
Workshop TAG+5, Paris, 25-27 May 2000

Derivational Minimalism in Two Regular and Logical Steps

Jens Michaelis and Uwe Mönnich and Frank Morawietz

Universität Tübingen, Wilhelmstr. 113, 72074 Tübingen, Germany
{michael,um,frank}@sfs.nphil.uni-tuebingen.de

Abstract
In this paper we extend the work by Michaelis (1999) which shows how to encode an arbitrary
Minimalist Grammar in the sense of Stabler (1997) into a weakly equivalent multiple context-
free grammar (MCFG). By viewing MCFG rules as terms in a free Lawvere theory we can
translate a given MCFG into a regular tree grammar. The latter is characterizable by both a
tree automaton and a corresponding formula in monadic second-order (MSO) logic. The trees
of the resulting regular tree language are then unpacked into the intended “linguistic” trees
with an MSO transduction based upon tree-walking automata.This two-step approach gives an
operational as well as a logical description of the tree setsinvolved.

1. Introduction
Over the last couple of years, a rich class of mildly context-sensitive grammar formalisms has
been proven to be weakly equivalent. Among others, the following families of (string) lan-
guages are equivalent:STR(HR) [languages generated by string generating hyperedge re-
placement grammars],OUT (DTWT ) [output languages of deterministic tree-walking tree-to-
string transducers],yDT

f


(REGT ) [yields of images of regular tree languages under deter-
ministic finite-copying top-down tree transductions],MCFL [languages generated by multiple
context-free grammars],MCTAL [languages generated by multi-component tree adjoining
grammars],LCFRL [languages generated by linear context-free rewriting systems],LUSCL
[languages generated by local unordered scattered contextgrammars] (more on these equiva-
lences can be found, e.g., in Engelfriet 1997, Rambow & Satta1999, Weir 1992).
The work by Michaelis (1999) shows how to encode an arbitraryminimalist grammar (MG)
in the sense of Stabler (1997) into a weakly equivalent linear context-free rewriting system
(LCFRS). The core idea is that for the set of trees appearing as intermediate steps in converg-
ing derivations corresponding to a given MG one can define a finite partition. The equivalence
classes of this partition are formed by sets of trees where the features triggering movement
appear in identical structural positions. Each nonterminal in a corresponding LCFRS repre-
sents such an equivalence class, i.e., an infinite set of trees. We take the resulting LCFRSs as
our starting point and present in this paper a translation from multiple context-free grammars
(MCFGs)—which are a weakly equivalent extension of LCFRSs—into regular tree grammars
(RTGs)/monadic second-order (MSO) logic/tree automata. This is done via lifting by viewing
MCFG rules as terms in a free Lawvere theory. Since this coding makes projection, tupling
and composition explicit, the resulting trees contain these operations as labeled nodes. There-
fore we use an MSO transduction—where the regular tree language constitutes the domain—to
transform the lifted trees into the intended ones.
We think that our approach has decisive advantages. First, the operations of the relevant sig-
nature appear explicitly in the lifted trees and are not hidden in node labels coding instances
of rule application. Second, our path component is not dependent on the particular regular tree



J. Michaelis, U. Mönnich and F. Morawietz

family or the domain defined via the MSO formula. The instruction set of the tree-walking
automaton and the corresponding definition of the MSO transduction are universal and only
serve to reverse the lifting process. In that sense the instructions are nothing else but a restate-
ment of the unique homomorphism which exists between the free algebra and any other algebra
of the same signature. Thus, the translation from MCFGs to RTGs constitutes a considerable
simplification in comparison with other characterizationssince it is not built upon derivation
trees using productions of the original MCFG as node labels,but rather on the operations of
projection, tuple-formation and composition alone.
In the following sections we limit ourselves to the special case of MCFG rules with only one
nonterminal on the right hand side (RHS). This allows a significant simplification in the pre-
sentation since it requires only one level of tupling. The extension to the general case of using
tuples of tuples is considerably more involved and, for lackof space, cannot be described here.

2. Background and Basic Definitions
We first present some basic definitions before we proceed withthe actual translation. LetS be a
set of sorts. Amany-sorted signature� (overS) is an indexed familyh�

w;s

jw 2 S

�

; s 2 Si of
disjoint sets. A symbol in�

w;s

is called an operator of typehw; si, arityw, sorts and rankjwj,
wherejwj denotes the length ofw. LetX = fx

1

; x

2

; x

3

; : : :g be a countable set of variables,
and fork 2 IN defineX

k

asfx
1

; : : : ; x

k

g. Then, the set ofk-ary treesT (�;X
k

) over� is built
up fromX

k

using the operators in the usual way: If� 2 �

";s

[X

k

for somes 2 S and" 2 S

�

with j"j = 0 then� is a (trivial)k-ary tree of sorts. If, for somes 2 S andw = s

1

� � � s

n

with
s

i

2 S, � 2 �

w;s

andt
1

; : : : ; t

n

arek-ary trees witht
i

of sorts
i

then�(t
1

; : : : ; t

n

) is ak-ary
tree of sorts. Note thatT (�;X

k

) � T (�;X

l

) for k � l. LetT (�;X) =

S

k2IN

T (�;X

k

).
The operator symbols induce operations on an algebra with the appropriate structure. A�-
algebraA consists of anS-indexed family of setsA = hA

s

i

s2S

and for each operator� 2 �
w;s

,
�

A

: A

w

! A

s is a function, whereAw

= A

s

1

� � � � � A

s

n andw = s

1

� � � s

n

with s
i

2 S. The
setT (�;X) can be made into a�-algebraT by specifying the operations as follows. For every
� 2 �

w;s

, wheres 2 S andw = s

1

� � � s

n

with s
i

2 S, and everyt
1

; : : : ; t

n

2 T (�;X) with t
i

of sorts
i

we identify�
T

(t

1

; : : : ; t

n

) with �(t
1

; : : : ; t

n

).
Our main notion is that of analgebraic (Lawvere) theory. Given a set of sortsS, an algebraic
theory, as an algebra, is anS��S�-sorted algebraT, whose carriershT (u; v) j u; v 2 S�i consist
of the morphisms of the theory and whose operations are of thefollowing types, wheren 2 IN,
u = u

1

� � �u

n

with u
i

2 S for 1 � i � n andv; w 2 S

�,

projection: �

u

i

2 T (u; u

i

)

composition: 


(u;v;w)

2 T (u; v)� T (v; w)! T (u; w)

target tupling: ( )

(v;u)

2 T (v; u

1

)� � � � � T (v; u

n

) ! T (v; u)

The projections and the operations of target tupling are required to satisfy the obvious identities
for products. The composition operations must satisfy associativity.
ForS being a singleton and� a (many-sorted) signature overS��S�, the power set}(T (�;X))

of T (�;X) constitutes the central example of interest for formal language theory. The carriers
h}(T (k;m)) j k;m 2 INi of the correspondingS��S�-Lawvere algebra are constituted by the
power sets of the setsT (k;m), where eachT (k;m) is the set of allm-tuples ofk-ary trees,
i.e. T (k;m) = f(t

1

; : : : ; t

m

) j t

i

2 T (�;X

k

)g.1 Composition is defined as substitution of the
projection constants and target tupling is just tupling. For reasons of space, we cannot go into
more details here. More on Lawvere theories in this context and their connection to linguistics
can be found in Mönnich (1998).

1SinceS is a singleton,S� can be identified withIN, because up to length eachw 2 S

� is uniquely specified.



Derivational Minimalism in Two Regular and Logical Steps

A multiple context-free grammar(MCFG) is defined as a five-tupleG = hN; T; F; P; Si with
N , T , F andP being a finite set of ranked nonterminals, terminals, linearbasic morphisms
and productions, respectively.S 2 N is the start symbol. Eachp 2 P has the formA �!

f(A

0

; : : : ; A

n�1

) for A;A
0

; : : : ; A

n�1

2 N andf 2 F a function from(T

�

)

k to (T

�

)

l with
arity k = �

n�1

i=0

k

i

(k
i

the rank ofA
i

) andl the rank ofA (cf. Sekiet al. 1991). Recall that the
basic morphisms are those which use only variables, constants, concatenation, composition and
tupling.
A regular tree grammar(RTG) is a 4-tupleG = h�; F

0

; S;Pi, where� is a many-sorted signa-
ture of inoperativesandF

0

a set ofoperativesof rank0. S 2 F

0

is the starting symbol andP is
a set of productions. Eachp 2 P has the formF �! t, with F 2 F

0

, andt a term (tree) over
� [ F

0

. An application of a ruleF �! t “rewrites” F as the treet. Since RTG rules always
just substitute some tree for a leaf-node, it is easy to see that they generate recognizable sets of
trees, i.e., context-free string languages (Mezei & Wright1967).2

After these algebraic notions, we briefly present those related to monadic second-order (MSO)
logic. MSO logic is the extension of first-order predicate logic with monadic second-order
variables and quantification over them. In particular, we are using MSO logic on trees such that
individual variablesx; y; : : : stand for nodes in trees and monadic second-order onesX; Y; : : :

for sets of nodes (for more details see, e.g., Rogers 1998).
Before we turn to purely logical notions, we introduce a concept which combines both automata
theory and logic. We need a particular type of finite-state automaton: tree-walking automata
with MSO tests(Bloem & Engelfriet 1997). Intuitively, those automata make transitions from
nodes in a tree to other nodes along its branches.
A tree-walking automaton (with tests)over some ranked alphabet� is a finite automaton
A = (Q;�; Æ; I; F ) with statesQ, directives�, transitionsÆ : Q � � ! Q and the initial
and final statesI � Q andF � Q which traverses a tree along connected edges using three
kinds of directives:"

i

—“move up to the mother of the current node (if it has one and itis its i-th
daughter)”,#

i

—“move to thei-th daughter of the current node (if it exists)”, and'(x)—“verify
that' holds at the current node”. For any treet 2 T (�), such a tree-walking automatonA com-
putes a node relationR

t

(A) = f(x; y)j(x; q

i

)

�

) (y; q

f

) for someq
i

2 I and someq
f

2 Fg,
where for all statesq

k

; q

l

2 Q and nodesx; y in t (x; q
k

) =) (y; q

l

) iff 9d 2 � : (q

k

; d; q

l

) 2 Æ

andy is reachable fromx in t via d. Note thatx is reachable from itself if the directive was a
(successful) test. It is important not to confuse this relation with thewalking languagerecog-
nized by the automaton, i.e., the string of directives needed to move from the initial to the final
node in a walk. Bloem and Engelfriet show that these automatacharacterize the MSO definable
node relations, i.e., every tree-walking automaton we specify can be inductively transformed
into an equivalent MSO formula and vice versa.
The following paragraphs go directly back to Courcelle (1997). Recall that the representation
of objects within relational structures makes them available for the use of logical description
languages. LetR be a finite set of relation symbols with the corresponding arity for eachr 2 R
given by�(r). A relational structureR = hD

R

; (r

R

)

r2R

i consists of the domainD
R

and the
�(r)-ary relationsr

R

� D

�(r)

R

. There does not seem to be a convenient machine model for tree
transformations. Fortunately, one can use logic directly to define the desired transduction. The
classical technique of interpreting a relational structures within another one forms the basis for
MSO transductions. Intuitively, the output tree is interpreted on the input tree. E.g., suppose
that we want to transduce the input treet

1

into the output treet
2

. The nodes of the output treet
2

will be a subset of the nodes fromt
1

specified with a unary MSO relation ranging over the nodes
of t

1

. The daughter relation will be specified with a binary MSO relation with free variablesx
2Appropriate definitions for derivations and the tree languages generated can be found in Kolbet al. (2000).



J. Michaelis, U. Mönnich and F. Morawietz

S

(0;1)

�!




(0;3;1)




(3;2;1)

A

(0;3)

�

(2;1)

( )

(3;2)

�

3

1 (3;1)




(3;2;1)

�

(2;1)

( )

(3;2)

�

3

2 (3;1)

�

3

3 (3;1)

A

(0;3)

�!




(0;3;3)

( )

(3;3)

A

(0;3)




(3;2;1)




(3;2;1)




(3;2;1)

�

(2;1)

( )

(3;2)

�

(2;1)

( )

(3;2)

�

(2;1)

( )

(3;2)

�

3

1 (3;1)




(3;0;1)

�

3

2 (3;1)




(3;0;1)

�

3

3 (3;1)




(3;0;1)

a

1 (0;1)
( )

(3;0)

a

2 (0;1)
( )

(3;0)

a

3 (0;1)
( )

(3;0)

A

(0;3)

�!

( )

(0;3)

a

1 (0;1)

a

2 (0;1)

a

3 (0;1)

Figure 1: The translated example grammarG

0

andy ranging over the nodes fromt
1

. We will use this concept to transform the lifted trees into
the intended ones.
A (non-copying) MSO transduction of a relational structureR (with set of relation symbolsR)
into another oneQ (with set of relation symbolsQ) is defined to be a tuple(';  ; (�

q

)

q2Q

).
It consists of the formulas' defining the domain of the transduction inR and defining the
resulting domain ofQ and a family of formulas�

q

defining the new relationsQ (using only
definable formulas from the “old” structureR).
In this sense, our description of non-contextfree phenomena with two devices with only regular
power is an instance of the theorem that the image of an MSO-definable class of structures
under a definable transduction is not MSO definable in general(Courcelle 1997).

3. Translating MCFGs to RTGs
Each rule of a given MCFG is recursively transformed into a RTG rule by coding the implicit
operations of projection, tupling and composition as nonterminals or terminals. This becomes
possible simply by viewing the terms appearing in the rules of the MCFG as elements of a free
IN�IN-sorted Lawvere algebra. The resulting RTG then “operates on” this Lawvere algebra.
As an example we consider the following MCFGG = hN; T; F; P; Si with N = fS;Ag,
T = fa

1

; a

2

; a

3

g, F = fg; h; lg andP = fS ! g(A); A ! h(A); A ! l()g, where the
functionsg : (T �)3!T

�, h : (T

�

)

3

! (T

�

)

3 andl : (T �)0! (T

�

)

3 are given by

g(x

1

; x

2

; x

3

) = x

1

x

2

x

3

h(x

1

; x

2

; x

3

) = (x

1

a

1

; x

2

a

2

; x

3

a

3

) l( ) = (a

1

; a

2

; a

3

)

The language generated byG is fan
1

a

n

2

a

n

3

jn > 0g.
Now, for 1 � i � 3 let �3

i

denote thei-th projection which maps a3-tuple of strings fromT � to
its i-th component, i.e. a1-tuple, and let� denote the usual binary operation of concatenation
defined for strings fromT �, i.e.,� maps a2-tuple to a1-tuple. The corresponding (Lawvere)
arity of S; a

1

; a

2

anda
3

is (0; 1), ofA (0; 3), of � (2,1), and the one of�3
1

; �

3

2

and�3
3

is (3; 1).
Applying the translationT given below to the MCFGG results in the RTGG 0= h�; F

0

; S

(0;1)

;Pi

with inoperatives� = h�

w;s

jw2 (IN�IN)

�

; s2 IN�INi, operativesF
0

of rank 0, and produc-
tionsP which (in tree notation) look as given in Fig. 1. We have�

";(3;0)

= f( )

(3;0)

g,�
";(2;1)

=

f�

(2;1)

g,�
";(0;1)

= fa

1 (0;1)

; a

2 (0;1)

; a

3 (0;1)

g,�
";(3;1)

= f�

3

1

(3;1)

; �

3

2 (3;1)

; �

3

3 (3;1)

g,

�

(0;3)(3;3);(0;3)

= f


(0;3;3)

g �

(3;1)(3;1);(3;2)

= f( )

(3;2)

g

�

(0;3)(3;1);(0;1)

= f


(0;3;1)

g �

(0;1)(0;1)(0;1);(0;3)

= f( )

(0;3)

g

�

(3;2)(2;1);(3;1)

= f


(3;2;1)

g �

(3;1)(3;1)(3;1);(3;3)

= f( )

(3;3)

g



Derivational Minimalism in Two Regular and Logical Steps

andF
0

= fS

(0;1)

; A

(0;3)

g.3

As one can see in Fig. 1, the basic functions have been realized as terms with their respec-
tive implicit operations as nonterminal (composition and tupling) or terminal (projection and
empty tupling) nodes. In the following paragraphs, we sketch the translationT from non-
terminal rules of the example MCFG to RTG rules.T takes each ruleX �! f(Y ), where
X; Y 2 N andf 2 F , of the MCFG including the corresponding definition of the mapping
f(x

1

; : : : ; x

k

) with k � 0 and transforms it into a RTG rule as follows. We create a mother
node labeled with the appropriate binary composition


(j;k;l)

such that the left daughter con-
tains the “lifted” version off(x

1

; : : : ; x

k

) underT and the right daughter the translation of the
nonterminalY . Both nonterminalsX andY are used “unchanged”, but annotated with the cor-
responding Lawvere arity resulting in the following schematic presentation of the translation:
X

(j;l)

�! 


(j;k;l)

(T(f(x

1

; : : : ; x

k

)); Y

(j;k)

), wheref is a mapping fromk-tuples tol-tuples of
terminal strings.
The easiest case of translating a mappingf 2 F from our example viaT is the terminalA-
rule. We simply view the mapping as a Lawvere term. The function l just returns a triple of
a

1

, a
2

anda
3

. The corresponding tree has a mother node labeled with a ternary tupling symbol
and the three unary arguments of the mapping as daughters.4 TheS-rule is more complicated
with the functiong concatenating three (input) strings. The definition of the function can be
written explicitly as the Lawvere term


(3;2;1)

(�; ( )

(3;2)

(�

3

1

; 


(3;2;1)

(�; ( )

(3;2)

(�

3

2

; �

3

3

)))). Note
that the implicit binary concatenation� in g now becomes the constant�

(2;1)

. The variables
are simply replaced by the projections and concatenated. The resulting term is then applied
to the operativeA

(0;3)

such that we get the RHS displayed in theS
(0;1)

-rule in Fig. 1. The
recursive case of theA-rule is the most complicated. The mapping returns a triple,so we
need a tupling “operator” of appropriate arity(3; 3) as the mother node with3 daughters. The
i-th of its daughters (labeled with


(3;2;1)

) is built by composing the concatenation constant
�

(2;1)

with the “tupling”-result( )

(3;2)

of the corresponding projection constant�

3

i(3;1)

(which is
substituted for the variablex

i

) and a particular constant tree. Namely the one which (in terms
of the underlying Lawvere algebra) simply “lifts” the constanta

i

to the Lawvere-arity of�3
i

just
in order to allow for an appropriate tupling. So, the term(x

1

a

1

; x

2

a

2

; x

3

a

3

) is interpreted as
the Lawvere term( )

(3;3)

(
(�; ( )

(3;2)

(�

3

1

; 
(a

1

; ( )

(3;0)

)))); 
(: : :); 
(: : :)) which appears as the
RHS of the corresponding tree grammar rule.
Since RTGs can only generate recognizable (tree) languages, we can characterize them with
both MSO logic on trees and tree automata.5 The tree automatonA

G

0 is constructed by trans-
forming the grammar into a normal form such that each RHS is ofdepth one by introducing
auxiliary operatives. Then we can easily construct appropriate transitions by basically reversing
the arrow: the nonterminals become state names and the mother node will be read as alphabet
symbol. It is know from Thomas (1990) how to transform this tree automaton into an MSO
formula'

A

G

0

by encoding its behaviour. Details for our special case can be found in Kolbet al.
(2000).

4. Reconstructing the Intended Trees
Rogers (1998) has shown the suitability of an MSO description language for linguistics which is
based upon the primitive relations of immediate (/), proper (/+) and reflexive (/�) dominance

3For simplicity and readability we will sometimes drop the subscript notion(k;m) from the inoperatives and
operatives of rank0, and sometimes even from the composition symbol


(k;l;m)

.
4Note that we do not need to use a further composition symbol dominatingT(f) in case there is no nonterminal

on the RHS of the rule of the MCFG.
5An introduction to tree automata can be found in Gécseg & Steinby (1984).



J. Michaelis, U. Mönnich and F. Morawietz

and proper precedence (�). We will show how to define these relations with an MSO trans-
duction thereby implementing the unique homomorphism mapping the terms into elements of
the corresponding regular tree language.. At the core of thetransduction is a tree-walking au-
tomaton defining the binary relation of immediate dominance(/) on the nodes belonging to the
intended structures. It is based on some simple observations.6

1. Our trees feature three families of labels: the “linguistic” symbolsL, i.e., the lifted symbols
of the underlying MCFG; the “composition” symbolsC = f


(u;v;w)

g; the “tupling” symbols
( )

(v;u)

and the “projection” symbols� = f�

k

i

g.

2. All nonterminal nodes inT 0 are labeled by some
 2 C or a “tupling” symbol. Note that no
terminal node is labeled by some
.

3. The terminal nodes inT 0 are either labeled by some “linguistic” symbol, a “tupling”symbol
of the form( )

(k;0)

, i.e. the “empty” tuple, or by some “projection” symbol�k
i

.

4. Any “linguistic” node dominating anything in the intended tree is on some left branch inT 0,
i.e., it is the left daughter of some
 2 C and the sister of a tupling symbol whose daughters
evaluate to the intended daughters.

5. For any node� labeled with some “projection” symbol�u
i

2 � in T 0 there is a unique node
� (labeled with some
 2 C) which properly dominates� and which immediately dominates
a node labeled with a “tupling” symbol whosei-th daughter will eventually evaluate to the
value of�k

i

. Moreover,� will be the first node properly dominating� which is on a left
branch and bears a composition symbol. This crucial fact is arrived at by induction on the
construction ofG 0 from G.

By 4. it is not hard to find possible dominees in anyT 0. It is the problem of determining the
actual “filler” of a candidate-dominee which makes up the complexity of the definition of/.
There are three cases to account for:

6. If the node considered carries a “linguistic” label, it evaluates to itself;

7. if it has a “composition” label
, it evaluates to whatever its leftmost daughter evaluates to;

8. if it carries a “projection” label�k
i

, it evaluates to whatever the node it “points to”—by (5.)
theith daughter of a “tupling” node which is dominated by the firstC-node on a left branch
dominating it—evaluates to.

According to the observations made above, the automaton given in Fig. 2 starts on any node
with a “linguistic” label (denoted here byL) which means for the given example�; a

1

; a

2

; a

3

.
Then it has to go up the first branch, read a composition symboland descend to its sister. If it
reads a “linguistic” node, the automaton stops. If it reads acomposition symbol, the automaton
goes to the left daughter and tries again. If it reads a tupling symbol, the automaton proceeds
with its daughters. On finding a projection symbol, it searches for the appropriate “filler” by
going upwards until it is on a leftmost branch which is labeled with a composition symbol.
Then it walks to the second sister or further down the leftmost branch until it hits a tupling node
to whose appropriate daughter it descends to find the filler.
However, there is another interpretation of such an automaton. Viewed as an ordinary finite-
state automaton over the alphabet�, A

/

recognizes a regular (string-) language, thewalking
languageW which can be translated recursively into an MSO formulatrans

W

/

defining the
relation/ (see Bloem & Engelfriet 1997). We leave the rather tedious process of converting
the walking language for the automaton given in Fig. 2 to the reader (a full example of such a
conversion can be found in Kolbet al. (2000)).

6The reader is encouraged to check them against treesT

0 generated byG0 given in Fig. 1.



Derivational Minimalism in Two Regular and Logical Steps

i

u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

s

1

s

2

s

3

e d

t

d




d

1

d

2

d

3

d

4

d

5

d

6

d

7

d

8

d

9

f

L(x)Æ"

1

ÆC(x)Æ#

2

( )(x)

C(x)

L(x)

(#

1

j #

2

)

#

1

("

2

j"

3

) ("

2

j"

3

) ("

2

j"

3

)

�

1

(x) �

2

(x) �

3

(x)

"

1

"

1

"

1

( )(x) ( )(x) ( )(x)

C(x)

#

2

C(x)

#

2

C(x)

#

2

( )"

1

( )"

1

( )"

1

C(x)#

1

C(x)#

1

C(x)#

1

#

1

#

2

#

3

Figure 2: The tree-walking automaton for immediate dominance:A
/

To present the actual MSO transduction, we need one further auxiliary definition. It is a well-
known fact (e.g. Bloem & Engelfriet 1997) that the reflexive transitive closureR� of a binary
relationR on nodes is (weakly) MSO-definable, ifR itself is. This is done via a second-order
property which holds of the sets of nodes which are closed under R: R�
losed(X) ()

def

(8x; y)[x 2 X ^ R(x; y)! y 2 X℄.
Finally, the MSO transduction(';  ; (�

q

)

q2Q

) with Q = f/; /

�

; /

+

;�; : : : g we need to trans-
form the lifted structures into the intended ones is given asfollows:

' � '

A

G

0

 � (9y)[trans

W

/

(x; y) _ trans

W

/

(y; x)℄

�

/

(x; y) � trans

W

/

(x; y)

�

/

�

(x; y) � (8X)[/�
losed(X) ^ x 2 X ! y 2 X℄

�

/

+

(x; y) � x /

�

y _ x 6� y

�

�

(x; y) � another tree-walking automaton

�labels� taken over fromR

As desired, the domain of the transduction is characterizedby the MSO formula'
A

G

0

for the
lifted trees. The domain, i.e., the set of nodes, of the intended tree is characterized by the
formula which identifies the nodes with a “linguistic” label which stand indeed in the new
dominance relation to some other node. Building on it, we define the other primitives of a
tree description language suited to linguistic needs. For reasons of space, we have to leave the
specification of the precedence relation open. It is more complicated than dominance, but can
be achieved with another tree-walking automaton.

5. Conclusion
Taking the result of Michaelis’ translation of MGs as the input we have shown how to define
a RTG by lifting the corresponding MCFG-rules by viewing them as terms of a free Lawvere



J. Michaelis, U. Mönnich and F. Morawietz

theory. This gives us both a regular (via tree and tree-walking automata) and a logical charac-
terization (via MSO logic and an MSO definable transduction)of the intended syntactic trees.
Equivalently, we provide both an operational and a denotational account of Stabler’s version of
Minimalism without having to go via derivation trees.
It remains to be seen whether one can find a machine model for the entire MSO transduction.
A likely candidate are the macro tree transducers (MTT) introduced in Engelfriet & Maneth
(1999). Since they characterize the class of MSO definable tree translations if extended with
regular look-ahead and restricted to finite-copying, we arequite optimistic that we will be able
to use them to efficiently implement the transduction. This would also characterize the class of
languages we can handle. Engelfriet and Maneth show that theresult of applying an MTT to a
regular tree family yields the tree languages generated by context-free graph grammars.

References

BLOEM R. & ENGELFRIET J. (1997).Characterization of Properties and Relations defined in
Monadic Second Order Logic on the Nodes of Trees. Tech. Rep. 97-03, Leiden University.

COURCELLE B. (1997). The expression of graph properties and graph transformations in
monadic second-order logic. In G. ROZENBERG, Ed.,Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundations, p. 313–400. World Scientific.

ENGELFRIET J. (1997). Context-free graph grammars. In G. ROZENBERG & A. SALOMAA ,
Eds.,Handbook of Formal Languages. Vol. III: Beyond Words, p. 125–213. Springer.

ENGELFRIET J. & MANETH S. (1999). Macro tree transducers, attribute grammars, andMSO
definable tree translations.Information and Computation, 154, 34–91.

GÉCSEGF. & STEINBY M. (1984).Tree Automata. Budapest: Akadémiai Kiadó.

KOLB H.-P., MÖNNICH U. & M ORAWIETZ F. (2000). Descriptions of cross-serial de-
pendencies. To appear in a special issue ofGrammars. Draft available underhttp:
//tcl.sfs.nphil.uni-tuebingen.de/~frank/.

MEZEI J. & WRIGHT J. (1967). Algebraic automata and contextfree sets.Information and
Control, 11, 3–29.

M ICHAELIS J. (1999). Derivational minimalism is mildly context-sensitive. In M. MOORTGAT,
Ed.,LACL ’98, LNAI. Springer. To appear.

MÖNNICH U. (1998). TAGs M-constructed. InTAG+ 4th Workshop, Philadelphia.

RAMBOW O. & SATTA G. (1999). Independent parallelism in finite copying parallel rewriting
systems.Theoretical Computer Science, 223, 87–120.

ROGERS J. (1998). A Descriptive Approach to Language-Theoretic Complexity. Studies in
Logic, Language, and Information. CSLI Publications and FoLLI.

SEKI H., MATSUMURA T., FUJII M. & K ASAMI T. (1991). On multiple context-free gram-
mars.Theoretical Computer Science, 88, 191–229.

STABLER E. (1997). Derivational minimalism. In C. RETORÉ, Ed.,Logical Aspects of Com-
putational Linguistics, p. 68–95, Berlin: Springer. LNAI 1328.

THOMAS W. (1990). Automata on infinite objects. In J.VAN LEEUWEN, Ed.,Handbook of
Theoretical Computer Science, chapter 4, p. 133–191. Elsevier Science Publishers B. V.

WEIR D. J. (1992). Linear context-free rewriting systems and deterministic tree-walk trans-
ducers. In30th Meeting of the Association for Computational Linguistics (ACL’92).


