
How is language structure built, and why?

Edward Stabler and Chris Collins

ESSLLI09

University of Bordeaux, July 24, 2009� descriptive adequacy � explanatory adequacy

Edward Stabler and Chris Collins How is language structure built, and why?

goal: addressing the basic question

What is Merge? ‘MG-derivationalism’ says. . .

vocabulary � = {every,some,student,...}

syntactic features F :

c, t, d, n, v, p,... (selected categories)
=c, =t, =d, =n, =v, =p,... (selector features)
+wh, +case, +focus,... (licensors)
-wh, -case, -focus,... (licensees)

lexicon Lex � F ���, a finite set

(Lex is the only part of the grammar that varies across languages)

Edward Stabler and Chris Collins How is language structure built, and why?

goal: addressing the basic question

Notation:

t[f ℄ = tree with 1st feature f at its head,

t = result of removing f

tft1=t2g = the result of replacing t1 by t2 in t

t>1 = the maximal projection of the head of t1� = the 1 node tree labeled with no syntactic or phonetic features

(sometimes we nodes with � unlabeled altogether)

Edward Stabler and Chris Collins How is language structure built, and why?

goal: addressing the basic question

expressions E : trees with non-root nodes {<,>}, leaves F ���
Lex � F ���, a finite set of 1-node trees

Merge = {em,im}:

em(t1[=c℄; t2[c℄) =
8>>><>>>:

<

t1 t2 if t1 has exactly 1 node
>

t2 t1 otherwise

im(t1[+f℄) = >

t>2 t1ft2[-f℄>=�g if (SMC) only one head has -f
as its first feature

Other special operations can be added (head-movement, merge-left,

merge-right, scramble, adjoin, late-adjoin,. . .)

Edward Stabler and Chris Collins How is language structure built, and why?

goal: addressing the basic question

What is Merge? ‘MG-derivationalism’ says. . .

=D =D V praises + D Pierre) <

=D V praises Pierre

<

=D V praises Pierre

+ D Marie) >

Marie <

V praises Pierre

<

+wh C � >

Marie <

praises <

-wh which student

) >

<

which student

<

C � >

Marie <

praises

Edward Stabler and Chris Collins How is language structure built, and why?

goal: addressing the basic question

What is Merge? are there simpler answers?

(Min1)

Merge(A,B)={A,B}; IM(A,B)={A,B} when B contained in A

(Min2)

Merge(A,B)={A,B}; IM(A,B)={A,B} when B a copy of something
contained in A, sometimes with modifications

Let’s try developing (Min1), and compare it to MG.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Universal Grammar is a 6-tuple:hPHON;SYN;SEM;Select;Merge;Transferi
PHON, SYN and SEM are universal sets of features.
Select, Merge and Transfer are universal operations.

Def. A lexical item is a triple of three sets of features,
LI = hSem;Syn;Phoni where Sem � SEM, Syn � SYN,
and Phon � PHON.

Def. A lexicon is a set of lexical items.

Def. An I-Language is a pair hLEX;UGi where LEX is a lexicon
and UG is Universal Grammar.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’95: 227) “But the syntactic objects formed by distinct

applications of Select to LI must be distinguished; two

occurrences of the pronoun he, for example, may have entirely

different properties at LF. l and l 0 are thus marked as distinct for

CHL if they are formed by distinct applications of Select

accessing the same lexical item of N.”

Def. A lexical item token is a pair hLI; ki where LI is a lexical
item and k is an integer.

We often write Johnk for hJohn; ki.
Def. A lexical array (LA) is a finite set of lexical item tokens.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. X is a syntactic object iff

a. X is a lexical item token, or

b. X is a set of syntactic objects.

Def. A stage (of a derivation) is a pair S = hLA;Wi, where LA
is a lexical array and W is a set of syntactic objects, the
“workspace” of S .

Def. Consider any stage S = hLA;W i with LI 2 LA, then

Select(LI ;S) = hLA� fLIg;W [fLIgi:
Def. Let W be a workspace with A;B 2 W ;A 6= B. Then,

External-MergeW (A;B) is defined as follows:

EMW (A;B) = fA;Bg:
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. EMW (seej ; Johnk) = fseej ; Johnkg. Writing � for the setfseej ; Johnkg, the membership relation gives us this binary
branching tree:

*

seej Johnk

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages S1 = hLA1;W1i and S2 = hLA1;W2i with
distinct A;B 2 W1, S1 derives S2 by External-Merge iff

W2 = ((W1 �fA;Bg) [fEMW1(A;B)g):
Ex. hLA1; fA;Bgi derives hLA1; ffA;Bggi by EM.hLA1; fA;B;Cgi derives hLA1; ffA;Bg;Cgi by EM.

Def. B immediately contains A iff A 2 B.

B contains A iff

a. B immediately contains A, or

b. For some syntactic object C , B immediately contains C

and C contains A.

So “immediately contains” is the “has as a member” relation, and

“contains” is the transitive closure of that relation.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. A and B are sisters in C iff A;B 2 C .

Def. A c-commands B iff for some C

i. C is a sister of A, and

ii. either B = C or C contains B.

Def. For workspace W where A 2 W and A contains B, define
Internal-MergeW (A;B)

IMW (A;B) = fA;Bg:
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. With W = ffJohni ; seekgg,
IMW (fJohni ; seekg; Johni) = ffJohni ; seekg; Johnig:

Note that the membership diagram forffJohni ; seekg; Johnig is not a tree:

*

*

seek Johni

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. With W = ffJohni ; seekg; Johnmg,
EMW (fJohni ; seekg; Johnm) = ffJohni ; seekg; Johnmg:

The membership diagram for ffJohni ; seekg; Johnmg is a
tree:

*

*

seek Johni

Johnm

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages S1 = hLA1;W1i and S2 = hLA1;W2i where
A 2 W1 and A contains B, S1 derives S2 by
Internal-Merge iff

W2 = ((W1 �fAg) [fIMW 1(A;B)g):
Here B “undergoes internal merge, targeting A”, to formfA;Bg.� When EM derives W2 from W1, jW2j = jW1j � 1.

When IM derives W2 from W1, jW2j = jW1j.
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’00: 115) proposes two ways to define the position of
an occurrence in a structure.

First, he takes “. . . an occurrence of � in K to be the full
context of � in K."

Alternatively, he suggests “. . . an occurrence of � is a sister
of �."

Def. A path is a sequence of syntactic objectshSO1;SO2; : : : ;SOni, where for all 0 < i � n, SOi+1 2 SOi

The position of SOn in SO1 is a path hSO1;SO2; : : : ;SOni.
B occurs in A at position P iff P = hA; : : : ;Bi. We also
say B has an occurrence in A at position P (written BP).

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. Consider SO = fX ; fX ;Y gg, where X occurs twice:

The higher occurrence of X in SO is XP where

P = h SO; X i:
The lower occurrence of X in SO is XP where

P = h SO; fX ;Y g; X i:
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Let A, B and C be syntactic objects, then, in C ,
occurrence BP immediately contains occurrence AP 0
(for any paths P;P 0 in C) iff P = hX1; : : :Xni and
P 0 = hX1; : : : ;Xn;Xn+1i.

Thm. If occurrence BP immediately contains occurrence AP 0 in C

(for some paths P;P 0 in C) then, in C , B immediately
contains A.� We can similarly define sister, c-command for occurrences.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For stages, S1 = hLA1;W1i and S2 = hLA2;W2i,
S1 derives S2 iff

i. S1 derives S2 by EM, or

ii. S1 derives S2 by IM, or

iii. for some LI 2 LA1, S2 = Select(LI;S1).
Def. Sequence of stages hhLA1;W1i; : : : ; hLAn;Wnii, is

derivation from lexicon L iff

a. For all hLI; ki 2 LA1, LI 2 L,

b. W1 = ;
c. for all 1 � i � n � 1, hLAi ;Wi i derives hLAi+1;Wi+1i,
d. LAn = ;, and

e. Wn contains exactly one element.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Ex. Derivation of "John should like John."

S1 = hfJohn1; should2; like3; John4g; ;i Select John4

S2 = hfJohn1; should2; like3g; fJohn4gi Select like3

S3 = hfJohn1; should2g; flike3; John4gi Merge(like3; John4)
S4 = hfJohn1; should2g; fflike3; John4ggi Select should2

S5 = hfJohn1g; fshould2; flike3; John4ggi Merge(should2; flike3; John g)
S6 = hfJohn1g; ffshould2; flike3; John4gggi Select John1

S7 = h;; fJohn1; fshould2; flike3; John4gggi Merge(John1; : : : :)
S8 = h;; ffJohn1; fshould2; flike3; John4ggggi

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Syntactic object A is binary branching iff A and every B

contained in A is either a lexical item or a syntactic object
immediately containing exactly two syntactic objects.

Thm. (Binary branching) Every derivable syntactic object is
binary branching.

Thm. (Uniqueness of root occurrences) In every derivable
workspace W, if A 2 W there is no B 2 W such that A

contains an occurrence in B.

Example underivable workspace : fA; fA;Bgg
Thm. (Non-unique occurrences signal IM) A derivable

workspace contains two distinct occurrences of A iff either
A or some B containing A has undergone IM.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’05: 5) “Suppose X and Y are merged. Evidently, efficient

computation will leave X and Y unchanged (the No-Tampering

Condition NTC). We therefore assume that NTC holds unless

empirical evidence requires a departure from SMT in this regard,

hence increasing the complexity of UG. Accordingly, we can take

Merge(X, Y) = {X, Y}.”

(Chomsky’05: 13) “The no-tampering condition also entails the

so-called copy theory of movement, which leaves unmodified the

objects to which it applies, forming an extended object.”

Thm. (No Tampering Condition) For any two consecutive
stages in a derivation S1 = hLA1;W1i and S2 = hLA2;W2i,
for all A 2 W1, either A 2 W2, or there is some C 2 W2

and A 2 C .

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Thm. (Extension Condition) For any two consecutive stages
S1 = hLA1;W1i and S2 = hLA2;W2i, if S1 derives S2 by
Merge (External-Merge or Internal-Merge), then there is
some A 2 W1 and C 2 W2 such that
i. C 2 W1 (C is created by Merge)
ii. A 2 W2 (A is extended)
iii. A 2 C . (A is extended to form C)

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’95: 225) “Another natural condition is that outputs consist

of nothing beyond properties of items of the lexicon (lexical

features). . . other words, that the interface levels consist of

nothing more than arrangements of lexical features.”

Thm. (Inclusiveness) In any derivationhhLA1;W1i; : : : ; hLAn;Wnii
where Wn = fAg, the only elements contained in Wn are
the lexical item tokens from LA1 and sets containing them.

(Chomsky’95: 227) : “ l and l 0 are marked as distinct for CHL if they

are formed by distinct applications of Select accessing the same

lexical item of N. Note that this is a departure from the

inclusiveness condition, but one that seems indispensable; it is

rooted in the nature of language, and perhaps reducible to bare

output conditions.”

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Thm. (Collins 1997: 4) Whether or not Merge applies is
determined completely by the workspace and the syntactic
objects it contains.

Collins calls this local economy: whether or not Merge
applies never depends on information contained in another
workspace (from a stage either earlier or later in the
derivation, or from a different derivation altogether).

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’08: 139) “For an LI to be able to enter into a computation,

merging with some SO, it must have some property permitting

this operation. A property of an LI is called a feature, so an LI

has a feature that permits it to be Merged. Can this the edge

feature (EF) of the LI.”

Def. A lexical item token LI = hhSem;Syn;Phoni; ii contains
an edge feature EF iff some EF 2 Syn is an edge feature.

(Chomsky’00: 132) “Properties of the probe/selector a must be

satisfied before new elements of the lexical subarray are accessed

to drive further operations.”

Def. If LI has an EF token, Select(LI; hLA;Wi) is defined only if
there are no other syntactic objects A 2 W containing an
EF token.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. Triggers maps each derivable syntactic object A to its
‘visible’ edge features:

a. If A is a lexical item, then Triggers(A) returns all its
edge features.

b. If A = fB;Cg, Triggers(B) is nonempty, and
Triggers(C) = ;, then
Triggers(A) = Triggers(B)� fFg, for some edge
feature token F .

Def. Let W be a workspace and A;B 2 W , Triggers(A) contains
n > 0 edge features and Triggers(B) is empty. Then,
(triggered) EMW (A;B) = fA;Bg.

Def. Let W be a workspace where A 2 W and A contains B,
where Triggers(A) is nonempty and Triggers(B) is empty.
Then, (triggered) IMW (A;B) = fA;Bg.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Example. Suppose see1 has 2 edge features, and John2 has 0 edge
features.

S1 = hfJohn1; see2g; ;i Select John1

S2 = hfsee2g; fJohn1gi Select see2

S3 = h;; fJohn1; see2gi Merge(see2; John1)
S4 = h;; ffJohn1; see2ggi Merge(John1; fJohn1; see2g)
S5 = h;; ffJohn1; fJohn1; see2gggi

Thm. Considering triggered EM, if EM(A;B) is defined,
EM(B;A) is undefined. Similarly for triggered IM.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. (cf.Collins’02) For all lexical item tokens LI, Label(LI) = LI.

For any other SO fA;Bg, if Triggers(A) is non-empty, then
Label(fA;Bg) = Label(A).

Def. C is a maximal projection of LI iff Label(C) = LI and
there is no D in W which immediately contains C such
that Label(D) = Label(C).

Def. For all C , C is a minimal projection iff C is a lexical item
token.

Def. C is an intermediate projection of LI iff Label(C) = LI,
and C is neither a minimal projection nor a maximal
projection in W .

Def. Y is the complement of X in C iff C = Merge(X ;Y) and
X is a lexical item token.

Def. Y is the specifier of X in C iff C = Merge(X ;Z) where X

is not a lexical item token.
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For any derivable workspace W with syntactic object
Phase 2 W such that Label(Phase) = X is a strong phase
head, let Y be the complement of X in Phase, then
Cyclic-Transfer(Phase) = Phase0 where Phase0 is obtained
from Phase by replacing fX ;Y g in Phase byfX ; hTransferPF (Y);TransferLF (Y)ig.

Def. X is a strong phase head iff X is C or v.

Def. X is a syntactic object iff

a. X is a lexical item token,

b. X = Cyclic-Transfer(SO) for some syntactic object SO,
or

c. X is a set of syntactic objects.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

(Chomsky’05: 13) “If language is optimized for satisfaction of

interface conditions, with minimal computation, then only one

[copy] will be spelled out, sharply reducing phonological

computation.”

We adopt this idea and describe a simple approach for
illustration. . .

Def. XP is nonfinal in YQ iff YQ contains ZR and ZS such that

a. (i) either ZR = XP or ZR contains XP , and (ii) ZS

c-commands ZR , or

b. (i) ZR contains XP , (ii) ZR c-commands ZS , which
contains another occurrence XP 0 , and (iii) XP 0 is
nonfinal in the sister of ZR .

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

CP

... CP

VPj

V hDPii C’

C IP

DPi hVPjihVi hDPii

*CP

... *CP

*C’

C *IP

*VPj

V DPi

E.g. node labeled V on left is final because (i) neither V nor any
object containing V is c-commanded by any occurrence of itself,
and (ii), because although (a) VPj does c-command hVPji, V is not
nonfinal in C’.

Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Def. For derivable workspace W with syntactic object Phase
where Label(Phase) is a strong phase head, and for all
occurrences of objects SO such that either SO = Phase or
SO is contained in Phase,

a. If SO is LI, then TransferPF (SO) = Phon;

b. If SO = fX ;Y g, occs X and Y both final in Phase,
TransferPF (SO) = TransferPF (X)_ TransferPF (Y) if
either Y is the comp of X , or X is the spec of Y;

c. If SO = fX ;Y g, occ X but not Y final in Phase,
TransferPF (SO) = TransferPF (X) if

d. If SO = fX ;Y g, occ Y but not X final in Phase,
TransferPF (SO) = TransferPF (Y) if

e. If SO = fX ;Y g, neither X nor Y final in Phase,
TransferPF (SO) = �
Edward Stabler and Chris Collins How is language structure built, and why?

Minimalism

Operations: Select and Merge
Occurrences
Derivations
Triggered Merge
Labels and X’-Theory
Transfer

Problem:

TransferPF requires seeing into transferred phases

To avoid this problem, there are other options besides Min2 and

MG-style-derivationalism.

Not treated here:

Agree

TransferPF for multiple spellout
(cf., e.g., Hiraiwa’05, Kobele’06, Kandybowicz’08)

TransferLF for reconstruction effects

Edward Stabler and Chris Collins How is language structure built, and why?

Comparison
References

Minimalism vs MGs

Min:

IM(A,B)={A,B} with B contained in A

No need for ‘occurrences’ etc in def of EM, IM

Trees represented as nested sets; IM produces multidominance

Edge feature calculation for A traces path to leaf

TransferPF reconstructs derivation, violates NTC, vs Phases

MG:

IM(A,B)=[B,A’], where A’ has B deleted (violates NTC)

No need for ‘occurrences’ etc in def of EM, IM

Trees OK; no multidominance needed (since B deleted in A’)

Edge features explicit, ordered; TransferPF trivial; Phases OK

Edward Stabler and Chris Collins How is language structure built, and why?

Comparison
References

Minimalism vs MGs

What is Merge?

Merge = {em,im}

em(t1[=c℄; t2[c℄) =
8>>><>>>:

<

t1 t2 if t1 has exactly 1 node
>

t2 t1 otherwise

im(t1[+f℄) = >

t>2 t1ft2[-f℄>=�g if (SMC) only one head has -f
as its first feature

Merge(A,B)={A,B}; IM(A,B)={A,B} when B contained in A

(cf alternatives: TAG, CG,. . .)

Edward Stabler and Chris Collins How is language structure built, and why?

Comparison
References

Chomsky, Noam. 1995. The Minimalist Program. MIT Press, Cambridge, Massachusetts.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Roger Martin, David Michaels, and
Juan Uriagereka, editors, Step by Step: Essays on Minimalism in Honor of Howard Lasnik. MIT Press,
Cambridge, Massachusetts, pages 89–155.

Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry, 36(1).

Chomsky, Noam. 2008. On phases. In Robert Freidin, Carlos P. Otero, and Maria Luisa Zubizarreta,
editors, Foundational Issues in Linguistic Theory: Essays in Honor of Jean-Roger Vergnaud. MIT Press,
Cambridge, Massachusetts.

Collins, Chris. 1997. Local Economy. MIT Press, Cambridge, Massachusetts.

Collins, Chris. 2002. Eliminating labels. In Samuel D. Epstein and Daniel Seeley, editors, Derivation and
Explanation. Blackwell, Oxford.

Hiraiwa, Ken. 2005. Dimensions of Symmetry in Syntax: Agreement and Clausal Architecture. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Kandybowicz, Jason. 2008. The Grammar of Repetition: Nupe grammar at the syntax-phonology
interface. John Benjamins, Philadelphia.

Kobele, Gregory M. 2006. Generating Copies: An Investigation into Structural Identity in Language and
Grammar. Ph.D. thesis, UCLA.

Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of
Computational Linguistics. Springer-Verlag (Lecture Notes in Computer Science 1328), NY, pages
68–95.

Edward Stabler and Chris Collins How is language structure built, and why?

	goal:
	addressing the basic question

	Minimalism
	Operations: Select and Merge
	Occurrences
	Derivations
	Triggered Merge
	Labels and X'-Theory
	Transfer

	Comparison
	Minimalism vs MGs

	References

