An Introduction to Minimalist Grammars

Gregory M. Kobele Jens Michaelis

Humboldt-Universitat zu Berlin

University of Chicago Universitat Bielefeld

ESSLLI 2009
Bordeaux

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 1/34

Semantics

@ We briefly turn our attention to the problem of specifying the role the
sentences of our grammar play in inference — semantics!
@ Warning:
e The standard way to do semantics in minimalism is to interpret the
derived structures
e This is to be contrasted with another natural way of looking at
matters, according to which the meaning of an expression is
compositionally determined via its derivation

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 2 /34

Heim and Kratzer (1998)

@ Given a subtree «, with immediate daughters (3,7, the interpretation
of a, [, is
o [BIID).
if[fl:c—7and 7] : o
o (I8,
if[B]l:cand [7]:0 =7
@ Note that in many cases, we can compute the meanings of
constituents as we build them up:

510D
[merge(3,7)] = or
[ICEsD)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 3 /34

Example

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 4/

Semantics

o For the time being, we treat move as semantically vacuous:

[move(a)] = [«]

@ We see that we can assign types relatively straightforwardly to our
lexical items:
e seem: t—t
die: e —t
expect: e -t —t
kill : e —e—t
rain : t
John : e
-en: (e—t)—>t

@ All the other lexical entries let's agree to treat as semantically
vacuous (so tense, aspect, etc are being ignored)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 5/ 34

Semantics

N
v.die -k.John

DIE(J)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 /34

Semantics

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 /34

Semantics

DIE(J)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 6 /34

Semantics

@ [John seems to have died] = SEEM(DIE(J))

o [t seems that John has died] = same as above

@ [John killed Bill] = x1LL(B)(J)
o [Bill was killed] = EN(KILL(B))

o [Bill seems to have been killed] = SEEM(EN(KILL(B)))

@ [John expects Bill to die] = EXPECT(DIE(B))(J)
o [Bill is expected to die] = EN(EXPECT(DIE(B)))

o [Bill is expected to have been killed] = EN(EXPECT(EN(KILL(B))))

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 7 /34

AN
kil Bil

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 8 /34

move
me|rge
/
-ed merge
e \
=>y.x erge

=>v merge
/
be merge
—en/ merge

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 9 /34

m(|>ve
merge
—s/ merge
=>y.x }orgc
/
=>vly merge
seein merge
to merge
have merge
-en/ merge
e \
=>v.y merge
7
be merge
—en/ merge
/
kill Bill

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 10 / 34

Semantics

@ The minimalist strategy of inserting expressions into their deep, or
semantic, position makes it easy to come up with reasonable
predicate argument structures in the semantics

@ However, in some cases, the semantic type we want to assign to an

expression is not compatible with the semantic type of the expression
it first merges with!

o everyone: (e > t) — t
o kill: e — (e —1t)

@ Although the sentence below is syntactically well-formed, we cannot
assign a meaning to it using our current rules!

John killed everyone

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 11 /34

@ Remember that our grammar accesses DPs multiple times (twice)
during a derivation:

e once when it is merged into its base position (d)
o and once when it is moved into its surface position (-k)

@ A natural idea is to allow a previously incompatible meaning (such as
the quantifier everyone) to be attempted to be used whenever it is
accessed during a derivation!

[everyone doesn't seem to have died] — EVERYONE(—(SEEM(DIE))
— —(SEEM(EVERYONE(DIE))

)

)
[It doesn't seem that everyone has died] - EVERYONE(—(SEEM(DIE)))
— —(SEEM(EVERYONE(DIE)))

@ How to implement this?

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 12 / 34

@ We allow moving expressions to optionally be treated for the purposes
of merge as denoting variables,

[[ﬁ]](D)
[merge(3,7)] = [[7]]([[6]])

[[ﬁ]](x) (if [v] is a quantifier)

@ and then applying their quantificational meaning once they are moved

[]
[move(e)] = V1(Ax.Ja]) (if v, the moving piece,
was merged as the variable x)

@ This is just a version of cooper storage (Cooper, 1983)!

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 13 / 34

@ We assume a ‘store’; a data-structure containing pairs of variables
and functions of type t — t.

@ Because we want to keep track of which ‘meaning’ on the store is
associated with which moving constituent, we index the store with
features; the SMC guarantees that this relation is functional

STORE : Feat — Var x Dy

@ For S a store and f a feature, we write S/f to denote the store like S
but undefined at f

@ For S a store, and f, g features, we write S,. ¢ to denote the store
like S/f but with Sz ¢(g) = S(f)

e For S a store, f a feature, and 7 a pair, S[f := 7] denotes the store
like S but with S[f :=7|(f) ==

@ For S, T stores with disjoint domains, SU T is their set theoretic
union

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 14 / 34

@ A minimalist expression will denote a pair of objects; [a] = (a, A)
(and so [B] = (b, B), etc). The first component of the pair is its
‘normal’ meaning, and the second a store

((b(g), BUG)

(g(b), GUB)

{b(x), BUG[-T:= (x,8)])
(where ~’s next feature is -f)

[merge(3,7)] =

\

e Given a pair (x, q), and a proposition ¢, (x, q)(¢) is short hand for
q(Ax.¢)

[move(a)] = (A(-£)(a), A/-f)

(if -f is checked by this operation)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 15 / 34

o [(v.die, ~k.everyone)] = DIE(x); stored: (x, EVERYONE)
o [(+k.s.seems to have died, -k.everyone)] = SEEM(DIE(x)); stored:
(x, EVERYONE)

o [[(s.everyone seems to have died)] = EVERYONE(Ax.SEEM(DIE(x))

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 16 / 34

Quantifiers — Heim and Kratzer (1998)

@ Although the standard way of interpreting DPs in the generative
literature uses (almost) only the standard function application shown
before,

@ The very same ‘cooper storage’ idea is present: when a DP is moved,
it results in a structure like the below:

@ Traces (t;) are interpreted as variables; [[t;] = x;

@ Subtrees « of the form [> i 3] are interpreted as follows:
[l> 7 A1l = Axi.[4]

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 17 / 34

>
TN
everyone >
/7 N\
7 <
N
seem -S <
7 N\
to <
N
have <
N
died ti

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 18 / 34

Quantifier Scope

@ This account undergenerates:
© Everyone doesn’t seem to be happy

e Vi V<~
e x : <Y
@ Someone kissed everyone
e x : A<V
e x : V<3

@ For the second reading of example 1, note that the quantifier is
merged beneath the negation operator — an idea:
e The first reading corresponds to interpreting the quantifier in its moved
position
e The second reading corresponds to interpreting the quantifier in its
base position

@ What about example 27

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 19 / 34

Quantifier Scope

@ Note that both base and moved-to positions of everyone are beneath
the base position of someone! Thus there is a type-mismatch.

move
merge
—ed/ herge
=>y{ }erge
=>v{ >erge
merge someone
=>agr0 F{V \move
|
merge
=>V.+k.ag/r0 merge
kiss everyone
Intro to MGs ESSLLI 2009 20 / 34

Kobele & Michaelis (Day Four)

Quantifier Scope

@ Our idea is that you can retrieve elements from the store whenever
the associated syntactic expression moves
o Non-surface scope, then, is a consequence of retrieving the meaning of
the surface c-commanding element beneath the position where the
surface c-commanded element’s meaning is retrieved
@ But our analysis of sentences like someone kissed everyone don't work
here!
@ Analytical options:
© Change theory
@ Change analysis
@ It is not obvious how we should change our theory!
@ Our theory tells us how we should change our analysis:
e The object must move to a position c-commanding the base position of
the subject.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 21/ 34

Quantifier Scope

@ We introduce a new feature type, which is intended to extend the
moving domain of objects over the base position of subjects: -q and
+q (note: this triggers agree/covert movement)

@ DPs uniformly have this feature: d.-k.—-q

@ Where should the licensor variant (+q) go?

@ Above the base position of the subject (to check the features of the
object):
=>v(r).+q.v.0)

@ At the s level (to check the features of the subject):

=s(r).+q.s.0)

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 22 / 34

Quantifier Scope

@ Note that the base position of someone is beneath the last moved-to
position of everyone!

move
merge
=8.4.8 move
merge
-ed merge
=>y.x /Inerge\

=>v.y move

merge

_

=>v.+q.v merge
merge someone
=>agr0.=d.v niove
merge
=>V.+k.agr0 merge

kiss evelygne

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 23 /34

Quantifier Scope

@ In order for this to work, we have to modify our definition of the
interpretation of movement.

@ For S a store and f a feature, if S is undefined on f then we write
S(f) as shorthand for the identity function.

o [move(a)] —

Q (A(-£)(a), A/-1)
(if =£ is checked by this operation)

9 <3, A—g%—f>
(if =f is checked by this operation, and the next feature of the moving

element is -g)

@ We require that:
e if the moving element is checking its last feature, then the first option

apply

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 24 / 34

Inverse Linking

@ One apple in every basket exploded.
surface: dJa. Apl(a) A (Vb. Bskt(b) — In(a, b)) A Expl(a)
inverse: Vb. Bskt(b) — Ja. Apl(a) A In(a, b) A Expl(a)
o We will apply our strategy here as well; we will have a -g-driven
movement step to a position within the main DP.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 25 / 34

Inverse Linking

@ Some lexical items for DPs:
=n(r).D.one =n(r).D.every n.apple

=D(r).d.-k.-q.0) n.basket
merge

=D.-k.-q merge
evely basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 26 / 34

Inverse Linking

@ Some lexical items for PPs:
=d(r).+k.P.in =>P(r).p.0
=>P(r).+q.P.{)

=>P.p move
merge

in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 27 / 34

Inverse Linking

@ Some lexical items for PPs:
=d(r).+k.P.in =>P(r).p.0
=>P(r).+q.P.0)

merge
=>P.p move
merge
=>P.+q.P niove
merge

in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 27 / 34

Inverse Linking

@ We assign semantic types to these expressions as follows:
o every: (e—t)—t
o some: (e —»t)—t
o basket: e — t
e apple: e >t
ein:e—e—t

@ All the other (phonetically empty) lexical entries let's agree to treat
as semantically vacuous

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 28 / 34

Inverse Linking

@ Our types don't work in the case of the second PP derivation!

merge
=>P.p move
merge

=>P.+q.P move

merge

in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 29 / 34

Inverse Linking

We modify one last time our definition of the interpretation of move:

For S a store and f a feature, if S is undefined on f then we write
S(f) as shorthand for the identity function.
For (x, q) an element of a store, and ¢ of type t or of type £ — t,
where £ is any type:
° (x,q)(¢¢) = q(Ax.9)
o (x,q)(¢et)(a) = q(Ax.(¢(a)))
[move(a)] —
Q (A(-f)(a), A/-1)
(if =£ is checked by this operation)
9 <37 A—g<——f>
(if =f is checked by this operation, and the next feature of the moving
element is -g)
We require that:
e if the moving element is checking its last feature, then the first option
apply

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 30/ 34

Inverse Linking

@ Now things work:

merge
=>P.p move
merge

=>P.+q.P move

merge

in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 31/ 34

Inverse Linking

@ We need lexical items which allow us to put PPs and DPs together:
=>n(r).=p () (r).n.0)
e This item denotes predicate conjunction! ((A&B)(a) = A(a) A B(a))

merge
=D.d.-k.—-q merge
one merge
merge/ \merge
=>n.=p(r).n \apple =>P.p/ move
merge
=>P.+q.P move
merge
in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 32 /34

Inverse Linking

@ We also allow the DP in the PP to check its —q feature at the
D-level, to take scope over its containing DP:

=D(r).+q.D
merge
=D.d.-k.-q nove
me|rge
=D.+q.D \merge
one/ merge
merge/ \merge
=>n.=p(r).n \apple =>P.p/ move
merge
in every basket

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 33 /34

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: D. Reidel.

Heim, |. and A. Kratzer (1998). Semantics in Generative Grammar. Blackwell Publishers.

Kobele & Michaelis (Day Four) Intro to MGs ESSLLI 2009 34 /34

	References

