
An introduction to mildly context sensitive grammar
formalisms

— The equivalence of TAGs and CCGs —

Gerhard Jäger & Jens Michaelis

University of Potsdam

{jaeger,michael}@ling.uni-potsdam.de

– p.1

Overview

� CCGs and TAGs generate the same class of string languages
� can also be described by Head Grammars or Linear Indexed

Grammars
� proper subset of the class of languages that is described by

(set-local) Multi-component TAGs or Linear Context-Free
Rewriting Systems

� proof: circular inclusion CCG → LIG → TAG → CCG

– p.2

Overview

� Plan for this unit:
� Indexed Grammars
� Linear Indexed Grammars
� CCG → LIG
� LIG → TAG
� TAG → CCG

– p.3

Indexed Grammars

� generalization of CFGs
� strictly stronger than TAGs/CCGs
� introduced by Aho to handle variable binding in programming

languages

– p.4

Indexed Grammars

Definition:
An IG, G, is denoted by

G = (VN , VT , VS , S, P)

where
� VN is a finite set of nonterminals
� VT is a finite set of terminals
� VS is a finite set of stack symbols
� VN , VT and VS are mutually disjoint
� S ∈ VN is the start symbol, and

– p.5

Indexed Grammars

� P is a finite set of productions, having the following form.

A[· · x] → α1 . . . αn

where x ∈ V ∗
S , and for each 1 ≤ i ≤ n, αi = A[· · y], αi = A[z], or

αi = w where A ∈ VN , w ∈ V ∗
T , and y, z ∈ V ∗

S .

Notational convention:
� [· · l] ... arbitrary stack with l as top symbol

– p.6

Indexed Grammars

Comments:
� fixed number of symbols can be popped from LHS stack
� stacks of non-terminals on RHS:

� fixed sized stack, or
� unbounded stack from LHS, with a fixed number of symbols

pushed on it
� notion of derivation (→∗

G) is as in CFGs
� language L(G) generated by the LIG G

L(G) = {w ∈ V ∗
T |S[] →∗

G w}

– p.7

Indexed Grammars

� example for a language that is generated by a LIG but not by a
TAG/CCG:

anbncndnen

� LIG that generates it:
� VN = {S,A,B,C,D,E}
� VT = {a, b, c, d, e}
� VS = {i}

– p.8

Indexed Grammars

� P :

S[··] → S[· · i]

S[· · ·] → A[· · ·]B[· · ·]C[· · ·]D[· · ·]E[· · ·]

A[· · ii] → aA[· · i]

A[i] → a

B[· · ii] → bB[· · i]

B[i] → b

C[· · ii] → cC[· · i]

C[i] → c

D[· · ii] → dD[· · i]

D[i] → d

E[· · ii] → eE[· · i]

E[i] → e

– p.9

Linear Indexed Grammar

� introduced by Gazdar (1985) for linguistic purposes
� proper restriction of IGs
� crucial innovation:

� only one non-terminal on the RHS inherits the stack from the
RHS

� dependencies between unbounded branches of a tree are not
possible in LIGs

– p.10

Linear Indexed Grammars

Example:
� previous example is not a LI language
� the following is a LI language though:

anbncndn

� LIG that generates it:
� VN = {S, T}
� VT = {a, b, c, d}
� VS = {i}
� P :

S[··] → aS[· · i]d

S[··] → T [··]

T [· · i] → bT [··]c

T [] → ε – p.11

From CCG to LIG

� first proved by Weir (1988)
� assumes particular format of CCG

� no type lifting (can be done in the lexicon where needed)
� only combinators: function application and (possibly mixed)

function composition
� applicability of combinators can be restricted to certain

categories

– p.12

Formal definition of CCG

A CCG G is denoted by (VT , VN , S, f, R), where
� VT is a finite set of terminals (lexical items),
� VN is a finite set of nonterminals (atomic categories)
� VN and VT are disjoint,
� S is a distinguished member of VN ,
� f is a function that maps elements of VT ∪ {ε} to finite subsets of

C(VN), the set of categories, where
� VN ⊆ C(VN), and if c1, c2 ∈ C(VN), then (c1/c2) ∈ C(VN) and

(c1\c2) ∈ C(VN)

� R is a finite set of combinatory rules.

– p.13

Formal definition of CCG

� four types of combinatory rules
� x, y, z1, ... variables over C(VN), |i is a variable over {/,\}

1. forward application
(x/y) y → x

2. backward application

y (x\y) → x

3. generalized forward composition: for some n ≥ 1:

(x/y) (. . . (y|1z1)2 . . . |nzn) → (. . . (x1|1z1)|2 . . . |nzn)

4. generalized backward composition: for some n ≥ 1:

(. . . (y|1z1)2 . . . |nzn) (x\y) → (. . . (x1|1z1)|2 . . . |nzn)

– p.14

Formal definition of CCG

� possible constraints on instantiations of variables:
1. The initial nonterminal of the category to which x is

instantiated can be restricted
2. The entire category to which y is instantiated can be

restricted.
� language L(G) generated by CCG G:

L(G) = {a1 . . . an|S →∗
G c1 . . . cn, ci ∈ f(ai), ai ∈ Vt∪{ε}, 1 ≤ i ≤ n}

Note that empty categories are admitted as lexical entries.

Terminology:
� (x/y) in the forward rules and (x\y) in the backward rules is

called the primary category of the rule.
� The other category is called the secondary category of the rule.

– p.15

From CCG to LIG

� crucial observations:
1. CCG categories can be seen as nonterminals + stack

� for example:

s ; s[]

s/a ; s[/a]

s/a\b\b/s ; s[/a,\b,\b, /s]

s/(n\s) ; s[/(n\s)]

� function application amounts to pushing item on stack
� function composition is a combination of pushing and

popping

– p.16

From CCG to LIG

� crucial observations:
2. Each component of the RHS of a combinatory rule is also a

component of one the LHS categories
� set of components does not increase in syntactic

composition
� ultimately determined by lexicon
� no upper limit for number of components in x in the

combinatory rules
3. For each combinatory rule, there are finitely many ground

instances of the secondary category.
� only x in the primary category has infinitely many

instances
� can be modeled by a LIG-stack

– p.17

From CCG to LIG

The construction
� Auxiliary notions:

� τ maps a category to its target:

τ(A) = A if A ∈ VN

τ(x/y) = τ(x)

τ(x\y) = τ(x)

� c maps a category to its components:

c(A) = {A} if A ∈ VN

c(x/y) = c(x) ∪ {y}

c(x\y) = c(x) ∪ {y}

– p.18

From CCG to LIG

� Auxiliary notions:
� lexical components C:

C =
⋃

x∈rg(f)

c(x)

� translation tr from CCG categories to stacked LIG-categories:

tr(A) = A[] iff A ∈ VN

tr(x/y) = tr(x) + [/y]

tr(x\y) = tr(x) + [\y]

where A[z] + α = A[z, α]

– p.19

From CCG to LIG

Let G be a CCG. We will construct an LIG G′ which is weakly
equivalent to G.

� V ′
T = VT

� V ′
N = VN

� VS = {/x|x ∈ CG} ∪ {\x|x ∈ CG}

� for each ground instance of the secondary category in each
combinatory rule α, β → γ ∈ R:

tr(γ) → tr(α), tr(β) ∈ R′

� for each 〈α, x〉 ∈ f :
tr(x) → α ∈ R′

– p.20

Example: copy language

� CCG for copy language:
� lexicon

f(a) = {S\A/S, S\A,A}

f(b) = {S\B/S, S\B,B}

� combinatory rules:

y (x\y) → x

(x/S) (S\z) → (x\z)

(x/S) (S\z1/z2) → (x\z1/z2)

– p.21

Example: copy language

� corresponding LIG:

S[··] → A S[· · \A]

S[··] → B S[· · \B]

S[· · \A] → S[· · /S] S[\A]

S[· · \B] → S[· · /S] S[\B]

S[· · \A, /S] → S[· · /S] S[\A, /S]

S[· · \B, /S] → S[· · /S] S[\B, /S]

S[\A, /S] → a

S[\A] → a

A → a

S[\B, /S] → b

S[\B] → b

B → b

– p.22

From LIG to TAG

� basic intuition:
� LIG and TAG are analogous extensions of CFGs
� CFGs: set of paths in a tree language is a regular language
� LIGs/TAGs: set of paths is a context-free language
� LIG : TAG = pushdown automaton : CFG in rewrite form

– p.23

From LIG to TAG

� first step: normalize LIG
� in normal form LIGs, every rule pushes or pops at most one

item from the stack
� straightforward to show that each LIG can be normalized

(without changing the set of accepted strings)

– p.24

From LIG to TAG

Let G be a LIG.
� in an LIG derivation, stacks are born

� as empty stack at the root node of some derivation (S[])
� in the RHS of a rule (i.e. as a non-spinal daughter node)

� they die at the LHS of a lexical rule
� normalization: all stacks are born and die empty

– p.25

From LIG to TAG

The construction: Let G be a LIG. We want to construct an
equivalent TAG G′.

� V ′
N = VN ∪ VN × ((VS × {+,−}) ∪ {ε}) × VN

� idea: adjunction nodes are labeled with elementary stack
operations:
� input nonterminal
� transition type (no transition or pushing/popping one stack

symbol)
� output nonterminal

� start symbol remains the same

– p.26

From LIG to TAG

� initial trees:

A

[AεB]/OA

B

for all nonterminals A,B

� A → x′ for all rules A[] → x in R
where x′ is like x except that empty stacks are removed

– p.27

From LIG to TAG

� auxilary trees: for all nonterminals A,B,C,D and all stack
symbols a

[AεB]/NA

[AεC]/OA

[CεB]/OA

[AεB]/NA

[AεB]/NA

[A + aC]/OA

[CεD]/OA

[D − aB]/OA

[AεB]/NA

[AεA]/NA

– p.28

From LIG to TAG

� further auxiliary trees:
constructed from rules from G

A[· ·] → x B[··] y ; [AεB]/NA → x [AεB]/NA y

A[· ·] → x B[· · a] y ; [A + aB]/NA → x [A + aB]/NA y

A[· · a] → x B[··] y ; [A − aB]/NA → x [A − aB]/NA y

– p.29

From TAG to CCG

� first proved in Weir (1988)

� construction sketched here follows Vijay-Shanker and Weir
(1994) (ftp://ftp.cogs.sussex.ac.uk/pub/users/davidw/mst94.pdf)

� basic idea: corresondence between TAG and CCG operations
� substitution ∼ function application
� adjunction ∼ function composition

– p.30

From TAG to CCG

� footed tree (t, d):
� d is address of a leaf of tree t
� root of t and d(t) have same label
� spine: path from root to foot d

� normal form footed TAG trees (nfft):
� at most binary branching
� all internal nodes are either OA or NA
� all OA-nodes are either on the spine or sister of nodes on the

spine
� algorithm to transform nffts into CCG-categories:

– p.31

From TAG to CCG

Algorithm nfft (t, d) ; category
� pos = root of t

� label(root(t)) = A

� c = A or c = Â
(x 7→ x̂ is a bijection with range disjoint from VN ∪ VT)

– p.32

From TAG to CCG

� until you reach d, do:
� if the non-spine daughter of pos is a left daughter with label

B/OA,
c = c\B

� if the non-spine daughter of pos is a right daughter with label
B/OA,

c = c/B

� if the spine daughter of pos has the label C/OA

c = c/Ĉ

� pos = spine daughter of pos

– p.33

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S Ŝ

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A Ŝ\A

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A Ŝ\A

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D Ŝ\A/D

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ Ŝ\A/D/Ŝ

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ Ŝ\A/D/Ŝ

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B Ŝ\A/D/Ŝ\B

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B Ŝ\A/D/Ŝ\B

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B/C Ŝ\A/D/Ŝ\B/C

– p.34

From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B/C Ŝ\A/D/Ŝ\B/C

– p.34

From TAG to CCG

� 1-1 correspondence between nffts and corresponding categories
� in this fragment

� function application corresponds to substitution, provided the
substituted tree does only have NA-nodes

� function composition corresponds to adjunction provided the
yield of the adjoined tree is the empty string

� constraints can be enforced by using normal form TAGs

– p.35

From TAG to CCG

Normal Form TAG
� initial trees are of the form:

S is the start symbol, A is a non-terminal, w a terminal
S does not occur as non-foot leaf

S:OA

ε

A:NA

w

� auxiliary trees:
� binary branching
� all non-spine nodes are nonterminal leaves that are marked

as OA

Observation:

All TAGs can be transformed into equivalent normal form TAGs.
– p.36

From TAG to CCG

Normal form derivation:
� adjoined tree is always an elementary tree
� adjunction/composition strictly bottom up:

� the adjunction target does not dominate nonterminal leaves
� all nonterminals dominated by the adjunction target are

marked with NA
� if the sister of the adjunction target is marked with OA, this

sister is on the spine

Observation:

All trees that can be derived in a normal form TAG can be derived

in a normal form derivation.

– p.37

From TAG to CCG

The construction
Let G be a TAG in normal form. We construct an equivalent CCG G′.

� V ′
T = VT

� V ′
N = VN ∪ {Â|A ∈ VN}

� SG = SG′

� A ∈ f(w) iff the following is an initial tree of G:

A

a

� c ∈ f(ε) iff c is the result of transforming an auxiliary tree of G
into a CCG category according the the algorithm above

– p.38

From TAG to CCG

� rules of G′:
for each nonterminal A, each i ≤ n, where n is the maximal
length of a spine of an auxiliary tree in G, and each |j ∈ {\, /}

(x/A) A → x

A (x\A) → x

(x/Â)(. . . (Â|1z1)|2 . . . |izi) → (. . . (x|1z1)|2 . . . |izi)

– p.39

	Overview
	Overview
	Indexed Grammars
	Indexed Grammars
	Indexed Grammars
	Indexed Grammars
	Indexed Grammars
	Indexed Grammars
	Linear Indexed Grammar
	Linear Indexed Grammars
	From CCG to LIG
	Formal definition of CCG
	Formal definition of CCG
	Formal definition of CCG
	From CCG to LIG
	From CCG to LIG
	From CCG to LIG
	From CCG to LIG
	From CCG to LIG
	Example: copy language
	Example: copy language
	From LIG to TAG
	From LIG to TAG
	From LIG to TAG
	From LIG to TAG
	From LIG to TAG
	From LIG to TAG
	From LIG to TAG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG
	From TAG to CCG

