
Electronic Notes in Theoretical Computer Science 53 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume53.html 18 pages

Observations on
Strict Derivational Minimalism

Jens Michaelis

Universität Potsdam, Institut für Linguistik, PF 601553, 14415Potsdam,
Germany

Abstract

Deviating from the definition originally presented in [12], Stabler [13] introduced—
inspired by some recent proposals in terms of a minimalist approach to transforma-
tional syntax—a (revised) type of a minimalist grammar (MG) as well as a certain
type of a strict minimalist grammar (SMG). These two types can be shown to
determine the same class of derivable string languages.

1 Introduction

The type of a minimalist grammar (MG) as introduced in [12] provides an at-
tempt of a rigorous formalization of the perspectives adopted nowadays within
the linguistic framework of transformational grammar. As shown in [4], this
type of an MG constitutes a weakly equivalent subclass of linear context–free
rewriting systems (LCFRSs) [14,15]. Recently, independent work of Harkema
[2] and Michaelis [7] has proven the reverse to be true as well. Hence, MGs
as defined in [12], beside LCFRSs, join to a series of mildly context–sensitive
formalism classes—among which there is e.g. the class of multicomponent tree
adjoining grammars (MCTAGs) in their set–local variant of admitted adjunc-
tion (cf. [15])—all generating the same class of string languages, which is
known to be a substitution–closed full AFL. 1 Mainly inspired by the linguis-
tic work presented in [3], in [13] a revised type of an MG has been proposed
whose departure from the version in [12] can be seen as twofold: the revised
type of an MG neither employs any kind of head movement nor covert phrasal
movement, and an additional restriction is imposed on the move–operator as
to which maximal projection may move overtly. Deviating from the operation
move as originally defined in [12], a constituent has necessarily to belong to
the transitive closure of the complement relation or to be a specifier of such a

? This work has been funded by DFG–grant STA 519/1-1.
1 For a list of some of such classes of generating devices, beside MCTAGs, see e.g. [9].

c©2004 Published by Elsevier Science B. V.

Michaelis

constituent in order to be movable. Closely in keeping with some further sug-
gestions in [3], a certain type of a strict minimalist grammar (SMG) has been
introduced in [13] as well. This MG–type allows only movement of constituents
belonging to the transitive closure of the complement relation. But different
from the first type, the triggering licensee feature may head the head–label of
any constituent within the reflexive–transitive closure of the specifier relation
of a moving constituent. Furthermore, due to the general definition of a lexical
item of an SMG, an SMG does not permit the creation of multiple specifiers
in the course of a derivation. This paper answers to some important questions
explicitly left open in [13]: the respective types of an MG and an SMG are
shown to determine the same class of derivable string languages. This is done
by proving both formalism types to be weakly equivalent to the same subclass
of LCFRSs. The respective class of generated string languages is also shown
to constitute a substitution–closed full AFL. Whether it coincides with the
class of all LCFRS–definable string languages remains an open problem here.

2 Multiple Context–Free Grammars

LCFRSs form a proper subclass of multiple context–free grammars (MCFGs)
[11], which in their turn are a subtype of generalized context–free grammars [8].
But LCFRSs define the same class of derivable string languages as MCFGs.

Definition 2.1 [8] A generalized context–free grammar (GCFG) is a five–
tuple G = 〈N,O, F,R, S〉, where N is a finite non–empty set of nonterminals,
and where O is a set of (linguistic) objects. F is a finite subset of

⋃
n∈IN Fn\{∅},

Fn the set of partial functions from 〈O〉n into O. 2 R is a finite set of (rewriting)
rules, i.e. a subset of

⋃
n∈IN(F ∩ Fn) × 〈N〉n+1. S is a distinguished symbol

from N , the start symbol.

An r = 〈f, 〈A0, A1, . . . , An〉〉 ∈ (F∩Fn)×〈N〉n+1 for some n ∈ IN is written
A0 → f(A1, . . . , An), and also A0 → f(∅) if n = 0. In case n = 0, i.e. if f is a
constant in O, r is terminating, otherwise r is nonterminating.

For each A ∈ N and k ∈ IN, Lk
G(A) ⊆ O is given recursively by means of

θ ∈ L0
G(A) for each terminating A→ θ ∈ R, and θ ∈ Lk+1

G (A) if θ ∈ Lk
G(A), or

if there are A → f(A1, . . . , An) ∈ R and θi ∈ Lk
G(Ai) for 1 ≤ i ≤ n such that

〈θ1, . . . , θn〉 ∈ Dom(f) and f(θ1, . . . , θn) = θ. 3 The set LG(A) =
⋃

k∈IN L
k
G(A)

is the language derivable from A (by G). LG(S), also denoted by L(G), is the
language derivable by G.

Definition 2.2 [11] A multiple context–free grammar (MCFG) is a GCFG
G = 〈N,O, F,R, S〉 with O =

⋃
n∈IN〈Σ∗〉n+1, and satisfying (M1) and (M2),

2 IN is the set of all non–negative integers. For n ∈ IN and any sets M1, . . . ,Mn,
∏n

i=1Mi is
the set of all n–tuples 〈m1, . . . ,mn〉 with i–th component mi ∈Mi, where

∏n
i=1Mi := {∅}

for n = 0. We write 〈M〉n instead of
∏n

i=1Mi if for some set M , Mi = M for 1 ≤ i ≤ n.
3 For each partial function g from a set M into a set M ′, Dom(g)⊆M is the domain of g.

2

Michaelis

where Σ is a finite set of terminals with Σ ∩N = ∅. 4

(M1) For each f ∈ F , some n(f) ∈ IN, ϕ(f) ∈ IN\{0} and di(f) ∈ IN\{0} for
1 ≤ i ≤ n(f) exist such that f is a (total) function from

∏n(f)

i=1 〈Σ∗〉di(f)

into 〈Σ∗〉ϕ(f) for which (f1) and (f2) hold.

(f1) Let Xf = {xij | 1≤ i≤n(f) , 1≤ j≤ di(f)} be a set of pairwise distinct
variables, for 1 ≤ i ≤ n(f) let xi = 〈xi1, . . . , xidi(f)〉, and for 1≤h≤ϕ(f)
let fh be the h–th component of f , i.e. the function from Dom(f) into
Σ∗ such that f(θ) = 〈f1(θ), . . . , fϕ(f)(θ)〉 for all θ ∈ Dom(f). Then, for
each 1≤h≤ϕ(f) there are an lh(f)∈ IN, a ζ(fhl)∈Σ∗ for 0≤ l≤ lh(f),
and a z(fhl)∈Xf for 1≤ l≤ lh(f) such that fh is represented by (cfh

).

(cfh
) fh(x1, . . . , xn(f)) = ζ(fh0) z(fh1) ζ(fh1) · · · z(fhlh(f)) ζ(fhlh(f))

(f2) Each x∈Xf occurs at most once in all righthand sides of (cf1)–(cfϕ(f)
),

i.e. for the set IDom(f) = {〈i, j〉 | 1≤ i≤n(f) , 1≤ j≤ di(f)} and for the
set IRange(f) = {〈h , l 〉 | 1≤h≤ϕ(f) , 1≤ l≤ lh(f)}, the binary relation
gf ⊆ IDom(f)× IRange(f) such that 〈〈i, j〉, 〈h, l〉〉 ∈ gf iff xij = z(fhl) is an
injective partial function onto IRange(f).

(M2) There is a function dG from N into IN with dG(S) = 1 such that, if
A0 → f(A1, . . . , An) ∈ R for some n ∈ IN then ϕ(f) = dG(A0) and
di(f) = dG(Ai) for 1 ≤ i ≤ n.

The rank of G, denoted by rank(G), is the number max{n(f) | f ∈ F}.
The language derivable by G, the set L(G), is called a multiple context–free
language (MCFL). Note that L(G) ⊆ Σ∗, because dG(S) = 1.

Definition 2.3 [14,15] An MCFG G in the sense of Definition 2.2 such that
for each f ∈ F condition (f3) holds in addition to (f1) and (f2) is a called
linear context–free rewriting system (LCFRS). In this case L(G) is a linear
context–free rewriting language (LCFRL).

(f3) Each xij ∈ Xf has to appear in one of the righthand sides of (cf1)–
(cfϕ(f)

), i.e. the function gf from (f2) is total, and therefore, a bijection.

The class of all MCFLs and the class of all LCFRLs are known to be identical
(cf. [11, Lemma 2.2]). Theorem 11 in [9], therefore, leads to

Corollary 2.4 For each MCFG G there is a weakly equivalent LCFRS G′

with rank(G′) ≤ 2.

Definition 2.5 An MCFG1,2 (LCFRS1,2) is an MCFG (LCFRS) G in the
sense of Definition 2.2 (Definition 2.3) such that rank(G) ≤ 2, and such that
d1(f) = 1 for each f ∈ F with n(f) = 2. In this case the language derivable
by G is an MCFL1,2 (LCFRL1,2).

4 For each set M , M∗ is the Kleene closure of M , including ε, the empty string. Mε denotes
the set M ∪{ε}.

3

Michaelis

3 MCFGs in Monotone Function Form

We now introduce a special type of an MCFG, the type of an MCFG in mono-
tone function form (MFF), which will be of considerable interest in Section 6.
Roughly, the idea leading to the corresponding definition is the fact that (at
least in terms of weak equivalence) “synchronized parallelism” in an MCFG is
in a certain sense independent of the order of the constituents (each of which
represented by a terminal string) that are derivable as a tuple from a given
nonterminal. More technically, for a given rule r = A→ f(A1, . . . , An(f)), it is
not the order of the components of a di(f)–tuple θi = 〈θi1, . . . , θidi(f)〉 derivable
from the nonterminal Ai that “really matters,” but rather the (partial) order
of these components induced by their “left–to–right–appearance” within the
components of the ϕ(f)–tuple f(θ1, . . . , θn(f)) derivable from A by means of r.
Using this insight, we will focus on the possibility of an “a priori–re–ordering”
of the components of a corresponding di(f)–tuple θi in a particular way: it is
a consequence of (f1) and (f2) that for each 1 ≤ i ≤ n(f) there is a permuta-
tion δi(f) on {1, . . . , di(f)} such that for 1 ≤ j, j ′ ≤ di(f) with j < j′, if the
variables xij and xij′ appear at all within some component fh(x1, . . . , xn(f))
for some 1 ≤ h ≤ ϕ(f), these two variables are “monotonically” ordered by
δi(f) w.r.t. the function gf from (f2) in the sense that

δi(f)(j) < δi(f)(j′) iff gf (i, δi(f)(j)) <IN×IN gf (i, δi(f)(j′))

for each 〈i, j〉, 〈i, j′〉 ∈ Dom(gf).
5 What we will rely on is that each MCFG G

can be transformed into a weakly equivalent MCFG G′ such that, in particular,
for each function f in G′, the corresponding “monotonic” order w.r.t. gf for
1 ≤ i ≤ n(f) holds with δi(f) being the identity function on {1, . . . , di(f)}.
Definition 3.1 An MCFG G= 〈N,O, F,R, S〉 is in monotone function form
(MFF) if for each f ∈ F and i, j, k ∈ IN with 〈i, j〉, 〈i, k〉 ∈Dom(gf) it holds
that j < k iff gf (i, j)<IN×IN gf (i, k), where gf is defined as in (f2).

Proposition 3.2 For each MCFG1,2 G is a weakly equivalent LCFRS1,2 G′

which is in MFF.

Proof. By Corollary 2.2.10 and 2.4.4 of [5]. ¤

4 Minimalist Grammars

Throughout we let ¬Syn and Syn be a finite set of non–syntactic features and
a finite set of syntactic features, respectively, in accordance with (F1) and (F2)
below. We take Feat to be the set ¬Syn ∪ Syn.

(F1) ¬Syn is disjoint from Syn and partitioned into a set Phon of phonetic
features and a set Sem of semantic features.

5 <IN×IN denotes the lexical order on IN× IN, i.e. for all p, q, p′, q′ ∈ IN, 〈p, q〉 <IN×IN 〈p′, q′〉
iff (a) p < p′ or (b) p = p′ and q < q′.

4

Michaelis

(F2) Syn is partitioned into a set Base of (basic) categories, a set Select of
selectors, a set Licensees of licensees and a set Licensors of licensors.
For each x∈Base, usually typeset as x, the existence of a matching
x′ ∈ Select , denoted by =x, is possible. For each x∈Licensees , usually
depicted as -x, the existence of a matching x′ ∈Licensors , denoted by
+X, is possible. Base includes at least the category c.

Definition 4.1 A five–tuple 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 is called an expression

(over Feat) if it fulfills (E1)–(E4).

(E1) 〈Nτ , /
∗
τ ,≺τ 〉 is a finite, binary (ordered) tree defined in the usual sense:

Nτ is the finite, non–empty set of nodes, and /∗τ and≺τ are the respective
binary relations of dominance and precedence on Nτ . 6

(E2) <τ⊆ Nτ ×Nτ is the asymmetric relation of (immediate) projection that
holds for any two siblings in 〈Nτ , /

∗
τ ,≺τ 〉.

(E3) labelτ is the leaf–labeling function from the set of leaves of 〈Nτ , /
∗
τ ,≺τ 〉

into Syn∗Phon∗Sem∗.

(E4) 〈Nτ , /
∗
τ ,≺τ 〉 is a subtree of the natural interpretation of a tree domain. 7

We take Exp(Feat) to denote the set of all expressions over Feat .

Let τ = 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat).

For each x ∈ Nτ , the head of x (in τ), denoted by headτ (x), is the (unique)
leaf of τ with x /∗τ headτ (x) such that each y ∈ Nτ on the path from x to
headτ (x) with y 6= x projects over its sibling, i.e. y <τ siblingτ (y). 8 The head
of τ is the head of τ ’s root. τ is said to be a head (or simple) if Nτ consists
of exactly one node, otherwise τ is said to be a non–head (or complex).

A five–tuple υ = 〈Nυ , /
∗
υ ,≺υ , <υ , labelυ〉 is a subexpression of τ in case

〈Nυ , /
∗
υ ,≺υ〉 is a subtree of 〈Nτ , /

∗
τ ,≺τ 〉, <υ=<τ ¹Nυ×Nυ

and labelυ= labelτ ¹Nυ
.

Thus, υ ∈ Exp(Feat). Such an υ is a maximal projection (in τ) if υ’s root is
a node x ∈ Nτ such that x is the root of τ , or such that siblingτ (x) <τ x.
MaxProj (τ) is the set of all maximal projections in τ .

compτ ⊆ MaxProj (τ) × MaxProj (τ) is the binary relation defined such
that for all υ, φ ∈ MaxProj (τ) it holds that υ compτ φ iff headτ (rυ) <τ rφ,
where rυ and rφ are the roots of υ and φ, respectively. If υ compτ φ holds for
some υ, φ ∈ MaxProj (τ) then φ is a complement of υ (in τ). comp

+
τ is the

transitive closure of compτ . Comp+(τ) is the set {υ | τ comp
+
τ υ}.

6 Thus, /∗τ is the reflexive–transitive closure of /τ ⊆ Nτ × Nτ , the relation of immediate
dominance on Nτ
7 A tree domain is a non–empty set Nυ ⊆ IN∗ such that for all χ ∈ IN∗ and i ∈ IN it holds
that χ ∈ Nυ if χχ′ ∈ Nυ for some χ′ ∈ IN∗, and χi ∈ Nυ if χj ∈ Nυ for some j ∈ IN
with i < j. 〈Nυ , /

∗
υ ,≺υ 〉 is the natural (tree) interpretation of Nυ in the case that for all

χ, ψ ∈ Nυ it holds that χ /υ ψ iff ψ = χi for some i ∈ IN, and χ ≺υ ψ iff χ = ωiχ′ and
ψ = ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.
8 siblingτ (x) denotes the (unique) sibling of any given x ∈ Nτ different from τ ’s root.

5

Michaelis

specτ ⊆ MaxProj (τ)×MaxProj (τ) is the binary relation defined such that
such that for all υ, φ ∈ MaxProj (τ) it holds that υ specτ φ iff rφ = siblingτ (x)
for some x ∈ Nτ with rυ /

+
τ x /

+
τ headτ (rυ), where rυ and rφ are the roots

of υ and φ, respectively. If υ specτ φ for some υ, φ ∈ MaxProj (τ) then φ is a
specifier of υ (in τ). spec∗τ is the reflexive–transitive closure of specτ . Spec(τ)
and Spec∗(τ) are the sets {υ | τ specτ υ} and {υ | τ spec∗τ υ}, respectively.

An υ ∈ MaxProj (τ) is said to have feature f if the label assigned to υ’s
head by labelτ is non–empty and starts with an instance of f ∈ Feat .

τ is complete if its head–label is in {c}Phon∗Sem∗ and each other of its
leaf–labels in Phon∗Sem∗. Hence, a complete expression over Feat is an ex-
pression that has category c, and this instance of c is the only instance of a
syntactic feature within all leaf–labels.

The phonetic yield of τ , denoted by YPhon(τ), is the string which results
from concatenating in “left–to–right–manner” the labels assigned to the leaves
of 〈Nτ , /

∗
τ ,≺τ 〉 via labelτ , and replacing all instances of non–phonetic features

with the empty string, afterwards.

An υ = 〈Nυ , /
∗
υ ,≺υ , <υ , labelυ〉 ∈ Feat(Exp) is (label preserving) isomor-

phic to τ if there is a bijective function i from Nτ onto Nυ with x /τ y iff
i(x) /υ i(y), x ≺τ y iff i(x) ≺υ i(y), x <τ y iff i(x) <υ i(y), and with
labelτ (x) = labelυ(i(x)) for x, y ∈ Nτ . i is an isomorphism (from τ to υ).

Definition 4.2 For τ = 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat) with Nτ = tNυ

for some t∈ IN∗ and some tree domain Nυ , and for r∈ IN∗, (τ)r denotes the
expression shifting τ to r, i.e. the expression 〈Nτ (r) , /

∗
τ (r) ,≺τ (r) , <τ (r) , labelτ (r)〉

over Feat with Nτ (r) = rNυ such that the function iτ (r) from Nτ onto Nτ (r)

with iτ (r)(tx) = rx for all x ∈ Nυ is an isomorphism from τ to (τ)r . 9

For υ, φ ∈ Exp(Feat) let χ = 〈Nχ , /
∗
χ ,≺χ , <χ , labelχ〉 be a complex expression

over Feat with root ε such that (υ)0 and (φ)1 are the two subexpressions of χ
whose roots are immediately dominated by ε. Then χ is of one of two forms:
in order to refer to χ we write [<υ, φ] if 0 <χ 1, and [>υ, φ] if 1 <χ 0.

Definition 4.3 [13] A minimalist grammar (MG) is a five–tuple of the form
〈¬Syn, Syn,Lex , Ω, c〉, where Lex is a lexicon (over Feat), i.e. a finite set
of simple expressions over Feat each of the form 〈Nτ , /

∗
τ ,≺τ , <τ , labelτ 〉 with

Nτ = {ε} and labelτ (ε) ∈ (Select ∪Licensors)∗Base Licensees∗Phon∗Sem∗, and
whereΩ is the operator set consisting of the structure building functions merge
and move defined w.r.t. Feat as in (me) and (mo) below, respectively.

(me) merge is a partial mapping from Exp(Feat)×Exp(Feat) into Exp(Feat).
A pair 〈υ, φ〉 with υ, φ ∈ Exp(Feat) belongs to Dom(merge) if for some
x ∈ Base conditions (i) and (ii) are fulfilled:

(i) υ has selector =x, and

9 Note that, by (E4), for each τ = 〈Nτ , /
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat) a t ∈ IN∗ and a

tree domain Nυ with Nτ = tNυ do exist.

6

Michaelis

(ii) φ has category x.

Then,

(me.1) merge(υ, φ) = [<υ
′, φ′] if υ is simple, and

(me.2) merge(υ, φ) = [>φ
′, υ′] if υ is complex,

where υ′ and φ′ result from υ and φ, respectively, just by deleting the
instance of the feature that the respective head–label starts with.

(mo) move is a partial mapping from Exp(Feat) into Exp(Feat). An expres-
sion υ ∈ Exp(Feat) is in Dom(move) if for some -x ∈ Licensees condi-
tions (i)–(iii) are true:

(i) υ has licensor feature +X,

(ii) there is exactly one φ ∈ MaxProj (υ) that has feature -x, and

(iii) there exists a χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ).

Then,

move(υ) = [>φ
′, υ′],

where υ′ ∈Exp(Feat) results from υ by canceling the instance of +X the
head–label of υ starts with, while the subtree φ is replaced by a single
node labeled ε. φ′ ∈ Exp(Feat) arises from φ by deleting the instance of
-x the head–label of φ starts with.

Definition 4.4 [13] A strict minimalist grammar (SMG) is a five–tuple of
the form 〈¬Syn, Syn,Lex , Ω, c〉, where Lex is a finite set of expressions over
Feat each of the form 〈Nτ , /

∗
τ ,≺τ , <τ , labelτ 〉 with Nτ = {ε} and labelτ (ε) is

in Selectε(Select ∪Licensors)εBase Licensees∗Phon∗Sem∗, and where Ω is the
operator set consisting of the structure building functions merge and moves

defined w.r.t. Feat as in (me) above and (smo) below, respectively.

(smo) moves is a partial mapping from Exp(Feat) into Exp(Feat). An ex-
pression υ ∈ Exp(Feat) is in Dom(move) if for some -x ∈ Licensees
conditions (i)–(iii) are true:

(i) υ has licensor feature +X,

(ii) there is exactly one φ ∈ MaxProj (υ) that has feature -x, and

(iii) there exists a χ ∈ Comp+(υ) with φ ∈ Spec∗(χ). 10

Then,

moves(υ) = [>χ
′, υ′],

where υ′ ∈Exp(Feat) results from υ by canceling the instance of +X the
head–label of υ starts with, while the subtree χ is replaced by a single
node labeled ε. χ′ ∈ Exp(Feat) arises from χ by deleting the instance of
-x the head–label of φ starts with.

10 Note that such a χ ∈ Comp+(υ) is unique.

7

Michaelis

For each (S)MG G = 〈¬Syn, Syn,Lex , Ω, c〉 the closure of G, CL(G), is the
set

⋃
k∈IN CLk(G), where CL0(G) =Lex , and for k ∈ IN, CLk+1(G)⊆Exp(Feat)

is recursively defined as the set

CLk(G) ∪ {merge(υ, φ) | 〈υ, φ〉 ∈ Dom(merge) ∩ CLk(G)× CLk(G)}
∪ {move ′(υ) | υ ∈ Dom(move ′) ∩ CLk(G)},

where move ′ ∈ Ω \ {merge}. L(G) denotes the (string) language derivable by
G, i.e. the set {YPhon(τ) | τ ∈ CL(G) and τ complete}.
Definition 4.5 A set L is a (strict) minimalist language ((S)ML) if there
exists an (S)MG G with L = L(G).

5 (S)MLs as MCFLs

A method of transforming an MG as defined in [12] into an MCFG is presented
in [4]. As demonstrated in [5], this method can be adapted to transform an
(S)MG as defined in [13] into an MCFG1,2. But note that this adaptation
is not of trivial kind, since in the original MG–definition move was defined
as in (mo) above, but without condition (iii), i.e. a maximal projection could
move completely independently of its position within an expression. Also, the
handling of derivable tuples by means of the rewriting rules and functions has
to be changed rather significantly in order to arrive at an MCFG as desired. 11

6 MCFLs as (S)MLs

Throughout this section, G = 〈N,O, F,R, S〉 denotes an MCFG1,2 in the sense
of Definition 2.5. In order to define an MG GMG = 〈¬Syn, Syn,Lex , Ω, c〉 in
the sense of Definition 4.3 such that L(GMG) = L(G), we suppose w.l.o.g. G
to be an LCFRS1,2 in MFF (cf. Proposition 3.2).

Of course, in [2] and [7] respective methods are presented how to construct,
for an arbitrary MCFG, a weakly equivalent MG of the type originally given
in [12]. Starting from an MCFG1,2, w.r.t. each of both methods, the lexicon of
the resulting MG can even be interpreted as the lexicon of an MG in the sense
of Definition 4.3 without leading to a change in the closure of the lexicon under
the structure building functions. 12 A difference in the closure of the lexicon
under the structure building functions may arise, however, if the lexicon of
the MG resulting from the construction according to [7] is interpreted as the

11 The respective considerations in [5] are even somewhat more involved than it would be
necessary as to our concerns here: there, a corresponding transformation is given w.r.t.
a type of an (S)MG which, in contrast to the definition in [13], still allows (overt) head
movement and covert phrasal movement to take place. The “plain” case of transforming an
MG in the proper sense of [13] into an MCFG1,2 is considered in [6].
12 As far as the approach presented in [2] is concernced some slight modifications of the
original construction are actually necessary before.

8

Michaelis

lexicon of an SMG, i.e. if the operator move is replaced by the operator moves

in order to build the corresponding closure. 13 This is not possible w.r.t. the
MG GMG which we develop here, since it fulfills (a) and (b) of Proposition 6.5,
implying that the language derivable by GMG is also an SML (Corollary 6.4).
This result yields the interesting consequence that the class of MLs and that
of SMLs are identical, confirming the corresponding conjecture in [13].

Motivating the construction below, let A → f(A1, . . . , An(f)) ∈ R and
pi ∈ LG(Ai) for 1 ≤ i ≤ n(f), hence, p = f(p1, . . . , pn(f)) ∈ LG(A): our
aim is to define GMG such that there is some τ ∈ CL(GMG) derivable from
some expressions υ1, . . . , υn(f) ∈ CL(GMG), thereby successively “calculating”

the ϕ(f)–tuple p in n(f) + 3ϕ(f) +
∑ϕ(f)

h=1 2lh(f) steps. 14 Each expression υi,
for 1 ≤ i ≤ n(f), will be related to Ai and pi, and the resulting expression τ to
A and p in a specific way (cf. Definition 6.1). Roughly speaking, as for τ , for
each 1 ≤ h ≤ dG(A) there is a τh ∈ MaxProj (τ) that has a particular licensee,
and up to the phonetic yields of the proper subtrees potentially extractable
from τh, p’s component ph is the phonetic yield of τh.

• • Let Phon = Σ and Sem = ∅.
• • For 1≤h≤m and 0≤n≤ 1 let -l〈h, n〉 be a licensee and +L〈h, n〉 the match-

ing licensor such that Licensees and Licensors both have cardinality 2m. 15

• • For each A ∈ N introduce new, pairwise distinct basic categories ~a

and ah as well as corresponding selectors =~a and =ah for 1≤h≤ dG(A). For
each A→ f(A1, . . . , An(f))∈R introduce new, pairwise distinct basic cate-
gories a〈f, ϕ(f)+1, 0〉 and a〈f, h, l〉 as well as corresponding selectors =a〈f, ϕ(f)+1, 0〉
and =a〈f, h, l〉, where 1≤h≤ϕ(f) and 0≤ l≤ lh(f). 14 Finally, assume c∈Base
to be different from all other elements in Base.

• • Next we define Lex ⊆ Exp(¬Syn ∪ Syn). 16 The first item defined to
belong to Lex is

αc = =~s c ,

where ~s ∈ Base is the corresponding category arising from S ∈ N . The form
of all other items in Lex depends on the rules in R. We distinguish three cases.

Case 1 . A → f(B,C) ∈ R for some A, B, C ∈ N and f ∈ F . In this
case ϕ(f) = dG(A), n(f) = 2, d1(f) = dG(B) = 1 and d2(f) = dG(C). The
following elements belong to Lex :

α〈A, f, B, C〉 = =c1 a〈f, ϕ(f)+1, 0〉

13 Note that the use of multiple specifiers is of rather constitutive moment within the ap-
proach of Harkema [2], causing that, in particular, the MG–lexicon which results from an
MCFG1,2 according to his construction does generally not match the SMG–definition.
14 Recall that ϕ(f) = dG(A) by (M3).
15 Here, m = max{dG(A) |A ∈ N}.
16 Since it is a head with root ε, we identify a lexical item with its (unique) label.

9

Michaelis

For each 1 ≤ h ≤ ϕ(f) with lh(f) = 0 we add

α〈A, f, h, 0〉 = =a〈f, h+1, 0〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0) .

For each 1 ≤ h ≤ ϕ(f) with lh(f) > 0 we add

α〈A, f, h, 0〉 = =a〈f, h, 1〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0)

α〈A, f, h, lh(f)〉 =

=a〈f, h+1, 0〉 =~b a〈f, h, lh(f)〉 ζ(fhlh(f)) if z(fhlh(f)) = x11

=a〈f, h+1, 0〉 +L〈j, 1〉 a〈f, h, lh(f)〉 ζ(fhlh(f)) otherwise,

where 1 ≤ j ≤ d2(f) with z(fhlh(f)) = x2j
17

For each 1 ≤ h ≤ ϕ(f) and 1 ≤ l < lh(f) we add

α〈A, f, h, l〉 =

=a〈f, h, l+1〉 =~b a〈f, h, l〉 ζ(fhl) if z(fhl) = x11

=a〈f, h, l+1〉 +L〈j, 1〉 a〈f, h, l〉 ζ(fhl) otherwise,

where 1 ≤ j ≤ d2(f) with z(fhl(f)) = x2j
17

Case 2 . A→ f(B) for some A,B ∈ N and f ∈ F . In this case ϕ(f) = dG(A),
n(f) = 1 and d1(f) = dG(B). Then, the following element belongs to Lex :

α〈A, f, B,−〉 = =b1 a〈f, ϕ(f)+1, 0〉

Case 3 . A→ f() for some A∈N and f ∈F . Then ϕ(f) = dG(A) and n(f) = 0.
lh(f) = 0 for 1≤h≤ϕ(f), i.e. f() = 〈ζ(f10), . . . , ζ(fϕ(f)0)〉, since f is a constant
in 〈Σ∗〉ϕ(f). The following entry belong Lex :

α〈A, f,−,−〉 = a〈f, ϕ(f)+1, 0〉

In Case 2 and 3 , also the following items are in Lex :

For each 1 ≤ h ≤ ϕ(f) with lh(f) = 0 we just add

α〈A, f, h, 0〉 = =a〈f, h+1, 0〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0) .

For each 1 ≤ h ≤ ϕ(f) with lh(f) > 0 we add

α〈A, f, h, 0〉 = =a〈f, h, 1〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0)

α〈A, f, h, lh(f)〉 = =a〈f, h+1, 0〉 +L〈j, 1〉 a〈f, h, lh(f)〉 ζ(fhlh(f)) ,

where 1 ≤ j ≤ d1(f) such that z(fhlh(f)) = x1j.

17 Since d1(f) = 1, such a j exists and is unique.

10

Michaelis

For each 1 ≤ h ≤ ϕ(f) and for 1 ≤ l < lh(f) we add

α〈A, f, h, l〉 = =a〈f, h, l+1〉 +L〈j, 1〉a〈f, h, l〉 ζ(fhl) ,

where 1 ≤ j ≤ d1(f) such that z(fhl) = x1j.

In Case 1–3 , finally the following items are in Lex :

α〈A, ϕ(f)〉 = =a〈f, 1, 0〉 +L〈ϕ(f), 0〉 aϕ(f)-l〈ϕ(f), 1〉 ,

for each 1 ≤ h < ϕ(f) the simple expression

α〈A, h〉 = =ah+1 +L〈h, 0〉 ah -l〈h, 1〉 ,

and as last item the expression

α̃〈A, 1〉 =

=a〈f, 1, 0〉 +L〈1, 0〉 ~a if ϕ(f) = 1

=a2 +L〈1, 0〉 ~a otherwise

Definition 6.1 For each A ∈ N and each p = 〈π1, . . . , πdG(A)〉 with πi ∈ Σ∗

for 1 ≤ i ≤ dG(A) an expression τ ∈ CL(GMG) is said to correspond to the
pair 〈A, p〉 if (Y1)–(Y4) are fulfilled, where τ1 = τ .

(Y1) τ ’s head–label is of the form a1-l〈1, 1〉π〈1, 1〉 or ~aπ〈1, 1〉 for a π〈1, 1〉 ∈ Σ∗.

(Y2) For each 2 ≤ h ≤ dG(A) there is exactly one τh ∈ Comp+(τ) whose
head–label is of the form -l〈h, 1〉 π〈h, 1〉 for some π〈h, 1〉 ∈ Σ∗.

(Y3) For each 1 ≤ h ≤ dG(A) it holds that

{υ ∈ MaxProj (τh) \ {τh} | υ has some licensee} = {τi |h < i ≤ dG(A)},
i.e. for each 1 ≤ h < dG(A) the subexpression τh+1 is the unique maximal
maximal projection in τh that has some licensee feature.

(Y4) For each 1 ≤ h ≤ dG(A) the string πh is the phonetic yield of υh. Here
we have υdG(A) = τdG(A), and for 1 ≤ h < dG(A) the expression υh results
from τh by replacing the subtree τh+1 with a single node labeled ε.

Proposition 6.2 For each τ ∈CL(GMG) that has category feature a1 or ~a for
some A∈N , there is some p∈LG(A) such that τ corresponds to 〈A , p〉.

Proof (sketch). We exclude the trivial case by assuming that there is some
τ ∈ CL(GMG) such that τ has category a1 or ~a for some A ∈ N . We take
K ∈ IN to be the smallest number, thereby existing, for which CLK(GMG)
includes such a τ . The definition of Lex leaves us with the fact that K > 0.

The proof follows from an induction on k ∈ IN with k + 1 ≥ K.

11

Michaelis

For some k ∈ IN with k + 1 ≥ K consider τ ∈ CLk+1(GMG) \ CLk(GMG)
such that τ has category a1 or ~a for some A ∈ N . By definition of Lex the
procedure to derive τ as an expression of GMG is deterministic in the following
sense: there are some r = A → f(A1, . . . , An(f)) ∈ R, some k0 ∈ IN with

k0 = k + 1 − 3ϕ(f) − ∑ϕ(f)
h=1 2lh(f) and some χ0 ∈ CLk0(GMG) such that χ0

serves to derive τ in GMG. χ0 has category feature a〈f, ϕ(f)+1, 0〉 and is of one
of three forms depending on r:

Case 1 . There is some r = A → f(B,C) ∈ R, there is some υ ∈ CLk1(GMG)
for some k0 ≤ k1 ≤ k, and there is some φ ∈ CLk0(GMG) such that υ and φ
have category feature ~b and c1, respectively, and

χ0 = merge(α〈A, f, B, C〉, φ).

More explicitly, k1 can be specified by

k1 = k0 + 2l + 1 + h+
∑h−1

h′=0 2lϕ(f)−h′(f)

for 0 ≤ h < ϕ(f) and 0 ≤ l < lϕ(f)−h(f) such that

g−1
f (ϕ(f)− h, lϕ(f)−h(f)− l) = 〈1, 1〉.

By induction hypothesis there are some pB ∈ LG(B) and pC ∈ LG(C) such
that υ and φ correspond to 〈B, pB〉 and 〈C, pC〉, respectively. In this case we
define p ∈ LG(A) by p = f(pB, pC). Note that pB ∈ Σ∗ by assumption on G.

Case 2 . There are some r = A→ f(B) ∈ R and υ ∈ CLk0(GMG) such that υ
has category feature b1, and such that

χ0 = merge(α〈A, f, B,−〉, υ).

By induction hypothesis there is some pB ∈ LG(B) such that υ corresponds
to 〈B, pB, 1〉. Let p = f(pB) ∈ LG(A).

Case 3 . There is some r = A→ f() ∈ R and χ0 is a lexical item, namely,

χ0 = α〈A, f,−,−〉.

In this case we simply let p = f() ∈ LG(A).

If k+ 1 = K (the base case of our induction) then χ0 is necessarily of the last
form by choice of K. We also see that the given τ ∈ CLk+1(GMG) \CLk(GMG)
corresponds to 〈A, p〉 in any case. The single derivation steps in order to end
up with τ starting from χ0 are explicitly given by the following procedure:

12

Michaelis

Procedure (derive τ from χ0).

For 0 ≤ h < ϕ(f)

ψ〈h+1, 0〉 = χh

for 0 ≤ l < lϕ(f)−h(f)

step 2l + 1 + h+
∑h−1

h′=0 2lϕ(f)−h′(f)

ψ〈h+1, 2l+1〉 = merge(α〈A, f, ϕ(f)−h, lϕ(f)−h(f)−l〉, ψ〈h+1, 2l〉)

step 2l + 2 + h+
∑h−1

h′=0 2lϕ(f)−h′(f)

if ϕ(f) = 2, and if g−1
f (ϕ(f)− h, lϕ(f)−h(f)− l) = 〈1, 1〉 then

ψ〈h+1, 2l+2〉 = merge(ψ〈h+1, 2l+1〉, υ)

else

ψ〈h+1, 2l+2〉 = move(ψ〈h+1, 2l+1〉)

[checks licensee -l〈j, 1〉 with gf (2, j) = 〈ϕ(f)−h, lϕ(f)−h(f)− l〉]

step h+ 1 +
∑h

h′=0 2lϕ(f)−h′(f)

χh+1 = merge(α〈A, f, ϕ(f)−h, 0〉, ψ〈h+1, 2lϕ(f)−h(f)〉)

For 0 ≤ h < ϕ(f)− 1

step 2h+ 1 + ϕ(f) +
∑ϕ(f)

h′=1 2lh′(f)

χϕ(f)+2h+1 = merge(α〈A, ϕ(f)−h〉, χϕ(f)+2h)

step 2h+ 2 + ϕ(f) +
∑ϕ(f)

h′=1 2lh′(f)

χϕ(f)+2h+2 = move(χϕ(f)+2h+1)

[checks licensee -l〈ϕ(f)−h, 0〉]

13

Michaelis

Either

step 3ϕ(f)− 1 +
∑ϕ(f)

h′=1 2lh′(f)

χϕ(f)+2ϕ(f)−1 = merge(α〈A, 1〉, χ3ϕ(f)−2)

step 3ϕ(f) +
∑ϕ(f)

h′=1 2lh′(f)

χ3ϕ(f) = move(χ3ϕ(f)−1)

[checks licensee -l〈1, 0〉]

or

step 3ϕ(f)− 1 +
∑ϕ(f)

h′=1 2lh′(f)

χ3ϕ(f)−1 = merge(α̃〈A, 1〉, χ3ϕ(f)−2)

step 3ϕ(f) +
∑ϕ(f)

h′=1 2lh′(f)

χ3ϕ(f) = move(χ3ϕ(f)−1)

[checks licensee -l〈1, 0〉]

τ = χ3ϕ(f)

An embedded induction on 0 ≤ h < ϕ(f) and 0 ≤ l < lϕ(f)−h(f) yields that τ
indeed corresponds to 〈A, p〉. We omit further details at this point. ¤

Proposition 6.3 Let A ∈ N and p ∈ 〈Σ∗〉dG(A) with p ∈ LG(A). Furthermore
let x ∈ {a1, ~a}. Then there is some τ ∈ CL(GMG) that has category feature x
such that τ corresponds to 〈A, p〉.

Proof (sketch). Let A ∈ N and p ∈ 〈Σ∗〉dG(A) such that p ∈ LG(A). Then,
again w.l.o.g., we are concerned with one of three possible cases.

Case 1 . There is some r = A→ f(B,C) ∈ R, and for some k ∈ IN there are
some pB ∈ Lk

G(B) and pC ∈ Lk
G(C) such that p = f(pB, pC) ∈ Lk+1

G (A)\Lk
G(A).

By hypothesis on k there are some υ, φ ∈ CL(GMG) such that υ and φ have
category feature ~b and c1, respectively, and such that υ and φ correspond to
〈B, pB〉 and 〈C, pC〉, respectively. We can therefore define χ0 ∈ CL(GMG) by

14

Michaelis

χ0 = merge(υ,merge(α〈A, f, B, C〉, φ).

Note that we have dG(B) = 1 by assumption on G.

Case 2 . There is some r = A→ f(B) ∈ R, and for some k ∈ IN there is some
pB ∈ Lk

G(B) such that p = f(pB) ∈ Lk+1
G (A) \ Lk

G(A). Here, by induction
hypothesis we can choose some υ ∈ CL(GMG) such that υ has category feature
b1 and corresponds to 〈B, pB〉. Then we define χ0 ∈ CL(GMG) by

χ0 = merge(α〈A, f, B,−〉, υ).

Case 3 . There is some r = A→ f() ∈ R such that p = f() ∈ L0
G(A). In this

case χ0 is taken to be the lexical item defined by

χ0 = α〈A, f,−,−〉.

In any case we may refer to the proof of the last proposition, claiming that
there is some derivation in GMG in which χ0 serves to derive a τ ∈ CL(GMG)
which has the demanded properties. ¤

Corollary 6.4 π ∈ L(G) iff π ∈ L(GMG) for each π ∈ Σ∗.

Proof. To see that the “if–part” holds, consider τ ∈ CL(GMG) which is com-
plete, and whose phonetic yield is π for some π ∈ Σ∗. By definition of Lex
there is some τ ′ ∈ CL(GMG) which has category ~s such that τ = merge(αc, τ

′).
By Proposition 6.2 there is some p′ ∈ LG(S) = L(G) such that τ ′ corresponds
to 〈S, p′〉. Because dG(S) = 1, and because the phonetic yield of αc is empty,
we have p′ = π.

In order to prove the “only if–part,” assume that π ∈ L(G) = LG(S) for
some π ∈ Σ∗. By Proposition 6.3 there is some τ ′ ∈ CL(GMG) with category
feature ~s such that τ ′ corresponds to 〈S, π〉. Then, because it holds that
dG(S) = 1, τ = merge(αc, τ

′) is defined and complete, and π is the phonetic
yield of τ . ¤

Proposition 6.5 GMG fulfills (a) and (b).

(a) For each α∈Lex , the (unique) label of α is in particular an element of
Selectε(Select ∪Licensors)εBaseLicensees∗Phon∗Sem∗, since it is even of the
form s1s2xλπι for some s1 ∈ Selectε, s2 ∈ (Select ∪ Licensors)ε, x ∈ Base,
λ ∈ Licenseesε and πι ∈ ¬Syn∗.

(b) Whenever, for a given υ ∈ CL(GMG) and -x ∈ Licensees, there is some
φ ∈ MaxProj (υ) that has licensee -x then φ ∈ Comp+(υ).

Proof (sketch). Property (a) is true due to the definition of Lex .

The validity of (b) arises from the combination of several facts. First, each
expression χ ∈ CL(GMG) serves to derive a complete expression of GMG. In

15

Michaelis

this sense we may say that CL(GMG) contains no “useless” expressions. This
in turn implies that each χ ∈ CL(GMG) is subject to one of the following
possibilities:

(i) χ ∈ Lex .

(ii) There are some k ∈ IN and r = A → f(A1, . . . , An(f)) ∈ R, and some

τ ∈ CLk+1(GMG) and χ0 ∈ CLk0(GMG) with k0 = k−3ϕ(f)−∑ϕ(f)
h=1 2lh(f)

such that χ0 serves to derive τ according to a respective procedure from
above, and such that χ is derived within this procedure in order to finally
end up with τ .

(iii) χ is complete, i.e. there is some τ ′ ∈ CL(GMG) that has category feature
~s such that χ = merge(αc, τ

′).

As far as expressions of GMG which result from an application of the merge–
operator are concerned, property (b) is therefore guaranteed by the fact that
an expression which is merged into a specifier position contains no maximal
projection that has any licensee feature, since this expression has category
feature ~b for some B ∈ N with dG(B) = 1.

As it regards expressions that result from an application of the move–
operator, property (b) essentially results from our assumption that G is in
MFF, and from a further fact concerning the licensees of the form -l〈h, 0〉 for
some 1 ≤ h ≤ m: whenever for some expression χ ∈ CL(GMG) and some
1 ≤ h ≤ m there is some τ〈h, 0〉 ∈ MaxProj (χ) that has licensee -l〈h, 0〉, each
τ〈i, 0〉 ∈ MaxProj (χ) that has some licensee -l〈i, 0〉 with h < i ≤ m belongs to
Comp+(τ〈h, 0〉). ¤

Corollary 6.6 The language L(GMG) is an ML as well as an SML.

Proof. This corollary is an immediate consequence of the preceding propo-
sition. Note, in particular, that from (b) of Proposition 6.5 it follows that
the closure of Lex under the structure building operators is the same set of
expressions over ¬Syn ∪ Syn independently of whether the move–operator is
defined as in (mo) or (smo). ¤

7 AFL–Properties

In [13] three further problems concerning the properties of the revised MG–
type have been explicitly left open. All three fall under a more general ques-
tion: does the class of MLs constitute an abstract family of languages (AFL)?
In fact a stronger result holds:

Proposition 7.1 The class of all MLs is a substitution–closed full AFL.

Proof. Because the class of all MLs is, as shown above, identical to the class
of all MCFL1,2’s, we can likewise prove that the latter is a substitution–closed
full AFL: it straightforwardly follows from the definition that the class of all

16

Michaelis

MCFL1,2’s includes all regular sets and is closed under substitution. Thus, by
Theorem 1.6 [10, p. 129] it remains to confirm that the class of all MCFL1,2’s is
closed under intersection with regular sets. But exactly this is done implicitly
within the proof which Seki et al. [11] give verifying their Theorem 3.9. ¤

References

[1] Philippe de Groote, Glyn Morrill, and Christian Retoré, editors. Logical
Aspects of Computational Linguistics (LACL ’01), Lecture Notes in Artificial
Intelligence Vol. 2099. Springer, Berlin, Heidelberg, 2001.

[2] Henk Harkema. A characterization of minimalist languages. In de Groote et al.
[1], pages 193–211.

[3] Hilda Koopman and Anna Szabolcsi. Verbal Complexes. MIT Press,
Cambridge, MA, 2000.

[4] Jens Michaelis. Derivational minimalism is mildly context–sensitive. In M.
Moortgat, editor, Logical Aspects of Computational Linguistics (LACL ’98),
Lecture Notes in Artificial Intelligence Vol. 2014, pages 179–198. Springer,
Berlin, Heidelberg, 2001. Also available at http://www.ling.uni-potsdam.
de/~michael/papers.html.

[5] Jens Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis,
Potsdam University, Potsdam, 2001.

[6] Jens Michaelis. Some formal implications of a revised perspective on minimalist
grammars. Draft, Potsdam University, 2001. Available at http://www.ling.
uni-potsdam.de/~michael/papers.html.

[7] Jens Michaelis. Transforming linear context–free rewriting systems into
minimalist grammars. In de Groote et al. [1], pages 228–244. Also available at
http://www.ling.uni-potsdam.de/~michael/papers.html.

[8] Carl J. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and
Natural Language. PhD thesis, Stanford University, Stanford, CA, 1984.

[9] Owen Rambow and Giorgio Satta. Independent parallelism in finite copying
parallel rewriting systems. Theoretical Computer Science, 223:87–120, 1999.

[10] Arto Salomaa. Formal Languages. Academic Press, New York, NY, 1973.

[11] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context–free grammars. Theoretical Computer Science, 88:191–229,
1991.

[12] Edward P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical
Aspects of Computational Linguistics (LACL ’96), Lecture Notes in Artificial
Intelligence Vol. 1328, pages 68–95. Springer, Berlin, Heidelberg, 1997.

17

http://www.ling.uni-potsdam.de/~michael/papers.html�
http://www.ling.uni-potsdam.de/~michael/papers.html�
http://www.ling.uni-potsdam.de/~michael/papers.html�
http://www.ling.uni-potsdam.de/~michael/papers.html�
http://www.ling.uni-potsdam.de/~michael/papers.html�

Michaelis

[13] Edward P. Stabler. Remnant movement and complexity. In G. Bouma, G.–
J. M. Kruijff, E. Hinrichs, and R. T. Oehrle, editors, Constraints and Resources
in Natural Language Syntax and Semantics, pages 299–326. CSLI Publications,
Stanford, CA, 1999.

[14] K. Vijay–Shanker, David J. Weir, and Aravind K. Joshi. Characterizing
structural descriptions produced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computational Linguistics (ACL ’87),
Stanford, CA, pages 104–111. ACL, 1987.

[15] David J. Weir. Characterizing Mildly Context–Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, PA, 1988.

18

