
An Introduction to Minimalist Grammars

Gregory M. Kobele Jens Michaelis

Humboldt-Universität zu Berlin
University of Chicago

Universität Bielefeld

ESSLLI 2009
Bordeaux

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 1 / 34



Semantics

We briefly turn our attention to the problem of specifying the role the
sentences of our grammar play in inference – semantics!

Warning:

The standard way to do semantics in minimalism is to interpret the
derived structures
This is to be contrasted with another natural way of looking at
matters, according to which the meaning of an expression is
compositionally determined via its derivation

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 2 / 34



Heim and Kratzer (1998)

Given a subtree α, with immediate daughters β, γ, the interpretation
of α, [[α]], is

[[β]]([[γ]]),
if [[β]] : σ → τ and [[γ]] : σ

[[γ]]([[β]]),
if [[β]] : σ and [[γ]] : σ → τ

Note that in many cases, we can compute the meanings of
constituents as we build them up:

[[merge(β, γ)]] =


[[β]]([[γ]])

or
[[γ]]([[β]])

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 3 / 34



Example

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 4 / 34



Semantics

For the time being, we treat move as semantically vacuous:

[[move(α)]] = [[α]]

We see that we can assign types relatively straightforwardly to our
lexical items:

seem : t → t
die : e → t
expect : e → t → t
kill : e → e → t
rain : t
John : e
-en : (e → t)→ t

All the other lexical entries let’s agree to treat as semantically
vacuous (so tense, aspect, etc are being ignored)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 5 / 34



Semantics

<

v.die -k.John

1

die(j)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 / 34



Semantics

<

+k.s.will <

die <

∅ <

∅ -k.John

1

die(j)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 / 34



Semantics

>

John <

will <

die <

∅ <

∅ ε

1

die(j)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 / 34



Semantics

[[John seems to have died]] = seem(die(j))

[[It seems that John has died]] = same as above

[[John killed Bill]] = kill(b)(j)

[[Bill was killed]] = en(kill(b))

[[Bill seems to have been killed]] = seem(en(kill(b)))

[[John expects Bill to die]] = expect(die(b))(j)

[[Bill is expected to die]] = en(expect(die(b)))

[[Bill is expected to have been killed]] = en(expect(en(kill(b))))

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 7 / 34



Example

move

merge

-ed merge

=>y.x merge

=>v.y merge

merge

=>agrO.d.v move

merge

=>V.+k.agrO merge

kill Bill

John

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 8 / 34



Example

move

merge

-ed merge

=>y.x merge

=>v.y merge

be merge

-en merge

kill Bill

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 9 / 34



Example

move

merge

-s merge

=>y.x merge

=>v.y merge

seem merge

to merge

have merge

-en merge

=>v.y merge

be merge

-en merge

kill Bill

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 10 / 34



Semantics

The minimalist strategy of inserting expressions into their deep, or
semantic, position makes it easy to come up with reasonable
predicate argument structures in the semantics

However, in some cases, the semantic type we want to assign to an
expression is not compatible with the semantic type of the expression
it first merges with!

everyone : (e → t)→ t
kill : e → (e → t)

Although the sentence below is syntactically well-formed, we cannot
assign a meaning to it using our current rules!

John killed everyone

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 11 / 34



Quantifiers

Remember that our grammar accesses DPs multiple times (twice)
during a derivation:

once when it is merged into its base position (d)
and once when it is moved into its surface position (-k)

A natural idea is to allow a previously incompatible meaning (such as
the quantifier everyone) to be attempted to be used whenever it is
accessed during a derivation!

[[everyone doesn’t seem to have died]] → everyone(¬(seem(die)))
→ ¬(seem(everyone(die)))

[[It doesn’t seem that everyone has died]] 6→ everyone(¬(seem(die)))
→ ¬(seem(everyone(die)))

How to implement this?

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 12 / 34



Quantifiers

We allow moving expressions to optionally be treated for the purposes
of merge as denoting variables,

[[merge(β, γ)]] =


[[β]]([[γ]])
or
[[γ]]([[β]])
or
[[β]](x) (if [[γ]] is a quantifier)

and then applying their quantificational meaning once they are moved

[[move(α)]] =


[[α]]
or
[[γ]](λx .[[α]]) (if γ, the moving piece,

was merged as the variable x)

This is just a version of cooper storage (Cooper, 1983)!

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 13 / 34



Quantifiers

We assume a ‘store’; a data-structure containing pairs of variables
and functions of type t → t.

Because we want to keep track of which ‘meaning’ on the store is
associated with which moving constituent, we index the store with
features; the SMC guarantees that this relation is functional

store : Feat→ Var × Dtt

For S a store and f a feature, we write S/f to denote the store like S
but undefined at f

For S a store, and f , g features, we write Sg←f to denote the store
like S/f but with Sg←f (g) = S(f )

For S a store, f a feature, and π a pair, S [f := π] denotes the store
like S but with S [f := π](f ) = π

For S ,T stores with disjoint domains, S ∪ T is their set theoretic
union

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 14 / 34



Quantifiers

A minimalist expression will denote a pair of objects; [[α]] = 〈a,A〉
(and so [[β]] = 〈b,B〉, etc). The first component of the pair is its
‘normal’ meaning, and the second a store

[[merge(β, γ)]] =



〈b(g), B ∪ G 〉
or
〈g(b), G ∪ B〉
or
〈b(x), B ∪ G [-f := 〈x , g〉]〉

(where γ’s next feature is -f)

Given a pair 〈x , q〉, and a proposition φ, 〈x , q〉(φ) is short hand for
q(λx .φ)

[[move(α)]] = 〈A(-f)(a), A/-f〉
(if -f is checked by this operation)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 15 / 34



Quantifiers

[[〈V.die, -k.everyone〉]] = die(x); stored: 〈x ,everyone〉
[[〈+k.s.seems to have died, -k.everyone〉]] = seem(die(x)); stored:
〈x ,everyone〉
[[〈s.everyone seems to have died〉]] = everyone(λx .seem(die(x))

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 16 / 34



Quantifiers – Heim and Kratzer (1998)

Although the standard way of interpreting DPs in the generative
literature uses (almost) only the standard function application shown
before,

The very same ‘cooper storage’ idea is present: when a DP is moved,
it results in a structure like the below:

>

DP >

i

ti

1

Traces (ti ) are interpreted as variables; [[ti ]] = xi

Subtrees α of the form [> i β] are interpreted as follows:

[[[> i β]]] = λxi .[[β]]

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 17 / 34



Example

>

everyone >

i <

seem -s <

to <

have <

died ti

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 18 / 34



Quantifier Scope

This account undergenerates:
1 Everyone doesn’t seem to be happy

X : ∀ < ¬
∗ : ¬ < ∀

2 Someone kissed everyone

∗ : ∃ < ∀
∗ : ∀ < ∃

For the second reading of example 1, note that the quantifier is
merged beneath the negation operator – an idea:

The first reading corresponds to interpreting the quantifier in its moved
position
The second reading corresponds to interpreting the quantifier in its
base position

What about example 2?

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 19 / 34



Quantifier Scope

Note that both base and moved-to positions of everyone are beneath
the base position of someone! Thus there is a type-mismatch.

move

merge

-ed merge

=>y.x merge

=>v.y merge

merge

=>agrO.=d.v move

merge

=>V.+k.agrO merge

kiss everyone

someone

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 20 / 34



Quantifier Scope

Our idea is that you can retrieve elements from the store whenever
the associated syntactic expression moves

Non-surface scope, then, is a consequence of retrieving the meaning of
the surface c-commanding element beneath the position where the
surface c-commanded element’s meaning is retrieved

But our analysis of sentences like someone kissed everyone don’t work
here!

Analytical options:
1 Change theory
2 Change analysis

It is not obvious how we should change our theory!

Our theory tells us how we should change our analysis:

The object must move to a position c-commanding the base position of
the subject.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 21 / 34



Quantifier Scope

We introduce a new feature type, which is intended to extend the
moving domain of objects over the base position of subjects: -q and
+q (note: this triggers agree/covert movement)

DPs uniformly have this feature: d.-k.-q

Where should the licensor variant (+q) go?
1 Above the base position of the subject (to check the features of the

object):
=>v(r).+q.v.∅

2 At the s level (to check the features of the subject):

=s(r).+q.s.∅

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 22 / 34



Quantifier Scope

Note that the base position of someone is beneath the last moved-to
position of everyone!

move

merge

=s.q.s move

merge

-ed merge

=>y.x merge

=>v.y move

merge

=>v.+q.v merge

merge

=>agrO.=d.v move

merge

=>V.+k.agrO merge

kiss everyone

someone

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 23 / 34



Quantifier Scope

In order for this to work, we have to modify our definition of the
interpretation of movement.

For S a store and f a feature, if S is undefined on f then we write
S(f ) as shorthand for the identity function.

[[move(α)]]→
1 〈A(-f)(a), A/-f〉

(if -f is checked by this operation)
2 〈a, A-g←-f〉

(if -f is checked by this operation, and the next feature of the moving
element is -g)

We require that:

if the moving element is checking its last feature, then the first option
apply

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 24 / 34



Inverse Linking

One apple in every basket exploded.

surface: ∃a. Apl(a) ∧ (∀b. Bskt(b)→ In(a, b)) ∧ Expl(a)
inverse: ∀b. Bskt(b)→ ∃a. Apl(a) ∧ In(a, b) ∧ Expl(a)

We will apply our strategy here as well; we will have a -q-driven
movement step to a position within the main DP.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 25 / 34



Inverse Linking

Some lexical items for DPs:
=n(r).D.one =n(r).D.every n.apple

=D(r).d.-k.-q.∅ n.basket

merge

=D.-k.-q merge

every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 26 / 34



Inverse Linking

Some lexical items for PPs:
=d(r).+k.P.in =>P(r).p.∅

=>P(r).+q.P.∅
merge

=>P.p move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 27 / 34



Inverse Linking

Some lexical items for PPs:
=d(r).+k.P.in =>P(r).p.∅

=>P(r).+q.P.∅
merge

=>P.p move

merge

=>P.+q.P move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 27 / 34



Inverse Linking

We assign semantic types to these expressions as follows:

every : (e → t)→ t
some : (e → t)→ t
basket : e → t
apple : e → t
in : e → e → t

All the other (phonetically empty) lexical entries let’s agree to treat
as semantically vacuous

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 28 / 34



Inverse Linking

Our types don’t work in the case of the second PP derivation!

merge

=>P.p move

merge

=>P.+q.P move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 29 / 34



Inverse Linking

We modify one last time our definition of the interpretation of move:

For S a store and f a feature, if S is undefined on f then we write
S(f ) as shorthand for the identity function.

For 〈x , q〉 an element of a store, and φ of type t or of type ξ → t,
where ξ is any type:

〈x , q〉(φt) = q(λx .φ)
〈x , q〉(φξt)(a) = q(λx .(φ(a)))

[[move(α)]]→
1 〈A(-f)(a), A/-f〉

(if -f is checked by this operation)
2 〈a, A-g←-f〉

(if -f is checked by this operation, and the next feature of the moving
element is -g)

We require that:

if the moving element is checking its last feature, then the first option
apply

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 30 / 34



Inverse Linking

Now things work:

merge

=>P.p move

merge

=>P.+q.P move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 31 / 34



Inverse Linking

We need lexical items which allow us to put PPs and DPs together:

=>n(r).=p(r)(r).n.∅
This item denotes predicate conjunction! ((A&B)(a) = A(a) ∧ B(a))

merge

=D.d.-k.-q merge

one merge

merge

=>n.=p(r).n apple

merge

=>P.p move

merge

=>P.+q.P move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 32 / 34



Inverse Linking

We also allow the DP in the PP to check its -q feature at the
D-level, to take scope over its containing DP:

=D(r).+q.D

merge

=D.d.-k.-q move

merge

=D.+q.D merge

one merge

merge

=>n.=p(r).n apple

merge

=>P.p move

merge

in every basket

1

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 33 / 34



Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: D. Reidel.

Heim, I. and A. Kratzer (1998). Semantics in Generative Grammar. Blackwell Publishers.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 34 / 34


	References

