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Expressions over a feature set
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Expressions over a feature set

head (of a tree τ ) :
leaf on the (unique) path starting at
the root, and successively following
the projecting daughters

>

specifier

>
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<

head

complement

τ displays feature f :⇐⇒ τ ’s head-label is of the form fα
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Building expressions

¥¥¥ Expressions can be built up from other expressions by applying
structure building functions.

¥¥¥ The applications of these functions are triggered by particular
instances of syntactic features appearing in the leaf-labels of
the trees to which the functions are applied.

¥¥¥ After having been applied the triggering instances are deleted
and count as checked.

¥¥¥ Different structure building operations are triggered by different
types of syntactic features.



Syntactic features ( the set Syn )

¥¥¥ Syn is partitioned into . . .

Base = {x , y , z , . . .}

Select = {=x , =y , =z , . . .}

Licensees = {-x , -y , -z , . . .}

Licensors = {+x , +y , +z , . . .}

(basic) categories

(merge-)selectors

(move)-licensees

(move)-licensors

¥ NonSyn∗ = { book , which , Mary_ read , . . . , ∅ , . . .}
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Structure building functions

merge : Exp(Feat) × Exp(Feat) −→part Exp(Feat)

〈φ ,ψ〉 ∈ Domain(merge) :⇐⇒

¥ ψ displays feature x ∈ Base

¥ φ displays feature =x ∈ Select



Structure building functions

merge : Exp(Feat) × Exp(Feat) −→part Exp(Feat)
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merge (selecting tree is simple)
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merge (selecting tree is complex)
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Structure building functions

move : Exp(Feat) −→part Exp(Feat)

φ ∈ Domain(move) :⇐⇒

¥ φ displays feature +x ∈ Licensors

¥ there is exactly one maximal projection ψ within ( SMC )

φ that displays feature -x ∈ Licensees
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Minimalist Grammars (MGs) (Stabler 1997)

G = 〈 Feat , Lex , Ω , c 〉

¥¥¥ Feat = Syn ∪ NonSyn

Syn = Base ∪ Select ∪ Licensees ∪ Licensors

x =x -x +x

¥¥¥ Lex is a finite set of simple expressions with labels [ lexicon ]

from Syn∗NonSyn∗

¥¥¥ Ω = { merge , move , adjoin } [ structure building functions ]

¥¥¥ c ∈ Base
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An MG-lexicon

n.book d.she =d.v.like

=n.d.-wh.which =v.=d.i.∅ =i.c.that

=i.+wh.c.did i.Mary_ read

NonSyn∗ = { book , which , Mary_ read , . . . , ∅ , . . .}
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Minimalist languages

Closure(G) , the closure of an MG G = 〈 Feat , Lex , Ω , c 〉 ,

is the closure of Lex under the operators from Ω .

τ ∈ Closure(G) is complete :⇐⇒

no leaf-label has an unchecked instance of a syntactic feature ,
except for the head-label, which is from {c} NonSyn∗ .

The tree and string language generated by G

T(G) = { τ | τ ∈ Closure(G) and complete }

L(G) = { yieldNonSyn(τ ) | τ ∈ T(G)}
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Generative capacity

¥¥¥ MGs are weakly equivalent to LCFRSs

(Michaelis 2001a, 2001b; Harkema 2001)

¥¥¥ Thus, in particular, for each MG there is an LCFRS deriving
the same string language. This can be shown applying the
methods which were developed in Michaelis 2001a for exactly
this purpose, and which led to the succinct, chain-based MG-
reformulation presented in Stabler & Keenan 2000 — reducing
“classical” MGs to their “bare essentials.”
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Reducing an MG

Let G = 〈 Feat , Lex , Ω , c 〉 be an MG

τ ∈ Closure(G) is relevant :⇐⇒

for each licensee -x , there is at most one maximal projection in
τ that displays -x .

In fact, this kind of structure is characteristic of each τ ∈ Closure(G)

involved in creating a complete expression in G . Recall that ‘move’ is
defined only in case that there is exactly one maximal projection in τ
that has a particular licensee feature allowing the projection’s
“movement into a specifier position.”

RClosure(G) is the set of all relevant τ ∈ Closure(G)
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A finite partition of RClosure(G)

Basic idea : consider τ ∈ RClosure(G)

• Reduce τ to a tuple such that for each maximal projection
displaying an unchecked syntactic feature, there is exactly one
component of the tuple consisting of the projection’s head-label,
but with the suffix of non-syntactic features truncated.

ÃÃÃ only finitely many equivalence classes

Relevance :
The resulting tuple has at most m+1 components , m = |Licensees| .

Structure building by cancellation of features :
Each tuple component is the suffix of the syntactic prefix of the label
of a lexical item.

ÃÃÃ regarding the partition, applications of ‘merge’ and ‘move’ do not
depend on the chosen representatives
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A weakly equivalent LCFRS

• The nonterminating rules :

(1) T → mergeU,V(U,V)

T , U and V the “representatives” of some τ , υ and
φ ∈ RClosure , respectively, such that τ = merge(υ,φ) .

(2) T → moveU(U)

T and U the “representatives” of some τ and υ ∈ RClosure ,
respectively, such that τ = move(υ) .

• The terminating rules :

(3) T → ν

T the “representative” of τ ∈ Lex with label σν , where
σ ∈ Syn , and ν ∈ NonSyn .



A weakly equivalent LCFRS

• “Reconstruction” of the non-syntactic material is possible by
means of the regular functions of the LCFRS :

T =⇒∗

G
〈ν0, . . . , νm〉 ∈ Strings(NonSyn)m+1

(a) T the “representative” of τ ∈ RClosure(G) .

(b) For { l1 , . . . lm } , an enumeration of Licensees,

ν0 is the “non-extractable” part of the non-syntactic yield of τ ,
i.e. , that part of the non-sytactic yield of τ which by no means
would be pied-piped if some proper subtree of τ became subject
to movement.

For 1 ≤ i ≤ m,

if there is no subtree of τ displaying licensee li , then νi = ε .

Otherwise , νi is the “non-extractable” part of the non-syntactic
yield of τi , the subtree of τ displaying licensee li .
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