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goal: addressing the basic question

What is Merge? ‘MG-derivationalism’ says. . .

vocabulary � = {every,some,student,...}

syntactic features F :

c, t, d, n, v, p,... (selected categories)
=c, =t, =d, =n, =v, =p,... (selector features)
+wh, +case, +focus,... (licensors)
-wh, -case, -focus,... (licensees)

lexicon Lex � F ���, a finite set

(Lex is the only part of the grammar that varies across languages)
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goal: addressing the basic question

Notation:

t[f ℄ = tree with 1st feature f at its head,

t = result of removing f

tft1=t2g = the result of replacing t1 by t2 in t

t>1 = the maximal projection of the head of t1� = the 1 node tree labeled with no syntactic or phonetic features

(sometimes we nodes with � unlabeled altogether)
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goal: addressing the basic question

expressions E : trees with non-root nodes {<,>}, leaves F ���
Lex � F ���, a finite set of 1-node trees

Merge = {em,im}:

em(t1[=c℄; t2[c℄) =
8>>><>>>:

<

t1 t2 if t1 has exactly 1 node
>

t2 t1 otherwise

im(t1[+f℄) = >

t>2 t1ft2[-f℄>=�g if (SMC) only one head has -f
as its first feature

Other special operations can be added (head-movement, merge-left,

merge-right, scramble, adjoin, late-adjoin,. . . )
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goal: addressing the basic question

What is Merge? ‘MG-derivationalism’ says. . .

=D =D V praises + D Pierre ) <

=D V praises Pierre

<

=D V praises Pierre

+ D Marie ) >

Marie <

V praises Pierre

<

+wh C � >

Marie <

praises <

-wh which student

) >

<

which student

<

C � >

Marie <

praises
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goal: addressing the basic question

What is Merge? are there simpler answers?

(Min1)

Merge(A,B)={A,B}; IM(A,B)={A,B} when B contained in A

(Min2)

Merge(A,B)={A,B}; IM(A,B)={A,B} when B a copy of something
contained in A, sometimes with modifications

Let’s try developing (Min1), and compare it to MG.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Universal Grammar is a 6-tuple:hPHON;SYN;SEM;Select;Merge;Transferi
PHON, SYN and SEM are universal sets of features.
Select, Merge and Transfer are universal operations.

Def. A lexical item is a triple of three sets of features,
LI = hSem;Syn;Phoni where Sem � SEM, Syn � SYN,
and Phon � PHON.

Def. A lexicon is a set of lexical items.

Def. An I-Language is a pair hLEX;UGi where LEX is a lexicon
and UG is Universal Grammar.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’95: 227) “But the syntactic objects formed by distinct

applications of Select to LI must be distinguished; two

occurrences of the pronoun he, for example, may have entirely

different properties at LF. l and l 0 are thus marked as distinct for

CHL if they are formed by distinct applications of Select

accessing the same lexical item of N.”

Def. A lexical item token is a pair hLI; ki where LI is a lexical
item and k is an integer.

We often write Johnk for hJohn; ki.
Def. A lexical array (LA) is a finite set of lexical item tokens.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. X is a syntactic object iff

a. X is a lexical item token, or

b. X is a set of syntactic objects.

Def. A stage (of a derivation) is a pair S = hLA;Wi, where LA
is a lexical array and W is a set of syntactic objects, the
“workspace” of S .

Def. Consider any stage S = hLA;W i with LI 2 LA, then

Select(LI ;S) = hLA� fLIg;W [ fLIgi:
Def. Let W be a workspace with A;B 2 W ;A 6= B. Then,

External-MergeW (A;B) is defined as follows:

EMW (A;B) = fA;Bg:
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. EMW (seej ; Johnk) = fseej ; Johnkg. Writing � for the setfseej ; Johnkg, the membership relation gives us this binary
branching tree:

*

seej Johnk
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages S1 = hLA1;W1i and S2 = hLA1;W2i with
distinct A;B 2 W1, S1 derives S2 by External-Merge iff

W2 = ((W1 �fA;Bg) [ fEMW1(A;B)g):
Ex. hLA1; fA;Bgi derives hLA1; ffA;Bggi by EM.hLA1; fA;B;Cgi derives hLA1; ffA;Bg;Cgi by EM.

Def. B immediately contains A iff A 2 B.

B contains A iff

a. B immediately contains A, or

b. For some syntactic object C , B immediately contains C

and C contains A.

So “immediately contains” is the “has as a member” relation, and

“contains” is the transitive closure of that relation.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. A and B are sisters in C iff A;B 2 C .

Def. A c-commands B iff for some C

i. C is a sister of A, and

ii. either B = C or C contains B.

Def. For workspace W where A 2 W and A contains B, define
Internal-MergeW (A;B)

IMW (A;B) = fA;Bg:
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. With W = ffJohni ; seekgg,
IMW (fJohni ; seekg; Johni ) = ffJohni ; seekg; Johnig:

Note that the membership diagram forffJohni ; seekg; Johnig is not a tree:

*

*

seek Johni
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. With W = ffJohni ; seekg; Johnmg,
EMW (fJohni ; seekg; Johnm) = ffJohni ; seekg; Johnmg:

The membership diagram for ffJohni ; seekg; Johnmg is a
tree:

*

*

seek Johni

Johnm
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages S1 = hLA1;W1i and S2 = hLA1;W2i where
A 2 W1 and A contains B, S1 derives S2 by
Internal-Merge iff

W2 = ((W1 �fAg) [ fIMW 1(A;B)g):
Here B “undergoes internal merge, targeting A”, to formfA;Bg.� When EM derives W2 from W1, jW2j = jW1j � 1.

When IM derives W2 from W1, jW2j = jW1j.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’00: 115) proposes two ways to define the position of
an occurrence in a structure.

First, he takes “. . . an occurrence of � in K to be the full
context of � in K."

Alternatively, he suggests “. . . an occurrence of � is a sister
of �."

Def. A path is a sequence of syntactic objectshSO1;SO2; : : : ;SOni, where for all 0 < i � n, SOi+1 2 SOi

The position of SOn in SO1 is a path hSO1;SO2; : : : ;SOni.
B occurs in A at position P iff P = hA; : : : ;Bi. We also
say B has an occurrence in A at position P (written BP).
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. Consider SO = fX ; fX ;Y gg, where X occurs twice:

The higher occurrence of X in SO is XP where

P = h SO; X i:
The lower occurrence of X in SO is XP where

P = h SO; fX ;Y g; X i:
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Let A, B and C be syntactic objects, then, in C ,
occurrence BP immediately contains occurrence AP 0
(for any paths P;P 0 in C ) iff P = hX1; : : :Xni and
P 0 = hX1; : : : ;Xn;Xn+1i.

Thm. If occurrence BP immediately contains occurrence AP 0 in C

(for some paths P;P 0 in C ) then, in C , B immediately
contains A.� We can similarly define sister, c-command for occurrences.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages, S1 = hLA1;W1i and S2 = hLA2;W2i,
S1 derives S2 iff

i. S1 derives S2 by EM, or

ii. S1 derives S2 by IM, or

iii. for some LI 2 LA1, S2 = Select(LI;S1).
Def. Sequence of stages hhLA1;W1i; : : : ; hLAn;Wnii, is

derivation from lexicon L iff

a. For all hLI; ki 2 LA1, LI 2 L,

b. W1 = ;
c. for all 1 � i � n � 1, hLAi ;Wi i derives hLAi+1;Wi+1i,
d. LAn = ;, and

e. Wn contains exactly one element.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. Derivation of "John should like John."

S1 = hfJohn1; should2; like3; John4g; ;i Select John4

S2 = hfJohn1; should2; like3g; fJohn4gi Select like3

S3 = hfJohn1; should2g; flike3; John4gi Merge(like3; John4)
S4 = hfJohn1; should2g; fflike3; John4ggi Select should2

S5 = hfJohn1g; fshould2; flike3; John4ggi Merge(should2; flike3; John g)
S6 = hfJohn1g; ffshould2; flike3; John4gggi Select John1

S7 = h;; fJohn1; fshould2; flike3; John4gggi Merge(John1; : : : :)
S8 = h;; ffJohn1; fshould2; flike3; John4ggggi
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Syntactic object A is binary branching iff A and every B

contained in A is either a lexical item or a syntactic object
immediately containing exactly two syntactic objects.

Thm. (Binary branching) Every derivable syntactic object is
binary branching.

Thm. (Uniqueness of root occurrences) In every derivable
workspace W, if A 2 W there is no B 2 W such that A

contains an occurrence in B.

Example underivable workspace : fA; fA;Bgg
Thm. (Non-unique occurrences signal IM) A derivable

workspace contains two distinct occurrences of A iff either
A or some B containing A has undergone IM.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’05: 5) “Suppose X and Y are merged. Evidently, efficient

computation will leave X and Y unchanged (the No-Tampering

Condition NTC). We therefore assume that NTC holds unless

empirical evidence requires a departure from SMT in this regard,

hence increasing the complexity of UG. Accordingly, we can take

Merge(X, Y) = {X, Y}.”

(Chomsky’05: 13) “The no-tampering condition also entails the

so-called copy theory of movement, which leaves unmodified the

objects to which it applies, forming an extended object.”

Thm. (No Tampering Condition) For any two consecutive
stages in a derivation S1 = hLA1;W1i and S2 = hLA2;W2i,
for all A 2 W1, either A 2 W2, or there is some C 2 W2

and A 2 C .
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Thm. (Extension Condition) For any two consecutive stages
S1 = hLA1;W1i and S2 = hLA2;W2i, if S1 derives S2 by
Merge (External-Merge or Internal-Merge), then there is
some A 2 W1 and C 2 W2 such that
i. C 2 W1 (C is created by Merge)
ii. A 2 W2 (A is extended)
iii. A 2 C . (A is extended to form C )
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’95: 225) “Another natural condition is that outputs consist

of nothing beyond properties of items of the lexicon (lexical

features). . . other words, that the interface levels consist of

nothing more than arrangements of lexical features.”

Thm. (Inclusiveness) In any derivationhhLA1;W1i; : : : ; hLAn;Wnii
where Wn = fAg, the only elements contained in Wn are
the lexical item tokens from LA1 and sets containing them.

(Chomsky’95: 227) : “ l and l 0 are marked as distinct for CHL if they

are formed by distinct applications of Select accessing the same

lexical item of N. Note that this is a departure from the

inclusiveness condition, but one that seems indispensable; it is

rooted in the nature of language, and perhaps reducible to bare

output conditions.”
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Thm. (Collins 1997: 4) Whether or not Merge applies is
determined completely by the workspace and the syntactic
objects it contains.

Collins calls this local economy: whether or not Merge
applies never depends on information contained in another
workspace (from a stage either earlier or later in the
derivation, or from a different derivation altogether).
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’08: 139) “For an LI to be able to enter into a computation,

merging with some SO, it must have some property permitting

this operation. A property of an LI is called a feature, so an LI

has a feature that permits it to be Merged. Can this the edge

feature (EF) of the LI.”

Def. A lexical item token LI = hhSem;Syn;Phoni; ii contains
an edge feature EF iff some EF 2 Syn is an edge feature.

(Chomsky’00: 132) “Properties of the probe/selector a must be

satisfied before new elements of the lexical subarray are accessed

to drive further operations.”

Def. If LI has an EF token, Select(LI; hLA;Wi) is defined only if
there are no other syntactic objects A 2 W containing an
EF token.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Triggers maps each derivable syntactic object A to its
‘visible’ edge features:

a. If A is a lexical item, then Triggers(A) returns all its
edge features.

b. If A = fB;Cg, Triggers(B) is nonempty, and
Triggers(C ) = ;, then
Triggers(A) = Triggers(B)� fFg, for some edge
feature token F .

Def. Let W be a workspace and A;B 2 W , Triggers(A) contains
n > 0 edge features and Triggers(B) is empty. Then,
(triggered) EMW (A;B) = fA;Bg.

Def. Let W be a workspace where A 2 W and A contains B,
where Triggers(A) is nonempty and Triggers(B) is empty.
Then, (triggered) IMW (A;B) = fA;Bg.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Example. Suppose see1 has 2 edge features, and John2 has 0 edge
features.

S1 = hfJohn1; see2g; ;i Select John1

S2 = hfsee2g; fJohn1gi Select see2

S3 = h;; fJohn1; see2gi Merge(see2; John1)
S4 = h;; ffJohn1; see2ggi Merge(John1; fJohn1; see2g)
S5 = h;; ffJohn1; fJohn1; see2gggi

Thm. Considering triggered EM, if EM(A;B) is defined,
EM(B;A) is undefined. Similarly for triggered IM.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. (cf.Collins’02) For all lexical item tokens LI, Label(LI) = LI.

For any other SO fA;Bg, if Triggers(A) is non-empty, then
Label(fA;Bg) = Label(A).

Def. C is a maximal projection of LI iff Label(C ) = LI and
there is no D in W which immediately contains C such
that Label(D) = Label(C ).

Def. For all C , C is a minimal projection iff C is a lexical item
token.

Def. C is an intermediate projection of LI iff Label(C ) = LI,
and C is neither a minimal projection nor a maximal
projection in W .

Def. Y is the complement of X in C iff C = Merge(X ;Y ) and
X is a lexical item token.

Def. Y is the specifier of X in C iff C = Merge(X ;Z ) where X

is not a lexical item token.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For any derivable workspace W with syntactic object
Phase 2 W such that Label(Phase) = X is a strong phase
head, let Y be the complement of X in Phase, then
Cyclic-Transfer(Phase) = Phase0 where Phase0 is obtained
from Phase by replacing fX ;Y g in Phase byfX ; hTransferPF (Y );TransferLF (Y )ig.

Def. X is a strong phase head iff X is C or v.

Def. X is a syntactic object iff

a. X is a lexical item token,

b. X = Cyclic-Transfer(SO) for some syntactic object SO,
or

c. X is a set of syntactic objects.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’05: 13) “If language is optimized for satisfaction of

interface conditions, with minimal computation, then only one

[copy] will be spelled out, sharply reducing phonological

computation.”

We adopt this idea and describe a simple approach for
illustration. . .

Def. XP is nonfinal in YQ iff YQ contains ZR and ZS such that

a. (i) either ZR = XP or ZR contains XP , and (ii) ZS

c-commands ZR , or

b. (i) ZR contains XP , (ii) ZR c-commands ZS , which
contains another occurrence XP 0 , and (iii) XP 0 is
nonfinal in the sister of ZR .
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

CP

... CP

VPj

V hDPii C’

C IP

DPi hVPjihVi hDPii

*CP

... *CP

*C’

C *IP

*VPj

V DPi

E.g. node labeled V on left is final because (i) neither V nor any
object containing V is c-commanded by any occurrence of itself,
and (ii), because although (a) VPj does c-command hVPji, V is not
nonfinal in C’.
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For derivable workspace W with syntactic object Phase
where Label(Phase) is a strong phase head, and for all
occurrences of objects SO such that either SO = Phase or
SO is contained in Phase,

a. If SO is LI, then TransferPF (SO) = Phon;

b. If SO = fX ;Y g, occs X and Y both final in Phase,
TransferPF (SO) = TransferPF (X )_ TransferPF (Y ) if
either Y is the comp of X , or X is the spec of Y;

c. If SO = fX ;Y g, occ X but not Y final in Phase,
TransferPF (SO) = TransferPF (X ) if

d. If SO = fX ;Y g, occ Y but not X final in Phase,
TransferPF (SO) = TransferPF (Y ) if

e. If SO = fX ;Y g, neither X nor Y final in Phase,
TransferPF (SO) = �
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Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Problem:

TransferPF requires seeing into transferred phases

To avoid this problem, there are other options besides Min2 and

MG-style-derivationalism.

Not treated here:

Agree

TransferPF for multiple spellout
(cf., e.g., Hiraiwa’05, Kobele’06, Kandybowicz’08)

TransferLF for reconstruction effects
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Comparison
References

Minimalism vs MGs

Min:

IM(A,B)={A,B} with B contained in A

No need for ‘occurrences’ etc in def of EM, IM

Trees represented as nested sets; IM produces multidominance

Edge feature calculation for A traces path to leaf

TransferPF reconstructs derivation, violates NTC, vs Phases

MG:

IM(A,B)=[B,A’], where A’ has B deleted (violates NTC)

No need for ‘occurrences’ etc in def of EM, IM

Trees OK; no multidominance needed (since B deleted in A’)

Edge features explicit, ordered; TransferPF trivial; Phases OK
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Comparison
References

Minimalism vs MGs

What is Merge?

Merge = {em,im}

em(t1[=c℄; t2[c℄) =
8>>><>>>:

<

t1 t2 if t1 has exactly 1 node
>

t2 t1 otherwise

im(t1[+f℄) = >

t>2 t1ft2[-f℄>=�g if (SMC) only one head has -f
as its first feature

Merge(A,B)={A,B}; IM(A,B)={A,B} when B contained in A

(cf alternatives: TAG, CG,. . . )
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