Implications of a Revised Perspective on
Minimalist Grammars

JENS MICHAELIS
Universitat Potsdam, Postfach 601553, 14415 Potsdam, Germany

ABSTRACT: The type ofrainimalist grammar (MGas introduced by Stablell[f] provides an attempt of

a rigorous formalization of the perspectives adopted nowadays within the linguistic framework of transfor-
mational grammar. As shown ii1], MGs constitute a weakly equivalent subclasdinéar context—free
rewriting systems (LCFRSs) the sense of Vijay—Shanker et @1]. Independent work of Harkem&]

and Michaelis [L3] has proven the reverse to be true, as well. Hence, MGs as definéd/finjoin to a

series of formalism classes—among which there is e.g. the classiltitomponent tree adjoining gram-

mars (MCTAGSs)in their set-local variant of admitted adjunction (¢22])—all generating the same class

of string languages. Inspired by current linguistic developments, a revised type of an MG as well as a
certain type of astrict MG (SMG) has been proposed by Stabldg]. Here we show that, in terms of
derivable string languages, the revised MG—type as well as the SMG-type is not only subsumed by LCFRSs,
but both also fall within a particular subclass of the latter: the righthand side of each rewriting rule of a
corresponding LCFRS involves at most two nonterminals, and if two nonterminals appear on the righthand
side then only simple strings of terminals are derivable from the first one. This result is in fact of specific
interest, since conversely, in terms of weak equivalence, the corresponding LCFRS—subclass is provably
subsumed by the class of revised MGs as well as the class of SMps {Vhether the inclusion of the
respective classes of string languages derivable by the corresponding LCFRS—subclass and the class of all
LCFRSs is proper or not seems to be an open problem. We briefly discuss what seems to constitute the
crucial difference seen from the minimalist perspective at the end of this paper.
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1 Introduction

The type of aminimalist grammar (MGhs introduced in17] provides an attempt of
a rigorous algebraic formalization of the perspectives adopted nowadays within the
linguistic framework of transformational grammar (see €3}). [ An MG, roughly
speaking, is a formal device which specifies a countable set of finite, binary (ordered)
trees each being equipped with a leaf-labeling function assigning a string of features
to each leaf, and with an additional binary relation, the asymmetric relatigimef
mediate) projectiondefined on the set of pairs of siblings. The base of an MG is
formed by dexicon(a finite set of single node trees in the above sense) and two struc-
ture building functionsmerge(combining two trees) anchove(transforming a given
tree). Both functions build structure by canceling particular matching instances of
features within the leaf—labels of the trees to which they are applied. The closure of
the lexicon under these two functions is the set of trees characterized by the MG. As
shown in [L1], the MG—type introduced irll7] constitutes a weakly equivalent sub-
class oflinear context—free rewriting systems (LCFR§{&), 22]. Independent work
in [5] and 13] has proven the reverse to be true as well. Hence, MGs as defined in
[17], beside LCFRSs, join to a series of formalism classes—among which there is
e.g. the class ahulticomponent tree adjoining grammarstheir set—local variant of
admitted adjunction (cfi22])—all generating the same class of string languages. For
a list of some further of such classes of generating devices se4gl.g. [

Mainly inspired by the linguistic work presented 8] in [18] a revised type of
an MG has been proposed whose departure from the versidiYjicgn be seen as
twofold: the revised type of an MG neither employs any kindheid movement
nor covert phrasal movemerand an additional restriction is imposed on the move—
operator as to which maximal projection may maertlyinto the highest specifier
position. Deviating from the operataroveas originally defined in17], a constituent
has necessarily to belong to the transitive complement closure of a given tree or to be
a specifier of such a constituent in order to be movable. Closely in keeping with some
further suggestions ir@], a certain type of atrict minimalist grammar (SMGhas
been introduced irillg] as well. This MG-type allows only movement of constituents
belonging to the transitive complement closure of a tree. But different from the just
mentioned type, the triggering licensee feature may head the head-label of any con-
stituent within the reflexive—transitive specifier closure of a moving constituent. Fur-
thermore, due to the general definition of a lexical item of an SMG, an SMG does not
permit the creation of multiple specifiers during the course of a derivation.

Employing and extending the methods developedli], [this paper shows that,
in terms of derivable string languages, the revised MG—-type and the SMG-type are
not only subsumed by LCFRSs, but both also fall within a particular subclass of the
latter: the righthand side of each rewriting rule of a corresponding LCFRS involves
at most two nonterminals, and if two nonterminals appear on the righthand side then
only simple strings of terminals are derivable from the first one. The result is in fact
of specific interest, since conversely, in terms of weak equivalence, the correspond-
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ing LCFRS—subclass is provably subsumed by the class of revised MGs as well as
the class of SMGs/lIC]). Consequently, the revised MG—-type and the SMG-type are
shown to determine the same class of derivable string languages, thereby confirming a
conjecture explicitly stated ir1B]. Whether the respective classes of string languages
derivable by the corresponding LCFRS—subclass and the class of all LCFRSs—and
thus the respective classes of string languages derivable by the class of MGs (or like-
wise SMGs) as defined i8] and the class of MGs as defined [ti7—are identical
seems to be an open problem. We briefly discuss what seems to constitute the crucial
difference seen from the minimalist perspective at the end of this paper.

The result presented in this paper is also shown to holdzh But in several re-
spects, the proof given there is much more involved than the one given here. This
mainly follows for the reason that, ifl?], the corresponding inclusion in terms of
derivable string languages within the particular LCFRS—subclass is proven for “re—
extended” versions of both the revised MG—type and the SMG-type, namely, versions
in which head movement and covert phrasal movement are “re—added,” and w.r.t. the
SMG-type the ban of multiple specifiers is revoked as well. Restricting our atten-
tion to both MG—types as defined ] allows us to significantly simplify the pre-
sentation of a proof yielding the intended result, and as we think, it becomes much
more intelligible even at first glance. Thereby, the construction of a weakly equivalent
LCFRS from a given (S)MG also becomes more directly accessible to further exploita-
tion. The class of resulting LCFRSs may rather straightforwardly be interpreted as a
succinct reformulation of the corresponding (S)MG-type comparable to the proposal
made in Q] for a restricted version of the original MG—-type which does not use any
covert phrasal movement or head movement, but does not restrict the domain of the
move—operator w.r.t. overt movement. Such a reformulation does not only open the
possibility to adapt the polynomial time parsing methods developed, i6] for the
(restricted) original MG-type, but also opens, e.g., the field to a direct comparison
with mirror theoretic grammarsieveloped inf] as a formalization of the syntactic
theory proposed ird].

The paper is structured as follows: the next section provides formal definitions of
LCFRSs and the particular subtype mentioned above. In Se8tioa first define
MGs and SMGs in the sense d§], and then discuss in detail the specific proper-
ties which, in terms of weak equivalence, allow both types to be embedded into the
LCFRS—subtype (cf. Secti@l). In Sectiord methods of constructing a correspond-
ing, weakly equivalent LCFRS from a given MG and SMG, respectively, are presented
step by step, explicitly taking into account the discussion from Se@itinln Sec-
tion5we sum up the immediate implications, and briefly compare them to the results
which have been established before w.r.t. MGs as originally defin€Zjn [

Throughout the rest of the paper we refer to an MG of the type as originally defined
in [17] as anunrestricted MG (UMG)Attempting to avoid any confusion that might
arise otherwise, this allows us to use the tenmimalist grammaand its abbreviation
MG exclusively in order to refer to an MG of the revised type as definedifh [
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2 Linear Context—Free Rewriting Systems

The class oflinear context—free rewriting systems (LCFR$2], 22] constitutes a
proper subclass afultiple context—free grammars (MCFJ4)], which in their turn
form a subtype ofjeneralized context—free grammd#sl]. However, LCFRSs define
the same class of derivable string languages as MCFGs.

DEFINITION 2.1([14])
A generalized context—free grammar (GCF8)a five—tupleG = (N,O, F, R, S),
whereN is a finite non—empty set efonterminalsand where) is a set oflinguistic)
objects F'is a finite subset of ), . i \ {0}, F, the set of partial functions from
(O)™into O.* Ris afinite set ofrewriting) rules i.e. R C |J, oy (FNF,) x (N)" 1,
S'is a distinguished symbol frony, thestart symbal

Anr = (f (Ao, A1,...,An)) € (FNE,) x (N)**! for somen € IN is written
Ag — f(A4,...,A,), and alsody — f(0) if n = 0. Incasen = 0, i.e. if fisa
constant inD, r is terminating otherwiser is nonterminating

For eachA € N andk € IN, LE(A) C O is given recursively by means of
0 € LY(A) for each terminatingl — 6 € R, andd € LEM(A)if 6 € LE(A), or
if there areA — f(Ai,...,A,) € Randd; € LE(A;) for 1 < i < n such that
(01,....0,) € Dom(f) and f(0y,...,0,) = 6.2 The setLq(A) = Uyen LE(A) is
thelanguage derivable froml (by G). L (S), also denoted by.(G), is thelanguage
derivable byG.

DEFINITION 2.2
A given GCFG@; and a given GCF@&/, areweakly equivalenif L(G;) = L(G2).

DEFINITION 2.3([16], [21,122])

A multiple context—free grammar (MCFG§ a GCFGG = (N,O, F, R, S) with
O = U, en(Z*)"*! and satisfying (M1) and (M2), wheis a finite set oferminals
with X NN =03

(M1) For eachf € F, somen(f) € IN, ¢(f) € IN\ {0} andd;(f) € IN'\ {0}
for 1 < i < n(f) exist such thaf is a (total) function fron{ ") (x*):(/) into
(x*)#() for which (f1) and (f2) hold.

(fl) Let Xy = {x; |1 < i < n(f),1 <j < d;(f)} be a set of pairwise distinct
variables, forl <i < n(f)letz; = (zi1,..., %4, ), and forl < h < o(f) let
fn be theh—th component off, i.e. the function fronDom( f) into ©* such that
f(0) = (f1(0),..., focp)(0)) forall & € Dom(f). Then, for each < h < o(f)
there are amy, (f) € IN, a¢(fn) € £* for 0 <1 < i,(f), and az(fn) € X for
1 <1 <1,(f) such thatfy, is represented by ().

1IN is the set of all non-negative integers. Fer € IN and any setsMq, ..., My, ]'[?:1 M, is the set of alln—tuples
(m1, ..., my) with i—th componenin; € M;, where[[7"_; M; := {0} for n. = 0. We write (M )™ instead of[[[*_; M; if
for some sef\f, M; = M forl < i < n.

2For each partial functiop from a setM into a setM’, Dom(g) C M is the domain of.

3For each sef\f, M* is the Kleene closure o/, includinge, the empty stringM ¢ denotes the set/ U {e}.
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(cr)  fulze, .. 2np) = C(fro) 2(far) C(fa1) - 2(fnincr)) C(fnincs))

(f2) Eachz € X occurs at most once in all righthand sides of Je(cy,, ), i-€.
for the setlpomsy = {(3,7) |1 < i < n(f),1 < j < di(f)} and for the set
Irangesy = {(h, ) |1 < h < (f),1 <1 < Ix(f)}, the binary relatiory; on
Ipom(f) % Irangés) SUch that((i, j), (h,1)) € gy iff x;; = z(fn) is an injective
partial function ontlrange f)-

(M2) There exists a functiod from N into IN such thatds(S) = 1, and such
that, if Ag — f(A41,...,4,) € R for somen € IN thenp(f) = dg(Ap) and
dl(f) = dg(Al) forl <i<n.

Therank of G rank(G), is the numbetax{n(f)|f € F}. L(G) is amultiple
context—free language (MCFLL(G) C ¥*, becausé(S) = 1.

If for each f € F' condition (f3) holds in addition to (f1) and (f2) th&nis alinear
context—free rewriting system (LCFR@hd L(G) is alinear context—free rewriting
language (LCFRL)

(f3) Eachz;; € X has to appear in one of the righthand sides gf)te(cy, ), i.e.
the functiong; from (f2) is total, and therefore, a bijection.

The class of all MCFLs and the class of all LCFRLs are known to be identicall&;f. [
Lemma 2.2]). Theorem 11 iiLE], therefore, shows that for each MCR&there is a
weakly equivalent LCFR&’ with rank(G’) < 2.

DEFINITION 2.4

An MCFG;, 2 (LCFRS, ) is an MCFG (LCFRS}~ in the sense of Definitio.3such
thatrank(G) < 2, and such that; (f) = 1 for eachf € F with n(f) = 2. In this
caseL(G) is anMCFL; » (LCFRL,, ).

In Section4.1and4.2, we shall in fact construct an LCFRS, “not just” an LCFRS
of rank 2, that derives the same (string) language as a given minimalist grammar and
strict minimalist grammar, respectively.

3 (Strict) Minimalist Grammars

Throughout we let-SynandSynbe a finite set ohon—syntactic featuresnd a finite
set of syntactic featuresrespectively, in accordance with (F1) and (F2) below. We
takeFeatto be the setSynu Syn

(F1) —Synis disjoint fromSynand partitioned into a s€&honof phonetic featureand
a setSemof semantic features

(F2) Synis partitioned into a seBaseof (basic) categorigsa setSelectof selectors
a setLicensee®f licenseesand a set.icensorsof licensors For eachr € Base
usually typeset as, the existence of a matching € Selectdenoted byx, is pos-
sible. For each: € Licenseesusually depicted asx, the existence of a matching
z' € Licensors denoted byX, is possible Baseincludes at least the categaty
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FiG. 1. A typical expression oveffeat

DEFINITION 3.1
An expression (over Feal$ a five—tuple/N-, <7, <-, <, labe - ) obeying (E1)—(E4).

(E1) (N-,<r, <-) is a finite, binary (ordered) tree defined in the usual serée:
is the finite, non—empty set afodes and<:> and <, are the respective binary
relations ofdominanceandprecedencen N 4

(E2) <-C N, x N, is the asymmetric relation gfmmediate) projectiotthat holds
for any two siblings in(N-, <7, <.), i.e., for eachr € N different from the root
of (N-,<r, <-) eitherz <. sibling- (z) or sibling- (z) <~ = holds?

(E3) label - is theleaf-labeling functiorfrom the set of leaves dfN,, <7, <) into
Syri Phori Sent.

(E4) (N;,<7, <) is a subtree of the natural interpretation of a tree dorfiain.

We takeExp(Feat) to denote the set of all expressions okeat

Lett = (N;,<r, <7, <r,labd;) € Exp(Feat).’

For eacht € N-, thehead ofz (in 7), denoted byheal, (x), is the (unique) leaf
of 7 with = <7 head- (x) such that each € N, on the path fromx to head- (x) with
y # x projects over its sibling, i.ey <, sibling- (y). Thehead ofr is the head of’s
root. 7 is said to be dead(or simplg if N, consists of exactly one node, otherwise
7 is said to be amon—heador comple}.

A five—tuplev = (N, <, <v, <v, labd,) is a calledsubexpression of in case
(Ny, <y, <o) isasubtree of Ny, <7, <7), <o=<r|n, xn,, andlabe, = labd [y, .

4Thus,<y is the reflexive—transitive closure af- C N, x N, the relation ofimmediate dominancen N

ssiblingT () denotes the (unique) sibling of any given € N different from the root off N, ar ,<7). Ifx <; y for some
xz,y € N thenx is said to(immediately) project ovey.

A tree domairis a non-empty selV,, C IN* suchthatforally € IN* andi € IN it holds thaty € N, if xx’ € N, for some
x' € IN*,andxi € Ny if xj € Ny, forsomej € N withi < j. (Ny, b, < ) is thenatural (tree) interpretatiorof N, in the
case that for all, 1) € Ny, it holds thaty <, 1 iff ©» = xi for somei € IN, andy <. ¥ iff x = wix’ andy = wj’ for some
w,x’, ¥’ € IN* andi, j € INwithi < j.

"Note that the leaf-labeling functidabel - can easily be extended to a total labeling functignfrom N, into Feat" U {<, >}, where<
and> are two new distinct symbols: to each non-lea& N~ we can assign a label frofx , >} by £+ suchthat~ (z) = <iff y <+ =z
fory, z € N+ with z <+ y, 2z, andy <+ =z. Inthis sense a concrete € Exp(Feat) is depictable in the way demonstrated in [Fg.
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FiG. 2. The typical structure of a (minimalist) expression okFeat

Thus,v € Exp(Feat). Such arw is amaximal projection (inr) if v's root is a node
x € N- such that: is the root ofr, or such thasibling- (x) <, x. MaxProj(7) is the
set of all maximal projections in.

comp C MaxProj(r) x MaxProj(r) is the binary relation defined such that for all
v, ¢ € MaxProj(r) it holds thatv comp- ¢ iff heal- (r,) <- r4, wherer, andr, are
the roots ofv and¢, respectively. Ifu comp ¢ for somev, ¢ € MaxProj(r) then¢
is acomplement ob (in 7). comg andcomg are the transitive and the reflexive—
transitive closure otomp-. Comp () andComg (1) are the set§v | 7 comg v}
and{v | T comg v}, respectively.

spec C MaxProj(r) x MaxProj(r) is the binary relation defined such that such
that for allv, ¢ € MaxProj(7) it holds thatv speg ¢ iff r, = sibling- (x) for some
z € N, with r, < z <f heal-(r,), wherer, andr, are the roots ob» and ¢,
respectively. Ifu spec ¢ for somev, ¢ € MaxProj(7) theng is aspecifier ofv (in 7).
speé is the reflexive—transitive closure spec. Spe¢r) andSpeé(r) are the sets
{v|7spec v} and{v | T speé v}, respectively.

An v € MaxProj(7) is said tohave (open) featurg if the label assigned to’s head
by label - is non—empty and starts with an instancefaf Feat®

7 is completef its head—label is i{ c}Phori Seni and each other of its leaf-labels
in Phori'Seni. Hence, a complete expression oWeat is an expression that has
categoryc, and this instance af is the only instance of a syntactic feature within all
leaf—labels.

The phonetic yield ofr, denoted by:...(7), is the string which results from con-
catenating in “left—to—right-manner” the labels assigned to the leavgé.ok’, <)
via label -, and replacing all instances of non—phonetic features with the empty string,
afterwards.

An v = (Ny, <0, <v, <v,labd,) € Feat(Exp) is (label preserving) isomorphic to
7 if there is a bijective functionfrom N onto N, with <, y iff i(z)<wi(y), z < y
iff i(z) <v i(y), z <r yiff i(z) <o i(y), and withlabe - (z) = labe,, (i(x)) for
x,y € Nr.iis anisomorphism (from to v).

8Thus the expression depicted in Fighas featuref, while its specifier and its complement have featgi@nd h, respectively.



8 Jens Michaelis

v ¢ < >
's Zsb' ¢'§ Zv'
A A K

if v is simple if v is complex

FIG. 3. mergdv, ¢) according to (me).

DEFINITION 3.2

Forr = (N-,<r, <-,<,labd,) € Exp(Feat) with N, =tN,, for somet € IN* and
some tree domaiiV,,, and forr € IN*, (1), denotes thexpression shifting to r,
i.e. the expressionN, ., U s <r > <rer lADE, . ) OverFeatwith N, ., = rN,
such that the functiof, ., from N onto N, with i, (tz) = ra forall z € Ny is
an isomorphism from to (7). .2

Forv,¢ € Exp(Feat) let x = (Ny, <y, <y, <y, labéy) be a complex expression
over Featwith root e such thafv), and(¢), are the two subexpressionspfvhose
roots are immediately dominated byTheny is of one of two forms: in order to refer
to x we write [« v, ¢ if 0 <y 1, and[sv, @] if 1 <y 0.

DEeFINITION 3.3([18])

A minimalist grammar (MG})s a five—tupleG = (—Syn Syn Lex 2, c) with Q being
the operator set consisting of the structure building functrnaggeandmovedefined
w.r.t. Featas in (me) and (mo) below, respectively, and withxbeing alexicon (over
Feat), i.e., Lexis a finite set of simple expressions oat, and each lexical item
7 € Lexis of the form(N-, <7, <, <-,labd,) such thatN, = {¢}, and such that
label; (¢) € (SelecU Licensorg*Base LicenseéPhori Seni.

(me) mergeis a partial mapping frorexp(Feat) x Exp(Feat) into Exp(Feat). A pair
(v, ¢) with v, ¢ € Exp(Feat) belongs tobom(mergg if for somex € Baseand
k, A € Feat’, conditions (i) and (i) are fulfilled:

(i) the head—label af is “xx (i.e.v has selectorx), and
(i) the head—label af is x\ (i.e. ¢ has category).
Then,
(me.l)ymergdv, ¢) = [, ¢’ ] if vis simple, and
(me.2)mergdv, ¢) = [>¢',v"] if vis complex,

wherev’ and¢’ result fromv and¢, respectively, just by deleting the instance of
the feature that the respective head—label starts with (cf3Fig.

(mo) moveis a partial mapping fronExp(Feat) into Exp(Feat). An v € Exp(Feat) is
in Dom(movg if for some-x € Licenseesndx € Feat", (i)—(iii) are true:

9Note that for each = (Nr, <1i ,<r,<r,label ) € Exp(Feat),a t € IN* and tree domaitN,, with N = t N, exist by (E4).
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(i) the head—label of is +Xx (i.e. v has licensorX),
(i) there is exactly oneé € MaxProj(v) with head—labetx\ for some\ € Feat'
(i.e. there is exactly ong@ € MaxProj(v) that has featurex), and
(iii) there exists & € Comp"(v) with ¢ = x or ¢ € Spec¢y).

Then,movév) = [~ ¢',v'], wherev’ € Exp(Feat) results fromw by canceling the
instance of+X the head-label of starts with, while the subtregis replaced by a
single node labeled ¢’ € Exp(Feat) arises fromyp by deleting the instance ek
the head—label o starts with (cf. Fig4).

+XK

FIG. 4. movév) according to (mo).

DEFINITION 3.4([18])

A strict minimalist grammar (SMG} a five—tuple of the forni—Syn Syn Lex Q, , ¢)

with Q being the operator set consisting of the structure building functitergeand
mové defined w.r.t.Featas in (me) above and (smo) below, respectively, and with
Lex being a lexicon ovefFeat defined as in Definitior8.3 such that it additionally
holds thatlabe - (¢) = Select(SelectU LicensorgeBase LicenseéPhori Sent for
each(N;, <7, <,,<-,labé;) € Lex

(smo)mové is a partial mapping fronExp(Feat) into Exp(Feat). An v € Exp(Fea)
is in Dom(movg if for some-x € Licenseesndx € Feat", (i)—(iii) are true:

(i) the head—label af is +X« (i.e. v has licensorX),
(i) there is exactly one € MaxProj(v) with head—labetx\ for some) € Feat’
(i.e. there is exactly ong@ € MaxProj(v) that has featurex), and
(iii) there exists & € Comp (v) with ¢ € Speé (x).1°

Then,mové(v) = [~ X/, v'], canceling the instance ek the head—label of starts
with, while the subtreg is replaced by a single node labeledy’ € Exp(Feal)
arises fromy by deleting the instance ofx the head-label op starts with (cf.
Fig.5).

For each (S)MGG = (—SynSynlex ,c) the closure of G, CL(G), is the set
Uren CL¥(G), whereCL(G) = Lex and fork € IN, CL*"'(G) C Exp(Feay)
is recursively defined as the set

10Note that such & € CompJr (v) is unique.
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A 7 Ay

FIG. 5. mové(v) according to (smo).

CL*(G) U {mergév, ¢)| (v, ¢) € Dom(merge N CL*(G) x CL¥(G)}
U {mové(v) |v € Dommové) N CL*(G)},

wheremové € Q\ {mergg. The sef{Ye.(7) | 7 € CL(G) andr completé, denoted
by L(G), is the(string) language derivable bg.

DEFINITION 3.5
A setL is a(strict) minimalist language ((S)ML) L = L(G) for some (S)MGG.

Just in order to complete the picture in terms of a formal definition we give

DEFINITION 3.6
An (S)MG G and an MCFGQ&' areweakly equivalenif they derive the same (string)
language, i.e. iL(G) = L(G’).

3.1 Relevant Expressions of an (S)MG

Throughout the end of this section we assuthe= (—Syn SynLex 2, c) to be an
(S)MG and turn now to a “concept of relevance” being of central importance, when
we examine the weak generative power of (S)MGs. We vmiteé in order to refer

to the corresponding move—operaimgveor mové, respectively, belonging tQ, i.e.

we have) = {merge mové}.

We start with a brief motivation of the corresponding formal settings: apart from the
head, each leaf of a complete expressiorGois labeled by a string that does not
contain any instance of some syntactic feature, whereas the head-label contains ex-
actly one such instance, namely, an instance of the completeness cateddrys,

all instances of syntactic features within the leaf-labels of an expressbid; that

serves to derive a complete expressiok-dfave to be canceled at some later stage of

the derivation, except for the possible appearance of that instance of the completeness
category which finally becomes the instance within the head—label of the complete ex-
pression. Each leaf of such an expressiaf G determines a maximal projection in

7, where the label of each leaf different from the head is a string that contains beside
instances of non—syntactic features at most instances of syntactic features which be-
long to the set of licensees. These instances of licensee features can be checked only
by a performance of the corresponding move—operaioxg. Since, in order to end
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up in a complete expression, each of these licensee instances is checked at some stage
of the derivation by applying the move—operator either tor to an expression af

derived on the base of, 7 has to fulfil a particular property, namely, thatloéing

relevant (toG) in the sense of exactly one of the following two definitions, depending

on whetherG is an MG or an SMG, respectively.

DEFINITION 3.7
In caseG is an MG, a giverr € CL(G) is relevant (toG) if it has property (Rc)-

(Rwe) For each-x € Licenseeshere is at most one., € MaxProj(7) that has feature
-x, and if it exists ther—, € Comp (1) or 7—, € Spec€y) for ay € Comg (7).

DEFINITION 3.8
In caseG is an SMG, a given € CL(G) is relevant (toG) if it has property (Ryo).

(Rswe) For each-x € Licenseeshere is at most one, € MaxProj(r) that has feature
-x, and if it exists them—, € Spe¢(x) for ax € Comp (7).

DEFINITION 3.9
Therelevant closure of7, denoted byRCL(G), is the set of all relevant € CL(G).

Consider some € CL(G) that is relevant t@7 according to the respective definition,
(Rus) or (Rsue)- First of all~ must not contain two different maximal projections that
have the same licensee. Furthermore, the uniqueness of a maximal projection in
that has a particular licensee feature must be accompanied by a further property: the
fulfillment of a particular condition on where this maximal projection is locaterd in
This additional demand depends on whettieis an MG or an SMG as formulated
in (Rys) and (Rys), respectively. In fact, this kind of expression structure is typical
of eachr € CL(G) involved in creating a complete expression(dfs will become
clear immediately. This is not to say that each expression which is relevahbto
definition has to occur within some derivation of a complete expressich o this
sensebeing relevant ta= rather meanbeing potentially relevanin order to derive
any complete expression 6f.

PROPOSITIONS.10
Let7 € RCHG), and letv, ¢ € CL(G). If 7 = mergdv, ¢) thenv, ¢ € RCLG),
and if 7 = movév) thenv € RCLG).

Instead of providing a formal proof we want to address the important point underlying
the last proposition in a descriptive way: recall that in any case an arbitrary expression
7/ € CL(G) belongs to the domain of the respective move—operator only if there is
exactly one maximal projection i’ that has a particular licensee feature allowing
the projection’s movement into a specifier position, i.e. only if (i) and (ii) of ((s)mo)
are fulfilled by7’. But in addition this maximal projection is subject to a condition
concerning its structural position withirf, namely, the corresponding condition (iii)

of (mo) or (smo). This implies that, whenever an expressioa CL(G) is irrelevant
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to G, it contains a maximal projection that has some licensee featunénich cannot
be checked by applying the move—operatoiafo '. Crucially, this “bad property”
is inherited by any expression ¢f which is derived with the help of an instance
such ar’. That is to say, ifr’ participates in a derivation of some expressioof G,
the corresponding instance of the licenseewill still be unchecked withinr. Thus,
because each completez CL(G) is relevant ta&, we can fix

COROLLARY 3.11
Eachr’ € CL(G) that serves to derive a complete expressio&' @ also an element
of RCLG), and we have.(G) = {Yen(7) | 7 € RC(G) andT completd.

The converse of PropositioB.10 does not hold. Indeed, it may happen that from
expressions ilRCL(G) irrelevant expressions are derivable.

PrROPOSITION3.12
RCL(G) is generally closed neither under the merge—operator nor the move—operator.

The following paragraph gives an overview of the cases revealing the last proposition,
wherer is supposed to be an elementGif(G).

merge
(ir.1) Assume that = mergév, ¢) for somev, ¢ € RCL(G).
Thent ¢ RCL(G) in each of the cases (ir.1.1)—(ir.1.4).

(ir.1.1) There are’ € MaxProj(v) and¢’ € MaxProj(¢) that both have the same
licensee-y.

(ir.1.2) There is ay € MaxProj(v) U MaxProj(¢) that has licenseey, and the head—
label of ¢ is of the formx-yA for somex € Baseand A\ € Feaf, i.e. A €
Licensee&Phori Send.

(ir.1.3) G is an MG, the expressionis complex, and there is@ € MaxProj(¢) that
has some licensesgy.

(ir.1.4) G is an SMG, the expressianis complex, and there is@ € MaxProj(¢)
that has some licenseg such thaty’ ¢ Spec (¢), hencep’ ¢ Spe¢(p).

move :
(ir.2) Assume that = mové(v) for somev € RCHG).
Thenr ¢ RCL(G) in each of the cases (ir.2.1)—(ir.2.3).

(ir.2.1) There is some € MaxProj(v) whose head—label is of the forax-y\ such
that v has licensorX, and such that there is songé € MaxProj(v) that has
feature-y, where-x, -y € Licenseesnd)\ € Feat".

(ir.2.2) G is an MG, and there exists@ € MaxProj(v) that has some license&
such thaw has licensorX, and such that there is sontec MaxProj(¢) different
from ¢ that has some licensesg.
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FIG. 6. Atypical € CL(G) in the sense of (ir.1.3), (ir.1.4), (ir.2.2) or (ir.2.3).

(ir.2.3) G is an SMG, and there exists¢a € MaxProjv) that has some licensee
-x such thatv has licensorX, and such that there is somé € MaxProj(¢)
that has some licenseg, but that does not belong ®pe¢(x) for the existing
X € Comp'(v) with ¢ € Speé(x).

We see that in cases (ir.1.1), (ir.1.2) and (ir.2.1) a corresponding application of
mergeor moveé produces an irrelevant expression that contradicig)(Rs well as
(Rewe), i-€. an expression af that is not relevant té- independently of whethe®
is an MG an SMG, because the resulting expressioantains two different maximal
projections which have the same licensee, namgly The other cases arise speci-
ficly when dealing with an MG or SMG, respectively. We want to take up the latter
two, (ir.2.2) and (ir.2.3), in somewhat more descriptive terms here: assume that we
havev € Dom(movg, respectivelyy € Dom(mové), for somev € RCL(G). Thus
v has licensorX for some licenseex. Let ¢ be the maximal projection im that
has feature-x. In caseG is an MG,movév) belongs toRCL(G) only if ¢ does not
properly include a maximal projection that has some licensee featurg In case
G is an SMG, such a may exist. But it has to belong to the same Spec(x)
for somey € Comp (v) as¢ does in order to letnové(v) become an element of
RCL(G). Otherwise, applyingnove respectivelynové, results in an expression that
does not fulfil property (), respectively (Rs), sinceg, respectivelyy, is moved
into a specifier position (cf. Fi@). Similar considerations arise if two expressions are
merged in case the selecting tree is complex. This is due to the fact that, if we have
v, ¢ € RCL(G) such that is complex andnergéuv, ¢) is defined,¢ is selected as a
specifier by (cf. Fig.l6).

Indeed, the possibility to construct an LCFRS “not just” an LCFRS of rank
2, which is weakly equivalent to th@' results essentially frond’'s property that no
proper subconstituent is extractable out of some specifier in order to move into another
specifier position, i.e. the phonetic yield of a specifier cannot be “devided” into proper
substrings by any application of some structure building function.

Note that (R¢) and (R,c) “deviate” from (mo) and (smo), respectively, since they
allow, for eachv € RCL(G), a maximal projectionp € MaxProj(v) having some
licensee-x to belong taSpecv) or Spe¢(v), respectively. This does not preclude the
head—label of such anfrom starting with an instance of a matching licensor feature,

LNote that, in this respect, both the MG-type and the SMG-type differ from the UMG-type, i.e. MGs as originally definipd in [
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FiG. 7. Basic idea to define a finite partition BICL(G).

“although” v does not belong to the domain of the respective move—operator in this
case. Nevertheless, we generally have to be aware of the fact that the corresponding
instance of-x would determine a potentially movable maximal projection as soon as

v was selected as a (right) complement.

4 Transforming (S)MGs into weakly equivalent MCFGs

Throughout this section we 6t = (=Syn SynLex Q, c) be an MG, respectively an
SMG, in the sense of DefiniticB.3, respectively Definitioi8.4. For the appropriate

m € IN we take(-1;)1<;<., t0 be an enumeration dficenseesC Syn Below, we
construct a weakly equivalent LCFRSG = (N, O, F, R, S), i.e.,rank(G) = 2 and,

if A— f(B,C) € Rthendg(B) = 1 (cf. Definition2.4). In order to achieve thig7

will operate at least w.r.t. syntactic features, on equivalence classes of a finite partition
of RCL(G) rather than on single expressions.

The basic idea in order to define the corresponding equivalence class of a given
RCL(G) is the following: (a) delete all non—syntactic features within the leaf-labels of
7, and (b) reduce to those nodes which are the root of some maximal projection with
an open (i.e. unchecked) syntactic feature, while in parallel, the head—label of such a
maximal projection becomes the label of its root (cf. . In this senseRCL(G)
is partitioned into a finite number of equivalence classes: the tree resultingrfrom
has at mostn + 1 different nodes, since is relevant toG. Furthermore, each node
label of the resulting tree is the suffix of the syntactic prefix of the label of a lexical
item, because of the particular feature consuming character of the structure building
operators. Regarding this partition, applications of the structure building functions do
crucially not depend on the chosen representatives. Our weakly equivalent LEGFRS
will actually operate w.r.t. a somewhat finer, but still finite partition, since some more
structural information about each relevarns$ necessary in both caséspeing an MG
or an SMG, in order to be able at all to construct such an LCFRS. The tree resulting
from the corresponding reduction ofrae RCL(G), at least virtually, becomes a
nonterminall’ € N \ {S} representing in G. 7's phonetic yield will be separately
coded by somer € Oy, a finite tuple of strings of phonetic features, that takes into
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account the structural information storeddh(cf. Definition'4.1, respectively4.5).

pr Will be derivable fromT in G as a finite recursion on functions i, since for
each particular application afiergeor move respectivelymové, in G there will be
some nonterminating rule iRk simulating the corresponding structure building step
in G (Propositiord.2, respectively4.6).2? Vice versa it will hold that, whenever some
pr € Oy is derivable inG from someT’ € N \ {S}, there is some € RCL(G) to
which T andpr correspond as outlined above (Proposidog respectiveld. 7).

Since eachr € Lexis simple, we identifyr with its head—label. Also for the sake of
convenience, we can w.l.0.g. assume that for eaehBasea corresponding feature
“x Is present within the seBelect and for each-x € Licenseesa corresponding
licensor+X belongs to the séticensors For technical reasons we define setgSwf,
suf(-1;) for 1 <i < m, and[,,:
o suf(Syn = {x € Syri | there are &’ € Syri and{ € —Syri with x’'x{ € Lex}
o suf(-1;) = {x € suf(Syn |k = -1;\ for some\ € Syri } U {¢}
o Ip={i1-ip|n€Nyiy, ... i, € {1,...,m}withd; # iy if j #k}

The setl,, is finite, because in particulda] < m for each:. € I,,. By (N1), each
suf(-1;) as well as sufSyn is finite, and suf-1,) C Licensees.

Our next goal is to show how particular + 1-tuples can be recruited to code a finite
(ordered) tree whose set of nodes is a subsébaf. ., m} such that) belongs to this
subset and represents the root of the tree. For this purpose consider-ary-tuple

a = {ag,...,qny)such thaty, € {1,...,m}* for each0 < i < m, and such that the
requirements (al) and (a2) are met.

@) ag---am € I,.
(@2)If o; = By~ forsomei, j € {1,...,m}ands,vy € {1,...,m}* then
(i) ¢ # 4, and
(i) ap, = B'i’ forsomek € {0,...,m} ands’, v € {1,...,m}*.
Let <. be the binary relation of0, ..., m} such that <. j iff
(<o) oy = By for somes, v € {1,...,m}*.

Let <. and< be the transitive and the reflexive—transitive closure.gfrespec-
tively, and assume.. to be the binary relation of0, ..., m} such that <. j iff

(<o) a = Bi'yj's for somes, v, 6 € {1,...,m}*
and some’,j’, k € {0,...,m} such that’ <. i and;j’ <% j .

12For eachr € Lexthere will be aterminating rul® — pp € RwithT € N andpp € Oy codingT in the sense just mentioned.
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ThenA. = {i € {0,...,m}|0 < i} consists ofag - - - a,,| + 1 elements, and
(A, <t TA,xA, s =<alA, xA, ) IS afinite ordered tree with ro6t

We takeTreecodingén) to denote the set of ath + 1-tuples{ay, . .., a,,), where
a; € {1,...,m}* for 0 < i < m, that are in accordance with (al) and (a2).
Treecodingén) is finite, sincel,, is.

4.1 MLs as MCFLs

AssumeG to be an MG. We writ3,,. instead ofG. In order to construct the weakly
equivalent LCFRS: = (N, O, F, R, S) as desired we takeim, com, true andfalse
to be pairwise distinct new symbols and next define the 3etand O, the set of
nonterminals and the set of tuples of terminal strings, respectively.

e e ¢ Each nonterminal” € N is either the start symbd or anm + 2—tuple of the
form (fio, i1, - - -, B, t) With ¢ € {sim, com} andfi; a quadruple(u;, a;, f;, ;) for
0 <1 < m,where

(n1) po € suf(Syn \ U~ suf(-1;) andy; € suf(-1;) for1 <i <m,

(n2) o;; € {1,...,m}* for 0 < i < mwith (ao, ..., o) € Treecodingén), and
(n3) fo=0andf; € {-1}U{0,...,m}for1 <i<m

such that forl < j < m it holds that®

(n4) p; # eiff i <, j forsome0 < i < miff f; >0.

Extending the catalogue of requirements, the following ones are met:
for fiax = max{f;|0 <+ <m} it holds that
(5){f;|10<i<m}n{0,...,m}={0,..., fmax} »
and forl < j < m, (n6) is true.

(n6) If 11; # € theni = j for eachd < i < mwith f; = f; 4

Finally, we demand
(N7)tg = true andt; € {true,false}forl1 <i<m
such that forl < j < m it holds that

(n8) if p; = ethent; = true.

By the following, for each correspondiilf € N \ {S} we write<» and < instead ofd, and <« , respectively, to denote the
relations as they result from the “tree—coding” tuple= (ag, . . ., aqm ) according toflo ) and (K« ).

Hence, we may conclude from (n3)—(n6) that the funcfdnom {0fu{1<j<m|u; #e}ino{0,..., fmax } defined by
f (i) = f;isabijection withf (0) = 0.
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eee O = Unem@*)”“, Y = Phonthe set of phonetic features @#.

It is straightforward that the sé¥ is in fact finite, since, up to the start symhg N
constitutes a subset of a finite product of finite products of finite sets. Disregarding
non-syntactic features, we can ugdo characterize the relevant expression&gf,

the setRCL(G,;). This set itself is generally non—finite. The phonetic yield of an
expression- € RCL(G\) can be characterized then as a particular tuple ftode-
pending on a corresponding nonterminal frdmvhich depictsr up to non—syntactic
features. Definitiorl.1 below aims to motivate the definitions &f andO in some
more detail: for this purpose let= (N,, <7, <, <, labd.) € RCLG,c), and for

1 < i < mtake, if there is any’ € MaxProj(r) that has licenseel;, 7; to be such
a7’ Otherwise, take; to be a single node labeled Furthermore, set, = 7,
and for0 < ¢ < m letr; be the root ofr;. Also, letT = (fo, fi1,-- -, fbm,t) € N
with ¢ € {sim, com}, and withj; = (u;, «, fi,t;) for 0 < i < m in accordance
with (n1)—(n5). Then defing,,.x = max{f;|0 < i < m} and finally choose some
pr = <7T'0, Tlyenny 7Tfruax> from <Ph0ﬁk>f"‘a"+1.

DEFINITION 4.1
The pair(T, pr) corresponds to if (D1)—(D4) are true.

(D1) For0 < i < m, u, is the prefix ofr;'s head-label which consists of just the
syntactic features, and= sim iff 7 is simple.

(D2) For0 < 4,5 < mwith p;, uj # €, i< j iff r; <t r;, andi <7 5 iff r; <, 7;.

(D3) If p; # e for some0 < ¢ < m thenny, is the phonetic yield of;, wherer/
results fromr; by replacing for each < j < m with i<7. j the (proper) subtree;
of 7; by a single node labeledin case there is nd < k < m with i <t k <. 516

(D4) If t; = false for somel < i < m thenr; € Spe¢r). If t;, = true and
u; # € for somel < i < mthent; € Comp (7) or ; € Spe¢r’) for some
7/ € Comp (7).

Note that (D1) determines a particular, finite partitiBron RCL(G,): in the cor-
responding manner, to eaegh€ RCL(G,.) exactly one element belonging to the
product sufSyn x suf(-1;) x ... x suf(-1,,) x {sim, com} can be assignek.

(D2) can be seen then as introducing a refinerfigpbf P: expressions from one
equivalence class are distinguished w.r.t. proper dominariceand precedence .,
as it holds between each two distinct maximal projectigramdr; whose head—labels
start with some license€l; and-1;, respectively. This distinction can be manifested
by assigning to each € RCL(G,) a particularm + 1-tuple (ag, . .., oy, ) from
Treecodingén) by means of (D2).

15Thenr; is unique, because fulfills property (Rug)-
16Recall that forl < i< m,p; # €iff f; > 0.Hence, ifu; # eforsome0 < i < m thenthe correspondingfi in fact exists.
17As afinite product of finite sets this product is also a finite set.
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Again letT = ([, ..., m,t) € N witht € {sim, com} andp; = {(u;, oy, fi, t;) for

0 <4 < masin (n1)—(n8), defing,.x = max{f;|0 < i < m}, and choose some
pr = (70,71, ..., Tf..) from (Phorf)fmext1 Assume thatT', pr) corresponds to
somer € RCL(Gye) as in Definitiord.1.

Thent as well as eacly; and eachy; for 0 < ¢ < m is unique, because (D1)
and (D2) hold. For each possible combination consistingyoff,, ..., f. there is
exactly onepr that satisfies the requirement (D3). Thgs, thea;'s andt determine
the equivalence class afw.r.t. the refined partitiorRer o0n RCL(G\c). If fi = —1
for somel < i < mthenu; = e. Recall thatfy = 0. If f; > 0 for some0 < i < m
theny; # e. In this case, according to (D3), the componept of pr specifies that
part of the phonetic yield of; that is definitely “non—extractable.” That is to say, no
movement can apply te such that a proper subexpressionrpis extracted pied—
piping some (proper) subpart of, .

The requirement (D4) finally equis, in terms of correspondence, with some fur-
ther structural information aboutas to where the maximal projectionsrirthat have
a licensee feature are located. To put it differently, we are provided by me@nsiti
some further knowledge of as it is necessary concerning the potential application of
the move—operator i,s. If t; = false for somel < i < m thenT mirrors the fact
that, within the configuration of the correspondinghe attraction of; by the head of
7 into a specifier position is not allowed under any circumstances, i.e. an application
of movewould be blocked even if the head—labelo$tarted with an instance of the
corresponding licensorL;. Having this information accessible i will be one im-
portant prerequisite in order to successfully define the LCERS (N, O, F, R, S)
such that it will be weakly equivalent Gc.

e e o The setF' of functions and the sak of rewriting rules are simultaneously de-
fined w.r.t. the occurrence of ghe F within anr € R.

Nonterminating rules First of all we define two initial rules by

(0) § — idpnor (T) € R fOr T = (fig. i1, ., Al £) € N

with g = (c,€,0,true), with i; = (e,e,—1,true) for 1 < ¢ < m, and with
t € {sim, com}. idpnor IS the identity function ofPhori".

Next, forx € Basesuppose that

x\ € suf(Syn with A € Syrf, i.e.,\ € Licensees [cf. (ii) of (me)/
sk € suf(Syn with s = "x andx € Syrf, [cf. (i) of (me)/
v, & € suf(-1;) for1 <i<m Icf. (Rus)/

such that forl < 7 < m it holds that

v, = €0ré; =g, [cf. (ir.1.1)/
v, =& =e€if A =-1;\ with ' € Syr. [cf. (ir.1.2)/
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Chooseg;, h; € {1} U{0,...,m}, u;, v; € {true,false} forl <i < m, j;,
vi € {1,...,m}* for0 < i < m, andu,v € {sim, com} such that

U = <<st€,ﬁ0,07true>, <V1,61791,U1>, sy <V7n76m;gmau7n>au> S Nu
V= <<XA,’}/07O,tI‘ue>, <£17717h171]1>7' HE) <£m77mahmavm>av> S N,

and such that, additionally,

if u = comthen¢; = e foreachl < i <m, [cf. (ir.1.3)/
if w = simtheny; = e for eachl < i < m!1€ Icf. (D1)/
Proceeding, lefmax = max{g; |0 < i < m}, andhmyax = max{h; |0 <i < m}.

In case\ = e we setj = 0 and take

T = ((k,700, 0, true), i1, ..., dm,com) € N , and

in caseX # e we choose the uniquely existiig< j < m such that\ = -1;\ for
some) € suf(Syrf) and we take

T= <<K7j/60707true>7/717 ) //Z’ma C0m> €N,
where in both cases fdr< i < m we have

(Vi, Bi» gi, wi) if i £ jand§ =€

~ (&5 Vis Ymax + hi, true) if i £ jand§; # ¢
Hi= (A, 70, max + Pmax + 1, true ) if i = jandu = sim
(N, 70, max + Pmax + 1, false) if i = j andu = com

For the functiormergg; |, € F' as defined below, we finally let

(r1) T — mergg; (U, V) € R if u=sim,and
T — mergg; (V,U) € R if u=com.

19

Assumezxg, T1,.-.,ZTm, Yo, Y1,---,Ym t0 be pairwise distinct variables, and define

T = (20, &1 ..., Tgpae) ANAY = (Y0, Y1, - - - s Yhpan)- NOtE thalgpay = 0 if u = sim,
and thath,,.x = 0 if v = com. Moreover, ley € {0, 1} be such thaf = 0 iff j = 0.

In caseu = sim, mergg; y is the function fromPhort* x (Phort)"=+*1 into the set
(Phort)hmaxt+7+1defined by

0
=1

<$0y0’y17""yhn]ax> If]’\
T,Y) — A
< y> { < Zo ayl,"'ayhmax7y0> If]

In caseu = com, mergeg; y, is the function fromPhort x (Phori")9=+<*1 into the set
(Phori")9max+7+1 defined by

18According to (n2) and (n4) the latter two restrictions are equivalent to the respective following twe= itom then foreact) < ¢ < m
with 0 <y, 4 it holds thati = 0;if u = simthen for eactd < i < m with 0 <, i it holds thati = 0.
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<y0$0,$1,...,$9max> if 3\:0
<y’””>H{ (20 21 zgyn) 7=1
Now, for somel < j < m, suppose that
v; € suf(-1;) with v; = -1, for a\ € Licensees, [cf. (i) of (mo)/
Ik € suf(Syn with I = +L; andx € Syrf, [cf. (i) of (mo)/
v; € suf(-1;) for1 <i <mwithi # j Icf. (Rys)!

such that forl < 4 < m with i #£ j it holds that
v = eif A = -1\ with \' € Syri. [cf. (ir.2.1)/

Next choose elementg € {—1} U{0,...,m}, u; € {true,false} forl <i <m,
andg; € {1,...,m}* for 0 < i < m such that

U = ((lk, Bo, 0, true), (11, 51,91, U1); - - -, (Vms Bms G, Um ), com) € N,

and such that, additionally,

uj = true, [cf. (iii) of (mo)/
and furthermore,

B; = e for eachl < i < m with j <f; . Icf. (ir.2.2)/
Letj’ € {0,...,m} such that3;, = (; jn; for some(;,,n; € {1,...,m}**19

In case\ = e we setk = 0 and take

T = ((k,bo, 5;0,0, true), fi1,. .., [im, com) € N.

In case) # e we choose the uniquely existing< k& < m such that\ = -1, )\’ for
some) € Syri and we take

T = ((k, bo, kB, 0, true), i1, ..., fim,com) € N,

where in both cases is defined by = (;n, if j/ = 0, andg = 3, otherwise.
Furthermore, for each < 7 < m we have

(A, Bj,95,false) ifi=k
~ (e,e,—1,true) ifi#Akandi=j
=Y (v Comi ows)  if i # kandi = j'
<V’i7 ﬁi 7§i7ui> |fl7£k,l7é]andl7é]/
whereg; = ¢g; — 1if k = 0 andg; > g;, andg; = g, otherwise.

Now, for the functiormove; € F' as defined below we let

SThus, j/ <y j and thereforg’ # j. Such aj” exists and is unique by (n2) and (n4).
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(r2)T — move, (U) € R.

Let gmax = max{g; |0 < i < m}, letzg, 21, ..., z,, be pairwise distinct variables,
definex = (zo, ..., zg,,.), and lett € {0, 1} be such that = 0iff £ = 0.

move; is the function from(Phori*)9max+1 into <Phoﬁ*>9mx+z defined by

T — <xgj'r07x17"'7xgj—17xgj+17"'7'rgmax> Ifk:o
<x0,x1)"'?xgmax> Ifk?éo

Terminating rules For eachkm: € Lexwith x € Syri’, = € Phori" and. € Senf let
(r3)T — w € R, whereT = ((k,€,0,true),V1,...,Un,sin) € N\ {S}

with 7; = (e, e, —1,true) for1 <i < m.

The weak equivalence of the given M@, and the LCFRS~ as constructed above
from G, is fixed in Corollary4.4, which can be seen as a consequence of two propo-
sitions, namely, Propositiof.2 and4.3.

PROPOSITION4.2
If 7 € RCUGye) thenaT’ € N\ {S} and apr € Lg(T) exist such thatT, pr)
corresponds te according to Definitioit. 1.

PROOF (SKETCH). The proof follows from an induction verifyin@(2;,) for £ € IN.

(4.2,) If 7 € CL*(Gys) N RCL(Gye), there are som& = (7o, ..., fim,t) € N and
pr € LE(T) such that{T, pr) corresponds te in the sense of Definitiod. 1.

Becausd.ex= CL%(Gys) NRCL(G,), (4.2,) holds according to (r3). As far as the
induction step is concerned we will skip specific details, emphasizing the crucial line
of argumentation: whenever for sorkec IN, somer € CL’““(GMG) N RCLGye)
results from an application ofiergeto a pair(v, ¢) for somev, ¢ € CL*(Gye), v and
¢ must not be in line with (ir.1.1)—(ir.1.3), sineds relevant ta,,;. Note thaty and¢
are fromRCL(G\) by Propositior8.10 Hence, forany/,V € N andpy, py € Os
such that{U, py;) and(V, py) correspond t@ and¢, respectivelyl/ andV obey the
restrictions demanded in order to appear on the righthand side of some rule of the form
(r1). By hypothesis sucl,V € N andpy,py € Os exist such thapy € LE(U)
andpy € L¥ (V). By definition, for the corresponding nontermirfafrom (r2) and
the tuplepr = mergeg; - (pv,pv) € La(T), the pair(T, pr) corresponds te.

If for somek € IN, somer € CLF(G,e) N RCUG\e) is of the formmoveéw)
for somev € CL*(Gys), v cannot be subject to (ir.2.1) and (ir.2.2).€ RCL(Gye)
by PropositiorB.10 Hence, for anyy € N andpy € Oy such that{U, pyy) corre-
sponds tow, U provides the case of ali as it appears in (r2). Here by hypothesis,

a correspondind/ andpy exist such thapy € L%(U), and by definition, for the
corresponding nontermindl from (r2) and the tupler = move,(py) € La(T), the
pair (T, pr) corresponds ta. O
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PROPOSITION4.3
If pr € Lg(T) for someT € N\ {S} andpr € O, then there is a € RCL(Gyc)
that corresponds t@l", pr) in the sense of DefinitioA.1.

PROOF (SKETCH). Here, an induction provingd(3;) for £ € IN yields the result.

(4.3) If pr € LE(T) for someT € N \ {S} then(T,pr) corresponds to some
7 € CL*(Gye) NRCLG)o).

Again becaustex = CL’(G,,s) N RCL(Gye), (4.3) holds according to (r3). Re-
garding the induction step, we summarize the decisive points: consider first the case
that for somek € IN, there are somé&,V € N, and somepy € LE(U) and
pv € LE(V) such thatU and V fulfil the requirements to occur on the righthand
side of some rule of the form (rl). Then for the correspondihdrom (rl) and
pr = merge;  (pu, pv), we havepr € L’é“(T). By hypothesis there are not only
v, ¢ € CL*(Gys) N RCLUG,s) such thafU, pyy) and(V, py) correspond ta andg,
respectively. The restrictions applying&andV also ensure that = mergduv, ¢)
is defined, and they ensure thadnd¢ do not chime in with one of the cases (ir.1.1)—
(ir.1.3). Thus,r is relevant toG,,;. Moreover(T, pr) corresponds te.

Now, assume that for soniec IN there are any/ € N andpy € L{ (U) such that
U fulfills the requirements to occur on the righthand side of some rule of the form (r2).
For the corresponding from (r2) andpr = move;(U), we havepr € L’g;“(T). By
hypothesis there is an € CL*(Gys) N RCL(G\c) such that{U, p;;) corresponds to
v. The restrictions applying t&/ imply thatv € Dom(move, and they prevent
from constituting a case in the sense of (ir.2.1) or (ir.2.2). Thereforemovév) is
defined and relevant tG\,;. The pair(T, pr) corresponds te. d

COROLLARY 4.4
m € L(G) iff m € L(Gye) for eachr € Phort'.

PROOF To show that the “if—part” holds, choose completez CL(G\) with pho-
netic yieldr € Phorf. LetT = (jio, ..., im,t) € N with ¢ € {sim, com}, and with
fi = (s, a4, fi,t;) for 0 < i < m as in (n1)—=(n8), and lgty € (Phori)/maxt1,
where fiax = max{f; |0 < i < m}. Assume tha{T, pr) corresponds te in the
sense of Definitiod.1. By Propositiord.2, T" andpp exist such thapr € La(T).
Becauser is complete, we havgy = (c,¢,0,true) andj; = (e,e,—1,true) for
1 <4 < m. From (r0) we therefore conclude that Ls(S) = L(G).

To prove the “only if"—part, take some € L(G) = Lg(S). By definition of R
each rule applicable t§ is of the form (r0). Thus, there is@gr € Lo (T) C Phori
such thatr = idpnors (pr) = pr for T € N as in (r0). (T, pr) corresponds to some
7 € RCL(G,) by Propositiord.2 This 7 is complete by (D1), and = pr is the
yield of 7 by (D3). d
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4.2 SMLs as MCFLs

We now supposé to be an SMG, and we writ€',,; instead ofG. Constructing the
weakly equivalent LCFRS G = (N, O, F, R, S), we again takeim andcon to be
pairwise distinct new symbols and continue by providing the definitions ahdO,
the set of nonterminals and the set of tuples of terminal strings, respectively.

e e e Each nonterminal” € N is either the start symbd¥ or anm + 2-tuple of
the form(fio, /i1, - - - , fim, t) With ¢ € {sim, com}, and withyi; a triple (u;, o, f;) for
0 <i < m,where

(n1) po € suf(Syn \ U~ suf(-1;) andy; € suf(-1;) for 1 <i < m,
(n2) a; € {1,...,m}* for 0 < i < mwith {ag,...,a,) € Treecodingén), and
(n3) fo=0andf; € {-1}U{0,...,m}for1 <i<m

such that forl < j < m it holds that"
(n4) p; # eiff i<, j forsomed < i < miff f; >0,
and such that fof,,.x = max{f; |0 <1 <m} it holds that

(M5) {fi|0<i<m}Nn{0,....,m}={0,..., fmax} -2*
Note that, by (n1)—(n4), it holds that

o foreach0 < j < m with u; # € there is exactly oné < i < m with f; = f;
such that <7 k ori <, k for each0 < k < m with f; = f5 .

eee WeletO =, . (X*)""!, ¥ = Phonthe set of phonetic features iyc.

ConsiderT = (fig, fi1, - - -, fbm, t) € N with ¢ € {sim, com} andji; = (u;, i, fi)

for 0 < ¢ < m in accordance with (n1)—-(n5). From one perspective, each such
nonterminall’ could be seen as being “internally” less complex than a corresponding
nonterminal of the “MG-case.” Here, each of the fitst+ 1 components, i.e. each

i with 0 < ¢ < m, is a triple instead of a quadruple that has just lost its fourth
component; € {true, false}. But at the same time, the relation between those first
m + 1-components has become more involved. To put it differently, where condition
(n6) in conjunction with (n3) formerly ensured the uniqueness of the third component
/i of eachi; with first componenju; # e for 0 < ¢ < m, the omission of condition
(n6) now allows such arf; to be identical to anothef; for some0 < j < m with

j # i under particular circumstances. Of course, up to the start sySpdl is

201 the following, adhering to the notational conventions of the last subsection, for each corresgbnaingV \ {5} we write A

and < instead ofa and <« , respectively, to denote the relations as they result from the “tree~coding”dupte (o, . . ., )
according to 4o ) and K« )-
2Hence, we may conclude from (n3)—(n5) that the funcfdmom {0yu{l1<j<mlp; #e}ino{0,..., fmax } defined by

F(i) = f; is a surjection withf (0) = 0.
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nevertheless a subset of a finite product of finite products of finite sets and, for this
reason, a finite set itself.

Now, letT = (N;, <7, <+, <r,labé,) € RCLGgy). Forl < i < m we choose, if
possible at all, some € MaxProj(7) that has license€l ;.2 Otherwise, we take; to

be a single node labeled Further, we set, = 7, and for0 < ¢ < m we letr; denote
the root ofr;. We also take som& = (fig, fi1, - - - im,t) € N with ¢ € {sim, com}
andi; = (u;, oy, f;) for 0 < i < minaccordance with (n1)—(n5), and we then define
fmax = max{f; |0 < ¢ < m}. Depending o’ we letpy = (mp, m1,...,7y,..) be

an fimax + 1-tuple fromO.

DEFINITION 4.5
The pair(T, pr) corresponds to if (SD1)—(SD4) are true.

(SD1)For0 < i < m, p, is the prefix ofr;’s head-label which consists of just the
syntactic features, and= sim iff 7 is simple.

(SD2)For0 < 4,j < mwith p;, u; # €, i<} jiff ry <t ry, andi <p jiff r; <, r;.

(SD3)If p; # € for some0 < i < m thenmy, is the phonetic yield of’, where
v’ results from the uniquely existing € Comg () with 7; € Speé(v) in the
following way: we replace by a single node labeledach¢ € Comp (v) for
which there is someé < j < m with p; # € such thatr; € Spec(¢), and such
that there is nal < k < m with p; # e such thatr, € Spet(x) for some
x € Comp (1) with ¢ € Comp' ()23

(SD4)If there is some» € Com (7) for which there is somé < i < m with u; # €
such thatr; € Spe€(v) then for eactd < j < m with p; # e it holds that
Tj S Speé(v) iff fj = fl

We see that, fitting in with (D1) and (D2) of Definitiof.1, the corresponding
corresponds tedefinition in the “MG—case,” (SD1) and (SD2) mirror the possibil-
ity of defining a particular finite partitio on RCL(Gsyc) by means of the product
suf(Syn x suf(-11) x...xsuf(-1,,) x {sim, com}, and a particular refinemes of
‘P by means oflreecodingémn). In other words, the equivalence clas$ig to which
7 belongs is characterized in terms{gh), 1, . . ., fm, t) @and{ag, a1, . .., am). Re-
call that the relevance condition ¢R) fulfilled by  modifies the relevance condition
(Rys) for expressions of an MG without changing the requirement that for each li-
censee-x there is at most one maximal projectionvtthat has this licensee.

(SD3) departs from (D3) in a significant way. This is due to the fact that the move—
operatomové of the SMGG,¢ is not simply a restriction of the corresponding struc-
ture building functiormovefrom Exp(—SynJ Syn) into Exp(—SynJ Syn: whenever a
maximal projectiorr’ in 7 has some licenseex that triggers an application ofiové’,

22if such ar; exists, it is unique. Recall that has property (Bug)-
Bifa correspondingp exists then it is unique, becau@emer (wv) is totally ordered b)comp*- . Furthermore, according to (n4), for each
1 < i < mwehaveu,; = eiff f; = —1. Hence, ifi; # e forsomel < i < m then the correspondingfi in fact exists.
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it will be the maximal projection € Comp' () with 7" € Spe¢(v) which will move
into a specifier position. If the corresponding instance of the liceaseeere to trig-
ger an application ofnove it would be 7’ itself that would move. We clarify the
intentions underlying (SD3) in somewhat more detail having a look at (SD4).

(SD4) is actually rather self-explanatory, taking into account the relevance con-
dition (Rsye) as it differs from the corresponding condition,{R for MGs: because
(Rswe) is Obeyed byr, for eachl < i < m with u; # e there is some expression
v € Comg (7) such thatr; € Speé(v). Such anv is unique, becaus€omg (7)
is totally ordered by the binary relati@mmyg . (SD4) now states that, whenever for
somev € Comg (1) there is somé < i < m with u; # € such thatr; € Spe¢(v),
then for all and only those < j < m with f; = f; the maximal projection; also
belongs taSpeé(v). In particular, this ensures a specific kind of unique relation be-
tween such am € Comg () and some component pf-, namely,, 4 according
to (SD3), this component;, specifies that part of the phonetic yield @fwhich is
not “extractable” by any means. That is, the part that will not become subject to pied—
piping if any movement of some maximal projectioh € Comp (7) takes place
that has been potentially licensed by meang.pf£ ¢ for somel < j < m with
7; € Spe¢(v’).

e e ¢ The setF' of functions and the sak of rewriting rules are simultaneously de-
fined w.r.t. the occurrence of ghe F within anr € R.

Nonterminating rules First of all we define two initial rules by

(rO) S — idphom(T) € R for T = <ﬁ0,ﬁ17. .. ,ﬁm,,t> eN

with g = (c,€,0), fi; = (¢,¢,—1) for 1 <7 < mandt € {sim, com}. The function
idpho+ from Phori onto Phori* is the identity function represented by+— z for
some variable.

Forx € Basesuppose that

x\ € suf(Syn with A € Syri, i.e. A € Licensee}§ [cf. (i) of (me)/
sk € suf(Syn with s = “x andk € Sy, [cf. (i) of (me)/
vi,§ esuf(-1;,)for1 <i<m [cf. (Rowe)!

such that forl < 7 < m it holds

vi=€0r& =e, [cf. (ir.1.1)/
v =§; =eif A=-1;\" with X' € Syn. [cf. (ir.1.2)/

We choose elementg, h; € {—1}U{0,...,m}for1 <i<m,g;,v € {1,...,m}*
for 0 < i < m, andu,v € {sim, com} such that

24Note also that, sincgp = 0, and sincer = 7¢ is the onlyv € Comg" (1) with 79 € Sped (v), itis a consequence of (SD4) that
foreachl < j < mwith pu; # e we haver; € Spe¢ () iff f; = 0.
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U= <<8/€750a0>’ <V1aﬁ1791>7 ceey <Vmaﬁmvgm>au> S N;
V= <<X)‘7’)/0a0>7 <£1a’ylvh1>v~ ) <£m77m7hm>7v> € Nv

and such that, additionally,

if u = com then¢ = ¢ for eachl < i < m with h; # 0,25 Icf. (ir.1.4)/
if u = simtheny; = e foreachl <i < m. [cf. (SD1)/
Proceeding, we l@ky.x = max{g; |0 < i < m}, andhyax = max{h; |0 <i < m}.
In caseu = sim, A = e andh; # 0 for eachl < i < m, we setj = 0, and we take
T = {({k,700,0), 11, - - - , fim, com) € N.

In caseu = sim, A\ = ¢ andh; = 0 for somel < i < m, we choose the uniquely
existingl < j < m with h; = 0 such thatj <, i or j <, i for eachl < i < m with
h; = 0, and we take

T= <<H7706070>7ﬁ1» cee aﬁma com) €N.

In caseu = sim and\ # ¢, we choose the uniquely existing< j; < m such that
A =-1,)\ for some)\’ € suf(Syri), and we take

T = {{k,jB0,0), 41, - -, fin, com) € N,
where for all subcases af= sim, for 1 < ¢ < m we have
(vi, Bi gi) if i # jand§; = e
(&, iy i) if i £ jand&; # ¢, andifh; #0
i =4 (&ivVi, hmax + 1) if ¢ # jand§; #¢€ andifh; =0
(& Yishmax +1)  ifi=jand\ = ¢ (i.e. h; = 0)
(A7, hmax + 1)  ifi=jand\ #e(i.e.h; =—1)

In caseu = com and\ = ¢, we setj = 0, and we let

T = <<H570ﬂ0a0>a,a17 .. -aﬁ’ma com> € N.

In caseu = com and A # ¢, we choose existing and unique< j < m with
A =-1;)\ for some) € suf(Syri), and we take

T = ((k,7B0,0), l1, .., fm,com) € N,

where in all cases af = com, for 1 < i < m we have
(vi, Bi,95)  ifi# jand§; =e

i = (& vir ha)  if i # jandg; # e (i.e.h; = 0)
MN7,0) ifi=j

25According to (n2)—(n4) this restriction is equivalent to the followinguif= com thenh; = 0 for eachl < i < m with 0 qf, .




Implications of a Revised Perspective on MGs 27

Then, formergg; ,, € F as defined below, we finally let

(r1) T — mergg; (U, V) € R if u = sim,
T — mergg; (V,U) € R if u = com.

As in the previous subsection we Iet;, xg, z1,-..,%m, Y. Yo, Y1,---,Ym D€
pairwise distinct variables. Then we respectively definendy as thegy.x + 1—
tuple (zo, 1 ..., x4, ) and theh, . + 1-tuple(yo, y1, . . ., Yn....)- Again we have
Jmax = 0in caseu = sim, andh,,.x = hyg = 0in caseu = com, and again we
define7 € {0,1} to be such thaf = 0 iff j = 0.

In caseu = sim, mergg; y is the function fromPhori" x (Phort)"=+*1 into the set
(Phori)hmax+7+1defined by

<$0y0a Yiyeony yhmax> if ]A
T,Y) — A
< y> { < Zo ayl,"'ayilmax7y0> If]

0
1

In caseu = com, mergg; - is the function fromPhort x (Phori’)9=«*1 into the set
(Phort)9max+7+1 defined by

<y,£[,’> = <y0£C0, L1y 7xglnax>

Now, for somel < j < m, suppose that

vj € suf(-1;) with v; = -1, A for some\ € Licensee§, [cf. (i) of (smo)/
Ik € suf(Syn with I = +L; andx € Syrf, [cf. (i) of (smo)/
v; € suf(-1;) for1 <i < mwithi # j [cf. (Rewe)/

such that forl < i < m with i # j it holds that
v; = eif A =-1;\ with ' € Syr. [cf. (ir.2.1)/

Next, choose elemengs € {—1}U{0,...,m}for1 <i<mandg; € {1,...,m}*
for 0 < i < m such that

U = (I, Bo,0), (v1,81,91)5 - - +» (V) B, Gm ), com) € N,

and such that, additionally,

97 # 0, Icf. (iii) of (smo)/
and, furthermore,

gi = gy foreachl <i <mwith J <, iorJ <y i, Icf. (ir.2.3)/

whereJ € {1,...,m} with g; = g, such that
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J <y iorJ <y iforeachl <i <mwithg; = g;.%° Icf. (SD4)/

If A = cwesetk = 0. If A\ # eweletl < k < m such thath\ = -1\ for
some)’ € Syri. Furthermore, we choose existing and unique ;' < m such that
B = ¢ Jn; for someg;,n; € {1,...,m}*. Hencej’ <, J, implying thatj’ # J.

Then, in case/ = j andk = 0, we take
T = ({k, Bnj:3,0), i1, ..., bm, com) € N.
In caseJ = j andk # 0, we take
T= <<l€a knj’ﬂa())aﬁla v 7ﬁm7 com> €N.
In caseJ # j, we take
T= <<Ha Jn]’ﬂ70>7 ﬁla v aﬁma COII1> € N’
where in all three case$ = (;/ if j/ = 0, and = [, otherwise. Furthermore, for
1 <1 < m we have
<)‘aﬂj70> ifi=k
(e,¢,—1) if i =jandj #k
<Vi7<-i7§i> |fZ:]/
(Vi, GiBjmi, 0y if i<y 4,4 # j andk = 0,27
i = Where@,m S {1, - ,m}* with ﬂz = Cljnl

<Vi, Clkﬂ’h, 0> if 1<y 7,1 # j/ andk 7& 0,
Where@,m S {1, Ce ,m}* with ﬂ,’ = Czjnz

(vi, Bi, 0) if J < iorJ <, ifori#jandi 4, ;28

where forl <i <m,g; € {-1}U{0,...,m} is defined by
~ {gi_l if gi > g = 9%

9= Gi in all other cases

Now, for the functiormove; € F as defined below we let

(r2) T — move; (U) € R.

Once more, we lef.x = max{g; |0 < i < m}, we letzy, xo, z1,..., 2, be
pairwise distinct variables, and we lebe theg,,.x + 1-tuple(xzo, ..., z4,..)-
move; is the function from{Phorf )9==x*1 into (Phori")9m=x defined by

ZBecausqu; # eandg; = gy # 0, ittumns out, by (n4), thag; > O.
2TLet0 < i < mwithi qp; j:if 5 = Jtheni = j/;if j # JthenJ <f; iorJ <, i.
ZBRecall that, ifJ <af; i or J <, iforsomel < i < mtheng; = g; by assumption oi.

29Note thatg; > g; forsomel < i < m implies thati <1;r, Jori <y J.
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T <ngx07x1""’ngfl’ng+17" '7xgmax>

Terminating rules For eachsm. € Lexwith x € Syri, 7 € Phori and. € Senf let
(r3)T — w € R, whereT = ((k,¢€,0),01,...,Um,sim) € N\ {S}

with ; = (e, e, —1) for 1 <i < m.

Analogously to the “MG-case,” the weak equivalenc&zbéndGy,s (Corollary4.8)
results from two propositions, namely, the following ones:

PROPOSITION4.6
If 7 € RCUGye) then aT € N \ {S} and apr € Lg(T) exist such thatT, pr)
corresponds te according to Definitioi.5.

PROPOSITION4.7
If pr € La(T) for someT € N \ {S} andpr € O, then there is a € RCL(G )
that corresponds t@", pr) in the sense of Definitiod.5.

The analogy to the respective propositions concerning the giverGy3s obvious,

and again, respective inductions bre IN would serve to prove them formally. In-
stead of presenting corresponding formal proofs of Propos#tiérand4.7 we will

briefly discuss the underlying idea of the constructiozothe way in which this idea
resembles the one underlying the previous construction as well as the aspects in which
it deviates from the former.

The construction of the LCFR& for the SMG G, reflects the definitions of
mergeandmové, and the relevance condition {R) as it results from the latter: as-
sume that, on the one hand, there aré € RCL(Gsye). On the other hand, suppose
UV € Nandpy € Lg(U), pv € Lg(V) to be such thatU, py) and (V, py)
correspond tay and ¢, respectively. Then it holds that = mergédv, ¢) is defined
and relevant ta7, if and only if U,V € N meet the conditions for occurring on
the righthand side of a rewriting rule of the form (r1). In particular, the restrictions
imposed on such & andV prevent the correspondingand¢ from creating a sit-
uation as described in (ir.1.1), (ir.1.2) or (ir.1.4). For the correspondirg N and
pr = merge; - (pu, pv) € O, the pair(T', pr) corresponds to.

Forv € RCUGswe), U € N andpy € L¢(U) such thatU, pyy) corresponds to
v similar considerations arise w.r.t. the move—operatos: mové(v) is defined and
relevant toGs,s if and only if U meets the conditions for occurring on the righthand
side of a rule of the form (r2). Here, the respective restrictions guarantee in partic-
ular that the corresponding does not provide a case of (ir.2.1) or (ir.2.3). For the
corresponding’ € N andpr = move;(py) € O, the pair(T, pr) corresponds te.

Note that, as far as the set functionsGhare concerned, the construction Gf
contrasts with that in the MG—case in a particular detail which we want to empha-
size here. For this reason suppose that, by an applicatiomeafeor mové, some
¢ € Exp(Feat) becomes a specifier of somee CL(Gsye). In virtual terms of the
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LCFRS G, we then do not distinguish between the case thhas an (unchecked)
licensee and the case that it has not. This is different to the “MG—case” and due to the
specific character ohové as it deviates frormove suppose thap has some licensee

-x. In the SMG—case, we do not have to foresee the possibility within the LCFRS
G that at some later derivation stepor a remnant of» will move “on its own” in

order to check the corresponding instancexfIf v serves to derive another expres-
sionv’ € CL(Ggye) such that this instance ek enters into a configuration which
allows checking it off, ther or its corresponding remnant will by no means belong

to Comp'(v’), sinceg is a specifier ob.

Note further that “precedence” in terms &f, as it is generally coded in a corre-
sponding nontermindl from N\ {S} by means of (n2) is used only in order to define
rules of the form (r2), and only in the SMG—case, i.e., to have “precedence” in terms
of <, available is only relevant for simulating the structure building openziové.

COROLLARY 4.8
m € L(G) iff m € L(Gsye) for eachr € Phori'.

The proof of this corollary is very similar to that of Corolledy4d. We leave to the
reader the explicit adaptations that are necessary.

5 Final Remarks

We have shown that each MG as well as each SMG as definetBjris[ weakly
equivalent to an LCFRS of a particular kind, namely, an LCER® the sense of
Definition2.4, i.e. an LCFRSG = (N, O, F, R, S) with rank(G) = 2 such that,

if A — f(B,C) € Rthendg(B) = 1. This result is of special interest, since,
conversely, it can be shown that each such LCFRS is weakly equivalent to both a
corresponding MG as well as a corresponding SM@JJ[ Consequently, the MG—
type and the SMG-type as defined i8] are shown to determine the same class of
derivable string languages, thereby confirming a conjecture explicitly statéd]in [

MGs provide a restricted type of UMGS.The latter are known to have the same
weak generative power as LCFRS&%[13], [5]). It is known that each LCFRS is
weakly equivalent to some LCFRS of raBk(see e.g.[15]). Nevertheless it seems
to be an open problem, whether our result implies that MGs also provide a proper
restriction of UMGs in terms of derivable string languages. Our conjecture, indeed, is
that this is the case given the highly restricted nature of the interleavings allowed by
an LCFRS 5.

The conjecture is likewise supported by a look at what may be seen as the crucial
difference between MGs, respectively SMGs, and UMGs. Let us conclude by examine
this difference in some more detail: in contrast to the general possibilities provided by
the UMG—-type, an MG neither employs any kinchefad movememor covert phrasal

30Recall our convention from the introductory part that we refer to an MG of the type as originally defilfed] as[anunrestricted MG
(UMG), while we use the terrminimalist grammaind its short cuMG only in order to refer to an MG of the revised type introducedli] [
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movementand an additional condition is imposed on the move—operator as to which
maximal projection may mowvevertlyinto the highest specifier position, namely, con-
dition (iii) of (mo), the definition oimove However, as far as it concerns the derivable
string languages, we do not have to take care of the precise definitibreadfmove-
mentand covert phrasal movememts given w.r.t. UMGSs, since it has been shown
([172,113], [9)) that, in terms of weak equivalence, UMGs can be defined as MGs in the
sense of Definitio3.2dropping condition (iii) of (mo). That is to say, within an UMG,
the (overtly) moving maximal projectiapwhich has licenseex may be located any-
where within the expressionwhich has licenso#x. This equivalence result can be
strengthened, sinc&3] even shows that in terms of weak generative capacity nothing
gets lost, when additionally the label of each lexical item of an UMG is demanded to
be fromSelect(SelectU Licensorge<Base LicenseéPhori'Seni, analogously to the
SMG—definitior! That is to say, if we restrict the UMG—type to the possibility of
applying only overt phrasal movement and creating only single specifiers by means of
corresponding labels of the lexical items, the specified class of derivable languages is
not restricted at aff? The same is true of the MG-type. Of course this type fsiori
restricted to overt phrasal movement by definition, but as showtOjpfior each MG

G there is a weakly equivalent MG’ such that the label of each lexical item Gf

is from Select(SelectJ Licensorgc<Base Licenseé®hori'Seni. The proof in[L(] is

done by showing that each LCFRScan be converted into a weakly equivalent MG
of this kind. Crucially, the resulting M@ also fulfills property (*).

(*) Whenever, for some € CL(G’) and-x € Licenseesthere is some maximal
projection¢ € MaxProj(v) that has licenseex then¢ € Comp™ (v).

This property in connection with the specific labeling of the lexical items guarantees
that G’ is likewise interpretable as an SMG without changing the closui@’ pthe
setCL(G"). More precisely, am € CL(G") fulfills condition (iii) of (mo) iff it fulfills
condition (iii) of (smo), and w.r.t. (iii) of (smo), the correspondifige MaxProj(v)

that has licenseex is identical to the existingg € Comp (v) with ¢ € Speé(x); to

put it differently, extraction is always strictly out of the “rightmost” path. But exactly
for this reason, property (*) also seems to reveal the crucial difference to UMGs, since
the analogous “best case scenario” for UMGs seems to be the provable fact that for
each UMG there is a weakly equivalent UM fulfilling (**).

(**) For eachv € CL(G'), there is somex € Spe¢g) for some3 € Comp (v)
such that, whenever for some& € Licenseesthere is some maximal projection
¢ € MaxProj(v) that has licenseex then¢ € Comp (v) or ¢ € Comp (a).

3 [13] this is shown by converting an arbitrary LCFRS of radiinto a weakly equivalent UMG of this particular kind. [8][a corre-
sponding proof is given by converting an arbitrary UMG which only allows overt phrasal movement to take place into such an UMG.

32This also proves that the chain based account to minimalist grammars in terms of connected forests as pred€higmvid¢s a
“restricted,” but weakly equivalent type of UMGs.
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