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Abstract

The main result of this paper is a description of linguistically motivated non-context-
free phenomena equivalently in terms of regular tree languages (to express the re-
cursive properties) and both a logical and an operational perspective (to establish
the intended linguistic relations). The result is exemplified with a particular non-
context-free phenomenon, namely cross-serial dependencies in natural languages
such as Swiss German or Dutch. The logical description is specified in terms of
binary monadic second-order (MSO) formulas and the operational description is
achieved by means of a linear and non-deleting macro tree transducer. Besides giv-
ing a grammatical presentation for the regular tree language we shall also specify
an implementation in the form of a finite-state (tree) automaton to emphasize the
effectivity of our approach.
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1 Introduction

There are many kinds of structural phenomena in natural languages that can-
not be captured by context-free string grammars or regular tree grammars
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(RTGs). Among these phenomena cross-serial dependencies have played a
prominent role in the discussions about the right level of complexity to be
assumed for a descriptively adequate linguistic theory. In order to concentrate
on the relevant details, we will use in this paper a corresponding artificial
example exemplifying the linguistic construction to illustrate our proposal.

The main results of this paper are twofold. The first one is a description of
cross-serial dependencies in terms of regular tree languages (to express the re-
cursive properties) and a special type of tree transformation effected by a linear
non-deleting macro tree transducer (MTT). Besides giving a grammatical pre-
sentation for the regular tree language we shall also create an implementation
in the form of a finite-state (tree) automaton to emphasize the effectivity of
our approach.

The other result is a logical description of cross-serial dependencies in terms of
monadic second-order (MSO) logic. The description says that the structures
underlying crossing dependencies can be specified as MSO definable relations.
These have to be defined on a domain of finite trees which is characterized as
the model set of a (closed) MSO formula.

For regular string and tree languages, classical results in the descriptive the-
ory of recognizability have established a tight connection between logical
formalisms and language classes. They provide translation procedures that
transform logical specifications into finite automata equivalent to the lan-
guage classes and vice versa. Biichi (1960) and Elgot (1961) have shown that
regular string languages represented through finite (string) automata can be
expressed by sentences in the weak MSO logic with one successor. For tree
languages an analogous result is well known: a tree language is definable in
weak MSO logic with multiple successors if and only if it is recognizable by a
finite tree automaton (Doner, 1970; Thatcher and Wright, 1968).

It is these earlier characterizations that provide the reason for a renewed inter-
est in logical approaches to grammar specifications. The main open question
in this area of research is whether an appropriate extension of the MSO lan-
guage can be found which is expressive enough to define significant properties
of natural languages without becoming too unwieldy from the perspective of
complexity theory.

The logical approach to the specification of language classes involves a lot of
advantageous properties that have paved the way to its application to lin-
guistic issues. First, the equivalence between automata theoretic operational
and logic oriented declarative formalisms leads to a lot of closure properties
of the defined language classes. The properties follow immediately from the
closure of the specification logics with respect to the classical operations like
negation, conjunction, alternation and (universal and existential) quantifica-



tion. Second, the transition from strings to finite model-theoretic structures
of arbitrary signatures requires no extra conceptual or technical ideas in the
logical framework whereas in formal language theory the step from string
to tree languages and the concomitant distinction between weak and strong
generative capacity constitutes a significant extension of the research agenda.
Third, since the logical approach does not depend on an operational process,
its statements can be phrased in terms of linguistically significant notions
that enter into universal principles and language-particular constraints. This
is due to the fact that an operational process starts from some given objects
and then generates its space of interpretation. The logical approach, on the
other hand, refers directly to an assumed universe of structures. Finally, those
logical languages that capture complexity classes indicate lower bounds on the
computing resources a system has to make available for using those structures
that fall within the classes correlated with the corresponding logical language
(Immerman, 1987).

In a previous paper (Kolb et al., 2000) we have shown how to implement the
binary MSO formulas mentioned above by finite-state tree-walking automata.
In this paper we show that the intended linguistic structures can be regained
by a simple MTT. To be more precise, we construct, in a first step, a reg-
ular representation of the cross-serial dependencies using a certain amount
of explicit control information. Trees exhibiting this control information are
elements of an absolutely free algebra on a signature that results from a well-
known derivation process to be explained further below. The MTT serves to
evaluate the tree terms of the free algebra in a different semantic domain. In
other words, it constitutes the implementation of the uniquely given homo-
morphism which sends the trees with the explicit control information into the
originally intended structures.

MTTs integrate the top-down aspect of a tree transducer and the bottom-
up aspect of a context-free tree grammar (CFTG). The formalism of CFTGs
was introduced by Fischer (1968) and constitutes a generalization of RTGs.
Recall that the step from regular to context-free string grammars essentially
consists in lifting the restriction to initial and final string positions for nodes
to be substitutable. In analogy, the rule format which characterizes CFTGs
allows for the substitution of inner tree nodes in contrast to RTGs which limit
substitutability to terminal nodes. According to the analysis above, a CFTG
appears as an MTT without any input. Our MTT receives its input informa-
tion from the lifted trees exhibiting the control information and handles its
context information via the arguments of its states. These context parameters
play the same role as the parameters in the original CF'TG. Since the tree-
walking automata that served to give an operational account of the intended
linguistic relations in Kolb et al. (2000) had to be constructed on a piecemeal
basis, the question remained open of how to specify an implementation in a
more compact way. We hope that the present result gives a satisfying answer



to this question.

The structure of the paper is as follows. After some technical preliminaries
we outline a grammatical representation of a particular example of cross-
serial dependencies, the verbal complex in Swiss German and Dutch, within
the formalism of CFTGs. After this first step we LIFT the generated trees
by inserting a certain amount of explicit control information. It turns out
that the resulting structures can be characterized with RTGs. We exploit the
equivalence of RTGs/tree automata and MSO specifications in constructing a
closed formula that cuts out of the universal realm of all possible finite trees on
the explicit signature just those elements that have counterparts in the original
context-free tree family. The final step simulates the structural relations of
the original trees. These structural relations turn out to be definable by MSO
formulas that are defined on the nodes of the lifted trees. The actual formal
definition will take the form of an MSO definable transduction translating the
lifted structures into the intended ones. We supplement this logical simulation
with an operational account of this logic based transduction. As was outlined
in the preceding paragraph, we provide the necessary details of an MTT that
performs in a clearly operational way the sort of tree transformation that
is—statically—specified by the MSO transduction.

The basic idea underlying this sequential application of two logical specifica-
tion steps can be found in the signature free treatment of universal algebra
that was developed in the early 60s. According to this treatment, the most
important role in an algebra is played by the set of all operations definable
from the primitive ones by composition and not by the primitive operations
themselves. These defined operations then constitute the carrier of a (multi-
sorted) algebra whose only non-unary operations are provided by suitably
sorted instances of composition.

Strings (in concatenation algebras) and trees (in term algebras) are the appro-
priate ranges for the variables in context-free string and regular tree grammars,
respectively. In the same way, defined tree operations are the appropriate range
for variables in CFTGs. In the case of strings and trees the process of sub-
stituting an element of the carrier of these algebras for a variable involves
a simple process of insertion. In the case of defined operations the original
arguments of the replaced (multi-ary) variable have to be composed with its
substitute. Once these two components of the process of higher-order substi-
tution are pulled apart we are free to formally indicate them by means of
separate notational ingredients: the variable substituend on the one hand and
the composition operator on the other. Thereby we arrive at the notion of a
lifted free algebra.

Since the variables in the context of a lifted free algebra are separated from
their arguments, the process of substituting an appropriate multi-ary defined



operation for them takes the form of leaf substitution familiar from RTGs.
It was Maibaum (1974) who first adapted the treatment of universal algebra
developed in category theory to the context of formal language theory. The
topic was taken up again in Engelfriet and Schmidt (1977; 1978), who also give
an account of the influence of different modes of derivation, an issue that was
not correctly stated in Maibaum’s presentation. The fact that derivation steps
on the original and the lifted structural level are in one-one correspondence is
proved in Monnich (1999).

A result similar in spirit to the one established in this paper can be found
in Engelfriet and van Oostrom (1996). They show that context-free graph
languages have a regular path description. Given the context of graph theory
the authors use for their first step a regular family of derivation trees and
formalize the effect of connection instructions in terms of suitable node labels
in the derivation trees.

Similarly, in Courcelle (1992), a certain type of context-free graph languages is
characterized as an equational subset of an algebra over a binary glueing oper-
ation and a family of definable unary operations. In contrast to the approach
favored by Courcelle, we do not evaluate these operations, but interpret the
intended linguistic relations directly on the structures given as elements of the
free term algebra.

We think that the logical part of our approach has two decisive advantages.
First, the operations of the relevant signature appear explicitly in the lifted
trees and are not hidden in node labels coding instances of rule application.
Second, our binary MSO formulas are not dependent on the particular regular
tree family or the domain defined via the MSO formula. The instruction set
of the tree-walking automata behind these formulas and the corresponding
definition of the MSO transduction are universal and only serve to reverse the
lifting process. In that sense the instructions are nothing else but a restatement
of the unique homomorphism which exists between the free algebra and any
other algebra of the same signature. The same statement holds for the MTT.
Its rules serve to evaluate the instructions implicit in the composition and
projection symbols. These instructions are again independent of the particular
tree family specified by the closed MSO formula.

2 Preliminaries

The purpose of this section is to fix notations and to present definitions for
the basic notions related to tree grammars, the classes of automata and MSO
logic which will be used in the paper. We have taken pains to give a full list
of definitions to make the paper as self-contained as possible.



2.1 Universal Algebra

Throughout the paper the following conventions apply. N is the set of all non-
negative integers. For any set M, M* is the Kleene closure of M, i.e., the set
of all finite strings over M. For m € M*, |m| € N denotes the length of m.
We will use € to denote the empty string (over M), i.e., e € M* with || = 0.

Definition 1 For a given set of sorts S, a many-sorted signature (over S), ¥,
is an indexed family (X, ;| w € §*,s € S) of disjoint sets. A symbol o € ¥,
is an operator of type (w,s), arity w, sort s and rank |w|. The rank of o is
denoted by rank(o).

The set of trees or terms (over ), T'(X), is built up using the operators in
the usual way: If 0 € X, ; for some s € S then o is a (trivial) tree of sort s. If,
for some s € S and w =51 ---5, with s; € S, 0 € ¥, and ty,...,t, € T(X)
with ¢; of sort s; then o(ty,...,t,) is a tree of sort s.

In case S is a singleton {s}, i.e., in case X is a single-sorted signature (over
sort s), we usually write ¥,, to denote the (unique) set of operators of rank
n € N,!' and we refer to ¥ simply as a ranked alphabet.

The operator symbols of a many-sorted signature Y over some set of sorts S
induce operations on an algebra with the appropriate structure. A Y-algebra
A consists of an S-indexed family A = (A | s € S) of disjoint sets, the carriers
of A, and for each operator o € 3, 5, oa : Ay, — A is a function, where A,, =
At x oo x A% and w = sp - -+ s, with s; € S. The set T'(X) can be made into
a Y-algebra T(X) by specifying the operations as follows. For every o € ¥, ,
where s € S and w = s+, with s; € S, and every ti,...,t, € T(X2) with
t; of sort s; we identify opy(t1,...,t,) wWith o(t1,. .., t,).

Different algebras, defined over the same operator domain, are related to each
other if there exists a mapping between their carriers that is compatible with
the basic structural operations. A Y-homomorphism of two Y-algebras A =
(A, (0a)es) and B = (B, (0),ex) is a function h from A to B such that for ev-
ery operator o € ¥, it holds that h(oa (a1, ..., auw|)) = os(h(ai), ..., h(aw))
for every |w|-tuple (ay,...,ap,)) € A”, where s € S and w = s;---5, with
S; € S.

Every tree t € T'(X) has a value in every Y-algebra A . It is the value at ¢ of
the unique homomorphism A : T(X) — A.

1" Note that for S = {s} each (w,s) € S* x S is of the form (5", s) for some n € N,
i.e., §* can be identified with N, because up to length each w € &* is uniquely
specified.



Let X be a ranked alphabet. For each set Y, T'(X,Y') is the set of trees T'(3(Y))
over the ranked alphabet X(Y) = (X(Y),, | n € N), where X(Y') = 3oUY and
X(Y), = X, for n > 0. Furthermore, we take T(X,Y") to denote the ¥-algebra
A = (A (a)oex) with A= (T(X,Y)"|n € N) and o = op¢y) for o € .

Now, let X = {x, 29, x3,...} be a countable set of variables, for k € N define
X C X as{xy,...,x}. Then, T(3, Xy) is the set of k-ary trees (over ). The
existence of a particular homomorphism from T(X, X;) into an arbitrary %-
algebra A provides the basis for the view that regards the elements of T'(%, X;)
as derived operations: Each tree t € T'(X, X}) induces a k-ary function t, from
A* to A. The meaning of ¢, is defined such that for every k-tuple (a1, ..., a;) €
A* tu(as, ..., ax) = a(t), where a is the unique homomorphism from T(3, X},)
to A with a(%) = a;.

In the particular case where A is the X-algebra T(X, X) for some [ € N the
unique homomorphism extending the assignment of a tree t; € T(X, X)) to
the variable z; in X} acts as a substitution tre x ) (t1,...,t) = t[t1, ..., tl,
where the right hand side indicates the result of substituting ¢; for x; in t.

2.2  Tree Grammars

We now formally introduce the notion of a context-free tree grammar (CFTG).
This type of grammar is related to a type of grammars defined by Fischer
(1968) and called macro grammars. In his setting, the use of macro-like pro-
ductions served the purpose of making simultaneous string copying a primitive
operation. CF'TGs constitute an algebraic generalization of macro grammars

(cf. Rounds 1970).

Let us view grammars as a mechanism in which local transformations on
trees can be performed. The central ingredient of a grammar is a finite set of
productions, where each production is a pair of trees. Such a set of productions
determines a binary relation on trees such that two trees t and ¢’ stand in that
relation if ¢ is the result of removing in ¢ an occurrence of a first component
in a production pair and replacing it by the second component of the same
pair. The simplest type of such a replacement is defined by a production that
specifies the substitution of a single-node tree ty by another tree ¢;. Two trees
t and t’ satisfy the relation determined by this simple production if the tree ¢’
differs from the tree t in having a subtree ¢; that is rooted at an occurrence of
a leaf node ty in t. In slightly different terminology, productions of this kind
incorporate instructions to rewrite auxiliary variables as a complex symbol
that, autonomously, stands for an element of a tree algebra. Recall that in
context-free string grammars a nonterminal auxiliary symbol is rewritten as a
string of terminal and nonterminal symbols, independently of the context in



which it occurs. As long as the carrier of a tree algebra is made of constant
tree terms the process of replacing null-ary variables by trees is analogous.
As we will see, the situation changes dramatically if the carrier of the algebra
is made of symbolic counterparts of derived operations and the variables in
production rules range over these second-level entities.

Definition 2 (Context-Free Tree Grammar) For a singleton set of sorts
S, a context-free tree grammar (CFTG) for S is a 5-tuple I' = (X, F, S, X, P),
where X and F are ranked alphabets of inoperatives and operatives over S,
respectively. S € F is the start symbol, X is a countable set of variables, and

P is a set of productions. Each p € P is of the form F(z4,---,xz,) — t for
some n € N, where ' € F,, x1,-+ 2, € X,and t € T(XUF {z1, -+ ,2,}).
An application of a rule F(xy,...,x,) — t “rewrites” a tree rooted in F as

the tree t with its respective variables substituted by F’s daughters.

A CFTG T = (X,F, S, X,P) with F,, = 0 for n # 0 is called a regular tree
grammar (RTG). Since RTGs always just substitute some tree for a leaf-
node, it is easy to see that they can only generate recognizable sets of trees, a
forteriori context-free string languages (Mezei and Wright, 1967). If F,, is non-
empty for some n # 0 , that is, if we allow the operatives to be parameterized
by variables, however, the situation changes. CF'TGs in general are capable
of generating sets of structures, the yields of which belong to the class of
context-sensitive languages known as the indezed languages.

In fact, CF'TGs characterize the class of indexed languages modulo the inside-
out derivation mode (Rounds, 1970). For reasons having to do with the im-
possibility of mirroring the process of copying in a grammar with a completely
uncontrolled derivation regime, we restrict ourselves this particular mode of
derivation. Accordingly, a function symbol may be replaced only if all its ar-
guments are trees over the terminal alphabet. In the conventional case this
form of replacement mechanism would correspond to a “rightmost” derivation
where “rightmost” is to be understood with respect to the linear order of the
leaves forming the frontier of a tree in a derivation step.

Definition 3 Let I' = (X, F, S, X,P) be a CFTG and let ¢,t' € T(X UF).
t' is directly derivable by an inside-out step from ¢ (t = t') if there is a
tree tg € T(X U F,{x1}) containing exactly one occurrence of z,, a corre-
sponding rule F(zy,...,x,) — t”, and trees ti,...,t,, € T(X) such that
t=1to[F(t1,...,tm)] and t' = to[t"[t1, ..., tn]]. By the inside-out restriction on
the derivation scheme it is required that the trees ¢y, t5 through ¢,, be terminal
trees, i.e., do not contain variables or operatives. As is customary == denotes
the transitive-reflexive closure of =—.

In the following definition of a tree language we now switch back to accepting



only trees over the ranked alphabet X, i.e., we do not allow operatives to
remain in the final trees.

Definition 4 (Inside-Out Tree Language) Let I' = (X, F, 5, X,P) be a
CFTG. We call L(G,S) = {t € T(X) | S = t} the context-free inside-out
tree language generated by G from S.

In the case of RTGs the analogy with the conventional string theory goes
through and inside-out and outside-in derivations yield the same languages.

We will exemplify the gain in generative power of context-free tree grammars
compared to RTGs—or standard context-free grammars—with an artificial
construction of the string language a0 c™d™ which is a subset of the actual
non context-free dependencies occurring in Swiss German (see Section 3).
The example uses the full power of the second-order substitutions of derived
operators.

Yo ={e,a,b,c,d} Yo={e}
X:{$1,1’2,1’3,$4} FQI{S} F4I{F}

S — ¢

S — F((I,E,C,E) (1)

S — F(g,b,e,d)
.(a’ xl) T, ® (C7 .'L'3)7.T4)

F(
F(l’l, .(b, l‘z), I3, Q(d, l‘4))
o(o(o(z1,22), 73), 74)

F('Th X2, T3, 'T4>

F(l’l, X2, X3, $4)

—
F(l’l, Lo, T3, $4) —
The tree language generated by the grammar in (1) can intuitively be described
as a parallel derivation of a’s and ¢’s and b’s and d’s. Therefore, the number of

occurrences of a’s and ¢’s and of b’s and d’s, respectively, has to be the same.
By taking the yield of the tree terms, we get the language £ = {a"b™c"d™}.

In Figure 1 we show an example derivation of the string aabcced. It uses the

second rule for S, followed by successive application of the first, second and
third rule for F.

The definition of a CF'TG given above could be canonically generalized to the
case of many-sorted signatures 3 and F over some set of sorts S. Since we will
be concerned with such generalized versions of CF'TGs only in their regular
form, we restrict our definition to simplify our presentation.
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Fig. 1. An example derivation of (1): aabecd

Definition 5 (Regular Tree Grammar) For a set of sorts S, a regular tree
grammar (RTG) for S is a 4-tuple G = (X, F, S, P), where ¥ = (X, ,|w €
S*,s € §) is a many-sorted signature of inoperatives and F = (F.;|s € S) a
(reduced) many-sorted signature of operatives of rank 0. Moreover, ¥ and F
are finite. S € F is the start symbol and P is a finite set of productions. Each
p € P has the form F' — ¢, where F' € F_ for some s € S and t € T(X UF),
i.e., a term (tree) over ¥ U F, such that t is of sort s.

Let t,t" € T(XUF) and p = F — t € P. t directly derives t" (by the
application of p), also denoted by t' = t”, if ¢’ has a leaf-node F' and t”
results from ¢’ by substituting this node F' by t. Let =* be the reflexive and
transitive closure of =. The tree-language generated by G is the set L1 (G) =

{teT(X)|S ="t}

Since RTG-rules based on a multi-sorted signature still always just substitute
some tree for a leaf-node, it is still the case that they generate recognizable
sets of trees, i.e., context-free string languages.

Any context-free tree grammar ' for a singleton set of sorts & can be trans-
formed into a regular tree grammar I'" for the set of sorts S*, which charac-
terizes a (necessarily recognizable) set of trees encoding the instructions nec-
essary to convert them by means of a unique homomorphism A into the ones
the original grammar generates (Maibaum, 1974). This “LIFTing” is achieved
by constructing for a given single-sorted signature > a new, derived alphabet
(an N-sorted signature) 3, and by translating the terms over the original
signature into terms of the derived one via a primitive recursive procedure.
The LIFT-operation takes a term in 7'(3, X;) and transforms it into one in
T(XE, k). Note that since S is a singleton, we can identify S* with N (cf.
fn. 1). Therefore we denote the set of all trees over $% which are of sort & by
T(3F, k). Intuitively, the lifting eliminates variables and composes functions

10



with their arguments explicitly, e.g., a term f(a,b) = f(x1,22) o (a,b) is lifted
to the term c(c(f, m1,m), a,b).

Definition 6 (LIFT) Let ¥ be a ranked alphabet and X, = {z1,..., 2},
k € N, a finite set of variables. The derived N-sorted alphabet 3 is defined
as follows: For each n > 0, XL, = {f'[f € £,} is a new set of symbols of
type (e,n); for each n > 1 and each i,1 < i < n, 7 is a new symbol, the ith
projection symbol of type (e,n); for each n,k > 0 the new symbol ¢, is the
(n, k)th composition symbol of type (nky---k,, k) with ky = --- =k, = k.
The set of all ¢, , will be denoted by C, the set of all 7}* by II.

Zf,o = Zé,o
S, =%, U{n}1<i <n} for n>1
ke = 1Cnk} for n k>0 and ki =Fk for 1<i<k

YL =0 otherwise
For k > 0, LIFT; @ T(X, X)) — T(XF, k) is defined as follows:

LIFT} (1) = ¥

)

LIFTy (f) = cox(f') for f €3,
LIFTL (f(t, .. tn)) = con(f, LIFTS (41), . .., LIFTE (L))

for n>1,feX, and tq,...,t, € T(Z, X)

Note that this very general procedure allows the translation of any term over
the original signature. The left hand side as well as the right hand side (RHS)
of arule of a CTFG T = (X, F, X, S, P) is just a term belonging to T'(XUF, X),
but so is, e.g., any structure generated by I'.

Further remarks on the observation that the result of LIFT-ing a CFTG is
always a RT'G can be found in Moénnich (1999).

As an example, we present the LiFTed version I'l = (XF FL &' PL) of the
CFTG I given in (1). The translation process for grammars has at its heart
the LIFT-morphism for the translation of the alphabets of the operatives and
inoperatives and the RHSs of the production rules. Since the rest of the trans-
lation follows trivially from this, we dispense with a formal definition. Note
that for better readability, we omit the 72 from Zég, all the 0- and 1-place
composition symbols and the subscripts on all other composition symbols.

11



Eéoz{e,a’,b’,c’,d’} 252:{0’}
YLy = {ml, m, 3, i} Sk = 1} (for simplicity)

51_{5/} 54_{F}

S — e
, / (2)
S — c(F',d e, €)
bL S"— c(F' eV e,d)
F' — c(F' c(o,d',7}), w3, c(o  73), ™)
F' — o(F' 7t c(o U, 75), 73, c(o d', 7}))
F' — c(o c(o c(o 7t 75), m3), ™)

We parallel the derivation for aabced shown in Figure 1 with this lifted gram-
mar in Figure 2.

It has to be admitted that the use of macro-like productions is not the only
device that has been employed for the purpose of providing grammar for-
malisms with a controlled increase of generative capacity. Alternative systems
that were developed for the same purpose are e.g. tree adjoining grammars,
head grammars and linear indexed grammars (cf. Vijay-Shanker and Weir,
1994). Although these systems make highly restrictive claims about natural
language structure their predictive power is closely tied to the individual strat-
egy they exploit to extend the context-free paradigm. The great advantage of
the tree oriented formalism derives from its connection with descriptive com-
plexity theory. Tree properties can be classified according to the complexity of
logical formulas expressing them. This leads to a perspicuous and fully gram-
mar independent characterization of tree families by MSO logic. Although this
characterization encompasses only regular tree sets, the lifting process of the
preceding section allows us to simulate the effect of macro-like productions
with regular rewrite rules.

2.3 MSO Logic

MSO logic is a straightforward extension of first-order logic to include vari-
ables that range over sets (i.e., monadic predicates) and quantifiers over these
variables. The particular language we will use is Rogers’ variant of MSO pred-
icate logic, L%Q p, with three disjoint, countable sets of individual constants
K, monadic predicate constants P, and individual and set valued variables
X = X°uU X!; four binary predicates: equality ~, plus the tree predicates

12



F’ c To c Ty
o d m o [
c
/’\
— c a c
c c D) c Ty
F'm c T3 c o ad m o (¢ 3
o b/ T2 o d/ Ty

- Hc'\a/ ¢
C C ) C v
c m c 3 c o ad m o w3
o ¢ my o b my o d m
//’\
o ¢ w3
I
o m

Fig. 2. A sample derivation using the LiFTed grammar

parent <1, dominance <*, and left-of <, a symbol for set membership € and
the usual connectives, quantifiers and brackets. As usual, the k € K are inter-
preted as nodes, the p € P as properties (or labels) of nodes, and the z € X°
and X € X! range over nodes and sets of nodes, respectively. The syntax is
the standard first order predicate logic syntax extended by quantification over
monadic set variables: VX € X!, if ¢ is a formula, so are (3X)[p] and (VX)[p].

No extra n-place predicates for n > 1 are allowed unless they are definable. We
will make use of the fact that all explicitly definable relations and all relations
which are definable by tree-walking automata (cf. Bloem and Engelfriet 1997)
are definable. In contrast, addition of monadic predicates is freely allowed
since they can be added to P.

The intended models of L% p are (finite) tree domains T under their their nat-
ural interpretation T?, where <1, <t*, < actually have their intuitive meaning,
plus interpretations for the additional individual and predicate constants, i.e.,
just labeled trees (cf. Rogers 1998, for details).
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The following paragraphs go directly back to Courcelle (1997). Recall that
representation of objects with relational structures makes them available for
the use of logical description languages. Let R be a finite set of relation sym-
bols with the corresponding arity for each r € R given by p(r). A relational
structure R = (Dg, (rr)rer) consists of the domain Dx and the p(r)-ary
relations rg C Dfa(r).

The classical technique of interpreting a relational structure within another
one forms the basis for MSO transductions. Intuitively, the output tree is
interpreted on the input tree. E.g., suppose that we want to transduce the
input tree t; into the output tree t5. The nodes of the output tree ¢t will be a
subset of the nodes from t; specified with a unary MSO relation ranging over
the nodes of ¢;. The daughter relation will be specified with a binary MSO
relation with free variables x and y ranging over the nodes from ¢;. We will
use this concept to transform the lifted trees into the intended ones.

A (non-copying) MSO transduction of a relational structure R (with set of
relation symbols R) into another one Q (with set of relation symbols Q) is
defined to be a tuple (¢, 1, (0,)4e0) consisting of an MSO formula ¢ defining
the domain of the transduction in R, an MSO formula ) defining the resulting
domain of Q, and a family of MSO formulas 0, defining the new relations @)
using only definable formulas from the “old” structure R.

In this sense, our logical description of non-context-free phenomena with two
devices with only regular power is an instance of the theorem that the image
of an MSO-definable class of structures under a definable transduction is not
MSO definable in general (Courcelle, 1997).

2.4 Automata and Transducers

Tree automata are the result of generalizing the transition function of standard
finite-state automata from (state-alphabet) symbol pairs to tuples of states.
Intuitively, a bottom-up tree automaton creeps up a tree from the leaves to
the root by simultaneously taking the states of the daughters and the alphabet
symbol of the mother to make a transition to a new state.

Definition 7 (Tree Automaton) A (deterministic) bottom-up tree auto-
maton 2 is a 5-tuple (Q, %, 6, ag, Q) with @ the (finite) set of states, ¥ a
ranked alphabet, gy € ) the initial state, Q; C @ the final states and 9 :
U, (Q" x 3,,) — @ the transition function.

We can extend the transition function inductively to trees by defining hs(e) =
qo and hs(o(ty, ..., t,)) = 0(hs(t1), ..., hs(tn),0), t; € T(X),1 <i < n,o €
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Y,. An automaton 2 accepts a tree t € T(X) iff hs(t) € Qs. The language
recognized by 2 is denoted by T'(2() = {t| hs(t) € Qr}.

The sets of trees recognized by bottom-up tree automata are called recogniz-
able, i.e., regular sets of trees, and, as mentioned previously, yield context-free
string languages (Gécseg and Steinby, 1984). The recognizable sets are closed
under the boolean operations of conjunction, disjunction and negation. The
automata constructions which underlie these closure results are generaliza-
tions of the corresponding better-known constructions for finite state automata
(FSA). The recognizable sets are also closed under (inverse) projections, and
again the construction is essentially that for finite state automata. The pro-
jection construction yields a nondeterministic automaton, but, again as for
FSA’s, bottom-up tree automata can be made deterministic by a straightfor-
ward generalization of the subset construction.? Finally, tree automata can
be minimized by a construction which is, yet again, a straightforward gener-
alization of well known FSA techniques.

We need another type of finite-state machine later in the paper: Macro Tree
Transducer (MTTs). Since those are not so well known, we will introduce
them via the more accessible standard top-down tree transducers. These are
not so different from the bottom-up tree automata introduced above. Instead
of working from the leaves towards the root, the top-down tree transducer start
from the root and work their way downwards to the leaves. And, of course, they
produce an output tree along the way. In the following paragraphs we will use
the notation as introduced in Engelfriet and Vogler (1985). Our presentation
is also inspired by Engelfriet and Maneth (2000). A full introduction to tree
transductions can be found in Gécseg and Steinby (1997).

Intuitively, top-down tree transducers transform trees over a ranked alpha-
bet ¥ into ones over a ranked alphabet ). They traverse a tree from the
root to the leaves (the input tree) and output on each transition step a new
tree whose nodes can contain labels from both alphabets, states and vari-
ables. More formally, the right hand sides of such a production are trees from
T(QUX(X)UQ). For this definition we assume that () is a ranked alphabet
containing only unary symbols.

Definition 8 (Top-Down Tree Transducer) A top-down tree transducer
(TDTT) is a a tuple T' = (Q, 3,2, qo, P) with states @, ranked alphabets %
and € (input and output), initial state go and a finite set of productions P of

2 Note that top-down tree automata do not have this property: deterministic top-
down tree automata recognize a strictly narrower family of tree sets.

3 As we will indicate in Section 5.2, sort distinctions can be disregarded for our
purposes.

15



the form
do(on,. . 2) —> ¢
where n > 0,0 € ¥, and t € T(QUX(X) U Q).

The transition relation (==) is defined as usual. The transduction realized
by a top-down tree transducer 7" is then defined to be {(t1,t2) € T(X) X

T(Q) | qo(ty) ==" 15}

Consider as a very simple example the transducer 7" which maps binary trees
whose interior nodes are labeled with a’s into ternary trees whose interior
nodes are labeled with b’s. The leaves are labeled with p and are transduced
into ¢’s. Furthermore, new leaves labeled ¢ are introduced at every branching
point. ¥ consists of one binary symbol a and one constant p, {2 of one ternary
symbol b and two constants ¢ and c. The transducer has only one state ¢y and
the two productions below:

qo(a(z1, v2)) — b(go(z1), ¢, qo(72))
q(p) — q

Figure 3 shows one application of the nontrivial rule. The left hand side dis-
plays the rule in tree notation whereas the right hand side displays an actual
transition.

0 ¢C 0 0 b
N | | | T
Tr1 X2 T X9 a 0 ¢ 0
N \ \
1 2 1 2

Fig. 3. One step of an TDTT derivation

If we have already transduced a subtree 8 of the input and are in state g
and currently working on a node labeled with a with immediate subtrees ¢,
and to, then we can rewrite it into a tree labeled with b whose leftmost and
rightmost daughter are in state gy applied to t; and ¢y respectively and the
middle daughter is labeled with the terminal symbol c.

By generalizing the set of states to a ranked alphabet, we can extend the
notion of a top-down tree transducer to a macro tree transducer. This allows
to pass parameters—which contain a limited amount of context from the part
of the input tree we have already seen—into the right hand sides. We formalize
these new right hand sides as follows:

Definition 9 Let X and (2 be ranked alphabets and n, m > 0. The set of right
hand sides RHS(3,Q,n,m) over 3 and 2 with n variables and m parameters
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is the smallest set rhs C T(X U, X,, UY,,) such that

(i) Y, Crhs
(ii) For w € Qp with £ > 0 and ¢4, ..., ¢ € Ths, w(p1, ..., ) € Ths
(iii) For ¢ € Qgy1 with £ >0, z; € X,, and 1, ..., ¢x € Ths,
q(zi, 01, ..., pK) €Erhs

The productions of macro tree transducers contain one “old” parameter (an
alphabet symbol with the appropriate number of variables) and additionally
a number of context parameters.

Definition 10 (Macro Tree Transducer) A macro tree transducer (MTT)
is a five-tuple M = (@, %, 2, qo, P) with @ a ranked alphabet of states, ranked
alphabets X and Q) (input and output), initial state gy of rank 1, and a finite
set of productions P of the form

q(o(T1, o @) Yty e o Ym) — €

where n,m >0, ¢ € Qy1, 0 € X, and t € RHS(X,Q,n,m).

The productions p € P of M are used as term rewriting rules in the usual way.
The transition relation of M is denoted by 2. The transduction realized by
M is the function {(t1, %) € T(S)xT(Q) | (qo, t1) =" ).

Generally, just as for CFTGs, a little care has to be taken in the definition of
the transition relation with respect to the occuring parameters y;. Derivations
are dependent on the order of tree substitutions. Inside-out means that trees
from T'(€2) have to be substituted for the parameters whereas in outside-in
derivations any subtree must not be rewritten if it is in some context param-
eter. Neither of these classes contains the other. Since we are only dealing
with sitmple MTTs in our approach, all modes are equivalent and can safely
be ignored.

An MTT is deterministic if for each pair ¢ € Q),,41 and o € ¥, there is at
most one rule in P with ¢(o(x1,...,2,),91,.-.,Ymn) on the left hand side.

An MTT is called simple if it is simple in the input (i.e., for every q € @ 11
and o € ¥,,, each x € X}, occurs exactly once in RHS(X, 2, n,m)) and simple
in the parameters (i.e., for every ¢ € Q11 and o € Xy, each y € Y,, occurs
exactly once in RHS(X,,n,m)). The MTT discussed in the remainder of
the paper will be simple. Note that if we disregard the input, MTTs turn into
CFTGs.

Consider for example the following rule of an MTT M.

qola(x1, z2), y1, Y2, y3) — b(x1,b(q0(v1)), @0 (y2), vs, go(22))
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Analogous to the presentation in Figure 3, we illustrate the the rule above in
Figure 4 without being too concerned about the formal details of specifying a
full transducer.

b
K /’\

/’\ 1 b g Y g ¢

L A = T
A P oh TN
T1 T2 \ a 51 Sa 83 [ \
Y1 /\ q So ts

t1 t2 \

Fig. 4. One step of an MTT derivation

The only difference (apart from a totally different transduction) is that we
now have parameters which appear as trees s; through ss. Those trees can
also be freely used on the right hand sides of the MTT productions.

3 Linguistic Motivation: Cross-Serial Dependencies

As mentioned in the introduction, the exercise in formal coding is made nec-
essary by the fact that natural language sports some constructions which lead
(i) to non-context-free string languages, or (ii) to at least non-recognizable
tree languages (i.e., tree sets which cannot be generated by any context-free
string grammar or regular tree grammar), even though the resulting string lan-
guages may formally be context-free. * Both phenomena show up in the West-
Germanic languages: the verbal complex of Ziiritiiiitsch, a variant of Swiss
German spoken around Ziirch, is an example of (i), while (ii) is exhibited—for
different reasons—by the corresponding constructions of Dutch and Standard
German (Huybregts, 1976; 1984):

(3) a. weil  der Karl die Maria dem Peter den Hans schwimmen
because Charles Mary, Peter, John, swim,-inf
lehren  helfen 148t
teach,-inf help;-inf lets

(German fragment as string language: Palindrome language—CF)

4 Let us note here that it is not the goal of this section to attempt a linguisti-
cally relevant discussion of cross-serial dependencies. All we want to show is that a
formalism for natural languages has to handle non-context-free structures and how
our proposal could do it. For a serious introduction of approaches to cross-serial
dependencies see Pullum and Gazdar (1982).
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b. omdat Karel Marie Piet Jan laat helpen leren zwemmen
because Charles Mary, Peter, John; lets help,-inf teach,-inf swims-inf
(Dutch fragment as string language: a"b" —CF)
c. wil de Karl d’Maria em Peter de Hans laat halffe  larne
because Charles Mary, Peter, John, lets help,-inf teach,-inf
schwiime
swims-inf

(Ziiritidtsch fragment as string language: a™0™c*d™—Non-CF)
‘because Charles lets Mary help Peter to teach John to swim’

The structure of the preceding example illustrates what we encountered in the
artificial example in (1). On a close look at, e.g., the Swiss German example,
we note that the DP’s and the V’s of which the DP’s are objects occur in
cross-serial order. This is manifested by the case marking of the respective
objects. Empirical analysis shows that there are no limits on the length of
such constructions in grammatical sentences of Swiss German. This fact alone
would not suffice to prove that Swiss German is not a context-free string
language. It could still be the case that Swiss German in toto is context-free
even though it subsumes an isolable context-sensitive fragment. Relying on the
closure of context-free languages under intersection with regular languages,
Shieber (1985) was able to show that not only the fragment exhibiting the
cross-serial dependencies but the whole of the language has to be assumed as
non context-free.

Abstracting from the details of the particular languages, the standard analyses
of these constructions involve the following property which is problematic from
the point of view of context-freeness: In all cases they posit roughly a bipartite
structure like the one in Figure 5 with basically all DP’s on one branch and
all the verbs on the other—but with fixed syntactic and semantic relations
between the branches, whether visibly marked (as in Ziiritiiiitsch, Standard
German) or not (Dutch).

As is easily seen, there is no context-free device which could directly handle
the unbounded number of non-local dependencies the structural separation of
the two “clusters” enforces. Therefore MSO logic alone cannot be sufficient
for linguistic reasons. But in order to concentrate on the relevant details, we

® Huybregts (1984) provides a similar argument for Dutch taking into account a
particular fragment: in contrast to Swiss german, Dutch does not show overt case-
marking of objects. Huybregts argument crucially relies on a given morphologized—
and thus syntactical—difference between animate and inanimate pronominals.
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Fig. 5. The structure of Germanic VR

will use the artificial example from (1) in the following sections to illustrate
our proposal.

There is an ongoing discussion on how much power “beyond context-free string
grammars’ a formal device must provide in order to handle all linguistic phe-
nomena adequately. The formalism of, e.g., minimalist grammars (MGs) in
the sense of Stabler (1997) is certainly able to cope with cross-serial depen-
dencies. ® In Michaelis (1999) it has been shown that MGs can be translated
into the—compared to CFTGs—weaker formalism of multiple context-free
grammars (Seki et al., 1991). In Michaelis et al. (2000c) we have shown how
MGs can be treated within an approach similar to the one we present here by
using this translation and by applying a lifting process to MCFGs afterwards.

6 MGs provide an attempt of a rigorous algebraic formalization of the new linguistic
perspective which reflects the change within the linguistic framework of transfor-
mational grammar from GB-theory to minimalism.
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Therefore, context-free tree grammars may be too strong for an adequate
characterization of the complexity of natural languages. On the other hand,
certain phenomena like the widely discussed cases of Suffizaufnahme (multiple
case-stacking) seem to indicate that natural languages are not semilinear (cf.
Michaelis and Kracht (1997)), and it is well known that the Parikh images of
string languages generated by multiple context-free grammars are semilinear.
Inside-out context-free tree languages in their turn are sufficiently powerful
to handle the known cases of Suffixaufnahme as has been shown in Monnich
(1997).

4 A Tree Automaton and an MSO formula for Regular Tree Sets

Since I'l in (2) generates a regular set of trees, we can construct a tree au-
tomaton Arr = (Q, X, 0, qo, Q) to recognize this set.

Construction of a tree automaton from a given lifted context-free tree grammar
't = (3E FL S PLY ie., an RTG, is straightforward. Intuitively, since tree
automata recognize only local trees in each transition, we have to use auxiliary
transitions for RHSs of LiFTed macro productions with trees of depth greater
than one in order to recognize the right trees incrementally. So, what we are
doing is to decompose the RHSs into trees of depth one which then can be
recognized by a transition, i.e., in a preliminary step we have to transform I'*
into a normal form I'VF = (XL FNE §7 PNF) via the introduction of auxiliary
rules and new nonterminals. In our example, the lifted tree grammar is not
in the desired normal form, but it is easy to see how to change this.” The
resulting rules and nonterminals are reflected both in the new transitions and
in the states we need. In the following, we assume without loss of generality,
that the trees on the RHSs of the LiFTed macro productions are of depth one.

Recall that, according to the definition above, a tree automaton operates on a
ranked alphabet ¥ = (3, |n € N). Therefore, in our case, we use the inopera-
tive symbols of the lifted grammar to construct >, but we reduce the explicit
many-sorted type information by defining ¥, as {o € XL |rank(c) = n}.
For the set of states ), we need distinguishable states for each of the termi-
nals, nonterminals and projection symbols appearing in RHSs of the rules, i.e.,
Q={¢ |0 e XL, U} U {g}.® Furthermore, we need a new initial state

" For example, the production for F' — c(F' c(o',d’,7}), 75, c(o', ¢, 73),7}) is

transformed into the following two new productions: F' — ¢(F’, C’a,ﬂg‘, Cc,ﬂ'il),
C, — c(o',a',7}) and C. — (o, ', 7). The full translation of the other produc-
tions into the corresponding normal form is left to the reader.

8 We do not need states for the composition symbols since each composition cor-
responds to a nonterminal due to the normal form.
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Are = (Q, 2,9, q, {gs'})
d: U Q"xX—=Q

1<n<5

(q,€) — q (Go's Qo 1Gr1,C) — qc,
(q0,0") — qu (qor, Qe 10m3,C) — qc.
(q0,0") — aqv (@o, @y 1GrsrC) — qcy,
(q0,¢") — qu (@o, ar 1Gxs5C) — qcy
(q,d") — qu (Go'+Gry 5GrsC) = Gcs
(QO>7T1) — Qr (q0’aq02>Q7r3>C) — qcs
(QO>7T2) — Qny (q0’aq03>Q7r4>C) — qF
(q0,m3) — Grs  (QF',Gr1 00, Grs-905,C) — QF
<QO77T4) — Qry (QF/7QCa7q7r27QC67Q7r4vc) — qr
(q0,9") — qu (qr's Qe > Qb+ Qe » qa ,C) — Qs
(g0, €) — gqs (@F's Ga Qe > Qe > Qe C) — Qs

Fig. 6. The tree automaton for I'"

¢o. In the automaton, the state which corresponds to the start symbol S’ of
the grammar becomes the single final state, i.e., @y = {qs/}.

Since our tree automata work bottom up, we have to start the processing at
the bottom by having transitions from the new initial state to a new state
encoding that we read a particular symbol on the frontier of the tree. So,
together with the transitions encoding the productions, we have to construct
two kinds of transitions in 9:

e transitions from the initial state on all subtrees reading a terminal symbol o,
i.e., elements of all the 3J; from I', to the corresponding state; i.e., gg X 0 —
4o}

e transitions recognizing the internal structure of the local trees appearing
in RHSs, i.e., from the states corresponding to the leaves of a tree on a
RHS to the nonterminal D of the left hand side, i.e., for each lifted tree
grammar production of depth one D — ¢(dy, ..., d,) we have to construct
a transition in the automaton which looks as follows: g4, X --xqq4, X¢c — qp.

Accordingly, the tree automaton corresponding to the RTG I'Y given in (2)
looks as given in Figure 6. Obviously the automaton recognizes the same set
of trees.

In Thomas (1990) tree automata are converted to formulas in MSO logic by
basically encoding their behaviour. Under the assumption that @ = {0,...,m}
with go = 0, the (closed) Xi-formula P, given there adapted to our signature
and for maximally 5-ary tree automata looks as given in (4). °

9 P, stands for the predicate labeling a node with the symbol a and leaf(z) &L

(—3y)[z <yl
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Intuitively, the sets X; label the tree where the automaton assumes state 1.
The first two lines of the formula says that we cannot have a node which
is in two states and that X, is our “initial” set; the second one licenses the
distribution of the sets according to the transitions and the last one says that
we need a root node which is in a “final” set.

Do, & (3Xo, ... ,Xm)[é\’(—Ely)[y e XNy € XA
i#]
(Vx)[leaf(x) — z € X
4
AN (Voi, ..oz, y) [V oor € Xy, Ny <ag Ay € X; ANy € By )

1<i<5 (31,--,1,0,5) €S
1<k<l

V (FaVy)jx <y Az e X))
iEQf

5 Reconstructing the Intended Trees

Unfortunately, the terminal trees in Figure 2, generated /recognized by (2) or
the tree automaton in Figure 6, don’t seem to have much in common with the
structures linguists want to talk about, i.e., the ones in Figure 1.

However, in some sense to be made operational, the I'” structures contain the
intended structures. As mentioned before, there is a mapping h from these
explicit structures onto structures interpreting the ¢ € C and the 7 € II
the way the names we have given them suggest, viz. as compositions and
projections, respectively, which are, in fact, exactly the intended structures.

On the denotational side, we will use an MSO definable tree transduction (as
defined in Section 2.3) and operationally we will use a Macro Tree Transducer
(see Section 2.4) to transform the LIFTed structures into the intended ones.

5.1 The MSO Transduction

As mentioned in the preliminaries, Rogers (1998) has shown the suitability
of an MSO description language L% p for linguistics which is based upon the
primitive relations of immediate (<), proper (<) and reflexive (<*) domi-
nance and proper precedence (<). We will show how to define these relations
with an MSO transduction thereby implementing the unique homomorphism
mapping the terms into elements of the corresponding context-free tree lan-
guage, i.e., the trees linguists want to talk about.

Put differently, it should be possible to define a set of relations R = {«, «*, «*
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(dominance), c-command, <t (precedence), ...} holding between the nodes n €
N of the explicit or LIFTed tree T* which carry a “linguistic” label L in such
a way, that when interpreting «* € R! as a tree order on the set of “linguistic”
nodes and <t € R! as the precedence relation on the resulting structure, we
have a “new” description language on the intended structures.

We have shown in Kolb et al. (2000) how to give an operational account of an
MSO transduction to recover the intended relations via so called tree-walking
automata with MSO tests. '° In this paper, we will present the logical aspect of
this transduction without going into the details of how to generate the relevant
formulas. The interested reader is referred to the reference given above.

We will use transyy_ (2, y) as the formula denoting immediate dominance (z < y)
on the intended structures. This formula was constructed recursively from the
walking language of a tree-walking automaton linking the appropriate nodes
in the lifted tree. An example of these relations is displayed graphically in
Figure 7 which contains another rendering of the last tree of the derivation
given in Figure 2. The intended dominance relation marks the endpoints of
these tree walks.

Suppose we want to find the two daughters of the “second” concatenation
symbol (e). What we have to do is find its sisters and use them as the im-
mediate daughters of the concatenation. If these nodes are labeled with a
“linguistic” label, we are done, if not we have to find the appropriate nodes
recursively. ! The easy case of a composition symbol entails simply taking
its leftmost daughter. The more problematic case of finding the appropriate
filler for a node labeled with a projection symbol is illustrated with the m3-
and 7;-links where we have to recursively traverse the tree (more on the de-
tails of how to find these can be found in Kolb et al. (2000); Michaelis et al.
(2000a,b)). The resulting immediate dominance links are indicated by the grey
lines. While we have been sloppy with regard to the subscripts of the compo-
sitions so far, we are more precise in this figure and give the exact labeling for
reasons which will become clear when we define the macro tree transducer.

Presupposing this definition of immediate dominance, we can define the other
relations we need for the MSO transduction as follows.

For the case of the recursion inherent in reflexive dominance a standard solu-
tion exists in MSO logic on finite trees. It is a well-known fact (e.g., Courcelle

10°A tree-walking automaton with MSO tests is a finite state automaton which
can navigate through a tree by following simple directives or by testing properties
of nodes via MSO formulas. Bloem and Engelfriet (1997) show that the relations
between two nodes recognized by their walks is constructively MSO definable.

' This recursion makes the use of the tree-walking automata imperative since in
general MSO relations cannot be defined recursively.
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Immediate Dominance
Intended Dominance
_— m1-link

....... m3-link

Fig. 7. Intended relations on a LIFTed structure

1990) that the reflexive transitive closure R* of a binary relation R on nodes is
(weakly) MSO-definable, if R itself is. This is done via a second-order property
which holds of the sets of nodes which are closed under R:

R-closed(X) &, (Va,y)lxr € X A R(x,y) = y € X] (5)

Now, for any node n, the intersection of all such sets which contain n is exactly
the set of m, such that R*(n,m). Since we are dealing with the (necessarily
finite) trees generated by a context-free tree grammar, this construction can
be safely exploited for our purposes; «€* and <™ can be defined as follows:

Reflexive Dominance:
zty £L (X)) [w-closed(X) Az € X — y € X]
Proper dominance:

d
x<+y<éf>:c<*y/\xaéy

Using the defined formula transy,_(x,y) for <, the specific MSO transduction
we need to transform the LIFTed structures into the intended ones looks as
follows:
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(907 Y, (9q>q€Q)

Q={«, <« <" ...}

¥ = YA
P(z) = (Fy)lrayVy <] -
Oo(z,y) = transy,(z,y)
O (z,y) = (VX)[wclosed(X) Az € X =y € X]
0ot (z,y) =z CyVagy
O (x,y) =transy_(x,y)

eLeLabels(fL‘) = L(ZL‘)

As desired, the domain of the transduction is characterized by the MSO for-
mula for the LIFTed trees (see Section 4). The domain, i.e., the set of nodes, of
the intended tree is characterized by the formula 1 which identifies the nodes
with a “linguistic” label which stand indeed in the new dominance relation.
Building on it, we define the other primitives of our description language anal-
ogous to the MSO language L%ﬂ p used to analyze large parts of GB theory
in Rogers (1998). For reasons of space, we have to leave the specification of
the precedence relation transy . (z,y) open. It is more complicated than dom-
inance, but can be achieved with another tree-walking automaton. 2 Finally,
the labeling information for the nodes is taken over from R.

Note also that while standardly “linguistic” relations like c-command or gov-
ernment would be defined in terms of dominance, our approach allows the
alternative route of taking, in the spirit of Frank and Vijay-Shanker (1998),
c-command as the primitive relation of linguistic structure by defining, in a
similar, though—since Chomsky’s (1985) distinction between segments and
categories has to be accommodated—somewhat more complicated fashion,
an automaton A, .ommand, Which computes the intended c-command relation
directly, without recourse to dominance.

5.2 The Macro Tree Transducer

As stated previously, there is a unique morphism h from the “lifted” terms
over the derived alphabet X% into the terms over the tree substitution algebra,

12 This is certainly true for LIFTed structures resulting from linear context-free tree
grammars. For non-linear ones, we have to take each individual run of the automaton
into consideration which complicates matters considerably.
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where c(t, tq,...,t) for t € T(2, Xy), t1,...,tx € T(X2, X,,) denotes the result
of substituting t; for x; in t.

The morphism A is defined inductively as follows:

W) = x; (8)
h(c(t,t1,. .. t,)) = h(t)[h(t1),. .., h(t,)]

where t[ty,- - ,t,] denotes the result of substituting ¢; for z; in t for ¢ €
T(Za Xk)) li € T(ZaXm) s

Let ©F = (XX | n € N) be the ranked alphabet with©X = {7 € XF | rank(c) =
n}. The unique morphism h can be performed by a simple macro tree trans-
ducer M = (Q, %%, %, qo, P), where Q = {g, | n the rank of some element in
Sk }, qo is the initial state and P is a finite family of rules.

The MTT which we construct to carry out the transformation effected by
the unique homomorphism h combines in a particularly perspicuous way the
actions of a top-down finite tree transducer— based upon the syntactic struc-
ture of the lifted alphabet X*—and the production aspect of the underlying
CFTG via its (i.e., the MTT’s) dependence on the local context (parameters):
retrieving the “old” arity out of the new sorted constants of the signature ¥%.

How can we construct the necessary productions to recover the intended trees?
We take an intuitive approach to explaining the construction of the needed
MTT which is strongly dependent on inspection of the tree in Figure 7.

In general, in the first argument we will have a tree during a transduction. So
in the rules, we have to take care of all symbols which can appear as mothers
of (possibly trivial) trees with the number of variables corresponding to their
arities in the first argument of any left hand side.

After careful inspection of the tree language generated by the lifted RTG I'’,
the simplest case is certainly when we are faced with a constant from Z~]OL . In
this case all we have to do is to map it back to the corresponding element
from ¥, regardless of the parameters, if there are any. In case we encounter
a projection symbol we simply have to return the corresponding parameter.
Obviously, this presupposes that we stored the “right” information there.

Furthermore, all rules with a symbol whose “unlifted” version was not a con-
stant will have as many parameters as are needed to compute the correspond-

131t is immediately obvious how one can translate this recursive definition into a
simple Prolog program. But since we can simulate a Turing machine with Prolog,
nothing much is gained on the formal side. In case one considers implementing the
approach, it makes sense to use this simple homomorphism directly.
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ing function, e.g., ® obviously is binary and therefore needs two parameters
(see the last rule in (9)). The resulting rule has, on the right hand side, simply
the “executed” function.

For the rules headed by a composition symbol ¢,, ;, we need as many parameters
as are prescribed by k. This is due to the fact that while generally the relevant
information in the lifted trees is on the leftmost branch, we nevertheless need
the other daughters to be able to unravel the projections. Basically, we follow
a depth-first strategy on the leftmost component of the lifted trees while still
passing the necessary context (i.e., the evaluation of the computation of the
other daughters) down into that computation.

Similarly, we also get the necessary states from the arities of the composition
symbols. The rules then simply pass the state and the parameters of the left
hand side of the rule to the arguments of the alphabet symbol while continuing
to work on the first argument. As an example consider an n + 1 branching
fork whose mother is labeled with ¢, ;. Then we have to construct a rule
which has on the left hand side state ¢, with arity k£ + 1. It has as its first
argument a term with functor ¢, and arguments zy,...,2,4;. The other
arguments are the parameters y; to y,. The right hand side has state ¢, of
arity n + 1 with the first argument simply being x; and the other arguments
being qx (i, y1, .- yk), 1 <i<n+ 1.

For our concrete example, the set of rules P of the MTT M look as given
below:

C]o(C4 o(T1, T2, T3, Ty, T5)) —
qa(71, qo(T2), qo( ) q0(4), qo(7s5))
qo(0’) — for o € {a,b,c,d, e}
Q4(C4,4($U1,372,$U3,$U47$5),y1,y27y37y4)
q4(x1,Q4(xz,yl,yz,ys,y4),Q4(x3,y1,yz,y3,y4),
Qa(Ta, Y1, Y293, Ya), 4a(T5, Y1, Y2, Y3, Y1) (9)
@a(Pi, Y1, Y2, Y3, Ya) — Ui for P; = m;
(o' y1, Y2, Y3, Ys) — 0 for o € {a,b,c,d, e}
CJ4(02,4(!E1,$2,$3),yl,ym?/3,y4) —
@271, (2, Y1, Y235 Ya) 5 44 (T3, Y1, Y2, Y3, Ya))
G(®", y1,92) — ® (Y1,92)

As one can see, the only remaining tree forming symbol which remains on
the right hand sides is the concatenation e. So, we are indeed back in our
“old” alphabet Y. The parameters serve just as memory slots to pass the
necessary information for undoing the projections and explicit compositions
further down into the tree.
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From the preceding motivating discussion and the display of the rules in (9)
it should be obvious that the states of the MTT do not play any role beyond
requiring the right number of arguments. The sort distinctions that are re-
quired for both the input and parameter variables can be handled by adding
an appropriate look-ahead component that serves to mirror the effect of the
tree automaton which specifies the set of intended input trees.

Applying this MTT to the tree in Figure 7 yields the final tree from the
derivation displayed in Figure 1. To get the reader started, let us consider the
first rule in (9) beginning the transduction on the root of the tree displayed
in Figure 7. We start in state go and our root is indeed labeled with c4 . Then
we continue in state g4 with its leftmost daughter and pass as parameters the
results of computing g9 of the other daughters. Since in this case they are
elements from f]g, we can simply use the appropriate constants from ¥ in
further computations. The rest of the computation leading to the final result
is straightforward and left as an exercise.

6 Conclusion

We have shown in the paper how to account for cross-serial dependencies
by coupling a logical domain specification followed by a logically definable
transduction and a bottom-up finite-state tree automaton with a tree trans-
formation induced by a macro tree transducer. The result is, of course, not
restricted to cross-serial dependencies. Any type of structural relationship that
is amenable to a formal analysis by means of CFTGs can be described accord-
ing to the same operational or logical procedure. The original context-free tree
language is first translated into its explicit presentation. A corresponding tree
automaton/closed MSO formula then isolates the explicit tree family within
the realm of all possible finite trees on the LiFTed signature. The MTT/MSO
transduction finally serves to reestablish the intended structural relations.

In the wake of the celebrated result of Peters and Ritchie (1973) on the gen-
erative strength of Transformational Grammars a great number of research
activities were inspired by the so-called universal base hypothesis. One version
of this hypothesis can be paraphrased as claiming that there exists a fixed
grammar G that plays the role of the base component of a Transformational
Grammar of any natural language. Adapting this methodological point to our
result, it can be stated as follows: Empirical linguistic data that can be accom-
modated within the framework of CF'TGs are amenable to a regular analysis
followed by a fixed universal transduction.

Comparing this statement of the result of the paper with the characteriza-
tion of context-free graph languages by Engelfriet and van Oostrom (1996)
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mentioned in the introduction, we want to stress the point that our regular
description of context-free tree languages does not provide a characterization
of this language family in the technical understanding of an equivalence be-
tween context-free tree languages and languages defined by a regular tree lan-
guage/closed MSO formula and a macro tree transducer/MSO transduction.
For a recent result on the equivalence between regular tree languages followed
by an MSO definable tree transduction and the tree languages generated by
context-free graph grammars see Engelfriet and Maneth (1999).

One drawback of the approach, namely that there is no principled connec-
tion between CFTGs and a linguistic formalism which handles the cross-serial
dependencies is addressed in another paper. Using the result from Michaelis
(1999), a similar technique as the one we have presented in this paper has been
applied to code minimalist grammars (MGs) in the sense of Stabler (1997): 1
First, MGs are translated into multiple context-free grammars, and in addi-
tion into a restricted form of attribute grammars (cf. Michaelis et al. (2000c)).
Multiple context-free grammars can be viewed as Lawvere theories such that
we get, again, lifted structures which can be recognized by RTGs/tree au-
tomata/MSO formulas. Finally, these lifted structures can be transduced into
the intended structures with a variant of the MSO/MTT technique used here
(Michaelis et al., 2000a,c). Thus we get another two step approach showing a
direct connection between MGs and the account outlined in the present paper.
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