := ζ�

to ζ↓, and ζ↑δ� := ((ζ� δ�) δ�) to ζ↑δ for ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat .23

As far as the operation of substitution is concerned, we are not exploiting this
structural potential in the translation to ACGs. Instead, given a substitution site
with syntactic node label γ↓ we are treating γ as an atomic category (label) with
regard to the coTAG, irrespective of whether γ contains any ↑ characters. We
are doing so in terms of the abstract atomic type γ• belonging to Aabs. Looking

22 As usual a superscript connected with a variable denotes the type of that variable. In
the example, the variables F,G,H indicate potential adjunction sites. Again we use
the name of a lexical entry of Gscope, when referring to the abstract constant typed
with regard to the first component of the entry, cf. fn. 18.

23 τ̂Cat as defined on page 2 is a particular instance of such a recursively defined function
· �, assigning the types ζ and (ζ δ) δ from T (ACat) to the same ζ and ζ↑δ, respectively.

at the example above, instances of such a γ• occur in terms of DP↑• within the
types assigned to αevery, αsome and αfrom linear scope via τabs.

As far as the operation of cosubstitution is concerned, the compositional
structure potential of a syntactic node label is exploited in the translation to
ACGs only in its “simplest” non-recursive form: if there are any, only the last
instance of ↑ within a syntactic root label is interpreted as a type lifting operation.
More concretely, for ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat such that ζ↑δ labels the
root of a syntactic tree, the abstract type associated with that node is (ζ• δ•) δ•,
where ζ• and δ• are atomic abstract types from Aabs. Looking at the example
above, instances of such a (ζ• δ•) δ• occur in terms of (DP• S•)S• within the
types assigned to αevery and αsome via τabs.

Technically of course, it would be straightforwardly possible to exploit “all the
way down” the compositional structure implicit in the syntactic node labels of
the coTAG in an ACG-translation: starting from our Σabs this would essentially
be achieved by

– assuming for each δ ∈ Cat , δ� and δ•A to be atomic types,
– replacing Aabs by {δ�, δ•A | δ ∈ Cat }, and
– replacing γ• by γ� for each γ ∈ Cat ({↑}Cat)∗, where γ� ∈ T ({δ� | δ ∈ Cat })

is the type assigned to γ, recursively defined as above.

This potential alternative views a coTAG as an ACG of arbitrarily high, but
lexically fixed, order. Although rather canonical from a formal perspective, this
alternative encoding of coTAGs into ACGs is incorrect—cosubstitution as defined
requires exactly third-order terms. The coTAG-grammar fragment above, e.g.,
is such that its alternative translation into an ACG does not preserve the form-
meaning relation. This is due to the fact that higher-order types can be “lowered”
by hypothetical reasoning, which cannot be simulated in the original coTAG. More
concretely, in the alternative ACG-encoding, a substitution site with syntactic
label DP↑↓ selects an argument of higher-order abstract type (DP� S�) S�,
and not atomic type DP↑•. Therefore, in ACG-terms, the substitution site can
be given as argument a term λP (DP� S�). P y, where y is an unbound variable
of type DP�. The variable y can be abstracted over at a later point in time,
giving rise to a term of type DP� S�, which can then be the argument to the
cosubstitutor of type (DP� S�) S�. Thus, the substitution for a cosubstitutor
was only “tricked” by the combinator λP. P y into “thinking” that it had already
been given the correct argument.

The lexical entry αfrom linear scope from Gscope provides a case in point. This
entry would be translated into the abstract constant αfrom linear scope of fourth-

order type NP•A PP•A P•A ((DP� S�)S�)NP•A NP•A, and as a consequence, the
following term would be well-typed:24

αevery αcity (λy. αsome (αboy (αfrom linear scope (λP. P y))) (λx. αleft x)) ,

24 We owe this example to the anonymous reviewer mentioned in the acknowledgments.
Again, for better readability we ignore “vacuous” adjunction indicated by a functional
application to a constant idX .

where the variables x and y are of type DP�, and the variable P is of type
DP� S�. This term, however, evaluates semantically to the inverse scope reading
of the noun phrase some boy from every city, despite the fact that the elementary
tree αfrom linear scope was used.

Thus, the alternative translation into higher-order ACGs is not faithful to
Barker’s original presentation. On the other hand, the higher-order ACG allows
for a single lexical item, αfrom linear scope, to derive both inverse and linear scope
readings, which might be seen as more elegant than the original coTAG-analysis.
This behavior seems to be obtainable in the coTAG-formalism if we alter the
definition of cosubstitution so as to also allow cosubstitution of trees with root-
label ζ↑δ into nodes labeled ζ↑δ↓.

5 Conclusion

We have shown how Barker’s ideas about coTAGs have a natural home in
the ACG-formalism. Our formalization makes explicit the graph structure of
coTAG-derivations, in particular the dependence in cosubstitution on both the
substitution node (in a particular elementary tree) and the derivation over which
it takes scope.

The ACG-perspective allows us to better understand the surprising fact that
coTAGs have the same strong generative capacity as regular TAGs: it is due to
the fact that the “lifted” underlying derivation is first lowered back into a regular
TAG-derivation on the syntactic side, and then interpreted to obtain a derived
tree. The crucial piece in this puzzle is our normal form theorem, which states
that every coTAG (qua ACG) has an equivalent third-order variant.

This also highlights the fact that “strong generative capacity” in the TAG-
sense, i.e. the sets of structures derivable, is not the most insightful measure of
the complexity of a grammar formalism; rather it is the relation between derived
objects and derivations (which stand proxy for meanings in a compositional
system) which provides the most insight into the grammar formalism. According
to this measure, coTAGs are much more complex than regular TAGs, whose
derivation sets are regular tree languages, and therefore, second-order ACGs.

Acknowledgments We are grateful to an anonymous reviewer for pushing us
to a much more rigorous presentation of Section 4. Any remaining lack of clarity
and errors are due to us.

References

1. Barker, C.: Cosubstitution, derivational locality, and quantifier scope. In: Proceed-
ings of the Tenth International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+10), New Haven, CT, pp. 135–142 (2010)

2. Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical
Systems Theory 20, 83–127 (1987)

3. de Groote, P.: Towards abstract categorial grammars. In: 39th Annual Meeting of
the Association for Computational Linguistics (ACL 2001), Toulouse, pp. 252–259.
ACL (2001)

4. de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In: Pro-
ceedings of the Sixth International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+6), Venezia, pp. 145–150 (2002)

5. Habel, A., Kreowski, H.J.: Some structural aspects of hypergraph languages gener-
ated by hyperedge replacement. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 87, LNCS, Vol. 247, pp. 207–219. Springer, Berlin, Heidelberg
(1987)

6. Joshi, A.K.: An introduction to tree adjoining grammars. In: Manaster-Ramer, A.
(ed.) Mathematics of Language, pp. 87–114. John Benjamins, Amsterdam (1987)

7. Joshi, A.K., Schabes, Y.: Tree adjoining grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 3, pp. 69–124. Springer, Berlin,
Heidelberg (1997)

8. Kanazawa, M.: Parsing and generation as datalog queries. In: 45th Annual Meeting
of the Association for Computational Linguistics (ACL 2007), Prague. pp. 176–183.
ACL (2007)

9. Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replacement
grammars. Journal of Logic, Language and Information 19, 137–161 (2010)

10. Pogodalla, S.: Computing semantic representation. Towards ACG abstract terms
as derivation trees. In: Proceedings of the Seventh International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+7), Vancouver, BC, pp. 64–71
(2004)

11. Pogodalla, S.: Ambigüıté de portée et approche fonctionnelle des grammaires
d’arbres adjoints. In: Traitement Automatique des Langues Naturelles (TALN
2007), Toulouse (2007), 10 pages

12. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference on
Formal Grammar, pp. 143–156. CSLI Publications, Stanford, CA (2007)

