Workshop TAG+5, Paris, 25-27 May 2000

Derivational Minimalism in Two Regular and Logical Steps

Jens Michaelis and Uwe Monnich and Frank Morawietz

Universitat Tubingen, Wilhelmstr. 113, 72074 Tubingenri@any
{m chael , um frank} @fs. nphil . uni-tuebi ngen. de

Abstract

In this paper we extend the work by Michaelis (1999) whichwshleow to encode an arbitrary
Minimalist Grammar in the sense of Stabler (1997) into a vieakuivalent multiple context-
free grammar (MCFG). By viewing MCFG rules as terms in a fresviere theory we can
translate a given MCFG into a regular tree grammar. The latsecharacterizable by both a
tree automaton and a corresponding formula in monadic séamder (MSO) logic. The trees
of the resulting regular tree language are then unpacked the intended “linguistic” trees
with an MSO transduction based upon tree-walking automBiés two-step approach gives an
operational as well as a logical description of the tree sei®Ived.

1. Introduction

Over the last couple of years, a rich class of mildly contedsitive grammar formalisms has
been proven to be weakly equivalent. Among others, thevatlg families of (string) lan-
guages are equivalenSTR(HR) [languages generated by string generating hyperedge re-
placement grammarsRUT (DTWT') [output languages of deterministic tree-walking tree-to-
string transducerslyDTs.(REGT) [yields of images of regular tree languages under deter-
ministic finite-copying top-down tree transductiond] ' F' L [languages generated by multiple
context-free grammarsl)/CT AL [languages generated by multi-component tree adjoining
grammars],LC' FRL [languages generated by linear context-free rewritingesys], LUSC'L
[languages generated by local unordered scattered cagr@ximars] (more on these equiva-
lences can be found, e.g., in Engelfriet 1997, Rambow & S£89, Weir 1992).

The work by Michaelis (1999) shows how to encode an arbitranyimalist grammar (MG)

in the sense of Stabler (1997) into a weakly equivalent lircemtext-free rewriting system
(LCFRS). The core idea is that for the set of trees appeasrigtarmediate steps in converg-
ing derivations corresponding to a given MG one can defineii foartition. The equivalence
classes of this partition are formed by sets of trees whexddhtures triggering movement
appear in identical structural positions. Each nonterinima corresponding LCFRS repre-
sents such an equivalence class, i.e., an infinite set . tide take the resulting LCFRSs as
our starting point and present in this paper a translatiomfmultiple context-free grammars
(MCFGs)—which are a weakly equivalent extension of LCFR8#e-regular tree grammars
(RTGs)/monadic second-order (MSO) logic/tree automatas i done via lifting by viewing
MCFG rules as terms in a free Lawvere theory. Since this gpciakes projection, tupling
and composition explicit, the resulting trees contain ¢heserations as labeled nodes. There-
fore we use an MSO transduction—where the regular tree Eggoonstitutes the domain—to
transform the lifted trees into the intended ones.

We think that our approach has decisive advantages. Huesipperations of the relevant sig-
nature appear explicitly in the lifted trees and are not érdah node labels coding instances
of rule application. Second, our path component is not dégeton the particular regular tree

J. Michaelis, U. M6énnich and F. Morawietz

family or the domain defined via the MSO formula. The instioretset of the tree-walking
automaton and the corresponding definition of the MSO tractsoh are universal and only
serve to reverse the lifting process. In that sense thauictsdns are nothing else but a restate-
ment of the unique homomorphism which exists between tleedigebra and any other algebra
of the same signature. Thus, the translation from MCFGs t@$:@onstitutes a considerable
simplification in comparison with other characterizati@msce it is not built upon derivation
trees using productions of the original MCFG as node lalimlsrather on the operations of
projection, tuple-formation and composition alone.

In the following sections we limit ourselves to the specase of MCFG rules with only one
nonterminal on the right hand side (RHS). This allows a $igamt simplification in the pre-
sentation since it requires only one level of tupling. Theeasion to the general case of using
tuples of tuples is considerably more involved and, for latkpace, cannot be described here.

2. Background and Basic Definitions

We first present some basic definitions before we proceedthathctual translation. L&t be a
set of sorts. Anany-sorted signatur® (overS) is an indexed familyf X, ; | w € S*, s € S) of
disjoint sets. A symbol irt,, ; is called an operator of typev, s), arity w, sorts and rankw|,
where|w| denotes the length af. Let X = {x, x5, z3,...} be a countable set of variables,
and fork € IN defineXy as{z,...,z}. Then, the set of-ary treesl'(¥, X;) overX is built
up from X, using the operators in the usual wayole X, ; U X for somes € S ands € S*
with |¢| = 0 theno is a (trivial) k-ary tree of sork. If, for somes € S andw = s; - - - s, with
s; € S,0 € X, ,andty,..., t, arek-ary trees witht; of sorts; theno(ty,...,t,) is ak-ary
tree of sorts. Note thatl'(X, X)) C T'(Y, X)) fork < I. LetT'(X, X) = Upen T(X, Xi).
The operator symbols induce operations on an algebra wettapipropriate structure. A'-
algebraA consists of arb-indexed family of setst = (A?)-¢ and for each operater ¢ X, ,
oy AY — A% s afunction, whered” = A% x ... x A*» andw = s;---s, With s; € S. The
setT' (¥, X) can be made into &-algebrdl by specifying the operations as follows. For every
o€ Xy, Wheres € Sandw = s --- s, With s; € S, and everyty, ..., t, € T(X, X) with ¢,
of sorts; we identifyor(ty,. .., t,) with o(ty, ..., t,).
Our main notion is that of aalgebraic (Lawvere) theoryGiven a set of sort§, an algebraic
theory, as an algebra, is &hx S*-sorted algebrd, whose carrier$T (u, v) | u,v € S*) consist
of the morphisms of the theory and whose operations are dbtlosving types, where: € IN,
uw=1uy - u, Withu; € Sforl <i<nandv,w € S*,

projection: e T (u, u;)

composition: ¢ € T(u,v) x T'(v,w) = T(u,w)

target tupling: ()wu € T(v,u1) X --- x T(v,u,) = T'(v, u)
The projections and the operations of target tupling araired to satisfy the obvious identities
for products. The composition operations must satisfy @atiuity.
For S being a singleton anl a (many-sorted) signature ov&trx S*, the power sep(7' (¥, X))
of T(X, X) constitutes the central example of interest for formal leage theory. The carriers
(p(T'(k,m)) | k,m € IN) of the corresponding*x S*-Lawvere algebra are constituted by the
power sets of the sefB(k, m), where eacti’(k, m) is the set of alim-tuples ofk-ary trees,
i.e.T(k,m) = {(t1,...,tm) | t; € T(X,Xy)}.* Composition is defined as substitution of the
projection constants and target tupling is just tuplingr feasons of space, we cannot go into
more details here. More on Lawvere theories in this contedttheir connection to linguistics
can be found in Monnich (1998).

1SinceS is a singletonS* can be identified witiN, because up to length eaghe S* is uniquely specified.

Derivational Minimalism in Two Regular and Logical Steps

A multiple context-free grammgMCFG) is defined as a five-tuptg¢ = (N, T, F, P, S) with

N, T, F and P being a finite set of ranked nonterminals, terminals, lifesic morphisms
and productions, respectivelyy € N is the start symbol. Each € P has the formd —
f(Ag,...,A,_y) for A, Ay,...,A,_1 € N andf € F a function from(7*)* to (7*)! with
arity k = X 'k; (k; the rank ofA;) andl the rank ofA (cf. Sekiet al. 1991). Recall that the
basic morphisms are those which use only variables, calsstancatenation, composition and
tupling.

A regular tree grammafRTG) is a 4-tupleg = (X, Fy, S, P), whereX is a many-sorted signa-
ture ofinoperativesandF, a set ofoperativef rank0. S € Fy is the starting symbol anél is

a set of productions. Eaghe P has the formF" — ¢, with F' € F,, andt a term (tree) over
Y U Fy. An application of a ruleF” — ¢ “rewrites” F' as the treg¢. Since RTG rules always
just substitute some tree for a leaf-node, it is easy to sadlilby generate recognizable sets of
trees, i.e., context-free string languages (Mezei & Writht7)?

After these algebraic notions, we briefly present thosdedlto monadic second-order (MSO)
logic. MSO logic is the extension of first-order predicatgitowith monadic second-order
variables and quantification over them. In particular, weewsming MSO logic on trees such that
individual variablesr, y, . .. stand for nodes in trees and monadic second-order 8n&s. . .

for sets of nodes (for more details see, e.g., Rogers 1998).

Before we turn to purely logical notions, we introduce a @ptavhich combines both automata
theory and logic. We need a particular type of finite-statimaton: tree-walking automata
with MSO test¢Bloem & Engelfriet 1997). Intuitively, those automata reakansitions from
nodes in a tree to other nodes along its branches.

A tree-walking automaton (with testeyer some ranked alphabét is a finite automaton
A = (Q, A6 I, F) with states), directivesA, transitionsd : @ x A — @ and the initial
and final stateg C @ andF' C () which traverses a tree along connected edges using three
kinds of directives:,—"move up to the mother of the current node (if it has one ailiis ;-th
daughter)”,|;—"“move to thei-th daughter of the current node (if it exists)”, aptl:)—"verify
thaty holds at the current node”. For any triee T'(Y), such a tree-walking automat@hcom-
putes a node relatioR,(2) = {(z,)|(v,¢) = (y,q;) for someg; € T and some; € F},
where for all statesy, ¢, € Q) and nodes:, y int (z,qx) = (y,q) iff 3d € A : (qx,d, q) € 0
andy is reachable fromx in ¢ via d. Note thatr is reachable from itself if the directive was a
(successful) test. It is important not to confuse this retatvith thewalking languageecog-
nized by the automaton, i.e., the string of directives nde¢denove from the initial to the final
node in a walk. Bloem and Engelfriet show that these autooteateacterize the MSO definable
node relations, i.e., every tree-walking automaton we igpean be inductively transformed
into an equivalent MSO formula and vice versa.

The following paragraphs go directly back to Courcelle (@9%Recall that the representation
of objects within relational structures makes them avéldbr the use of logical description
languages. LeR be a finite set of relation symbols with the correspondinty dor eachr € R
given by p(r). A relational structuréR = (Dg, (rz)rcr) consists of the domaibx and the
p(r)-ary relations'r C D%(’"). There does not seem to be a convenient machine model for tree
transformations. Fortunately, one can use logic directlgdfine the desired transduction. The
classical technique of interpreting a relational struesuwithin another one forms the basis for
MSO transductions. Intuitively, the output tree is inteted on the input tree. E.g., suppose
that we want to transduce the input tigento the output tree,. The nodes of the output tree
will be a subset of the nodes fromspecified with a unary MSO relation ranging over the nodes
of t;. The daughter relation will be specified with a binary MSQatiein with free variables

2Appropriate definitions for derivations and the tree largpsagenerated can be found in Kelbal. (2000).

J. Michaelis, U. M6énnich and F. Morawietz

€(0,3,1) €(0,3,3)
/\ /\
€3,2,1) A0,3) ()3, Ao,3)
T
21 ()32 €(3,2,1) €(3,2,1) €(3,2,1)
(0,1) 3 (0,3)
T (3,1) €321 21 (a2 ®2n (a2 ®@n ()ae)
3/\ 3/\ S
®(2.1) ()(3,2) T (3,1) €(3.0.1) T34y €(3,0,1) g5y €(3,0.1)
3 3 T
T2(3,1) T3(3,1) a10,1) ()30 201 ()0 01 ()0
()0,3)
44(073) —

a1 (0,1) @2(0,1) @3(0,1)

Figure 1: The translated example gramrgar

andy ranging over the nodes from. We will use this concept to transform the lifted trees into
the intended ones.

A (non-copying) MSO transduction of a relational struct@éwith set of relation symbol&)
into another on& (with set of relation symbolg)) is defined to be a tuplép, ¢, (6,),c0)-

It consists of the formulag defining the domain of the transductionfand defining the
resulting domain ofQ and a family of formulag), defining the new relation§ (using only
definable formulas from the “old” structuf).

In this sense, our description of non-contextfree phen@meéth two devices with only regular
power is an instance of the theorem that the image of an MSiDadde class of structures
under a definable transduction is not MSO definable in gef€mircelle 1997).

3. Translating MCFGs to RTGs

Each rule of a given MCFG is recursively transformed into &RTle by coding the implicit
operations of projection, tupling and composition as nonieals or terminals. This becomes
possible simply by viewing the terms appearing in the rufdb® MCFG as elements of a free
IN x IN-sorted Lawvere algebra. The resulting RTG then “operatéshis Lawvere algebra.

As an example we consider the following MCR& = (N, T, F, P,S) with N = {S, A},

T = {a,a9,a3}, F = {g,h,l} andP = {S — g(4),A — h(A),A — ()}, where the
functionsg : (T%)® — T*, h: (T*)3 — (T*)® andl : (T*)° — (T*)? are given by

9($1,$2,$3) = T1%273 h($1,$2,«%’3) = ($1a1,$2a2,$3a3) l() = (a1,a2,a3)

The language generated Byis {a}aba} |n > 0}.

Now, for 1 < i < 3 letr} denote the-th projection which maps tuple of strings froni™ to

its i-th component, i.e. &-tuple, and lete denote the usual binary operation of concatenation
defined for strings fronT™*, i.e., ¢ maps a-tuple to al-tuple. The corresponding (Lawvere)
arity of S, ay, ay andas is (0, 1), of A (0, 3), of (2,1), and the one of?, 75 and~3 is (3, 1).
Applying the translatio given below to the MCF@; results in the RTG' = (X, Fo, S(0.1), P)

with inoperativesY = (X, ; | w € (NxIN)*, s € NxIN), operatives, of rank0, and produc-
tionsP which (in tree notation) look as given in Fig. 1. We haVg;s o) = {()0} Ye2,1) =

{oen} Zeo) = {a10,1), @20,1), @30, 1 Teya,1) = {031y T (3,000 T3 3,1 1

Z03)33),03 = {co33} Zeneney = {(e}

Yonen,0n = {cosn} Yononon,3 = {()3}
Yeaeney = {ceant Yenenenes = 1()en}

Derivational Minimalism in Two Regular and Logical Steps

andFO = {5(0’1), A(0’3)}.3

As one can see in Fig. 1, the basic functions have been rdadigg¢erms with their respec-
tive implicit operations as nonterminal (composition aagling) or terminal (projection and
empty tupling) nodes. In the following paragraphs, we dkdte translationl from non-
terminal rules of the example MCFG to RTG rule§.takes each rul&X — f(Y'), where
X,Y € Nandf € F, of the MCFG including the corresponding definition of theppiag
f(zy,...,2,) with £ > 0 and transforms it into a RTG rule as follows. We create a nrothe
node labeled with the appropriate binary compositign ;) such that the left daughter con-
tains the “lifted” version off (z1, . .., xx) underT and the right daughter the translation of the
nonterminaly”. Both nonterminalsX’ andY are used “unchanged”, but annotated with the cor-
responding Lawvere arity resulting in the following schéimaresentation of the translation:
Xy — cGrn(T(f(z1,...,21)), Yk, Wheref is a mapping fromk-tuples tol-tuples of
terminal strings.

The easiest case of translating a mapping F from our example vidl is the terminalA-
rule. We simply view the mapping as a Lawvere term. The fumctijust returns a triple of
ay, as andas. The corresponding tree has a mother node labeled with artetupling symbol
and the three unary arguments of the mapping as daudghfiérs.S-rule is more complicated
with the functiong concatenating three (input) strings. The definition of tinection can be
written explicitly as the Lawvere termy; » 1y (e, ()(3,2)(75, ¢3,2,1)(®, ()3,2)(m3,73)))). Note
that the implicit binary concatenationin g now becomes the consta# ;). The variables
are simply replaced by the projections and concatenatee. r@$ulting term is then applied
to the operatived 3y such that we get the RHS displayed in thig ;)-rule in Fig. 1. The
recursive case of thd-rule is the most complicated. The mapping returns a triptewe
need a tupling “operator” of appropriate arit¥, 3) as the mother node withdaughters. The
i-th of its daughters (labeled witty; 5 1)) is built by composing the concatenation constant
*(2,1) With the “tupling™-result() of the corresponding projection constarjg’” (which is
substituted for the variable;) and a particular constant tree. Namely the one which (imser
of the underlying Lawvere algebra) simply “lifts” the coasta; to the Lawvere-arity ofr? just

in order to allow for an appropriate tupling. So, the tefma;, x2a0, x3a3) is interpreted as
the Lawvere tern{) (c(e, ()2 (7, c(ar, ()3,0))))), (.. .), c(...)) which appears as the
RHS of the corresponding tree grammar rule.

Since RTGs can only generate recognizable (tree) languagesan characterize them with
both MSO logic on trees and tree automatahe tree automato®l; is constructed by trans-
forming the grammar into a normal form such that each RHS depth one by introducing
auxiliary operatives. Then we can easily construct appatgtransitions by basically reversing
the arrow: the nonterminals become state names and the nmaitie will be read as alphabet
symbol. It is know from Thomas (1990) how to transform thmetautomaton into an MSO
formulays, by encoding its behaviour. Details for our special case egiobnd in Kolbet al.
(2000).

4. Reconstructing the Intended Trees

Rogers (1998) has shown the suitability of an MSO descmngaaguage for linguistics which is
based upon the primitive relations of immediaty proper ¢*) and reflexive *) dominance

3For simplicity and readability we will sometimes drop théseript notion(k, m) from the inoperatives and
operatives of rank, and sometimes even from the composition synmg] ...

“Note that we do not need to use a further composition symbrolatingT (f) in case there is no nonterminal
on the RHS of the rule of the MCFG.

SAn introduction to tree automata can be found in Gécseg &nB1e{1984).

J. Michaelis, U. M6énnich and F. Morawietz

and proper precedence). We will show how to define these relations with an MSO trans-
duction thereby implementing the unique homomorphism nmaphe terms into elements of
the corresponding regular tree language.. At the core ofrimsduction is a tree-walking au-
tomaton defining the binary relation of immediate dominargd®n the nodes belonging to the
intended structures. It is based on some simple obsergition

1. Our trees feature three families of labels: the “lingafssymbolslL, i.e., the lifted symbols
of the underlying MCFG; the “composition” symbals= {c(, ... }; the “tupling” symbols
() and the “projection” symbol&l = {r¥}.

2. All nonterminal nodes ifi” are labeled by somee C or a “tupling” symbol. Note that no
terminal node is labeled by some

3. The terminal nodes " are either labeled by some “linguistic” symbol, a “tuplirgy/mbol
of the form()0, i.€. the “empty” tuple, or by some “projection” symbdf.

4. Any “linguistic” node dominating anything in the interdiree is on some left branch i,
i.e., it is the left daughter of somec C and the sister of a tupling symbol whose daughters
evaluate to the intended daughters.

5. For any node labeled with some “projection” symbal* € I1 in 7" there is a unique node
1 (labeled with some € C) which properly dominateg and which immediately dominates
a node labeled with a “tupling” symbol whose¢h daughter will eventually evaluate to the
value ofr¥. Moreover,y will be the first node properly dominating which is on a left
branch and bears a composition symbol. This crucial factrigeal at by induction on the
construction ofj’ from gG.

By 4. it is not hard to find possible dominees in afy It is the problem of determining the
actual “filler” of a candidate-dominee which makes up the plaxity of the definition of«.
There are three cases to account for:

6. If the node considered carries a “linguistic” label, ialates to itself;
7. ifit has a “composition” labet, it evaluates to whatever its leftmost daughter evaluates t

8. if it carries a “projection” labek?, it evaluates to whatever the node it “points to"—Dby (5.)
thei' daughter of a “tupling” node which is dominated by the fitshode on a left branch
dominating it—evaluates to.

According to the observations made above, the automat@ngivFig. 2 starts on any node
with a “linguistic” label (denoted here bly) which means for the given exampéea,, as, as.
Then it has to go up the first branch, read a composition symutdldescend to its sister. If it
reads a “linguistic” node, the automaton stops. If it readsraposition symbol, the automaton
goes to the left daughter and tries again. If it reads a tg@ymbol, the automaton proceeds
with its daughters. On finding a projection symbol, it seascfor the appropriate “filler” by
going upwards until it is on a leftmost branch which is laklelgth a composition symbol.
Then it walks to the second sister or further down the leftrbasnch until it hits a tupling node
to whose appropriate daughter it descends to find the filler.

However, there is another interpretation of such an automavtiewed as an ordinary finite-
state automaton over the alphabkt?(, recognizes a regular (string-) language, wedking
languageW which can be translated recursively into an MSO formuiasy,, defining the
relation< (see Bloem & Engelfriet 1997). We leave the rather tediowsgss of converting
the walking language for the automaton given in Fig. 2 to daler (a full example of such a
conversion can be found in Kokt al. (2000)).

5The reader is encouraged to check them against ffeégenerated by’ given in Fig. 1.

Derivational Minimalism in Two Regular and Logical Steps

>@ L{z)oti10C(x)ol2

1 (z) I (z)
1
(T2113 (T2]13)
SO OGO .@ (%)
T () (=) 1

C(z)
12
Tl) L[y C(z) 1 T1ly()

() C(z)
0 D@ @@ @ w6 @

Figure 2: The tree-walking automaton for immediate domaesafi

To present the actual MSO transduction, we need one furtheliay definition. It is a well-
known fact (e.g. Bloem & Engelfriet 1997) that the reflexivansitive closure?* of a binary
relation R on nodes is (weakly) MSO-definable,Afitself is. This is done via a second-order
property which holds of the sets of nodes which are close@uRd R—closed(X) <= 4.¢
(Vz,y)[r € X AR(x,y) = y € X].

Finally, the MSO transductiofi, 1, (0,),cq) With Q = {«,<*, <", <, ...} we need to trans-
form the lifted structures into the intended ones is givefolews:

Y= Py
Y = (Jy)[transw, (z,y) V transy, (y, 7)]
94(113,11) = transw,(z,y)
O (x,y) = (VX)[<«—closed(X) Az € X = y € X]
O+ (7, y)
0<(

z,

=xdyVedy
x,y) = another tree-walking automaton
Oapeis = taken over fromR

As desired, the domain of the transduction is charactefethe MSO formulapy, for the
lifted trees. The domain, i.e., the set of nodes, of the oheentree is characterized by the
formula) which identifies the nodes with a “linguistic” label whictaat indeed in the new
dominance relation to some other node. Building on it, wendethe other primitives of a
tree description language suited to linguistic needs. Easaons of space, we have to leave the
specification of the precedence relation open. It is moreptiocated than dominance, but can
be achieved with another tree-walking automaton.

5. Conclusion

Taking the result of Michaelis’ translation of MGs as theuhpve have shown how to define
a RTG by lifting the corresponding MCFG-rules by viewingrthas terms of a free Lawvere

J. Michaelis, U. M6énnich and F. Morawietz

theory. This gives us both a regular (via tree and tree-wgllutomata) and a logical charac-
terization (via MSO logic and an MSO definable transductmfiithe intended syntactic trees.
Equivalently, we provide both an operational and a dermtatiaccount of Stabler’s version of
Minimalism without having to go via derivation trees.

It remains to be seen whether one can find a machine modeldarttire MSO transduction.
A likely candidate are the macro tree transducers (MTT)ouhiiced in Engelfriet & Maneth
(1999). Since they characterize the class of MSO definabkettanslations if extended with
regular look-ahead and restricted to finite-copying, weganée optimistic that we will be able
to use them to efficiently implement the transduction. Thasilet also characterize the class of
languages we can handle. Engelfriet and Maneth show thaésudt of applying an MTT to a
regular tree family yields the tree languages generateabiegt-free graph grammars.

References

BLOEM R. & ENGELFRIET J. (1997).Characterization of Properties and Relations defined in
Monadic Second Order Logic on the Nodes of Tréesh. Rep. 97-03, Leiden University.

COURCELLE B. (1997). The expression of graph properties and graplsfisamations in
monadic second-order logic. In GORENBERG Ed.,Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundatipps313—-400. World Scientific.

ENGELFRIET J. (1997). Context-free graph grammars. In @ZRNBERG & A. SALOMAA,
Eds.,Handbook of Formal Languages. Vol. lll: Beyond Wqoms125-213. Springer.

ENGELFRIETJ. & MANETH S. (1999). Macro tree transducers, attribute grammarsiVes@
definable tree translationtiformation and Computatiqri54, 34-91.

GECSEGF. & STEINBY M. (1984). Tree AutomataBudapest: Akadémiai Kiado.

KoLB H.-P., MONNICH U. & MORAWIETZ F. (2000). Descriptions of cross-serial de-
pendencies. To appear in a special issuegsodmmars Draft available undeht t p:
[1tcl.sfs.nphil.uni-tuebingen. de/~frank/.

MEZEI J. & WRIGHT J. (1967). Algebraic automata and contextfree sét$ormation and
Control, 11, 3—-29.

MICHAELIS J. (1999). Derivational minimalism is mildly context-séng. In M. MOORTGAT,
Ed.,LACL '98, LNAI. Springer. To appear.

MONNICH U. (1998). TAGs M-constructed. MAG+ 4th Workshop, Philadelphia

RAMBOW O. & SATTA G. (1999). Independent parallelism in finite copying pafakwriting
systems.Theoretical Computer Scienc223 87-120.

ROGERS J. (1998). A Descriptive Approach to Language-Theoretic ComplexBgudies in
Logic, Language, and Information. CSLI Publications antdlHo

SEKI H., MATSUMURA T., FuJii M. & KAsAMI T. (1991). On multiple context-free gram-
mars. Theoretical Computer Sciend@8, 191-229.

STABLER E. (1997). Derivational minimalism. In C.ERORE, Ed.,Logical Aspects of Com-
putational Linguisticsp. 68-95, Berlin: Springer. LNAI 1328.

THOMAS W. (1990). Automata on infinite objects. In AN LEEUWEN, Ed.,Handbook of
Theoretical Computer Sciencghapter 4, p. 133-191. Elsevier Science Publishers B. V.

WEIR D. J. (1992). Linear context-free rewriting systems anckaeinistic tree-walk trans-
ducers. In30th Meeting of the Association for Computational Lingas{ACL'92)

