
University of California

Los Angeles

Parsing Minimalist Languages

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Linguistics

by

Hendrik Harkema

2001

c
�

Copyright by

Hendrik Harkema

2001

The dissertation of Hendrik Harkema is approved.

T.K. Au

E.L. Keenan

A. Nijholt

C.T. Schütze

E.P. Stabler, Committee Chair

University of California, Los Angeles

2001

ii

TABLE OF CONTENTS

1 Introduction ��� 1

1.1 Motivation and Contribution . 2

1.2 Transformational Parsing . 5

1.2.1 Early Work . 5

1.2.2 Marcus Parser . 7

1.2.3 Principle-Based Parsing . 9

1.3 Beyond Context-Free Languages . 9

1.3.1 Linear Indexed Grammars 11

1.3.2 Tree Adjoining Grammars 13

1.4 Parsing Minimalist Languages . 16

1.5 Overview of the Dissertation . 20

2 Minimalist Grammars ��� 21

2.1 Minimalist Program . 21

2.2 Derivational Minimalism . 22

2.2.1 Minimalist Grammars . 23

2.3 Examples . 31

2.3.1 Linguistic Example . 31

2.3.2 Abstract Example . 36

2.4 Head Movement and Covert Movement 39

2.4.1 Head Movement . 39

iii

2.4.2 Covert Movement . 42

2.5 Other Formalizations . 44

2.6 Concluding Remarks . 48

3 Minimalist Languages ��� 50

3.1 Minimalist Grammars . 51

3.2 Multiple Context-Free Grammars . 54

3.2.1 Generalized Context-Free Grammars 55

3.2.2 � -Multiple Context-Free Grammars 56

3.2.3 Normal Form for Multiple Context-Free Grammars 57

3.3 Construction of Minimalist Grammar 59

3.3.1 Non-syntactic Features . 60

3.3.2 Syntactic Features . 60

3.3.3 Structure Building Functions 61

3.3.4 Lexicon . 61

3.4 Correspondence . 63

3.5 Illustration of Proof of Equivalence 64

3.6 Proof of Equivalence . 71

3.6.1 Properties of Constructed Minimalist Grammar 71

3.6.2 Equivalence . 75

3.7 Conclusion . 79

4 Parsing Minimalist Languages Bottom-Up ������������������������������� 80

4.1 Reformulated Minimalist Grammars 81

iv

4.1.1 Collapsing Trees . 82

4.1.2 Reformulated Structure Building Functions 84

4.1.3 Equivalence . 88

4.2 Examples of Reformulated Minimalist Grammars 89

4.2.1 Linguistic Example . 89

4.2.2 Abstract Example . 90

4.3 Parsing Minimalist Languages . 92

4.4 Specification of the Bottom-Up Recognizer 95

4.4.1 Deduction Procedure . 95

4.4.2 Deductive System . 96

4.5 Proof of Soundness . 100

4.5.1 Soundness of the Axioms 101

4.5.2 Soundness of the Rules of Inference 102

4.6 Proof of Completeness . 104

4.7 Complexity Results . 108

4.8 Recognition Example . 109

4.9 Extensions . 111

4.9.1 Head Movement . 111

4.9.2 Covert Phrasal Movement 114

4.10 Conclusion . 118

5 Parsing Minimalist Languages Top-Down ��������������������������������� 120

5.1 Minimalist Grammars . 121

v

5.2 Context-Free Derivations . 128

5.3 Top-Down Recognition . 132

5.3.1 Items and Invariant . 133

5.3.2 Axioms . 134

5.3.3 Rules of Inference . 134

5.3.4 Goal Items . 136

5.3.5 Example . 136

5.3.6 Correctness and Complexity 137

5.4 Look-Ahead . 138

5.4.1 First � . 138

5.4.2 Recognition with Look-Ahead 141

5.5 Correct-Prefix Property . 143

5.5.1 Left to Right . 143

5.5.2 Useless Categories . 148

5.6 Proofs of Correctness . 151

5.6.1 Fundamental Definitions . 151

5.6.2 Proof of Soundness . 153

5.6.3 Proof of Completeness . 155

5.7 Conclusion . 158

6 Parsing Minimalist Languages à la Earley ������������������������������� 160

6.1 Left-Recursion . 160

6.2 Earley’s Algorithm . 165

vi

6.3 Specification of the Recognizer . 171

6.3.1 Items . 172

6.3.2 Invariant . 173

6.3.3 Axioms . 174

6.3.4 Goal Items . 174

6.3.5 Rules of Inference . 174

6.4 Example . 181

6.5 Proofs of Correctness and Complexity 186

6.5.1 Proof of Soundness . 186

6.5.2 Proof of Completeness . 195

6.5.3 Complexity . 202

6.6 Conclusions . 203

7 Conclusions ��� 204

7.1 Bottom-Up vs. Top-Down . 204

7.2 Parallel vs. Serial . 211

7.3 Probabilistic Minimalist Grammars 213

7.4 Matrix Multiplication . 214

References ��� 216

vii

Acknowledgments

I would like to express my sincere thanks to Dr. Ed Stabler for supervising this disser-

tation. His guidance and enthusiasm have been invaluable to me. I also would like to

thank the other members of my committee, Dr. Terry Au, Dr. Ed Keenan, Dr. Anton

Nijholt, and Dr. Carson Schütze, for their interest in my work.

I would like to thank the faculty and my fellow graduate students in UCLA’s Lin-

guistics Department for their contributions to what have been five enjoyable and re-

warding years in Los Angeles, both academically and otherwise.

Finally, I wish to thank my family. I am very grateful for their continued support

and encouragement to pursue my dreams.

viii

Vita

1993 M.S., Computer Science

University of Twente,

Enschede, the Netherlands

1998 M.A., Linguistics,

University of California,

Los Angeles, California

ix

Abstract of the Dissertation

Parsing Minimalist Languages

by

Hendrik Harkema

Doctor of Philosophy in Linguistics

University of California, Los Angeles, 2001

Professor E.P. Stabler, Chair

It seems to be a general feature of natural language that the elements of a sentence can

be pronounced in one position, while at the same time serving a function in another part

of the structure of a sentence. Linguistic theories in the Transformational Generative

Grammar tradition have tried to provide a unified explanation for this observation by

proposing analyses that involve movement of constituents.

The subject of this dissertation is parsing sentences using a grammar formalism that

allows for movement of constituents. The recognizers presented in this dissertation

will recognize languages generated by Minimalist Grammars as defined in [Sta97].

Minimalist Grammars are simple formal grammars based on the Minimalist approach

to linguistic theory ([Cho95]). Minimalist Grammars are derivational and feature-

driven: phrases are derived by applying transformational operations to lexical items

and intermediate structures, and the applicability of the transformational operations is

determined by the syntactic features of the structures involved.

We will show that that the set of languages generated by Multiple Context-Free

Grammars ([SHF91]) is included in the set of languages generated by Minimalist

Grammars. Together with the reverse result in [Mic98], this completes the proof that

Multiple Context-Free Grammars and Minimalist Grammars are weakly equivalent.

x

Minimalist Grammars can move material from positions arbitrarily deep inside a

sentence. Michaelis’ equivalence result ([Mic98]) permits a representation of Mini-

malist Grammars in which the operations of the grammar can be characterized in such

a way that they are strictly local. We will use this representation to derive several poly-

nomial time recognition algorithms for Minimalist Languages, including an Earley-

style recognizer ([Ear68]). Unlike known recognizers for Multiple Context-Free Lan-

guages, the recognizers in this dissertation can handle grammars with empty strings

which are not immediately derived from the start symbol of the grammar. Moreover,

the recognizers will parse a sentence from left to right.

The research reported in this dissertation contributes to a better understanding of

Minimalist Grammars and related formalisms. Also, because Minimalist Grammars

lends themselves very well to expressing current proposals about the kind of structures

found in natural language, the recognizers described in this dissertation can be used

to rigorously explore the computational consequences of psycholinguistic theories of

human sentence processing.

xi

CHAPTER 1

Introduction

It seems to be a general feature of natural language that the elements of a sentence can

be pronounced in one position, while at the same time serving a function in another

part of the structure of a sentence. For example, in sentence 1 the word who appears

at the beginning of the sentence, but it is also the object of the verb love. Sentence 2

shows that, in simple declarative English sentences, the object of a verb occurs to the

right of the verb.

1. Who does Mary love?

2. Mary loves John.

Linguistic theories in the Transformational Generative Grammar tradition have

tried to provide a unified explanation for sentences such as 1 and 2 by proposing anal-

yses that involve movement of constituents. At an abstract level of representation, all

objects are assumed to be to the right of their verbs. Then, if necessary, an object will

move to its surface position in the sentence. According to this analysis, the sentence

in 1 is derived from an abstract structure in which who occupies the same position as

John in sentence 2.

The subject of this dissertation is parsing sentences using a grammar formalism

that allows for movement of constituents. The particular grammars that we will use in

this dissertation are inspired by Chomsky’s Minimalist Program [Cho95]. Parsing is

1

the process of assigning a structure to a sentence, given a grammar of some language

that this sentence does or does not belong to. Of course, if the sentence does not

belong to the language, no (complete) grammatical structure can be assigned to it –

the sentence is ungrammatical.

The present chapter serves as an introduction to the work reported in this disser-

tation. I will first provide the motivation for this work and describe the contributions

of this dissertation. Next, I will outline some earlier approaches to parsing with trans-

formational grammars and introduce some grammar formalisms for which parsing al-

gorithms have been specified and that fall in the same general class of grammars as

the Minimalist Grammars that will be used in this dissertation. Finally, I will briefly

sketch the main challenge of parsing with transformational grammars and the way in

which this challenge will be met in this dissertation.

1.1 Motivation and Contribution

Psycholinguistic research has provided many interesting insights into the way humans

parse natural languages. Most psycholinguistic work is empirical in nature. The psy-

cholinguist selects a set of sentences with grammatical constructions that are predicted

to engage the human sentence processor in a way that will reveal its inner workings,

designs an experiment with these sentences and runs it with a number of human sub-

jects, interprets the results and proposes certain properties that the human sentence

processor should have in order to account for the experimental results. The results of

this approach greatly expand our knowledge about the human sentence processor, but

it sometimes fails to satisfy linguists of a more formal bent, because a mere description

of its properties does not constitute a complete specification of a parser.

In most psycholinguistic proposals, the operations of the parser are only specified

2

insofar as they bear on the natural language constructions being explored. Moreover,

this specification is usually very informal. While the parser works for the set of exam-

ples provided, absence of a description of the overall architecture of the parser leaves

open the question whether a parser with the desired properties covering the entire lan-

guage actually exists. Another drawback of some of the work in psycholinguistics is

that it is sometimes based on simplistic and outdated conceptions of syntactic structure.

For example, Weinberg [Wei99] argues that the operation of the human sentence

processor is based on principles that follow directly from the grammar, rather than

from extra-linguistic considerations such as storage capacity or from frequency of oc-

currence of linguistic structures. She then shows how to interpret the principles em-

bodied in Minimalist Grammars as a parsing algorithm ([Wei99], p. 290):

A derivation proceeds left to right. At each point in the derivation, merge

using the fewest operations needed to check a feature on the category

about to be attached. If merge is not possible, try to insert a trace bound

to some element within the current command path. If neither merger nor

movement is licensed, spell out the command path. Repeat until all termi-

nals are incorporated into the derivation.

Since Merge, Move (“insert a trace bound to some element within the current

command path”) and Spell-Out are just the three grammatical operations available

in Weinberg’s conception of Minimalist Grammars, this is not a very informative set

of instructions.

In this dissertation we will pursue a formal approach to parsing natural languages.

We will start from the Minimalist Grammars introduced in [Sta97], which are a rigor-

ous formalization of the kind of grammars proposed in the framework of the Minimal-

ist Program [Cho95], and then develop several parsing algorithms for these grammars.

3

The advantage of this formal approach is that the parsers actually work – they are

provably sound and complete: they will parse all the sentences of a language and no

others.1 Also, the formal specification of the parsing algorithms allows for a rigorous

study of their computational properties as they relate to the properties of the human

sentence processor.

In chapter 3, I will show that the set of languages generated by Multiple Context-

Free Grammars [SHF91] is included in the set of languages generated by Minimalist

Grammars. Together with Michaelis’ reverse result [Mic98], this completes the proof

that Multiple Context-Free Grammars and Minimalist Grammars are weakly equiva-

lent. Then it follows immediately from earlier results that Minimalist Grammars are

also weakly equivalent to Linear Context-Free Rewriting Systems [VWJ87], Multi-

Component Tree-Adjoining Grammars [Wei88], and Simple Positive Range Concate-

nation Grammars [Bou98]. This is a significant formal result, as it follows that the

properties of the languages generated by the latter class of grammars are now known

to be properties of Minimalist Languages as well, and vice versa. The result presented

in chapter 3 also implies that removing head movement and covert phrasal movement

from Minimalist Grammars does not affect the formalism’s weak generative capacity.

Minimalist Grammars can move material from positions arbitrarily deep inside a

sentence. Michaelis’ equivalence result ([Mic98]) permits a representation of Mini-

malist Grammars in which the operations of the grammar can be characterized in such

a way that they are strictly local. In chapters 4, 5, and 6, I will use this representation

to derive several polynomial time recognition algorithms for Minimalist Languages.

Chapter 4 contains a description of a bottom-up recognizer akin to the CKY algo-

rithm for Context-Free Languages ([You67]). In chapter 5, a top-down recognizer is

developed, with a mechanism for look-ahead. This recognizer has the correct-prefix
�

Formalization entails the abstraction that a language is a set of sentences. A sentence is either in
the language or it is not; there are no degrees of grammaticality.

4

property, meaning that it will stop working on an ungrammatical sentence as soon as it

encounters the left-most word responsible for the ungrammaticality. The recognizers

in chapters 4 and 5 lead up to the first Earley-style recognizer ever to be formulated

for Minimalist Grammars, which will be revealed in chapter 6. Like its canonical

Context-Free counterpart ([Ear68]), the recognizer follows a top-down strategy, but it

is applicable to a wider range of Minimalist Grammars than the top-down recognizer

in chapter 5.

Besides providing a solid basis for modeling psycholinguistic proposals, the parsers

presented in this dissertation will also be relevant for formal approaches to learning

theory, where a learner has to parse new data in order to check whether his current

grammar is complete [Sta98], and for computational models of Optimality Theory,

which use Multiple Context-Free Grammars to describe reduplication [Alb00].

1.2 Transformational Parsing

Minimalist Grammars are not the first kind of grammar to emerge from the Trans-

formational Generative approach to natural language. The succession of linguistic

theories developed within this tradition has been accompanied by a succession of pro-

posals about how to parse languages according to these theories. This section provides

a brief survey of these proposals. The section’s brevity entails some simplifications in

the presentation; for more details the reader is referred to the original works cited in

the text.

1.2.1 Early Work

According to the Standard Theory proposed in [Cho65], the syntactic part of a trans-

formational grammar consists of a base component and a transformational component.

5

The base component contains a set of rewrite rules, usually context-free, which gen-

erate a set of base trees. The transformational rules included in the transformational

component are mappings from trees to trees. Applying the transformational rules in a

prescribed order to a base tree coming out of the base component will produce a surface

tree. The yield of this surface tree is a sentence in the language. A transformational

grammar thus defines a relation between sentences and base trees.

Parsing a sentence using the kind of transformational grammar described above

generally involves the following four steps, cf. [Kin83], [Gri86], [BF95]. First, the

parser will generate a set of possible surface trees for the sentence, using a so-called

covering grammar. Next, the parser will reconstruct a set of possible base trees from

the set of possible surface trees by applying the transformational rules of the grammar

in reverse. After this step, the parser will discard those base trees that cannot actually

be generated by the base component of the grammar. Finally, the parser will feed the

remaining base trees into the transformational component to establish which base trees

can in fact produce the sentence to be parsed. The set of base trees surviving this last

test will be returned by the parser as the result of the parsing process.

Unfortunately, parsers based on this architecture ran into serious computational

problems, because the early versions of transformational grammar were not suffi-

ciently restricted. In fact, Peters and Ritchie [PR73] showed that transformational

grammars are capable of generating recursively enumerable sets. King [Kin83] pro-

vides an overview of the ways in which these computational problems manifested

themselves in early transformational parsing systems. One pervasive problem was

caused by transformational rules that delete material from trees. Applying these rules

in reverse can be very problematic, because the tree to which the reverse transforma-

tional rule is to apply may not always contain enough information to reconstruct the

content and position of the deleted material. Because of these computational problems,

6

early transformational parsers were not considered very successful.

1.2.2 Marcus Parser

In the late 70s and early 80s, Marcus promoted the claim that natural languages, or

at least English, can be parsed in a deterministic fashion. The parser introduced in

[Mar80] illustrates this point. The parser is deterministic in that the structures it builds

will never be undone and will all be part of the structure that is eventually assigned

to the input sentence. Also, at each point in the parsing process, the current state of

the parser uniquely determines the next action of the parser. The state of the parser is

represented by the contents of the active node stack and a buffer, which are the two data

structures maintained by the parser. The active node stack holds incomplete structures

that the parser is presently working on, and the buffer contains a limited number of

look-ahead elements that will be used to resolve local ambiguities. Crucially, the buffer

can contain previously recognized constituents, rather than just the next few words of

the sentence.

According to Marcus, the determinism hypothesis offers an explanation for certain

constraints that are generally obeyed by natural language grammars. An example of

such a constraint is the complex NP constraint, which, simply put, prevents movement

out of a clause within an NP ([Ros67]). This constraint accounts for the ungrammati-

cality of the sentence in 4, for example, which is related to the sentence in 3.

3. Mary believes [��� the rumor [� � that John kissed Sue]].

4. � Who � does Mary believe [��� the rumor [� � that John kissed
�
�]]?

Marcus shows that sentence 4 and similar sentences cannot be parsed determinis-

tically by his parser.

7

The determinism hypothesis also has psycholinguistic relevance: it explains the

occurrence of garden-path sentences. Garden path sentences are sentences which pose

conscious difficulties for the human sentence processor. The classic example of a

garden path sentence is the sentence in 5, from [Bev70], where the human sentence

processor wrongly assumes that raced is the main verb of a verb phrase, rather than a

participle in a reduced relative clause.

5. The horse raced past the barn fell.

Marcus’ parser will break down on some garden path sentences, because the lim-

ited look-ahead causes the parser to make a decision about the structure of the sentence

which later will turn out to be wrong, but its deterministic nature does not allow the

parser to revoke decisions that were made earlier.

One disadvantage of the parser proposed by Marcus is that it suffers from a lack

of formal rigor, which makes it hard to verify the claims made about the parser. For

example, the rules of the grammar are encoded in the operations of the parser. Conse-

quently, it is not obvious to what extent the behavior of the parser is influenced by the

particular grammatical analyses adopted for certain constructions in the language and

what aspects of its behavior follow from the architecture of the parser – see for exam-

ple the discussion in [Sam83]. Since the grammar is not separated from the parser, it is

also not clear what class of languages can be dealt with by the parser. The latter issue

was resolved by Nozohoor-Farshi [Noz86], but the grammars he uses in his formaliza-

tion – context-free grammars augmented with attributes – are rather far removed from

the grammatical descriptions that linguists use.

8

1.2.3 Principle-Based Parsing

In the 80s the Standard Theory and its revised and extended versions evolved into

the theory of Government and Binding ([Cho81], [Cho86]). The construction-specific

and often language-specific rules that were part of earlier versions of Transformational

Generative Grammar were replaced by a single transformational rule – Move � : move

anything anywhere – and a set of abstract principles. The principles are universal

statements about the well-formedness of particular aspects of the structures generated

by the grammar. They play an important role in reigning in the power of Move � .

Government and Binding theory gave rise to the construction of so-called principle-

based parsers (e.g. [BAT91], [Ber91]). The theory of Government and Binding is much

more restrictive than earlier transformational grammars, which helped principle-based

parsers to avoid some of the computational problems facing the first transformational

parsers. The organization of the grammar into one transformational rule and a set of

principles, however, did not make the task of the parser any easier: rather than undoing

specific transformations, the parser now has to concern itself with unraveling complex

interactions between heterogeneous principles of the grammar. This generally makes

principle-based parsers slow and inefficient. Efficiency can be improved by precompi-

lation of the grammar, or “multiplying out” the interactions of the principles, but this

will make the parser less faithful to the original grammar. A principled approach to

precompilation is explored in [Mer95].

1.3 Beyond Context-Free Languages

It is generally assumed that Context-Free Grammars are inadequate for describing the

syntax of natural languages. Shieber has shown that Swiss German has a construction

involving cross-serial dependencies which go beyond the weak expressive power of

9

context-free grammars [Shi85]. No context-free grammar can generate all and only

the right sequences of words for this construction. Dutch has a similar construction. It

falls within the weak generative capacity of context-free grammars, but it is out of the

reach of context-free grammars in the strong sense: while a context-free grammar can

generate the right sequences of words, it cannot assign the linguistically appropriate

structural description to this construction [BKP82].

Even if it appears that most natural languages do not have non-context-free con-

structions, linguistic practice shows that non-context-free descriptions are able to cap-

ture linguistic generalizations more succinctly than context-free ones. This is not just

a matter of elegance; the cumbersomeness of context-free descriptions of natural lan-

guage reduces their psycholinguistic appeal [Sta92].

Interest in the construction of compilers for context-free programming languages

has generated an extensive body of work concerning parsing methods for context-free

grammars, summarized in for example [AU72] and [ASU86]. In comparison, the field

of non-context-free parsing is much less developed. Most of the investigations into

non-context-free parsing have concentrated on languages generated by mildly context-

sensitive grammar formalisms. These formalisms were first described in [Jos85] and

studied later in more detail in [Wei88] and [JVW91].

Mildly context-sensitive grammars are characterized by the following three prop-

erties: 1) they are slightly more expressive than context-free grammars, weakly as

well as strongly, 2) the languages they generate are parsable in polynomial time, and

3) they exhibit the constant growth property. The latter property rules out grammars

that generate languages with linguistically unattested, non-linear patterns such as ����� ,

��� 1. These three properties of mildly context-sensitive grammar formalisms make

them suitable candidates for the description of natural language. Following below is

an overview of two mildly context-free grammar formalisms for which parsing meth-

10

ods have been developed: Linear Indexed Grammars and Tree Adjoining Grammars.

The formalisms are introduced rather informally; formal definitions can be found in

the referenced materials. The Minimalist Grammars to be introduced in chapter 2 of

this dissertation have more expressive power than Linear Indexed Grammars and Tree

Adjoining Grammars: the former kind of grammar generates languages that cannot

be generated by either of the latter kind of grammar, cf. [Sta97] and chapter 3 of this

dissertation.

1.3.1 Linear Indexed Grammars

Linear Indexed Grammars are a specialization of Indexed Grammars [Aho68]. Indexed

Grammars are like Context-Free Grammars, except that the non-terminal symbols of

the grammar can be associated with stacks of indices. The unbounded nature of these

stacks gives Indexed Grammars more power than Context-Free Grammars.

Linear Indexed Grammars are Indexed Grammars whose rules obey a restriction

introduced in [Gaz88]: the stack associated with the non-terminal symbol of the left-

hand side of any rule is passed on to just one non-terminal symbol in the right-hand

side of the rule, rather than copied onto all non-terminal symbols of the right-hand

side, as in a Indexed Grammar.

The rules of a Linear Indexed Grammar can be grouped into “copy”, “pop and

copy”, and “push and copy” rules. In the first kind of rule, the stack of indices asso-

ciated with the non-terminal symbol of the left-hand side of the rule is copied intact

onto the designated non-terminal symbol of the right-hand side of the rule, as in rule

6 below, for example.2 The second kind of rule copies the stack of the left side of the
�

Some notational conventions: non-terminal symbols are written in uppercase and terminal symbols
are written in lowercase. Stacks are represented as sequences of lower case letters enclosed in square
brackets, the top of the stack on the left. [] denotes the empty stack, and a stack with arbitrary content
is written as [. . .].

11

rule onto the designated non-terminal symbol on the right, but only after its top-most

symbol has been popped off; see rule 7, for example. The last kind of rule pushes a

new index onto the stack provided by the left-hand symbol, and copies the result onto

the designated non-terminal symbol on the right; rule 8 is an example.

6. A[i, j, k] � a B[i, j, k] c D[] e.

7. A[i, j, k] � B[] C[j, k].

8. A[j, k] � a B[i, j, k] c D[].

If the right-hand side of a rule does not contain any non-terminal symbols, the stack

of the left-hand side of the rule is lost, e.g., A[i, j, k] � a b c. All derivations start

from the distinguished start symbol S associated with an empty stack.

The grammar with the rules given in 9 through 12 is a Linear Indexed Grammar

generating the non-context-free language L =
� ���������	��
 � � 0 � .

9. S[. . .] � a S[i, . . .] c.

10. S[. . .] � T[. . .].

11. T[i, . . .] � b T[. . .].

12. T[] ��
 .

The tree of the sentence aabbcc as it is generated by the grammar given above is

given in 13.

12

13. S[]

a S[i]

a S[i, i]

T[i, i]

b T[i]

b T[]

�

c

c

Parsers for Linear Indexed Grammars can be found in for example [VW91], [VW93],

[Bou96], and [AGV00]. The formulation of the various parsers depends on the context-

freeness property of Linear Indexed Grammars. This property allows for an efficient

representation of the unbounded stacks of indices for the purposes of parsing [VW93].

1.3.2 Tree Adjoining Grammars

Tree Adjoining Grammars were introduced in [JLT75], and are elaborated and dis-

cussed in [Jos85], [JVW91], [JS97], and elsewhere. Tree Adjoining Grammars handle

trees rather than strings, and they are more powerful than Context-Free Grammars.

The formal properties of Tree Adjoining Grammars gave rise to the characterization of

the class of mildly context-sensitive grammars in [Jos85].

A Tree Adjoining Grammar is specified by a set of initial trees and a set of auxiliary

trees. An initial tree is a tree whose root node is labeled with the distinguished start

symbol S and all its leaves are labeled with terminal symbols. An auxiliary tree is a

tree all of whose leaves are labeled with terminal symbols, except for one – this leaf,

called the foot node, is labeled with a non-terminal symbol which coincides with the

label of the root of the tree. New trees are derived from these two sets of trees by

13

recursively adjoining auxiliary trees to initial trees. The operation of adjunction is

defined as follows. Let � be a tree with a node � labeled X, let � be an auxiliary tree

whose root and foot node are labeled X, and let � represent the subtree of � dominated

by � . Then the adjunction of � to � at � is a tree ��� which is obtained in the following

way:

14. Remove subtree � from � , but leave a copy of � .

15. Insert auxiliary tree � at node � in what is left of � .

16. Attach subtree � to the foot node of � .

The trees in 17 illustrate these three steps.

The application of adjunction can be constrained by specifying for each node of a

tree what auxiliary trees can be adjoined to that node, if any. A node can also be marked

for obligatory adjunction, which requires that an auxiliary tree from some specified set

must adjoin to that node [Jos87].

17. � :

X

S � : X

X

��� :

X

S

X

The language generated by a Tree Adjoining Grammar is the set of yields of the

trees that can be derived from the set of initial trees via adjunction.3 Thus, the Tree

Adjoining Grammar with the single initial tree given in 18 and the single auxiliary
�
Current versions of Tree Adjoining Grammars also have a substitution operation, which replaces a

leaf of a tree by another tree, but adding this operation does not change the formal properties of Tree
Adjoining Grammars [JS97].

14

tree given in 19 generates the language L =
� � � � � � �
 � � 0 � . In the trees, a node

annotated with NA is subject to the adjunction constraint preventing any auxiliary tree

from adjoining to that node. (Language L cannot be generated by a Tree Adjoining

Grammar without adjunction constraints.)

18. S

�

19. S ���

a S

b S ��� c

The tree in 20 for the sentence aabbcc is produced by adjoining the auxiliary tree

in 19 to the only node that is available for adjunction in the initial tree in 18, and

adjoining another copy of the auxiliary tree in 19 at the unconstrained S node in the

tree resulting from the first adjunction.

20. S ���

a S ���

a S

b S ���

b S ���

�

c

c

Tree Adjoining Grammars are weakly equivalent to Linear Indexed Grammars

[Vij87]. Consequently, some parsers for Tree Adjoining Grammars first transform

the Tree Adjoining Grammar into an equivalent Linear Indexed Grammar and then use

15

the latter grammar to parse the input sentence. This approach underlies the Tree Ad-

joining parsers presented in [VW91], [VW93], and [SS94], for example. The parsers

formulated in [JS97] and [Ned99] use Tree Adjoining Grammars directly.

1.4 Parsing Minimalist Languages

The main challenge of parsing Minimalist Languages is to keep track of the antecedent-

trace relations induced by constituents that move. A very straightforward book-keeping

mechanism is the use of special registers for storing moved elements, as implemented

in Augmented Transition Networks [Woo70]. For example, when the parser encoun-

ters a ��� -phrase in a sentence, it will load it into a register, and unload it when it

reaches a position in the sentence where the ��� -phrase could have moved from, thus

establishing the relation between a trace and its antecedent.

Obviously, the approach with registers is only adequate for antecedents that pre-

cede their traces. In Minimalist Grammars, antecedents may follow their traces in a

sentence, because these grammars allow remnant movement. Remnant movement is

movement of a constituent that remains after some other constituent has moved out of

it. In [Mah00], the basic subject-verb-object order of simple English sentences is de-

rived by moving the verb phrase to a specifier of the inflectional head I. For the object

to end up to the right of I in a sentence, it must leave the verb phrase before this phrase

will move. Thus, when the verb phrase moves, it is no longer a complete constituent.

This approach is illustrated in the tree in 21, for the sentence Titus praises Lavinia.

16

21. CP

C IP

DP �
Titus

IP

VP �

V

praise

���
I �

I

-s

PredP

� � PredP

DP
�

Lavinia

Pred �

Pred
� �

As a result of remnant movement, the trace
���

precedes its antecedent DP
�
. When

the parser reaches the word Lavinia, it can posit a displaced determiner phrase and

store it in a register, but the register will never be emptied, because the determiner

phrase’s trace has already passed.

Monostratal grammar formalisms such as Generalized Phrase Structure Grammar

[GPS85] use a similar mechanism to deal with displaced elements. Displacements

are encoded in so-called slash categories. A slash category denotes a category from

which another category is missing. For example, using WH as the category of ��� -

phrases, IP/WH stands for a constituent of category IP from which a ��� -phrase has

moved. The slash categories in the phrase structure rules 22, 23, 24, and 25 describe

the displacement of a ��� -phrase from the object position of a transitive verb to the

beginning of a sentence.4 Rules 22, 23, and 24 are derived from the independently

existing rules S � IP, IP � DP VP, and VP � � V � DP; rule 25 is a new rule. Rule

22 states that a sentence consists of a ��� -phrase followed by an IP from which a ��� -

phrase is missing. Rules 23 and 24 pass the missing ��� -phrase on to the object of the
�
These simple rules ignore ‘do’-support and inversion in 	�
 -questions and the subtleties of the

analysis represented in tree 21.

17

transitive verb phrase. The slash is terminated in rule 25: a DP lacking a DP amounts

to the empty string.

22. S � WH IP/WH.

23. IP/WH � DP VP/WH.

24. VP � � V � DP/DP.

25. DP/DP � ��
 .

Using the rules in 22 through 25, a parser will be able to recognize a sentence

with a displaced ��� -phrase in a bottom-up or a top-down manner, or in any other

well-defined way.

GPSG does not support remnant movement. The grammar formalism does not

provide the means to refer to complex categories such as PredP/(VP/DP) – this would

be a category missing a category which itself lacks another category – nor the means

to derive the rules needed to rewrite these categories. For the particular tree in 21

it may be possible to extend the formalism to generate the required categories and

rules, but this will not be possible in general because of the limited power of the slash

category mechanism. Implementing slash categories with stacks will give us the power

of Linear Indexed Grammars, but Minimalist Grammars are more expressive than these

grammars ([Sta97]).

Rather than using special registers or trying to extend the employment of slash

categories, Michaelis’ equivalence result ([Mic98]) suggests we adopt a chain-based

perspective on Minimalist Languages as explored in [Cor99] and [Sta01a] to tackle the

parsing problem for Minimalist Grammars. A constituent that moves plays a role at

more than one place in the structure of a sentence. A chain represents this distribution

of grammatical import. Consider, for example, the chain (DP
�
,
� �

) in tree 21 which is

18

associated with the lexical item Lavinia. The element
� �

reflects the fact that Lavinia

is a DP because it can occur as the complement of the verb praise, which selects

for determiner phrases. The element DP
�

of the chain (DP
�
,
� �

) occurs in a different

position because Lavinia is an item which needs case. Assuming that case is assigned

in the specifier position of a Predicate Phrase, this element must occur in that particular

position. Note that the chain (DP
�
,
� �

) is neutral as to the order of the trace and the

antecedent. The lexical item Lavinia has two grammatical properties, both of which

have to be reckoned with in a sentence.

Chains of the kind described above can be thought of as the primitive objects of

Minimalist Grammars. According to this perspective, deriving a sentence amounts to

assembling chains into a tree by connecting their elements. For example, the second

element of the chain (DP
�
,
� �

) will be attached as the sister of the verb praise to form

a VP, which itself is part of the chain (VP � ,
�

�). The resulting structure, given in 26, is

a non-concatenated or discontinuous constituent.5

The dangling DP
�

Lavinia will eventually be attached in the specifier position of

the predicate phrase, which is to the right of the inflectional head I. The verb phrase

VP � dominating verb V and trace
� �

will end up in a specifier position to the left of I.

Hence, in the sentence the inflectional element - � will intervene between praise and

Lavinia.

26.
�

� �

� DP
�

Lavinia

VP �

V
praise

� �

The operations that combine chains turn out to be context-free, since the applica-

bility of an operation only depends on the particular elements of the chains which are
�

In fact, the strings praise and Lavinia are the ‘multiple’ yields of the verb phrase in Michaelis’
equivalent Multiple Context-Free Grammar.

19

involved in the operation and no other elements, and every grammar makes available

only a finite number of different types of chains. This fact allows us to adapt well-know

techniques for context-free parsing and apply them to parsing Minimalist Languages.

These adaptations, however, are not trivial, because unlike Context-Free Grammars,

Minimalist Grammars can generate discontinuous constituents.

1.5 Overview of the Dissertation

In this chapter we have motivated and sketched the context of the work reported in this

dissertation. In the next chapter we will introduce the formal definitions for Minimalist

Grammars. Chapter 3 will fix the position of Minimalist Grammars in the hierarchy of

formal languages. The next three chapters are devoted to the descriptions of bottom-

up, top-down, and Earley-style parsers for Minimalist Grammars. The dissertation will

close with some conclusions and directions for future investigations.

20

CHAPTER 2

Minimalist Grammars

The recognizers presented in this dissertation will recognize languages generated by

Minimalist Grammars as defined in [Sta97]. In this chapter, in section 2.2, we will in-

troduce these grammars. Minimalist Grammars are a rigorous formalization of the kind

of grammars proposed in the framework of Chomsky’s Minimalist Program [Cho95],

which will be outlined very briefly in section 2.1. Section 2.5 contains an overview of

some other recent formal approaches to the Minimalist Program and Transformational

Grammar in general.

2.1 Minimalist Program

In the theory of Government and Binding, the transformational rule Move � applies

freely to d-structures assembled according to the X � rewrite rules. Many of the result-

ing representations are not well-formed; they are ruled out by other principles of the

grammar. In the transition from the theory of Government and Binding to Minimalism

[Cho95], attention shifted away from the formulation of conditions acting as filters

on derivations and representations to an explicit specification of the generative proce-

dure itself, which embodies some of the conditions on well-formedness. In minimalist

grammars, Move � and the X � rewrite rules have been replaced by the structure build-

ing operations Merge and Move. Merge is an operation combining two trees into one,

and Move is for displacing elements within a tree.

21

The grammatical module is assumed to interface with two other cognitive mod-

ules: the Articulatory-Perceptual module and the Conceptual-Intentional module. The

principle of Full Interpretation requires that the representations delivered to these in-

terfaces by the grammatical module, Phonetic Form and Logical Form respectively,

must only contain symbols interpretable by these external modules. Hence, uninter-

pretable grammatical features in a representation must be deleted during a derivation.

A feature is deleted when it enters into a checking configuration with a head which has

a matching feature. These checking configurations are created by the operation Move.

To account for differing word orders between languages, a distinction is made be-

tween weak features and strong features. Deleting strong features will cause an entire

head or phrase to be moved into a checking configuration, including its phonetic fea-

tures. This movement is overt, because it is reflected in the Phonetic Form. In the case

of weak features, only the syntactic features will be moved; the phonetic features are

left behind. This is referred to as covert movement. Features that are strong in one

language, may be weak in another, and vice versa.

For a more comprehensive overview of the Minimalist Program and recent devel-

opments, the reader may consult [Cho95], [Cho00], [Cho01], [AET96], and [EH99],

for example.

2.2 Derivational Minimalism

The Minimalist Grammars presented in this section, originally defined in [Sta97] are

simple formal grammars based on the Minimalist approach to linguistic theory. Mini-

malist Grammars are derivational and feature-driven: phrases are derived by applying

transformational operations to lexical items and intermediate structures, and the ap-

plicability of the transformational operations is determined by the syntactic features

22

of the structures involved. The description of Minimalist Grammars in this chapter is

based on [Sta97]. Formal definitions can be found there, and also in section 3.1 in the

next chapter of this dissertation. Other explorations of Minimalist Grammars include

[Cor99], [LR99], [Sta99], [SK00], [Har01], and [Mic01a].

2.2.1 Minimalist Grammars

Minimalist Grammars generate trees. In accordance with the minimalist imperative,

these trees are bare structures, as the tree in 1, for example. Rather than labeling

intermediate projections with a copy of the label of the head and a bar level, cf. the

traditional notation of trees in 2, intermediate projections are identified by a pointer

pointing to the head of the projection. Thus, the structure in 1 is a projection of X,

because the pointers lead to a head labeled X.

1. �

�

X

2. XP

X �

X

In a tree, a projection of a head X is maximal if the node immediately dominating

the root of the projection is a projection of a head other than X, or if there is no node

immediately dominating the root of the projection. For example, in the tree given in

3, the subtree whose root is labeled 2 is a maximal projection of head Y, because the

node labeled 1 immediately dominating node 2 is a projection of head X. Similarly,

the subtree with the root node labeled 5 is a maximal projection of head Z. The node

labeled 4 is not the root of any maximal projection, because node 2 is a projection of

23

head Y, as is node 4.1

3. �
, 1

�
, 2

�
, 4

�
, 6

Y

�
, 3

X
�

, 5

Z

A maximal projection is the complement of a head X if the node immediately dom-

inating the root of the maximal projection is a projection of head X and the maximal

projection follows head X. In tree 3, for example, the maximal projection of head Z is

a complement of head X.2

A maximal projection is a specifier of a head X if the node immediately dominating

the root of the maximal projection is a projection of head X and the maximal projection

precedes head X. In tree 3, the maximal projection of head Y is a specifier of head X,

for example. A head can have any number of specifiers.3

�

The nodes in the tree are numbered for illustrational purposes only; these number have no gram-
matical significance.

�

The tree in 4 has two complement positions, but left-branching trees of this kind cannot be built by
the structure building operations Merge and Move, as will follow from the definition of these functions
in section 2.2.1.3.

4. �

�

X

�
It can be shown, however, that the language generated by a Minimalist Grammar allowing multiple

specifiers per head can also be generated by a Minimalist Grammar with at most one specifier per head
([Sta99], [KK01], [Mic01b]).

24

2.2.1.1 Features

A Minimalist Grammar is given by a set of features, a lexicon, and two structure build-

ing functions. There are three kinds of features: syntactic features, phonetic features,

and semantic features. The syntactic features determine how the structure building

functions will apply to the lexical items and the trees derived from these. The syn-

tactic features can be subdivided into category features, selection features, licensor

features, and licensee features. Category features are used to identify the syntactic

category of heads, e.g. c for complementizer, i for inflection, d for determiner, n for

noun, etc. For each category feature there is a corresponding selection feature, written

as ‘=’ followed by a category feature. Verbs, for example, may have a selection fea-

ture =d, indicating that they combine with a projection of a head of category d, i.e., a

determiner phrase. The licensor and licensee features play a role in movement. For ex-

ample, a determiner phrase that needs to be assigned abstract case will have a licensee

feature -case and a case-assigning head will have the corresponding licensor feature

+case. Another linguistic example of a pair of licensor and licensee features is +wh,

-wh. The heads of ��� -phrases have the feature -wh. Assuming that ��� -phrases move

to the specifier position of a complementizer phrase, the heads of these phrases will

have the feature +wh.

Semantic features are relevant for the semantic interpretation of phrases. The pro-

nounceable aspect of a phrase is represented by a sequence of phonetic features. Since

this dissertation is about syntactic parsing, we will not discuss the use of semantic fea-

tures here. Also, for our purposes, the phonetic features can simply be thought of as

strings over some alphabet, which roughly correspond to words.

25

2.2.1.2 Lexicon

The lexicon consists of a finite set of lexical items, where each lexical item is a se-

quence of features. For example, the lexical item for the determiner every may look

like =n d -case / ������� / EVERY. The first three features are syntactic features, / ������� /

is the sequence of phonetic features for the word every, and EVERY stands for the se-

mantic interpretation of the determiner every. It follows from the syntactic features of

this lexical item that the determiner every selects a projection of a head of category n,

that is, a noun phrase, that the head of the resulting phrase is of category d, that is,

the resulting phrase is a determiner phrase, and that this phrase needs to be assigned

abstract case. Throughout this dissertation, except in section 2.4, we will ignore the

semantic features of a lexical item and use the orthographic representation of a word

to stand for its phonetic features. So, we write =n d -case every instead of =n d

-case / ������� / EVERY. As another example, a complementizer whose projection hosts

a ��� -phrase may be represented by the lexical item =t +wh c
 . This lexical item

selects a tensed phrase, attracts a ��� -phrase, thus projects a phrase of category c, and

it is phonologically empty, i.e., it corresponds to the empty word
 .

2.2.1.3 Structure Building Functions

The two structure building functions available in a Minimalist Grammar are merge and

move. New trees are constructed from other trees by either merging two trees into one,

or by moving a subtree within a tree. Applications of the functions merge and move

are triggered only by the syntactic features occurring in a tree.

Merge can apply in two ways, illustrated in 5 and 6 below. In the first situation,

depicted in 5, the left-most feature of the verb kiss is the selection feature =d, indicat-

ing that kiss wants to select a determiner phrase. The left-most feature of the tree for

26

every girl is the category feature d, meaning that this structure is a determiner phrase.

Since the selection feature =d and the category feature d match, the structure building

function merge will apply to these two trees. It will produce a new tree in which the

tree for every girl is attached as a complement to the verb kiss. The features triggering

merge, =d and d, are deleted.

5. =d vt -v kiss, �

d -case

every

girl

��
�

vt -v

kiss

�

-case

every

girl

In the second situation, exemplified in 6, the left-most feature of the tree on the left

is the selection feature =d, indicating that this tree wants to select a determiner phrase.

The left-most feature of the determiner phrase Titus is the category feature d, implying

that this simple tree is indeed a determiner phrase. The selection feature =d and the

category feature d match and the structure building function merge will apply to these

two trees. Since the complement position of the tree on the left is already occupied by

a verb phrase, Titus will be attached as a specifier to this tree, which already has one

specifier.4 The features triggering merge, =d and d, are deleted.

6. �

Lavinia
�

=d pred

�

�

-v

praise

�

, d -k Titus ��
�

-k

Titus

�

Lavinia
�

pred

�

�

-v

praise

�

�
Formally, the notions ‘specifier’ and ‘complement’ are defined with regard to the head of a tree.

We will use ‘specifier of a tree’ and ‘complement of a tree’ to mean ‘specifier of the head of a tree’ and
‘complement of the head of a tree’.

27

Whether merge will attach the selected tree as a complement or as a specifier of

the selecting tree depends on whether the latter tree is simple or complex. A tree that

consists of just one node is a simple tree. Its complement position is available and

will be filled by the tree selected for. A tree that has more than one node is a complex

tree. Its complement position is already filled, so the selected tree will be attached as a

specifier. Note that it follows from this specification of the structure building function

merge that any derived tree can have at most one complement, but any number of

specifiers. It does not matter for merge whether the tree that is selected is simple or

complex.

The structure building function merge is formally defined as follows. A pair of

trees � � and � � is in the domain of merge if the left-most feature of the head of � � is =x

and the left-most feature of the head of � � is x. Then,

merge(� � , � �) = �

� �� � ��

if � � is simple, and

merge(� � , � �) = �

� �� � ��

if � � is complex,

where � �� is like � � except that feature =x is deleted, and � �� is like � � except that

feature x is deleted.

If the left-most feature of the head of a tree is a licensor feature, and the tree

contains another head whose left-most feature is a matching licensee feature, then the

structure building function move will apply to this tree. An example is provided in 7.

The licensee feature -wh of the head of the ��� -phrase which car matches the licensor

feature +wh on the head of the entire tree. The ��� -phrase moves to a specifier position

28

of the head possessing the licensor feature, leaving behind an empty node
�
. The two

features triggering the application of move, +wh and -wh, are deleted.

7. �

+wh c
�

Titus
�

bought
�

-wh

which

car

��
�

�

which car

�

c
�

Titus
�

bought
�

Movement is subject to the Shortest Movement Constraint: the structure building

function move will not apply to a tree which has more than one head whose left-most

feature is a licensee feature matching the licensor feature of the head of the tree, as

schematically represented in 8.

8. �

+f.

-f.

-f.

In the situation depicted in 8, the subtrees with the -f feature want to move to

the same position, but moving any one subtree to that position will deprive the other

subtree of its shortest move, as it will now have to move to the specifier of some higher

head which has the licensee feature +f.5
�

The Shortest Movement Constraint formulated in [Sta97] is a rather strong condition. If the head
of the tree in 8 has two +f features, both subtrees could move to become specifiers of the same head,
which would make both moves equally short from a linguistic point of view. However, under the current
version of the Shortest Movement Constraint, the tree given in 8 is not in the domain of the function
move, so no movements will take place.

29

Formally, a tree � is in the domain of the structure building function move if the

left-most feature of the head of � is +y and � has exactly one maximal subtree � � the

left-most feature of the head of which is -y. Then,

move(�) = �

� �� � �

where � �� is like � � except that feature -y is deleted, and � � is like � except that

feature +y is deleted and subtree � � is replaced by a single node without features.

2.2.1.4 Language

The set of trees CL(G) generated by a Minimalist Grammar G is the closure of the

lexicon under the structure building functions merge and move, i.e., CL(G) is formed

by applying the structure building functions merge and move in all possible ways to

the items in the lexicon and the intermediate trees derived from these, as in the general

framework of [KS96].

Assuming that a sentence is a projection of a head of category c, a complete tree

is defined to be a tree without any syntactic features, except for the feature c, which

must be labeling the head of the tree.

Now the language L(G) derivable by a Minimalist Grammar G consists of the

yields of the complete trees in the set CL(G), where the yield of a tree is the con-

catenation of the phonetic features appearing at the leaves of the tree, ordered from

left to right as in the tree. Hence, specifiers will precede their heads, which in turn will

precede their complement, as in [Kay94]. However, in Minimalist Grammars this is

not a matter of asymmetric c-command.

Note that the Minimalist Grammars introduced above only allow for overt phrasal

30

movement – all licensee features are strong features. Heads do not move and there is

no covert phrasal movement.6 The extensions required to model the latter two kinds

of movement will be covered in section 2.4.

2.3 Examples

This section contains two examples of Minimalist Grammars and the languages they

generate.

2.3.1 Linguistic Example

The tree in 9, repeated from section 1.4 in the previous chapter, illustrates a proposal

by Mahajan [Mah00] regarding the derivation of sentences exhibiting an SVO order

without resorting to (covert) head movement. Rather than moving V to I, the VP will

move (overtly) to a specifier of I, but only after the object DP has left the VP.
�

Head movement generally refers to overt movement of a head. In the merge operation defined
above, the head of a selected phrase may be seen to move covertly to the head of the selecting phrase:
the category feature of the head of the selected phrase will move and cancel, but its phonetic features do
not move. Thus, a selection feature =x can be thought of as a weak head feature.

31

9. CP

C IP

DP �
Titus

IP

VP �

V

praise

���
I �

I

-s

PredP

� � PredP

DP
�

Lavinia

Pred �

Pred
� �

This analysis can be modeled with a Minimalist Grammar whose lexicon contains

the following six lexical items:

10. d -k Lavinia

11. d -k Titus

12. =d vt -v praise

13. =pred +v +k i s

14. =i c

15. =vt +k =d pred

These lexical items participate in the following derivation. First, the lexical item

=d vt -v praise will merge with the lexical item d -k Lavinia to form the verb phrase

given in 16.

16. �

vt -v

praise

-k

Lavinia

32

This verb phrase is then selected by the lexical item =vt +k =d pred. The result

will be the following tree:

17. �

+k =d pred

�

�

-v

praise

-k

Lavinia

In the next step, the object Lavinia will move out of the verb phrase, creating a

remnant verb phrase which will move in a later step of the derivation.

18. �

Lavinia
�

=d pred

�

�

-v

praise

�

The tree in 18 will select the lexical item d -k Titus. This will produce the tree

given in 19.

19. �

-k

Titus

�

Lavinia
�

pred

�

�

-v

praise

�

The tree in 19 will be merged with the lexical item =pred +v +k i s, resulting in

the tree in 20.

33

20. �

+v +k i

s

�

-k

Titus

�

Lavinia
�

� �

-v

praise

�

Next, the remnant verb phrase will move to a specifier of the inflectional head.

21. �

�

praise
�

�

+k i

s

�

-k

Titus

�

Lavinia
�

�
�

The pair of features +k and -k in the tree in 21 will trigger another application of

move, which will yield the tree in 22.

22. �

Titus
�

�

praise
�

�

i

s

�

� �

Lavinia
�

�
�

34

Finally, the tree in 22 will be selected by the lexical item =i c
 . The result of this

final merge is the tree in 23.

23. �

c

�

�

Titus
�

�

praise
�

�

s
�

� �

Lavinia
�

�
�

The tree in 23 contains only one unchecked feature, namely c, and this feature

labels the head of the tree. Hence, the tree in 23 is a complete tree. We have thus

established that the yield of this tree,
 Titus praise s Lavinia
 , i.e., Titus praises

Lavinia, is a sentence in the language generated by the grammar given by the lexical

items in 10 through 15 above.

Note that the total number of features occurring in the lexical items involved in

the derivation of the sentence Titus praises Lavinia is 17. Therefore, the derivation of

the tree in 23 takes exactly 8 steps, for each application of merge and move removes 2

features and the tree in 23 has one single feature left.

Note also that the lexical items of the grammar are concise representations of,

possibly one-membered, chains, as mentioned in section 1.4 in the previous chapter.

The foot of the chain is formed by the category feature of the lexical item, and every

licensee feature adds another link to the chain.

35

2.3.2 Abstract Example

A Minimalist Grammar with the following eight lexical items generates the abstract

language L =
� � � � � � �
 � � 0 � . This language is not context-free.

24. c

25. =a +d +b +a c

26. =b a -a a

27. =d b -b b

28. d -d d

29. =b +a a -a a

30. =d +b b -b b

31. =a +d d -d d

Below are some steps of the derivation of the sentence a � b � d � . The grammar will

“roll up” structures: a head of category a, which contributes one a to a sentence, will

select a structure with � contiguous b’s, � contiguous d’s, and ����� contiguous a’s,

and move the tail of the structure containing the ����� contiguous a’s to its specifier,

thus creating a structure with � contiguous a’s, � contiguous b’s, and � contiguous d’s.

The heads of category b and d have a similar effect.

Thus, after combining lexical items 27 and 28 into tree 32 and combining lexical

item 26 and tree 32 into tree 33, tree 33 is selected by the lexical item =a +d d -d d

which contributes one d and will move the lower d to its specifier. The tree resulting

from this merge and move is given in 35.

36

32. �

b -b

b

-d

d

33. �

a -a

a

�

-b

b

-d

d

34. �

+d d -d

d

�

-a

a

�

-b

b

-d

d

35. �

d
�

d -d

d

�

-a

a

�

-b

b

�

Selection of the tree in 35 by the lexical item =d +b b -b b will add one b and pull

up the other b from below – see the tree in 36. Note that it is essential for the roll-up

approach that the d’s move out of the projection of the lower head -b b before this

projection will move itself. The latter movement is an instance of remnant movement,

because the structure that is moving contains an empty node left behind by an earlier

move operation.

37

36. �

�

b
�

�

b -b

b

�

d
�

-d

d

�

-a

a

�

Lexical item 30 will roll up the tree in 36, producing the tree in 37.

37. �

�

a
�

�

a -a

a

�

�

b
�

�

-b

b

�

d
�

-d

d

�

The tree in 37 is selected by the lexical item =a +d +b +a c
 . The move opera-

tions triggered by the sequence of licensor features +d +b +a and their corresponding

licensee features in the tree in 37 will lead to the tree in 38. This is a complete tree

with yield � � � � � � .

38

38. �

�

�

a
�

�

a
�

�

�

�

b
�

�

b
�

�

�

d
�

d
�

c

�

It is easy to see how this grammar for the language with tree counting dependencies

can be extended to cover any number of counting dependencies. This shows that Min-

imalist Grammars are more expressive than Tree Adjoining Grammars and equivalent

grammars, because those grammars can handle at most four counting dependencies

[VW94]. It appears that Minimalist Grammars derive their greater expressive power

from the mechanism of remnant movement [Sta99].

2.4 Head Movement and Covert Movement

The Minimalist Grammars defined in section 2.2.1 do not include provisions for head

movement or covert phrasal movement. In the following two sections we will show

how these two additional kinds of movement can be incorporated into Minimalist

Grammars, following the original definition in [Sta97].

2.4.1 Head Movement

The reputation of head movement in linguistic theory is not entirely undisputed, e.g. [Cho01],

[Mah00], and [KS00]. It is clearly unappealing to have a theory with two kinds of

movement – phrasal movement and head movement. Head movement would be the

first to go, because this kind of movement does not satisfy the Extension Principle, by

39

which Merge and Move operations must add another projection level to the projection

which is targeted by these operations. Moving a phrase to a specifier position adds

another projection level, but adjoining a head to another head does not, as observed

in [GO96] and elsewhere. For example, moving a verb phrase to a specifier of I, as

in 39, adds an IP level to the projection of I. However, adjoining a verbal head to an

agreement head does not extend the projection of the latter head, as shown in 40.

39. Movement of VP to [Spec, IP]:

[� � I [. . . [��� . . .]]] � [��� [��� . . .] � [� � I [. . .
�

�]]]

40. Adjunction of V to Agr:

[�
	�� � Agr [��� . . . V . . .]] � [�
	
� � [�
	
� V � Agr] [��� . . .
�

� . . .]]

Proposals that abandon head movement or greatly reduce its role can be found in

[KS00] and [Mah00], for example.

Besides the theoretical problem with the Extension Principle, there is also the for-

mal result in chapter 3 of this dissertation, which implies that adding head movement

to the Minimalist Grammars defined in section 2.2.1 does not increase the weak gen-

erative power of the formalism. This means that all sentences that can be derived

with head movement can also be derived without head movement, albeit with slightly

different structures.

To accommodate head movement in Minimalist Grammars, two additional selec-

tion features are introduced, =X and X=, where x is a category feature. When a head

with a feature =X or X= selects a tree of category x, the phonetic features of the head of

the latter tree will move to the head that selected the tree. Only the phonetic features

of the head of the selected tree will move; the semantic features and any remaining

40

syntactic features will be left behind.7 Thus, the selection features =X and X= can be

thought of as strong head features.8 Features =X and X= differ with regard to whether

the phonetic features of the head that moves are prefixed or suffixed to the selecting

head. A simple example of head movement with left adjunction is given in 41, where

the verb make strongly selects the determiner phrase tortilla. If the lexical item for

make were =D =d v make, the resulting structure would be the same, except that the

phonetic form of the head would be /make tortilla/ rather than /tortilla make/.9

41. D= =d v /make/ MAKE, d /tortilla/ TORTILLA
��

�

=d v

/tortilla make/

MAKE

-

-

TORTILLA

Another example of head movement is given in 42.

42. V= v ����� /-ing/ ING, �

v

/eat/

EAT

-

/pancakes/

PANCAKES

��
�

v ���	�

/eat-ing/

ING

�

-

-

EAT

-

/pancakes/

PANCAKES

To include head movement, the formal definition of the structure building function

merge given in section 2.2.1.3 is extended in the following way. A pair of trees � � and

� � is in the domain of merge if the left-most feature of the head of � � is =x, =X or X=,

and the left-most feature of the head of � � is x. If the left-most feature of the head of

� � is =X or X=, � � must be a head, i.e. a simple tree.10

For that reason, we will write phonetic and semantic features separately in the examples to follow.

To simplify matters, the phonetic features of a phonologically non-empty word or phrase are given by
the orthographic form of the element enclosed in slashes.�

Compare footnote 6.�
The dashes in the trees indicate absence of features of a particular kind and only serve to increase

readability.
��

Head movement can be defined in such a way that it also applies to complex trees that have a
selection feature =X or X=, but this does not seem a linguistically sensible operation.

41

If � � is a simple tree and the left-most feature of its head is =X, then

merge(� � , � �) = �

� �� � ��

where � �� is like � � except that feature =X is deleted and the phonetic features of

the head of � � are suffixed to the phonetic features of � � , and � �� is like � � except that

feature x and its phonetic features are deleted.

If � � is a simple tree and the left-most feature of its head is X=, then

merge(� � , � �) = �

� �� � ��

where � �� is like � � except that feature X= is deleted and the phonetic features of

the head of � � are prefixed to the phonetic features of � � , and � �� is like � � except that

feature x and its phonetic features are deleted.

The case where the left-most feature of the head of � � is =x remains unchanged

from the definition in section 2.2.1.3. Further discussion of head movement in Mini-

malist Grammars can be found in [Sta01b].

2.4.2 Covert Movement

In order to model covert phrasal movement in Minimalist Grammars, weak features

are added to the set of licensee features. Weak licensee features will be written in

uppercase, e.g. +CASE, to distinguish them from strong licensee features.11 A weak
� �

This reverses the notation used in [Sta97]. While in our notation it no longer holds that all uppercase
features are strong features and all lowercase features are weak features, this notation allows us to use
all lowercase features in a Minimalist Grammar without head movement and covert phrasal movement.

42

feature causes the syntactic and semantic features of a phrase to move, but its phonetic

features will stay put. An example of covert phrasal movement is given in 43. In the

example, the determiner phrase every girl moves covertly to the specifier of the verb

kiss.

43. �

+CASE =d

/kiss/

KISS

�

-case

/every/

EVERY

-

/girl/

GIRL

��
�

�

-

-

EVERY

-

-

GIRL

�

=d

/kiss/

KISS

�

-

/every/

-

-

/girl/

-

The formal definition of the structure building function move given in section

2.2.1.3 is adapted as follows. A tree � is in the domain of the structure building func-

tion move if the left-most feature of the head of � is +y or +Y, and � has exactly one

maximal subtree � � the left-most feature of the head of which is -y. If the left-most

feature of the head of � is +Y, then

move(�) = �

� �� � �

where � �� is like � � except that feature -y and all phonetic features are deleted, and

� � is like � except that feature +Y is deleted and all syntactic and semantic features of

� � are deleted.

If the left-most feature of the head of � is +y, the original clause in section 2.2.1.3

applies.

Covert phrasal movement is usually invoked to account for apparent mismatches

between the order of words in a sentence and their scopal properties. For example, the

43

sentence in 44 has two meanings: either there is one thief who will rob all banks, or

every bank will be robbed by one thief or another.

44. Some thief will rob every bank.

For the second meaning to obtain, the object determiner phrase every bank has to

be in a position that is structurally higher than and to the left of the subject determiner

phrase some thief. However, in the pronounced sentence, the object appears to the right

of the subject. To explain this discrepancy, it is assumed that the object raises covertly

to a position to the left of the subject. Kayne ([Kay98]) proposes to dispense with

covert movement altogether and replace it with a combination of overt movements.

In this respect, it is interesting to note that the formal equivalence result in chapter 3

entails that for Minimalist Grammars any sentence derived with covert movement can

also be assigned a structure without covert movement.

2.5 Other Formalizations

There are various other formal approaches to Transformational Grammars to be found

in the literature, of which we mention [Rog98] and [Kra01].

Rogers [Rog98] introduces a logical language to describe the kinds of constraints

on trees that are used in the theory of Government and Binding. The formalization

of Government and Binding in terms of this logical language is then used to prove

some results about the generative capacity of the theory. For the purpose of connect-

ing the theory of Government and Binding to the hierarchy of formal languages, it is

necessary to use an intermediate logical language, because Government and Binding

is a constraint-based formalism, whereas the hierarchy of formal languages is based

on grammars that are specified by rewriting rules. Direct proofs are hard to formulate,

as it is not obvious how to cast constraints on representations as rewriting rules that

44

derive representations. As mentioned in section 2.1, unlike Government and Binding

theory, the Minimalist Program posits two specific structure building operations for

deriving representations, Merge and Move. Consequently, complexity results for Min-

imalist Grammars can be obtained in a direct way, by encoding the effects of Merge

and Move in rewriting rules and vice versa, cf. [Mic98], [Mic01b], and chapter 3 of

this dissertation.

Kracht [Kra01] offers a formalization of chains in linguistic theory. One way to

describe chains is to use multi-dominance structures. A multi-dominance structure is

a ‘tree’ in which a node can have more than one mother. Multi-dominance structures

turn out to be closely related to derivation trees in Minimalist Grammars.

45. 23

14 22

21

20

13 19

18

17

15 16

12 10

11

Derivation trees are concise representations of derivations. The leaves of a deriva-

tion tree are lexical items and the intermediate nodes are trees derived from these via

the functions merge and move. For example, the derivation tree of the sentence Titus

praises Lavinia is given in 45. The numbered nodes stand for the trees given in the ex-

ample in section 2.3.1. Derivation trees are important, because these are the structures

that will be returned by the recognizers defined in chapters 4, 5, and 6.

45

The derivation tree in 45 is turned into a multi-dominance structure by adding dom-

inance relations between a node representing a tree � that is the result of the application

of move and the node representing the head of the subtree � � of � that moves. For our

example, adding these dominance relations leads to the multi-dominance structure in

46.12

46. 23

14 22

21

20

13 19

18

17

15 16

12 10

11

Kracht [Kra01] provides a procedure for turning multi-dominance structures into

trees. Applying this procedure to the structure in 46 and using the fact that specifiers

precede their heads and heads precede their complements, the result will be the binary

branching tree in 47.
� �

Add arcs from node 22 to node 11, from node 21 to node 16, and from 18 to 10.

46

���

�������	� ���
�����

�����
���
����� �����
���
�
�
�

�����
���
�
�
�����	�

���������
�
�
�����	�����������
���������
�����	�
���	�

���
���������
�������

���������
�
�
���
�������	� �����
���
�
�
���
���������

�����
���
�
�
���
�������	������� ���������
���������������������	�

���������
���������������������������	� ���������
���������������������	�
�����

���
���������
�������
���	�
���	�
�����
����� �����
���
�
�
���
�������������������	�
�����

���
�����
�
�
���
�������	�����	�������
���	�����������
���������
�����������	�����	�������
���	�����	�

47.

The tree in 47 is constructed from the the multi-dominance structure in 46 as fol-

lows. For every path from the root in the multi-dominance structure given in 46 there is

a node in tree 47 labeled with the nodes of that path. The dominance relations between

the nodes in tree 47 follow from the length of the paths: a node labeled with a path

of length � immediately dominates any node labeled with a path of length ��� � that

is obtained from the path of length � by extending it with one step. The precedence

relations follow from the relative order of heads and their specifiers and complements.

For example, according to the derivation tree in 45, tree 14 merges with tree 22 to form

tree 23. By the definition of merge, tree 22 will be attached as a complement, which

follows the head. Therefore, in tree 47, the node labeled (23) will dominate the nodes

(23, 14) and (23, 22) in that order. Similarly, the node labeled (23, 22, 21, 16) will

precede the node (23, 22, 21, 20), because in the corresponding move operation, tree

16 will move to the specifier of tree 20 (resulting in the tree 21).

Now note that the tree in 47 corresponds to the tree which is the root of the multi-

dominance structure, i.e. the surface tree in 23, except for the labels of the tree and

47

the fact that moved elements do not leave a trace, but rather a copy of themselves.

However, the derivation tree contains enough information to assign a label ‘ � ’ or ‘ � ’

to the internal nodes of tree 47. For example, the label (23, 22, 21, 20, 19) can be

replaced by ‘ � ’, because tree 19 is the result of complex tree 18 selecting lexical item

11. Since tree 18 is complex, lexical item 11 will occupy a specifier position, which is

to the left of tree 18, whose head is the head of tree 19. Furthermore, for a Minimalist

Grammar without covert movement and head movement, all copies of moved elements

can be deleted, except for the one dominated by the ‘highest’ immediate mother. For

example, the node labeled (23, 22, 21, 16, 10) in tree 47, which is a copy of the

determiner phrase Lavinia, can be replaced by
�
, because in tree 46, the node labeled

10 is an immediate daughter of the node labeled 16 and the node labeled 18, but node

18 is closer to the root than node 16. Consequently, in tree 47, Lavinia will be a

daughter of node (23, 22, 21, 20, 19, 18). (Note that the third node corresponding to

Lavinia, (23, 22, 21, 20, 19, 18, 17, 16, 10), is removed because the subtree rooted in

node (23, 22, 21, 20, 19, 18, 17, 16) will be replaced by
�

– this is the trace of the verb

phrase).

Multi-dominance structures so provide an interesting way of mapping a derivation

tree onto a surface tree without having to construct all the intermediate trees.

2.6 Concluding Remarks

In this chapter we have defined the Minimalist Grammars that the recognizers in chap-

ter 4, 5, and 6 will use to recognize sentences. In fact, the recognizers will be defined

for Minimalist Grammars without head movement and covert movement, because for

these grammars Michaelis’ equivalence result ([Mic98]) suggests an elegant reformu-

lation in terms of chains. This is not a serious restriction, however, because Michaelis’

result also holds for Minimalist Grammars with head movement and covert movement,

48

so the reformulation could be extended to cover these two kinds of movement as well.

49

CHAPTER 3

Minimalist Languages

In this chapter1 we will fix the position of Minimalist Grammars as defined in [Sta97]

in the hierarchy of formal languages. Michaelis ([Mic98]) has shown that the set of

languages generated by Minimalist Grammars falls within the set of languages gener-

ated by Multiple-Context Free Grammars ([SHF91]). In this chapter we will prove the

reverse by showing how to construct a Minimalist Grammar for an arbitrary Multiple

Context-Free Grammar such that both grammars define the same language. A priori,

it is rather remarkable that it is possible to convert a Multiple Context-Free Grammar

into an equivalent Minimalist Grammar, because the structures produced by Mini-

malist Grammars are predominantly right-branching, whereas Multiple Context-Free

Grammars have no preference for either direction of branching.

The Minimalist Grammars that we will use in this chapter do not allow for head

movement or covert phrasal movement, and so are simpler than the ones defined in

[Sta97] and used in Michaelis ([Mic98]). Let ML be the set of languages definable

by ‘full’ Minimalist Grammars, ML � the set of languages definable by Minimalist

Grammars without head movement and covert phrasal movement, and MCFL the set

of languages definable by Multiple Context-Free Grammars. Michaelis ([Mic98]) has

shown that ML
�

MCFL. Obviously, ML
� �

ML. The result presented in this chap-

ter implies that MCFL
�

ML � . Hence, we conclude that MCFL = ML.2 Then it
�

An earlier version of this chapter appeared as [Har01].
�

Michaelis ([Mic01b]) independently established the equivalent claim that Minimalist Grammars
and Linear Context-Free Rewriting Systems ([VWJ87]) define the same class of string languages.

50

follows immediately from earlier results that Minimalist Grammars are weakly equiv-

alent to Linear Context-Free Rewriting Systems ([VWJ87]), Multi-Component Tree-

Adjoining Grammars ([Wei88]), and Simple Positive Range Concatenation Grammars

([Bou98]). The result reported in this chapter also implies that ML � = ML, that is,

head movement and covert phrasal movement do not increase the generative power of

Minimalist Grammars.3

This chapter is structured as follows. We will first provide the definitions for Min-

imalist Grammars and Multiple Context-Free Grammars, then describe and illustrate

the encoding of a given Multiple Context-Free Grammar into a Minimalist Grammar,

and finally prove that the Minimalist Grammar thus obtained defines the same language

as the original Multiple Context-Free Grammar.

3.1 Minimalist Grammars

In this section we will give a definition of Minimalist Grammars as introduced by

[Sta97], but without head movement and covert phrasal movement.

Definition 1. A tree over a feature set F is a quintuple � = (N � , � � , � � , � � , � ������� �)

which meets the following three conditions:
�
The linguistic consequence of this result is that one cannot use word order to justify the need for

head movement and covert phrasal movement, because whatever order is derivable using a Minimalist
Grammar with head movement and covert phrasal movement can also be derived by a Minimalist Gram-
mar without these mechanisms. This argument may bear upon certain cases of head movement, but in
this form it does not apply in any meaningful way to covert phrasal movement, because, by its very na-
ture, covert movement has no effect on word order. Covert movement does affect the structure assigned
to a sentence, and so its meaning. In the case of quantifier raising, for example, a quantified expression
will move covertly to a position which c-commands other quantified expressions that in the sentence
appear to the left of the quantified expression, thus allowing the expression to be interpreted in a position
in which it can take scope over these other quantified expressions. When covert phrasal movement is
removed from a Minimalist Grammar by transforming it into a weakly equivalent Multiple Context-Free
Grammar and transforming this grammar into a weakly equivalent Minimalist Grammar without covert
phrasal movement, the relation between a phrase that moved covertly and the position it moved to in
the original grammar survives, but it does not obtain as the result of covert phrasal movement. In this
sense, covert phrasal movement is linguistically unnecessary.

51

1. Triple (N � , � � , � �) is a finite, binary ordered tree: N � is a non-empty set of

nodes, � � �
N � � N � denotes the relation of immediate dominance; � � �

N � �

N � denotes the relation of immediate precedence.

2. � � �
N � � N � denotes the relation of immediate projection: for any two nodes

� � , �
�
� N � which are sisters in � , either � � projects over �

� , � � � � �
� , or �

�

projects over � � , � � � � � � .

3. � ������� � is a function from N � to F � , assigning to each leaf of � a finite sequence

of features from F.

Let � = (N � , � � , � � , � � , � ��� ��� �) be tree over a feature set F. Tree � is a simple tree

if it consists of just one node, otherwise it is a complex tree. If � is a complex tree,

then there are proper subtrees � � and � � of � such that � = [� � ��� � �] or � = [� � ��� � �],

where [� � ��� � �] denotes a tree whose root immediately dominates subtrees � � and � �

and in which the root of � � immediately projects over and precedes the root of � � , and

[� � ��� � �] denotes a tree whose root immediately dominates subtrees � � and � � and in

which the root of � � immediately precedes the root of � � and the root of � � immediately

projects over � � .

If � is a simple tree, then its head is the single node making up � . If � is a complex

tree [� � ��� � �], then the head of � is the head of � � ; if � is a complex tree [� � ��� � �], then

the head of � is the head of � � . Tree � is a projection of node � � N � , if, and only if, �
is a tree whose head is � .

A subtree � � of � is maximal if it is � or if the smallest subtree of � properly

including � � has a head other than the head of � � . A proper subtree � � of � is a specifier

of the head of � if � � is a maximal subtree, and the smallest subtree of � properly

including � � is a projection of the head of � , and the head of � � precedes the head of � .

A proper subtree � � of � is a complement of the head of � if � � is a maximal subtree,

52

and the smallest subtree of � properly including � � is a projection of the head of � , and

the head of � precedes the head of � � .

Tree � is said to have a feature f � F if the first feature of the sequence that labels

the head of � is f.

Definition 2. A Minimalist Grammar G is a quadruple G = (V, Cat, Lex,
�

), which

satisfies the following four conditions.

1. V = P � I is a finite set of non-syntactic features, consisting of a set of phonetic

features P and a set of semantic features I.

2. Cat = � � � � � ����� � � � � � � � � � ��� � � � � � � � � � ��� � is a finite set of syntactic features,

such that for each feature x
� � � ��� there is a feature =x

� ����� � � � , and for

each feature +y � � � � � � ��� � � there is a feature -y � � � � � � � ��� � . The set � � � �

minimally contains the distinguished category feature c.

3. Lex is a finite set of trees over V � Cat such that for each � = (N � , � � , � � , � � ,

� ������� �) � Lex, the function � ������� � assigns a string from Cat � P � I � to each leaf

of � .

4. The set
�

consists of the structure building functions � � ��� � and ��� � � , which

are defined as follows:

(a) A pair of trees (� , �) is in the domain of � � ��� � if � has feature =x � ����� � � �

and � has feature x � � � ��� . Then,

� � ��� � (� , �) = [� � � � � �] if � is simple, and

� � ��� � (� , �) = [� � � � � �] if � is complex,

where � � is like � except that feature =x is deleted, and � � is like � except

that feature x is deleted.

53

(b) A tree � is in the domain of ��� � � if � has feature +y � � � � � � ��� � � and �
has exactly one maximal subtree � � that has feature -y � � � � � � � ��� � . Then,

��� � � (�) = [� � �� � � �],

where � �� is like � � except that feature -y is deleted, and � � is like � ex-

cept that feature +y is deleted and subtree � � is replaced by a single node

without any features.

Let G = (V, Cat, Lex,
�

) be a Minimalist Grammar. Then CL(G) = � � ��� CL
�

(G) is

the closure of the lexicon under the structure building functions in
�

, where CL
�

(G),
� ��� are inductively defined by:

1. CL
�

(G) = Lex

2. CL
��� �

(G) = CL
�

(G) �
�

� � � � � (� , �)
 (� , �) � Dom(� � � � �) � (CL
�

(G) �

CL
�

(G)) � � �
��� � � (�)
 � � Dom(��� � �) � CL

�

(G) � ,

where Dom(� � ��� �) and Dom(��� � �) are the domains of the functions � � � � � , ��� � �

� �
. Let � be a tree in CL(G). Tree � is a tree of category a if the head of � does not

contain any syntactic features except for the feature a � � � � � . Tree � is a complete tree

if it is a tree of category c and no node other than the head of � contains any syntactic

features. The yield Y(�) of � is the concatenation of the phonetic features in the labels

of the leaves of � , ordered by precedence. The language derivable by G consists of the

yields of the complete trees in CL(G): L(G)=
�
Y(�)
 � � CL(G), � is complete � .

3.2 Multiple Context-Free Grammars

In this section we will define the class of Multiple Context-Free Grammars. A Mul-

tiple Context-Free Grammar is a Generalized Context-Free Grammar which satisfies

54

some additional conditions. In section 3.2.1 we will provide a definition of Gener-

alized Context-Free Grammars. The conditions on Multiple Context-Free Grammars

are discussed in section 3.2.2. In section 3.2.3, we will describe a normal form for

Multiple Context-Free Grammars that will be used in this chapter.

3.2.1 Generalized Context-Free Grammars

Generalized Context-Free Grammars are introduced in [Pol84]. We will follow the

definition found in [Mic98].

Definition 3. A Generalized Context-Free Grammar is a quintuple G = (N, O, F, R, S)

for which the following five conditions hold:

1. N is a finite, non-empty set of non-terminal symbols.

2. O is a set of finite tuples of finite strings over a finite, non-empty set of terminal

symbols
�

,
�
� N =

�
: O

��� � ����� (
�
��� � .

3. F is a finite set of partial functions from finite products of O to O: F
��� � ��� F � ,

where F � is the set of partial functions from O � to O.

4. R is a finite set of rewriting rules: R
��� � � � ((F � � F) � N � � �

).

5. S � N is the distinguished start symbol.

Let G = (N, O, F, R, S) be a Generalized Context-Free Grammar. A rule � = (� ,

A, B � , . . . , B �) � (F � � F) � N � � �
of this grammar is usually written as A � � [B � ,

. . . , B �] if � �	� , and A � � if � = 0. A rule for which � �
� will be called a non-

terminating rule; a rule for which � = 0 will be called a terminating rule. Note that F �

is the set of constants in O. Hence, for a terminating rule A � � , � � O.

For any non-terminal symbol A � N and
� � � , the set L

� �
(A)

�
O is defined

recursively as follows:

55

1. If R contains a terminating rule A � � , then � � L
� �

(A).

2. If
� � L

� �
(A), then

� � L
��� ��

(A).

3. If R contains a non-terminating rule A � � [B � , . . . , B �] and
�
�
� L

� �
(B �), ���

� � � , and � (
� � , . . . ,

� �) is defined, then � (
� � , . . . ,

� �) � L
��� ��

(A).

If
� � L

� �
(A) for some

� � � , then
�

is called an A-phrase in G. The language

derivable from A in G is the set L
�

(A) of all A-phrases in G: L
�

(A) =
�

� ��� L
� �

(A).

The language L(G) generated by G is the set of all S-phrases in G: L(G) = L
�

(S).

3.2.2 � -Multiple Context-Free Grammars

The following definition of an � -Multiple Context-Free Grammar is based on defini-

tions provided in [SHF91] and [Mic98].

Definition 4. For any � � � � , an � -Multiple Context-Free Grammar is a Gener-

alized Context-Free Grammar G = (N, O, F, R, S) which satisfies the following four

conditions:

1. The dimension of the tuples in O is bounded: O =
���
��� � (

�
� � � .

2. For function � � F, let n(�) ��� be the number of arguments of � , i.e., � � F ���
	�� .
For any function � � F, the following 3 conditions hold:

(a) The dimension of the result of � and the dimensions of the arguments of �

are fixed, that is, there are numbers r(�) � � , d � (�) � � , �
� � � n(�),

such that � is a function from � � ������� ��	�� � . . . � � � ��� � ������� ��	�� to � � � ��� �
	�� .
(b) The effect of � is fixed in the following sense. Let X =

���
�
�
 ��� � � n(�),

���! "� d � (�) � be a set of pairwise distinct variables, and define
�
� = (

�
� � ,

. . . ,
�
� � � �
	��), �#� � � n(�). Let �%$ be the �

� $ component of � , �#� �&� r(�),

56

that is, � (
�
) = (�

�
(
�
), . . . , � � ��	�� (�)) for any

�
= (

� � , . . . ,
� ���
	��) � � � ��� � � �
	��

� . . . � � � � � � � ��� � �
	�� . Then for each component � $, there is a fixed number

l $ (�) � � such that � $ is represented by the following concatenation of

constant strings in
�
� and variables in X:

� $ (� � , . . . ,
� � ��	��) = � $ � � $ � � $ � � $ � � � � � $���� ��	�� � $���� ��	�� ,

where � $�� � � � , � � � � l $ (�), and � $�� � X, ��� � � l $ (�).

(c) For each pair (� ,), � � � � n(�), � �
� d � (�), there is at most one � ,

��� �!� r(�), and at most one � , � � � � l $ (�), such that variable � $�� in

the representation of component � $ of � is the variable
�
�
� � X.

3. The dimension of any non-terminal symbol A � N is fixed, that is, for every non-

terminal symbol A � N there is a number d(A) � � such that for any rule A �
� [B � �

� � � , B ���
	��] in R, r(�) = d(A) and d � (�) = d(B �), 1 � � � n(�).

4. The dimension of the distinguished start symbol is 1: d(S) = 1.

Condition 2.(c) is referred to as the anti-copying condition, because it prevents any

variable
�
�
� � X from occurring more than once in the whole of the representations of

the components that define a function � .

Example 1. The 2-Multiple Context-Free Grammar G = (
�
H, S � , � ���� � (

�
1, 2, 3,

4 � � � � , � � ,
� � , � H � (
 ,
), H � � [H], S � �

[H] � , S), where � [(
� � � ,

� � �)] = (1
� � � 2,

3
� � � 4) and

�
[(
� � � ,

� � �)] = (
� � � � � �), generates the language

�
1 � 2 � 3 � 4 �
 � � � � .

3.2.3 Normal Form for Multiple Context-Free Grammars

The Multiple Context-Free Grammars used in the proof of equivalence are assumed

to be in a particular form. This section defines this normal form and shows that any

Multiple Context-Free Grammar can be given in this form. The components of any

57

function � � F of the � -Multiple Context-Free Grammar G in lemma 1 are assumed

to be represented as in definition 4, part 2.(b).

Lemma 1. For any � -Multiple Context-Free Grammar G = (N, O, F, R, S) there is an

� -Multiple Context-Free Grammar G � = (N � , O � , F � , R � , S �) which is weakly equivalent

to G and which satisfies the following four conditions:

(a) For any non-terminal symbol A � N � which appears in the left-hand side of some

terminating rule in R � , d(A) = 1.

(b) Any � � F � , n(�) � � , satisfies the non-erasure condition: for each pair � � � � ,
� � � � n(�), � � � d � (�), there is at least one � , ��� �
� r(�), and at least

one � , ��� � � l $ (�), such that variable � $�� in the representation of component

� $ of � is the variable
�
�
� � X.

(c) Any � � F � , n(�) � � , is free of syncategorematically introduced symbols: for

all pairs (� , �), � � �
� r(�), � � � � l $ (�), the constant string � $ � � � � in the

representation of component � $ of � is the empty string.

(d) Grammar G � is doublet-free: there is no non-terminating rule � � R � such that

there is a non-terminal symbol T � N � which occurs more than once among the

non-terminal symbols in the right-hand side of � .

Proof. The proof of lemma 2.2 in ([SHF91]) shows how to construct, for any � -

Multiple Context-Free Grammar G = (N, O, F, R, S), another � -Multiple Context-Free

Grammar G � = (N � , O � , F � , R � , S �) satisfying conditions (a), (b), and (c), and such that

L(G) = L(G �).

Possible doublets in G � are removed by replacing a non-terminating rule � � R �

containing a doublet, i.e., � = A � � [B � , . . . , B ���
	��] such that B � = B
�

= T � N � ,
� � � � � n(�), with a rule � � = A � � [B � , . . . , B

�
� � , B �� , B

� � � , . . . , B ���
	��], where

58

B �� is a fresh non-terminal symbol, and adding the rule � � � = B �� � � � � � � � � [B
���

, where

� � � � � � � is the identity function with one argument of dimension d(B
�
). Let H be the

resulting grammar: H = (N � � �
B �� � , O � , F � � � � � � � � � � � , (R � � � � � , � � � �) -

� � � , S �). H

contains one doublet less than G � and does not violate conditions (a), (b), or (c). For

every derivation of a U-phrase
�

in G � involving rule � , U � N � , there is a derivation

of a U-phrase
�

in H using rules � � and � � � , and vice versa. Derivations not depending

on rule � or rules � � and � � � are valid derivations in both G � and H. Hence, L
�
� (U)

= L � (U), U � N � . Then, in particular, L(G �) = L
�
� (S �) = L � (S �) = L(H). Repeated

replacements and additions of rules will eventually produce an � -Multiple Context-

Free Grammar G � � = (N � � , O � , F � � , R � � , S �) for which L(G � �) = L(G �) = L(G), and which

satisfies conditions (a), (b), (c), and (d). �

Example 2. The 2-Multiple Context-Free Grammar G = (
�
A, B, C, D, E, F, H, S � ,

� �
� � � (

�
a, b, c, d � � � � , � � ,

�
, � � , � A � 1, B � 2, C � 3, D � 4, E �
 , F �
 , H

� � [E, F], H � � [A, B, C, D, H], S � �
[H] � , S), where � [(

� � �), (
�
� �)] = (

� � � ,
�
� �),

� [(
� � �), (

�
� �), (

��� �), (
��� �), (

��	 � ,
�
	
�)] = (

� � � ��	 � � � � ,
��� � ��	 � ��� �), and

�
[(
� � � ,

� � �)] =

(
� � � � � �), is a grammar in normal form which generates the language

�
1 � 2 � 3 � 4 �
 � �

� � .

3.3 Construction of Minimalist Grammar

This section shows how to construct a Minimalist Grammar G � = (V, Cat, Lex,
�

)

for a given � -Multiple Context-Free Grammar G = (N, O, F, R, S) in normal form

such that L(G) = L(G �). The general idea behind the construction of G � is that for any

non-terminal symbol A � N and A-phrase (� � , . . . , � � �
� �), the items in Lex allow for

a derivation of a tree that has d(A) specifiers, the yields of which are the components

� � , � � � � d(A), and a head labeled with feature a � � � � � identifying non-terminal

symbol A. Each specifier has a feature -a � � � � � � � ����� � , � � � � d(A), so that the

59

specifiers can be moved to form strings that correspond to the values produced by the

functions in F.

3.3.1 Non-syntactic Features

There is no need for G � to have semantic features: I =
�
. The set of phonetic features

will correspond to the set of terminal symbols of G: P =
�

for O
� � �

��� � (
�
�) � . Hence,

regarding the non-syntactic features of G � , V = P � I =
�

.

3.3.2 Syntactic Features

The set of syntactic features Cat is the union of the sets � � ��� , � ��� � � � , � � � � � � ��� � , and

� � � � � ��� � � , the contents of which are defined as follows. For every non-terminal sym-

bol A � N, there is a feature a � � � ��� , a feature =a � ����� � � � , and features +a � �

� � � � � ��� � � , and features -a � � � � � � � ����� � , � � � � d(A). These features are said to cor-

respond to non-terminal symbol A. The features corresponding to non-terminal symbol

S are c � � � ��� , =c � ����� � � � , +c � � � � � � � ��� � � , and -c � � � � � � � ����� � .4

Let R � =
� � � �

� � �

� ��� ����� be an enumeration of the rules in R. For every non-terminating

rule �	� = A � g[B � , . . . , B ���
	��] in R � , there are features a
�
� � base, =a

�
� � select,

�
� � � d(A)+1 = r(g)+1, and features +a
�
� � licensors, -a

�
� � licensees, � � � �

d(A) = r(g). These features are said to correspond to rule �
� . The features correspond-

ing to a non-terminating rule ��� = S � g[B � , . . . , B ���
	��] are c
�

� , c
�
�
� base, =c

�
� , =c

�
�
�

select, and features +c
�

� � licensors, -c
�

� � licensees.
�
By definition 4, d(S) = 1.

60

3.3.3 Structure Building Functions

The structure building functions in
�

are prescribed by definition 2:
�

=
�
merge,

move � .

3.3.4 Lexicon

The contents of Lex are specified as follows. Let R � =
� � � �

� � �

� � � ��� � be an enumeration

of the rules in R. For a terminating rule � � = A � � in R � , A
�� S, the following lexical

item is associated with ��� :5

�

�

	 -a �

�

a
�

For a terminating rule ��� = S � � in R � , the following two lexical items will be

associated with rule � :

�

�

	 -c �

�

c
�

and

�

	 �

c
�

�

In a tree, � represents the empty label. Each internal node of a tree will be labeled ‘ � ’ or ‘ � ’,
indicating which of the two immediate daughters projects over the other.

61

Next, consider a non-terminating rule � � = A � � [B � , . . . , B ���
	��] in R � ,6 and assume

that the components of � are represented by � $ (� � , . . . ,
� � ��	��) = � $ � . . . � $�� � ��	�� , � $�� � X

=
���
�
�
 ��� � � n(�), ��� � d � (�) � , � � = (

�
� � , . . . ,

�
� � � �
	��), ��� � � n(�), 1 � � �

r(g), �#� � � l $ (g), according to definition 4 and lemma 1. Define the set F
�
� � =

�
+b �

�

� � � � n(�), � �! "� d(B �) � .7 If A

�� S, then the complex of lexical items associated

with rule �	� consists of the following r(g)+2 lexical items:

=a
�

� +a
�
� ��	�� ...+a

�
� a,

and

=a
�
$ � � � $�� � �
	�� ... � $ � a

�
$ -a

�
$ -a $,

� � �&� r(g), where feature
� $�� � F

�
� � is feature +b �

�
if, and only if, variable � $ � � X is

variable
�
�
�
, ��� � � l $ (g), and

=b � ...=b � ��	�� a
�
� �
	�� � � .

If A = S, then non-terminating rule � � = S � � [B � , . . . , B � ��	��] in R � is associated

with the following complex of 2 � r(g)+2 lexical items:8

=c
�

� +c
�

� c,

and

=c
�
�

� � � � ��	�� ...
� � � c

�
� -c

�
� -c � ,

�

The feature in
�������

corresponding to non-terminal symbol B 	 is written b 	 ,
���
�� n(�). Thus
the licensor features and licensee features corresponding to B 	 will have two subscripts: +b 	�� , -b 	�� ,

������ d(B).

By definition 4, d 	 (�) = d(B),
���
�� n(�).�
By definition 4, if A = S, then r(�) = d(S) = 1.

62

=c
�
�

� � � � ��	�� ...
� � � c

�
� -c

�
� ,

where feature
� � �

� F
�
� � is feature +b �

�
if, and only if, variable � � �

� X is variable
�
�
�
,

� � � � l � (g), and

=b � ...=b � ��	�� c
�
� .

Note that in the lexical items for a non-terminating rule all features
� $�� are defined

for � � � � r(g), � � � � l $ (g): for any particular choice of � there will be a

component �%$, whose definition will contain a � $�� for any legitimate choice of � .

For every rule ��� in R � , Lex will contain the lexical items associated with it. Since

the number of rules in R is finite and r(�) is bounded for any � � F, the number of

items in Lex will be finite. Furthermore, since l $ (�) and n(�) are also bounded for any

� � F, all items in Lex will consist of finite sequences of syntactic features.

3.4 Correspondence

Given an � -Multiple Context-Free Grammar G = (N, O, F, R, S) and a Minimalist

Grammar G � = (V, Cat, Lex,
�

) constructed as per the instructions in section 3.3, we

will distinguish a set of non-terminal trees in CL(G �) and define a relationship between

these trees and pairs (A, �) � N � O where � is an A-phrase.

Definition 5. A tree � � CL(G �) is a non-terminal tree if, and only if, the following

three conditions are met:

1. The head of � is labeled with a single syntactic feature a � � � ��� corresponding

to some non-terminal symbol A � N, and does not have any phonetic features.

2. Tree � has
�

specifiers,
�

� � . For each specifier � �

� of � , � � � � �
, the

following holds:

63

(a) The head of � �

� is labeled with the single syntactic feature -a � � � � � � � � ��� �

corresponding to the same A � N as the syntactic feature labeling the head

of � , and does not have any phonetic features.

(b) In � �

� , no node other than the head is labeled with any syntactic features.

(c) Specifier � �

� precedes specifiers � �� , 1 � � � � �
.

3. The complement � �

of � does not contain any nodes labeled with syntactic fea-

tures or phonetic features.

Definition 6. A non-terminal tree � � CL(G �) corresponds to a pair (A, �) � N � O

for which � = (� � , . . . , � � �
� �)
� L
�

(A), if, and only if, the following conditions are met:

1. The head of � is labeled with the feature a � � � ��� corresponding to A.

2. Tree � has d(A) specifiers. For each specifier � �

� of � , 1 � � � d(A), the following

holds: the yield of � �

� is � � .

3.5 Illustration of Proof of Equivalence

The proof that an � -Multiple Context-Free Grammar G = (N, O, F, R, S) and a Mini-

malist Grammar G � = (V, Cat, Lex,
�

) constructed according to the instructions section

3.3 are weakly equivalent involves showing that for every pair (A, �) � N � O such

that � is an A-phrase, there is a non-terminal tree � � CL(G �) corresponding to (A,

�), and that for every non-terminal tree � � CL(G �), there is a pair (A, �) � N � O,

� an A-phrase, to which � corresponds (propositions 1 and 2 in section 3.6.2). In this

section we will illustrate these claims by means of a concrete example.

Example 3. Let G = (
�
A, B, C, D, E, F, H, S � , � ���� � (

�
a, b, c, d � � � � , � � ,

�
, � � , � A

� 1, B � 2, C � 3, D � 4, E �
 , F �
 , H � � [E, F], H � � [A, B, C, D, H], S

64

� �
[H] � , S), where � [(

� � �), (
�
� �)] = (

� � � ,
�
� �), � [(

� � �), (
�
� �), (

��� �), (
��� �), (

��	 � ,
�
	
�)]

= (
� � � ��	 � � � � ,

��� � ��	 � ��� �), and
�

[(
� � � ,

� � �)] = (
� � � � � �), be the grammar from example

2, which generates the language
�
1 � 2 � 3 � 4 �
 � � � � , and let R � an enumeration of

the rules following the order given in the definition of G. Obviously, (1) � L
�

(A), (2)
� L
�

(B), (3) � L
�

(C), (4) � L
�

(D), and (12, 34) � L
�

(H). Hence, by rule � � = H �
� [A, B, C, D, H], � [(1), (2), (3), (4), (12, 34)] = (1122, 3344) � L

�
(H).

We will now specify Minimalist Grammar G � = (Cat, V, Lex,
�

) for G by giving

the contents of Lex. For terminating rule � � , Lex will contain the tree given in 1. Lex

will include similar trees for rules � � , � � , and � � . For terminating rule � � , Lex will

contain the tree given in 2. There is a similar tree in Lex for rule � 	 .

1. �

�

1 -a �

�

a
�

2. �

�

�
-e �

�

e
�

For non-terminating rule ��� , Lex will contain the following lexical items:

3. =h
�

� +h
�

� +h
�

� h 4. =h
�

� +e � h
�

� -h
�

� -h �

5. =h
��
+f � h

�

� -h
�

� -h � 6. =e =f h
��

For non-terminating rule � � , Lex will contain the following lexical items:

7. =h
�

� +h
�

� +h
�

� h 8. =h
�

� +b � +h � +a � h
�

� -h
�

� -h �

9. =h
��
+d � +h � +c � h

�

� -h
�

� -h � 10. =a =b =c =d =h h
��

For non-terminating rule ��� , Lex will contain the following lexical items:

11. =c
�

� +c
�

� c 12. =c
�

� +h � +h � c
�

� -c
�

� -c �

65

13. =c
�

� +h � +h � c
�

� -c
�

� 14. =h c
��

It follows from proposition 1 that CL(G �) will contain non-terminal trees corre-

sponding to the pairs (A, (1)), (B, (2)), (C, (3)), (D, (4)), and (H, (12, 34)). The first

four trees are elements of Lex; the tree corresponding to (H, (12, 34)) is the derived

tree in 15.9

15. �

�

12 -h �

�

�

34 -h �

�

h
�

We will now show how the non-terminal tree corresponding to the pair (H, (1122,

3344)) is derived from these smaller non-terminal trees and the lexical items in 7

through 10. First, item =a =b =c =d =h h
��

will merge with tree 1, because the

former has a feature =a � ����� � � � and the latter has a feature a � � � ��� . The result is

the tree in 16.

16. �

=b =c =d =h h
�

� �

�

1 -a �

�

� �

The derivation will continue with merging tree 16 and the lexical item with head b

corresponding to the pair (B, (2)). Since tree 16 is a complex tree, the item it merges

with will be attached as a specifier, yielding the tree in 17.10

�
The specifiers of the specifiers of this tree contain nodes with empty labels that are irrelevant and

hence not shown.
��

In order to keep the trees manageable size-wise,
�

is used to abbreviate a complex subtree whose
leaves are all labeled � .

66

17. �

�

�

2 -b �

�

�

=c =d =h h
�

� �

�

1 -a �

�

The applications of � � ��� � triggered by the features =c, =d, and =h occurring

in the head of tree 17 will eventually produce the tree in 18. This tree contains the

arguments (1), (2), (3), (4), (12, 34) to which � will be applied to obtain the value

(1122, 3344) � L
�

(H).

18. �

�

�

12 -h �

�

�

34 -h �

�

�

�

�

4 -d �

�

�

�

�

3 -c �

�

�

�

�

2 -b �

�

�

h
�

� �

�

1 -a �

�

Next, item =h
��
+d � +h � +c � h

�

� -h
�

� -h � will select tree 18. The resulting tree is

[� +d � +h � +c � h
�

� -h
�

� -h � , �], where � is like tree 18, except that the feature h
��

of

the head is deleted. The left-most feature of the head of [� +d � +h � +c � h
�

� -h
�

� -h � ,

�] is +d � � � � � � � � � � � . Subtree � contains one, and only one node whose left-most

67

feature is -d � � � � � � � � ��� � . This pair of features triggers an application of ��� � � . The

tree in 19 is the result.

19. �

�

4
�

�

+h � +c � h �
� -h

�
� -h � �

�

�

12 -h �

�

�

34 -h �

�

�

�

� �

�

�

�

3 -c �

�

�

�

�

2 -b �

�

�

� �

�

1 -a �

�

After two more applications of ��� � � involving the features +h � and +c � , the tree

in 20 is obtained.11 The three ��� � � operations have created a sequence of specifiers

whose yields correspond to the value of the second component of � [(1), (2), (3), (4),

(12, 34)] = (1122, 3344).
� �

To save space, two-node subtrees of the form [��� , �] and [� � , �], ��� Cat � P � I � , are simply written
as � .

68

20. �

3
�

34
�

4
�

h
�
� -h

�
� -h � �

�

�

12 -h �

�

�

� �

� �

�

�

2 -b �

�

�

� �

�

1 -a �

�

The tree in 20 will be selected by item =h
�

� +b � +h � +a � h
�

� -h
�

� -h � , which will

take care of assembling the string corresponding to the first component of � [(1), (2),

(3), (4), (12, 34)]. The tree resulting from these � � � � � and ��� � � actions will then be

selected by item =h
�

� +h
�

� +h
�

� h, as in 21.

69

21. �

+h
�
� +h

�

� h �

1
�

12
�

2 �

-h
�

� -h � �

3
�

34 �

4
�

-h
�
� -h � �

Finally, two applications of ��� � � triggered by the features +h
�

� , -h
�

� and +h
�

� , -h
�

�

in tree 21 will produce the non-terminal tree in 22. This tree is a non-terminal tree

corresponding to the pair (H, (1122, 3344)).

22. �

�

1
�

12
�

2
�

-h � �

�

�

3 �

34
�

4
�

-h � �

�

h
�

70

3.6 Proof of Equivalence

Let G = (N, O, F, R, S) be an � -Multiple Context-Free Grammar in normal form, R �

an enumeration of R, and G � = (V, Cat, Lex,
�

) a Minimalist Grammar constructed as

specified in section 3.3. In section 3.6.2 we will show that L(G) = L(G �). First, we will

prove several properties of G � .

3.6.1 Properties of Constructed Minimalist Grammar

Consider a non-terminating rule ��� = A � � [B � , . . . , B ���
	��] in R � and the lexical items

associated with rule �	� . Assume that the components of � are represented as in section

3.3.4, and let X =
���
�
�
 ��� � � n(�), �#� � d � (�) � and F

�
� � =

�
+b �

�
 ��� � � n(�),

� � � d(B �) � as in section 3.3.4.

Theorem 1. For every feature +b �
� � F

�
� � , there is at least one pair (� , �), 1 � � �

r(g), 1 � � � l $ (g), such that feature
� $�� is +b �

�
.

Proof. Pick an arbitrary feature +b �
� � F

�
� � . Because of the existence of rule � � in R � ,

d � (�) = d(B �), 1 � � � n(�). Therefore, there is a variable
�
�
� � X. It follows from the

non-erasure condition (lemma 1, part (b)) that there must be a variable � $�� , 1 � �
�
r(�), 1 � � � l $ (g), which is identical to the variable

�
�
�
. Then, by the definition of the

lexical items associated with rule ��� , feature
� $�� will be the feature +b �

�
. �

Theorem 2. For every feature +b �
� � F

�
� � , there is at most one pair (� , �), 1 � � �

r(g), 1 � � � l $ (g), such that feature
� $�� is +b �

�
.

Proof. Suppose that there are pairs (� , �) and (� , �), (� , �)
�� (� , �), such that features

� $�� and
�����

are the same feature +b �
� � F

�
� � , 1 � � � r(g), 1 � � � l $ (g), 1 � � �

r(g), 1 ���#� l
�
(g). Then, by the way the items in Lex are defined, there are variables

� $�� and � ��� in the representation of the components of � , such that both � $ � and � ��� are

the same variable
�
�
� � X. This, however, is ruled out by the anti-copying condition

71

(definition 4, part 2.(c)). �

Theorem 3. If � � , . . . , � ���
	�� are non-terminal trees in CL(G �) that have features b � ,

. . . , b ���
	�� respectively, then the projection of lexical item =a
�

� +a
�
� �
	�� . . .+a

�
� a, using

lexical items =a
�
$ � � � $�� � ��	�� . . .

� $ � a
�
$ -a

�
$ -a $, � � � � r(�), =b � . . .=b � ��	�� a

�
� �
	�� � � ,

and trees � � , . . . , � � ��	�� , is a non-terminal tree of category a.

Proof. Item =b � . . .=b ���
	�� a
�
� ��	�� � � will select the trees � � , . . . , � ���
	�� . Because the

trees � � , � � � � n(�), are non-terminal trees, the resulting tree
�

will have � ���
	��
��� �

d(B �) licensee features. Thanks to lemma 1, part (d), these features are all different.

Consequently, the derivation will not crash because
�

will have more than one maximal

subtree that has some feature -y � � � � � � ����� � , cf. definition 2, part 4.(b). Let F �

� � =
�
-

b �
�
 1 � � � n(�), 1 �! "� d(B �) � be the set of all licensee features occurring in the

trees � � , ��� � � n(�).

For 1 � � � r(�), each item =a
�
$ � � f $�� � ��	�� . . . f $ � a

�
$ -a

�
$ -a $ will select the tree

projected by its successor, =a
�
$ � � f $ � � � � � � ��	�� . . . f $ � � � a

�
$ � � -a

�
$ � � -a $ � � . The last item

selected in this chain will select
�

. For these merge operations to succeed, all features
� $�� � �
	�� . . .

� $ � in all items =a
�
$ � � f $�� � �
	�� . . . f $ � a

�
$ -a

�
$ -a $, 1 � � � r(�), should be

deleted by an application of ��� � � . Hence, for each licensor feature
� $�� , 1 � � � r(�),

1 � � � l $ (�), there has to be a matching licensee feature in F �

� � . Pick an arbitrary pair

(� , �), 1 � ��� r(�), 1 � � � l $ (�) and assume
� $�� is the feature +b �

� � F
�
� � . It follows

immediately from the definition of the set F �

� � that there is a matching licensee feature

-b �
� � F �

� � . By theorem 2, there is no other feature
� ���

, 1 � � � r(�), 1 � ��� l
�
(g),

(� , �)
�� (� , �), such that

� ���
also is feature +b �

�
. Therefore, feature -b �

� � F �

� � will be

available to check and delete feature
� $�� .

Let � be the tree projected from item =a
�
� f � � � �
	�� . . . f � � a

�
� -a

�
� -a � through the

� � � � � and ��� � � operations described above. The head of � is labeled a
�

� -a
�

� -a � .

The only other syntactic features present in � will be sequences -a
�
$ -a $, 2 � � �

72

r(�), from projecting the items =a
�
$ � � f $�� � �
	�� . . . f $ � a

�
$ -a

�
$ -a $, 2 � � � r(�). All other

features of these items have been deleted during the derivation of � , and so have all the

features of item =b � ...=b ���
	�� a
�
� ��	�� � � , and all the features contributed by the trees � � ,

� � � � n(�), selected by this item: pick an arbitrary licensee feature -b �
� � F �

� � . It

follows immediately from the definition of the set F
�
� � that there is a matching licensor

feature +b �
� � F

�
� � . Then, by theorem 1, there will be a pair (� , �), 1 � �&� r(g), 1 �

� � l $ (g), such that feature
� $ � is +b �

�
. Since feature -b �

�
does not occur more than

once in the set of trees � � , 1 � � � n(�), feature
� $�� � F

�
� � will be available to check

and delete feature -b �
�
.

Item =a
�

� +a �� ��	�� ... +a
�

� awill select � . The head of the resulting tree � is labeled

+a �� �
	�� ... +a
�

� a. The complement of � will contain sequences of syntactic features

-a � $ -a $, 1 � � � r(�), and no other syntactic features. Hence, ��� � � will apply r(�)

times to � to derive another tree � . It is easy to check that � meets the conditions on

non-terminal trees given in definition 5. �

Theorem 4. If � � , . . . , � ���
	�� are non-terminal trees in CL(G �) that have features b � ,

. . . , b � ��	�� respectively, then the projection of lexical item =c
�

� +c
�

� c, using lexical

items =c
�
�

� � � � ��	�� . . .
� � � c

�
� -c

�
� , =b � . . .=b ���
	�� c

�
� , and trees � � , . . . , � ���
	�� , is a complete

tree of category c in CL(G �).

Proof. The proof is similar to the proof of theorem 3 for a = c; it uses lexical item =c
�
�

� � � � �
	�� . . .
� � � c

�
� -c

�
� rather than lexical item =c

�
�

� � � � �
	�� . . .
� � � c

�
� -c

�
� -c � . �

Theorem 5. If � � , . . . , � ���
	�� are non-terminal trees and complete trees in CL(G �) that

have features b � , . . . , b ���
	�� respectively, and at least one of these trees is a complete

tree, then no tree of category a can be projected from lexical item =a � � +a �� ��	�� . . .+a � �

a, using lexical items =a � $ � � � $�� � ��	�� . . .
� $ � a � $ -a � $ -a $, � � � � r(�), =b � . . .=b � ��	��

a �� �
	�� � � , and trees � � , . . . , � ���
	�� .
Proof. Assume tree � � is a complete tree, 1 � k � n(�). By theorem 1, there is a

73

licensor feature
� $�� , 1 � � � r(�), 1 � l � � $ � � � , such that

� $�� is feature +b �
�
, 1

� � d(B �). However, tree � � , being a complete tree, does not contain a matching

licensee feature -b �
�
. None of the other trees � � , . . . , � � ��	�� contains a matching feature

either, because they are complete trees, or, if they are non-terminal trees, they will have

different sets of licensee features as a result of lemma 1, part (d). Hence feature
� $��

cannot be checked and deleted and the derivation cannot be completed. �

Theorem 6. If � � , . . . , � ���
	�� are trees in CL(G �) that have features b � , . . . , b ���
	��
respectively, and tree � � is a complete tree, 1 � i � n(�), and the other trees are either

non-terminal trees or complete trees, then no tree of category c can be projected from

lexical item =c
�

� +c
�

� c, using lexical items =c
�
�

� � � � ��	�� . . .
� � � c

�
� -c

�
� , =b � . . .=b � ��	��

c
�
� , and trees � � , . . . , � ���
	�� .

Proof. The proof is analogous to the proof of theorem 5. �

Theorem 7. If a tree � � CL(G �) has a feature a � � � ��� , then � is a non-terminal tree

or a complete tree of category a.

Proof. The proof is by induction over
�

in CL
�

(G �). For � � CL
�

(G �) = Lex, the claim

follows immediately from the definition of Lex. Let � be an arbitrary tree in CL
�

(G �),
�

� � . If � � CL
� � �

(G �), the claim follows from the induction hypothesis. If � ��

CL
� � �

(G �), then � is a projection of an item =a
�

� +a
�
� �
	�� . . .a

�
� a in Lex, � � �#�
R
 , in-

volving lexical items =a
�
$ � � � $���� ��	�� . . .

� $ � a
�
$ -a

�
$ -a $, �#� � � r(�), and =b � . . .=b � ��	��

a
�
� �
	�� � � , or involving items =c

�
�

� � ��� �
	�� . . .
� � � c

�
� -c

�
� , and =b � . . .=b � ��	�� c

�
� . In the first

case, assume that � � , . . . , � � ��	�� are the trees selected by item =b � . . .=b ���
	�� a
�
� �
	�� � � .

These trees will have features b � . . .b � ��	�� respectively. Since the trees � � , . . . , � ���
	�� are

closer to the lexicon than � , the induction hypothesis applies: each tree � � , 1 � � �
n(�), is either a non-terminal tree, or a complete tree. However, by theorem 5, none of

the trees � � , . . . , � ���
	�� can be a complete tree. Hence, they must be non-terminal trees,

whence, by theorem 3, tree � is a non-terminal tree, too. If the projection involves item

74

=c
�
�

� � ��� �
	�� . . .
� � � c

�
� -c

�
� , tree � is a complete tree. The argument is similar to the first

case, and depends on theorems 6 and 4. �

Theorem 8. There is a non-terminal tree � � CL
�

(G �) whose head is labeled with

feature c � � � ��� if, and only if, there is a complete tree � � � CL
�

(G �) which is like �
except for the feature -c � .

Proof. This follows from the co-existence in Lex of the items [� [� � , -c �], [� c,
�
]] and

[� � , [� c,
�
]] for any terminating rule S � � in R, and the items =c � �

� � � � �
	�� ...
� � � c � �

-c � � -c � and =c � �
� � � � ��	�� ...

� � � c � � -c � � for any non-terminating rule � � = S � � [B � ,

. . . , B ���
	��] in R. �

3.6.2 Equivalence

Proposition 1. For every pair (A, �) � N � O such that � � L
�

(A), there is a non-

terminal tree � � CL(G �) which corresponds to (A, �).

Proof. We will show by induction on
� ��� that the following claim holds for all A �

N: if � � L
� �

(A), then there is a non-terminal tree � � CL(G �) such that � corresponds

to the pair (A, �). If
�

= 0, then � � L
� �

(A). Hence, R contains a terminating rule A
� � . Then, by the construction of Lex, there is an item [� [� � , -a �], [� a,

�
]] in Lex.

This is a non-terminal tree which corresponds to the pair (A, �).

For the induction step, pick an arbitrary pair (A, �) such that � � L
� �

(A),
�

� 0. If

� � L
� � ��

(A), the claim follows from the induction hypothesis. If � �� L
� � ��

(A), then

there is a non-terminating rule � � = A � � [B � , . . . , B ���
	��] in R � , such that
�
� = (

�
� � ,

. . . ,
�
� � � � � �)

� L
� � ��

(B �), 1 � � � n(�), and � = � (
� � , . . . ,

� � ��	��). Since
�
�
� L

� � ��
(B �),

the induction hypothesis applies: for every pair (B � ,
�
�) there is a non-terminal tree � �

� CL(G �) such that � � corresponds to (B � ,
�
�), �#� � � n(�).

Because R includes rule ��� , Lex contains the items =a
�

� +a
�
� ��	�� . . .+a

�
� a, =a

�
$ � �

75

� $���� �
	�� . . .
� $ � a

�
$ -a

�
$ -a $, 1 � � � r(�), and =b � . . .=b ���
	�� a

�
� �
	�� � � . It follows from

theorem 3 that the projection of item =a
�

� +a
�
� �
	�� . . .+a

�
� a, using the other items and

the trees � � , ��� � � n(�), is a non-terminal tree. Let � be this tree.

The head of � is labeled a, which corresponds to A. Since R contains the rule � � ,
r(�) = d(A). Hence, � , being a projection of =a

�
� +a

�
� ��	�� . . .+a

�
� a, has d(A) specifiers.

Consider an arbitrary specifier � �$ of � , �&� � � d(A). This specifier is the result of

an application of move triggered by the licensor feature +a
�
$ and the matching licensee

feature -a
�
$ in item =a

�
$ � � � $���� �
	�� . . .

� $ � a
�
$ -a

�
$ -a $. Thus, specifier � �$ is a projection

of this item. Specifier � �$ does not contain the complement selected by the feature

=a
�
$ � � , because this complement has moved to become specifier � �$ � � before specifier

� �$ was created. Deleting features
� $�� � �
	�� . . .

� $ � has equipped specifier � �$ with l $ (�)

specifiers of its own.

Let � �$�� be the specifier of � �$ created by the application of ��� � � triggered by the

licensor feature
� $�� , 1 � � � l $ (�). Assume that in the representation of the �

� $ com-

ponent of � , variable � $ � is the variable
�
�
� � X. Then, by the way the contents of Lex

are defined, feature
� $ � is the licensor feature +b �

�
. The matching licensee feature -b �

�

is found in tree � � , whose head is labeled b � . Thus, the yield of specifier � �$�� is the yield

of the maximal projection in tree � � of the node labeled -b �
�
, that is, specifier � �

�
� of

� � . By the induction hypothesis, Y(� �) =
�
� � . . .

�
� � � � � � , whence Y(� �$��) =

�
�
�
.

To determine the value of the function � applied to the arguments (
� � , . . . ,

� � ��	��),
any occurrence of a variable

� ���
in the representation of the components of � will be

replaced by the value
� ���

, 1 � � � n(�), 1 � �"� d � (�) = d(B �). Let � be this set of

replacements.12 Since by assumption the particular variable � $�� is the variable
�
�
�
, it

follows that � $�� / � � � � � . Hence, Y(� �$��) =
�
�
�

= � $ � [�]. Because � is arbitrary and Y(� �$)

= Y(� �$ �). . . Y(� �$���� ��	��), it follows that Y(� �$) = (� $ � . . . � $�� � �
	��)[�]. Now (� $ � . . . � $�� � �
	��)[�]
� �

A replacement will be notated as a pair ����� ; ���	� ������

����� if � � � , ����� ������
���� � otherwise.

76

is the value of �%$ applied to the arguments (
� � , . . . ,

� � ��	��). Hence, Y(� �$) = � $ (� � , . . . ,
� ���
	��). Because � is arbitrary and � = � (

� � , . . . ,
� ���
	��) = (�

�
(
� � , . . . ,

� ���
	��), . . . , � � �
	�� (� � ,

. . . ,
� ���
	��)), it follows that Y(� �

�) = � � , 1 � � � d(A) = r(�). Thus � corresponds to (A,

�). �

Proposition 2. For every non-terminal tree � � CL(G �), there is a pair (A, �), � �

L
�

(A), such that � corresponds to (A, �).

Proof. We will show by induction on
� � � that the following claim holds: if � �

CL
�

(G �), � a non-terminal tree, then there is a pair (A, �), � � L
�

(A), such that �
corresponds to (A, �). For

�
= 0, CL

�

(G �) = Lex. It follows from the construction

of Lex that any non-terminal tree � � Lex is of the form [� [� � , -a �], [� a,
�
]]. The

presence of � in Lex implies that R contains the terminating rule A � � . Hence, � �

L
�

(A), and � corresponds to the pair (A, �).

For the induction step, pick an arbitrary non-terminal tree � � CL
�

(G �), � � � ,
with a head labeled a and yield � = � � . . . � � , � � being the yield of specifier � �

� of � ,

� � � � � . If � � CL
� � �

(G �), the claim follows from the induction hypothesis.

If � �� CL
� � �

(G �), then � is a projection of an item =a
�

� +a
�
� ��	�� . . .a

�
� a in Lex, �
�

� �
R
 . Hence, R contains a non-terminating rule � � = A � g[B � , . . . , B � ��	��]. The

derivation of � also involves the items =a
�
$ � � � $���� ��	�� . . .

� $ � a
�
$ -a

�
$ -a $, 1 � ��� r(�),

and =b � . . .=b ���
	�� a
�
� ��	�� � � . Assume � � , . . . , � � ��	�� are the trees selected by =b � . . .=b � ��	��

a
�
� �
	�� � � . By theorems 3, 5 and 7, these trees are non-terminal trees. Since � � , . . . , � ���
	��

are closer to the lexicon than � , the induction hypothesis applies: for each tree � � there

is a pair (B � , � �), � � = (� � � , . . . , � � � � � � �)
� L
�

(B �) such that � � corresponds to (B � , � �),
� � � � n(�). Hence, � � = (Y(� �

� �), . . . , Y(� �

� � � � � �)),
��� � � n(�). Because of rule � � ,

� (� � , . . . , � ���
	��) � L
�

(A).

Since � is a projection of item =a
�

� +a
�
� �
	�� . . .+a

�
� a and R contains rule ��� , � = r(�)

= d(A), that is, � has d(A) specifiers. An arbitrary specifier � �$ of � , 1 � �&� r(�), is the

77

result of an application of move triggered by the licensor feature +a
�
$ and the matching

licensee feature -a
�
$ in item =a

�
$ � � � $�� � ��	�� . . .

� $ � a
�
$ -a

�
$ -a $. Thus, specifier � �$ is a

projection of this item. Specifier � �$ does not contain the complement selected by the

feature =a
�
$ � � , because this complement has moved to become specifier � �$ � � before

specifier � �$ was created. Deleting features
� $�� � �
	�� . . .

� $ � has equipped specifier � �$ with

l $ (�) specifiers of its own. Let � �$�� denote the specifier of � �$ arising from the move

operation triggered by the licensee feature
� $�� , 1 � � � l $ � � � . By assumption, Y(� �$)

= � $. Since no phonetic features are found outside specifiers and � �$ has an empty

complement, Y(� �$) = � $ = � $ � . . . � $�� � ��	�� , where Y(� �$��) = s $�� , 1 � � � l $ � � � . Assume

that the licensor feature
� $�� involved in the creation of specifier � �$�� is the feature +b �

�

� F
�
� � . Hence, the matching licensee feature -b �

�
is found in tree � � , the head of which

is labeled b � . Then the yield of the maximal projection in � � of the node labeled -b �
�

is identical to the yield of specifier � �$�� . By assumption, Y(� �$��) = � $�� , whence Y(� �

�
�) =

� $�� .
To determine the value of the function � applied to the arguments (� � , . . . , � � ��	��),

any occurrence of a variable
� ���

in the representation of the components of � will be

replaced by the value � ��� = Y(� ����
), �#� � � n(�), ��� � � d � (�) = d(B �). Let � be this

set of replacements. Since by assumption the particular feature
� $ � is the feature +b �

�
,

it follows from the specification of Lex that the variable � $�� is the variable
�
�
�
. Hence,

� contains the replacement � $�� /Y(� �

�
�). Since Y(� �

�
�) = � $�� , this replacement is identical

to the replacement � $�� / � $�� . Since � is arbitrary, �%$ (� � , . . . , � � ��	��) = � $ � . . . � $�� � ��	�� [�] =

� $ � . . . � $�� � �
	�� . Since � is arbitrary, � (� � , . . . , � ���
	��) = (�
�
(� � , . . . , � ���
	��), . . . , � � �
	�� (� � ,

. . . , � ���
	��)) = (� � � . . . � � � � ��	�� , . . . , � � �
	�� � . . . � � �
	�� � � ��� � �
	��) = (Y(� ��), . . . , Y(� �

� �
	��))
� L
�

(A).

Hence, � corresponds to (A, (Y(� ��), . . . , Y(� �

� �
	��)). �

Corollary 1. L(G) = L(G �).

Proof. Assume � � L(G �). Then there is a complete tree � � CL(G �) with yield � . Since

78

� is a complete tree, its head is labeled c. By theorem 8, there is a non-terminal tree

� � � CL(G �) which is like � , but has a licensee feature -c � . It follows from proposition

2 that there is a pair (A, �) � N � O such that � � L
�

(A) and � � corresponds to (A, �).

Since the head of � � is labeled c, A = S. Hence, � � L(G).

Assume � � L(G). Then there is a pair (S, �) � N � O and � � L
�

(S). It follows

from proposition 1 that there is a non-terminal tree � � CL(G �) which corresponds to

the pair (S, �). Hence, the head of � is labeled c and Y(�) = � .13 By theorem 8, there is

a complete tree � � � CL(G �) which is like � , but lacks the licensee feature -c � . Since

� � is a complete tree, Y(� �) = Y(�) = � � L(G �). �

3.7 Conclusion

In this chapter we have shown how to construct a Minimalist Grammar G � for an ar-

bitrary Multiple-Context Free Grammar G such that the language generated by G � is

identical to the language generated by G. It follows that the set of languages generated

by Multiple-Context Free Grammars is a subset of the set of languages generated by

Minimalist Grammars. Michaelis ([Mic98]) has shown that the reverse inclusion also

holds. We therefore conclude that Minimalist Grammars and Multiple-Context Free

Grammars are weakly equivalent. It follows that the class of languages generated by

Minimalist Grammars is a substitution-closed full AFL, since the class of languages

generated by Multiple-Context Free Grammars is ([SHF91]; see for example [MS97]

for AFL-theory). The result presented in this chapter also implies that head move-

ment and covert phrasal movement do not increase the generative power of Minimalist

Grammars.

� �
By definition 4, d(S) = 1, so � has only one specifier.

79

CHAPTER 4

Parsing Minimalist Languages Bottom-Up

In this chapter1 we will formally specify a bottom-up recognizer for languages gener-

ated by Minimalist Grammars without head movement and covert phrasal movement.

The recognizer is similar to the CKY algorithm for Context-Free Languages ([You67]).

Following the ‘parsing as deduction’ paradigm, the recognizer is a deductive system

in which items representing trees generated by Minimalist Grammars are closed under

a set of rules of inference. If the set thus generated contains a distinguished goal item

representing a complete tree, the input sentence is grammatical, otherwise it is not. The

specification of the items follows from Michaelis’ proof that Minimalist Grammars are

Multiple Context-Free Grammars ([Mic98]). The proof entails that the geometry of the

trees generated by Minimalist Grammars is largely irrelevant. Consequently, the items

of the recognizer are expressions that are much simpler than the trees they represent. It

turns out that for any sentence � in the language generated by some Minimalist Gram-

mar G the derivation of a distinguished goal item from the initial set of items using the

rules of inference of the deductive system is so closely connected to the derivation of

a complete tree for sentence � using the structure building functions ��� � � and � � ��� �

in grammar G, that the deductive system in fact provides a succinct reformulation of

Minimalist Grammars that does not use trees. This reformulation of Minimalist Gram-

mars will be introduced informally in sections 4.1 and 4.2. The next sections contain

the specification of the bottom-up recognizer, some examples, a proof of correctness,
�

This chapter is an elaboration of [Har00].

80

and an analysis of the time and space complexity of the recognizer. In the section be-

fore the conclusions, we will explore how the recognizer can be extended to include

head movement and covert movement.

4.1 Reformulated Minimalist Grammars

In a Minimalist Grammar, new trees are derived from other trees by applications of the

structure building functions merge and move. Michaelis has shown that for every Min-

imalist Grammar there is a Multiple Context-Free Grammar which generates the same

language [Mic98]. It follows from the particular construction used in the proof of this

inclusion result that the behavior with regard to the structure building functions merge

and move of any tree generated by a Minimalist Grammar without head movement and

covert movement is completely determined by the syntactic features appearing in the

tree and whether the tree is simple or complex. The geometry of the tree is a deriva-

tional artifact of no relevance, except for the fact that the syntactic features of the head

of the tree should be distinguished from syntactic features appearing at other nodes

of the tree. Hence, for syntactic purposes, a tree may be collapsed into a sequence of

sequences of features, associated with a tuple of strings representing the yield of the

tree. For example, the tree in 1, repeated from section 2.3.1 in chapter 2, can be repre-

sented as in 2, which, for convenience, will be written as in 3. The subscript ‘ � ’ in the

expressions in 2 and 3 indicates that the corresponding tree is complex. Expressions

for simple trees will be marked with the subscript ‘ � ’.

1. �

vt -v

praise

-k

Lavinia

81

2. [vt -v, -k] �

(praise, Lavinia)

3. [praise:vt -v, Lavinia:-k] �

In general, following the terminology introduced in [Sta01a], a ‘collapsed tree’

consists of a sequence of chains. Each chain has two parts: a string and a sequence of

syntactic features. The expression in 3 has two chains: praise:vt -v and Lavinia:-k,

corresponding to the chains ([praise
���

] � ,
�

�) and (Lavinia
�
,
� �

) in the sentence Titus �

[praise
�
�]
�

s
�

� Lavinia �
� �

eventually derived from this expression according to the

Minimalist Grammar given in section 2.3.1. In fact, the tree in 26 in chapter 1 and the

tree in 1 above and the expression in 3 above all represent the same structure. They are

verb phrases consisting of the transitive verb praise and its object determiner phrase

Lavinia. The object is part of the verb phrase, but since it will move, its phonetic yield

should not be considered included in the phonetic yield of the verb phrase, as noticed

originally in [Pol84]. Hence, the strings praise and Lavinia are not concatenated.

4.1.1 Collapsing Trees

Let � be a tree generated by a Minimalist Grammar. Then the first chain of the expres-

sion � for tree � represents the head of the tree: its features are the syntactic features

labeling the head of � , and its string consists of the phonetic material of the head of

� and any phonetic material associated with subtrees of � that will not move out of � .

For example, the first chain of the expression corresponding to the tree in 4 is ace:x.2

Note that h is not included in the string ace, because it will move as a complement of

the tree whose head is labeled with the licensee feature -f
�
.

�

In this tree, ‘–’ indicates absence of syntactic features. Semantic features are ignored.

82

4. �

–

a

�

�

-f �
b

�

–

c

-f �

d

�

x

e

�

-f �

f

�

-f �

g

–

h

The other chains of the expression represent syntactically active subtrees of � , that

is, proper subtrees of � whose heads have unchecked licensee features which will cause

these subtrees to move.3 The features connected with these chains are the syntactic fea-

tures labeling the heads of the subtrees. The strings consist of the phonetic material

that will move when the corresponding subtrees will move, minus any phonetic ma-

terial of moving subtrees within these subtrees, because these will be represented by

their own chain. For example, besides the chain ace:x the expression for the tree in

4 also contains the chains b:-f � , d:-f � , f:-f
�
, and gh:-f

�
. Note that although the

node labeled with the syntactic feature -f
�

falls within the maximal projection of the

node labeled -f
�
, it has its own chain. Thus the complete expression for the tree in

4 is [ace:x, b:-f � , d:-f � , f:-f
�
, gh:-f

�
] � . In fact, the order of the chains beyond the

first one is immaterial, so the expression above is equivalent to the expression [ace:x,

gh:-f
�
, d:-f � , b:-f � , f:-f

�
] � , for example.

The trees in 5 and 6 both collapse into the same expression given in 7, reflecting

the fact that in Minimalist Grammars there is no asymmetry between movement from

a complement position and movement from a specifier position.
�
Note that a tree containing a proper subtree whose head has a syntactic feature that is not a licensee

feature is a useless tree, because this feature cannot be checked by either the structure building function
merge or the structure building function move. Hence such a tree cannot participate in the derivation of
a complete tree.

83

5. �

-f �
a

�

x

b

-f �

c

6. �

-f �

c

�

x

b

-f �
a

7. [b:x, a:-f � , c:-f �] �

4.1.2 Reformulated Structure Building Functions

The transformation of a Minimalist Grammar into a Multiple Context-Free Grammar

given in [Mic98] also suggests a succinct reformulation of the structure building func-

tions merge and move in terms of the kind of expression given in 3. The reformulated

structure building functions will combine sequences of chains rather than trees, delete

pairs of matching syntactic features, and concatenate strings of chains whose features

have been exhausted. A chain whose last syntactic feature has been canceled repre-

sents a syntactically inactive subtree: it has reached its final landing position and will

move no further.

The original structure building function merge applies in four different situations

– the tree whose head has the selection feature =x, henceforth the selecting tree, can

be simple or complex, and the tree whose head has the category feature x, henceforth

the selected tree, can move along or stay put – with varying effects. If the selecting

tree is simple, the selected tree will be attached as a complement to the head of the

selecting tree. If, furthermore, the selected tree is syntactically inactive after having

been selected – its head does not have any syntactic features anymore – then anything

84

that will not move out of the selected tree will also not move out of the tree that results

from merging the selecting and selected tree. In terms of collapsed expressions, this

means that the string of the first chain of the expression for the selecting tree and the

string of the first chain of the expression for the selected tree can be concatenated. Of

course, anything that will move out of the selected tree will necessarily move out of

the resulting tree. A simple example of this situation in terms of trees is given in 8.

The translation into collapsed expressions is given in 9. The function Merge-1 given

in a deductive format in 10 describes the general case (
� � � � , � �).

8. =n d -case every n man �� �

d -case

every

–

man

9. [every:=n d

-case] �
[man:n] � �� [every

�

man:d -case] �

10. [� :=x �] � [
�
:x, � � �

� � �

� � �] �
Merge-1

[� � : � , � � �
� � �

� � �] �

Since the noun phrase man, lacking any licensee features, will not move any fur-

ther once it has been selected by the determiner every and since it is attached as a

complement to the determiner every and complements follow their heads, the string

man is concatenated to the right of the string every. In 8, the head of the resulting tree

has a licensee feature -case. This will cause the entire determiner phrase every man

to move at some later point in the derivation, but the complement man will never move

independently from the head every.

The situation depicted in 11 is similar to 8, except that now the selecting tree is

complex and the selected tree will therefore be attached as a specifier. Since specifiers

precede their heads, string
� � is concatenated to the left of string � � in 12. The general

function Merge-2 describing this situation is given in 13 (
� � � � , � �).

85

11. �

=a
�

s �
�

-f �
s �

–

s �

a t � �� �

t � �

�
s �

�

-f �
s �

–

s �

12. [� � :=a � , �
�

�
�
:-f �] � [

� � :a] � �� [
� � � � : � , �

�
�
�
:-f �] �

13. [� :=x � , � � �
� � �

� � �] � [
�
:x, � � �

� � �

� � �] �
Merge-2

[
� � : � , � � �

� � �

� � � , � � �
� � �

� � �] �

Note that in the expressions 12, the string �
�

�
�

must be kept apart, because the

subtree of which this string is the yield will eventually move.

Function Merge-3 given in 16 covers the situation in which the selected tree will

move on in a later step of the derivation (in 16 � is a non-empty sequence of licensee

features,
� � �

� , � �). An example is provided in 14. Because the determiner phrase

every girl will have to move in order to check the licensee feature -case of its head,

the string every girl should not be concatenated with the head kiss of the verb phrase in

15. In this situation it does not matter whether the selecting tree is simple or complex.

14. =d vt -v kiss �

d -case

every

–

girl

�� �

vt -v

kiss

�

-case

every

–

girl

15. [kiss:=d vt -v] � [every girl:d -case] � �� [kiss:vt -v, every girl:-case] �

16. [� :=x � , � � �
� � �

� � �] � [
�
:x � , � � �

� � �

� � �] �

Merge-3
[� : � , � � �

� � �

� � � ,
�
: � , � � �

� � �

� � �] �

The original structure building function move is reformulated into two new func-

tions Move-1 and Move-2. The function Move-1 in 19 describes the situation in which

86

the moved element will not move any further. Since movement is to a specifier position

and specifiers occur to the left of heads, concatenation will be to the left, as illustrated

by the collapsed expressions in 18, which correspond to the trees in 17.

17. �

+k =d pred

�

�

-v

praise

-k

Lavinia

�� �

–

Lavinia

�

=d pred

�

�

-v

praise

�

18. [
 :+k =d pred, praise:-v, Lavinia:-k] �
�� [Lavinia
 :=d pred, praise:-v] �

19. [� :+f � , � � �
� � �

� � � � � ,
�
:-f, � � � � �

� � �

� � �] �

Move-1
[
� � : � , � � �

� � �

� � � � � � � � � � �
� � �

� � �] �

Function Move-2 given in 22 applies when the moved element will move along

in a later step of the derivation, as for example in 20 and 21 (in 22 � is a non-empty

sequence of licensee features).

20. �

+f � a
s �

�

-f � -f �

s �

–

s �

�� �

�

-f �

s �

–

s �

�

a

s �
�

21. [s � :+f � a, s � s
�
:-f � -f �] �

�� [s � :a, s � s
�
:-f �] �

22. [� :+f � , � � �
� � �

� � � � � ,
�
:-f � , � � � � �

� � �

� � �] �

Move-2
[� : � , � � �

� � �

� � � � � ,
�
: � , � � � � �

� � �

� � �] �

87

4.1.3 Equivalence

Given a Minimalist Grammar G without head movement and covert phrasal movement

as defined in sections 2.2.1 and 3.1, a reformulated Minimalist Grammar G � is obtained

by rewriting the lexical items of grammar G in chain-based format and replacing the

structure building functions � � ��� � and ��� � � with the reformulated functions Merge-

1, Merge-2, Merge-2, Move-1, and Move-2. The language generated by grammar G �

consists of all the strings � for which an expression [� :c] � or [� :c] � can be derived

from the lexical items of the grammar by repeatedly applying the functions Merge-1,

Merge-2, Merge-2, Move-1, and Move-2. It follows as a consequence from the sound-

ness and completeness proofs presented in sections 4.5 and 4.6 of this chapter that the

original Minimalist Grammar G 2.2.1 and the reformulated Minimalist Grammar G �

are equivalent: for every complete tree with yield � generated by grammar G, gram-

mar G � will generate an expression [� :c] � or [� :c] � , and vice versa. Also, it follows

from Michaelis’ proof [Mic98] that only a finite number of instantiations of the func-

tions Merge-1, Merge-2, Merge-3, Move-1, and Move-2 is needed to derive all the

expressions of the form [� :c] � and [� :c] � . This is a direct consequence of the Shortest

Movement Constraint discussed in section 2.2.1.3 in chapter 2. For any expression � =

[� � : � � , � � : � � , . . . , � � : � �] � , � � � � , � � to be useful, i.e., it is one of the expressions [� :c] �

or [� :c] � , or it is used in the derivation of the expression [� :c] � , it must be the case that

� � through � � are sequences of licensee features. If some sequence � � is not, 1 � �

� � , then clearly expression � is not the expression [� :c] � or the expression [� :c] � .

Furthermore, expression � cannot be part a of derivation of the expression [� :c] � be-

cause none of the structure building functions will apply and delete the one or more

non-licensee features from sequence � � . Hence, expression � is useless and as such it

can be discarded without affecting the language being generated by the grammar. Now

suppose that an arbitrary expression � = [� � : � � , � � : � � , . . . , � � : � �] � is such that the left-

88

most features of both � � and � � are the same licensee feature -f, 1 � � � � � . Such

an expression is also not useful, because the Shortest Movement Constraint prevents

the structure building function ��� � � from applying to � , so neither feature -f will be

removed. This means that in any useful expression � = [� � : � � , � � : � � , . . . , � � : � �] � , all

sequences � � , 1 � � � � , start with a different licensee feature. Since in each grammar

there is only a finite number of licensee features available, the number of chains in �

is bounded. Moreover, the sequences of features themselves are finite in length, be-

cause they are postfixes of sequences of syntactic features appearing in lexical items,

and those sequences are defined to be finite. There being a finite number of useful

expressions, only a finite number of instantiations of the structure building functions

Merge-1, Merge-2, Merge-3, Move-1, and Move-2 is needed to derive all the expres-

sions of the form [� :c] � and [� :c] � . These instantiations are in fact the context-free

rewriting rules on which the parsers in this chapter and the next are based.

4.2 Examples of Reformulated Minimalist Grammars

This section provides reformulated Minimalist Grammars for the example grammars

given in section 2.3 of chapter 2.

4.2.1 Linguistic Example

The lexicon of the reformulated grammar for the Minimalist Grammar given in section

2.3.1 contains the following six items:

23. [Lavinia:d -k] �

24. [Titus:d -k] �

25. [praise:=d vt -v] �

89

26. [s:=pred +v +k i] �

27. [
 :=i c] �

28. [
 :=vt +k =d pred] �

The sentence Titus praises Lavinia is derived in eight steps, which are given below.

29. Merge-3(25, 23): [praise:vt -v, Lavinia:-k] �

30. Merge-3(28, 29): [
 :+k =d pred, praise:-v, Lavinia:-k] �

31. Move-1(30): [Lavinia:=d pred, praise:-v] �

32. Merge-3(31, 24): [Lavinia:pred, Titus:-k, praise:-v] �

33. Merge-1(26, 32): [s Lavinia:+v +k i Titus:-k, praise:-v] �

34. Move-1(33): [praise s Lavinia:+k i, Titus:-k] �

35. Move-1(34): [Titus praise s Lavinia:i] �

36. Merge-1(27, 35): [Titus praise s Lavinia:c] �

4.2.2 Abstract Example

Following below are the steps involved in the derivation of the sentence a � b � d � using

the reformulated grammar corresponding to the Minimalist Grammar in section 2.3.2.

The lexical items of the grammar are listed in 37 through 44; 45 through 56 are the

steps of the derivation.

37. [
 :c] �

38. [
 :=a +d +b +a c] �

90

39. [a:=b a -a] �

40. [b:=d b -b] �

41. [d:d -d] �

42. [a:=b +a a -a] �

43. [b:=d +b b -b] �

44. [d:=a +d d -d] �

45. Merge-3(40, 41): [b:b -b, d:-d] �

46. Merge-3(39, 45): [a:a -a, b:-b, d:-d] �

47. Merge-3(44, 46): [d:+d d -d, a:-a, b:-b, d:-d] �

48. Move-1(47): [dd:d -d, a:-a, b:-b] �

49. Merge-3(43, 48): [b:+b b -b, dd:-d, a:-a, b:-b] �

50. Move-1(49): [bb:b -b, dd:-d, a:-a] �

51. Merge-3(42, 50): [a:+a a -a, bb:-b, dd:-d, a:-a] �

52. Move-1(51): [aa:a -a, bb:-b, dd:-d] �

53. Merge-3(38, 51): [
 :+d +b +a c, aa:-a, bb:-b, dd:-d] �

54. Move-1(43): [dd:+b +a c, aa:-a, bb:-b] �

55. Move-1(54): [bbdd:+a c, aa:-a] �

56. Move-1(55): [aabbdd:c] �

91

4.3 Parsing Minimalist Languages

The derivations shown in the previous section can be concisely represented in deriva-

tion trees. For example, the derivation tree for the sentence Titus praises Lavinia ac-

cording the the grammar given in section 4.2.1 is given in 57 below. A derivation tree

indicates how a sentence is derived from lexical items by the structure building oper-

ations and as such is very different from the ‘surface’ trees shown in section 2.3, for

example. Tree 23 in that section, for example, exhibits the structure of the sentence

Titus praises Lavinia, but it does not tell us what structure building operations applied

to derive this sentence or in what order.

57. [Titus praise s Lavinia:c] �

[� :=i c] � [Titus praise s Lavinia:i] �

[praise s Lavinia:+k i, Titus:-k] �

[s Lavinia:+v +k i, Titus:-k, praise:-v] �

[s:=pred +v +k i] � [Lavinia:pred, Titus:-k, praise:-v] �

[Lavinia:=d pred, praise:-v] �

[� :+k =d pred, praise:-v, Lavinia:-k] �

[� :=vt +k =d pred] � [praise:vt -v, Lavinia:-k] �

[praise:=d vt -v] � [Lavinia:d -k] �

[Titus:d -k] �

The leaves of a derivation tree are lexical items. Each internal node is derived

from its immediate daughter or daughters by an application of one of the functions

Merge-1, Merge-2, Merge-3, Move-1, or Move-2. As is clear from the derivation tree

92

in 57, the leaves of the tree do not form a sentence. Rather, the sentence appears as

part of the expression at the root of the tree. In fact, the root of the tree in 57 is the

collapsed expression for the tree in 23 in section 2.3. Similarly, every internal node of

the derivation tree 57 stands for one of the trees in section 2.3. Thus, the derivation

tree in 57 is actually a tree of trees. It would be an unmanageable object, if it were not

for the collapsed tree notation.

The bottom-up, top-down, and Earley-style parsers that will be presented in the

remainder of this dissertation are defined on derivation trees of the sort given in 57. A

bottom-up parser will start from the lexical items at the leaves of the tree, which are

provided by the words of the sentence to be parsed, and try to derive the expression

at the root of the tree by repeatedly applying the functions Merge-1 through Move-2.

A top-down parser will start from the expression at the root of the derivation tree and,

by repeatedly applying the functions Merge-1 through Move-2 in reverse, will try to

break it down into lexical items at the leaves matching the words of the sentence to be

parsed. The Earley-style parser essentially is a top-down parser with some additional

book-keeping machinery which makes it applicable to a wider range of grammars than

a basic top-down algorithm.

The parsing strategies for languages generated by Minimalist Grammars mentioned

above are no different from well-known parsing strategies for languages generated by

Context-Free Grammars. However, there is a fundamental difference between Context-

Free Grammars and Minimalist Grammars that makes designing parsers for Minimalist

Languages a non-trivial matter. If one cuts a tree licensed by some Context-Free Gram-

mar in half and considers a non-terminal symbol A in this cut,4 then in the sentence

specified by the tree, the terminal symbols dominated by non-terminal symbol A will
�
A sequence C of nodes of a tree T is a cut of tree T if none of the nodes in C dominates another

node in C and if every node in T and not in C either dominates or is dominated by a node in C and the
nodes in sequence C are ordered as in tree T.

93

be to the right/left of any terminal symbol that is to the right/left of A in the cut, and

the terminal symbols dominated by non-terminal symbol A will be to the right/left of

the terminal-symbols dominated by any non-terminal symbol that is to the right/left of

A in the cut. Consequently, a parser for Context-Free Languages parsing a sentence

from left to right, as the human sentence processor does, can work its way through the

tree from left to right. Obviously, derivations of Minimalist Grammars do not have

this ‘cut property’: if � � is a complex expression in the cut of a derivation tree of a

Minimalist Grammar such that � � is to the right/left of another expression �
� in the cut,

then in the sentence whose derivation is given by the tree, the phonetic material of a

lexical item dominated by � � is not necessarily to the right/left of the phonetic material

of the lexical items dominated by �
� if � � is a complex expression, and, if � � is a lexical

expression, the phonetic material of a lexical item dominated by � � is not necessarily

to the right/left of the phonetic material of expression �
� ; cf. the cut – [s:=pred +v +k

i] � – [Lavinia:pred, Titus:-k, praise:-v] � – in the tree 57, for example. This means

that a left-to-right parser for Minimalist Languages cannot rely on the geometry of a

tree; the left-to-right order will have to be enforced by some other means.

Of course, since Minimalist Grammars are weakly equivalent to Multiple Context-

free Grammars ([Mic98]), the derivation trees for sentences generated by the latter

formalism also lack the cut property. However, known parsing algorithms for Multiple

Context-free Grammars ([SHF91], [NTS00]) use a normal form for their grammars

that disallows empty elements (unless immediately generated from the start symbol).

Such a normal form is not attractive for our purposes, because the linguistic theories

that we want to model with Minimalist Grammars contain many phonetically empty

elements. Moreover, the parsing algorithms for Multiple Context-free Grammars are

not concerned with parsing a sentence from left to right.

94

4.4 Specification of the Bottom-Up Recognizer

This section contains a formal definition of an agenda-driven, chart-based, bottom-up

recognizer for languages generated by the Minimalist Grammars without head move-

ment and covert phrasal movement informally described in section 2.2.1 and formally

defined in section 3.1. Taking a logical perspective on parsing as presented in [PW83],

[SSP95] and [Sik97], the definition of the recognizer includes a specification of a

grammatical deductive system and a specification of a deduction procedure.5 The for-

mulae of the deductive system, which are commonly called items, express claims about

grammatical properties of strings. Under a given interpretation, these claims are either

true or false. For a given grammar and input string, there is a set of items that, without

proof, are taken to represent true grammatical claims. These are the axioms of the de-

ductive system. Goal items represent the claim that the input string is in the language

defined by the grammar. Since our objective is to recognize a string, the truth of the

goal items is of particular interest. The deductive system is completed with a set of

inference rules, for deriving new items from ones derived earlier. The other component

of the definition of the recognizer is the specification of a deduction procedure. This is

a procedure for finding all items that are true for a given grammar and input string.

4.4.1 Deduction Procedure

The deduction procedure used in the recognizer presented in this paper is taken from

[SSP95]. It uses a chart holding unique items in order to avoid applying a rule of

inference to items to which the rule of inference has already applied before. Further-

more, there is an agenda for temporarily keeping items whose consequences under the

inference rules have not been generated yet. The deductive procedure is defined as
�

For a constraint programming perspective on the recognizer see [Mor00].

95

follows:

1. Initialize the chart to the empty set of items and the agenda to the axioms of the

deduction system.

2. Repeat the following steps until the agenda is exhausted:

a) Select an item from the agenda, called the trigger item, and remove it from

the agenda.

b) Add the trigger item to the chart, if the item is not already in the chart.

c) If the trigger item was added to the chart, generate all items that can be

derived from the trigger item and any items in the chart by one application

of a rule of inference,6 and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved, i.e., the string is recognized,

otherwise it is not.

Shieber et al. ([SSP95]) prove that the deductive procedure is sound – it generates

only items that are derivable from the axioms – and complete – it generates all the

items that are derivable from the axioms.

4.4.2 Deductive System

Given an input string � = � � . . . � � and Minimalist Grammar G = (V, Cat, Lex, F) as

defined in section 3.1, the items of the deductive system will be of the form [� � , � � ,

. . . , � �] � , where � �
 licensees
 , � � �
� , � � . For 0 � � � � , � � is of the form (x � ,

�

Note that successful applications of the rules of inference Move-1 and Move-2 as defined in section
4.4.2.2 do not involve any items from the chart.

96

y �): � � , where 0 � x � � y � � � , and � � � Cat � . The collapsed trees introduced in sec-

tion 4.1.1 are items whose position vectors (x � , y �) have been replaced with substrings

� � � � � . . . ��� � of the input string � , 0 � � � � .

The proper interpretation of the items requires the notion of narrow yield of a tree.

The narrow yield Y � (�) of a minimalist tree � is defined in the following way. If � is

a complex tree, then either � = [� � , �], or � = [� � , �].7 If � = [� � , �], then:

Y � (�) = Y � (�) � Y � (�) if � does not have a feature -f � licensees8 � 9

Y � (�) = Y � (�) otherwise.

If � = [� � , �], then:

Y � (�) = Y � (�) � Y � (�) if � does not have a feature -f � licensees

Y � (�) = Y � (�) otherwise.

If � is not a complex tree, it must be a simple tree. In that case:

Y � (�) = Y(�)

where Y(�) denotes the concatenation of the phonetic features appearing at the leaves

of tree � , ordered according to the precedence relation on the nodes of � . Informally,

the narrow yield of a tree is that part of its phonetic yield that will not move out of

the tree by some application of the structure building function move, as discussed in

sections 4.1.1 and 4.1.2.

Now, an item [(x � , y �): � � , (x � , y �): � � , . . . , (x � , y �): � �] � is understood to assert the

existence of a tree � � CL(G) which has the following properties:

For this particular notation of trees, see section 3.1.�
A tree � has a feature -f if the left-most feature of the head of � is the feature -f.� ��� � is the concatenation of strings

�
and � .

97

1. If
�

= � , � is a simple tree; if
�

= � , � is a complex tree.

2. The head of � is labeled � � � � , � � � P � I � .

3. For every (x � , y �): � � , 1 � � � � , there is a leaf in � labeled � � � � , � � � P � I � .

4. Besides the nodes labeled by � � � � , � � � P � I � , 0 � � � � , there are no other

nodes with syntactic features in � .

5. The narrow yield of the subtree whose root is the maximal projection of the node

labeled by � � � � , � � � P � I � , is � � � � � . . . ��� � , 0 � � � � .

For example, for the input sentence Titus praise s Lavinia and a Minimalist Gram-

mar G such that the tree in 58 is in the closure of G, the recognizer, if complete, will

generate the item in 59.

58. �

vt -v

praise

-k

Lavinia

59. [(1, 2):vt -v, (3, 4):-k] �

4.4.2.1 Axioms and Goals

The set of axioms of the deductive system is specified in the following way. For

each lexical item in Lex with syntactic features � � Cat � and whose phonetic features

cover � � � � . . . �
�

of the input string, there will be an axiom [(i, j): �] � in the deductive

system.10

��

We assume that every lexical item of the grammar has one and only one category feature and that

all syntactic features to the right of the category feature are licensee features. Lexical items that do
not meet these conditions are useless in the sense that they are not complete trees by themselves nor
can they participate in the derivation of a complete tree, because no combination of applications of the
structure building functions �

��� � � and �����
�

will be able to remove all the syntactic features of these
items.

98

There will be two goal items: [(0, n):c] � and [(0, n):c] � , c � base being the dis-

tinguished category feature. These are appropriate goal items for a recognizer, since

their truth under the interpretation provided above requires the existence of a complete

tree � � CL(G), either simple or complex, with narrow yield Y � (�) = � � . . . � � = � .

Since � is complete, Y � (�) = Y(�). Therefore, � � L(G) =
�
Y(�)
 � � CL(G) and � is

complete � .

4.4.2.2 Rules of Inference

The deductive system has five rules of inference, grouped into Merge rules and Move

rules:

Merge-1:

[(p, q):=x �] � [(q, v):x, � � , . . . , � �] �
Merge-1

[(p, v): � , � � , . . . , � �] �

Merge-2:

[(p, q):=x � , � � , . . . , � �] � [(v, p):x, � � , . . . , � �] �
Merge-2

[(v, q): � , � � , . . . , � � , � � , . . . , � �] �

Merge-3: (� �� �
)

[(p, q):=x � , � � , . . . , � �] � � [(v, w):x � , � � , . . . , � �] � �

Merge-3
[(p, q): � , � � , . . . , � � , (v, w): � , � � , . . . , � �] �

Move-1:

[(p, q):+y � , � � , . . . , � � � � , (v, p):-y, � � � � , . . . , � �] �

Move-1
[(v, q): � , � � , . . . , � � � � , � � � � , . . . , � �] �

Move-2: (� �� �
)

99

[(p, q):+y � , � � , . . . , � � � � , (v, w):-y � , � � � � , . . . , � �] �

Move-2
[(p, q): � , � � , . . . , � � � � , (v, w): � , � � � � , . . . , � �] �

For all rules the following holds: 0 � � , � , � , � � � ; 0 � � ,
�
, � � � ; and

�
,
� � ,
�
�
�

�
� , � � ; =x � select; x � base, +y � licensors; and -y � licensees. The rules Move-1

and Move-2 come with an additional condition on their application: if (x
�
, y

�
): � � is

one of the � � , . . . , � � � � , � � � � , . . . , � � , then the first feature of � � is not -y, reflecting

the Shortest Movement Constraint discussed in section 2.2.1.3. It is possible that an

application of rule Merge-2 produces an item [� � , � � , . . . , � �] � such that for some � �

= (x � , y �): � � and � �
= (x

�
, y

�
): � � the first feature of both � � and � � is -y � � � � � � ����� � , 1

� � � � � . Clearly, such an item is not a goal item, nor can a goal item be derived

from it, because none of the rules of inference can delete the features -y. Hence, the

rule of inference Merge-3 is restricted so that it will not add items of this kind to the

agenda. In this way we ensure that for every item [� � , � � , . . . , � �] � produced by the

recognizer � �
 licensees
 .
Note that the reformulated structure building functions introduced in section 4.1.2

are the rules of inference of the recognizer with strings rather than position vectors.

Since Shieber et al. ([SSP95]) proved that the deductive procedure is sound and

complete, establishing the correctness of the recognizer entails showing that the deduc-

tive system defined above is sound and complete relative to the intended interpretation

of the items. This will be done in the next two sections.

4.5 Proof of Soundness

The following two lemmas will be helpful for establishing soundness of the deductive

system.

100

Lemma 1a. If � , � � and � , � � are trees such that merge(� , �) = [� � � , � �] or merge(� ,

�) = [� � � , � �], then Y � (� �) = Y � (�) and Y � (� �) = Y � (�).

Proof. Inspection of the definition of merge shows that in both cases � � and � are

identical except for the labels of their heads. According to the definition of narrow

yield the label of the head of a tree is of no relevance for determining the narrow yield

of that tree. Analogously, Y � (� �) = Y � (�). �

Lemma 1b. If � , � � and � � , � �� are trees such that move(�) = [� � �� , � �], then Y � (� �)
= Y � (�) and Y � (� ��) = Y � (� �).

Proof. According to the definition of move, � � will be like � except that feature +y

is deleted and a subtree � � has been replaced by a single node with no features. As is

the case for merge, the different head labels of � and � � are irrelevant as narrow yields

are concerned. Furthermore, the yield of � � is excluded from Y � (�) because � � has a

feature -f � licensees. The yield of � � is also excluded from Y � (� �) because � � is not a

subtree of � � . Since trees � and � � are otherwise the same, Y � (� �) = Y � (�). Concerning

� �� and � � , these trees differ only by their head label. Hence, Y � (� ��) = Y � (� �). �

Proving soundness of the recognizer amounts to showing that the axioms and the

rules of inference of the deductive system are sound. Then it will follow that every

derivable item in the deductive system will represent a true grammatical statement

under the intended interpretation.

4.5.1 Soundness of the Axioms

According to the interpretation given in section 4.4.2, an axiom [(i, j): �] � asserts the

existence of a tree � � CL(G) with the following properties:

1. Tree � is a simple tree.

2. The head of � is labeled by � � � , for some � � � P � I � .

101

3. Besides the head of � there are no other nodes with syntactic features in � .

4. The narrow yield of � is � � � � . . . �
�
.

It is easy to see that the lexical item in Lex which occasioned the axiom [(i, j): �] �

has exactly these properties. By definition this lexical item is in CL
�

(G)
�

CL(G).

4.5.2 Soundness of the Rules of Inference

There are five rules of inference. Their soundness will be established below.11

Merge-1: the items [(p, q):=x �] � and [(q, v):x, � � , . . . , � �] � in the antecedent

of the rule Merge-1 assert the existence of trees � and � � CL(G), whose heads are

labeled by =x � and x, respectively. Hence, � and � are in the domain of the function

merge. This function will apply to � and � and produce a complex tree � = [� � � ,
� �] � CL(G), since � is a simple tree. The head of � is labeled by � . Furthermore,

Y � (�) = Y � (� �) �Y � (� �), since the head of � � does not have a feature -f � licensees. By

lemma 1a, Y � (� �) �Y � (� �) = Y � (�) �Y � (�) = �
� � � . . . �

� � � � � � . . . � � = �
� � � . . . � � . Also,

all maximal subtrees properly contained in � will be included in � with their head

labels and narrow yields unchanged, since merge does not touch any proper subtrees

of � . As is easy to check, the item [(p, v): � , � � , . . . , � �] � in the consequent of the

rule Merge-1 claims the existence of a tree in CL(G) with the properties of � . Thus

Merge-1 is sound.

Merge-2: the argument unfolds in a fashion similar to Merge-1, except that now � =

[� � � , � �], because � is complex. Consequently, Y � (�) = Y � (�) �Y � (�) = � � � � . . . �
� � � � � � . . . �

�

= � � . . . w
�
. Furthermore, � inherits the narrow yields and head labels of the maximal

� �

Since applicability of the structure building functions and the rules of inference does not depend
on non-syntactic features, their presence in trees will be ignored in the discussion to follow. Thus, the
statement ‘the head of tree

�
is labeled � ’, for example, means: ‘the head of tree

�
is labeled ����� , for

some ��� � P � I � ’.

102

subtrees in both � and � .

Merge-3: application of Merge-3 presupposes the existence of trees � , � � CL(G)

which will produce another tree � = merge(� , �) = [� � � , � �] � CL(G). According to the

definition of the function Label, the first feature of � , which is the label of the head of

� � , must be a feature -f � licensees. Therefore, by the definition of narrow yield and

lemma 1a, Y � (�) = Y � (� �) = Y � (�) = �
� � � . . . �

�
. Obviously, � � , whose head is labeled

� , will be a maximal subtree of � . By lemma 1a, Y � (� �) = Y � (�) = � � � � . . . � � . Now

it is easy to see that the grammatical claim made by the item in the consequent of the

rule Merge-3 is justified by � � CL(G).

Move-1: rule Move-1 will apply provided there is a complex tree � � CL(G) whose

head is labeled by +y � , which contains one leaf labeled by a feature -y and no other

leaves whose first feature is -y. Let � � be the maximal subtree in � projected by the

node labeled with the single feature -y.12 Then � is in the domain of the function

move. The result of applying move to � will be a complex tree � = [� � �� , � �] � CL(G).

The head of � is labeled � . Moreover, Y � (�) = Y � (� ��) �Y � (� �) = Y � (� �) �Y � (�) by

lemma 1b and because the head of � �� has an empty label. Since Y � (� �) = � � � � . . . �
�

and Y � (�) = �
� � � . . . �

�
, Y � (�) = � � � � . . . �

�
. The function move does not affect the

labels or narrow yields of any of the maximal subtrees properly contained in � , except

for � � (cf. the third case in the proof of lemma 2 in section 4.6). Now it is easy to see

that the item in the consequent of the inference rule Move-1 actually describes � �

CL(G).

Move-2: application of rule Move-2 requires the existence in CL(G) of a complex

tree � to which the function move will apply to produce a complex tree � = [� � �� , � �] �

CL(G), whose head is labeled � , � �� and � � as in the definition of move. Y � (�) = Y � (� �),
since � �� , whose head is labeled by � , has a feature -f

� licensees, cf. the similar
� �

���� �
 because their head labels are different.

103

situation Merge-3. As in Move-1, the narrow yields and labels of maximal subtrees

properly contained in � are left intact, except for � � . � � is not a subtree of � , but � �� is.

The label of the head of � �� is � and � �� ’s narrow yield is Y � (� ��) = Y � (� �), by lemma 1b.

It is easily checked that � � CL(G) has the same properties as the tree claimed to exist

by the item in the consequent of Move-2. Hence, Move-2 is sound.

4.6 Proof of Completeness

This section presents a completeness proof for the recognizer. A recognizer is com-

plete if for every string that is in the language defined by the grammar, there is a

derivation of a goal item from the axioms.

First, the following two useful lemmas will be proved.

Lemma 2. If the derivation of tree � in a Minimalist Grammar G immediately

includes tree � , then for every maximal subtree � contained in � , there is a maximal

subtree � � in � such that Y � (�) is a substring of Y � (� �).

Proof. Three distinct cases have to be considered: there is an � � CL(G) such that

� = merge(� , �), there is an � � CL(G) such that � = merge(� , �), and � = move(�).

In the first case, either � = [� � � , � �] or � = [� � � , � �], depending on whether � is a

simple or a complex tree. Furthermore, either � is a proper subtree of � , or � = � . If �

is a proper subtree of � , then � � will properly contain � , as � � is like � except that =x

is deleted from the label of the head. For the same reason, � is maximal in � � . Since �
contains � � , � will be a subtree of � and, trivially, Y � (�) is a substring of Y � (�). If �

= � , then Y � (�) = Y � (�) = Y � (� �) by lemma 1a. Also, Y � (� �) is a substring of Y � (�)

by the definition of narrow yield. Trivially, � is a maximal subtree of � .

In the second case, either � = [� � � , � �] or � = [� � � , � �], depending on whether � is

a simple or a complex tree. Again, either � is a proper subtree of � , or � = � . If � is

104

a proper subtree of � , then � will be a proper, maximal subtree of � , as argued for the

similar situation in the case above. If � = � , then Y � (�) = Y � (�) = Y � (� �) by lemma

1a. Tree � � is a maximal subtree contained in � , and, trivially, Y � (�) is a substring of

Y � (� �).
In the third case, � = [� � �� , � �], with � � specified as in the definition of move. Either

� is a proper subtree of � � , or � = � � , or � is a proper subtree of � and � � is a proper

subtree of � , or � = � . If � is a proper subtree of � � , then � will be a proper, maximal

subtree of � , as in the similar situations above. If � = � � , then Y � (�) = Y � (� �) = Y � (� ��)

by lemma 1b. Now, � �� is a maximal subtree contained in � , and, trivially, Y � (�) is a

substring of Y � (� ��). If � is a proper subtree of � and � � is a proper subtree of � , then,

by the definition of move, � � will contain a tree � � which is like � , except that subtree

� � is replaced by a single node without features. Y � (�) = Y � (� �), since the yield of

� � is excluded from Y � (�) because of its -f feature, and the yield of � � is excluded

from Y � (� �) because � � is not a subtree of � � . Hence, trivially, Y � (�) is a substring of

Y � (� �). Moreover, � � is a maximal subtree of � � since � is a proper, maximal subtree

of � . Finally, if � = � , then Y � (�) = Y � (�) = Y � (� �) by lemma 1b. Furthermore, Y � (� �)
is a substring of Y � (�) by the definition of narrow yield. Trivially, � is a maximal

subtree contained in � . �

Lemma 3. If for a Minimalist Grammar G, the derivation of a complete tree �

includes � , then Y � (�) is a substring of Y(�).

Proof. By repeated application of lemma 2, � will contain a maximal subtree � �

such that Y � (�) is a substring of Y � (� �). Since � is a complete tree, it does not have

any labels with a feature -f � licensees. Hence, by the definition of narrow yield,

Y � (� �) is a substring of Y � (�) = Y(�), and, consequently, Y � (�) is a substring of Y(�).

�

Completeness of the recognizer will follow as a corollary of lemma 4 below. If �

105

� L(G), for some Minimalist Grammar G, then there is a complete tree � � CL(G)

such that Y(�) = � . Since � � CL(G), there must be a
� � � such that � � CL

�

(G).

Since � is a complete tree, lemma 4 guarantees that an item corresponding to � will be

generated. Obviously, the item will be a goal item, since � is complete and Y(�) = � .

Lemma 4. For a given Minimalist Grammar G, if � � CL
�

(G),
� � � , and � is

included in the derivation of a complete tree or � is a complete tree itself, then an item

[� � , � � . . . , � �] � corresponding to � will be generated, [� � , � � , . . . , � �] � as defined

in section 4.4.2.

Proof.13 It will be shown by induction over
�

that for arbitrary
� � � and � �

CL
�

(G) such that � is included in the derivation of a complete tree or � is a complete

tree itself, an item corresponding to � will be generated.

1.
�

= 0. Then � � CL
�

(G) = Lex, and � is covered by one of the axioms.

2. Assume all items corresponding to � � CL
�

(G), � included in the derivation of

a complete tree or a complete tree itself, are generated for a particular
� � � . To show:

for any � � CL
��� �

(G), � included in the derivation of a complete tree or a complete

tree itself, a corresponding item will be generated.

Pick an arbitrary � � CL
��� �

(G). By definition, CL
��� �

(G) = CL
�

(G) �
�
merge(� ,

�)
 (� , �) � Dom(merge) � CL
�

(G) � CL
�

(G) � � � move(�)
 � � Dom(move) � CL
�

(G) � .
Hence, three cases can be distinguished: � � CL

�

(G), � � �
merge(� , �)
 (� , �) �

Dom(merge) � CL
�

(G) � CL
�

(G) � , and � � �
move(�)
 � � Dom(move) � CL

�

(G) � .
In the first case, � � CL

�

(G). Then, by the induction hypothesis, an item corre-

sponding to � will be generated.

In the second case, � � �
merge(� , �)
 (� , �) � Dom(merge) � CL

�

(G) � CL
�

(G) � .
Then there are trees � , � � CL

�

(G) such that � = merge(� , �). Since � is included in
� �

As in the discussion of the soundness proof, the presence of non-syntactic features in trees will be
ignored.

106

the derivation of a complete tree or � is a complete tree itself, � and � are included

in the derivation of a complete tree.14 Hence, by the induction hypothesis, there are

items corresponding to � and � . Since (� , �) � Dom(merge), the heads of � and � are

respectively labeled =x � and x � , for =x � licensees, x � base and � , � � Cat � . Tree

� is either a simple tree or a complex tree. With regard to � , � =
�

or � �� �
. Hence,

there are four cases to be dealt with. If � is a simple tree and � =
�
, i.e., the head of

� consists of the single feature x, then � = [� � � , � �], and Y � (�) = Y � (� �) � Y � (� �). By

lemma 1a, Y � (�) = Y � (�) �Y � (�). Suppose � participates in a successful derivation of a

complete tree whose yield is the string � � . . . � � � 15 Then, by lemma 3, Y � (�) �Y � (�) is

a substring of � � . . . � � , that is, Y � (�) = �
�
. . . �

�
and Y � (�) = �

� � � . . . � � , 1 � p � q �
v � � . Hence, the items corresponding to � and � will match the antecedents of rule

Merge-1. Alternatively, � is a complete tree itself. Assume Y � (�) = Y(�) = � � . . . � � .

Then it follows immediately that Y � (�) = � � . . . �
�

and Y � (�) = �
� � � . . . � � , 1 � q

� � . Again, the items corresponding to � and � will match the antecedents of rule

Merge-1. In both cases, application of Merge-1 will generate the item corresponding

to � . In a similar way it is established that the trees � and � for the other three cases

will correspond to items that match the antecedents of the rules Merge-2 (� is complex,

� �� �
) and Merge-3 (� is simple or complex, � �� �

). Application of these rules will

produce an item corresponding to tree � .

In the third case, � � �
move(�)
 � � Dom(move) � CL

�

(G) � . Then there is a � �

CL
�

(G) such that � = move(�). Since � is included in the derivation of a complete

tree or � is a complete tree itself, � is included in the derivation of a complete tree as

well. Hence, by the induction hypothesis, there is an item corresponding to � . Since

� � Dom(move), � has a feature +y and � has exactly one maximal subtree that has

the feature -y, +y � licensors, -y � licensees. Let � � be the maximal subtree of �
� �

Since � is the first argument of merge, � cannot be a complete tree.
� �

Reference to the yield of a complete tree derived from
�

precludes a general proof of completeness,
i.e. a proof that for all

� � CL
�
(G),

� ��� , a corresponding item [�
 , � � . . . , ���] � will be generated.

107

that has feature -y and let the label of its head be -y � . Then there are two cases to be

considered: � =
�

and � �� �
. If � =

�
, then � = [� � �� , � �], and Y � (�) = Y � (� ��) �Y � (� �) =

Y � (� �) � Y � (�) by the definition of narrow yield and lemma 1b. As in the case of rules

Merge-1 and Merge-2, Y � (� �) �Y � (�) will be a substring of � � . . . � � , where � � . . . � �
is the yield of a complete tree derived from � or the yield of � itself if � is a complete

tree. Therefore, Y � (� �) = � � . . . �
�

and Y � (�) = �
� � � . . . �

�
, 1 � v � p � q � � . Hence,

the item corresponding to � will match the antecedent of rule Move-1. Application of

this rule will generate the item corresponding to � . If � �� �
, then the item generated

for � will match the antecedent of rule Move-2, application of which will generate an

item corresponding to � . �

4.7 Complexity Results

For a given Minimalist Grammar G = (V, Lex, Cat,
�

) and input string of length � ,

the number of items is polynomially bounded by the length of the input string. All

items are of the form [(x � , y �): � � , (x � , y �): � � , . . . , (x � , y �): � �] � , as defined in section

4.4.2. Each part (x � , y �): � � of an item, 0 � � � � , has
� � � � � possible instantiations,

as both x � and y � range between 0 and � , 0 and � included. The possible choices of

� � do not depend on the length of the input string. The number of choices is bounded,

however, because the labels occurring in any tree in CL(G) are substrings of the labels

of the expressions in Lex. This follows immediately from the the definition of merge

and move. Moreover, Lex is a finite set and the labels assigned by Label are finite

sequences. Thus, the set of possible labels is bounded by the grammar, and, since the

recognizer is sound, the number of possible � � ’s is bounded by the grammar, too. Since

an item has at most
� ��� parts (x � , y �): � � , where

�
=
 licensees
 , the number of items

in the chart is bounded by
� � � � ��� � � .

As regards the time complexity of the recognizer, step 2.b) of the deduction proce-

108

dure specified in section 4.4.1 requires every item on the agenda to be compared with

the items already in the chart. Since the number of items in the chart is
� � � � ��� � � ,

this step will take
� � � � ��� � � per item on the agenda. For any item on the agenda but

not already in the chart, step 2.c) of the deduction procedure checks whether any rule

of inference will apply. Checking applicability of the Merge rules involves looking

through all the items in the chart, since all Merge rules have two antecedents. Given

an item on the agenda and an item from the chart, actually verifying whether any of the

Merge rules applies to these items takes constant time. Thus, the time cost is
� � � � ��� � �

per item on the agenda. In order to determine whether one of the two Move rules will

apply, the label � � in an item has to be inspected and compared to the other labels � � ,
1 � � � � in the same item. Since � is bounded by

�
=
 licensees
 , there is no de-

pendency on the length of the input string. Since steps 2.b) and 2.c) are performed in

sequence, the time cost of both steps is bounded by
� � � � ��� � � per item on the agenda,

ignoring without loss of generality the fact that step 2.c) is not performed for all items

on the agenda. Steps 1.and 3.of the deduction procedure do not exceed this bound. The

number of items that will be put on the agenda while recognizing a string is
� � � � ��� � � .

This is the upper bound on the number of possible items. There will be duplicates in

the agenda, but their number is finite and does not depend on � , essentially because

the number of axioms and the number of inference rules is finite and all items in the

chart are unique. Thus, the overall time complexity of the recognizer is
� � �

�
��� � � .

4.8 Recognition Example

The deductive system for the Minimalist Grammar given in section 2.3.1 and the input

sentence Titus praise s Lavinia has 14 axioms. These are given in 60 through 73 below.

60. [(0, 0):=i c] �

109

61. [(0, 0):=vt +k =d pred] �

62. [(0, 1):d -k] �

63. [(1, 1):=i c] �

64. [(1, 1):=vt +k =d pred] �

65. [(1, 2):=d vt -v] �

66. [(2, 2):=i c] �

67. [(2, 2):=vt +k =d pred] �

68. [(2, 3):=pred +v +k i] �

69. [(3, 3):=i c] �

70. [(3, 3):=vt +k =d pred] �

71. [(3, 4):d -k] �

72. [(4, 4):=i c] �

73. [(4, 4):=vt +k =d pred] �

From these axioms, the recognizer will derive a goal item [(0, 4):c] � . The items

involved in the derivation of the goal item are given below. Note the close connection

between this derivation and the derivation of the sentence Titus praise s Lavinia in

section 2.3.1. To simplify the presentation we will not mention the agenda of the

recognizer explicitly.

74. Merge-3(65, 71): [(1, 2):vt -v, (3, 4):-k] �

75. Merge-3(73, 74): [(4, 4):+k =d pred, (1, 2):-v, (3, 4):-k] �

110

76. Move-1(75): [(3, 4):=d pred, (1, 2):-v] �

77. Merge-3(76, 62): [(3, 4):pred, (0, 1):-k, (1, 2):-v] �

78. Merge-1(68, 77): [(2, 4):+v +k i (0, 1):-k, (1, 2):-v] �

79. Move-1(78): [(1, 4):+k i, (0, 1):-k] �

80. Move-1(79): [(0, 4):i] �

81. Merge-1(60, 80): [(0, 4):c] �

4.9 Extensions

The reformulated Minimalist Grammars discussed in section 4.1 of this chapter do not

allow head movement, nor covert phrasal movement. In this section we will briefly

discuss the extensions necessary to include these two kinds of movement in our refor-

mulated grammars.

4.9.1 Head Movement

The general idea behind the ‘collapsed tree’ notation is to split a tree and its phonetic

yield into parts that will move independently from one another. If � is a tree and � its

corresponding expression, then the first chain of � represents the head of � . According

to the conventions introduced in section 4.1.1, the string associated with the first chain

of an expression consists of the phonetic material of the head of the tree and phonetic

material elsewhere in the tree that will not move. In order to capture head movement,

the phonetic material of the head must be kept separate from the the phonetic material

elsewhere in the tree that does not move. Thus, following [Sta01b], rather than writing
�
: � for the first chain of an expression, we will now write � , � , � : � , where

�
is the

111

concatenation of � , � , and � , and � is the phonetic material of the head. Head movement

can not move phonetic material other than that of the head of the tree, so there is no

need to split the string parts of the other chains in an expression. An abstract example

of the new notation is provided in 82 and 83 below.

82. �

–

a

�

�

-f �
b

�

–

c

-f �

d

�

x

e

�

-f �

f

�

-f �

g

–

h

83. [ac, e,
 :x, b:-f � d:-f � f:-f
�

gh:-f
�
] �

The reformulated structure building functions for head movement with left-adjunction,

taken from [Sta01b], are given in 84 and 85.

84. [
 � � �
 :X= �] � [
� � � � $ � � � :x, � �

� � �

� � �] �
Merge-la-1

[
 � � $ � � � � � � : � � � � �
� � �

� � �] �

85. [
 � � �
 :X= �] � [
� � � � $ � � � :x � , � �

� � �

� � �] �
Merge-la-3

[
 � � $ � �
 : � ,
� � �

� : � � � � �
� � �

� � �] �

In the case of head movement with left adjunction, the string associated with the

head of the selected expression must be prefixed to the string associated with the head

of the selecting expression. The selected tree will form the complement of the resulting

tree. Hence, if the selected tree will not move along, its phonetic material – except

for the phonetic material of the head – will go in the complement position of the

112

resulting tree. This situation is covered by the function Merge-la-1 in 84. An example

of an application of this function is given in 86 in terms of trees and in 87 in terms of

collapsed trees.

86. X= y h,
�

–

a

�

�

–

b

�

-f �
c

–

d

�

x

e

–

g

�� �

y

eh

�

–

a

�

�

–

b

�

-f �
c

–

d

�

–
�

–

g

87. [
 � � �
 :X=y] � , [a, e, g:x, bcd:-f �] �
�� [
 ��� � ����� :y, bcd:-f �] �

The function Merge-la-3 in 85 describes the case in which the selected tree will

move along in a later derivation step. In this case the phonetic material in the specifier

and complement position of the selected tree must be kept in a separate chain. By

definition head movement can only occur if the selecting tree is simple. Hence the

strings associated with the specifier and the complement of the selecting expressions

in 84 and 85 are empty.

The functions Merge-ra-1 and Merge-ra-3 for left-adjunction, which are given in

88 and 89, are similar to the functions Merge-la-1 and Merge-la-3.

88. [
 � � �
 :=X �] � [
� � � � $ � � � :x, � � �

� � �

� � �] �
Merge-ra-1

[
 � � � $ � � � � � : � , � � �
� � �

� � �] �

89. [
 � � �
 :=X �] � [
� � � � $ � � � :x � , � �

� � �

� � �] �
Merge-ra-3

[
 � � � $ �
 : � ,
� � �

� : � � � � �
� � �

� � �] �

113

Associating the first chain of an expression with three strings rather than one also

requires minor changes in the functions Merge-1, Merge-2, Merge-3, Move-1, and

Move-2. The revised versions of these functions follow below.

90. [
 � � �
 :=x �] � [
� � � � $ � � � :x, � � �

� � �

� � �] �
Merge-1 �

[
 � � � � � � $ � � : � , � � �
� � �

� � �] �

91. [� � � � $ � �
� :=x � , � � �

� � �

� � �] � [
� � � � $ � � � :x, � � �

� � �

� � �] �
Merge-2 �

[
� � � $ � �

� � � � $ � �
� : � , � � �

� � �

� � � � � � �
� � �

� � �] �

92. [� � � � $ � �
� :=x � , � � �

� � �

� � �] � [
� � � � $ � � � :x � , � � �

� � �

� � �] �
Merge-3 �

[� � � � $ � �
� : � , � � �

� � �

� � � ,
� � � $ � � : � , � � �

� � �

� � �] �

93. [� � � � $ � �
� :+f � , � � �

� � �

� � � � � ,
�
:-f, � � � � �

� � �

� � �] �

Move-1 �
[
� � � � � $ � �

� : � , � � �
� � �

� � � � � � � � � � �
� � �

� � �] �

94. [� � � � $ � �
� :+f � , � � �

� � �

� � � � � ,
�
:-f � , � � � � �

� � �

� � �] �

Move-2 �
[� � � � $ � �

� : � , � � �
� � �

� � � � � ,
�
: � , � � � � �

� � �

� � �] �

The new functions in this section are straightforwardly turned into rules of infer-

ence for the recognizer by replacing the strings with position vectors. It follows from

the antecedents which position vectors are adjacent and which are not necessarily ad-

jacent.

4.9.2 Covert Phrasal Movement

The application of the structure building function move in 96 shows that the collapsed

tree notation does not contain enough information to describe covert movements. In

order to determine the phonetic material that will be left behind by the covert move

operation triggered by the pair of features +F � , -f � , it is necessary to know that the

maximal projection of the node labeled -f � contains the maximal projection of the

node labeled -f � . Moreover, in order to establish that in the phonetic material that is

114

left behind b occurs to the left of c, it is necessary to know that the maximal projection

of the node labeled -f � is a complement of the node labeled -f � . Finally, in order to

establish that the string bc is left behind in a position which is to the right of the head

of the tree, it is necessary to know that the tree that moves covertly moves so from a

complement position.16

96. �

+F � x
a

�

-f �
b

-f �

c

�� �

�

–

–

-f �

–

�

x

a

�

–

b

–

c

The collapsed tree notation introduced above suggests that the trees in 96 be rep-

resented by the expressions in 97.17 However, it is clear from the preceding discussion

that in 97 the expression on the left does not contain enough information to derive the

expression on the right.

97. [a:+F � x, b:-f � , c:-f �] �
�� [abc:x,
 :-f �] �

In order to accommodate covert movement, the expressions in 97 have to be ex-

tended with a relation C, for immediate containment, and P, for immediate precedence.

Given a tree � and its corresponding expression � , a chain � : � in � immediately con-

tains another chain
�
: � in � if in tree � the maximal projection of the node with syntactic

� �

Compare the configuration in 96 with the following, linguistically rather bizarre situation:

95. �

�

-f �
b

-f �

c

+F � x
a

�� �

�

–
–

-f �

–

�

�

–
b

–
c

x
a

�

To ignore unnecessary complications in the notation, head movement will be ignored in this section.

115

features � is a complement or specifier of the node labeled with syntactic features � .

Thus, the relation C for the expression corresponding to the left-most tree in 96 is

given by C =
� �

a:+F � x, b:-f � � , � b:-f � , c:-f � � � . Let C � denote the transitive closure

of C. For our simple case, C �
� �

a:+F � x, b:-f � � , � a:+F � x, c:-f � �
�
b:-f � , c:-f � � � . A

chain � : � in � immediately precedes another chain
�
: � in � if in the yield of tree � the

node labeled � and the node labeled � are not separated by another node with syntactic

features and either 1) the maximal projection of the node labeled � and the maximal

projection of the node labeled � are specifiers of the same head, and the node labeled

� precedes the node labeled � in � , or 2) the node labeled � is the head of a specifier of

the node labeled � , or 3) the node labeled � is the head of the complement of the node

labeled � . Relation P reflects the order specifier-head-complement; multiple specifiers

of a projection are ordered from left to right as in the tree. For the left-most tree in

96, P = C. Now, since
�
b:-f � , c:-f � � � C � , both b and c will be left behind by the

covert movement operation in the example above. Since
�
b:-f � , c:-f � � � P, b must

be to the left of c. Since
�
a:+F � x, b:-f � � � P, a must be to the left of b. Thus for the

expression [a:+F � x, b:-f � , c:-f �] � , C, P corresponding to the tree on the left in 96 we

are able to derive an expression [abc:x,
 :-f �] � , C � , P � for the tree on the right in 96.

The contents of C � and P � follow immediately from the contents of C and P definition

of the structure building function ��� � � .

There is one further complication that needs to be addressed, concerning the ma-

nipulation of the string parts of the expressions involved in covert movement. Consider

the tree in 98 below.

98. �

x

a

�

-f �
b

–

c

116

Under current conventions, the expression for the tree in 98 will be [ac:x, b:-

f �] � . However, this does not accommodate the case in which the node -f � b will move

covertly. In that case, b should go inbetween a and c, which is impossible if a and c

have already been concatenated.

There are at least two possible approaches to resolving this issue. In the approach

taken by Michaelis ([Mic98]), all movement operations are anticipated, that is to say,

every licensee feature is marked with an index indicating whether the feature will be

used to trigger an overt move or a covert move.18 The functions for overt and covert

movement are restricted to apply only to expressions with features that are marked

with the appropriate index. So, for example, if the licensee feature -f � will trigger a

covert movement, the expression corresponding to the tree in 98 will be as in 99. The

expression in 100 is for the situation in which -f � will trigger an overt move.

99. [abc:x,
 :-f � (covert)] � , C, P

100. [ac:x, b:-f � (overt)] � , C � , P �

This approach is worked out in complete detail in [Mic98].

Another approach would be to postpone concatenation of two strings until all in-

tervening phonetic material has actually either moved overtly or been left behind by

covert movement. The order of concatenation will be recorded in the relations C and

P. For example, in this approach the tree in 98 will be represented by the expression in

101, where C =
� �

a:x, c:– � , � c:–, b:-f � � � and P =
� �

a:x, c:– � , � b:-f � , c:– � � .

101. [a:x, b:-f � , c:–] � , C, P
� �

Michaelis use a similar scheme to distinguish merge operations with head movement from merge
operations without head movement.

117

Now assume that the tree in 98 is selected by the simple tree =x+F � y. Then node

-f � b will move covertly, leaving behind b. In terms of collapsed trees, since in 101

chain a:x precedes and contains chain c:–, and chain c:– contains and is preceded by

chain -f � b, in the expression resulting from the covert movement operation a will pre-

cede b, which will precede c. Since these strings are not separated by any node with

an outstanding licensee feature, they can be concatenated. Hence, the resulting expres-

sion will be [abc:y] � , C � , P � . If, however, the tree in 98 is selected by a tree =x+f � y,

the node -f � b will move overtly, taking b with it. In that case, since movement is to a

specifier position, the resulting string will be bac.

For both approaches it is possible to convert the functions into rules of inference

for the parser. However, the functions provided in [Mic98] are very complex. The

second approach sketched above appears to be less complicated, but it has not been

completely worked out. Therefore we cannot be certain at this point that it is sound

and complete with regard to the original definition of Minimalist Grammars.

4.10 Conclusion

In this chapter we have provided a formal specification of an agenda-driven, chart-

based, bottom-up recognizer for languages generated by Minimalist Grammars with-

out head movement and covert phrasal movement. The recognizer uses a succinct

reformulation of Minimalist Grammars that does not refer to full trees. As evident

from the example in section 4.2, the recognizer generates many axioms which poten-

tially combine into items that will never lead to a goal item.19 Thus the bottom-up

recognizer cannot have the correct-prefix property. In the next chapter we will turn our
� �

In Context-Free Grammars, only adjacent constituents can combine into larger constituents. Be-
cause of their discontinuous character, there is no such restriction for Minimalist Grammars, making the
problem of spurious items even more acute.

118

attention to a top-down recognizer for Minimalist Languages, which does not have this

problem.

When the recognizer described here is confronted with a choice regarding what

axiom to use for a word in the input sentence or what rule of inference to apply to an

item, it will simply pursue all possibilities and store the results in the chart. Some of

these choices will produce items that are not involved in the derivation of a goal item.

These mistakes may be avoided by looking at the words that follow in a sentence.

For example, after having heard after Mary left the store there is a choice between

treating the determiner phrase the store as the object of the verb to leave or treating

the store as the subject of a matrix clause that follows. If the sentence continues with

she went home, the first choice is the right one; if the sentence continues with closed,

the second.20 It is still an open question whether there is a useful way to characterize

Minimalist Grammars that generate languages such that
�

words of look-ahead suffice

to make bottom-up recognition deterministic, i.e. for any input sentence the number of

choices facing the recognizer at each choice point is at most one.

�

This is not to say that this is the way the human sentence processor deals with sentences of this

kind, nor that local ambiguities in English can generally be resolved by a look-ahead mechanism.

119

CHAPTER 5

Parsing Minimalist Languages Top-Down

In this chapter we will describe a method for top-down recognition of languages de-

fined by Minimalist Grammars [Sta97]. Minimalist Grammars are a rigorous formal-

ization of the kind of grammars proposed in the linguistic framework of Chomsky’s

Minimalist Program [Cho95]. The grammar formalism will be briefly reviewed in

section 5.1. Even though Minimalist Grammars are more powerful than Context-Free

Grammars, derivations in this formalism are context-free. This property of Minimalist

Grammars will be explained in section 5.2

In the previous chapter, a chart-based bottom-up recognizer for Minimalist Gram-

mars was presented. A bottom-up parser has no predictive power. Hence, the chart

will contain numerous items that are not involved in the derivation of the sentence to

be parsed. In particular, in order to be complete, a bottom-up parser has to assume

that any phonetically empty category can intervene between any two adjacent words

in a sentence. A top-down parser, however, has the ability to predict, based on the

structure built so far, where in the structure of a sentence it is necessary to assume the

presence of phonetically empty categories. Phonetically empty functional projections

are ubiquitous in present-day transformational theories of language, so this issue is

an important motivation for the formulation of a top-down recognizer for Minimalist

Grammars. The design of the top-down recognizer will be discussed in section 5.3.

The accuracy of the predictions can be improved by adding look-ahead. This will be

addressed in section 5.4.

120

Another goal of the current chapter is to design a parser for Minimalist Grammars

which has the correct-prefix property. A parser has the correct-prefix property if it goes

through the input sentence from left to right and, in case of an ungrammatical input

sentence, will halt at the first word of the sentence that does not fit into a grammatical

structure, i.e., the parser will not parse a prefix that cannot be extended to a grammat-

ical sentence in the language, e.g. [SS88], [Ned99]. Because of its lack of predictive

power, the bottom-up recognizer described in the previous chapter does not have the

correct-prefix property – the top-down recognizer presented here does. The additions

necessary to obtain the correct prefix property are discussed in section 5.5. A parser

with the correct-prefix property is computationally advantageous, because it will not

spend any effort on trying to complete a parse for a sentence once it is known that the

sentence is ungrammatical. Also, the parser of the human sentence processor seems to

have the correct-prefix property: the ungrammaticality of a sentence is detected at the

first word that makes the sentence ungrammatical, and for garden path sentences the

human parser will generally hesitate at the first word that does not fit into the structure

that is hypothesized for the sentence.

This chapter closes with proofs of correctness for the top-down recognizer and

some concluding remarks.

5.1 Minimalist Grammars

In this section we will present the Minimalist Grammar formalism, following [Sta97].

A Minimalist Grammar defines a set of trees. These trees are derived by closing the

lexicon, which is a set of trees itself, under two structure building functions, merge

and move. Consider for example Minimalist Grammar G � with a lexicon containing

the following 6 elements:

121

1. d -k Lavinia

2. d -k Titus

3. =d vt -v praise

4. =pred +v +k i s

5. =i c

6. =vt +k =d pred

Each lexical item is a 1-node tree labeled with syntactic features of various kinds

and a phonetic form. The last two lexical items are phonetically empty.

The features determine how the structure building functions will apply to the lex-

ical items and the trees derived from these. Two trees, one of which has a feature

=x and the other of which has a feature x, will trigger an application of the structure

building function merge. For example, the lexical items =d vt -v praise and d -k

Lavinia will merge to form the tree below:

7. �

vt -v

praise

-k

Lavinia

The resulting tree includes the original expressions =d vt -v praise and d -k

Lavinia, minus the pair of features =d and d that triggered the function merge. These

features have been checked and deleted. The ‘ � ’ points to the head of the tree. The

features of the head of the tree determine what other structure building functions will

apply. The order of the features matters: the application of the structure building

functions is triggered by the left-most features of the sequences of features of the

expressions involved. Thus, merge does not apply to the lexical items =vt +k =d

122

pred
 and =d vt -v praise, because the feature vt is not left-most in the lexical

item =d vt -v praise.

A tree that consists of more than one node, such as the tree in 7, is called a complex

tree. Lexical items are simple trees, as they consist of just one node. We will use the

following notation for complex trees: [� � , �] denotes a complex tree with immediate

subtrees � and � , � preceding � , whose head is the head of � ; similarly, [� � , �] denotes

a complex tree with immediate subtrees � and � , � preceding � , whose head is the head

of � . (For example, in this notation, the tree in 7 would be written as [� vt -v praise,

-k Lavinia].) The head of a simple tree is the single node making up the simple tree.

The structure building function merge is defined in the following way. A pair of trees

� , � is in the domain of merge if the left-most feature of the head of � is =x and the

left-most feature of the head of � is x. Then merge(� , �) = [� � � , � �] if � is simple,

and merge(� , �) = [� � � , � �] if � is complex, where � � is like � except that feature =x is

deleted, and � � is like � except that feature x is deleted. So simple trees take sisters to

their right, and complex trees take sisters to their left.

8. �

+k =d pred

�

�

-v

praise

-k

Lavinia

The derivation will continue with merging the lexical item =vt +k =d pred
 and

the tree in 7. The result is given in 8.

The left-most feature of the head of the tree in 8 is +k. Furthermore, the tree

contains a node whose left-most feature is -k. In this situation, the structure building

function move will apply. It will move the maximal subtree whose head has the feature

-k to the specifier position of the original tree, as in 9 below. A subtree � is maximal

123

if any subtree � properly containing � has a head other than � . As in the case of merge,

the features triggering the application of move are checked and deleted.

9. �

Lavinia
�

=d pred

�

�

-v

praise

�

Formally, the structure building function move is defined as follows. A tree � is in

the domain of move if the left-most feature of the head of � is +y and � has exactly

one maximal subtree � � the left-most feature of the head of which is -y. Then move(�)

= [� � �� , � �], where � �� is like � � except that feature -y is deleted, and � � is like � except

that feature +y is deleted and subtree � � is replaced by a single node without features.

10. �

-k

Titus

�

Lavinia
�

pred

�

�

-v

praise

�

The left-most feature of its head being =d, the tree in 9 will merge with the lexical

item d -k Titus. Because the tree in 9 is a complex tree, the second clause of the

definition of merge will apply. The result is the tree in 10.

The tree in 10 will be merged with the lexical item =pred +v +k i s. This will

produce the tree in 11.

124

11. �

+v +k i

s

�

-k

Titus

�

Lavinia
�

� �

-v

praise

�

The next step of the derivation is another move, triggered by the feature +v on the

head of the tree in 11 and the feature -v on the head of one of its subtrees. The tree in

12 is the result.

12. �

�

praise
�

�

+k i

s

�

-k

Titus

�

Lavinia
�

�
�

The pair of features +k and -k in the tree in 12 will trigger another application of

move, which will yield the tree in 13.

125

13. �

Titus �

�

praise
�

�

i

s

�

� �

Lavinia
�

�
�

Finally, the tree in 13, whose head has the feature i, will be selected by the lexical

item =i c
 . The result of this final merge is the tree in 14. This tree contains only

one unchecked feature, namely c, and this feature labels the head of the tree. We have

thus established that the yield of the tree in 14,
 Titus praise s Lavinia
 , i.e., Titus

praises Lavinia, is a string of category c, using an analysis along the lines of [Mah00],

cf. [SK00].1
�

In traditional notation, the tree in 14 would be presented as in 14b.

14b. CP

C IP

DP �
Titus

IP

VP �
V

praise

���
I �

I
-s

PredP

� � PredP

DP
�

Lavinia
Pred �

Pred
� �

126

14. �

c

�

�

Titus
�

�

praise
�

�

s
�

� �

Lavinia
�

�
�

The total number of features occurring in the lexical items involved in the deriva-

tion of the sentence Titus praises Lavinia is 17. Therefore, the derivation of the tree in

14 takes exactly 8 steps, for each application of merge and move removes 2 features

and the tree in 14 has one single feature left.

The derivation can be summarized in the derivation tree given in 15. The numbered

nodes stand for the trees given above, including the lexical items.

15. 14

5 13

12

11

4 10

9

8

6 7

3 1

2

127

Formally, the language derivable by a Minimalist Grammar G consists of the yields

of the complete trees in the closure of the lexicon under the structure building functions

merge and move, where a complete tree is a tree without syntactic features, except for

the distinguished feature c, which has to label the head of the tree, and the yield of

a tree is the concatenation of the phonetic forms appearing at the leaves of the tree,

ordered as in the tree.

All derivations in a Minimalist Grammar are subject to the Shortest Movement

Constraint, which is built in into the definition of the domain of the structure building

functions move: this function does not apply to a tree if the left-most feature of the

head of the tree is +f and the tree contains more than one subtree whose head begins

with the feature -f. In this case all subtrees want to move to the same position, but

moving any one subtree will deprive the other subtrees of their “shortest move”, as

they will now have to move to the specifier of some higher head which has the feature

+f.

5.2 Context-Free Derivations

Michaelis ([Mic98]) has shown that the class of languages defined by Minimalist

Grammars is included in the class of languages defined by Multiple Context-Free

Grammars ([SHF91]) by demonstrating how to construct a Multiple Context-Free

Grammar G � which defines the same language as a given Minimalist Grammar G. For

every tree � generated by grammar G, there will be a non-terminal symbol A in gram-

mar G � which encodes the purely syntactic properties of � , that is, its behavior with

regard to the structure building functions merge and move. These properties are com-

pletely determined by the syntactic features appearing in the tree and whether the tree

is simple or complex. The phonetic forms appearing in a tree are not relevant for the

applicability of merge and move, nor does the geometry of the tree matter, except for

128

the fact that the syntactic features of the head of the tree should be distinguished from

syntactic features appearing at other nodes in the tree. Hence, for syntactic purposes,

a tree may be collapsed into a sequence of sequences of syntactic features. These are

the non-terminal symbols of grammar G � , which will be referred to as categories.

Formally, a category is a sequence of the form [� � � � � , . . . , � � � � �] � , with � � , � � �

Cat � , 0 � � � , t �
�
c, s, l � , and Cat the set of syntactic features of G.2 A category A

represents a set of trees T � (A). A tree � is in T � ([� � � � � , . . . , � � � � �] �) if, and only if, the

following four conditions are met:

1. If
�

= s, � is a simple tree; if
�

= c, � is a complex tree; and if
�

= l, � is a lexical

tree.3

2. For every � , 0 � � � � , there is a leaf � � in � such that:

(a) The syntactic features of � � are � � .

(b) The maximal subtree headed by � � is a projection of a lexical item with

features � � � � .4

3. Leaf � � is the head of � .

4. Besides the leaves � � , . . . , � � , there are no other leaves with syntactic features in

� .
�

Michaelis ([Mic98]) and Harkema ([Har00]), see the previous chapter of this dissertation, do not
consider categories with dots. The use of dots allows for a finer distinction between categories, which
will be advantageous when look-ahead is added to the top-down recognizer.�

All lexical trees are assumed to be simple trees, but not all simple trees are lexical trees. For
example, the tree d -k � is a simple tree, but it is not a lexical tree in grammar G � discussed in section
5.1.�

Any lexical item
�

is a projection of itself. If � is a projection of
�

and � , � are in the domain of
merge, then

�
= merge(� , �) is a projection of

�
. If � is a projection of

�
and � is in the domain of move,

then
�

= move(�) is a projection of
�
.

129

One can think of a category as an abbreviation of a possibly infinite set of trees.

We will only be interested in relevant categories, that is, categories A for which T � (A)

includes a tree generated by grammar G which does not violate the Shortest Movement

Constraint. Any tree � that violates the Shortest Movement Constraint is useless in that

it is not a complete tree by itself and cannot participate in the derivation of a complete

tree. The structure building function move does not apply to such a tree � , wherefore its

outstanding -f features cannot be deleted. The crucial observation in [Mic98] is that

the set of relevant categories for grammar G is finite. This is essential for grammar G �

to be definable at all, since a Multiple Context-Free Grammar cannot have an infinite

number of non-terminal symbols or categories.

With regard to the phonetic forms of the trees generated by G, any category A in G �

will be associated with a tuple of strings, rather than with just one string, as in a plain

Context-Free Grammar. For a category A corresponding to a tree � generated by G,

this tuple of strings includes all and only the phonetic forms appearing in � . Phonetic

forms that will move independently from one another will be kept separate. In order

to formalize this, let the narrow yield Y � of a tree be defined as follows. The narrow

yield of a simple tree � equals its yield as defined above. If � is a complex tree, then,

in case � = [� � , �], Y � (�) = Y � (�)
�

Y � (�) if the left-most feature of the head of �
is not of the kind -f, and Y � (�) = Y � (�) otherwise.5 If � = [� � , �], then Y � (�) =

Y � (�)
�

Y � (�) if the left-most feature of the head of � is not of the kind -f, and Y � (�)

= Y � (�) otherwise. Then, a category A = [� � � � � , . . . , � � � � �] � as defined above will

be associated with a tuple of strings (� � , . . . , � �) if, and only if, there is a tree � �

T � (A) for which the narrow yield of the maximal projection of leaf � � in � labeled with

syntactic features � � is � � , 0 � � � � .

In order to derive the categories and their associated tuples of strings, grammar
�

For two strings � and � , ��� � denotes their concatenation in the obvious order.

130

G � contains a set of context-free rewrite rules which mirror the effects of the structure

building operations merge and move in grammar G. Since the set of relevant categories

is finite, a finite set of rewrite rules suffices to describe all derivations.

For example, for G � the grammar discussed in the previous section, grammar G �

will allow us to derive a category [=vt +k =d � pred, d � -k, =d vt � -v] � , which

will be associated with the triple (Lavinia
 , Titus, praise) = (Lavinia, Titus, praise).

The tree given in 10 is an element of T � ([=vt +k =d � pred, d � -k, =d vt � -v] �).

We can also derive a category [� =pred +v +k i] � , associated with the 1-tuple (s).

The tree in 4 is an element of T � ([� =pred +v +k i] �). We can conveniently com-

bine a category and its associated tuple of phonetic forms and write [Lavinia:=vt

+k =d � pred, Titus:d � -k, praise:=d vt � -v] � and [s: � =pred +v +k i] � for the two

examples given above. The context-free rewrite rule [p
�

q:=pred � +v +k i, r:d � -

k, t:=d vt � -v] � [p: � =pred +v +k i] [q:=vt +k =d � pred, r:d � -k, t:=d vt � -

v] mirrors the step in the derivation in which the tree in 11 is derived from the tree

in 4 and the tree in 10. The rule will derive the category with phonetic forms [s

Lavinia:=pred � +v +k i, Titus:d � -k, praise:=d vt � -v] � from [s: � =pred +v +k i] �

and [Lavinia:=vt +k =d � pred, Titus:d � -k, praise:=d vt � -v] � . The tree in 11 is an

element of T � ([=pred � +v +k i, d � -k, =d vt � -v] �). Using categories to abbreviate

trees, the derivation tree in 15, whose nodes are trees generated by grammar G � , can

be represented as the tree in 16.

131

16. [Titus praise s Lavinia:c] �

[� :=i c] � [Titus praise s Lavinia:i] �

[praise s Lavinia:+k i, Titus:-k] �

[s Lavinia:+v +k i, Titus:-k, praise:-v] �

[s:=pred +v +k i] � [Lavinia:pred, Titus:-k, praise:-v] �

[Lavinia:=d pred, praise:-v] �

[� :+k =d pred, praise:-v, Lavinia:-k] �

[� :=vt +k =d pred] � [praise:vt -v, Lavinia:-k] �

[praise:=d vt -v] � [Lavinia:d -k] �

[Titus:d -k] �

The translation of a Minimalist Grammar G into an equivalent Multiple Context-

Free Grammar G � reveals that the derivation trees of Minimalist Grammars are context-

free, even though the languages defined by Minimalist Grammars are beyond the

power of Context-Free Grammars. The next section will show how this insight can

be used to obtain a transparent top-down recognizer for languages generated by Mini-

malist Grammars.

5.3 Top-Down Recognition

The top-down recognizer for Minimalist Grammars that will be presented in this sec-

tion, like its bottom-up counterpart in the previous chapter, is based on the principle

of parsing as deduction as described in [SSP95]. The recognizer uses a chart to store

items, which embody predictions about the syntactic structure of the sentence to be

132

recognized. Initially, the chart will be filled with a set of axioms. These axioms are

then closed under a set of rules of inference. If the closure contains a distinguished

goal item, the sentence is in the language defined by the grammar, otherwise it is not,

assuming that the deductive system is sound and complete.

5.3.1 Items and Invariant

An item is a sequence
� � + . . . +

� � , where each subitem
�
� , 1 � � � � , is a pre-

diction regarding the syntactic features and narrow yields of a tree involved in the

derivation of the input sentence. A subitem is a category with position vectors and is

of the general form [(x � , y �): � � � � � , . . . , (x � , y �): � � � � �] � , with � � , � � , and
�

as above,

and x
�
, y

� � � , 0 � � � . A subitem
�

abbreviates a set of trees T � (�
). For an input

string � = � � . . . � � and a subitem
�

= [(x � , y �): � � � � � , . . . , (x � , y �): � � � � �] � , tree a � is

in T � (�
) if, and only if, the following holds:

1. � � T � ([� � � � � , . . . , � � � � �] �).

2. The narrow yield of the maximal projection of leaf � � in � labeled � � is � � � � � . . . ��� � ,
0 � � � � .

On the assumption that sentences are strings of the distinguished category c, the

items generated by the recognizer will be interpreted under the following invariant:

given an item
� � + . . . +

� � , the sequence of trees � � , . . . , � � , for arbitrary � � �

T � (�
�), 0 � � � � , is a cut of a partial derivation tree whose root is a complete tree

� of category c with yield � .6 � 7 Recall that the nodes of a derivation tree are labeled

with trees generated by a Minimalist Grammar (cf. the derivation tree in 15).
�

A partial derivation tree is a derivation tree whose root is a complete tree, but the leaves of a partial
derivation tree are not necessarily lexical items.

A set C of nodes of a tree T is a cut of tree T if none of the nodes in C dominates another node in
C and if every node in T and not in C either dominates or is dominated by a node in C.

133

5.3.2 Axioms

If c is the distinguished feature of grammar G and
�

is the length of the input string � ,

then for any lexical item
�

with the single syntactic feature c there will be an axiom [(0,

k): � c] � , and for any lexical item
�

with syntactic features � c, there will be an axiom

[(0, k): � � c] � , � � Cat
�

.

5.3.3 Rules of Inference

The rules of inference encode the context-free rewrite rules of the Multiple Context-

Free Grammar G � equivalent to Minimalist Grammar G. Grammar G � contains a rewrite

rule for every single application of the structure building functions merge and move, but

the definitions of these functions allow us to condense these rewrite rules into five rules

of inference: three Unmerge rules and two Unmove rules. Given a particular subitem
�
� appearing in some item

� � + . . . +
� � , the rules of inference will predict how the

trees in T � (�
�) can be ‘unmerged’ and ‘unmoved’ into smaller trees by specifying the

particular subitems that these smaller trees belong to. In addition to the Unmerge and

Unmove rules, there is also a Scan rule for reading the input string.

Unmerge-1: given an item
� � + . . . +

� � such that
�
� = [(p, q):=x � � , S] � , 1 � �

� � , then, for any lexical item with syntactic features � x, add the items
� � + . . . +

�
� � � + [(p, v): � =x �] � + [(v, q): � � x, S] � +

�
� � � + . . . +

� � to the chart, for all possible

values of � such that � � � � � ; for all possible values of
�

such that
�

= s if � =
�
,
�

=

c if � �� �
, and if

�
= s then S =

�
.

Unmerge-2: given an item
� � + . . . +

� � such that
�
� = [(p, q): � =x � � , S] � , 1 �

� � � , �
�� �

, then, for any lexical item with syntactic features � x, add the items
� �

+ . . . +
�
� � � + [(v, q): � � =x � , U] � + [(p, v): � � x, V] � +

�
� � � + . . . +

� � to the chart, for

all possible values of � such that � � � � � ; for all possible values of U, V such that U

134

� V = S; for all possible values of
�

such that
�

= s if � =
�
,
�

= c if � �� �
, and if

�
= s

then V =
�
.

Unmerge-3: given an item
� � + . . . +

� � , such that
�
� = [(p, q): � =x � � , S, (v,

w): � x � � , T] � , 1 � � � � , then add the items
� � + . . . +

�
� � � + [(p, q): � � =x � , U] � � +

[(v, w): � � x � , V] � � +
�
� � � + . . . +

� � to the chart, for all possible values of U, V such

that U � V = S � T; for all possible values of
� � such that

� � = s if � =
�
,
� � = c if �

��
�
, and if

� � = s then U =
�
; for all possible values of

�
� such that

�
� = s if � =

�
,
�
� = c

if � �� �
, and if

�
� = s then V =

�
.

Unmove-1: given an item
� � + . . . +

� � , such that
�
� = [(p, q): � +y � � , S] � , 1 �

� � � , �
�� �

, then, for any lexical item with syntactic features � -y, � �� �
, add the

items
� � + . . . +

�
� � � + [(v, q): � � +y � , (p, v): � � -y, S] � +

�
� � � + . . . +

� � to the chart,

for all possible values of � such that � � � � � .

Unmove-2: given an item
� � + . . . +

� � , such that
�
� = [(p, q): � +y � � , S, (v, w): � -

y � � , T] � , 1 � � � � , �
�� �

, � �� �
, add the items

� � + . . . +
�
� � � + [(p, q): � � +y � , S,

(v, w): � � -y � , T] � +
�
� � � + . . . +

� � to the chart.

Scan: given an item
� � + . . . +

� � , such that
�
� = [(p, q): � �] � , 1 � � � � , then,

if there is a lexical item
�

with syntactic features � and phonetic features covering

� � � � . . . �
�

of the input string, i.e.
� � T � (�

�), add the following item to the chart:
� �

+ . . . +
�
� � � + [(p, q): � �] � +

�
� � � + . . . +

� � .

The rules of inference Unmove-1 and Unmove-2 come with the restriction that no

items violating the Shortest Movement Constraint should be added to the chart. An

item violates the Shortest Movement Constraint if it contains a subitem [(x � , y �): � � � � � ,

. . . , (x � , y �): � � � � �] � such that there are � � , � � whose left-most features are the same

feature -y, 1 � � � � � .

135

5.3.4 Goal Items

Any item of the form [(x � , y �): � � �] � + . . . + [(x � , y �): � � �] � is a goal item.

It follows from the definition of the Scan rule that there are lexical items
�
�
�

T � ([(x � , y �): � � �] �), 0 � � � � . According to the invariant, the sequence
� � ,. . . ,

� � is a

cut of a partial derivation tree whose root is a complete tree � of category c with yield

� . Since all
�
� , 0 � � � � , are lexical items, the derivation tree is in fact a complete

derivation tree, which means that � is in the language defined by G.

5.3.5 Example

The recognition of the example sentence � = � Titus � praise � s
�
Lavinia

�
according to

grammar G � given in section 5.1 will start with the assertion of the single axiom [(0,

4):=i � c] � . This item represents a cut through the root of the derivation tree in 15. Of

course, for each cut of the tree in 15, there is a corresponding cut of the derivation tree

in 16.

Rule Unmerge-1 will apply to the axiom, as there is a lexical item with features

=pred +v +k i. One of the items produced is [(0, 0): � =i c] � + [(0, 4):=pred +v

+k � i] � . This item corresponds to a cut through the nodes labeled 5 and 13 in derivation

tree in 15. Rule Unmerge-1 also produces four other items: [(0, v): � =i c] � + [(v,

4):=pred +v +k � i] � , 1 � � � 4. These four additional items also obey the invariant

defined in section 5.3.1, but they do not correspond to a cut of the particular derivation

tree in 15.

The item [(0, 0): � =i c] � + [(0, 4):=pred +v +k � i] � can be rewritten in two ways.

Either the Scan rule will apply to produce the item [(0, 0): � =i c] � + [(0, 4):=pred

+v +k � i] � , or rule Unmove-1 will apply to produce the item [(0, 0): � =i c] � + [(1,

4):=pred +v � +k i, (0, 1):d � -k] � (plus another four items [(0, 0): � =i c] � + [(v � ,

136

4):=pred +v � +k i, (0, v �):d � -k] � , � � = 0 or 2 � � � � 4). Item [(0, 0): � =i c] � +

[(0, 4):=pred +v � +k i (0, 0):d � -k] � corresponds to a cut through the nodes labeled

5 and 12 of the tree in 15. Rule Unmove-1 will also apply to the other four items

produced in the previous step (1 � � � 4), but Scan will not.

Eventually, the item [(0, 0): � =i c] � + [(2, 3): � =pred +v +k i] � + [(4, 4): � =vt +k

=d pred] � + [(1, 2): � =d vt -v] � + [(3, 4): � d -k] � + [(0, 1): � d -k] � will be deduced.

This is a goal item, corresponding to a cut through the leaves of the derivation tree in

15.

5.3.6 Correctness and Complexity

The recognizer presented above is sound and complete: every deducible item respects

the invariant given in section 5.3.1, and for every string that is in the language defined

by the grammar, there is a deduction of a goal item from the axioms. The correctness

proofs can be found in section 5.6. The time complexity of the recognizer is polyno-

mial in the length of the input sentence (considering the shortest deduction of a goal

item for a sentence).

Unfortunately, since items produced by the recognizer correspond to cuts of deriva-

tion trees, the recognizer will fail to halt if the grammar allows infinitely ambiguous

sentences, which, given the many abstract and phonetically empty elements posited by

linguists, are very likely to exist in natural language. An abstract example is the gram-

mar with the two lexical items c
 and =c c
 . For any input string, the recognizer for

this grammar will produce an infinite number of items, because the rule of inference

Unmerge-1 will apply to its own output.8 Top-down parsers are also generally stumped

by left-recursive grammars – see the discussion in section 6.1 of the next chapter.
�
The recognizer specified above will also not stop when parsing any sentence according to the gram-

mar with the two lexical items c a and =c c b which does not generate infinitely ambiguous sentences,
but this problem can be solved by adding look-ahead to the recognizer.

137

5.4 Look-Ahead

The example in section 5.3.5 illustrates that the recognizer will produce items which

do not represent cuts of a derivation tree for the sentence to be recognized. These

superfluous items occur because the rules of inference will split the position vectors

of subitems in every possible way. Another situation in which spurious items are

deduced is when a category can be derived in more than one way. Consider for example

grammar G � , which is grammar G � of section 5.1 with two additional lexical items:

=i +wh c
 and d -k -wh who. The language defined by G � will not only contain the

declarative sentences defined by G � , but also interrogative sentences such as who Titus

praise s.9 For grammar G � and any given sentence, the recognizer presented in the

previous section will deduce items for either type of sentence, even though one can tell

from looking at the first word of the sentence whether it is declarative or interrogative.

In the remainder of this section we will formally develop a method of look-ahead

for Minimalist Grammars, which will restrict the number of items produced by the

inference rules without compromising the completeness of the recognizer.

5.4.1 First �

Given a Minimalist Grammar G and a relevant category A = [� � � � � , . . . , � � � � �] � , the set

First � (A) is defined as follows: (� � , . . . , � �) � First � (A) if, and only if, there is a tree �
� T � (A) and for each leaf � � in � labeled with syntactic features � � , the first

�
symbols

of the narrow yield of the maximal projection of � � is the string � � , 0 � � � � .

We can compute the sets First � using a slightly adapted version of the bottom-up

recognizer from the previous chapter. The items of the bottom-up recognizer are very

similar to the subitems in the top-down method defined above: they are sequences of
�
Grammar G � ignores do-support. See [Sta01b] for a more complete Minimalist Grammar covering

question formation in English.

138

the form [(x � , y �): � � � � � , . . . , (x � , y �): � � � � �] � . To compute First � , the position vec-

tors (x � , y �) will be replaced by strings � � . A revised bottom-up item [� � � � � / � � , . . . ,

� � � � � / � �] � is understood to assert the existence of a tree � generated by G such that:

1. � � T � ([� � � � � , . . . , � � � � �] �).

2. For each leaf � � in � labeled with syntactic features � � , the first
�

symbols of the

narrow yield of the maximal projection of � � is the string � � , 0 � � � � .

Thus, an item [� � � � � / � � , . . . , � � � � � / � �] � claims that (� � , . . . , � �) � First � ([� � � � � , . . . ,

� � � � �] �).
The revised bottom-up recognizer will start with the following set of axioms: for

each lexical item
�

of G labeled with syntactic features � � Cat
�

and phonetic form

� , there will be an axiom [� � /k:p] � , where
� � � denotes a prefix of length

�
of string

� ; if
 s
 �
�

,
� � � = � . The axioms will be closed under the following five rules of

inference:

� Merge-1: given two items [� =x � /p] � and [� � x/q, S] � , add the item [=x � � / k:(p
�

q),

S] � to the chart.

� Merge-2: given two items [� � =x � /p, S] � and [� � x/q, T] � , add the item [� =x � � /k:(q
�

p),

S, T] � to the chart.

� Merge-3: given two items [� � =x � /p, S] � and [� � x � /q, T] � (� �� �
), add the item

[� =x � � /p, S, ��� � � /q, T] � to the chart.

� Move-1: given an item [� � +y � /p, S, � � -y/q, T] � , add the item [� +y � � /k:(q
�

p),

S, T] � to the chart.

� Move-2: given an item [� � +y � /p, S, � � -y � /q, T] � (� �� �
), add the item [� +y � � /p,

S, � -y � � /q, T] � to the chart.

139

The rules Move-1 and Move-2 are constrained so as to not apply to an item that

violates the Shortest Movement Constraint.

The proof of soundness provided in the previous chapter is easily converted into

a proof of soundness for the method for computing First � proposed above. Thus,

every deducible item [� � � � � / � � , . . . , � � � � � / � �] � truthfully claims that (� � , . . . , � �) �

First � ([� � � � � , . . . , � � � � �] �). Furthermore, one can prove that the method is complete up

to permutation of the last � elements of an item, that is, for every true claim (� � , . . . ,

� �) � First � ([� � � � � , . . . , � � � � �] �), an item [� � � � � / � � , � � � � � � � / � � � , . . . , � � � � � � � /
� �
�]

� will be

deduced, where the sequence of indices � , . . . , � is a permutation of the sequence

1, . . . , � . Consequently, for any category A = [� � � � � , . . . , � � � � �] � such that T � (A)

contains some tree � generated by G, the contents of set First � can be established in

the following way:

First � ([� � � � � , . . . , � � � � �] �) =
�

(� � , . . . , � �)
 item [� � � � � / � � , � � � � � � � / � � � , . . . ,

� �
�
� � � � /

� �
�]
� has been generated, and � , . . . , � is a permutation of 1, . . . , � � .

Suppose tree � participates in the derivation of a complete tree. Then it can be

shown that the sequences of syntactic features labeling nodes in � other than the head

must be sequences of features of the kind -f. This implies that we can restrict our

attention to relevant categories of the general form [� � � � � , � � � -f � � � � , . . . , � � � -f � � ��].
The Shortest Movement Constraint implies that -f �

�� -f
�
, for 1 � � , �� � and � �� .

Then, for a category A = [� � � � � , � � � -f � � �� , . . . , � � � -f � � ��], define First
�

� (A) =
�
z �
 (z � ,

. . . , z �) � First � (A) � and First
� �

�
� (A) =

�
z �
 (z � , . . . , z � , . . . , z �) � First � (A) � . Thus,

First
�

� (A) picks out the set containing the first
�

symbols of the narrow yield of the

maximal projection of the head of any tree � � T � (A),10 and First
� �

�
� (A) picks out the

set containing the first
�

symbols of the narrow yield of the maximal projection of the

node whose left-most syntactic feature is -f � for any tree � � T � (A).
��

Note that the maximal projection of the head of � is � itself.

140

For the categories in grammar G � , we thus find, for example, First � ([=pred � +v +k

i, d � -k, =d vt � -v] �) =
�
(s, Titus, praise), (s, Lavinia, praise) � and First

� �� ([=pred � +v

+k i, d � -k, =d vt � -v] �) =
�
Titus, Lavinia � . Also, First

�

� ([=i � c] �) =
�
Titus, Lavinia �

and First
�

� ([=i +wh � c] �) =
�
who � .

5.4.2 Recognition with Look-Ahead

The recognizer with look-ahead will check, for every new item that is about to be

added to the chart according to the rules of inference given in section 5.3.3, whether it

is harmonious with the input by consulting the various sets First
�

� and First
���

� .

For a Minimalist Grammar G with distinguished category c, input string � =

� � . . . � � , and look-ahead
�

, the item [(0, n): � c] � will only be an axiom if
�

: � �

First
�

� ([� c] �), and the item [(0, n): � � c] � will only be an axiom if
�

: � � First
�

� ([� � c] �).

The goal items are defined as before.

As concerns the rules of inference, Unmerge-1 will add an item
� � + . . . +

�
� � �

+ [(p, v): � =x �] � + [(v, q): � � x, S] � +
�
� � � + . . . +

� � to the chart provided that
�

:(�
� � � . . . � �) � First

�

� ([� =x �] �) and
�
:(� � � � . . . �

�
) � First

�

� ([� � x, S] �).

Unmerge-2 will add an item
� � + . . . +

�
� � � + [(v, q): � � =x � , U] � + [(p, v): � � x,

V] � +
�
� � � + . . . +

� � to the chart provided that
�

:(� � � � . . . �
�
) � First

�

� ([� � =x � , U] �)

and
�
:(�

� � � . . . � �) � First
�

� ([� � x, V] �).

Unmerge-3 will add an item
� � + . . . +

�
� � � + [(p, q): � � =x � , U] � � + [(v, w): � � x � ,

V] � � +
�
� � � + . . . +

� � to the chart provided that
�
:(�

� � � . . . �
�
) � First

�

� ([� � =x � , U] � �)
and

�
:(� � � � . . . � �) � First

�

� ([� � x � , V] � �).11

� �

Note that the application of rule Unmerge-3 must be preceded by an application of rule Unmove-1,
because in a bottom-up derivation, any application of move must be preceded by an application of merge
which will contribute the tree that will move. Therefore, the condition

�
:(���� � . . . 	��) � First

� ([
	 �
x
 ,

V] �) for Unmerge-3 will be evaluated after the condition
�

:(���� � . . . 	��) � First
��� ([�
�
+y � ,

	
x
�� � -y,

S] �),
 =
�� -y, for Unmove-1 has been found true. A similar point can be made for the condition
involving First
��� in rule Unmove-2. Hence, if in general First

� ([
	 �
x
 , V] �) = First
��� ([�

�
+y � ,

	
x
�� � -

141

Unmove-1 will add an item
� � + . . . +

�
� � � + [(v, q): � � +y � , (p, v): � � -y, S] � +

�
� � � + . . . +

� � to the chart provided that
�
:(� � � � . . . �

�
) � First

�

� ([� � +y � , � � -y, S] �)

and
�
:(�

� � � . . . � �) � First
���

� ([� � +y � , � � -y, S] �).

Unmove-2 will add an item
� � + . . . +

�
� � � + [(p, q): � � +y � , S, (v, w): � � -y � , T] � +

�
� � � + . . . +

� � to the chart provided that
�
:(�

� � � . . . �
�
) � First

�

� ([� � +y � , S, � � -y � ,

T] �) and
�
:(� � � � . . . � �) � First

���
� ([� � +y � , S, � � -y � , T] �).

The Scan rule remains unchanged.

The reduction in the number of items brought about by the use of First � depends

on particularities of the grammar and the input sentence. When the grammar describes

a natural language, beneficial effects are expected, because in natural languages most

words serve as the first word of only a limited number of categories. For grammar

G � , the savings are significant. Without look-ahead, i.e.,
�

= 0, recognition of the

sentence � Titus � praise � s
�
Lavinia

�
involves the deduction of 340 items. For

�
= 1, it

only takes 15 items.12 The recognizer with look-ahead does not consider the item [(0,

4):=i +wh � c] � an axiom, because � � = Titus
�� First

�

� ([=i +wh � c] �). Hence, all items

deducible from this item are suppressed. This example also illustrates the advantage

of using dots in items. Without dots, categories [=i +wh � c] � and [=i � c] � would

be collapsed into one category [c] � for which First
�

� ([c] �) =
�
Titus, Lavinia, who � ,

whence the recognizer would not be able to immediately dismiss either the declarative

or the interrogative analysis. Furthermore, the recognizer with look-ahead will split all

position vectors correctly for G � . For example, unmerging the axiom [(0, 4):=i � c] � ,

the recognizer will not posit the item [(0, 1): � =i c] � + [(1, 4):=pred +v +k � i] � , since

� � = Titus
�� First

�

� ([� =i c] �) =
�

and � � = praise
�� First

�

� ([=pred +v +k � i] �) =

y, S] �), one of the conditions on either Unmerge-3 or Unmove-1 and Unmove-2 can be dropped. In that
case an arrangement is possible in which all conditions involve checking the contents of First

� rather

than First
��� .
� �

This is the least number of items possible: 1 axiom, 8 items corresponding to the 8 intermediate
trees in the derivation of the sentence, plus 6 scanned items.

142

�
Lavinia, Titus � .

5.5 Correct-Prefix Property

For the recognizer to possess the correct prefix property, it must read the words of the

input sentence from left to right, and it must not predict items with subitems whose

categories represent trees that cannot be derived from lexical trees in the grammar.

These two restrictions will be discussed in the following two sections.

5.5.1 Left to Right

Obviously, the recognizer described in the preceding sections does not scan the input

sentence from left to right, because the rules of inference can rewrite any subitem of

an item as long as it matches the antecedent of the rule. To ensure a left to right sweep

through the sentence, the items are extended to include a pointer � , which points to the

next word of the sentence to be read. The rules of inference are restricted to rewrite

only subitems whose trees are predicted to dominate the word the pointer � is pointing

to. The pointer will be incremented when all the words at a particular position in the

sentence have been scanned successfully.

For a proper implementation of the pointer mechanism it is important to realize

that phonetically empty words at position
�

in a sentence come before a phonetically

non-empty word at position
�

. If the recognizer does not scan the words at position
�

in this order, a violation of the correct-prefix property may result, as illustrated by

the following example. Consider a grammar G
�

which is like grammar G � of section

5.1, except that the phonetically empty lexical item =i c
 has been replaced with the

phonetically non-empty lexical item =i c that. Thus, all the sentences generated by

grammar G
�

will start with the overt complementizer that. In the process of trying

143

to recognize the ungrammatical sentence Titus praise s Lavinia, a recognizer without

look-ahead will derive the item [(0, 0): � =i c] � + [(2, 3): � =pred +v +k i] � + [(3,

4):=vt +k � =d pred, (1, 2):=d vt � -v] � + [(0, 1): � d -k] � (for grammar G � this item

would correspond to the cut 5-4-9-2 in the derivation tree in 15). The first subitem

of this item amounts to the prediction of a phonologically empty complementizer at

position 0, i.e., at the left edge of the sentence. The last subitem predicts the word Titus

to occur at the left edge of the sentence. Scanning the non-empty word Titus before

the predicted empty complementizer leads to a violation of the correct-prefix property,

because no sentence generated by G
�

starts with the word Titus. The recognizer should

halt after failing to scan the empty complementizer and before scanning anything else

– a phonetically empty complementizer is a prefix of no sentence in G
�
.

The example above shows that we have to distinguish between the situation in

which the recognizer is looking for a phonetically empty word at position
�

ana the

situation in which the recognizer is looking for a phonetically non-empty word at po-

sition
�

. Therefore, pointer � will have two parts. If � = (
�

,
), the recognizer finds

itself in the former situation, if � = (
�

,
�
), in the latter. The values that � will run

through are ordered in such a way that (
�

,
) comes immediately before (
�

,
�
), and (

�
,

�
) comes immediately before (
� ��� ,
). The first value of � is (0,
); the last value is

(� ,
), where � is the length of the input sentence.

In order to determine what subitems should be rewritten given some value of � , we

define a containment relation between position vectors of items and values of � . The

containment relation is used to determine what positions in a sentence are potentially

covered by trees for subitems with particular position vectors. Position vector (� , �)

in a simple subitem contains the following position: (� ,
). The yield of any tree

� � T � ([(q, q): � � �] �) can only be a phonetically empty word at position � . Position

vector (� , �), � � � , in a simple subitem contains the following positions: (� ,
�
),

144

. . . , (� � � ,
�
). Positions (� ,
) and (� ,
) are not included, because the yield of any

simple tree � in T � ([(q, r): � � �] �) is the string � = �
� � � . . . � � . Since � � � , � is not a

phonologically empty word at position � , nor a phonologically empty word at position

� . However, if the position vector (� , �), � � � , appears in a complex subitem, these

positions are included in the set of positions contained in position vector (� , �), because

the derivation of a tree whose yield includes the string � = �
� � � . . . � � may very well

involve trees whose yields are phonologically empty words at positions � or � . Hence,

position vector (� , �), � � � , in a complex subitem includes the following positions: (� ,

), . . . , (� ,
). A rule of inference can only apply to some item if its triggering subitem
�
� contains the current value of � . For example, the rule of inference

� � � � � � � -1 now

reads:

Unmerge-1: given an item (
� � + . . . +

� � , �) such that
�
� = [(p, q):=x � � , S] � , 1 �

� � � , and one of the position vectors of
�
� contains � , then, for any lexical item with

syntactic features � x, add the items (
� � + . . . +

�
� � � + [(p, v): � =x �] � + [(v, q): � � x, S] �

+
�
� � � + . . . +

� � , �) to the chart, for all possible values of � such that � � � � � ; for

all possible values of
�

such that
�

= s if � =
�
,
�

= c if � �� �
, and if

�
= s then S =

�
.

The other rules of inference are updated in the same way, except for Scan, which

will be discussed shortly.

Returning to our example grammar G
�
, when recognition of the ungrammatical

sentence Titus praise s Lavinia has reached the item ([(0, 0): � =i c] � + [(2, 3): � =pred

+v +k i] � + [(3, 4):=vt +k � =d pred, (1, 2):=d vt � -v] � + [(0, 1): � d -k] � , (0,
)),
only subitem [(0, 0): � =i c] � can be scanned, because its position vector contains (0,

), whereas the position vector of subitem [(0, 1): � d -k] � does not. Thus, the correct-

prefix property is safe.

The position vector (0, �) of any axiom is split in such a way that every item

generated by the recognizer has exactly one position vector that contains the value (
�

,

145

�
), 0 � � � � � � . This, of course, reflects the obvious truth that there is exactly one

phonetically non-empty word at any position
�

in a sentence of length � . Therefore,

after having scanned the one and only non-empty word at position
�

, the recognizer

can increment the value of the pointer � from (
�

,
�
) to (

� � � ,
), assuming that the

phonetic content of a phonetically non-empty lexical item amounts to one word. In

contrast, there can be more than one phonetically empty word at some position
�

in a

sentence. Consider for example grammar G
�
, which has empty pronouns. The lexicon

of G
�

includes the lexicon of grammar G � and the lexical item d -k
 . One of the

sentences generated by this grammar is

 praise s Lavinia, in which one of the empty

elements is an empty complementizer and the other is an empty determiner phrase.13

In order to recognize this sentence both empty elements have to be scanned. Thus,

after having scanned one of them, the recognizer can not increment the value of the

pointer � from (� ,
) to (� , �
), because then it would miss the other empty element.

If the current value of the pointer is (
�

,
), it can only be incremented if the item

under consideration does not have any subitems left whose position vectors contain

(
�

,
), except for subitems with subscript � , that is, when all predicted empty elements

at position
�

have been scanned successfully. So the rule of inference Scan is split

into two rules, covering ‘empty’ and ‘non-empty’ scans, and a rule of inference for

updating � without scanning any word is added. This last rule will apply when the

recognizer is supposed to be looking for an empty word at some position
�

, but none

is predicted to occur at that position or all have been scanned successfully.

Scan-
 : given an item (
� � + . . . +

� � , (� ,
)) such that
�
� = [(p, p): � �] � , 1 � � �

� , then, if there is a lexical item with syntactic features � and phonetic features
 , add

the following item to the chart: (
� � + . . . +

�
� � � + [(p, p): � �] � +

�
� � � + . . . +

� � , (� ,

)).

� �
According to the derivation tree of the sentence, the empty complement precedes the empty deter-

miner phrase, but for the recognizer the order between multiple empty elements at the same position in
a sentence is immaterial.

146

Scan-
�
 : given an item (

� � + . . . +
� � , (� ,

�
)) such that
�
� = [(p, q): � �] � , � � � , 1

� � � � , then, if there is a lexical item with syntactic features � and phonetic features

covering �
� � � . . . �

�
of the input string, add the following item to the chart: (

� � + . . . +
�
� � � + [(p, q): � �] � +

�
� � � + . . . +

� � , (� ,
)).
Update- � : given an item (

� � + . . . +
� � , (� ,
)) such that none of the

�
� , 1 � � �

� , includes a simple or complex subitem whose position vectors contain (� ,
), then

add the following item to the chart: (
� � + . . . +

� � , (� ,
�
)).

For grammar G
�

and the grammatical sentence praise s Lavinia, the recognizer

will generate the item ([(0, 0): � =i c] � + [(1, 2): � =pred +v +k i] � + [(2, 3):=vt

+k � =d pred, (0, 1):=d vt � -v] � + [(0, 0): � d -k] � , (0,
)). At this point, the rule Scan-

 can apply twice, but after these applications, rule Update- � cannot apply, because

(0,
) is contained in the position vector (0, 1) occurring in a complex subitem – a

tree represented by this subitem may be derived from a tree with an empty element

at position 0, which should be scanned before � is incremented. We will only know

for sure that there are no further empty elements at position 0 other than the empty

complementizer and determiner phrase when the recognizer has generated the item

([(0, 0): � =i c] � + [(1, 2): � =pred +v +k i] � + [(3, 3): � =vt +k =d pred] � + [(0,

1): � =d vt -v] � + [(0, 0): � d -k] � , (0,
)). (For grammar G � , this item represents the

cut 5-4-6-3-1-2 of the derivation tree in 15.) The rule Update- � will apply to this item,

incrementing the value of � to (0,
�
). Next, three applications of Scan-

�
 , each followed

by an application of Update- � , will produce a goal item, which now are items of the

form ([(x � , y �): � � �] � + . . . + [(x � , y �): � � �] � , (� ,
�
)), where � is the length of the input

sentence.

In conclusion, the inclusion of the pointer � in an item ensures that the partial

derivation tree that the item stands for according to the invariant of section 5.3.1 is

developed in a depth-first manner such that the recognizer will go after the leaves

147

whose yields are predicted to start at position � first. When each of these leaves is

reached, the applicable Scan rule checks whether the phonetic form of the simple tree

corresponding to the leaf matches the phonologically empty or non-empty word � is

pointing to. If so, � will be updated appropriately. It follows that the recognizer will

read the words of the input sentence from left to right.14 � 15

5.5.2 Useless Categories

To illustrate the second aspect of the correct-prefix property, that the recognizer must

not generate items with subitems whose categories represent trees that cannot be de-

rived from lexical trees in the grammar, consider grammar G
	
, which is grammar G �

with two additional lexical items: =p pred
 and p -k Rufus. Assume the input

sentence is Rufus praise s Lavinia, which is not a sentence of the language specified

by G
	
, since neither lexical item =p pred
 nor lexical item p -k Rufus can be part

of a derivation of a complete tree. At a certain point, the recognizer without look-

ahead will have produced the item ([(0, 0): � =i c] � + [(2, 3): � =pred +v +k i] � + [(3,

4):=p � pred, (0, 1):p � -k, (1, 2):=d vt � -v] � , (0,
)) (for grammar G � , this would be

the cut 5-4-10 in the derivation tree in 15), from which the item ([(0, 0): � =i c] � + [(2,

3): � =pred +v +k i] � + [(3, 4): � =p pred, (1, 2):=d vt � -v] � , + [(0, 1): � p -k] � , (0,

)) will be deduced by an application of the rule Unmerge-1. Next, the empty com-

plementizer will be scanned, after which � will be updated, producing the item ([(0,
� �

While the words of the sentence are read from left to right by the recognizer, checking whether
the predicted items are harmonious with the input may involve look-ahead strings that are not to the
immediate right of the position � is pointing to. For example, for grammar G � and input sentence Titus
praise s Lavinia, using rule of inference Unmerge-1 to posit the item ([(0, 0):

�
=i c] � + [(2, 3):

�
=pred

+v +k i] � + [(3, 4):=vt +k =d
�
pred, (0, 1):d

�
-k, (1, 2):=d vt

�
-v] � , (0, ��)) for the cut 5-4-10 of the

derivation tree in 15 involves looking at the strings
�

: 	 � and
�

: 	 � , whereas the next word to be read is
	 � .

� �

Note that the axioms of the top-down recognizer require the length of the sentence to be known
before it has been recognized. This problem can be solved by using position vectors whose coordinates
are variables.

148

0): � =i c] � + [(2, 3): � =pred +v +k i] � + [(3, 4): � =p pred, (1, 2):=d vt � -v] � , + [(0,

1): � p -k] � , (0,
�
)). In the next step, the first non-empty word of the input sentence will

be scanned, in violation of the correct prefix property, because Rufus is not a prefix of

any sentence in the language generated by G
	
.

This example shows that the predictions of the recognizer have to be limited to

items that do not contain any useless subitems. A subitem
�

= [(x � , y �): � � � � � , . . . , (x � ,
y �): � � � � �] � is useless if its category A = [� � � � � , . . . , � � � � �] � is useless, that is, if there

are no trees in T � (A) that participate in the derivation of a complete tree, cf. the notion

‘useless non-terminal symbol’ for Context-Free Grammars, e.g. [SS88]. It follows

from the invariant in section 5.3.1 that for a subitem
�

occurring in some item, any tree

� � T � (A), where A is the category corresponding to
�

, is part of a partial derivation

of a complete tree. Hence, we still have to make sure that category A is such that set

T � (A) consists of trees that are derivable from lexical items of the grammar. We can

compute the set of categories with this property by closing the set of categories for the

lexical items of the grammar under the functions Merge-1, . . . , Move-2 that were used

in section 5.4.1 to compute the sets First � , ignoring the tuples of strings associated

with each category. Thus, the computation will start with the following set of axioms:

for each lexical item of the grammar labeled with syntactic features � � Cat
�

, there

will be an axiom [� �] � , The axioms will be closed under the following five rules of

inference:

Merge-1: [� =x �] � , [� � x, S] � � [=x � � , S] �
16

Merge-2: [� � =x � , S] � , [� � x, T] � � [� =x � � , S, T] �

Merge-3: [� � =x � , S] � , [� � x � , T] � � [� =x � � , S, � x � � , T] � (� �� �
)

Move-1: [� � +y � , S, � � -y, T] �
� [� +y � � , S, T] �

� �

That is: if the chart contains the items [
�
=x �] � and [

	 �
x, S] � , then add the item [=x

�
� , S] � .

149

Move-2: [� � +y � , S, � � -y � , T] �
� [� +y � � , S, � -y � � , T] � , (� �� �

)

In all rules of inference,
� � �

� � � � . The rules Move-1 and Move-2 are constrained

so as not to apply to categories of the form [� � � � � , . . . , � � � -f � � , . . . , � � � -f � � , . . . ,

� � � � �] � , which violate the Shortest Movement Constraint.

Let U
�

be the set of axioms and all items derived from the axioms in this way.

Then, whenever the recognizer is about to add a new item to the chart according to the

rules of inference in section 5.3.3, it will check whether all its subitems are in the set

U
�

, and only add the item if this is so. Together with reading the sentence from left to

right, this will ensure that the recognizer has the correct prefix property.

For G
	
, category [=p � pred, p � -k, =d vt � -v] � is not an element of U

�

, whence

the prediction that led to the violation of the correct prefix property will no longer be

generated.

It is possible to compute the set of categories such that set T � (A) consists of trees

that participate in a partial derivation of a complete tree in advance, too, by computing

all the categories that are deducible from axiom [� c], using the functions Merge-1, . . . ,

Move-2 in reverse, again ignoring the tuples of strings associated with the categories.

Call this set U
�

. Then the set of useful categories U, which is the complement of the

set of useless categories, is the set U
�

� U
�

. This set – or rather: U
�

, because all lexical

items are in U
�

– can be used to prune from a grammar G those lexical items which

are not involved in any derivation of a complete tree. A recognizer using a gram-

mar reduced in this way is expected to have the correct prefix property, although this

claim still awaits confirmation by formal proof. The critical issue is that a top-down

recognizer using a reduced grammar does not necessarily generate items containing

subitems whose categories are in U
�

. For example, not all the ways in which the con-

tents of set S in the antecedent of the rule of inference Unmerge-2 in section 5.3.3

can be divided over the sets U and V in the consequent of that rule will correspond

150

to subitems whose categories are in U
�

. However, at this point it is not clear whether

items containing these spurious subitems will ever give rise to predictions of lexical

items that prompt violations of the correct-prefix property.

5.6 Proofs of Correctness

In this section we will provide the soundness and completeness proofs for the basic

recognizer specified in section 5.3 of this chapter. Given an arbitrary grammar and

input sentence, the recognizer is sound if every derivable item represents a true gram-

matical claim under the invariant, and the recognizer is complete if for every string that

is in the language defined by the grammar there is a derivation of a goal item from the

axioms. Adding a pointer � to obtain the correct-prefix property merely changes the

order in which the rules of inference apply, and so will compromise neither soundness

nor completeness of the recognizer. Adding look-ahead will actually prevent some

rules of inference from applying in certain situations, but it is easy to see that, were

these rules of inference to apply, no goal items would be derived. Therefore, the rec-

ognizer with look-ahead is still sound and complete.

Although the top-down recognition algorithm in this chapter is introduced in terms

of trees generated by Minimalist Grammars, the proofs in the previous chapter allow

us to avoid all references to trees altogether. This will greatly simplify the correctness

proofs that follow below.

5.6.1 Fundamental Definitions

We will start with a brief review of some fundamental definitions.

151

5.6.1.1 Minimalist Grammars

A Minimalist Grammar is defined to be a quadruple (V, Cat, Lex,
�

), where V is a

finite set of non-syntactic features, Cat is a finite set of syntactic features, Lex is a

finite set of lexical items built from Cat and V, and
�

=
�
Merge-1, Merge-2, Merge-3,

Move-1, Move-2 � is a set of structure building functions, each of which is defined as

in section 4.1.2 of the previous chapter.

Expressions in a Minimalist Grammar are of the form [� � , � � , . . . , � �] � , with
�

� � � , � � . Each chain � � , 0 � � � � is of the form � : � , where � is a string over the

alphabet
� �

V, and � � Cat � . In a Minimalist Grammar G = (V, Cat, Lex,
�

), the

elements of Lex are assumed to be simple expressions, i.e., they are all of the form

[� �] �

As before, for a Minimalist Grammar G, CL(G) denotes the closure of the lexicon

Lex under the structure building functions in
�

. The language derivable by G is L(G)

=
�

�
 [� :c] � � CL(G),
� � � � , � � � , c being the distinguished category feature in Cat.

A derivation tree in a Minimalist Grammar G is defined as follows. Any single

expression generated by G is a derivation tree. Furthermore, if
� � and

�
� are derivation

trees in G with respective roots � � and �
� , and � = Merge-1(� � , � �), or � = Merge-2(� � ,

�
�), or � = Merge-3(� � , �

�), then the tree whose root is labeled � and which has two

immediate daughters,
� � and

�
� , in that order, is also a derivation tree in G. If

� � is

a derivation tree with root � � , and � = Move-1(� �), or � = Move-2(� �), then the tree

whose root is labeled � and which has one immediate daughter,
� � , is also a derivation

tree in G.

A partial derivation tree for a sentence � is a derivation tree whose root is labeled

[� :c] � , � � � � , � � . A derivation tree is a complete derivation tree for a sentence � if

it is a partial derivation tree for sentence � and all its leaves are lexical items in G.

152

Obviously, all nodes of a complete derivation tree are expressions in CL(G). This is

not necessarily true for a partial derivation tree.

5.6.1.2 Top-Down Recognizer

Given an input string � = � � . . . � � and a Minimalist Grammar G = (V, Cat, Lex, F),

the items of the recognizer will be sequences of subitems, where each subitem is of

the form [� � , � � , . . . , � �] � , � � �
� , � , � � . For 0 � � � � , � � will be of the form (x � ,

y �): � � � � � , where 0 � �
� ��� � � � , and � � , � � � Cat � .

The definitions of the axioms, goal items, and rules of inference of the recognizer

are as in section 5.3.

The items of the recognizer and the expressions generated by G are related in the

following way: a subitem
�

= [(x � , y �): � � � � � , (x � , y �): � � � � � , . . . , (x � , y �): � � � ���] �

corresponds to the expression ��� = [� ��� � � . . . ��� � : � � , � � � � � . . . ��� � : � � , . . . , � ��� � �
� � �

��� � : � �] � . If subitem
�

is represented as [(x � , y �): � � � � � , S] � , we will write [� � � � � . . . ��� � : � � ,

S �] � for its corresponding expression.

The recognizer operates under the following invariant: given an item
� � +

�
�

+ . . . +
� � , the sequence of corresponding expressions ��� � , ��� � , . . . , ��� � is the fringe

of a partial derivation tree in G. The fringe of a derivation tree is a sequence of its

leaves, their order determined by the precedence relation on the nodes of the derivation

tree.

5.6.2 Proof of Soundness

In order to establish soundness, it has to be shown that every derivable item represents

a true grammatical claim under the invariant.

153

5.6.2.1 Soundness of the Axioms

Obviously, the expression [� � . . . � � :c] � for the axiom [(0, n): � c] � is the fringe of a par-

tial derivation tree – the partial derivation tree consisting of the one node [� � . . . � � :c] � ;
ditto for any axiom [(0, n): � � c] � .

5.6.2.2 Soundness of the Rules of Inference

We will show that the rules of inference Unmerge-1 and Unmove-2 are sound. The

proofs for the other rules of inference follow the same pattern.

Unmerge-1 Given an item
� � + . . . +

� � such that
�
� = [(p, q):=x � � , S] � for

some � , 1 � � � � , assume, in accordance with the invariant, that the corresponding

sequence of expressions ��� � + . . . + ��� � is the fringe of a partial derivation tree T.

Any pair of expressions � � = [�
� � � . . . � � :=x �] � , � � = [� � � � . . . �

�
:x, S �] � , � � �

� , � � ,
� � � � � , will be in the domain of the function Merge-1. Applying this function

to the expressions � � and �
� will produce the expression ��� � = [�

� � � . . . �
�
: � , S �] � .

Hence, the sequence of expressions ��� � + . . . + ��� �
� � + � � + �

� + ��� � � � + . . . + ��� �

constitutes the fringe of another partial derivation tree T � . Applying rule Unmerge-1 to

the item
� � + . . . +

� � will yield a set of new items
� � + . . . +

�
� � � + [(p, v): � =x �] �

+ [(v, q): � � x, S] � +
�
� � � + . . . +

� � , � � � � � , provided there is a lexical item with

syntactic features � x. These items are justified by the existence of the fringes � � �
+ . . . + ��� �

� � + � � + �
� + ��� � � � + . . . + ��� � .

Unmove-2 Given an item
� � + . . . +

� � , such that
�
� = [(p, q): � +y � � , S, (v,

w): � -y � � , T] � for some � , 1 � � � � , assume, in accordance with the invariant, that

the corresponding sequence ��� � + . . . + ��� � is the fringe of a partial derivation tree

T. Any expression � � = [�
� � � . . . �

�
:+y � , S � , � � � � . . . � � :-y � , T �] � , � �� �

, which

satisfies the Shortest Move Constraint, will be in the domain of Move-2. Applying

154

this function to expression � � will produce the expression ��� � = [�
� � � . . . �

�
: � , S � ,

� � � � . . . � � : � , T �] � . Hence, the sequence of expressions � � � + . . . + ��� �
� � + � � + ��� � � �

+ . . . + ��� � is the fringe of another derivation tree T � . Applying the rule Unmove-2

to
� � + . . . +

� � will produce another item
� � + . . . +

�
� � � + [(p, q): � � +y � , S, (v,

w): � � -y � , T] � +
�
� � � + . . . +

� � , which is justified by the fringe ��� � + . . . + ��� �
� � +

� � + ��� � � � + . . . + ��� � .

5.6.3 Proof of Completeness

In order to establish completeness, it has to be shown that for every string that is in the

language defined by the grammar there is a derivation of a goal item from the axioms.

The proof of lemma 1, from which completeness will follow, requires some auxil-

iary definitions. Let T be a derivation tree in G with root � . For two expressions
� � ,

�
� in T, let d(

� � ,
�
�) denote the length of the path between

� � and
�
� , provided such a

path exists. Now consider a cut
�

= � � , . . . , � � of T and define the depth of cut
�

as

follows: d(
�

) = � �
� � � d(� , � �).

For a simple expression � = [� ��� � � . . . ��� � : � �] � occurring in a derivation tree T of � ,

define the singleton set of subitems
� � � � =

�
[(x � , y �): � � �] � � . For a complex expression

� = [� ��� � � . . . ��� � : � � , � � � � � . . . ��� � : � � , . . . , � ��� � � . . . ��� � : � �] � occurring in a derivation

tree T of � , define the set of subitems
� � � � =

�
[(x � , y �): � � � � � , (x � , y �): � � � � � , . . . , (x � ,

y �): � � � � �] �

 � � � � are the syntactic features of some lexical item

� � Lex, � � �� �
, 0 �

� � � � .
Lemma 1 If

�
= � � , . . . , � � is a cut of a complete derivation tree T of sentence � ,

then the recognizer will produce all items
� � + . . . +

� � such that
�
�
� � � � � � , 0 � �

� � .

Proof. The proof will use induction on the depth of the cuts of T. Assume first that

155

d(
�

) = 0. This implies that
�

is a cut through the root of the derivation tree, i.e.,
�

consists of the single expression [� :c] � , � � �
� , � � . For both

�
= � and

�
= � , the items

in
�

([� :c] �) are introduced as axioms.

Next, consider a cut
�

= � � , . . . , � � of T such that d(
�

) =
�
,
�

� 0. Pick an arbitrary

expression � � from
�

, 0 � � � � . Since
�

� 0, � � cannot be the root of T. Hence, one of

the following five situations obtains: there is a � in T such that either � = Merge-1(� � ,
� � � �), or � = Merge-2(� � , � � � �), or � = Merge-3(� � , � � � �),17 or � = Move-1(� �), or � =

Move-2(� �).

Assume � = Merge-1(� � , � � � �). By the definition of Merge-1, � � is a simple expres-

sion [� :=x �] � , and � � � � is an expression [
�
:x, S �] � , � � � � , � � ; assume

�
= � . Then

expression � is the complex expression [� � : � , S �] � . Since expression � appears in a

complete derivation tree of a sentence � , there are � and � such that � � = �
� � � . . . �

�
,

whence � = �
� � � . . . � � and

�
= � � � � . . . �

�
, for some � , 0 � � � � � � � � , � the

length of sentence � . Clearly, for every [(p, r): � =x �] � � �
(� �) =

�
[(p, r): � =x �] � � and

[(r, q): � � x, S] �
� �

(� � � �), [(p, q):=x � � , S] �
� �

(�).

Since � � � � is a complex expression in a complete derivation tree, there is a lexical

item with syntactic features � x, � �� �
, from which expression � � � � has been projected,

i.e.,
�

(� � � �)
�� �

.

Because
�

= � � , . . . , � � is a cut of T,
� � = � � , . . . , � � � � , � , � � � � , . . . , � � is also a cut

of T. Clearly, d(
� �) � d(

�
). Therefore the induction hypothesis applies: there will be

items
� � + . . . +

�
� � � +

�
+

�
� � � + . . . +

� � , for all
� � � � � � and all

� � � � � � � � , 0

� �� � , �� � , �� � � � .

Pick an arbitrary expression
�

= [(p, r): � =x �] � from
�

(� �) and an arbitrary expres-
�

For the purpose of this proof, the case in which the merge operation applies to a pair of expressions� 	

� ,
� 	 is identical to the cases in which the merge operation applies to the pair of expressions

� 	 , � 	 � � .
For example, if

� 	 is such that
�

= Merge-1(
� 	

� ,
�), then

� 	

� is such that

�
= Merge-1(

� 	

� ,
�). The

reverse also holds.

156

sion � = [(r, q): � � x, S] � from
�

(� � � �). Then [(p, q):=x � � , S] �
� �

(�). Because � �

�
(� � � �), there must be a lexical item with syntactic features � x. Applying rule of in-

ference Unmerge-1 to any item
� � + . . . +

�
� � � + [(p, q):=x � � , S] � +

�
� � � + . . . +

� � ,
� � � � � � � � , 0 �! � � , �� � , �� � ��� , will produce a new set of items, including

the items
� � + . . . +

�
� � � +

�
+ � +

�
� � � + . . . +

� � , for all
� � � � � � � � , 0 � �� � ,

 �� � , �� � � � . Since
�

is arbitrary in
�

(� �) and � is arbitrary in
�

(� � � �), Unmerge-1

will produce the items
� � + . . . +

� � , for all
� � � � � � � � , 0 � � � .

Assume now that � = Move-2(� �). By the definition of Move-2, � � is a complex

expression [� :+y � , S � ,
�
:-y � , T �] � , � �� �

, and � is the complex expression [� : � , S � ,
�
: � , T �] � . Since expressions � and � � appear in a complete derivation tree of a sentence

� , there are positions � , � and � , � such that � = �
� � � . . . �

�
and

�
= � � � � . . . � � , 0 �

� � � � � , 0 � � � � � � , � the length of sentence � . Clearly, for every � , � such

that [(p, q): � � +y � , S, (v, w): � � -y � , T] �
� �

(e �), [(p, q): � +y � � , S, (v, w): � -y � � , T] �
�

�
(e).

Since � � is a complex expression in a complete derivation tree, there is a lexical item

with syntactic features � +y � , �
�� �

, from which expression � � has been projected, and

a lexical item with syntactic features � -y � , � �� �
, the maximal projection of which is

contained in � � , i.e.,
�

(e �)
�� �

.

Because
�

= � � , . . . , � � is a cut of T,
� � = � � , . . . , � � � � , � , � � � � , . . . , � � is also a cut

of T. Clearly, d(
� �) � d(

�
). Therefore the induction hypothesis applies: there will be

items
� � + . . . +

�
� � � +

�
+

�
� � � + . . . +

� � , for all
� � � � � � and all

� � � � � � � � , 0

� �� � , �� � .

Pick an arbitrary expression
�

= [(p, q): � � +y � , S, (v, w): � � -y � , T] � from
�

(e �).

Then [(p, q): � +y � � , S, (v, w): � -y � � , T] �
� �

(e). Applying the rule of inference

Unmove-2 to any item
� � + . . . +

�
� � � + [(p, q): � +y � � , S, (v, w): � -y � � , T] � +

�
� � �

+ . . . +
� � ,

� � � � � � � � , 0 � � � , �� � , will yield the item
� � + . . . +

�
� � � +

�

157

+
�
� � � + . . . +

� � ,
� � � � � � � � , 0 � � � , �� � . Since

�
was arbitrary in

� � � � � ,
Unmove-2 will produce the items

� � + . . . +
� � for all

� � � � � � � � , 0 � � � .

The cases for � = Merge-2(� � , � � � �), � = Merge-3(� � , � � � �), and � = Move-1(� �)

follow the models of � = Merge-1(� � , � � � �) and � = Move-2(� �). �

Completeness of the recognizer now follows as a corollary from lemma 1 above.

If � � L(G), there is a complete derivation tree T for � in G. Since T is a complete

derivation tree, there is a cut � � , . . . , � � such that all � � � Lex, 1 � �� � . According

to lemma 1, the recognizer will generate an item
� � + . . . +

� � such that
� � � � � � � � ,

1 �
 #��� . Since all expressions � � are simple, each
� � � � � is a singleton set containing

a subitem of the form [(x
�
, y

�
): � � �] � . Since each � � is a lexical item, the scan rule will

apply � times to item
� � + . . . +

� � to produce a goal item.

5.7 Conclusion

In this chapter, we have motivated the usefulness of a top-down approach to recogniz-

ing languages defined by Minimalist Grammars. We described the design of a basic

top-down recognizer, proved its correctness, extended it with look-ahead, and added a

pointer to obtain a recognizer with the correct-prefix property. Because of its complex-

ity and potential non-termination, the recognizer per se is of limited practical value.

However, the top-down perspective on Minimalist Grammars that is explored in this

chapter will prove to be very useful for the recognizer that will be developed in the

next chapter.

Many interesting questions of a formal nature remain open, e.g. how to characterize

Minimalist Grammars whose languages can be parsed deterministically in a top-down

manner with at most
�

symbols of look-ahead, where, different from section 5.4, the

look-ahead string is a single contiguous substring of the input sentence, starting at the

158

immediate right of the last overt word that was scanned.

159

CHAPTER 6

Parsing Minimalist Languages à la Earley

In this chapter we will describe a recognizer for Minimalist Languages which is based

on Earley’s parsing algorithm for languages generated by Context-Free Grammars

([Ear68], [Ear70]). The recognizer presented in this chapter essentially is a top-down

recognizer, but unlike the top-down recognizer developed in the previous chapter, it

is guaranteed to terminate for all sentence and grammar pairs. In section 6.1, we will

illustrate the kind of grammar for which the top-down recognizer will fail to halt. Sec-

tion 6.2 contains an informal introduction to the Earley-style recognizer, explaining

how it avoids the termination problem of the top-down recognizer. The formal specifi-

cation of the recognizer is given in section 6.3. Section 6.4 illustrates the operation of

the recognizer with an abstract example. In section 6.5 we provide proofs of soundness

and completeness and an analysis of the time and space complexity of the recognizer.

6.1 Left-Recursion

Top-down recognizers are generally unable to handle left-recursive grammars. Con-

sider for example a simple Context-Free Grammar G with start symbol A and the

following three rules (uppercase letters are non-terminal symbols, lowercase letters

are terminal symbols):

1. A � A B.

160

2. A � a.

3. B � b.

This grammar is left-recursive, because from non-terminal symbol A we can de-

rive a sentential form whose left-most symbol is A.1 For this particular grammar, a

simple derivation showing that G is left-recursive takes just one step: using rule 1,

non-terminal symbol A can be rewritten into the sentential form AB.

The language generated by grammar G is ��� � . The derivation of the sentence ���	� �

is summarized in the tree in 4.

4. A

A

A

A

a

B

b

B

b

B

b

A basic left-to-right, top-down recognizer for a Context-Free Grammar will pre-

dict sequences of terminal and non-terminal symbols, starting from an initial sequence

which consists of the start symbol of the grammar. If the left-most symbol of a se-

quence � is a non-terminal symbol, the recognizer will predict all sequences that can

be derived from � by rewriting the left-most symbol of � according to the rules of the

grammar. If the left-most symbol of a sequence � is a terminal symbol, the recognizer

will try to scan a word of the input sentence: if the terminal symbol matches the word

in the sentence that follows the last word that was successfully scanned, the terminal

symbol will be removed from the sequence. (For a complete description of top-down

recognizers for Context-Free Languages, see for example [AU72] and [SS88].) For
�

A sentential form is a sequence of terminal and non-terminal symbols that is derivable from the
start symbol of the grammar by applying the rules of the grammar.

161

example, for grammar G and input sentence ��� �	� , the recognizer will produce the suc-

cession of sequences A, AB, ABB, ABBB, � BBB, BBB, � BB, BB, � B, B, � ,
 , among

many others. Since the last sequence is empty and all the words of the input sentence

have been scanned, the succession of sequences mentioned above shows that the sen-

tence ���	�	� is indeed in the language generated by G. The recognizer will also produce

the series A, AB, ABB, � BB, BB, � B, B, � ,
 . This attempt to recognize the sentence

���	� � fails, because the last � of the input sentence has not been scanned.

The problem with a left-recursive grammar is that it will lead the top-down rec-

ognizer to pursue an infinite progression of sequences, preventing the recognizer from

ever terminating and returning a result. For example, for grammar G, the recognizer

will start to produce the succession A, AB, ABB, ABBB, ABBBB, ABBBBB, . . . ,

. . . , . . . , always using rule 1 to rewrite the left-most terminal symbol of a sequence,

and this will never stop. Note that the number of � s in the sentence ���	�	� determines

exactly how many times the rule A � A B is to be used in the successful recognition

of this sentence. This information, however, is unavailable to the top-down parser,

because it will go through the sentence from left to right and reach the � s only after

it has scanned the initial � . However, if the recognizer always chooses to rewrite the

left-most terminal symbol using rule 1, it will never be in a position to scan � .2

Left-recursive Minimalist Grammars are similarly problematic for top-down rec-

ognizers for Minimalist Languages. Consider for example the Minimalist Grammar

H, whose lexicon is given below.3
�

Compare grammar G to grammar G � , whose rules are given below.

1. A � B A.

2. A � a.

3. B � b.

Because terminal symbol
�

will follow any
�
s, grammar G � is no problem for the top-down recognizer.�

Grammar H is left-recursive in the following, formal sense. Let G be a Minimalist Grammar as
defined in section 5.6 of chapter 5 and discussed in section 4.1 of chapter 4. Let � and

	
denote

162

5. [� :b -f] �

6. [� :=b +f b -f] �

7. [
 :=b +f c] �

The language generated by Minimalist Grammar H is identical to the language

generated by Context-Free Grammar G: ��� � . The derivation tree for the sentence ���	�	�

according to grammar H is given in 8.

8. [������� :c] �

[� :+f c, ������� :-f] �

[� :=b +f c] � [������� :b -f] �

[� :+f b -f, ����� :-f] �

[� :=b +f b -f] � [����� :b -f] �

[� :+f b -f, ��� :-f] �

[� :=b +f b -f] � [��� :b -f] �

[� :+f b -f, � :-f] �

[� :=b +f b -f] � [� :b -f] �
sequences of expressions. Then the derivation relation � between sequences expressions is defined as
follows:

�
� 	 � �

�
�
�

�
	

if
�

= Merge-1(
�

� ,
�

�), or
�

= Merge-2(
�

� ,
�

�), or
�

= Merge-3(
�

� ,
�

�)

�
� 	 � �

�
�
	

if
�

= Move-1(
�

�), or
�

= Move-2(
�

�)

For convenience, an expression
�

= [
�
 : �
 ,

�
� : � � , . . . ,

���
: �
�

] � , � � � � , �
 , will be written as � /� � ,
where � = �
 , � � , . . . , �

�
, and

�
=
�
 ,

�
� , . . . ,

���
. Let � ,

	
, � , and
 denote sequences of expressions.

Now Minimalist Grammar G is left-recursive if [:c] � � � �	� /� � 	 and � /� � � � �
� /� �
 , such that the
sequence of strings � contains a string which in 	 is to the left of all strings included in the expressions
in � and
 .

163

Obviously, this grammar is recursive, because, as the derivation tree shows, any

derivation of category A = [b -f] � can be properly embedded in a larger derivation of

the same category, that is, the sequence [b -f] � can be rewritten into the sequence of

categories [=b +f b -f] � [b -f] � , which contains category A. Since in any sentence

generated by H the phonetic material of category A = [b -f] � in the sequence [=b +f

b -f] � [b -f] � comes before the phonetic material of category B = [=b +f b -f] � ,
the top-down recognizer will have to rewrite category A before scanning category B

in order to be able to cover the input sentence from left to right. This strategy will

lead to the same problem that a top-down recognizer for Context-Free Languages has

with the left-recursive grammar G. Writing X for category [c] � , Y for category [+f

c, -f] � , Z for category [=b +f c] � , and C for category [+f c -f, -f] � the top-down

recognizer for grammar H will lose itself in the following unbounded expansion: X, Y,

ZA, ZC, ZBA, ZBC, ZBBA, ZBBC, ZBBBA, As before, the number of � s in the

sentence ��� �	� indicates how many times category A should be rewritten into category

C and how many times category C should be rewritten into categories B and A in

order to recognize the sentence, but the basic top-down recognizer does not exploit

this information.4

In the next section we will see how left-recursion is not a problem for Earley-style

recognizers.
�
Interestingly enough, no Minimalist Grammar gives rise to left-recursive derivation trees, that is, a

derivation tree containing an expression � /� � whose left-most daughter, not necessarily immediate, is an
expression � /� � – see footnote 3 for this particular notation of expressions. It is easy to see why there
are no left-recursive derivation trees. Take an arbitrary Minimalist Grammar G as defined in section
5.1 of the previous chapter and consider an arbitrary expression

�
= � /� � Any rewrite rule applicable to�

is either of the form
� � �

�
�

� , where
�

� and
�

� are instantiations of the antecedents of one of the
structure building functions Merge-1, Merge-2, or Merge-3, or the rule is of the form

� � �
� , where

�
�

is an instantiation of the antecedent of one of the structure building functions Move-1 or Move-2. In
all cases, the sequence of features of the first chain in

�
� , =x �
 or -f �
 , is longer than the sequence of

features of the first chain in
�

� , �
 . So it follows immediately that the category of
�

� must be different
from the category of

�
. A simple induction on the number of rewritings will show that the category of

the left-most expression in any sequence of expressions derived from
�

is different from the category of�
.

164

6.2 Earley’s Algorithm

Earley’s parsing algorithm for Context-Free Languages avoids the non-termination

problem that plagues top-down parsers by predicting what rules could potentially be

used to rewrite a non-terminal symbol, but actually using a predicted rule only when

there is bottom-up support from the sentence for using that particular rule. For ex-

ample, for grammar G and input sentence ���	� , the Earley parser will predict that the

start symbol A can be rewritten by the rule A � A B and by the rule A � � . Next,

using the rule A � � , the first word of the sentence will be scanned. The parser has

thus recognized word � as a constituent of category A. This constituent can take the

place of category A occurring in the right-hand side of the predicted rule A � A B.

To confirm the remaining part of this rule, category B will be expanded using the rule

B � � . The predicted terminal symbol � matches the next word of the sentence, so the

parser has established that word � is a constituent of category B. Together with word �

of category A, word � of category B matches the right-hand side of the predicted rule

A � A B. Thus, using this rule, the recognizer concludes that the string of words ���

is another constituent of category A. So far, the rule A � A B has been used once, its

use justified by the first � and � of the input sentence � �	� . The string ��� of category

A can serve as the category A in the right-hand side of the rule A � A B in another

application of this rule. Again, category B will be expanded using the rule B � � and

now the second and last � of the sentence will be scanned. String ��� of category A and

string � of category B thus justify using the rule A � A B a second time. It follows

from this rule that string � �	� is of category A. Next, the recognizer will try to use the

string ���	� of category A in yet another application of the rule A � A B. However, this

attempt will fail, because there is no word � left in the sentence to provide a constituent

of category B. Thus the recognizer will halt at this point, returning the result that the

sentence ���	� is a string of category A. Full details of Earley’s parsing algorithm for

165

Context-Free Languages can be found in [Ear68], of course, and also in [SN97] and

[JM00], for example.

The Earley-style recognizer for Minimalist Languages presented in the next sec-

tion will follow a similar strategy. However, the recognizer requires some non-trivial

extensions of Earley’s original algorithm, having to do with the fact that for Minimalist

Grammars the order of the leaves of a derivation tree does not correspond to the order

of the words of the sentence whose derivation is given by the tree. For Context-Free

Grammars, these two orders coincide. This allows an Earley parser for Context-Free

Languages to move from left to right through the right-hand side of a predicted rule.

For example, a parser seeking bottom-up confirmation for a predicted rule A � A � A �

will first predict rules for rewriting non-terminal symbol A � and only if one or more

of these rules is confirmed bottom-up will the recognizer predict rules for rewriting

non-terminal symbol A � and try to find bottom-up support for these.

Expressions in a Minimalist Grammar are associated with tuples of strings which

may not end up adjacent to one another in a sentence derived from these expressions.

Therefore an Earley recognizer for Minimalist Languages cannot move from left to

right through the right-hand side of a predicted rule. The recognizer requires a more

elaborate book-keeping mechanism for predicting and confirming rules. Consider for

example the sentence Titus praise s Lavinia and the Minimalist Grammar given in

section 4.2 of chapter 4 generating this sentence. In the process of recognizing this

sentence as an expression of category c, the recognizer will posit the item in 9.

9.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�

[(3, 4):=vt

+k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � � , (1,
�
) �

The item in 9 is a triple, consisting of a rewrite rule [(2, 4):=pred � +v +k i, (0,

1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v +k i] � [(3, 4):=vt +k =d � pred,

166

(0, 1):d � -k, (1, 2):=d vt � -v] � , a set containing the situated expression [(3, 4):=vt

+k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � and a pointer (1,
�
). The rewrite rule

corresponds to an instantiation of the rule of inference Unmerge-1 of the top-down

recognizer from section 5.3.3 in chapter 5. The set included in an item contains those

situated expressions from the right-hand side of the rewrite rule mentioned in the item,

whose position vectors contain the value of the pointer occurring in the item, where

containment is defined as in section 5.5.1 of chapter 5.

The generation of the particular item in 9 means that the recognizer proposes to

use the structure building function Merge-1, deriving expression [s Lavinia:+v +k

i, Titus:-k, praise:-v] � from expressions [s:=pred +v +k i] � and [Lavinia:pred,

Titus:-k, praise:-v] � , and seeks to confirm that the overt word at position 1 in the

sentence, praise, justifies the use of this structure building function in the derivation

of the sentence Titus praise s Lavinia, that is, the recognizer will check whether there

is a set of expressions including lexical items for the words of the sentence up to and

including praise, from which the expression [Lavinia:pred, Titus:-k, praise:-v] � can

be derived. If so, then, by virtue of the rewrite rule of the item there is a set of expres-

sions including lexical items for the words of the sentence up to and including praise,

from which the expression [s Lavinia:+v +k i, Titus:-k, praise:-v] � can be derived.

When the recognizer produces the item in 9, it will already have found a derivation

of the expression [Lavinia:pred, Titus:-k, praise:-v] � from the complex expression

[Lavinia:=d pred, praise:-v] � and the lexical expression [Titus:d -k] � , when it was

checking whether the application of Merge-1 mentioned above was consistent with

the first overt word of the sentence. The recognizer will now retrieve this derivation

and see whether there is a derivation of the expression [Lavinia:=d pred, praise:-v] �

from a lexical item for the word praise and other expressions. According to the deriva-

tion tree of the sentence Titus praise s Lavinia given in 16 in chapter 5 there is, so the

recognizer will eventually derive the item in 10.

167

10.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�
, (1,

�
) �

The item in 10 is like the item in 9, except that its second element is the empty set,

indicating that the confirmation that was sought has been found.

The recognizer has four different kinds of rules of inference. There is a rule Next,

for incrementing the value of the pointer. Returning to our example sentence and

grammar, given the item in 11, for example, the rule Next will return the item in 12.

11.
�

S � � [(0, 4):=i � c] � ,
�
, (1,

�
) �

12.
�

S � � [(0, 4):=i � c] � ,
�

[(0, 4):=i � c] � � , (2,
) �

The rewrite rule S � � [(0, 4):=i � c] � is a special rule, corresponding to the top

of a derivation tree. The empty set in the antecedent in 11 indicates that there is

a set of expressions including lexical items for the words of the sentence up to and

including praise from which the expression [(0, 4):=i � c] � can be derived. Hence, next

the recognizer will have to check whether any of these derivations can be extended to

include a lexical item for the next word of the sentence.5

The recognizer also has a set of Predict rules. For the item in 13, one of the Pre-

dict rules will generate the items predicting in what way the situated expression [(2,

4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] can be rewritten. The item in 14 is

among the items generated.

13.
�

[(1, 4):=pred +v � +k i, (0, 1):d � -k] �
� [(2, 4):=pred � +v +k i, (0, 1):d � -

k, (1, 2):=d vt � -v] �

�
[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �

� , (0,
) �
�

It so happens that the derivation of the sentence Titus praise s Lavinia does not have an empty word
at position 2, but the recognizer must check the derivation built so far to find out.

168

14.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�

[(3, 4):=vt

+k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � � (0,
) �

The Predict rules predict derivations that have not been explored before, in contrast

to the rule of inference Down. For example, for the pair of items in 15 and 16, the rule

of inference Down will add the item in 17.

15.
�

[(1, 4):=pred +v � +k i, (0, 1):d � -k] �
� [(2, 4):=pred � +v +k i, (0, 1):d � -

k, (1, 2):=d vt � -v] �

�
[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �

� , (3,
�
) �

16.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�
, (3,
) �

17.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�

[(3, 4):=vt

+k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � � , (3,
�
) �

If the recognizer wants to check whether there is a set of expressions including

lexical items for the words in the sentence up to and including Lavinia from which

the expression [(1, 4):=pred +v � +k i, (0, 1):d � -k] � can be derived, and it is already

known that there is a set of expressions including lexical items for all the words pre-

ceding Lavinia from which expression [(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d

vt � -v] � can be derived, then, by virtue of the rewrite rules mentioned in the items

in 15 and 16, all that is left to check is whether any of the latter derivations can be

extended to include a lexical item for Lavinia. Notice that applying one of the Pre-

dict rules in this situation would not be sound. For example, applying the appropriate

Predict rule to the item in 15 would produce the item in 18, among many others.

169

18.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 2): � =pred +v

+k i] � [(2, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�

[(2, 4):=vt

+k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � � (3,
�
) �

The item in 18 implies that there is a derivation of the complex expression [(2,

4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] � from a set of expressions including

a lexical item covering an empty word at position 2. It is obvious from the grammar

that no phonologically empty lexical item with syntactic features =pred +v +k i

exists in the lexicon.

The fourth and final rule of inference, Up, will apply to the items in 19 and 20 to

produce the item in 21, for example.

19.
�

[(1, 4):=pred +v � +k i, (0, 1):d � -k] �
� [(2, 4):=pred � +v +k i, (0, 1):d � -

k, (1, 2):=d vt � -v] �

�
[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �

� , (3,
�
) �

20.
�

[(2, 4):=pred � +v +k i, (0, 1):d � -k, (1, 2):=d vt � -v] �
� [(2, 3): � =pred +v

+k i] � [(3, 4):=vt +k =d � pred, (0, 1):d � -k, (1, 2):=d vt � -v] � ,
�
, (3,

�
) �

21.
�

[(1, 4):=pred +v � +k i, (0, 1):d � -k] �
� [(2, 4):=pred � +v +k i, (0, 1):d � -k,

(1, 2):=d vt � -v] � ,
�
, (3,

�
) �

If the recognizer has found a derivation of the expression [(2, 4):=pred � +v +k i,

(0, 1):d � -k, (1, 2):=d vt � -v] � from a set of expressions including lexical items for

the words of the sentence up to and including Lavinia, then, because of the rewrite

rule mentioned in the item on 19, this applies that a derivation with this property has

been found for the expression
�

[(1, 4):=pred +v � +k i, (0, 1):d � -k] � . A complete

definition of the four kinds of rules of inference can be found in section 6.3.5.

170

For our example sentence Titus praise s Lavinia, the recognizer will start with the

axiom given in 22, and it is done when the goal item in 23 has been derived.

22.
�

S � � [(0, 4):=i � c] � ,
�

[(0, 4):=i � c] � � , (0,
) �

23.
�

S � � [(0, 4):=i � c] � ,
�
, (4,
) �

6.3 Specification of the Recognizer

As before, the specification of the recognizer involves a specification of the items and

their interpretation, a specification of the axioms and goal items, and a specification of

the rules of inference under which the axioms will be closed.

First, however, some general definitions are in order. Given an input string �

= � � . . . � � and a Minimalist Grammar G = (V, Cat, Lex,
�

) as defined in section

5.1 in chapter 5, situated expressions are of the form [� � , � � , . . . , � �] � , � � �
� , � ,

� � . For 0 � � � � , � � will be of the form (x � , y �): � � � � � , where 0 � �
� � � � � � ,

and � � , � � � Cat � . Situated expressions generated by the recognizer and expressions

generated by grammar G are related in the following way: a situated expression
�

= [(x � , y �): � � � � � , (x � , y �): � � � � � , . . . , (x � , y �): � � � ���] � corresponds to the expression

��� = [� ��� � � . . . ��� � : � � , � � � � � . . . � � � : � � , . . . , � � � � �
� � �

��� � : ���] � . If situated expression
�

is represented as [(x � , y �): � � � � � , S] � , we will write [� ��� � � . . . ��� � : � � , S �] � for its

corresponding expression.

For a sentence of length � , pointer � will assume the values (0,
), (0,
�
), (1,
), (1,

�
), . . . , (� � � ,
�
), (� ,
). If � = (

�
,
), � is pointing to a phonologically empty word at

position
�

in the sentence; if � = (
�

,
�
), it is pointing to a phonologically non-empty

word at position
�

, cf. section 5.5.1.

We define functions next, prev from the set of positions into the set of positions as

171

follows:

next(
�

,
) = (
�

,
�
)

next(
�

,
�
) = (

� � � ,
)

prev(
�

,
) = (
� � � , �
)

prev(
�

,
�
) = (

�
,
)

Following the definitions in section 5.5.1, a position vector (� , �) in a simple situ-

ated expression contains the following position: (� ,
). Position vector (� , �), � � � , in

a simple situated expression contains the following positions: (� ,
�
), . . . , (� ��� ,

�
).6

Position vector (� , �), ��� � , in a complex situated expression includes the following

positions: (� ,
), . . . , (� ,
).
Let � � be the left-most position and � � be the right-most position contained in the

position vectors of a situated expression
�

. Then situated expression
�

is said to be

to the right of position �
� and all positions preceding �

� , and to the left of position

� � � � (� �) and all positions following � � � � (� �). Furthermore,
�

is said to cross all

positions between �
� and � �

� �
(� �) (excluding �

� and � �
� �

(� �)).

6.3.1 Items

An item is a triple of the following form:

�
A � B � . . . B � , C, � �

where A is a situated expression or the special symbol S � , B � , . . . , B � are situated

expressions, C is a set containing expressions selected from B � , . . . , and B � ,7 and � is
�

Conceptually, positions (� , �) between (� , � �) and (
�

�
 , � �) should not be included in the positions
contained in position vector (� ,

�
), but technically, this will not make a difference for the operation of

the recognizer.

For any Minimalist Grammar, B � . . . B

�
is always a sequence of distinct situated expressions, so C

is actually a set of occurrences of situated expressions.

172

a position in the input sentence.

6.3.2 Invariant

An item
�

A � B � . . . B � , C, � � embodies the following claim:

1. There is a sequence of situated expressions E � , . . . , E � such that:

(a) Situated expression A is one of the situated expressions E � , . . . , E � .

(b) None of the situated expressions E �
�� A, 1 � � � � , crosses � .

(c) Expressions � � � , . . . , � � � are the leaves of a partial derivation tree of � .

(d) Any expression � � � , 1 � � � � , such that situated expression E �
�� A is to

the left of � , is a lexical expression.

2. For every situated expression B
� � C, 1 � � � , there is a sequence of situated

expressions F � , . . . , F
�

such that:

(a) None of the situated expressions F � , 1 � � � � , crosses � .

(b) Expressions ��� � , . . . , ����� are the leaves of a partial derivation tree with root

� � � .

(c) Any expression ��� � , 1 � � � � , such that situated expression F � is to the left

of � , is a lexical expression.

3. For every situated expression B
� �� C, 1 � � � , there is a sequence of situated

expressions G � , . . . , G
�

such that:

(a) None of the situated expressions G � , 1 � � � � , crosses � �
� �

(�).

(b) Expressions � � � , . . . , �
�
� are the leaves of a partial derivation tree with root

� � � .

173

(c) Any expression � � � , 1 � � � � , such that situated expression G � is to the

left of � �
� �

(�) is a lexical expression.

6.3.3 Axioms

For � the length of the sentence to be parsed, a lexical item [� :c] � licenses the following

axiom:

�
S � � [(0, �): � c] � , C, (� �
) �

where the content of C is determined as follows: [(0, �): � c] � � C if, and only if,

position (� �
) is contained in the position vector (0, �), i.e., � = 0.

A lexical item [� : � c] � , � � Cat
�

, licenses the following axiom:

�
S � � [(0, �): � � c] � ,

�
[(0, �): � � c] � � , (0,
) � .8

6.3.4 Goal Items

Any item of the following form is a goal item, � � Cat � ,
� � �

� , � � , � the length of the

input sentence:

�
S � � [(0, �): � � c] � ,

�
, (� ,
) �

6.3.5 Rules of Inference

Assume the input sentence is � = � � . . . � � . Position (
� � �) stands for position (

� �
) or

position (
� � �
), � � �

� , � � .
�
[(0, �): �

�
c] � � C, because position (0, �) is always included in position vector (0, �).

174

6.3.5.1 Manipulating �

Next

Antecedent:

�
S � � [(0, �): � � c] � ,

�
, (
� � �) �

such that:

(
�

, �) � (� ,
).9

Consequent:

�
S � � [(0, �): � � c] � , C, � �

� �
(
� � �) �

where:

1. [(0, �): � � c] � � C if, and only if, position � �
� �

(
� � �) is contained in position vector

(0, �).

6.3.5.2 Predict Rules

Unmerge-1

Antecedent:

�
A � B � . . . B � , C �

�
[(p, q):=x � � , S] � � , (

�
,
) �

such that:
�
This ensures that the position mentioned in the consequent of the rule is at most �

� � � (�
�
 , � �) =

(� , �), which means that the empty word at position � will be the last element sought for in the sentence.
This is correct, since no sentence of length � will contain any words beyond the empty word at position
(� , �).

175

1. The left-most position contained in the position vectors of [(p, q):=x � � , S] � is

(
�

,
).

2. There is a lexical item with syntactic features � x.

Consequent:

�
[(p, q):=x � � , S] �

� [(p, v): � =x �] � [(v, q): � � x, S] � , C � , (
�

,
) �

where:

1. � � � � � ;
�

= � if � � �
,
�

= � if � �� �
, and if

�
= � then S =

�
.

2. [(p, v): � =x �] � � C � if, and only if, position (
�

,
) is contained in position vector

(p, v).

3. [(v, q): � � x, S] � � C � if, and only if, position (
�

,
) is contained in one of the

position vectors of [(v, q): � � x, S] � .

Unmerge-2

Antecedent:

�
A � B � . . . B � , C �

�
[(p, q): � =x � � , S] � � , (

�
,
) �

such that:

1. The left-most position contained in the position vectors of [(p, q): � =x � � , S] � is

(
�

,
).

2. There is a lexical item with syntactic features � x.

3. �
��
 .

176

Consequent:

�
[(p, q): � =x � � , S] �

� [(v, q): � � =x � , U] � [(p, v): � � x, V] � , C � , (
�

,
) �

where:

1. � � � � � ; U � V = S;
�

= s if � =
�
,
�

= c if � �� �
, and if

�
= s then V =

�
.

2. [(v, q): � � =x � , U] �
� C � if, and only if, position (

�
,
) is contained in one of the

position vectors of [(v, q): � � =x � , U] � .

3. [(p, v): � � x, V] � � C � if, and only if, position (
�

,
) is contained in one of the

position vectors of [(p, v): � � x, V] � .

Unmerge-3

Antecedent:

�
A � B � . . . B � , C �

�
[(p, q): � =x � � , S, (v, w): � x � � , T] � � , (

�
,
) �

such that:

1. The left-most position contained in the position vectors of [(p, q): � =x � � , S, (v,

w): � x � � , T] � is (
�

,
).

Consequent:

�
[(p, q): � =x � � , S, (v, w): � x � � , T] �

� [(p, q): � � =x � , U] � � [(v, w): � � x � , V] � � , C � ,
(
�

,
) �

where:

177

1. U � V = S � T;
� � = s if � =

�
,
� � = c if �

�� �
, and if

� � = s then U =
�
;
�
� = s if

� =
�
,
�
� = c if � �� �

, and if
�
� = s then V =

�

2. [(p, q): � � =x � , U] � �
� C � if, and only if, position (

�
,
) is contained in one of the

position vectors of [(p, q): � � =x � , U] � � .

3. [(v, w): � � x � , V] � �
� C � if, and only if, position (

�
,
) is contained in one of the

position vectors of [(v, w): � � x � , V] � � .

Unmove-1

Antecedent:

�
A � B � . . . B � , C �

�
[(p, q): � +y � � , S] � � , (

�
,
) �

such that:

1. The left-most position contained in the position vectors of [(p, q): � +y � � , S] � is

(
�

,
).

2. There is a lexical item with syntactic features � -f.

3. �
��
 .

Consequent:

�
[(p, q): � +y � � , S] �

� [(v, q): � � +y � , (p, v): � � -y, S] � , C � , (
�

,
) �

where:

1. � � � � � .

178

2. C � =
�

[(v, q): � � +y � , (p, v): � � -y, S] � � .10

Unmove-2

Antecedent:

�
A � B � . . . B � , C �

�
[(p, q): � +y � � , S, (v, w): � -y � � , T] � � , (

�
,
) �

such that:

1. The left-most position contained in the position vectors of [(p, q): � +y � � , S, (v,

w): � -y � � , T] � is (
�

,
).

2. �
��
 , � ��
 .

Consequent:

�
[(p, q): � +y � � , S, (v, w): � -y � � , T] �

� [(p, q): � � +y � , S, (v, w): � � -y � , T] � , C � ,
(
�

,
) �

where:

1. C � =
�

[(p, q): � � +y � , S, (v, w): � � -y � , T] � � .11

The two unmove rules should not add any items violating the Shortest Movement

Constraint to the chart, cf. section 5.3.3 of the previous chapter.
��

If position (� , �) is contained in one of the position vectors of [(p, q): � +y
�
� , S] � , it is also contained

in one of the position vectors of [(v, q): �
�
+y � , (p, v):

	 �
-y, S] � .

� �

If position (� , �) is contained in one of the position vectors of [(p, q): � +y
�
� , S, (v, w):

	
-y
�
 , T] � ,

it is also contained in one of the position vectors of [(p, q): �
�
+y � , S, (v, w):

	 �
-y
 , T] � .

179

6.3.5.3 Complete and Scan Rule

Given a set of situated expressions C, let C � be the subset of C containing all simple

situated expressions in C, and let C � be the subset of C containing all complex situated

expressions in C.

Up

Antecedent:

�
A � B � . . . B � , C, (

�
, �) �

�
D � � E � � . . . E � � � ,

�
, (
�

, �) �

. . .

�
D � � E � � . . . E � � � ,

�
, (
�

, �) �

such that:

1.
� �
��� � D � = C � .

2. For every B � � C � , there is an expression � � � � Lex.

Consequent:

�
A � B � . . . B � , �

, (
�

, �) �

6.3.5.4 Updating �

Down

Antecedent:

�
A � B � . . . B � , C �

�
B � � , (

�
, �) �

180

�
B � � D � . . . D � ,

�
, (� , �) �

such that:

1. The right-most position to the left of (
�

, �) contained in the position vectors of

B � is (� , �).

Consequent:

�
B � � D � . . . D � , C � , (

�
, �) �

where:

1. D � � C � if, and only if the position (
�

, �) is contained in the position vectors of

D � , 1 � � � � .

6.4 Example

The items given below are the items produced by the recognizer that lead to a goal item

for the sentence � � according to grammar H as given in section 6.1 of this chapter. For

each item, the underlined situated expressions form the contents of set C for that item.

The items are grouped into five ‘columns’, one for each value of � . Note that for this

particular grammar, most items appear in all columns.

I. � = (0,
)

1a. S � � [(0, 2):=b +f � c] � axiom

2a. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Unmove-1(1a)

3a. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

181

Unmerge-3(2a)

4a. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Unmove-1(3a)

5a. [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] �

Unmerge-3(4a)

6a. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Up(4a, 5a)

7a. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Up(3a, 6a)

8a. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Up(2a, 7a)

9a. S � � [(0, 2):=b +f � c] � Up(1a, 8a)

II. � = (0,
�
)

1b. S � � [(0, 2):=b +f � c] � Next(9a)

2b. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Down(1b, 8a)

3b. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Down(2b, 7a)

4b. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Down(3b, 6a)

5b. [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] �

Down(4b, 5a)

5b � . [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] � Up(5b)

6b. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Up(4b, 5b �)

7b. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Up(3b, 6b)

8b. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Up(2b, 7b)

182

9b. S � � [(0, 2):=b +f � c] � Up(1b, 8b)

183

III. � = (1,
)

1c. S � � [(0, 2):=b +f � c] � Next(9b)

2c. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Down(1c, 8b)

3c. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Down(2c, 7b)

4c. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Down(3c, 6b)

5c. [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] �

Down(4c, 5b)

6c. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Up(4c, 5c)

7c. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Up(3c, 6c)

8c. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Up(2c, 7c)

9c. S � � [(0, 2):=b +f � c] � Up(1c, 8c)

IV. � = (1,
�
)

1d. S � � [(0, 2):=b +f � c] � Next(9c)

2d. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Down(1d, 8c)

3d. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Down(2d, 7c)

4d. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Down(3d, 6c)

5d. [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] �

Down(4d, 5c)

5d � . [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] � Up(5d)

184

6d. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Up(4d, 5d �)

7d. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Up(3d, 6d)

8d. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Up(2d, 7d)

9d. S � � [(0, 2):=b +f � c] � Up(1d, 8d)

V. � = (2,
)

1e. S � � [(0, 2):=b +f � c] � Next(9d)

2e. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Down(1e, 8d)

3e. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Down(2e, 7d)

4e. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Down(3e, 6d)

5e. [(1, 2):=b � +f b -f, (0, 1):b � -f] �
� [(1, 2): � =b +f b -f] � [(0, 1): � b -f] �

Down(4e, 5d)

6e. [(0, 2):=b +f � b -f] �
� [(1, 2):=b � +f b -f, (0, 1):b � -f] � Up(4e, 5d)

7e. [(2, 2):=b � +f c, (0, 2):=b +f b � -f] �
� [(2, 2): � =b +f c] � [(0, 2):=b +f � b -f] �

Up(3e, 6e)

8e. [(0, 2):=b +f � c] �
� [(2, 2):=b � +f c, (0, 2):=b +f b � -f] � Up(2e, 7e)

9e. S � � [(0, 2):=b +f � c] � Up(1e, 8e)

Item 9e is a goal item.

185

6.5 Proofs of Correctness and Complexity

6.5.1 Proof of Soundness

Recall that the recognizer is sound if every axiom and derivable item makes a true

claim when interpreted as in section 6.3.2. We will first show that the axioms meet this

condition. Next we will show that if the items serving as the antecedents of the rules

of inference represent true claims, then so do their consequents.

Because the items of the recognizer are very informative, some of the proofs in

this section are quite extended. However, each proof draws upon a limited number of

rather simple deductive steps. To avoid any confusion between the situated expressions

in an item and the expressions generated by a Minimalist Grammar, in the following

situated expressions will be referred to as subitems.

6.5.1.1 Axioms

Regarding any axiom
�

S � � [(0, �): � � c] � , C, (� �
) � , � � �
� , � � , such that subitem [(0,

�): � c] � � C, consider the sequence consisting of the one subitem F � = [(0, �): � c] � . By

definition, F � is to the right of position (� �
). Hence, F � does not cross (� �
) (2a).12

Expression ��� � is the leaf of the trivial, partial derivation tree with root ��� � , namely,

the tree consisting of the single node ��� � (2b). Since F � is to the right of position (� �
),
whether F � is lexical or not is not an issue (2c).13

For an axiom
�

S � � [(0, �): � � c] � , C, (� �
) � such that subitem [(0, �): � c] � �� C, it

must be the case that position (� �
) is not contained in the position vector (0, �), i.e.

� � 0. Consider the sequence consisting of the one subitem F � = [(0, �): � � c] � . By

definition, (� , �
) is the left-most position contained in the position vector of F � , so F �
� �

The parenthesized number letter sequences refer to corresponding parts of the invariant.
� �

For the axioms we can ignore the first part of the invariant, because S � is a special symbol.

186

does not cross (� , �
) (3a). Trivially, expression ��� � is the leaf of the partial derivation

tree having no nodes but the root ��� � (2b). F � is to the right of position (� , �
), whence

it is not required to be lexical (3c).

6.5.1.2 Rules of Inference

Next: consider first the case in which the antecedent of the rule is the item
�

S � � [(0,

�): � � c] � ,
�
, (
� � �
) � and the consequent is the item

�
S � � [(0, �): � � c] � , C, (

�
+1,
) �

where B = [(0, �): � � c] � � C.

According to the invariant, it follows from the antecedent that there is a sequence

of subitems F � , . . . , F
�

such that (3a) none of the subitems F � , 1 � � � � , crosses (
�

+1,

); (3b) expressions ��� � , . . . , ��� � are the leaves of a partial derivation tree with root � � ;

(3c) any expression ��� � , 1 � � � � , which appears to the left of (
�

+1,
) is a lexical

expression.14

Since B � C, it follows immediately that the sequence of subitems F � , . . . , F
�

satisfies the invariant for the consequent (3a, 3b, 3c).

Next, assume B = [(0, �): � � c] � �� C and
�

= � . Since B
�� C, position vector (0, �)

does not contain position (
� � �
). This happens only when

� � � , but then Next will not

apply, since (
� � �
) �

� (� �
) for
� � � . Hence, this case does not arise.

Finally, assume B = [(0, �): � � c] � �� C and
�

= � .15 Since B is a simple subitem, the

sequence of subitems F � , . . . , F
�

provided by the antecedent reduces to the one-element

sequence F � , and B = F � . Since F � does not cross (
�

+1,
), it is either to the left of this

position or to the right of this position. If F � is to the left of position (
�

+1,
), then F �

cannot cross position (
�

+1,
�
), which is to the right of (

�
+1,
) (3a). Trivially, � � is the

� �
Because S � is a special symbol, the first part of the invariant will be ignored for both the antecedent

and the consequent.
� �

The various cases for � = (� , �) are left as an exercise for the reader.

187

leaf of the partial derivation tree consisting of the one node, hence also root, � � (3b).

If, as assumed, F � is to the left of position (
�

+1,
), in which case it will also be to the

left of (
�

+1,
�
), then it follows from the antecedent that expression � � , is lexical (3c).

If F � is to the right of position (
�

+1,
), then it must be to the right of position (
�

+1,
�
)

as well, because position vector (0, �) does not contain position (
�

+1,
), since B
�� C.

Hence, F � does not cross position (
�

+1,
�
) (3a). Trivially, � � is the leaf of the partial

derivation tree consisting of the one node, hence also root, � � (3b). F � is to the right

of (
�

+1,
), so the issue regarding lexicality is moot.

For the Predict rules, we will show that the rule of inference Unmerge-2 is sound.

Soundness of the other rules can be shown in a similar fashion.

Unmerge-2: regarding the antecedent of the rule Unmerge-2,
�

A � B � . . . B � , C,

(
�

,
) � , assume that � = 2, B � is a complex subitem, B � �� C, B � = [(p, q): � =x � � , S] �
�

C, A
�� S � ; regarding the consequent of the rule,

�
[(p, q): � =x � � , S] �

� [(v, q): � � =x � ,

U] � [(p, v): � � x, V] � , C � , (
�

,
) � , assume that [(v, q): � � =x � , U] �

�� C � , [(p, v): � � x, V] �
� C � .16

Applying the invariant to the antecedent, it follows that there is a sequence of

subitems E � , . . . , E � such that: (1a) subitem A is one of the subitems E � , . . . , E �
– assume A = E

�
; (1b) none of the subitems E �

�� A, 1 � � � � , crosses (
�

,
);
(1c) expressions � � � , . . . , � � � are the leaves of a partial derivation tree of � ; (1d) any

expression � � � , 1 � � � � , such that subitem E �
�� A is to the left of (

�
,
), is a lexical

expression.

Furthermore, since subitem B � = [(p, q): � =x � � , S] �
� C, there is a sequence of

subitems F � , . . . , F
�

such that: (2a) none of the subitems F � , 1 � � � � , crosses (
�

,
);
(2b) expressions ��� � , . . . , ����� are the leaves of a partial derivation tree with root � � � ;

(2c) any expression ��� � , 1 � � � � , such that subitem F � is to the left of (
�

,
), is a
� �

Some of these assumptions cannot be made without loss of generality. The reader is invited to
provide the proofs for the cases which do not fall under the current assumptions.

188

lexical expression.

Moreover, since B � �� C, there is a sequence of subitems G � , . . . , G
�

such that: (3a)

none of the subitems G � , 1 � � � � , crosses (
�

,
�
); (3b) expressions � � � , . . . , �

�
� are

the leaves of a partial derivation tree with root � � � ; (3c) any expression � � � , 1 � � � � ,

such that subitem G � is to the left of (
�

,
�
), is a lexical expression.

Now consider the sequence of subitems E � , . . . , E
�

� � , G � , . . . , G
�
, B � , E

� � � , . . . ,

E � . Obviously, subitem B � is one of the subitems of this sequence (1a). It follows

from the antecedent that none of the subitems E � in this sequence crosses (
�

,
), 1 � �

� � , �
�� . It also follows from the antecedent that none of the subitems G � , 1 � � �

� , crosses (
�

,
�
). Thus, for a subitem G � , 1 � � � � , to cross (

�
,
), it has to be to the

immediate left of (
�

,
�
). According to the invariant, for any subitem G � , 1 � � � � , to

the left of (
�

,
�
), its expression � � � is lexical. Since lexical expressions cover exactly

one (empty or non-empty) word, subitem G � does not cross any position. Hence, none

of the subitems in the sequence E � , . . . , E � � � , G � , . . . , G
�
, B � , E � � � , . . . , E � , excepting

B � , crosses (
�

,
) (1b).

The antecedent implies that expressions � � � , . . . , � � � are the leaves of a partial

derivation tree of � . Inspection of the rules of inference that introduce items contain-

ing rewrites of the form A � B � B � shows that either � � = Merge-1(� � � , � � �), or � �
= Merge-2(� � � , � � �), or � � = Merge-3(� � � , � � �). It follows from the antecedent that

expressions � � � , . . . , �
�
� are the leaves of a partial derivation tree with root � � � . As-

sembling the various parts, we see that the expressions � � � , . . . , � � �
� � , � � � , . . . , �

�
� ,

� � � , � � � � � , . . . , � � � are the leaves of a partial derivation tree of � (1c).

According to the antecedent any expression � � � , 1 � � � � , such that subitem E �
�� A is to the left of (

�
,
), is a lexical expression. Also according to the antecedent,

any expression � � � , 1 � � � � , such that subitem G � is to the left of (
�

,
�
), is a lexical

expression. Obviously, if some subitem G � , 1 � � � � , is to the left of (
�

,
), it is also

189

to the left of (
�

,
�
), so expression � � � is lexical. Hence, any of the expressions � � � , . . . ,

� � �
� � , �

�
� , . . . , �

�
� , � � � � � , . . . , � � � whose subitem is to the left of (

�
,
), is a lexical

expression (1d).

It follows from the conditions on the applicability on the rule Unmerge-2 that (
�

,

) is the left-most position contained in the position vectors of subitem [(p, q): � =x � � ,

S] � , i.e., [(p, q): � =x � � , S] � is to the right of position (
�

,
). Then, by the way the

position vectors are split both subitem [(p, v): � � x, V] � and subitem [(v, q): � � =x � , U] �

are also to the right of position (
�

,
).
Since subitem C � =[(p, v): � � x, V] � � � C � is to the right of position (

�
,
), it does

not cross position (
�

,
) (2a). Obviously, the expression � � � is a leaf of the partial

derivation tree consisting of the single node, hence also root, � � � (2b). Since subitem

C � is to the right of position (
�

,
), it does not matter whether expression � � � is lexical

or not (2c).

Since subitem C � = [(v, q): � � =x � , U] �

�� C � , its position vectors do not contain

position (
�

,
). Since subitem C � is to the right of (
�

,
), it must be to the right of (
�

,
�
). Consequently, subitem C � does not cross position (

�
,

�
) (3a). The expression � � � is

a leaf and the root of the partial derivation tree consisting of the single node � � � (3b).

Since subitem C � is to the right of position (
�

,
�
), it is irrelevant whether expression

� � � is lexical (3c).

Up: assume with regard to the first item of the antecedent of the rule Up,
�

A �

B � . . . B � , C, (
�

, �) � , that � = 2, B � � C � , B �
� C � , and (

�
, �) = (

�
,

�
). Then for the rule

to apply, there must be an another item
�

B � � D � . . . D � , C � , (
�

,
�
) � . For this item, C �

=
�
, and assume that � = 2, D � complex and D � simple. The consequent of the rule is

�
A � B � . . . B � , C � � , (

�
,

�
) � , C � � =
�
.

Application of the invariant to item
�

A � B � . . . B � , C, (
�

,
�
) � tells us that there

is a sequence of subitems E � , . . . , E � such that: (1a) subitem A is one of the subitems

190

E � , . . . , E � ; assume A = E
�
; (1b) none of the subitems E �

�� A, 1 � � � � , crosses (
�

,
�
); (1c) expressions � � � , . . . , � � � are the leaves of a partial derivation tree of � ; (1d)

any expression � � � , 1 � � � � , such that subitem E �
�� A is to the left of (

�
,

�
), is a

lexical expression.

Furthermore, since subitem B � � C, there is a sequence of subitems F � , . . . , F
�

such that: (2a) none of the subitems F � , 1 � � � � , crosses (
�

,
�
); (2b) expressions ��� � ,

. . . , ����� are the leaves of a partial derivation tree with root � � � ; (2c) any expression ��� � ,
1 � � � � , such that subitem F � is to the left of (

�
,

�
), is a lexical expression.

Moreover, since B �
� C, there is a sequence of subitems G � , . . . , G

�
such that: (3a)

none of the subitems G � , 1 � � � � , crosses (
�

,
�
). (3b) expressions � � � , . . . , �

�
� are

the leaves of a partial derivation tree with root � � � . (3c) any expression � � � , 1 � � � � ,

such that subitem G � is to the left of (
�

,
�
), is a lexical expression. As B � is a simple

subitem, it follows that � = 1 and G � = B � .

Similarly, for item
�

B � � D � . . . D � ,
�
, (
�

,
�
) � , there is a sequence of subitems H � ,

. . . , H � such that: (1a) subitem B � is one of the subitems H � , . . . , H � ; assume B � =

H
�
; (1b) none of the subitems H �

�� B � , 1 � � � � , crosses (
�

,
�
); (1c) expressions

� � � , . . . , � � � are the leaves of a partial derivation tree of � ; (1d) any expression � � � ,
1 � � � � , such that subitem H �

�� B � is to the left of (
�

,
�
), is a lexical expression.

Moreover, since D � �� C � , there is a sequence of subitems L � , . . . , L
�

such that: (3a)

none of the subitems L � , 1 � � � � , crosses (
�

+1,
). (3b) expressions � � � , . . . , � � � are

the leaves of a partial derivation tree with root ��� � . (3c) any expression � � � , 1 � � � � ,

such that subitem L � is to the left of (
�

+1,
), is a lexical expression.

Also, since D �
�� C � , there is a sequence of subitems M � , . . . , M � such that: (3a)

none of the subitems G � , 1 � � � � , crosses (
� ��� ,
). (3b) expressions ��� � , . . . , ��� �

are the leaves of a partial derivation tree with root ��� � . (3c) any expression � � � , 1 � �

� � , such that subitem M � is to the left of (
� ��� ,
), is a lexical expression. Since D �

191

is a simple subitem, � = 1 and M � = D � .

Now, meditate on the sequence of subitems E � , . . . , E � . It follows immediately

from the first item of the antecedent that this sequence is such that subitem A is one

of the subitems E � , . . . , E � : assume A = E
�

(1a); none of the subitems E �
�� A, 1

� � � � , crosses (
�

,
�
) (1b); expressions � � � , . . . , � � � are the leaves of a partial

derivation tree of � (1c); any expression � � � , 1 � � � � , such that subitem E �
�� A is

to the left of (
�

,
�
), is a lexical expression (1d).

Next, consider subitem B � �� C � � . It follows from the second item of the antecedent

that none of the subitems in the sequence L � , . . . , L
�
, M � crosses (

� � � ,
) (3a).

Since, according to the second item expressions � � � , . . . , � � � are the leaves of a partial

derivation tree with root ��� � , expression ��� � is the leaf of a partial derivation tree with

root ���
� , and either � � � = Merge-1(� � � , � �

�), or � � � = Merge-2(��� � , � �
�), or � � � =

Merge-3(��� � , � � �), we have that the sequence of expressions � � � , . . . , � � � , � � � are the

leaves of a partial derivation tree with root � � � (3b). Also, any expression � � � , 1 � � �
� , such that subitem L � is to the left of (

�
+1,
), is a lexical expression, and expression

� � � is a lexical expression if subitem M � is to the left of (
�

+1,
) (3c). This is an

immediate consequence of applying the invariant to the second item of the antecedent.

Finally, consider the subitem B �
�� C � � . According to the conditions on the ap-

plicability of rule Up, the expression � � � is lexical. Since lexical expressions cover

exactly one empty or non-empty word, their corresponding subitems do not cross any

positions. Thus, subitem B � does not cross (
�

+1,
) (3a). Expression � � � is the leaf

of the trivial partial derivation tree with root � � � (3b). Since expression � � � is lexical

anyway, it does not matter whether subitem B � is to the left or to the right of position

(
�

+1,
) (3c).17

�

In fact, since B � � C, the single position vector of B � contains the position (� , ��). Therefore, since�

��� is lexical, the position vector of B � is (� , � +1). Thus subitem
�
��� actually is to the immediate left

of position (� +1, �).

192

The case where (
�

, �) = (
�

+1,
) is dealt with similarly.

Down: assume that the first item of the antecedent is
�

A � B � . . . B � , C � , (
�

,
)
� , where � = 2, B � � C, B �

� C; assume that the first item of the antecedent is
�

B �
�

D � . . . D � , C � , (� ,
) � , where � = 1, D � � C � , and � =
� � �

. The item in the consequent

is
�

B �
� D � , C � � , (

�
,
) �

Applying the invariant to the first item of the antecedent, it follows that there is a

sequence of subitems E � , . . . , E � such that: (1a) subitem A is one of the subitems E � ,

. . . , E � ; assume A = E
�
; (1b) none of the subitems E �

�� A, 1 � � � � , crosses (
�

,
);
(1c) expressions � � � , . . . , � � � are the leaves of a partial derivation tree of � ; (1d) any

expression � � � , 1 � � � � , such that subitem E �
�� A is to the left of (

�
,
), is a lexical

expression.

Furthermore, since subitem B � � C, there is a sequence of subitems F � , . . . , F
�

such that: (2a) none of the subitems F � , 1 � � � � , crosses (
�

,
); (2b) expressions ��� � ,
. . . , ��� � are the leaves of a partial derivation tree with root � � � ; (2c) any expression ��� � ,
1 � � � � , such that subitem F � is to the left of (

�
,
), is a lexical expression.

Also, since subitem B �
� C, there is a sequence of subitems G � , . . . , G

�
such that:

(2a) none of the subitems G � , 1 � � � � , crosses (
�

,
); (2b) expressions � � � , . . . , �
�
�

are the leaves of a partial derivation tree with root �
�

� ; (2c) any expression � � � , 1 � �

� � , such that subitem G � is to the left of (
�

,
), is a lexical expression.

Applying the invariant to the second item of the antecedent gives a sequence of

subitems H � , . . . , H � such that: (1a) subitem B � is one of the subitems H � , . . . , H � ;

assume B � = H
�
; (1b) none of the subitems H �

�� A, 1 � � � � , crosses (
� � �

,
);
(1c) expressions � � � , . . . , � � � are the leaves of a partial derivation tree of � ; (1d) any

expression � � � , 1 � � � � , such that subitem H �
�� B � is to the left of (

� � �
,
), is a

lexical expression.

Furthermore, since D � �� C, there is a sequence of subitems K � , . . . , K
�

such that:

193

(3a) none of the subitems K � , 1 � � � � , crosses (
� � �

,
�
). (3b) expressions � � � , . . . ,

� � � are the leaves of a partial derivation tree with root ��� � . (3c) any expression � � � , 1

� � � � , such that subitem K � is to the left of (
� � �

,
�
), is a lexical expression.

Consider the sequence of subitems E � , . . . , E � � � , F � , . . . , F
�
, B � E � � � , . . . , E � .

Obviously, subitem B � is one of the subitems of this sequence (1a). It follows from the

two items of the antecedent that none of the subitems E � , . . . , E
�

� � , F � , . . . , F
�
, E

� � � ,
. . . , E � crosses (

�
,
) (1b).

The antecedent implies that expressions � � � , . . . , � � � are the leaves of a partial

derivation tree of � . Inspection of the rules of inference that introduce items contain-

ing rewrites of the form A � B � B � shows that either � � = Merge-1(� � � , � � �), or � �
= Merge-2(� � � , � � �), or � � = Merge-3(� � � , � � �). It follows from the antecedent that

expressions ��� � , . . . , ��� � are the leaves of a partial derivation tree with root � � � . As-

sembling the various parts, we see that the expressions � � � , . . . , � � �
� � , ��� � , . . . , ��� � ,

� � � , � � � � � , . . . , � � � are the leaves of a partial derivation tree of � (1c). According to

the two items of the antecedent, any expression � � � , 1 � � � , �� � , such that E
�

is

to the left of (
�

,
), and any expression ��� � , 1 �! "� � , such that E
�

is to the left of (
�

,

), is a lexical expression (1d).

Consider the sequence of subitems K � , . . . , K
�
. It follows from the second item

of the antecedent that none of these subitems crosses position (
� � �

,
�
). Hence, any

subitem K � , 1 � � � � , is either to the left of (
� � �

,
�
) or to the right of (

� � �
,

�
). If

subitem K � is to the left of (
� � �

,
�
), it is also to the left of (

�
,
), whence it does not

cross (
�

,
). If subitem K � is to the right of (
� � �

,
�
), it also does not cross (

�
,
): for

K � to cross (
�

,
), it would have to contain a position between (
� � �

,
�
) and (

�
,
) (and

position (
�

,
) or a position to the right of (
�

,
)), but then position (
� � �

,
) would

not be the right-most position to the left of (
�

,
) contained in K � , and consequently,

position (
� � �

,
) would not be the right-most position to the left of (
�

,
) contained in

194

B � , violating the condition on the applicability of rule Down. Hence, no subitem K � , 1

� � � � , crosses position (
�

,
) (2a).

The second item of the antecedent gives us immediately that expressions � � � , . . . ,

� � � are the leaves of a partial derivation tree with root ��� � (2b).

As mentioned above, any subitem K � , 1 � � � � , crosses neither position (
� � �

,
�
),

nor position (
�

,
). So any subitem K � to the left of (
�

,
) is either to the left of (
� � �

,
�
), or between positions (

� � �
,

�
) and (
�

,
). However, it is impossible for K � to be

between (
� � �

,
�
) and (

�
,
), because in that case, K � , and hence B � , would contain a

position between (
� � �

,
�
) and (

�
,
), wherefore position (

� � �
,
) would no longer

be the right-most position to the left of (
�

,
) contained in B � , violating the condition

on the applicability of rule Down. If K � is to the left of (
� � �

,
�
), then expression � � �

is lexical, according to the invariant applied to the second item of the antecedent (2c).

6.5.2 Proof of Completeness

The Earley-style recognizer presented in this chapter is complete for a Minimalist

Grammar G if it generates a goal item for every sentence � = � � . . . � � � L(G). Con-

sider any pair (� , T) such that � � L(G) and T is derivation tree of � in G without

recursion, i.e., T does not contain two occurrences of the same expression such that

one dominates the other.18 Assume first that T has just one node. Under the assump-

tion that a lexical item covers exactly one word, this means that sentence � consists

of one word, which may be empty, and that the lexicon of G includes the item [� :c] � .
� �

For every 	 � L(G) a derivation tree with this property exists. Let T � be a derivation tree with
two occurrences,

�
� and

�
� , of the same expression

�
, such that

�
� dominates

�
� . Because of the

non-erasure property of Minimalist Grammars the phonetic material of expression
�

� must contain the
phonetic material of expression

�
� and the phonetic material of all the leaves in T � dominated by

�
� but

not by
�

� . Now expression
�

� can only be identical to expression
�

� if all the leaves in T � dominated by�
� but not by

�
� are phonetically empty. But then the expressions between

�
� and

�
� can be removed

and the two occurrences fused into one to obtain another derivation tree for 	 . The recursion thus
removed will reappear when the derivation trees are retrieved from the chart of items produced by the
recognizer.

195

Sentence � will be recognized in either two or four steps, depending on whether � =

 . The derivation of a goal item for the case in which � =
 is given below.

1.
�

S � � [(0, 0): � c] � , � [(0, 0): � c] � � , (0,
) � Axiom

2.
�

S � � [(0, 0): � c] � , �
, (0,
) � Up(1)

Item 2 is a goal item.

For �
��
 , a goal item is derived by the following 4 steps.

1.
�

S � � [(0, 1): � c] � , �
, (0,
) � Axiom

2.
�

S � � [(0, 1): � c] � , � [(0, 1): � c] � � , (� , �
) � Next(1)

3.
�

S � � [(0, 1): � c] � , �
, (0,

�
) � Up(2)

4.
�

S � � [(0, 1): � c] � , �
, (1,
) � Next(3)

Item 4 is a goal item.

To deal with a derivation tree T that consist of more than one node, we need to

define the following notions. For any simple expression � = [� ��� � � . . . ��� � : � �] � in T,

define the singleton set of subitems
� � � � =

�
[(x � , y �): � � �] � � . For any complex expres-

sion � = [� ��� � � . . . � � � : � � , � � � � � . . . ��� � : � � , . . . , � ��� � � . . . � � � : ���] � in T, define the set

of subitems
� � � � =

�
[(x � , y �): � � � � � , (x � , y �): � � � � � , . . . , (x � , y �): � � � � �] �

 � � � � are the

syntactic features of some lexical item
� � Lex, � � �� �

, 0 � � � � � .
Let T � be an extended derivation tree obtained from derivation tree T by adding a

node labeled S � , immediately dominating the root of T. Note that the root of T is the

complex expression [� :c] � , since T is assumed to have more than one node.

Given a position � in sentence � , define the set of nodes N � =
� �
 � is a complex

expression in T � ; A � �
(�) contains position � ; if � immediately dominates a complex

196

expression � in T � , then B � �
(�) does not contain position � � . Informally, set N �

consists of those expressions in T � whose corresponding subitems contain position �

and that are furthest removed from the root S � of the extended derivation tree T � . Let

the � -depth
�

� of tree T � be Max � � � � d(S � , �), that is, the length of the longest path

from the root of T � to an element of
�

� .

For an extended derivation tree T � , input sentence � = � � . . . � � , and a value for

pointer � , (0,
) � � � (� ,
), we inductively define the sets of items I
�

�
� � and I

�

�
� � for 0

� � � �
� :

1. I
�
�
� � =

� �
S � � B � ,

�
B � � , � �
 B � � �

([� :c] �) � .

2. I
�

��� �
� � = I

�

�
� � �

� �
A � B � . . . B � C, � �
 there are expressions � , � � in T � such

that A � �
(�), B � �

�
(� �), 1 � � � � : d(S � , �) =

� � � ; � immediately dominates

� � . . . � � ; A contains � ; B � � C iff B � contains � , 1 � � � � �

and:

1. I
�
�
� � =

� �
A � B � . . . B � , �

, � �
 there are expressions � , � � in T � such that A
� �

(�), B � �
�

(� �), 1 � � � � : � � �
� ; � immediately dominates � � . . . � � ; A

contains � �

2. I
�

��� �
� � = I

�

�
� � �

� �
A � B � . . . B � , �

, � �
 there are expressions � , � � in T � such

that A � �
(�), B � �

�
(� �), 1 � � � � : Max � � � � d(� , �) =

� ��� ; � immediately

dominates � � . . . � � ; A contains � � � � �
S � � B � ,

�
, � �
 B � � �

([� :c] �) � .

Theorem 1 For all � , (0,
) � � � (� ,
), the recognizer will generate all items in

the sets I
�

� � � � and I
�

� � � � .

Proof. The proof is done by induction on � . (A) For the base case, � = (0,
),
we have to show that all the elements of set I

�

� � ��� � � � � �
� � � are generated, and that all the

elements of set I
�

� � ��� � � � � �
� � � are generated.

197

First, we will show, by induction on
�

, that the contents of all sets I
�

�
� � �
� � � will be

generated, 0 � � � � � �
� � � . (1a) In the base case, the elements of I

�

�
� � �
� � � =

�
S � � B � ,

�

B � � , (0,
) �
 B � � �
([� :c] �) � . are provided by the axioms of the deductive system.

(1b) For the induction step,
�

� 0, assume that the contents of the set I
�

� � �
� � �
� � � have

been generated. We have to show that all elements of the set I
�

�
� � �
� � � = I

�

� � �
� � �
� � � � � �

A
� B � . . . B � C, (0,
) �
 there are expressions � , � � in T such that A � �

(�), B � �
�

(� �),
1 � � � � : d(S � , �) =

�
; � immediately dominates � � . . . � � ; A contains (0,
); B � � C

iff (0,
) contained in B � , 1 � � � � � will be generated. Pick an arbitrary item � =
�

A
� B � . . . B � , C, (0,
) � from the set I

�

�
� � �
� � � and assume, to obtain the interesting case, �

�� I
�

� � �
� � �
� � � . According to the definition of set I

�

�
� � �
� � � , there is an expression � in T such

that A � �
(�), for which d(� (T), �) =

�
. Also, subitem A contains (0,
). Since d(S � ,

�) =
�

� 0, there must be a node
�

in T � which immediately dominates expression � .

Either
�

is another expression � � , or
�

is the root node S � . In either case, d(S � , �) =
� � � . Assume the immediate daughters of

�
in T � are � � � . . . � �� , and suppose that � =

� �� , 1 � � � . In case
�

= � � , let A � , B � � be arbitrary subitems such that A � � �
(� �),

B �� �
�

(� ��), 1 � � � � , �
�� , and B �� = A. Since expression � � immediately dominates

expression � in a complete derivation tree and subitem A � �
(�) contains position

(0,
), subitem A � � �
(� �) must also contain position (0,
). Then, by the induction

hypothesis, the item � � =
�

A � � B � � . . . B �� , C � , (0,
) � � I
�

� � �
� � �
� � � will have been

generated. Since B �� = A and A contains position (0,
), B �� = A � C � . Since there are

no positions to the left of (0,
), position (0,
) will be left-most in B �� = A. Hence, one

of the Predict rules – Unmerge-1, Unmerge-2, Unmerge-3, Unmove-1, or Unmove-2

– will apply to � � , producing, among other items, item � . This claim is verified by the

proof of completeness for the top-down recognizer that was provided in section 5.6.3

in chapter 5, because subitem A and the sequence of subitems B � , . . . B � in a rewrite

rule A � B � , . . . B � are in fact the antecedents and the consequents of the rules of

198

inference of the top-down recognizer. For the case that
�

= S � , a similar argument can

be constructed, involving item � � =
�

S � � A,
�

A � , (0,
) � � I
�

�
� � �
� � � . Since � was

arbitrary and the rules of inference of the top-down recognizer are complete, all items

in the set I
�

�
� � �
� � � will be generated.

Now we will show, again by induction on
�
, that the contents of all sets I

�

�
� � �
� � � will

be generated, 0 � � � � � �
� � � . (2a) The base case concerns the generation of the items

in the set I
�

�
� � �
� � � =

� �
A � B � . . . B � , �

, (0,
) �
 there are expressions � , � � in T such

that A � �
(�), B � �

�
(� �), 1 � � � � : � � � � �

� � � ; � immediately dominates � � . . . � � ;
A contains � � . Pick an arbitrary item � =

�
A � B � . . . B � , �

, (0,
) � from this set.

Expression �
�� S � , for S � �� � � �

� � � . Since � � � � �
� � � , d(S � , �) � � � �

� � � . Hence, as shown

in (1a) and (1b) above, the item � � =
�

A � B � . . . B � , C, (0,
) � � I
�

� � ��� � � � � �
� � � , has been

generated, B � � C if, and only if, position (0,
) is contained in B � , 1 � � � � . Since

expression � is an element of
� � �

� � � , any expression � � either is a simple expression,

or subitem B � does not contain position (0,
), 1 � � � � . Hence, arbitrary B
� � C, 1

�! "� � , is a simple subitem containing (0,
). Since T is a complete derivation tree,

expression � � is lexical. Since B
�

is arbitrary, there is a corresponding lexical item for

any simple subitem in C. Consequently, the rule of inference Up will apply and the

result will be item � . Since � is arbitrary, all elements of I
�

�
� � �
� � � will be generated.

(2b) The inductive step involves showing that all elements of set I
�

�
� � �
� � � will be

generated,
�

� 0, assuming that the contents of the set I
�

� � �
� � �
� � � have been generated.

Pick an arbitrary item � =
�

A � B � . . . B � , �
, (0,
) � from the set I

�

�
� � �
� � � =

�

� � �
� � �
� � � �� �

A � B � . . . B � , �
, (0,
) �
 there are expressions � , � � in T � such that A � �

(�),

B � �
�

(� �), 1 � � � � : Max � � � � ��� � � d(� , �) =
�
; � immediately dominates � � . . . � � ; A

contains (0,
) � � � �
S � � B � ,

�
, (0,
) �
 B � � �

([� :c] �) � which is not an element

of set I
�

� � �
� � �
� � � . Assume first A

�� S � . Since Max � � � � ��� � � d(� , �) =
�

� 0, d(S � , �) �
� � �

� � � .
Hence, by (1a) and (1b), there is an item � � =

�
A � B � . . . B � , C, (0,
) � � I

�

� � ��� � � � � �
� � � ,

199

where B � � C if, and only if, (0,
) contained in B � , 1 � � � � . Assume, without

loss of generality, that � = 2, and that B � is a simple subitem in C and B � a complex

subitem in C. Then expression � � is simple. Since it occurs in a complete derivation

tree, it must be a lexical expression. For expression � � , being immediately dominated

by expression � , Max � � � � ��� � � d(� , �) =
� � � . But then, by the induction hypothesis, an

item
�

B � � D � . . . D � ,
�
, (0,
) � � I

�

� � �
� � �
� � � has been generated. Thus all conditions

for the rule Up to apply to item � � are met. The result will be item � . For A = S � , the

argument unfolds analogously. Since � is arbitrary in set I
�

�
� � �
� � � , all items of this set

will be generated. This concludes the base step of the proof of theorem 1.

(B) For the induction step, assume that the elements of sets I
�

� � �
�

and I
�

� � �
�

have been

generated, (0,
) � � � � � � � (
�
) � (� ,
). We have to show that the elements of sets

I
�

� � � � and I
�

� � � � will be generated.

We will first show, by induction on , that the contents of all sets I
��
�

� will be gen-

erated, 0 � � � � . (3a) To satisfy the base case, the recognizer has to generate the

elements of set I
�

�
�

� =
� �

S � � B � ,
�

B � � , � �
 B � � �
([� :c] �) � . Let � =

�
S � � B � ,

�
B � � , � � be an arbitrary element drawn from this set. From the induction hypothesis

we know the item � � =
�

S � � B � ,
�
, � � � � � � � � � I

�

� � ����� � � � �
�
� � � � � � has been generated.

Since � � � � � � � � (� ,
), the rule Next will apply to item � � to produce item � . Since �

was picked arbitrarily from set I
�

�
�

� , all elements of this set will be generated.

(3b) For the induction step, assume that the elements of set I
��

� �
�

� have been gen-

erated for arbitrary , 1 � �� � � . To show: all elements of set I
��
�

� = I
��

� �
�

� �
� �

A
� B � . . . B � C,

� �
 there are expressions � , � � in T such that A � �
(�), B � �

�
(� �),

1 � � � � : d(S � , �) = ; � immediately dominates � � . . . � � ; A contains
�
; B � � C iff

�
contained in B � , 1 � � � � � will be generated. Let item � =

�
A � B � . . . B � C,

� � be an arbitrary item in this set such that �
�� I

��
� �
�

� . Since d(S � , �) = � 0, there

must be a node
�

in T � which immediately dominates expression � . Either
�

is another

200

expression � � , or
�

is the root node S � . In either case, d(A � , �) = � � . Assume the

immediate daughters of
�

in T � are � � � . . . � �� , and suppose that � = � � � , 1 � � � � . In case
�

= � � , let A � , B �� be arbitrary subitems such that A � � �
(� �), B �� �

�
(� ��), 1 � � � � , �

��

 , and B � � = A. Since expression � � immediately dominates expression � in a complete

derivation tree and subitem A � �
(�) contains position

�
, subitem A � �

(� �) must also

contain position
�
. Then, by the induction hypothesis, the item � � =

�
A � � B � � . . . B �� ,

C � , � , � � I
��

� �
�

� will have been generated. Since B � � = A and A contains position
�

, B � � =

A � C � . If position
�

is left-most in B � � , then one of the Predict rules will apply. Among

the results will be item � , as was shown in (1b). If
�

is not the left-most position in B � � ,
then let (� , �) be the right-most position to the left of

�
contained in the position vectors

of B � � . Obviously, (� , �) �
�
. Hence, by the induction hypothesis, the item � � � =

�
A �

B � . . . B � , �
, (� , �) � � I

�

� � � � � � � �
�
� � � has been generated. Rule Down will apply to items � �

and � � � and produce item � . For the case that expression � is immediately dominated by

node S � , a similar argument can be constructed, involving items � =
�

S � � A,
�

A � , �
� � I

�

�
�

� and � � � =
�

A � B � . . . B � , �
, (� , �) � � I

�

� � � � � � � �
�
� � � .19 Item � was picked at random;

hence all items of set I
��
�

� will be generated.

Using induction on , we will now show that all elements of the sets I
��
�

� will be

generated, 0 � � � � . (4a) In he base case, the elements to be generated are the

elements of set I
�

�
�

� =
� �

A � B � . . . B � , �
,
� �
 there are expressions � , � � in T � such

that A � �
(�), B � �

�
(� �), 1 � � � � : � � �

� ; � immediately dominates � � . . . � � ; A

contains
� � . This case is analogous to (2a).

(4b) For the induction step, we have to show that all items of set I
��
�

� will be gen-

erated, given the elements of set I
��

� �
�

� , for arbitrary , 0 � � � � . The argument is

analogous to the argument in (2b). This concludes the inductive step of the proof of

theorem 1 and so completes the proof of this theorem. �
� �

If expression
�

is immediately dominated by S � , then
�

= [:c] � . Since (0, �) � �
,
�

will never be
left-most in any subitem A � �

(
�

).

201

Completeness now follows as a corollary from theorem 1, because, by definition

of I
�

� � � � � � � � � � � � , if � � L(G),
 ��
 = � , then a goal item
�

S � � [(0, �): � � c],
�
, (� ,
) � is an

element of set I
�

� � � � � � � � � � � � .

6.5.3 Complexity

The subitems of the Earley-style recognizer are in fact the items of the bottom-up

recognizer presented in chapter 4 of this dissertation. Hence, according to the argument

in section 4.7, for a given Minimalist Grammar G = (V, Lex, Cat,
�

) and input string

of length � , the number of different left-hand sides that can appear in a rewrite rule

A � B � . . . B � of an item
�

A � B � . . . B � , C, � � is bounded by
� � � � ��� � � , where

�

=
 licensees
 . For any rewrite rule, the sequence B � . . . B � contains only one element

whose value depends on � , namely the value of � when the position vector (� , �) of

subitem A is split by the rules of inference Unmerge-1, Unmerge-3, and Unmove-1,

cf. section 6.3.5. Therefore, the number of different rewrite rules falls within the bound
� � � � ��� � � . Because of the inclusion of the pointer � in an item, whose value depends

on � , the number of possible items is
� � � � ��� � � . Since for an item

�
A � B � . . . B � , C,

� � , the contents of C are a subset of B � . . . B � , set C does not add to the order of the

bound on the possible number of items.

Regarding the time complexity of the recognizer, the costliest step is applying the

rule of inference Down, since this involves searching through the entire chart. This will

amount to a time cost of
� � � � ��� � � per item on the agenda. Following the argument in

section 4.7, since the number of items that will be put on the agenda while recognizing

the input string is
� � � � ��� � � , the overall time complexity of the recognizer is

� � �
�

��� � � .

202

6.6 Conclusions

In this chapter we have defined an Earley-style recognizer for languages generated by

Minimalist Grammars which is applicable to all Minimalist Grammars, including the

class of recursive Minimalist Grammars for which the top-down recognizer defined in

the previous chapter will fail to halt. The soundness and completeness proofs provided

in this chapter not only prove the correctness of the Earley-style recognizer, but also

expand our understanding of the formalism of Minimalist Grammars and bring us

closer to the definition of an automaton that will simulate top-down derivations of a

Minimalist Grammar. The number of items generated by the recognizer can be brought

down by adding look-ahead to the Predict rules of inference, following the scheme of

section 5.4. Complexity can be further improved if the conceptual simplifications of

Earley’s original algorithm for Context-Free Grammars proposed by [GHR80] can be

incorporated in the recognizer presented in this chapter.

203

CHAPTER 7

Conclusions

The ultimate goal of my dissertation research is to further the understanding of the

syntactic aspects of the operation of the human sentence processor, by means of spec-

ifying formal parsing models for natural language. In the psycholinguistic literature

many properties are ascribed to the human sentence processor. However, since psy-

cholinguistic proposals about human sentence processing are often presented in in-

formal terms, it is not obvious that parsers with these properties are reasonable from

a computational point of view. Having read the preceding chapters, we have arrived

at an understanding of some formal parsing models for Minimalist Grammars, a for-

malism which lends itself very well to expressing current proposals about the kind of

structures found in natural language. We thus find ourselves in an excellent position

to rigorously explore the computational consequences of psycholinguistic theories of

human sentence processing. In this section, we will briefly indicate some directions

for these explorations, as well as touch upon some issues of a more formal nature that

remain for future research.

7.1 Bottom-Up vs. Top-Down

Pure bottom-up and top-down parsers are generally rejected as adequate models for hu-

man sentence processing because they require unbounded memory for right-branching

and left-branching structures respectively, while the human sentence processor, which

204

is equipped with finite memory, seems to have no particular problems with structures

of this kind (e.g. [Cro99]). For example, while recognizing the left-branching struc-

ture in 1 using a grammar that generates this tree, the top-down recognizer informally

introduced in section 6.1 of chapter 6 will produce the sequence FGEC. It is easy to

see that if there is no bound on the depth of left-branching trees – and there is no prin-

cipled bound – then there is no bound on the length of the sequences produced by the

top-down recognizer.

1. A

B

D

F

f

G

g

E

e

C

c

A bottom-up recognizer for Context-Free Languages, like a top-down one, also

manipulates sequences of terminal and non-terminal symbols, but these sequences are

not predictions about the structure of a sentence, but rather representations of partial

structures discovered so far. A basic bottom-up recognizer has two operations: shift,

which appends a word from the sentence to the right of the sequence, and reduce,

which replaces the terminal and non-terminal symbols matching the right-hand side

of some grammar rule by the symbol of its left-hand side. The sequence of terminal

and non-terminal symbols that is replaced must be a postfix of the entire sequence.

The recognizer starts with the empty sequence, and a sentence has been recognized

if all the words of the sentence have been shifted and the sequence has been reduced

to the start symbol of the grammar (see for example [ASU86] and [SS88] for formal

descriptions of bottom-up recognizers for Context-Free Languages). For example, for

the Context-Free Grammar with start symbol A and the rules given below, recognition

of the sentence cegf is represented by the sequences
 , c, C, Ce, CE, CEg, CEG, CEGf,

205

CEGF, CED, CB, A.

2. A � CB

3. B � ED

4. D � GF

5. C � c

6. E � e

7. F � f

8. G � g

The right-branching tree of the sentence cegf is given in 9.

9. A

C

c

B

E

e

D

G

g

F

f

Since the sequence CEGF is among the sequences produced for the sentence cegf

and there is no general bound on the depth of right-branching trees, it follows from

the example above that there is no principled bound on the length of the sequences

produced by a bottom-up recognizer.

Bottom-up recognizers have the further problem that they produce unconnected

structures, as each of the symbols in a sequence in fact stands for a tree rooted in

that symbol. This seems to go against the incremental nature of the human sentence

206

processor, which is assumed to maintain one or more structures, each of which in-

cludes all the words of the sentence heard so far (e.g. [Sta94], [PCC00]). Top-down

recognizers are incremental in this sense, because the symbols of a sequence posited

by a top-down recognizer are in fact the leaves of one, connected, but incomplete tree

rooted in the start symbol. However, a disadvantage of the top-down strategy is that

the recognizer starts predicting structures without first listening to the actual words of

the sentence. This property of top-down recognizers leads to problems such as non-

terminating computations for left-recursive grammars as explained in section 6.1 in

chapter 6.

Because of these various drawbacks of the bottom-up and top-down mechanisms,

the human sentence processor is assumed to employ a mixed strategy, using top-

down predictions and bottom-up confirmations, as in a left-corner parser, for example

(e.g. [Cro99]). A left-corner parser does not require unbounded memory for right-

branching and left-branching structures, but it does for center-embedded structures,

correctly predicting that these structure are problematic for the human sentence pro-

cessor. A center-embedded structure essentially is a structure that is alternately right-

branching and left-branching, like the structure in 10, for example.

10. A

C

c

B

D

G

g

F

f

E

e

The differences between the top-down, bottom-up and left-corner strategies are

succinctly illustrated by the following description. Given a context-free rule A �

BC, a top-down recognizer, having predicted a constituent of category A, will predict

that this constituent consists of a constituent of category B followed by a constituent of

207

category C. A bottom-up recognizer, having found a constituent of category B followed

by a constituent of category C, will conclude that it has found a constituent of category

A. A left-corner recognizer, having found a constituent of category B, will predict a

constituent of category C and conclude that it has found a constituent of category A

once the predicted constituent of category C has been found. Category B is the left-

corner of the rule A � BC.

In the sequences produced by a left-corner parser, we will write A for a constituent

of category that has been found, and -A for a constituent of category A that has been

predicted. The parser has a shift rule identical to the shift rule of the bottom-up parser.

A sequence containing B is rewritten by replacing B with A-C, provided the grammar

contains a rule A � BC. As in the bottom-up parser, only postfixes of a sequence

can be rewritten, the initial sequence is empty, and a sentence has been recognized

successfully when all words of the sentence have been shifted and the sequence has

been reduced to the start symbol of the grammar. When a rewrite operation results in

sequence in which a predicted category -A is followed by a discovered category A,

these symbols can cancel one another.

For example, assume that the tree in 10 is licensed by a Context-Free Grammar

with the following rules:

11. A � CB

12. B � DE

13. D � GF

14. C � c

15. E � e

16. F � f

208

17. G � g

Then the sentence cgfe is parsed as follows:
 , c, C, A-B, A-Bg, A-BG, A-BD-

F, A-BD-Ff, A-BD, A-E, A-Ee, A. This succession contains the sequence A-BD-F,

which corresponds to the spine of the tree in 10. Since there is no principled bound

on the depth of center-bedded trees, it follows that there is no bound on the length

of the sequences produced by a left-corner recognizer for a center-embedded struc-

ture.1 � 2 (More thorough descriptions of left-corner parsing can be found in [RL70] and

[Ned83], for example; [Sta94] contains a psycholinguistically oriented discussion of

left-corner parsing.)

The positive and negative properties of the parsing strategies outlined above for

Context-Free Grammars carry over to recognizers for Minimalist Grammars on the

understanding that the notions left-branching, right-branching, center-embedding and

left-corner apply to derivation trees rather than to the surface trees generated by Min-

imalist Grammars.3 Since the leaves of minimalist derivation trees do not necessarily

correspond to the order of the words in a sentence, the geometry of a derivation tree

per se does not always coincide with the geometry of a derivation tree for the purposes

of recognition. For example, the derivation tree given in 18 below, repeated from in

section 6.1 in chapter 6, is a left-branching tree for the purposes of left-to-right recog-

nition, even though geometrically it is a right-branching tree.
�

Note that the argument for the unboundedness for top-down parsers and bottom-up parsers involves
the non-branching nodes of the trees in 1 and 9, whereas the argument for left-corner parsers involves
the branching nodes in the tree in 10.

�

Note also that the left-corner parser does not build connected structures.�
The bottom-up, top-down, and left-corner recognizers for Context-Free Languages discussed above

build only one derivation at a time for a sentence, whereas the recognizers for Minimalist Languages
introduced in the previous chapters use a chart which allows them to pursue all derivations of a sentence
in parallel, but for the purposes of the current discussion this difference is just a technicality, because
there is a very close correspondence between the rules of inference of the recognizers and the structure
building functions of Minimalist Grammars.

209

18. [������� :c] �

[� :+f c, ������� :-f] �

[� :=b +f c] � [������� :b -f] �

[� :+f b -f, ����� :-f] �

[� :=b +f b -f] � [����� :b -f] �

[� :+f b -f, ��� :-f] �

[� :=b +f b -f] � [��� :b -f] �

[� :+f b -f, � :-f] �

[� :=b +f b -f] � [� :b -f] �

For the recognizer, the tree in 18 is left-branching because the lexical items for the

left-most words of the sentence abbbb are deepest in the tree. For the sisters [� :=b
+f b -f] � and [� � :b -f] � in the tree in 18, for example, the recognizer considers

expression [��� :b -f] � to be to the left of expression [� :=b +f b -f] � because the

string ��� of the former expression covers the non-empty words at positions 0 and 1 in

the sentence ���	� � and string � of the latter expression covers the non-empty word at

position 2 in this sentence.4

Working through a few examples, it appears that the geometry of a complete tree

generated by some Minimalist Grammar coincides with the geometry of its derivation

tree for the purposes of recognition. At this point it is unclear to me whether, if true,

this is a surprising fact or not. Perhaps Kracht’s method for connecting derivations
�
For the particular derivation tree in 18, it is possible to reorder sister nodes in such a way that

the order of the lexical items at the leaves corresponds to the order of the words in the sentence abbb.
However, it is not generally possible to rearrange a derivation tree in this way, cf. the derivation tree
given in 16 in section 5.2 of chapter 5.

210

trees and complete surface trees discussed in section 2.5 in chapter 2 will provide

some deeper understanding of this matter.

7.2 Parallel vs. Serial

The recognizers for Minimalist Grammars described in the preceding chapters use

charts to store intermediate results. When for some grammar G and a well-formed

sentence � the recognizer has computed the closure of the axioms under the rules of

inference, the chart will contain representations of all possible derivations of sentence

� according to grammar G. In fact, the chart is a data structure whose finite contents

potentially encode an infinite number of derivation trees. This seems too powerful a

feature from a psycholinguistical point of view, because it is generally believed that the

human sentence processor cannot handle an infinite number of trees. Moreover, a ded-

icated tree collecting procedure is needed to retrieve derivation trees from the chart.

This arrangement is also less appealing to psycholinguists, because the incremental

nature of the human sentence processor suggests that partial analyses of a sentence are

available immediately for further processing (e.g. [PCC00]). The chart-based recog-

nizers can be made to deliver trees immediately by interleaving the tree collecting pro-

cedure with the computation of the chart, effectively replacing the items in the chart

with the fragments of derivation trees they represent under the invariant.5 This will

turn the recognizers into parsers. Maintaining actual trees rather than items represent-

ing a possibly infinite number of trees, the parsers will need additional mechanisms

for determining how many, and, if not all, which analyses for a sentence to pursue in

parallel.

Full parallelism – keeping track of all possible analyses – is psycholinguistically

implausible, because due to the highly ambiguous nature of natural language, most
�

Doing this for the Earley-style recognizer would be a very interesting exercise!

211

sentences have very many derivations, and some are temporarily infinitely ambiguous.

Moreover, for certain grammatical sentences, the human sentence processor has no-

ticeable difficulties arriving at an analysis, or it may even fail to deliver an analysis at

all. Such garden path effects are unexpected if all analyses of a sentence were equally

available.

While full parallelism is not practical, pursuing a bounded number of analyses

in parallel is a possible strategy. Such a strategy has been proposed in [Gib91] and

[Gib98], for example. In this approach, the degree of parallelism of the human sen-

tence processor is determined by the complexity of possible analyses for the sentence

being processed. Analyses whose complexity exceeds the complexity of the simplest

analysis for the sentence so far by a certain threshold will be removed from considera-

tion. According to Gibson’s syntactic prediction locality theory, one of the factors con-

tributing to the complexity of a sentence is memory cost. While parsing the sentence

from left to right, the human sentence processor will predict what syntactic categories

are needed to complete the sentence in a grammatical way. Keeping these predictions

in memory is costly. Furthermore, the longer a prediction has to be kept in memory,

the more expensive it is. Gibson empirically supports his theory by applying it to a

wide range of sentences, but he does not provide a description of a parser that is ca-

pable of making the syntactic predictions that determine the complexity of a sentence.

It will be very interesting to see to what extent the findings in [Gib91] and [Gib98]

can be replicated by the top-down and Earley recognizers presented in the preceding

chapters.

Frazier (e.g. [Fra78], [FC96]) has proposed that the human sentence processor pur-

sues only one analysis at a time. When the processor is confronted with a choice con-

cerning how to incorporate the next word of the sentence into the grammatical structure

built so far, it will use the following principle to make a decision:

212

a. Minimal Attachment: attach incoming material into the phrase marker being

constructed using the fewest nodes consistent with the well-formedness rules of

the language.

If the principle of Minimal Attachment does not resolve the ambiguity, then the

principle of Late Closure is invoked to break the tie:

b. Late Closure: when possible, attach incoming material into the clause or phrase

currently being parsed.

Obviously, empirical verification of these principles depends greatly on assump-

tions about the proper syntactic structure of sentences and on assumptions regarding

the expanse of the structures that have already been built when new material is to be

attached.

The formalism of Minimalist Grammars will allow us to test the consequences of

the two principles mentioned above using current proposals about the syntactic struc-

ture of natural language. Furthermore, the intermediate trees produced by the parser

will tell us exactly how much structure exists at each point in the parsing process.

7.3 Probabilistic Minimalist Grammars

One way to make the recognizers presented in the previous chapters computationally

tractable is to use Probabilistic Minimalist Grammars. With a probabilistic grammar,

a recognizer can keep track of the probabilities of the various partial analyses built at

each point in the sentence and continue to work on the most promising ones and dis-

card the rest – see for example [Sto95] for an Earley parser for Context-Free Languages

computing probabilities of partial analyses and [Hal01] for an interesting psycholin-

guistic interpretation of these probabilities.

213

In a Probabilistic Context-Free Grammar (see for example [MS99]), each rewrite

rule of the grammar is associated with a probability. By the context-freeness of the

rewrite rules, each use of a rule in a derivation is an independent event. Hence, the

probability of a particular derivation of a sentence is the product of the probabilities of

the rules used in the derivation. Schabes ([Sch92]) and Resnik ([Res92]) present prob-

abilistic versions of Tree Adjoining Grammar. For these grammars, the independent

events in a derivation are the adjunction operations.

A Probabilistic Minimalist Grammar can be obtained by assigning probabilities to

instantiations of the structure building functions Merge-1, Merge-2, Merge-3, Move-1,

and Move-2 given in section 4.1 in chapter 4. Since the expressions of a Minimalist

Grammar are composed of various parts, there is some freedom in deciding what parts

of an expression the probability of an instantiation should be dependent on, or, to put

the same issue differently, what the independent events are that are denoted by the

instantiations of the structure building functions. This is an empirical issue. For ex-

ample, as reported in [MS99] (p. 418), the verb take is more likely to merge with an

object determiner phrase than the verb want in the Penn Tree Bank, suggesting that

the probabilities should be predicated on (parts of) the strings associated with the ex-

pressions involved in the instantiations of the structure building functions. However, it

is not clear to what extent interesting statistical generalizations about natural language

are captured by making the probabilities dependent on other information contained

in an expression, e.g. the identity of the chains in an expression other than the chain

representing the head of the expression.

7.4 Matrix Multiplication

Valiant ([Val75]) has shown that recognition of Context-Free Languages can be carried

out at least as fast matrix multiplication. There are algorithms for matrix multiplication

214

that run in sub-cubic time, which is better than the cubic time complexity of the CKY

and Earley methods for recognizing Context-Free Languages.

Nakanishi et al. ([NTS00]) follow a strategy inspired by Valiant’s to improve upon

the time complexity of the recognition problem for Multiple-Context Free Grammars.

Tree Adjoining Grammars are another grammar formalism more powerful than Context-

Free Grammars for which a connection with matrix multiplication has been made,

e.g. in [Sat94] and [RY95]. Satta’s approach provides a way to construct a solution

for the matrix multiplication problem given a solution for the recognition problem for

Tree Adjoining Languages. Taking into account the attention that has been devoted

to efficient solutions to the matrix multiplication problem, the complexity of the best

solution to this problem can be regarded as a lower bound for the best solution to the

recognition problem for Tree Adjoining Languages: it will be very hard to improve the

run-time complexity of a recognizer for Tree Adjoining Languages if the complexity

of its corresponding solution to the matrix multiplication problem is close to the best

solution.

In order to assess how easy it will be to improve upon the run-time complexity of

the recognizers for Minimalist Languages presented in this dissertation, it would be

very interesting to reduce the recognition problem for Minimalist Languages to the

problem of matrix multiplication.

215

REFERENCES

[AET96] W. Abraham, S.D. Epstein, H. Thráinsson, and C.J.-W. Zwart. Minimalist
Ideas: Syntactic Studies in the Minimalist Framework. John Benjamins
Publishing Company, 1996.

[AGV00] M.A. Alonso, J. Graña, M. Vilares, and E. de la Clergerie. “New Tabu-
lar Algorithms for LIG Parsing.” In Proceedings of the 6th International
Workshop on Parsing Technologies, IWPT 2000, 2000. Trento, Italy.

[Aho68] A.V. Aho. “Indexed Grammars.” Journal of the Association for Computing
Machinery, 15, 1968.

[Alb00] D.M. Albro. “Taking Primitive Optimality Theory Beyond The Finite
State.” In J. Eisner, L. Karttunen, and A. Thériault, editors, Finite State
Phonology: Proceedings of Fifth Workshop of the ACL Special Interest
Group in Computational Phonology, 2000.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[AU72] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Com-
piling, Vol. 1. Prentice Hall, 1972.

[BAT91] R.C. Berwick, S.P. Abney, and C. Tenny. Principle-Based Parsing: Com-
putation and Psycholinguistics. Kluwer Academic Publishers, 1991.

[Ber91] R.C. Berwick. “Principle-Based Parsing.” In P. Sells, S.M. Shieber, and
T. Wasow, editors, Foundational Issues in Natural Language Processing.
Kluwer Academic Publishers, 1991.

[Bev70] T.G. Bever. “The Cognitive Basis of Linguistic Structure.” In J. Morton,
editor, Cognitive Development of Language. John Wiley, New York, 1970.

[BF95] R.C. Berwick and S. Fong. “A Quarter Century of Computation with Trans-
formational Grammar.” In J. Cole, G.M. Green, and J.L. Morgan, editors,
Linguistics and Computation. Kluwer Academic Publishers, 1995.

[BKP82] J.W. Bresnan, R.M. Kaplan, P.S. Peters, and A. Zaenen. “Cross-Serial De-
pendencies in Dutch.” Linguistic Inquiry, 13, 1982.

[Bou96] P. Boullier. “Another Facet of LIG Parsing.” In Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics, 1996.

216

[Bou98] P. Boullier. “Proposal for a Natural Language Processing Syntactic Back-
bone.” Research Report N

�

3342, INRIA-Rocquencourt, France, 1998.

[Cho65] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge,
Massachusetts, 1965.

[Cho81] N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, the
Netherlands, 1981.

[Cho86] N. Chomsky. Knowledge of Language: Its Nature, Origin, and Use.
Praeger, 1986.

[Cho95] N. Chomsky. The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts, 1995.

[Cho00] N. Chomsky. “Minimalist Inquiries: the Framework.” In R. Martin,
D. Michaels, and J. Uriagereka, editors, Step by Step: Essays on Minimalist
Syntax in honor of Howard Lasnik. MIT Press, Cambridge, Massachusetts,
2000.

[Cho01] N. Chomsky. “Derivation by Phase.” In M. Kenstowicz, editor, Ken Hale:
A Life in Linguistics. MIT Press, Cambridge, Massachusetts, 2001.

[Cor99] T.L. Cornell. “Derivational and Representational Views of Minimalist
Transformational Grammars.” In A. Lecomte, F. Lamache, and G. Per-
rier, editors, Logical Aspects of Computational Linguistics (LACL ’97), vol-
ume 1582 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin,
Heidelberg, Germany, 1999.

[Cro99] M.W. Crocker. “Mechanisms for Sentence Processing.” In S. Garrod and
M. Pickering, editors, Language Processing. Taylor and Francis, 1999.

[Ear68] J.C. Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1968.

[Ear70] J.C. Earley. “An Efficient Context-Free Parsing Algorithm.” Communica-
tions of the Association for Computing Machinery, 13(2), 1970.

[EH99] S.D. Epstein and N. Hornstein. Working Minimalism. MIT Press, Cam-
bridge, Massachusetts, 1999.

[FC96] L. Frazier and C. Clifton, Jr. Construal. MIT Press, Cambridge, Mas-
sachusetts, 1996.

[Fra78] L. Frazier. On Comprehending Sentences: Syntactic Parsing Strategies.
PhD thesis, University of Connecticut, Storrs, Connecticut, 1978.

217

[Gaz88] G. Gazdar. “Applicability of Indexed Grammars to Natural Languages.” In
U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic
Theories. Reidel Publishing Company, 1988.

[GHR80] S.L. Graham, M.A. Harrison, and W.L. Ruzzo. “An Improved Context-Free
Recognizer.” ACM Transactions on Programming Languages and Systems,
2(3), 1980.

[Gib91] E. Gibson. A Computational Theory of Human Linguistic Processing:
Memory Limitations and Processing Breakdown. PhD thesis, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, 1991.

[Gib98] E. Gibson. “Linguistic Complexity: Locality of Syntactic Dependencies.”
Cognition, 1(68), 1998.

[GO96] E. Groat and J. O’Neil. “Spell-Out at the LF Interface.” In W. Abraham,
S.D. Epstein, H. Thráinsson, and C.J.-W. Zwart, editors, Minimalist Ideas:
Syntactic Studies in the Minimalist Framework. John Benjamins Publishing
Company, 1996.

[GPS85] G. Gazdar, E. Klein G. Pullum, and I. Sag. Generalized Phrase Structure
Grammar. Harvard University Press, 1985.

[Gri86] R. Grishman. Computational Linguistics: an Introduction. Studies in Nat-
ural Language Processing. Cambridge University Press, Cambridge, United
Kingdom, 1986.

[Hal01] J. Hale. “A Probabilistic Earley Parser as a Psycholinguistic Model.” In
Proceedings of the 2nd Conference of the North American Chapter of the
Association for Computational Linguistics, NAACL-2001, 2001. Carnegie
Mellon University, Pittsburgh, Pennsylvania.

[Har00] H. Harkema. “A Recognizer for Minimalist Grammars.” In Proceedings of
the 6th International Workshop on Parsing Technologies, IWPT 2000, 2000.
Trento, Italy.

[Har01] H. Harkema. “A Characterization of Minimalist Grammars.” In
P. de Groote, G.F. Morrill, and C. Retoré, editors, Logical Aspects of Com-
putational Linguistics (LACL 2001), volume 2099 of Lecture Notes in Arti-
ficial Intelligence. Springer Verlag, Berlin, Heidelberg, Germany, 2001.

[JLT75] A.K. Joshi, L.S. Levy, and M. Takahashi. “Tree Adjunct Grammars.” Jour-
nal of Computer and System Sciences, 10(1), 1975.

218

[JM00] D. Jurafski and J.H. Martin. Speech and Language Processing: an Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, 2000.

[Jos85] A.K. Joshi. “Tree Adjoining Grammars: How Much Context-Sensitivity is
Required to Provide Reasonable Structural Descriptions?” In D.R. Dowty,
L. Karttunen, and A.M. Zwicky, editors, Natural Language Parsing: Psy-
chological, Computational, and Theoretical Perspectives. Cambridge Uni-
versity Press, 1985.

[Jos87] A.K. Joshi. “An Introduction to Tree Adjoining Grammars.” In
A. Manaster-Ramer, editor, Mathematics of Language. John Benjamins,
1987.

[JS97] A.K. Joshi and Y. Schabes. “Tree-Adjoining Grammars.” In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, Vol. 3: Beyond
Words. Springer Verlag, Berlin, Heidelberg, Germany, 1997.

[JVW91] A.K. Joshi, K. Vijay-Shanker, and D. Weir. “The Convergence of Mildly
Context-Sensitive Grammar Formalisms.” In P. Sells, S.M. Shieber, and
T. Wasow, editors, Foundational Issues in Natural Language Processing.
Kluwer Academic Publishers, 1991.

[Kay94] R. Kayne. The Antisymmetry of Syntax. MIT Press, Cambridge, Mas-
sachusetts, 1994.

[Kay98] R. Kayne. “Overt vs. Covert Movement.” Syntax, 1(2), 1998.

[Kin83] M. King. “Transformational Parsing.” In M. King, editor, Parsing Natural
Language. Academic Press, 1983.

[KK01] G. Kobele and J. Kandybowicz. “A New Normal Form Theorem for Min-
imalist Grammars.” Unpublished manuscript. Department of Linguistics,
UCLA, Los Angeles, California, 2001.

[Kra01] M. Kracht. “Syntax in Chains.” Linguistics and Philosophy, 24, 2001.

[KS96] E.L. Keenan and E.P. Stabler. “Abstract Syntax.” In A.M. DiSciullo, editor,
Configurations: Essays on Structure and Interpretation. Cascadilla Press,
1996.

[KS00] H. Koopman and A. Szabolcsi. Verbal Complexes. MIT Press, Cambridge,
Massachusetts, 2000.

219

[LR99] A. Lecomte and C. Retoré. “Towards a Minimal Logic for Minimalist
Grammars.” In Proceedings of Formal Grammar 1999, 1999. Utrecht, the
Netherlands.

[Mah00] A. Mahajan. “Word Order and Remnant Movement: Eliminating Head
Movement.” In 23 � � Generative Linguistics in the Old World Colloquium,
GLOW 2000, 2000.

[Mar80] M.P. Marcus. A Theory of Syntactic Recognition for Natural Language.
MIT Press, Cambridge, Massachusetts, 1980.

[Mer95] P. Merlo. “Modularity and Information Content Classes in Principle-Based
Parsing.” Computational Linguistics, 21(4), 1995.

[Mic98] J. Michaelis. “Derivational Minimalism is Mildly Context-Sensitive.” In
M. Moortgat, editor, Logical Aspects of Computational Linguistics, (LACL
’98), volume 2014 of Lecture Notes in Artificial Intelligence. Springer Ver-
lag, Berlin, Heidelberg, Germany, 1998.

[Mic01a] J. Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis,
Potsdam University, Germany, 2001.

[Mic01b] J. Michaelis. “Transforming Linear Context-Free Rewriting Systems into
Minimalist Grammars.” In P. de Groote, G.F. Morrill, and C. Retoré, edi-
tors, Logical Aspects of Computational Linguistics (LACL 2001), volume
2099 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin,
Heidelberg, Germany, 2001.

[Mor00] F. Morawietz. “Chart Parsing and Constraint Programming.” In Proceed-
ings of COLING-2000, 2000. Saarbrücken, Germany.

[MS97] A. Mateescu and A. Salomaa. “Aspects of Classical Language Theory.” In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
Vol. 1: Word, Language, Grammar. Springer Verlag, Berlin, Heidelberg,
Germany, 1997.

[MS99] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, 1999.

[Ned83] M.-J. Nederhof. “Generalized Left-Corner Parsing.” In Proceedings of the
6th Meeting of the European Association for Computational Linguistics,
1983. Utrecht, the Netherlands.

[Ned99] M.-J. Nederhof. “The Complexity of the Correct-Prefix Property for TAGs.”
Computational Linguistics, 25(3), 1999.

220

[Noz86] R. Nozohoor-Farshi. LRRL(k) Grammars: A left to Right Parsing Technique
with Reduced Lookaheads. PhD thesis, University of Alberta, Canada,
1986.

[NTS00] R. Nakanishi, K. Takada, and H. Seki. “An Efficient Recognition Algorithm
for Multiple Context-Free Languages.” Proceedings of the 5th Meeting on
the Mathematics of Language, 2000. Saarbrücken, Germany.

[PCC00] M.J. Pickering, C. Clifton, Jr., and M.W. Crocker. “Architectures and Mech-
anisms in Sentence Comprehension.” In M.W. Crocker, M.J. Pickering, and
C. Clifton, Jr., editors, Architectures and Mechanisms for Language Pro-
cessing. Cambridge University Press, 2000.

[Pol84] C.J. Pollard. Generalized Phrase Structure Grammars, Head Grammars,
and Natural Language. PhD thesis, Stanford University, Stanford, Califor-
nia, 1984.

[PR73] P.S. Peters and R.W. Ritchie. “On the Generative Power of Transforma-
tional Grammars.” Information Sciences, 10, 1973.

[PW83] F.C.N. Pereira and D.H.D. Warren. “Parsing as Deduction.” In Proceedings
of the 22nd Annual Meeting of the Association for Computational Linguis-
tics, 1983.

[Res92] P. Resnik. “Probabilistic Tree-Adjoining Grammar as a Framework for
Statistical Natural Language Processing.” In Proceedings of COLING 14,
1992. Nantes, France.

[RL70] D.J. Rosenkrantz and P. M. Lewis. “Deterministic Left-Corner Parsing.” In
IEEE Conference Record of the 11th Annual Symposium on Switching and
Automata Theory, 1970.

[Rog98] J. Rogers. A Descriptive Approach to Language-Theoretic Complexity.
CSLI Publications, Stanford, California, 1998.

[Ros67] J.R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, Cam-
bridge, Massachusetts, 1967.

[RY95] S. Rajasekaran and S. Yooseph. “TAL Recognition in
� � � � � � � � Time.” In

Proceedings of the 33rd Annual Meeting of the Association for Computa-
tional Linguistics, 1995. Cambridge, Massachusetts.

[Sam83] G.R. Sampson. “Deterministic Parsing.” In M. King, editor, Parsing Natu-
ral Language. Academic Press, 1983.

221

[Sat94] G. Satta. “Tree-Adjoining Grammar Parsing and Matrix Multiplication.”
Computational Linguistics, 20(2), 1994.

[Sch92] Y. Schabes. “Stochastic Lexicalized Tree-Adjoining Grammars.” In Pro-
ceedings of COLING 14, 1992. Nantes, France.

[SHF91] H. Seki, T. Matsumura H., M. Fujii, and T. Kasami. “On Multiple Context-
Free Grammars.” Theoretical Computer Science, 88, 1991.

[Shi85] S.M. Shieber. “Evidence against the Context-Freeness of Natural Lan-
guage.” Linguistics and Philosophy, 8, 1985.

[Sik97] K. Sikkel. Parsing Schemata: A Framework for Specification and Analy-
sis of Parsing Algorithms. Springer Verlag, Berlin, Heidelberg, Germany,
1997.

[SK00] E.P. Stabler and E.L. Keenan. “Structural Similarity.” In A. Nijholt,
G. Scollo, and D. Heylen, editors, Algebraic Methods in Language Pro-
cessing, AMiLP 2000. University of Iowa, 2000.

[SN97] K. Sikkel and A. Nijholt. “Parsing of Context-Free Languages.” In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
Vol. 2: Linear Modeling. Springer Verlag, Berlin, Heidelberg, Germany,
1997.

[SS88] S. Sippu and E. Soisalon-Soininen. Parsing Theory, Vol. I: Languages and
Parsing. Springer Verlag, Berlin, Heidelberg, Germany, 1988.

[SS94] Y. Schabes and S.M. Shieber. “Another Concept of Tree-Adjoining Deriva-
tion.” Computational Linguistics, 20(1), 1994.

[SSP95] S.M. Shieber, Y. Schabes, and F.C.N. Pereira. “Principles and Implementa-
tion of Deductive Parsing.” Journal of Logic Programming, 24, 1995.

[Sta92] E.P. Stabler. The Logical Approach to Syntax: Foundations, Specifications,
and Implementation of Theories of Government and Binding. MIT Press,
Cambridge, Massachusetts, 1992.

[Sta94] E.P. Stabler. “The Finite Connectivity of Linguistic Structure.” In
C. Clifton, Jr., L. Frazier, and K. Rayner, editors, Perspectives on Sentence
Processing. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1994.

[Sta97] E.P. Stabler. “Derivational Minimalism.” In C. Retoré, editor, Logical As-
pects of Computational Linguistics, volume 1328 of Lecture Notes in Artifi-
cial Intelligence. Springer Verlag, Berlin, Heidelberg, Germany, 1997.

222

[Sta98] E.P. Stabler. “Acquiring Languages with Movement.” Syntax, 1(1), 1998.

[Sta99] E.P. Stabler. “Remnant Movement and Complexity.” In G. Bouma, E. Hin-
richs, G.-J. Kruijff, and D. Oehrle, editors, Constraints and Resources in
Natural Language Syntax and Semantics. CSLI Publications, Stanford, Cal-
ifornia, 1999.

[Sta01a] E.P. Stabler. “Minimalist Grammars and Recognition.” In Christian Rohrer,
Antje Rossdeutscher, and Hans Kamp, editors, Linguistic Form and Its
Computation. CSLI Publications, Stanford, California, 2001. (Presented
at the SFB340 workshop at Bad Teinach, 1999).

[Sta01b] E.P. Stabler. “Recognizing Head Movement.” In P. de Groote, G.F. Morrill,
and C. Retoré, editors, Logical Aspects of Computational Linguistics, vol-
ume 2099 of Lecture Notes in Artificial Intelligence (LACL 2001). Springer
Verlag, Berlin, Heidelberg, Germany, 2001.

[Sto95] A. Stolcke. “An Efficient Probabilistic Context-Free Parsing Algorithm that
Computes Prefix Probabilities.” Computational Linguistics, 21(2), 1995.

[Val75] L.G. Valiant. “General Context-Free Recognition in Less Than Cubic
Time.” Journal of Computer and System Sciences, 19(4), 1975.

[Vij87] K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, Pennsylvania, 1987.

[VW91] K. Vijay-Shanker and D.J. Weir. “Polynomial Parsing of Extensions of
Context-Free Grammars.” In M. Tomita, editor, Current Issues in Parsing
Technology. Kluwer Academic Publishers, 1991.

[VW93] K. Vijay-Shanker and D.J. Weir. “Parsing Some Constrained Grammar For-
malisms.” Computational Linguistics, 19(4), 1993.

[VW94] K. Vijay-Shanker and D.J. Weir. “The Equivalence of Four Extensions of
Context Free Grammar Formalisms.” Mathematical Systems Theory, 27,
1994.

[VWJ87] K. Vijay-Shanker, D.J. Weir, and A.K. Joshi. “Characterizing Descriptions
Produced by Various Grammatical Formalisms.” In Proceedings of the 25th
Annual Meeting of the Association for Computational Linguistics, 1987.

[Wei88] D.J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1988.

223

[Wei99] A. Weinberg. “A Minimalist Theory of Human Sentence Processing.” In
S.D. Epstein and N. Hornstein, editors, Working Minimalism. MIT Press,
Cambridge, Massachusetts, 1999.

[Woo70] W. Woods. “Transition Network Grammars for Natural Language Anal-
ysis.” Communications of the Association for Computing Machinery, 13,
1970.

[You67] D.H. Younger. “Recognition and Parsing of Context-Free Languages in �
�
.”

Information and Control, 10(2), 1967.

224

