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Abstract. Minimalist grammars (MGs) constitute a mildly context-
sensitive formalism when being equipped with a particular locality condi-
tion (LC), the shortest move condition. In this format MGs define the
same class of derivable string languages as multiple context-free grammars
(MCFGs). Adding another LC to MGs, the specifier island condition
(SPIC), results in a proper subclass of derivable languages. It is rather
straightforward to see this class is embedded within the class of languages
derivable by some well-nested MCFG (MCFGwn). In this paper we show
that the embedding is even proper. We partially do so adapting the
methods used in [13] to characterize the separation of MCFGwn-languages
from MCFG-languages by means of a “simple copying” theorem. The
separation of strict derivational minimalism from well-nested MCFGs is
then characterized by means of a “simple reverse copying” theorem. Since
for MGs, well-nestedness seems to be a rather ad hoc restriction, whereas
for MCFGs, this holds regarding the SPIC, our result may suggest we are
concerned here with a structural difference between MGs and MCFGs
which cannot immediately be overcome in a non-stipulated manner.

1 Introduction

Inspired by the work originating in [1], the formal type of a minimalist grammar
(MG) has been introduced in [28] as an attempt at a rigorous algebraic formaliza-
tion of the corresponding perspectives adopted within the linguistic framework
of transformational grammar. MGs have been shown to be capable of integrating,
if needed, a variety of arguably “odd” items from the syntactician’s toolbox such
as head movement [28, 30], (strict) remnant movement [28, 29], affix hopping [30],
copy-movement [14] and relativized minimality [31], to mention some.

Interestingly, the formal MG-setting can also be seen as having anticipated
some of the crucial developments and changes within the theoretical setting of the
minimalist branch of generative grammar since the mid of the 1990s (see e.g. [2, 3]).
Maybe the most prominent deviance from at least the original linguistic setting
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Problems on Multiple Context-Free Grammars” funded by the National Institute of
Informatics, Tokyo, Japan.



was that MGs never incorporated any so-called transderivational constraints.
However, locality conditions (LCs) applying to the move-operator have always
been of decisive nature within the formal MG-framework. A particular LC, the
shortest move condition (SMC), played a crucial role in showing that each MG
satisfying the definition in [28], and thus, obeying the SMC can be constructively
transformed into a multiple context-free grammar (MCFG) in the sense of [27]
deriving the same string language. The construction presented in [18] has not only
proven the corresponding MG-class to be mildly context-sensitive in the sense
of [11], but also led to a succinct, “chain-based” reformulation of MGs reducing
them to their “bare essentials,” cf. [32]. By means of this reformulation, MGs can
be straightforwardly interpreted as a proper subtype of MCFGs. In particular, all
corresponding MCFGs are of rank 2, i.e., the righthand side of each rule consists
of at most two nonterminals. Nevertheless, in terms of derivable string languages
the generative power of MCFGs is not reduced as shown independently in [10]
and [20].

In particular building on the work in [16], in [29] a revised MG-type has
been introduced. Throughout that paper this type is not distinguished by name
from the type introduced earlier in [28], although beside the SMC, the revised
version implicitly implements a second LC, which has been explicitly referred to
as specifier island condition (SPIC) in [5] and later work. Closely in keeping with
further theoretical linguistic considerations, in [29] also a particular type of a
strict minimalist grammar (SMG) has been introduced, implementing the SPIC
with somewhat more “strictness,” and leading to heavy pied-piping constructions.
In [19, 21] it has been shown that the SMG-class and the MG-class of revised type
define identical classes of derivable languages. From this point of view we consider
the MG-class of revised type an instance of strict derivational minimalism.

With emphasis on particular linguistic aspects, the combinatory power of
the SMC and the SPIC within the MG-framework has been discussed in [6],
formal results have been proven in different other places: we already mentioned
[18] and [10, 20] as the sources showing that the class of MCFGs and the class
of MGs obeying the SMC, but not necessarily the SPIC give rise to the same
class of derivable string languages. [15] proves MGs obeying the SPIC, but not
necessarily the SMC to be Turing complete. [26] shows that the decision problem
for MGs neither obeying the SPIC nor the SMC is as hard the the one for proof
search in multiplicative exponential linear logic (MELL) as introduced in [8].5

In [19, 21] it is shown that MGs obeying both the SMC and the SPIC derive
the same class of string language as a particular subtype of MCFGs of rank 2,
referred to in [19, 21] as the type of an MCFG1,2 . Here, we refer to this subtype
as the type of a monadic branching MCFG (MCFGmb). It plays the central role
in our paper: an MCFGmb is an MCFG of rank 2 such that for each rule with
two nonterminals appearing on the righthand side it holds that from the first
nonterminal only simple strings of terminals can be derived, i.e., only 1-tuples of
terminal strings can be derived from the first nonterminal instead of k-tuples for

5 The latter result provides a negative answer to the question, whether all languages
generated by such an MG are semilinear.



an arbitrary, but fixed k ≥ 1 as in the general MCFG-case. In fact, it can be shown
that the MCFGmb-class constitutes a proper subclass of the full MCFG-class
also in terms of derivable string languages, cf. [22]. Figure 1 is summing up the
complexity results mentioned so far concerning MGs and the interaction of SMC
and SPIC, where MCFL and MCFLmb denote the classes of derivable string
languages determined the MCFG-class and the MCFGmb-class, respectively.

MGs

– SMC , – SPIC

+ SMC , – SPIC –SMC , + SPIC

+ SMC , + SPIC

(Michaelis [18, 20], Harkema [10])

MCFL

MCFLmb $$$MCFL (Michaelis [19, 21, 22])

MELL-proof search (Salvati [26])

type 0

(Kobele and Michaelis [15])

Fig. 1. The interaction of the SMC and the SPIC with the MG-framework.

The proof presented in [22] to separate MCFLmb from MCFL builds on
the inclusion of MCFLmb within MCFLwn, the latter being the class of string
languages derivable by some well-nested MCFG (MCFGwn). MCFLwn in its
turn constitutes a proper subclass of MCFL. As pointed out, e.g., in [23], the
latter was (at least implicitly) known for quite a while. [13], however, crucially
presents a separation theorem relying on arguments on “simple copying” which
were not available in that form before. Whether the inclusion ofMCFLmb within
MCFLwn is proper, has, to the best of our knowledge, been generally open so
far. We show here that the answer is positive. We partially do so adapting the
methods used in [13]. The separation of MCFLmb from MCFLwn, and thus, of
strict derivational minimalism from well-nested MCFGs, is then characterized by
means of a “simple reverse copying” theorem.

2 Multiple Context-Free Grammars

A ranked alphabet is a finite set ∆ of the form ∆ =
⋃

k≥0∆
(k), where 〈∆(k) | k ≥ 0〉

is an indexed family of pairwise disjoint sets. The set of trees (over ∆), T (∆),
is built up recursively in the following way: If for some k ≥ 0, we have d ∈ ∆(k)



and T1, . . . , Tk ∈ T (∆) then (dT1 · · ·Tk) ∈ T (∆). In writing trees, we adopt the
abbreviatory convention of dropping the outermost parentheses. Note that in
case k = 0 the string T1 · · ·Tk is the empty string, ε, Therefore we generally omit
the parentheses in this case.

Let N and Σ be a ranked and an unranked alphabet, respectively, with
N (0) = ∅, and assume X = {xi | i ≥ 0} to be a countably infinite set of variables
ranging over Σ∗. A rule over 〈N,Σ〉 (or, simply a rule, if 〈N,Σ〉 is understood
from context) is an expression of the form

B0(α1, . . . , αk0)← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn
) (1)

for some n ≥ 0 and ki ≥ 1 for i ∈ [0, n] such that for i ∈ [0, n], Bi ∈ N (ki),
and such that for i ∈ [1, k0], αi is a string over Σ ∪ {xi,j | i ∈ [1, n], j ∈ [1, ki]},
where {xi,j | i ∈ [1, n], j ∈ [1, ki]} is a set of pairwise distinct variables from X.
In addition, each xi,j occurs at most once in α1 · · ·αk0 , the concatenation of all
αi “from left to right.” In case n = 0 such a rule is terminating, otherwise it is
non-terminating.

Definition 1. A multiple context-free grammar (MCFG), G, is a quadruple
〈N ,Σ ,P , S〉, where N is a ranked alphabet of nonterminals with N (0) = ∅,
where Σ is an unranked alphabet of terminals, where P is a finite set of rules
over 〈N,Σ〉, and where S ∈ N (1).

Let G = 〈N ,Σ ,P , S〉 be an MCFG.
For k0 ≥ 1, and corresponding B0 ∈ N (k0) and w1, . . . , wk0 ∈ Σ∗, we write

`G B0(w1, . . . , wk0) to mean that B0(w1, . . . , wk0) is derivable (in G) according
to the following inference scheme:

`G B1(w1,1, . . . , w1,k1) . . . `G Bn(wn,1, . . . , wn,kn
)

`G B0(α1, . . . , αk0)σ
(2)

where B0(α1, . . . , αk0)← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn
) is a rule in

P according to (1), where wi,j ∈ Σ∗, and where σ is the substitution which maps
each variable xi,j to wi,j .

The language derivable by G, L(G), is the set {w ∈ Σ∗ | `G S(w)}.

Definition 2. A multiple context-free language (MCFL) is a set (of strings), L,
such that there is an MCFG, G, with L(G) = L.

Let G = 〈N ,Σ ,P , S〉 be an MCFG.
If A ∈ N (k) for some k ≥ 1 then k is the arity of A, denoted by arity(A). The

dimension of G is defined as the maximum of {arity(A) |A ∈ N}.
If B0(α1, . . . , αk0)← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) is some rule

p ∈ P according to (1) then the number n is the rank of p, denoted rank(p). Thus,
p is terminating iff rank(p) = 0. The rank of G, denoted rank(G), is defined as
the maximum of {rank(p) | p ∈ P}.

For m, r ≥ 1, an m-MCFG(r) is an MCFG, G, of dimension at most m
and rank at most r. An m-MCFL(r) is an MCFL, L, such that there is an
m-MCFG(r), G, with L(G) = L for some m ≥ 1 and r ≥ 1.



We denote by m-MCFG(r) the class of all MCFGs of dimension at most m
and rank at most r, and by m-MCFL(r) the class of all MCFLs generated by
some m-MCFG(r).

We let m-MCFG, MCFG(r), MCFG, m-MCFL, MCFL(r) and MCFL
denote the classes

⋃
r≥1m-MCFG(r),

⋃
m≥1m-MCFG(r),

⋃
m,r≥1m-MCFG(r),⋃

r≥1m-MCFL(r),
⋃

m≥1m-MCFL(r) and
⋃

m,r≥1m-MCFL(r), respectively.

Theorem 1. Let L = {w#wR |w ∈ L0} for some set of strings L0.

(i) If for some m, r ≥ 1, L0 ∈ m-MCFL(r) then L ∈ 2m-MCFL(r).
(ii) If for some m, r ≥ 1, L ∈ m-MCFL(r) then L0 ∈ m-MCFL(r).

Proof (sketch). Let m, r ≥ 1. (i): constructing an 2m-MCFG(r) G with L(G) = L,
from a given m-MCFG(r) G0 with L(G0) = L0, is straightforward. (ii): the class
of m-MCFL(r) is closed under rational transductions. �

Let G = 〈N ,Σ ,P , S〉 be an MCFG.

In order to be able to talk about derivation trees of derivable facts, we will
identify P with a ranked alphabet ∆P relying on a bijection f : P → ∆P such
that for each p ∈ P , f(p) ∈ ∆(n) iff rank(p) = n. Derivation trees are trees over
the ranked alphabet ∆P . Derivation trees contexts are trees over the ranked
alphabet ∆P (Y ), where ∆P (Y )(n) = ∆

(n)
P for n ≥ 1, and ∆P (Y )(0) = ∆

(0)
P ∪ Y

with Y = {yi | i ≥ 0} being a countably infinite set of variables disjoint from ∆P .
The following inference system associates derivation trees with derivable facts
and derivation tree contexts with facts derivable from some premises:

y : B(x′1, . . . , x
′
k) ` y : B(x′1, . . . , x

′
k)

(3)

Γ1 `G T1 : B1(β1,1, . . . , β1,k1) . . . Γn `G Tn : Bn(βn,1, . . . , βn,kn
)

Γ1, . . . , Γn `G pT1 · · ·Tn : B0(α1, . . . , αk0)σ
(4)

In the first scheme, (3), it holds that y ∈ Y , B ∈ N (k) for some k ≥ 1 and x′i ∈ X.
In the second scheme, (4), it holds that p is a rule from P of the form

B0(α1, . . . , αk0)← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn)

according to (1), βi,j ∈ (Σ ∪X)∗, and σ is a substitution mapping each xi,j to
βi,j . Each Γi is a finite sequence of premises of the form z : C(x′1, . . . , x

′
k) with

z ∈ Y , and with C ∈ N (k) for some k ≥ 1 and x′i ∈ X. It is also understood that
Γi and Γj do not share any variables if i 6= j. Each Ti is a derivation tree context
over ∆P (Y ). For k ≥ 1, A ∈ N (k) and wi ∈ Σ∗ for i ∈ [1, k], it clearly holds that
`G A(w1, . . . , wk) iff `G T : A(w1, . . . , wk) for some derivation tree T over ∆P .

For each k ≥ 1, A ∈ N (k) is useful if there are wi ∈ Σ∗ for i ∈ [1, k] such that
`G A(w1, . . . , wk), and if there are y ∈ Y , x′i ∈ X for i ∈ [1, k], α ∈ (Σ ∪X)∗

and some derivation tree T over ∆P (Y ) such that y : A(x′1, . . . , x
′
k) `G T : S(α).

A ∈ N (k) is useless if it is not useful.



Let B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn
) be some

rule p ∈ P according to (1).

• p is non-deleting if for i ∈ [1, n] and j ∈ [1, ki], xi,j occurs in α1 · · ·αk0 . (5)

• p is non-permuting if for i ∈ [1, n] and j, k ∈ [1, ki], j < k implies that
the occurence (if any) of xi,j in α1 · · ·αk0 precedes the occurence (if any)
of xi,k in α1 · · ·αk0 .

(6)

• p is well-nested if it is non-deleting and non-permuting, and for every
i, i′ ∈ [1, n] with i 6= i′, j ∈ [1, ki − 1] and j′ ∈ [1, ki′ − 1], it additionally
satisfies:
α1 · · ·αk0

/∈ (Σ ∪X)∗xi,j(Σ ∪X)∗xi′,j′(Σ ∪X)∗xi,j+1(Σ ∪X)∗xi′,j′+1(Σ ∪X)∗.

(7)

• p is monadic branching if n ≤ 2, and n = 2 implies k1 = 1. (8)

Note that, if each p ∈ P is non-deleting then G is a linear context-free rewriting
system (LCFRS) in the sense of [33]; if each p ∈ P is non-permuting then G is
an MCFG in monotone function form in the sense of [19]; and if each p ∈ P is
non-deleting and non-permuting then G is an ordered simple RCG in the sense
of [34] as well as a monotone LCFRS in the sense of [17].

Definition 3. An MCFG G = 〈N ,Σ ,P , S〉 is well-nested if each rule p ∈ P is
well-nested in the sense of (7).

Definition 4. An MCFG G = 〈N ,Σ ,P , S〉 is monadic branching if each rule
p ∈ P is monadic branching in the sense of (8).

We attach the subscripts “wn” and/or “mb” to “MCFG” and “MCFL” in order
to refer to a well-nested and/or monadic branching MCFG and MCFL of corre-
sponding type. More concretely, we write “MCFGx,” “m-MCFGx,” “MCFGx(r)”
and “m-MCFGx(r)” as well as “MCFLx,” “m-MCFLx,” “MCFLx(r)” and “m-
MCFLx(r)” with x being of the form “wn”, “mb” or “wn,mb.”

We likewise do so with regard to “MCFG” and “MCFL” and the corre-
sponding (sub-)classes of MCFGs and MCFLs.

Corollary 1. For m ≥ 1, m-MCFL(1) = m-MCFLmb(1) = m-MCFLwn(1).

Proof. For m ≥ 1, m-MCFL(1) and m-MCFLmb(1) are identical by defini-
tion. The identity of m-MCFLmb(1) and m-MCFLwn(1) is a special case of
Proposition 1, because we have m-MCFLwn,mb(1)=m-MCFLwn(1). �

Theorem 2. MCFL =MCFL(2)

Theorem 3. For m ≥ 1, m-MCFLwn = m-MCFLwn(2).

Theorem 2 is a corollary of Theorem 11 of [24]. Theorem 3 is Lemma 5 of [13].



Theorem 4. For any m, r ≥ 1 let G be an m-MCFG(r).

(i) There is a non-deleting m-MCFG(r), G′, such that L(G) = L(G′).
(ii) If G ∈MCFGmb then G′ from (i) can also be chosen from MCFGmb.

Proof. This is Corollary 2.2.10 of [19] which essentially follows from both Lemma
2.2 and its concrete proof in [27]. �

Proposition 1. For m ≥ 1, r ∈ [1, 2], m-MCFLmb(r) = m-MCFLwn,mb(r).

Proof. Let G ∈ m-MCFGmb(r) for some m ≥ 1 and r ∈ [1, 2]. By (ii) of the last
theorem we can w.l.o.g. assume G to be non-deleting. Now, transform G into its
non-permuting “closure”, i.e. a non-deleting and non-permuting m-MCFGmb(r),
G′, deriving the same language (cf. Construction 2.4.3 and Corollary 2.4.4 in
[19]). Since each rule in G′ is not only non-deleting and non-permuting, but also
monadic branching, well-nestedness of such a rule holds straightforwardly. �

Proposition 2. MCFL(1) $MCFLmb.

Proof. MCFL(1) ⊆MCFLmb is an immediate consequence of the corresponding
definitions. Because of

• MCFL(1)= ET0Lfin and ET0Lfin ⊆ EDT0L, cf. [4] and [24],6
• CFL − EDT0L 6= ∅, cf. [4], and
• CFL = 1-MCFL(2) and 1-MCFL(2)⊆MCFLmb

even proper inclusion of MCFL(1) within MCFLmb holds. �

3 Separating MCFLwn from MCFL

In this section we briefly recapitulate the main results from [13], in order to
emphasize the analogies and differences to the way of separating MCFLmb from
MCFLwn presented in the next section. The first theorem is Theorem 8 of [13].

Theorem 5 (copying theorem for MCFLwn). If for some set of strings
L0, L = {w#w |w ∈ L0} holds then for each m ≥ 1, the following are equivalent:

(i) L ∈ m-MCFLwn. (ii) L ∈ m-MCFL(1).

Corollary 2. If for some set of strings L0, L = {w#w |w ∈ L0} holds then the
following are equivalent:

(i) L ∈MCFLwn. (ii) L ∈MCFL(1). (iii) L0 ∈MCFL(1).

This is Corollary 9 of [13]. It is proven there relying on two theorems, namely,
the one presented here as Theorem 5 and the equivalent version of our Theorem
1 taking into account the language {w#w |w ∈ L0} instead of {w#wR |w ∈ L0}.

Theorem 6 (separation theorem for MCFLwn). MCFLwn $MCFL.

This is Corollary 10 of [13] following from the last corollary combined with the facts
that CFL −MCFL(1) 6= ∅, and that for L0 ∈ CFL, {w#w |w ∈ L0} ∈ MCFL.
6 CFL denotes the class of all context-free languages. For definitions of the language

classes EDT0L and ET0Lfin as well as their origins see [4].



4 Separating MCFLmb from MCFLwn

We start by presenting an analog to the copying theorem for MCFLwn.

Theorem 7 (reverse copying theorem for MCFLmb). If for some set of
strings L0, L = {w#wR |w ∈ L0} holds then for each m ≥ 1, (i’) implies (ii’):

(i’) L ∈ m-MCFLmb.
(ii’) L ∈ m+ 1-MCFLwn(1) and L0 ∈ m+ 1-MCFLwn(1).

Corollary 3. If for some set of strings L0, L = {w#wR |w ∈ L0} holds then
the following are equivalent:

(i) L ∈MCFLmb. (ii) L ∈MCFL(1). (iii) L0 ∈MCFL(1).

Proof. “(iii)⇒(ii)”: special case of Theorem 1. “(ii)⇒(i)”: cf. Proposition 2.
“(i)⇒(iii)”: this is a corollary of Theorem 7. �

Lemma 1. For each L0 ∈ CFL, L = {w#wR |w ∈ L0} ∈ 2-MCFLwn.

Proof. Starting, e.g., with a CFG in Chomsky normal form generating L0, the
construction of an 2-MCFGwn(2) generating L is straightforward. �

Theorem 8 (separation theorem for MCFLmb). MCFLmb $MCFLwn.

Proof. Choose existing L0 ∈ CFL −MCFL(1). Then, by Theorem 7 and 1,
L = {w#wR |w ∈ L0} ∈ 2-MCFLwn −MCFLmb. �

The remaining part of this section is devoted to a detailed description of the
crucial points underlying a proof of Theorem 7.

Proof (sketch) of Theorem 7. For some m ≥ 1, let L ∈ m-MCFLmb. When
having shown that L ∈ m + 1-MCFLwn(1) holds, L0 ∈ m + 1-MCFLwn(1)
follows from Theorem 1 and Corollary 1(ii).

Let G = 〈N,Σ ∪ {#}, P, S〉 be an m-MCFGmb with L(G) = L. W.l.o.g. G
is well-nested by Proposition 1, thus, in particular, each p ∈ P is non-deleting.
Moreover, we can w.l.o.g. assume that each A ∈ N is useful and derives an infinite
set of tuples of strings over Σ, i.e., {〈w1, . . . , wk〉 ∈ (Σ∗)k | `G A(w1, . . . , wk)}
is infinite for k = arity(A). Trivially, Σ can be chosen such that Σ ∩ {#} = ∅.

Depending on G, in (21)-(24) we construct a G′ ∈ m+ 1-MCFGwn(1) with
L(G′) = L. Before doing so, the crucial properties of G virtually employed by G′

are carefully revealed step by step, and the presented technical details providing
a precise characterization of those properties are summed up in Fig. 4. In a
nutshell, we are concerned with the following situation as to G:

if `G T : S(ŵ# ŵR) for some derivation tree T over ∆P and ŵ ∈ Σ∗,
then looking at T from a bottom-up perspective, the unique instance
of “#” appearing in the derived string ŵ#ŵR is successively passed
on upward from the leftmost leaf of the tree to the root, i.e. along the
tree’s leftmost path, and within no other node of the tree any instance
of # is created or manipulated in another way.

(9)



Consider p ∈ P with rank(p) = 2. Because it is monadic branching, p is of the
form B0(α1, . . . , αk0)← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn

) according to
(1) such that n = 2 and k1 = 1. We set A = B0, B = B1 and C = B2, and also
k = k0, l = k2, x′0 = x1,1 and x′i = x2,i for i ∈ [1, k2]. Thus, p is of the form

A(α1, . . . , αk)← B(x′0), C(x′1, . . . , x
′
l) (10)

Since A, B and C are useful, there are vi ∈ (Σ ∪ {#})∗ for i ∈ [1, k],
ui ∈ (Σ ∪ {#})∗ for i ∈ [0, l] and derivation trees TB and TC over ∆P , and there
are y ∈ Y , x′′i ∈ X for i ∈ [1, k], α ∈ (Σ ∪ {x′′i | i ∈ [1, k]})∗ and a derivation tree
context T̃S over ∆P (Y ) such that

`G pTBTC : A(v1, . . . , vk) and y : A(x′′1 , . . . , x
′′
k) `G T̃S : S(α) (11)

and
`G TB : B(u0) and `G TC : C(u1, . . . , ul) (12)

We will crucially show that (16) and (18) and, therefore, (20) hold, i.e., we
will show a) that u0 contains exactly one instance of #, while for i ∈ [1, l], ui

does not contain any such instance, b) that l > 1 and c) that, therefore, in case
k > 1, A cannot appear itself on the righthand side of any strictly binary rule
from P . These properties essentially imply (9).

a) Since by choice of G each rule is non-deleting, and because each w̃ ∈ L(G)
is of the form w#wR for some w ∈ Σ∗, from (11) and (12), it follows that

ui ∈ Σ∗{#, ε}Σ∗ holds for each i ∈ [0, l], but ui ∈ Σ∗{#}Σ∗ is true
for at most one i ∈ [0, l], (13)

and, in particular, there exist a unique j0 ∈ [1, k] and v, v ∈ (Σ ∪ {#})∗ with

vj0 = v u0 v (14)

Suppose, u0 ∈ Σ∗. Then again, because of (11) and (12), and since by choice
of G each of its rules is non-deleting, there are w1, w2 ∈ Σ∗ such that, w.l.o.g.,

`G S(w1u0w2#(w1u0w2)R) and thus, `G S(w1u
′w2#(w1u0w2)R) (15)

whenever `G T ′B : B(u′) for some u′ ∈ Σ∗ and some derivation tree T ′B over ∆P .
Figure 2 depicts the situation as fixed in (11)-(15). However, having chosen G

such that, in particular, the nonterminal B derives an infinite set of strings over
Σ, (15) yields a contradiction to the fact that each element in L(G) is of the
form w#w for some w ∈ Σ∗. In other words, in combination with (13), we have

u0 ∈ Σ∗{#}Σ∗ and ui ∈ Σ∗ for i ∈ [1, l] (16)

b) Suppose, l = 1. Then, we can again derive a contradiction. We can do so
analogously to the case resulting from the assumption that u0 ∈ Σ∗: because
u1 ∈ Σ∗ by (16), we can conclude that there are w1, w2 ∈ Σ∗ such that, w.l.o.g.,

`G S(w1u1w2#(w1u1w2)R) and thus, `G S(w1u
′w2#(w1u1w2)R) (17)



S(w1 u
′ w2 # (w1 u0 w2)R )

eTS

A( v1 , . . . , vj0−1 , v u
′ v , vj0+1 , . . . , vk )

B(u′ )

T ′B

C(u1 , . . . , ul )

TC

Fig. 2. Derivation tree according to (11)-(15).

whenever `G C(u′) for some u′ ∈ Σ∗. By choice of G, the nonterminal C derives
an infinite set of strings over Σ, and therefore the assumption l = 1 allows us to
derive strings from S which are not in L(G). Thus, it must hold that

l > 1 (18)

c) Let TS be the derivation tree over ∆P which results from substituting the
variable y ∈ Y within the derivation context T̃S over ∆P (Y ) by pTBTC . Recall,
once more, that each rule of G is non-deleting. Thus, from (11)-(14) and (16) it,
moreover, follows that there are u, u, w,w ∈ Σ∗ such that

u0 = u#u , vi ∈ Σ∗ for i 6= j0 and `G TS : S(w v u#u v w) (19)

The situation as fixed in (11)-(14), (16) and (19) is displayed in Fig. 3. Taking
into account the above considerations on the nonterminal C, in particular, the
properties expressed in (16) and (18), it becomes clear that in case k > 1,

A cannot appear on the righthand side of any p′ ∈ P with rank(p′) = 2. (20)

If A did so, L(G) would, contradicting its definition, include a string consisting
of more than one instance of #. Recall that vj0 ∈ Σ∗{#}Σ∗ by (14) and (16).

Thus, TS and wvu are in fact respective instances of a derivation tree T
and a string ŵ in the sense of the above “nutshell” (9). More concretely, for
some m(S) ≥ 0 there is a finite sequence of derivation tree contexts over ∆P (Y ),
〈Vj〉0≤j≤m(S), such that V0 is a tree over ∆P with no occurrence of variables, and
such that for j ∈ [1,m(S)], Vj is a tree over ∆P ({yj}) with exactly on instance
of yj occurring in Vj .

Furthermore, if W0 = V0, and if for j ∈ [1,m(S)], Wj is the result of
substituting yj within Vj by Wj−1 then Wm(S) = TS .

Each Vj is built up in the following way:



S(w v u#u v w )

eTS

A( v1 , . . . , vj0−1 , v u#u v , vj0+1 , . . . , vk )

B(u#u )

TB

C(u1 , . . . , ul )

TC

Fig. 3. Derivation tree TS and intermediately derived “objects.”

• There are particular numbers n(j) = n ≥ 0 and si ≥ 0 for i ∈ [0, n].

• There are nonterminals B(i) ∈ N and C(i,i′) ∈ N for i ∈ [0, n] and i′ ∈ [0, si]
with arity(B(i)) = 1 for i ∈ [1, n], arity(C(0,0)) = 1, and C(0,s0) = S if s0 = 0.

• We let
ri := arity(B(i)) for i ∈ [0, n]

l(i, i′) := arity(C(i,i′)) for i ∈ [0, n] , i′ ∈ [0, si]
• Then, there is a set of pairwise distinct variables

Xj = {x(i)
i′′ , x

(i,i′)
i′′′ | i ∈ [0, n], i′′ ∈ [1, ri], i′ ∈ [0, si], i′′′ ∈ [1, l(i, i′)]} ⊆ X

and there are

α
(i)
i′′ ∈ (Σ ∪ {#} ∪Xj)∗ for i ∈ [0, n] , i′′ ∈ [0, ri]

α
(0)
i′′ ∈ (Σ ∪ {#})∗ for i′′ ∈ [0, r0] in case n = 0

β
(0,i′)
i′′′ ∈ (Σ ∪ {#} ∪Xj)∗ for i′ ∈ [0, s0] , i′′′ ∈ [1, l(0, i′)]

β
(i,i′)
i′′′ ∈ (Σ ∪Xj)∗ for i ∈ [1, n] , i′ ∈ [0, si − 1] , i′′′ ∈ [1, l(i, i′)]

u
(i,si)
i′′′ ∈ Σ∗ for i ∈ [1, n] , i′′′ ∈ [1, l(i, si)]

• such that for i ∈ [0, n−1], there are non-terminating rules from P of the form

p(i) = B(i)(α(i)
1 , . . . , α(i)

ri
)← B(i+1)(x(i+1)

1 ) , C(i+1,0)(x(i+1,0)
1 , . . . , x

(i+1,0)
l(i+1,0))

and such that in case n = 0,7 there is a terminating rule from P of the form

p(0) = B(0)(α(0)
1 , . . . , α(0)

r0
)←

• Furthermore, for i ∈ [1, n], there are terminating rules from P of the form

q(i,si) = C(i,si)(u(i,si)
1 , . . . , u

(i,si)
l(i,si)

)←

while q(0,s0) = p(0) , implying that C(0,s0) = B(0) , and

7 Note that n = 0 implies {p(i) | i ∈ [0, n− 1]} = ∅.



for i ∈ [0, n], i′ ∈ [0, si − 1], there are unary branching rules from P of the form

q(i,i′) = C(i,i′)(β(i,i′)
1 , . . . , β

(i,i′)
l(i,i′))← C(i,i′+1)(x(i,i′+1)

1 , . . . , x
(i,i′+1)
l(i,i′+1))

• For i ∈ [1, n], we now define derivation trees over ∆P by

T (i,si) := q(i,si) and T (i,i′) := q(i,i′)T (i,i′+1) for i′ ∈ [0, si − 1]

and for yj ∈ Y , we define derivation tree contexts over ∆P ({yj}) by

U (n−1) := p(n−1)yjT
(n,0) in case n > 0

U (i) := p(i)U (i+1)T (i+1,0) for i ∈ [0, n− 2]
U (0) := p(0) in case n = 0

Finally, we set

T (0,s0) := U (0) , T (0,i′) := q(0,i′)T (0,i′+1) for i′ ∈ [0, s0 − 1] and Vj := T (0,0)

• Thus,

yj : B(n)(x(n)
1 ) `G Vj : C(0,0)(β>) if n > 0 and `G Vj : C(0,0)(β=) if n = 0

for some β> ∈ (Σ ∪ {#, x(n)
1 })∗ if n > 0, and β= ∈ (Σ ∪ {#})∗ if n = 0. Recall

that arity(C(0,0)) = 1 in general, and that arity(B(n)) = 1 in case n > 0.

Figure 4 aims at making the formal setting as it regards the derivation tree
context Vj somewhat more accessible. Note that for i ∈ [0, n− 1], the respective
calculation of the contributions of B(i+1) and C(i+1,0) to B(i) are independent
of each other. Crucially, from a bottom-up perspective, the calculation of the
contribution of B(i+1) can be done first and can be stored in a buffer, while
calculating the contribution of Ci+1. In terms of the arity of a nonterminal the
buffer size needed is 1, since for each i ∈ [0, n−1], B(i+1) has arity 1. Exactly this
property is used below in order to define the m+ 1-MCFG(1), G′, based on the
given m-MCFGmb, G, with L(G′) = L(G): in terms of the transformed grammar,
the subderivation trees T (i, 0) for i ∈ [1, n], i.e. the “ i©-parts” of the original
derivation tree context Vj (cf. Fig. 4), become integral parts of the leftmost path
resulting in a completely unary branching derivation tree (cf. Fig. 5).

For {[A/B] |A,B ∈ N} being a set of pairwise distinct new symbols, define
now G′ = 〈N ′, Σ, P ′, S〉 ∈ m+ 1-MCFG(1) depending on G with L(G′) = L.

• The set of nonterminals N ′ =
⋃

k≥0N
′(k) is defined by N ′(0) = ∅ and

N ′
(k+1) = N (k+1) ∪ {[A/B] |A ∈ N (k), B ∈ N (1)} for k ≥ 0 (21)

• In order to define the rule set P ′, we distinguish three types of rules in P .

– A binary branching p ∈ P is of the form A(α1, . . . , αk)← B(x′0), C(x′1, . . . , x
′
l)

in accordance with (10). For each such p ∈ P we let

A(α1, . . . , αk)← [C/B](x′0, x
′
1, . . . , x

′
l) ∈ P ′ (22)



S( w v u # u v w )

C(0,0)( u
(0,0)
1 )

B(0)( v
(0)
1 , . . . , v(0)

r0
)

B(1)( u(1)# u(1) )

B(2)( u(2)# u(2) )

B(n−1)( u(n−1)# u(n−1) )

B(n)( v
(n)
1 , . . . , v(n)

rn
) C(n,0)( u

(n,0)
1 , . . . , u

(n,0)
l(n,0) )

n©

C(n,sn)( u
(n,sn)
1 , , . . . , u

(n,sn)
l(n,sn) )

C(2,0)( u
(2,0)
1 , . . . , u

(2,0)
l(2,0) )

2©

C(2,s2)( u
(2,s2)
1 , , . . . , u

(2,s2)
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C(1,0)( u
(1,0)
1 , . . . , u

(1,0)
l(1,0) )

1©

C(1,s1)( u
(1,s1)
1 , , . . . , u

(1,s1)
l(1,s1) )

Fig. 4. Typical configuration within derivation tree TS corresponding to derivation tree
context Vj over ∆P ({yj}) for arbitrary j ∈ [0,m(S)].

– A unary branching p ∈ P is of the form A(α1, . . . , αk) ← C(x′1, . . . , x
′
l)

according to (1), where k = k0, l = k1, A = B0, C = B1, x′i = x1,i for i ∈ [1, l].
For each such p ∈ P , each B ∈ N (1), and some x′0 ∈ X − {x′i | i ∈ [1, l]} let

p ∈ P ′ and [A/B](x′0, α1, . . . , αk)← [C/B](x′0, x
′
1, . . . , x

′
l) ∈ P ′ (23)

– A terminating p ∈ P is of the form A(w1, . . . , wk)← in accordance with (1),
where k = k0, A = B0 and wi = αi for i ∈ [1, k]. For each such p ∈ P , each
B ∈ N (1), and some x′0 ∈ X − {x′i | i ∈ [1, l]} let

p ∈ P ′ and [A/B](x′0, w1, . . . , wk)← B(x′0) ∈ P ′ (24)

An induction on the length of a derivation showed that L(G′) = L(G). Due
to (20), in G′ we do not have to “lift” by means of “[·/B]” over the lefthand side
of a binary branching rule from G, cf. (22). Rather, the “lifting” instantiated in
(24) and inherited in (23) is validated in (22). Instead of giving more details we
refer back to the considerations above and point to Fig. 4 and 5 depicting how a
derivation tree context Vj is transformed to a corresponding one in terms of G′.



S(w v u#u v w )
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(0,0)
1 )
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(0)
1 , . . . , v

(0)
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[C(1,0)/B(1) ](u(1)#u(1) , u
(1,0)
1 , . . . , u

(1,0)

l(1,0) )

1©

[C(1,s1)/B(1) ](u(1)#u(1) , u
(1,s1)
1 , . . . , u

(1,s1)

l(1,s1) )

B(1)(u(1)#u(1) )

[C(2,0)/B(2) ](u(2)#u(2) , u
(2,0)
1 , . . . , u

(2,0)

l(2,0) )

2©

[C(2,s2)/B(2) ](u(2)#u(2) , u
(2,s2)
1 , . . . , u

(2,s2)

l(2,s2) )

B(2)(u(2)#u(2) )

B(n−1)(u(n−1)#u(n−1) )

[C(n,0)/B(n) ](u(n)#u(n) , u
(n,0)
1 , . . . , u

(n,0)

l(n,0) )

n©

[C(n,sn)/B(n) ](u(n)#u(n) , w
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Fig. 5. Typical configuration within derivation tree of G′ corresponding to the trans-
formed derivation tree context Vj over ∆P ({yj}) for arbitrary j ∈ [0,m(S)].



5 Conclusion

We have characterized the separation of monadic branching MCFGs, and thus,
MGs obeying the shortest move condition (SMC) and the specifier island condition
(SPIC), from well-nested MCFGs by means of a “simple reverse copying” theorem
concerning the derivable languages. Solving a generally open problem, the result
also provides a direct comparison to the separation of well-nested MCFGs from
MCFGs, and thus, MGs only obeying the SMC, by means of an already known
“simple copying” theorem.

The SPIC provides a rather canonical restriction within the MG-setting.8

Well-nestedness provides a rather canonical restriction on MCFGs, or reversing
the perspective, within the MCFG-framework well-nested MCFGs constitute
a natural generalization of, e.g., tree adjoining grammars, the former crucially
preserving the well-nestedness property of the latter.9 Since on the other hand,
in terms of MGs, well-nestedness seems to be a rather ad hoc restriction, whereas
for MCFGs, this seems to hold with regard to the SPIC, our result may suggest
that we are concerned here with a structural difference between MGs and MCFGs
which cannot immediately be overcome in a non-stipulated manner.
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6. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist
grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion =
Language?, pp. 161–195. Mouton de Gruyter, Berlin (2007)

7. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic Inquiry
12, 155–184 (1981)

8. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
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23. Mönnich, U.: Some remarks on mildly context-sensitive copying. In: Hanneforth, T.,

Fanselow, G. (eds.): Language and Logos, pp. 367–389, Akad. Verlag, Berlin (2010)
24. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting

systems. Theoretical Computer Science 223, 87–120 (1999)
25. Rogers, J. (ed.): Proceedings of FG-MoL 2005. CSLI Publications, Stanford (2009)
26. Salvati, S.: Minimalist grammars in the light of logic. Research Report, INRIA

Bordeaux (2011), available at http://hal.inria.fr/inria-00563807/en/
27. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.

Theoretical Computer Science 88, 191–229 (1991)
28. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL ’96, LNAI,

Vol. 1328, pp. 68–95. Springer, Berlin, Heidelberg (1997)
29. Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.J.M.,

Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language
Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford, CA (1999)

30. Stabler, E.P.: Recognizing head movement. In: de Groote et al. [9], pp. 245–260
31. Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)

Oxford Handbook of Linguistic Minimalism, pp. 616–641. Oxford University Press,
New York, NY (2011)

32. Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages.
Theoretical Computer Science 293, 345–363 (2003)

33. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: 25th Annual Meeting of the
Association for Computational Linguistics, Stanford, CA. pp. 104–111. ACL (1987)
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