
A Recognizer for Minimalist GrammarsHenk HarkemaUniversity of California, Los Angeles, CA 90024harkema@humnet.ucla.edu1 IntroductionIt seems to be a general feature of natural language that the elements of a sentence are pro-nounced in one position, while at the same time serving a function in another part of thestructure of the sentence. Linguistic theories in the transformational tradition have tried tocapture this fact by proposing analyses that involve movement of constituents. Stabler (1997)presents a formalism for de�ning minimalist grammars that allow for movement of constituents.The formalism is based on Chomsky's Minimalist Program (Chomsky 1995; Chomsky forth-coming).Michaelis (1998) provides an argument showing that minimalist grammars are weakly equiva-lent to multiple context-free grammars as described in Seki et al. (1991). Multiple context-freegrammars are non-concatenative in the sense that a non-terminal symbol can dominate a se-quence of strings of terminal symbols. Each of these strings will be a substring of a sentencewhose derivation includes this non-terminal, but in the sentence these strings are not necessar-ily adjacent. The main insight contained in Michaelis (1998) is that minimalist grammars arenon-concatenative in a similar way. In minimalist grammars, non-concatenativity arises as theresult of movement. Thus, in a minimalist grammar a constituent can dominate non-adjacentsubstrings of a sentence. Seki et al. (1991) also describe an algorithm for recognizing multiplecontext-free grammars. Stabler (forthcoming) sketches how this algorithm may be extended tominimalist grammars.This paper contains a formal speci�cation of a recognizer for minimalist grammars. Further-more, it is shown that the recognizer is sound and complete, and that its time complexityis polynomial in the length of the input string. Besides this introduction, this paper has sixsections. Section 2 introduces the minimalist grammars from Stabler (1997). Section 3 con-tains the speci�cation of the recognizer. Sections 4 and 5 present the proofs of soundness andcompleteness. Section 6 describes some complexity results. The paper concludes with somedirections for future work.2 Minimalist GrammarsMinimalist grammars manipulate minimalist trees. Minimalist trees are �nite, binary orderedtrees whose leaves are labeled with sequences of syntactic and non-syntactic features. New trees1



are built by either merging two trees into one, or by moving a subtree in a tree. The applicationof merge and move operations is driven by the syntactic features labeling the leaves of the trees.The language de�ned by a minimalist grammar consists of the yields of a particular subset ofthe trees generated by the grammar.Formally, following Stabler (1997), a minimalist grammar G is de�ned to be quadruple (V, Cat,Lex, F), where V is a �nite set of non-syntactic features, Cat is a �nite set of syntactic features,Lex is a �nite set of lexical expressions built from V and Cat, and F is a �nite set of structurebuilding functions.The set of non-syntactic features V is made up of a set of phonetic features P and a set ofsemantic features I: V=P [ I. The set Cat comprises four kinds of syntactic features: Cat=base[ select [ licensors [ licensees. The elements of base represent basic syntactic categories. Theset base minimally contains the distinguished category feature c. For each category feature x 2base, there will be a selection feature =x 2 select, although select does not necessarily containa feature =c. The features in base and select play a role in merge operations. The features inlicensors and licensees regulate movement operations. For each feature -y 2 licensees, therewill be a feature +y 2 licensors.A minimalist tree � is given by a non-empty set of nodes N� , a function Label� , and threerelations on N� : dominance, precedence and projection. Immediate dominance and immediateprecedence and their re
exive and transitive closures are de�ned as for trees of the usual kind.For any two sister nodes x, y in a minimalist tree � , either x projects over y, or y projects overx, notated x < y and y < x, respectively, or x > y and y > x. The function Label� assigns toeach leaf of � a string from (V [ Cat)�, in particular, a string from select�licensors�select�baselicensees�P�I�. The other nodes of � are not labeled. The elements of Lex are are assumed tobe trees consisting of one node.This paragraph will introduce some arboreal notions that will be used in the remainder of thepaper. For nodes x, y in a tree � , x is the head of y if and only if y is a leaf and x=y, or thereis a node z in � such that y immediately dominates z, z projects over its sister and x is thehead of z. The head of a tree � is the head of the root of � . A node y in a tree � is a maximalprojection of a head x in � if and only if x is the head of y and y's sister projects over y. Atree � is maximal if and only if its root is the maximal projection of some head. A tree � iscomplex if and only if it has more than one node, otherwise, � is simple. A tree � is said tohave feature f 2 V [ Cat if the �rst element of the sequence that labels the head of � is f. For� and � minimalist trees, [<� , �] denotes a tree with immediate subtrees � and � where theroot of � projects over and precedes the root of �, and [>� , �] denotes a tree with immediatesubtrees � and � where the root of � precedes the root of � and the root of � projects over theroot of � . A tree � is complete if its head does not contain any syntactic features except forthe distinguished category feature c, and no node in � other than the head has any syntacticfeatures. The yield Y(�) of a tree � is the concatenation of the phonetic features in the labelsof the leaves of � , ordered by precedence.There are two structure building functions: F=fmerge, moveg. A pair of trees � , � is in thedomain of merge if � has feature =x and � has feature x for some x 2 base. Then,merge(� , �)=[<� 0, �0] if � is simple, and 2



merge(� , �)=[>�0, � 0] if � is complex,where � 0 is like � except that =x is deleted, and �0 is like � except that x is deleted.A tree � is in the domain of move if � has feature +y 2 licensors and � has exactly one maximalsubtree �0 that has feature -y 2 licensees.1 Then,move(�)=[>� 00, � 0],where � 00 is like �0 except that -y is deleted, and � 0 is like � except that +y is deleted and subtree�0 is replaced by a single node without features.2Let G=(V, Cat, Lex, F) be a minimalist grammar. Then CL(G)=Sk2N CLk(G) is the closureof the lexicon under the structure building functions, where CLk(G), k 2 N, are inductivelyde�ned by:1. CL0(G)=Lex2. CLk+1(G)=CLk(G) [ fmerge(� , �)j(� , �) 2 Dom(merge) \ CLk(G)�CLk(G)g[ fmove(�)j� 2 Dom(move) \ CLk(G)g,where Dom(merge) and Dom(move) denote the domains of the functions merge and move.The language derivable by G consists of the yields of the complete trees in the closure of thelexicon under the structure building functions: L(G)=fY(�)j� 2 CL(G) and � is completeg.Example: Consider the minimalist grammar G de�ned by the following sets: I=;, P=f1,2, 3, 4g, base=fa, b, c, dg, select=f=a, =b, =cg, licensors=f+p, +qg, licensees=f-p, -qg,Lex=f=ba-p1, b-q2, =a+qd3, =d+pc4g. The sentence `1423' is derived as follows: merge(=ba-p1,b-q2)=[<a-p1, -q2], or tree 1 below; merge(=a+qd3, tree 1)= tree 2; move(tree 2)= tree 3;merge(=d+pc4, tree 3)= tree 4; move(tree 4)= tree 5.1. <a-p1 -q2 2. <+qd3 <-p1 -q2 3. >2 <d3 <-p1 4. <+pc4 >2 <3 <-p1
5. ><1 <c4 >2 <3Tree 5 is a complete tree.3 �3 Speci�cation of the RecognizerThis section contains a formal de�nition of an agenda-driven, chart-based recognizer for mini-malist languages. Taking a logical perspective on parsing as presented in Shieber et al. (1994),the de�nition of the recognizer includes a speci�cation of a grammatical deductive system and1Since +y6=-y, � and �0 have di�erent head labels. Hence, �0 is properly included in � .2The structure building functions in Stabler (1997) also allow for head movement, which is not discussed inthis paper. The recognizer described in this paper is easily adapted to deal with this kind of movement.3Incidentally, note that the last movement of this derivation is an instance of remnant movement. Remnantmovement is movement of a constituent from which material has already been extracted. In this particular caseit creates a con�guration in which the moved constituent with yield `2' no longer c-commands its trace. Thisexample shows that remnant movement is easily modeled in minimalist grammars (see Stabler (1999) for furtherdiscussion). Recently, remnant movement has gained some linguistic popularity, e.g. Koopman and Szabolcsi(forthcoming), Kayne (1999). 3



a speci�cation of a deduction procedure. The formulae of the deductive system, which arecommonly called items, express claims about grammatical properties of strings. Under a giveninterpretation, these claims are either true or false. For a given grammar and input string, thereis a set of items that, without proof, are taken to represent true grammatical claims. Theseare the axioms of the deductive system. Goal items represent the claim that the input stringis in the language de�ned by the grammar. Since our objective is to recognize a string, thetruth of the goal items is of particular interest. The deductive system is completed with a setof inference rules, for deriving new items from old ones. The other component of the de�nitionof the recognizer is the speci�cation of a deduction procedure. This is a procedure for �ndingall items that are true for a given grammar and input string.3.1 Deduction procedureThe deduction procedure used in the recognizer presented in this paper is taken from Shieberet al. (1994). It uses a chart holding unique items in order to avoid applying a rule of inferenceto items to which the rule of inference has already applied before. Furthermore, there is anagenda for temporarily keeping items whose consequences under the inference rules have notbeen generated yet. The procedure is de�ned as follows:1. Initialize the chart to the empty set of items and the agenda to the axioms of the deductionsystem.2. Repeat the following steps until the agenda is exhausted:a) Select an item from the agenda, called the trigger item, and remove it.b) Add the trigger item to the chart, if the item is not already in the chart.c) If the trigger item was added to the chart, generate all items that can be derivedfrom the trigger item and any items in the chart by one application of a rule ofinference,4 and add these generated items to the agenda.3. If a goal item is in the chart, the goal is proved, i.e., the string is recognized, otherwise itis not.Shieber et al. (1994) prove that the deductive procedure is sound { it generates only items thatare derivable from the axioms { and complete { it generates all the items that are derivablefrom the axioms.3.2 Deductive systemGiven an input string w=w1 . . . wn and minimalist grammar G=(V, Cat, Lex, F), the items ofthe deductive system will be of the form [�0, �1, . . . , �m]t, where m � jlicenseesj, t 2 fs, cg.For 0 � i � m, �i is of the form (xi, yi):
i, where 0 � xi � yi � n, n=jwj, and 
i 2 Cat�.The proper interpretation of the items requires the notion of narrow yield of a tree. The narrowyield Yn(�) of a minimalist tree � is de�ned in the following way. If � is a complex tree, theneither �=[>� , �], or �=[<� , �]. If �=[>� , �], then:Yn(�)=Yn(�)�Yn(�) if � does not have a feature -f 2 licensees4Note that successful applications of Move-1 and Move-2 as de�ned in section 3.2.2 do not involve any itemsfrom the chart. 4



Yn(�)=Yn(�) otherwise.If �=[<� , �], then:Yn(�)=Yn(�)�Yn(�) if � does not have a feature -f 2 licenseesYn(�)=Yn(�) otherwise.If � is not a complex tree, it must be a simple tree. In that case:Yn(�)=Y(�)Now, an item [(x0, y0):
0, (x1, y1):
1, . . . , (xm, ym):
m]t is understood to assert the existenceof a tree � 2 CL(G) which has the following properties:1. If t=s, � is a simple tree; if t=c, � is a complex tree.2. The head of � is labeled by 
0��, �� 2 P�I�.3. For every (xi, yi):
i, 1 � i � m, there is a leaf in � labeled 
i��, �� 2 P�I�.4. Besides the nodes labeled by 
i��, �� 2 P�I�, 0 � i � m, there are no other nodes withsyntactic features in � .5. The narrow yield of the subtree whose root is the maximal projection of the node labeledby 
i��, �� 2 P�I�, is wxi+1 . . . wyi , 0 � i � m.3.2.1 Axioms and GoalsThe set of axioms of the deductive system is speci�ed in the following way. For each lexicalitem in Lex with syntactic features 
 2 Cat� and whose phonetic features cover wi+1 . . . wj ofthe input string, there will be an axiom [(i, j):
]s in the deductive system.There will be two goal items: [(0, n):c]s and [(0, n):c]c, c 2 base being the distinguishedcategory feature. These are appropriate goal items for a recognizer, since their truth underthe interpretation provided above requires the existence of a complete tree � 2 CL(G), eithersimple or complex, with narrow yield Yn(�)=w1 . . . wn=w. Since � is complete, Yn(�)=Y(�).Therefore, w 2 L(G)=fY(�)j� 2 CL(G) and � is completeg.3.2.2 Rules of InferenceThe deductive system has six rules of inference, grouped into Merge rules and Move rules:Merge-1:[(p, q):=x
]s, [(q, v):x, �1, . . . , �k]t[(p, v):
, �1, . . . , �k]cMerge-2: (� 6=;)[(p, q):=x
]s, [(v, w):x�, �1, . . . , �k]t[(p, q):
, (v, w):�, �1, . . . , �k]cMerge-3:[(p, q):=x
, �1, . . . , �k]c, [(v, p):x, �1, . . . , �l]t[(v, q):
, �1, . . . , �k, �1, . . . , �l]c 5



Merge-4: (� 6=;)[(p, q):=x
, �1, . . . , �k]c, [(v, w):x�, �1, . . . , �l]t[(p, q):
, �1, . . . , �k, (v, w):�, �1, . . . , �k ]cMove-1:[(p, q):+y
, �1, . . . , �i�1, (v, p):-y, �i+1, . . . , �k]c[(v, q):
, �1, . . . , �i�1, �i+1, . . . , �k]cMove-2: (� 6=;)[(p, q):+y
, �1, . . . , �i�1, (v, w):-y�, �i+1, . . . , �k]c[(p, q):
, �1, . . . , �i�1, (v, w):�, �i+1, . . . , �k]cThe rules Move-1 and Move-2 come with an additional condition on their application: if (xj ,yj):
j is one of the �1, . . . , �i�1, �i+1, . . . , �k, then the �rst feature of 
j is not -f.For all rules the following holds: 0 � p, q, v, w � n; 0 � i, k, l � m; and t 2 fs, cg, =x 2 select,x 2 base, +y 2 licensors, and -y 2 licensees.Since Shieber et al. (1994) proved that the deductive procedure is sound and complete, es-tablishing the correctness of the recognizer entails showing that the deductive system de�nedabove is sound and complete relative to the intended interpretation of the items. This will bedone in the next two sections.4 Proof of SoundnessThe following two lemma's will be helpful for establishing soundness of the deductive system.Lemma 1a: if � , � 0 and �, �0 are trees such that merge(� , �)=[<� 0, �0] or merge(� , �)=[>�0,� 0], then Yn(� 0)=Yn(�) and Yn(�0)=Yn(�).Proof: inspection of the de�nition of merge shows that in both cases � 0 and � are identicalexcept for the labels of their heads. According to the de�nition of narrow yield the label of thehead of a tree is of no relevance for determining the narrow yield of that tree. Analogously,Yn(�0)=Yn(�). �Lemma 1b: if � , � 0 and �0, � 00 are trees such that move(�)=[>� 00, � 0], then Yn(� 0)=Yn(�) andYn(� 00)=Yn(�0).Proof: according to the de�nition of move, � 0 will be like � except that feature +y is deletedand a subtree �0 has been replaced by a single node with no features. As is the case for merge,the di�erent head labels of � and � 0 are irrelevant as narrow yields are concerned. Furthermore,the yield of �0 is excluded from Yn(�) because �0 has a feature -f 2 licensees. The yield of �0 isalso excluded from Yn(� 0) because �0 is not a subtree of � 0. Since trees � and � 0 are otherwisethe same, Yn(� 0)=Yn(�). Concerning � 00 and �0, these trees di�er only by their head label.Hence, Yn(� 00)=Yn(�0). �Proving soundness of the recognizer amounts to showing that the axioms and the rules ofinference of the deductive system are sound. Then it will follow that every derivable item in thedeductive system will represent a true grammatical statement under the intended interpretation.6



4.1 Soundness of the AxiomsAccording to the interpretation given in section 3.2, an axiom [(i, j):
]s asserts the existence ofa tree � 2 CL(G) with the following properties:1. Tree � is a simple tree.2. The head of � is labeled by 
��, for some �� 2 P�I�.3. Besides the head of � there are no other nodes with syntactic features in � .4. The narrow yield of � is wi+1 . . . wj .It is easy to see that the lexical item in Lex which occasioned the axiom [(i, j):
]s has exactlythese properties. By de�nition this lexical item is in CL0(G) � CL(G).4.2 Soundness of the Rules of InferenceThere are six rules of inference. Their soundness will be established below. Since applicabilityof the structure building functions and the rules of inference does not depend on non-syntacticfeatures, their presence in trees will be ignored in the discussion to follow. Thus, the statement`the head of tree � is labeled by 
', for example, means: `the head of tree � is labeled by 
��,for some �� 2 P�I�'.Merge-1: the items in the antecedent of the rule Merge-1 assert the existence of trees � and� 2 CL(G), whose heads are labeled by =x
 and x, respectively. Hence, � and � are in thedomain of the function merge. This function will apply to � and � and produce a complex tree�=[<� 0, �0] 2 CL(G), since � is a simple tree. The head of � is labeled by 
. Furthermore,Yn(�)=Yn(� 0)�Yn(�0), since the head of �0 does not have a feature -f 2 licensees. By lemma 1a,Yn(� 0)�Yn(�0)=Yn(�)�Yn(�)=wp+1 . . . wq �wq+1 . . . wv=wp+1 . . . wv. Also, all maximal subtreesproperly contained in � will be included in � with their head labels and narrow yields unchanged,since merge does not touch any proper subtrees of �. As is easy to check, the item [(p, v):
,�1, . . . , �k]c in the consequent of the rule Merge-1 claims the existence of a tree in CL(G) withthe properties of �. Thus Merge-1 is sound.Merge-2: for rule Merge-2 to apply, there must be a simple tree � 2 CL(G) whose head islabeled by =x
, and a tree � 2 CL(G) whose head is labeled by x�, � 6=;. Hence, merge willapply to � and � to yield a complex tree �=[<� 0, �0] 2 CL(G), whose head is labeled by
. According to the de�nition of the function Label, the �rst feature of �, which is the labelof the head of �0, must be a feature -f 2 licensees. Therefore, by the de�nition of narrowyield and lemma 1a, Yn(�)=Yn(� 0)=Yn(�)=wp+1 . . . wq. Analogous to Merge-1, all maximalsubtrees properly contained in � will be included in � with their head labels and narrow yieldsunchanged. Obviously, �0, whose head is labeled �, will be a maximal subtree of �. By lemma1a, Yn(�0)=Yn(�)=wv+1 . . . ww. Now it is easy to see that the grammatical claim made by theitem in the consequent of the rule Merge-2 is justi�ed by � 2 CL(G).Merge-3: the argument unfolds in a fashion similar to Merge-1, except that �=[>�0, � 0], ratherthan [<� 0, �0] because � is complex. Consequently, Yn(�)=Yn(�)�Yn(�)=wv+1 . . . wp�wp+1. . . wq=wp+1 . . . wq . Furthermore, � inherits the narrow yields and head labels of the maximalsubtrees in both � and �. 7



Merge-4: this rule of inference is treated analogously to Merge-2, with the provisos mentionedunder Merge-3.Move-1: rule Move-1 will apply provided there is a complex tree � 2 CL(G) whose head islabeled by +y
, which contains one leaf labeled by a feature -y and no other leaves whose�rst feature is -y. Let �0 be the maximal subtree in � projected by the node labeled withthe single feature -y.5 Then � is in the domain of the function move. The result of applyingmove to � will be a complex tree �=[>� 00, � 0] 2 CL(G). The head of � is labeled 
. Moreover,Yn(�)=Yn(� 00)�Yn(� 0)=Yn(�0)�Yn(�) by lemma 1b and because the head of � 00 has an emptylabel. Since Yn(�0)=wv+1 . . . wp and Yn(�)=wp+1 . . . wq , Yn(�)=wv+1 . . . wq . The functionmove does not a�ect the labels or narrow yields of any of the maximal subtrees properlycontained in � , except for �0 (cf. the third case in the proof of lemma 2 in section 5). Now itis easy to see that the item in the consequent of the inference rule Move-1 actually describes �2 CL(G).Move-2: application of rule Move-2 requires the existence in CL(G) of a complex tree � whosehead is labeled by +y
, containing a leaf labeled by -y�, � 6=; and no other leaves whose labelstarts with feature -y. Let �0 be the maximal subtree in � projected by the node labeled -y�.Then the function move applies to produce a complex tree �=[>� 00, � 0] 2 CL(G), whose headis labeled 
. Then, Yn(�)=Yn(� 0), since � 00, whose head is labeled by �, has a feature -f 2licensees, cf. similar situations in Merge-2 and Merge-4. As in Move-1, the narrow yields andlabels of maximal subtrees properly contained in � are left intact, except for �0. �0 is not asubtree of �, but � 00 is. The label of the head of � 00 is � and � 00's narrow yield is Yn(� 00)=Yn(�0),by lemma 1b. It is easily checked that � 2 CL(G) has the same properties as the tree claimedto exist by the item in the consequent of Move-2. Hence, Move-2 is sound.5 Proof of CompletenessThis section presents a completeness proof for the recognizer. A recognizer is complete if forevery string that is in the language de�ned by the grammar, there is a derivation of a goal itemfrom the axioms.First, the following two useful lemma's will be proved.Lemma 2: if, for a minimalist grammar G, the derivation of tree � immediately includes tree� , then for every maximal subtree � contained in � , there is a maximal subtree �0 in � suchthat Yn(�) is a substring of Yn(�0).Proof: three distinct cases have to be considered: there is an � 2 CL(G) such that �=merge(� ,�), there is an � 2 CL(G) such that �=merge(�, �), and �=move(�).In the �rst case, either �=[<� 0, �0] or �=[>�0, � 0], depending on whether � is a simple or acomplex tree. Furthermore, either � is a proper subtree of � , or �=� . If � is a proper subtreeof � , then � 0 will properly contain �, as � 0 is like � except that =x is deleted from the label ofthe head. For the same reason, � is maximal in � 0. Since � contains � 0, � will be a subtree of �and, trivially, Yn(�) is a substring of Yn(�). If �=� , then Yn(�)=Yn(�)=Yn(� 0) by lemma 1a.5� 6=�0 because their head labels are di�erent. 8



Also, Yn(� 0) is a substring of Yn(�) by the de�nition of narrow yield. Trivially, � is a maximalsubtree of �.In the second case, either �=[<�0, � 0] or �=[>� 0, �0], depending on whether � is a simple ora complex tree. Again, either � is a proper subtree of � , or �=� . If � is a proper subtree of� , then � will be a proper, maximal subtree of �, as argued for the similar situation in thecase above. If �=� , then Yn(�)=Yn(�)=Yn(� 0) by lemma 1a. Tree � 0 is a maximal subtreecontained in �, and, trivially, Yn(�) is a substring of Yn(� 0).In the third case, �=[>� 00, � 0], with �0 speci�ed as in the de�nition of move. Either � is a propersubtree of �0, or �=�0, or � is a proper subtree of � and �0 is a proper subtree of �, or �=� .If � is a proper subtree of �0, then � will be a proper, maximal subtree of �, as in the similarsituations above. If �=�0, then Yn(�)=Yn(�0)=Yn(� 00) by lemma 1b. Now, � 00 is a maximalsubtree contained in �, and, trivially, Yn(�) is a substring of Yn(� 00). If � is a proper subtree of� and �0 is a proper subtree of �, then, by the de�nition of move, � 0 will contain a tree �0 whichis like �, except that subtree �0 is replaced by a single node without features. Yn(�)=Yn(�0),since the yield of �0 is excluded from Yn(�) because of its -f feature, and the yield of �0 isexcluded from Yn(�0) because �0 is not a subtree of �0. Hence, trivially, Yn(�) is a substringof Yn(�0). Moreover, �0 is a maximal subtree of � 0 since � is a proper, maximal subtree of � .Finally, if �=� , then Yn(�)=Yn(�)=Yn(� 0) by lemma 1b. Furthermore, Yn(� 0) is a substringof Yn(�) by the de�nition of narrow yield. Trivially, � is a maximal subtree contained in �. �Lemma 3: if for a minimalist grammar G, the derivation of a complete tree 
 includes � , thenYn(�) is a substring of Y(
).Proof: by repeated application of lemma 2, 
 will contain a maximal subtree �0 such that Yn(�)is a substring of Yn(�0). Since 
 is a complete tree, it does not have any labels with a feature -f2 licensees. Hence, by the de�nition of narrow yield, Yn(�0) is a substring of of Yn(
)=Y(
),and, consequently, Yn(�) is a substring of Y(
). �Completeness of the parser will follow as a corollary of lemma 4 below. If w 2 L(G), for someminimalist grammar G, then there is a complete tree � 2 CL(G) such that Y(�)=w. Since �2 CL(G), there must be a k 2 N such that � 2 CLk(G). Since � is a complete tree, lemma 4guarantees that an item corresponding to � will be generated. Obviously, the item will be agoal item, since � is complete and Y(�)=w.Lemma 4: for a given minimalist grammar G, if � 2 CLk(G), k 2 N, and � is included inthe derivation of a complete tree or � is a complete tree itself, then an item [�0, �1 . . . , �m]tcorresponding to � will be generated, [�0, �1 . . . , �m]t as de�ned in section 3.2.Proof: (as in the discussion of the soundness proof, the presence of non-syntactic features intrees will be ignored) it will be shown by induction over k that for arbitrary k 2 N and � 2CLk(G) such that � is included in the derivation of a complete tree or � is a complete treeitself, an item corresponding to � will be generated.1. k=0. Then � 2 CL0(G)=Lex, and � is covered by one of the axioms.2. Assume all items corresponding to � 2 CLk(G), � included in the derivation of a complete treeor a complete tree itself, are generated for a particular k 2 N. To show: for any � 2 CLk+1(G),� included in the derivation of a complete tree or a complete tree itself, a corresponding item9



will be generated.Pick an arbitrary � 2 CLk+1(G). By de�nition, CLk+1(G)=CLk(G) [ fmerge(� , �)j(� , �) 2Dom(merge) \ CLk(G)�CLk(G)g [ fmove(�)j� 2 Dom(move) \ CLk(G)g. Hence, three casescan be distinguished: � 2 CLk(G), � 2 fmerge(� , �)j(� , �) 2 Dom(merge) \ CLk(G)�CLk(G)g,and � 2 fmove(�)j� 2 Dom(move) \ CLk(G)g.In the �rst case, � 2 CLk(G). Then, by the induction hypothesis, an item corresponding to �will be generated.In the second case, � 2 fmerge(� , �)j(� , �) 2 Dom(merge) \ CLk(G)�CLk(G)g. Then thereare trees � , � 2 CLk(G) such that �=merge(� , �). Since � is included in the derivation of acomplete tree or � is a complete tree itself, � and � are included in the derivation of a completetree.6 Hence, by the induction hypothesis, there are items corresponding to � and �. Since (� ,�) 2 Dom(merge), the heads of � and � are respectively labeled =x
 and x�, for =x 2 licensees,x 2 base and 
, � 2 Cat�. Tree � is either a simple tree or a complex tree. With regard to �,�=; or � 6=;. Hence, there are four cases to be dealt with.1) � is a simple tree and �=;, i.e., the head of � consists of the single feature x. Then �=[<� 0,�0], and Yn(�)=Yn(� 0)�Yn(�0). By lemma 1a, Yn(�)=Yn(�)�Yn(�). Suppose � participates ina successful derivation of a complete tree whose yield is the string w1 . . . wm:7 Then, by lemma3, Yn(�)�Yn(�) is a substring of w1 . . . wm, that is, Yn(�)=wp . . . wq and Yn(�)=wq+1 . . . wv,1 � p � q � v � m. Hence, the items corresponding to � and � will match the antecedentsof rule Merge-1. Alternatively, � is a complete tree itself. Assume Yn(�)=Y(�)=w1 . . . wm.Then it follows immediately that Yn(�)=w1 . . . wq and Yn(�)=wq+1 . . . wm, 1 � q � m. Again,the items corresponding to � and � will match the antecedents of rule Merge-1. In both cases,application of Merge-1 will generate the item corresponding to �.2) � is a simple tree and � 6=;. In this case, � and � will match the antecedents of rule Merge-2.Application of this rule will produce an item for �.3) � is a complex tree and �=;, i.e., the head of � consists of the single feature x. Then �=[>�0,� 0], and, similar to 1) above, Yn(�)�Yn(�) is a substring of w1 . . . wm, where w1 . . . wm is theyield of a complete tree derived from � or the yield of � if � is a complete tree itself. It iseasy to see that the items corresponding to � and � will match the antecedents of rule Merge-3.Application of this rule will generate the item corresponding to �.4) � is a complex tree and � 6=;. In this case, � and � will match the antecedents of rule Merge-4,application of which will produce an item for �.In the third case, � 2 fmove(�)j� 2 Dom(move) \ CLk(G)g. Then there is a � 2 CLk(G) suchthat �=move(�). Since � is included in the derivation of a complete tree or � is a completetree itself, � is included in the derivation of a complete tree as well. Hence, by the inductionhypothesis, there is an item corresponding to � . Since � 2 Dom(move), � has a feature +y and� has exactly one maximal subtree that has the feature -y, +y 2 licensors, -y 2 licensees. Let�0 be the maximal subtree of � that has feature -y and let the label of its head be -y�. Thenthere are two cases: either �=; or � 6=;.6Since � is the �rst argument of merge, � cannot be a complete tree.7Reference to the yield of a complete tree derived from � precludes a general proof of completeness, i.e. aproof that for all � 2 CLk(G), k 2 N, a corresponding item [�0, �1 . . . , �m]t will be generated.10



1) �=;. Then �=[>� 00, � 0], and Yn(�)=Yn(� 00)�Yn(� 0)=Yn(�0)�Yn(�) by the de�nition of narrowyield and lemma 1b. Similarly to 1) and 3) for Merge-1 and Merge-3 above, Yn(�0)�Yn(�) willbe a substring of w1 . . . wm, where w1 . . . wm is the yield of a complete tree derived from �or the yield of � itself if � is a complete tree. Therefore, Yn(�0)=wv . . . wp and Yn(�)=wp+1. . . wq, 1 � v � p � q � m. Hence, the item corresponding to � will match the antecedent ofrule Move-1. Application of this rule will generate the item corresponding to �.2) � 6=;. Then the item generated for � will match the antecedent of rule Move-2, applicationof which will generate an item corresponding to �. �6 Complexity ResultsFor a given minimalist grammar G=(V, Lex, Cat, F) and input string of length n, the numberof items is polynomially bounded by the length of the input string. All items are of the form[(x0, y0):
0, (x1, y1):
1, . . . , (xm, ym):
m]t, as de�ned in section 3.2. Each part (xi, yi):
i ofan item, 0 � i � m, has O(n2) possible instantiations, as both xi and yi range between 0 andn, 0 and n included. The possible choices of 
i do not depend on the length of the input string.The number of choices is bounded, however, because the labels occurring in any tree in CL(G)are substrings of the labels of the expressions in Lex. This follows immediately from the thede�nition of merge and move. Moreover, Lex is a �nite set and the labels assigned by Labelare �nite sequences. Thus, the set of possible labels is bounded by the grammar, and, sincethe recognizer is sound, the number of possible 
i's is bounded by the grammar, too. Since anitem has at most k+1 parts (xi, yi):
i, where k=jlicenseesj, the number of items in the chart isbounded by O(n2k+2).As regards the time complexity of the recognizer, step 2.b) of the deduction procedure speci�edin section 3.1 requires every item on the agenda to be compared with the items already in thechart. Since the number of items in the chart is O(n2k+2), this step will take O(n2k+2) peritem on the agenda. For any item on the agenda but not already in the chart, step 2.c) of thededuction procedure checks whether any rule of inference will apply. Checking applicability ofthe Merge rules involves looking through all the items in the chart, since all Merge rules havetwo antecedents. Given an item on the agenda and an item from the chart, actually verifyingwhether any of the Merge rules applies to these items takes constant time. Thus, the time costis O(n2k+2) per item on the agenda. In order to determine whether one of the two Move ruleswill apply, the label 
0 in an item has to be inspected and compared to the other labels 
i, 1� i � m in the same item. Since m is bounded by k=jlicenseesj, there is no dependency onthe length of the input string. Since steps 2.b) and 2.c) are performed in sequence, the timecost of both steps is bounded by O(n2k+2) per item on the agenda, ignoring without loss ofgenerality the fact that step 2.c) is not performed for all items on the agenda. Steps 1. and 3.of the deduction procedure do not exceed this bound. The number of items that will be puton the agenda while recognizing a string is O(n2k+2). This is the upperbound on the numberof possible items. There will be duplicates in the agenda, but their number is �nite and doesnot depend on n, essentially because the number of axioms and the number of inference rules is�nite and all items in the chart are unique. Thus, the overall time complexity of the recognizeris O(n4k+4). 11



7 Conclusions and Future WorkIn this paper we have provided a formal de�nition of a recognizer for minimalist grammars,together with proofs of completeness and soundness and an analysis of its space and timecomplexity.There are several issues that deserve further investigation. First of all, the recognizer has tobe developed into a parser. This can be done by either extending the items with a �eld forrecording the derivational history of an item, or by devising a method for retrieving derivationtrees from the chart. Secondly, we conjecture that the e�ciency of the parser can be greatlyimproved by imposing some order on the chart. In the current recognizer, the entire chart issearched in order to determine whether any one of the Merge rules will apply. The de�nitionsof the Merge rules suggest that grouping the items in the chart according to the �rst featureof their `head labels' will allow for a more e�cient search. The current recognizer operates ina bottom-up manner: no constituent is recognized until all substrings that make up its yieldhave been encountered. So, thirdly, it would be interesting to investigate other recognitionstrategies. Finally, there are still some open questions with regard to the formal power ofminimalist grammars in comparison with other grammar formalisms. Careful examination ofthe complexity of the algorithms for recognizing and parsing these various grammar formalismsmight answer some of the questions.Acknowledgements: thanks to Ed Stabler for inspiring discussions.ReferencesN. Chomsky, 1995. The Minimalist Program. MIT Press.N. Chomsky, forthcoming. Minimalist Inquiries: the Framework. MIT Press.R. Kayne, 1999. A note on Prepositions and Complementizers. In: A Celebration, MIT Press.H. Koopman, A. Szabolsci, fortcoming. Verbal Complexes. MIT Press.J. Michaelis, 1998. Derivational Minimalism is Mildly Context-Sensitive. In: Proceedings,Logical Aspects of Computational Linguistics, Grenoble.H. Seki, T. Matsumura, M. Fujii, T. Kasami, 1991. On Multiple Context-Free Grammars. In:Theoretical Computer Science, 88.S.M. Shieber, Y. Shabes, F.C.N. Pereira, 1994. Principles and Implementation of DeductiveParsing. Technical Report CRCT TR-11-94, Computer Science Department, Harvard Univer-sity.E.P. Stabler, 1997. Derivational Minimalism. In: Logical Aspects of Computational Linguistics,C. Retor�e (ed.). Lecture Notes in Arti�cial Intelligence 1328.E.P. Stabler, 1999. Remnant Movement and Complexity. In: Constraints and Resources inNatural Language Syntax and Semantics, G. Bouma, E. Hinrichs, G.-J. Kruij�, D. Oerhle(eds.). CSLI.E.P. Stabler, forthcoming. Performance models for a Derivational Minimalism. In: LinguisticForm and its Computation, Final Workshop of SFB340.12


