An Introduction to Minimalist Grammars:

Complexity of the Shortest Move Constraint

(July 22, 2009)

Gregory Kobele Jens Michaelis

Humboldt Universitat zu Berlin Universitat Bielefeld

kobele@rz.hu-berlin.de jens.michaelis@uni-bielefeld.de

Head movement constraint (HMC) (Stabler 1997)

B The implementation of

head movement in MGs is in accordance with the HMC

— demanding

a moving head not to pass over the closest c-commanding head.

To put it differently,
whenever we are concerned with a case of successive head

movement, I.e. recursive adjunction of a (complex) head to a
higher head, it obeys strict cyclicity.

Successive cyclic left head adjunction

Shortest movement condition (SMC) (Stabler 1997, 1999)

B The number of competing licensee features triggering a

movement is (finitely) bounded by n.

In the strictest version n = 1, I.e., there Is at most one

maximal projection displaying a matching licensee feature:

<

Specifier island condition (SPIC) (Stabler 1999)

B Proper “extraction” from specifiers is blocked.

i \
'.-' AN
;' N\
§ N\
/ N\

+ ‘+f

>

X

specifier

— SMC , - SPIC

+ SMC , — SPIC MG — SMC, + SPIC

+ SMC , + SPIC I

SMC and SPIC — restricting the move-operator domain

— SMC , - SPIC

LCFRS

+ SMC , — SPIC I MG — SMC, + SPIC

(Michaelis 1998, 2001; Harkema 2001)

+ SMC , + SPIC I

C LCFRS (Michaelis 2001, 2002)

+ SMC , — SPIC — generative capacity

B The crucial methods, in particular,

¢ developed to prove that MGs provide a weakly equivalent
subclass of LCFRSs (cf. Michaelis 1998), and

¢ leading to the succinct, chain-based MG-reformulation
presented in Stabler & Keenan 2000 [2003] — reducing

“classical” MGs to their “bare essentials:”

e Defining a finite partition on the “relevant” MG-tree set,
— giving rise to a finite set of nonterminals in LCFRS-terms,

— deriving all possible “terminal yields.”

Let G = (Features, Lexicon, 2, C) be an MG

A minimal expression = € Closure(G) is relevant :<—>

for each licensee -X , there is at most one maximal projection In

7 that displays -X .

Reducing an MG(+SMC,-/+SPIC)

Let G = (Features, Lexicon, 2, C) be an MG

A minimal expression 7 € Closure(G) is relevant :<—=-

for each licensee -X , there is at most one maximal projection In

7 that displays -X .

B In fact, this kind of structure is characteristic of each expression
7 € Closure(G) involved in creating a complete expression in G
due to the SMC.

A finite partition of set of relevant expressions

Basic idea: consider relevant = € Closure(G)

B Reduce 7 to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

A finite partition of set of relevant expressions

Basic idea: consider relevant = € Closure(G)

B Reduce 7 to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

A only finitely many equivalence classes

Relevance:
The resulting tuple has at most m+1 components, m= |Licensees|.

Structure building by cancellation of features:
Each tuple component is the suffix of the syntactic prefix of the label

of a lexical item.

A finite partition of set of relevant expressions

Basic idea: consider relevant = € Closure(G)

B Reduce 7 to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

A only finitely many equivalence classes

Relevance:
The resulting tuple has at most m+1 components, m= |Licensees|.

Structure building by cancellation of features:
Each tuple component is the suffix of the syntactic prefix of the label
of a lexical item.

> regarding the partition, applications of ‘merge’ and ‘move’
do not depend on the chosen representatives

Reducing an MG(+SMC,-/+SPIC)

< <
PN /\
W, . W5 oo - W,
/\
. W3
/\
. Wy

Reducing an MG(+SMC,-/+SPIC)

< <
PN /\
Wi W o T
/\
. W3
/\
- Wy

Reducing an MG(+SMC,-/+SPIC)

< (o)) .W1W2W0 s 04 .W3W4W7 s O3 .W5W6>

Reducing an MG(+SMC,-/+SPIC)

< <
/\ /\
W,y W oo T
/\
. W3
/\
- Wy
/\
<
T
W5 . Wg

Reducing an MG(+SMC,-/+SPIC)

< <
/\ /\
W,y W oo T
/\
. W3
/\
- Wy
/\
T
. Ws . Wg

Reducing an MG(+SMC,-/+SPIC)

<0'0 , O4 0'5> — <W1W2W0 » W3W,/W~ 9W5W6>

MG-example 2

(ay) =t .c.that (a5) V.l augh

(a;) =t .+wh.c.¢ (as) =n.d.-k .the

() =V.+K.1 .0 (a7) =n.d.-k .-wh .whi ch
(as) =vV.=d.V.0 (ag) N.KiINng

(ay) =d.+tk.v.eat (ag) N.pIe

MG-example 2
=n.d .-k .-wh .whi ch

n.pi e

MG-example 2 :: = simple , : = complex

=n.d -k .-wh .whi ch (=n.d.-k -wh .which,:)

n.pi e (n.pie,:)

MG-example 2 :: = simple , : = complex

=n.d -k .-wh .whi ch (=n.d.-k -wh .which,:)

n.pi e (n.pie,:)

d.-k -wh .whi ch pie

MG-example 2 :: = simple , : = complex

=n.d .-k .-wh .whi ch (=n.d.-k .-wh .whi ch,:)
n.pie (n.ple,:)
< (d.-k -wh .whichpie,:)

d.-k -wh .whi ch pie

MG-example 2

<

PN

+k .v .eat <

N

k .-wh-which pie

MG-example 2 :: = simple , : = complex

<

PN

+k .v.eat <

N

k .-wh which pie

(+k.v.eat ,-k .-wh .whi ch pi e,:)

MG-example 2

/\

/\
-k .t he ki ng

<
=

<
P
NG eat e

-wh .whi ch pie

MG-example 2 :: = simple , : = complex

/\

/\
-k .t he ki ng

<
=

<
P
NG eat e

-wh .whi ch pie

(v.eat ,-wh .whichpie,-k .theking,:)

SMC and SPIC — restricting the move-operator domain

— SMC , - SPIC

LCFRS ?

+ SMC , — SPIC I MG — SMC, + SPIC

(Michaelis 1998, 2001; Harkema 2001)

+ SMC , + SPIC I

C LCFRS (Michaelis 2001, 2002)

— SMC , + SPIC — generative capacity

B Gartner & Michaelis 2005 shows that MG(—-SMC,+SPIC)s allow

derivation of non-mildly context-sensitive languages.

B Kobele & Michaelis 2005 shows that, in fact, every recursively
enumerable language can be derived by an MG(-SMC,+SPIC).
This Is true for essentially two reasons:

— SMC , + SPIC — generative capacity

B Because of the SPIC, movement of a constituent c into a specifier

position freezes every proper subconstituent 3 within cx.

B Without the SMC, therefore, the complement line of a tree can

technically be used as two independent counters, or, as a queue.

/ complement line

MG-example — complexity results concerning LCs

B An example of a non-mildly context-sensitive MG(—SMC,+SPIC)
deriving a language without constant growth property, namely,

n
{az |n20} — {a,aa,aaaa,aaaaaaaa,...}

1 2 4 38

MG-example — complexity results concerning LCs

W.-Im

=W.X.-I|

=X.+tmy.-m
=y.+l .z.-l
=z.y.-|

=7 X.-|

=X.tmc

=c.+| .c.a

MG-example — complexity results concerning LCs

licensee -mM “marks” W.-Mm
end/start of “outer” cycle “Initialize”

=W.X.-I|

end “outer” cycle “appropriately:” Q =X.tTmy.-m

check licensee -m “outer” cycle
o =y.+ .z.-l
start new “outer” cycle:
introduce new licensee -M _
=z.y .-l
“reintroduce” and “double” ‘inner” cycle
the just checked licensee -l =7 X.-|
leave final cycle “appropriately:” —
A R =X.+mc
check licensee -m .
“finalize”
check successively licensee -| |, =C.+| .c.a

each time introducing an a

MG-example — complexity results concerning LCs

YP(-|) end k-th “inner” cycle
ZP(+) -l) start k-th “inner” cycle
\‘YP(-I) end 2- j-th “inner” cycle
ZP(+Y -l) start 2!- j-th “inner” cycle
end j-th/start j+1-th “outer” cycle:
+1N -
YP(+m-m) check and “reintroduce” -m
XP(-l) “double” last checked -
Z'?("‘J/,'l) check and “reintroduce” -
N
end i-th “inner” cycle:
YP(-
“double” last checked -l 1)
start i-th “inner” cycle: ZP(+) A1)

check and “reintroduce” -I /N

MG-example — complexity results concerning LCs

N
~
/\ -m
N
2\

MG-example — complexity results concerning LCs

B Starting the “outer” cycle, the currently derived tree shows 2"
successively embedded complements on the complement line
each with an unchecked instance of -| , and a lowest one
with an unchecked instance of -m.

B Going through the cycle provides a successive “roll-up” of those
complements in order to check the displayed features. Thereby,

on+1 successively embedded complements on the complement
line are created, again, all displaying feature - and a lowest one
displaying feature -m.

B [ecaving the cycle procedure after a cycle has been completed,
leads to a final checking of the displayed licensees, where for each

instance of -l an instance of a is introduced in the structure.

+ SMC , + SPIC — generative capacity

B [n contrast to the —SMC, + SPIC - case,
adding the SPIC to the SMC has a restrictive effect (Michaelis 2005)

+ SMC , + SPIC — generative capacity

— SMC , - SPIC

LCFRS type O

+ SMC , — SPIC I MG ‘—SMC,+SPIC I

(Michaelis 1998, 2001; Harkema 2001) (Kobele & Michaelis 2005)

\ /
+swC,+ P |

LCFRS(1,2) (Michaelis 2001, 2002)

LCFRS(1,2) — arestricted LCFRS-normal form

‘An LCFRS G = (N,T,F,R,S) is an LCFRS(1, 2) iffI

¢ each nonterminating rule is of the form A — f(B) or A — f(B,C),

¢ if A— f(B,C), nonterminal B derives only simple terminal strings.

LCFRS(1,2) — arestricted LCFRS-normal form

‘An LCFRS G = (N,T,F,R,S) is an LCFRS(1, 2) iffI

¢ each nonterminating rule is of the form A — f(B) or A — f(B,C),

¢ if A— f(B,C), nonterminal B derives only simple terminal strings.

B Excludes a non-indexed, but LCFRS-string language such as:

{Wl- oWy Zy Wye =+ Z3 Wy Zg W, e e owi R w; € {a, b}, z,- - - g Dyck word}

LCFRS(1,2) — arestricted LCFRS-normal form

-~

Indexed Grammar

-

~

-

kLCFRS(l,Z)]

/

7

LCFRS

/
%

I—example

SMC and SPIC — restricting the move-operator domain

— SMC , - SPIC

+ SMC , — SPIC MG — SMC, + SPIC

N e
+ SMC , + SPIC I

SMC and SPIC — restricting the move-operator domain

MELL-proof-search (Salvati 2008)
— SMC, — SPIC

LCFRS type O

+ SMC , — SPIC MG — SMC, + SPIC

+ SMC , + SPIC I

SMC and SPIC — restricting the move-operator domain

— SMC , - SPIC

+ SMC , — SPIC MG — SMC, + SPIC

N e

+ SMC , + SPIC

A further extension — multiple wh-movement and the SMC

B A potential objection against MG(+SMC)’s : you cannot deal with

multiple wh-movement. /* example from Bulgarian */

kOji kOng kakvok i e pital tj T

who whom what AUX ask

¢ Recall the SMC-implementation in MGs: the number of competing
licensee features triggering a movement is (finitely) bounded.

B Answer: we can, if we implement the wh-cluster hypothesis going
back to Rudin (1988) such that we introduce two new syntactic

feature types and a corresponding operator.

A further extension — multiple wh-movement and the SMC

B c(luster)-licensees: X, %y, %z, ...

. V V V
c(luster)-licensors: X, VY,"2Z,...

Structure building functions

‘ cluster : Trees Rart o Irees I

B ¢ € Domain(cluster) :<—-

e The highest specifier x of ¢ displays c-licensor VX
® thereis a (unique [SMC]) maximal projection 2 within ¢ that

displays the corresponding c-licensee “Xx

>

B cluster(¢p) = /\

< SL[ox...] — e}
/\
Xl Wl...]

Structure building functions

‘ cluster : Trees Rart o Irees I

A further extension — multiple wh-movement and the SMC

B In order to outline the general case, we next sketch derivations for
wh-clustering with two wh-phrases: crucially exactly one -wh

licensee Is necessary for deriving a well-formed cluster, and no

more than one “Wh is displayed at any derivation step.

Wh-clustering, n = 2, crucial step 1

Wh-clustering, n = 2, crucial step 2

>

	makebox [0cm][l]{Head movement constraint (HMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997)}
	makebox [0cm][l]{Successive cyclic left head adjunction}hspace *{13.2cm}makebox [0cm][r]{}
	makebox [0cm][l]{Shortest movement condition (SMC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1997, 1999)}
	makebox [0cm][l]{Specif/ier island condition (SPIC)}hspace *{13.2cm}makebox [0cm][r]{small (Stabler 1999)}
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}}
	makebox [0cm][l]{+ SMC , -- SPIC {small ,---, generative capacity}}
	Reducing an MG(+SMC,-/+SPIC)
	A finite partition of set of relevant expressions
	Reducing an MG(+SMC,-/+SPIC)
	Reducing an MG(+SMC,-/+SPIC)
	Reducing an MG(+SMC,-/+SPIC)
	MG-example 2
	MG-example 2
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{�romSlide {2}{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}}
	makebox [0cm][l]{MG-example 2}hspace *{13.2cm}makebox [0cm][r]{�romSlide {2}{small $�m {:: widehat {=}}$ simple , , , $�m {: widehat {=}}$ complex}}
	SMC and SPIC makebox [0cm][l]{untilSlide {2}{small ,---, restricting the move-operator domain}makebox [0cm][l]{�romSlide {3}{small ,---, shortest move (SMC) and specifier islands (SPIC)}}}
	makebox [0cm][l]{-- SMC , + SPIC {small ,---, generative capacity}}
	makebox [0cm][l]{-- SMC , + SPIC {small ,---, generative capacity}}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	MG-example {small ,---, complexity results concerning LCs}
	makebox [0cm][l]{+ SMC , + SPIC {small ,---, generative capacity}}
	makebox [0cm][l]{+ SMC , + SPIC {small ,---, generative capacity}}
	LCFRS(1,2) makebox [0cm][l]{untilSlide {2}{small ,---, a restricted LCFRS-normal form}}
	makebox [0cm][l]{LCFRS(1,2) {small ,---, a restricted LCFRS-normal form}}
	SMC and SPIC makebox [0cm][l]{untilSlide {3}{small ,---, restricting the move-operator domain}makebox [0cm][l]{�romSlide {4}{small ,---, shortest move (SMC) and specifier islands (SPIC)}}}
	A further extension {small ,---, multiple wh-movement and the SMC}
	A further extension {small ,---, multiple wh-movement and the SMC}
	Structure building functions
	Structure building functions
	A further extension {small ,---, multiple wh-movement and the SMC}
	Wh-clustering, n $�m {=}$ 2, crucial step 1
	Wh-clustering, n $�m {=}$ 2, crucial step 2

