
An introduction to mildly context sensitive grammar
formalisms

— Combinatory Categorial Grammar —

Gerhard Jäger & Jens Michaelis

University of Potsdam

{jaeger,michael}@ling.uni-potsdam.de

– p.1



Basic Categorial Grammar

� developed by Bar-Hillel (1953)
� based on earlier work by Ajdukiewicz and others
� close correspondence between syntax and semantics
� fundamental notions: complete and incomplete expression
� also inherent in type theory and earlier versions of categorial

grammar
� new contribution: directionality of syntactic incompleteness

A/B ... I need a B to my right to become an A
A \ B ... I need a B to my left to become an A

Note: Type Logical CG uses different notational convention!

– p.2



Basic Categorial Grammar

example

Walter, Kevin : np

snores : s \ np

knows : (s \ np)/np

s

np

Walter

s \ np

snores

s

np

Walter

s \ np

(s \ np)/np

knows

np

Kevin

– p.3



Basic Categorial Grammar

categories can be complex:
� faintly : (s \ np) \ (s \ np)

� Kevin snores faintly

� s

np

Kevin

s \ np

s \ np

snores

(s \ np) \ (s \ np)

faintly

– p.4



Basic Categorial Grammar

recursion s

np

np/n

The

n

n/n

old

n

n/n

old

n

n/n

old

n

n/n

old

n

man

s \ np

snores

– p.5



Basic Categorial Grammar

syntactic and semantic composition
� (ideally:) syntactic and semantic incompleteness coincide
� syntactic composition concurs with semantic function application

s

FAINTLY’(λx.CALL’(x, KEVIN’))WALTER’

np

WALTER’

Walter

s \ np

FAINTLY’(λx.CALL’(x, KEVIN’))

s \ np

(λx.CALL’(x, KEVIN’))

(s \ np)/np

λyx.CALL’(x, y)

called

np

KEVIN’

Kevin

(s \ np) \ (s \ np)

FAINTLY’

faintly

– p.6



Basic Categorial Grammar

Definition 1 (Categories)
Let a finite set B of basic categories be given. CAT(B) is the
smallest set such that

1. B ⊆ CAT(B)

2. If A,B ∈ CAT(B), then A/B ∈ CAT(B)

3. If A,B ∈ CAT(B), then A \ B ∈ CAT(B)

4. Nothing else is in CAT(B)

Definition 2 ((Uninterpreted) Lexicon) Let an alphabet Σ and a
finite set B of basic categories be given. A BCG-lexicon LEX is a
finite relation between Σ+ (the set of non-empty strings over Σ) and
CAT(B).

– p.7



Basic Categorial Grammar

Rules of BCG

(x/y) y → x

y (x \ y) → x

– p.8



Basic Categorial Grammar

Definition 3 (BCG Grammar) Let an alphabet Σ be given. A BCG
grammar G is a triple 〈B,LEX,S〉, where B is a finite set (the basic
categories), LEX is a finite sub-relation of Σ+ × CAT(B), and S is a
finite subset of CAT(B) (the designated categories).

Definition 4 Let G = 〈B,LEX,S〉 be a BCG grammar over the
alphabet Σ. Then α ∈ L(G) iff there are a1, . . . , an ∈ Σ+,
A1, . . . , An ∈ CAT(B), and S ∈ S such that

1. α = a1 . . . an,

2. For all i such that 1 ≤ i ≤ n : 〈ai, Ai〉 ∈ LEX, and

3. A1, . . . , An →∗ S.

– p.9



Basic Categorial Grammar

Relation to CFGs
� weakly equivalent
� embedding BCG ; CFG is trivial (only finitely many instances of

the BCG rule schemata are needed for a given grammar; can be
interpreted as CFG rules)

� embedding CFG ; BCG difficult to prove (proved in Bar-Hillel,
Gaifman and Shamir 1960)

� embedding is straightforward though once you have the
Greibach Normal Form lemma

– p.10



Basic Categorial Grammar

Semantics
� semantic type of an expression is homomorphic image of its

syntactic category

Definition 5 (Category to type correspondence)
Let τ be a function from CAT(B) to TYPE. τ is a correspondence
function iff

τ(A \ B) = τ(A/B) = 〈τ(A), τ(B)〉

Definition 6 ((Interpreted) Lexicon) Let an alphabet Σ, a finite set
B of basic categories and a correspondence function τ be given. An
interpreted BCG-lexicon LEX is a finite sub-relation of

⋃

A∈CAT(B)

(Σ+ × {A} × EXPτ(A))

– p.11



Basic Categorial Grammars

semantically annotated rules

(x/y) : α, y : β → x : α(β)

y : β, (x \ y) : α → x : α(β)

– p.12



Combinators

coordination
� coordination is polymorphic

(1) John walked and Bill talked

(2) John walked and talked

(3) John loves and plays soccer
� general coordination scheme:

x and x → x

provided x is a Boolean category
� no syntax without semantics:

x : α and x : β → x : α ∩ β

– p.13



Combinators

quantifiers

(1) John walked and John talked ` John walked and talked

(2) Some man walked and some man talked 6` Some man walked
and talked

quantifiers cannot have type e, i.e. category np
good hypothesis: quantifiers have category s/(s \ np) and type
〈〈e, t〉, t〉

(4) John and somebody walked

Names and quantifiers are conjoinable
� Montague: names also have category s/(s \ np)

– p.14



Combinators

� alternative solution (Partee and Rooth 1983, among others):
Category of expressions can be changed in syntax!

� what is needed here:
x → y/(y \ x)

� called Type Lifting (abbreviated T>)
� usually restricted to few instances
� no syntax without semantics:

x : α → y/(y \ x) : λw.w(α)

– p.15



Combinators

coordination between names and quantifiers

John
lex

J’ : np
T>

λx.xJ’ : s/(s \ np)

somebody
lex

λP.∃xPx : s/(s \ np)
conj

λP.(P J’) ∧ ∃xPx : s/(s \ np)

walked
lex

WALK’ : s \ np
A>

(WALK’J’) ∧ ∃xWALK’x : s

– p.16



Combinators

right node raising
� coordination sometimes applies to apparent non-constituents

(5) John likes and Bill detests broccoli
� application of coordination scheme requires that John likes has

a single Boolean category
� solution: (forward) function composition B>

(x/y) (y/z) → (x/z)

� name suggests semantics:

(x/y) : α, (y/z) : β → (x/z) : λw.α(β(w))

– p.17



Combinators

� combination of lifting and composition gives desired result

John
lex

J’
np

T>

λx.xJ’
s/(s \ np)

likes
lex

LIKE’
(s \ np)/np

B>

λy.LIKE’yJ’
s/np

Bill
lex

B’
np

T>

λx.xB’
s/(s \ np)

detests
lex

DETEST’
(s \ np)/np

B>

λy.DETEST’yB’
s/np

Conj
λz.(LIKE’zJ’) ∧ (DETEST’zB’)

s/np

broccoli
lex

BROCCOLI’
np

A>

(LIKE’BROCCOLI’J’) ∧ (DETEST’BROCCOLI’B’)
s

– p.18



Combinators

Left node raising
� similar “non-constituent coordination” also possible in other

direction

(6) John introduced Bill to Sue and Harry to Sally.
� analogous treatment requires mirror images of combinators T>

and B>

� backward type lifting (T<)

x : α → y \ (y/x) : λw.w(α)

� backward function composition (B<)

x \ y : α, z \ x : β → z \ y : λw.β(α(w))

– p.19



Combinators

John
lex

J’
np

introduced
lex

INTRODUCE’
tvp/np

Bill
lex

B’
np

T<

λy.yB’
tvp \ (tvp/np)

to
lex

λx.x

pp/np

Sue
lex

SUE’
np

A>

SUE’
pp

T<

λw.wSUE’
vp \ (vp/pp)

B<

λu.(uSUE’B’)
vp \ (tvp/np)

Harry
lex

H’
np

T<
λy.yH’ : tvp \ (tvp/np)

to
lex

λx.x

pp/np

Sally
lex

SA’
np

A>
SA’ : pp

T<

λw.wSA’
vp \ (vp/pp)

B<

λu.(uSA’H’)
vp \ (tvp/np)

Conj
λuv.(uSUE’B’v) ∧ (uSA’H’v)

vp \ (tvp/np)
A<

λv.(INTRODUCE’SUE’B’v) ∧ (INTRODUCE’SA’H’v)

vp
A<

(INTRODUCE’SUE’B’J’) ∧ (INTRODUCE’SA’H’J’)
s

tvp abbreviates s \ np/pp

vp abbreviates s \ np

– p.20



Combinators

long distance movement

man who ate the apples
apples that the man ate

� lexical entry for relative pronoun

who, which, that := n \ n/(s \ np) : λQP.P (x) ∧ Q(x)
who(m), which, that := n \ n/(s/np) : λQP.P (x) ∧ Q(x)

– p.21



Combinators

man
lex

MAN’
n

who
lex

λQP.P (x) ∧ Q(x)

n \ n/(s \ np)

ate
lex

EAT’
s \ np/np

the
lex

λPιxP (x)

np/n

apples
lex

APPLES’
n

A>

ιxAPPLES’
np

A>

ATE’ιx.APPLES’x
s \ np

A>

λPx.Px ∧ ATE’(ιy.APPLES’y)x

n \ n
A<

λx.MAN’x ∧ ATE’(ιy.APPLES’y)x

n

– p.22



Combinators

apples
lex

APPLES’
n

that
lex

λQP.P (x) ∧ Q(x)

n \ n/(s/np)

the
lex

λPιxP (x)

np/n

man
lex

MAN’
n

A>

ιxMAN’
np

T>

s/(s \ np)

λR.R(ιx.MAN’x)

ate
lex

EAT’
s \ np/np

B>

s/np

λx.EAT’x(ιy.MAN’y)
A>

λPx.Px ∧ ATE’x(ιy.MAN’y)

n \ n
A<

λx.APPLES’x ∧ ATE’(ιy.MAN’y)x

n

– p.23



Combinators

relativization
� object relativization in principle unbounded
� can be modeled via repeated forward function composition

a man [who]n\n/(s\np) [(suspects that Chapman) will eat the apples]s\np

the apples [that]n\n/(s/np) [Keats (suspects that Chapman) will eat]s\np

– p.24



Combinators

ECP effects
� extraction of embedded subjects impossible

a man who [I think that]s/s [Keats likes]s/np

*a man who [I think that]s/s [likes Keats]s\np

� likewise, adjuncts are extraction islands

*a book that Peter died without knowing
� neither extraction can be derived with forward or backward

composition and type lifting

– p.25



Combinators

non-peripheral extraction
� object gap need not be located at right periphery

packages [which I sent and which you carried]n\n/pp to Philadelphia

people [whom I begged and whom you persuaded]n\n/vp to take a
bath

� requires more complex lexical categories for relative pronoun,
like

n \ n/pp/(s/pp/np)

� can be schematized to

n \ n/$/(s/$/np)

for a small set of possible values of $

� values of $ may be sequences of arguments
– p.26



Combinators

� also requires generalization of B:

x/y : α, y/z1/ · · · /zn : β → x/z1/ · · · /zn : λw1 · · ·wn.α(β(wn) · · · (w1))

x\y1\· · ·\yn : α, z\x : β → z\y1 · · ·\yn : λw1 · · ·wn.β(α(wn) · · · (w1))

– p.27



Combinators

Pied piping
� extracted element need not be an wh-phrase
� can also be a complex NP/PP containing a wh-phrase

a report the cover of which Keats (expects that Chapman) will design

a subject on which Keats (expects that Chapman) will speak

a report the height of the lettering on the covers of which the
government prescribes

� lexical entry for relative pronoun in pied-piping construction:

n \ n/(s/np) \ (np/np)

λfPQx.Qx ∧ P (fx)

– p.28



Combinators

� argument passing (via composition) inside the pied-piped phrase
works as in previous examples

� therefore same island constraints for both kinds of unbounded
dependencies

*a report [[a man who knows the woman that wrote]np/np

which]n\n/(s/np) Keats met

– p.29



Combinators

Heavy NP Shift and Crossed Composition

� order of post-verbal material in English rather free

John put the book on the table

John put on the table an extremely heavy book which seemed to be
made of stone

� sometimes considered an extra-grammatical phenomenon
� participates in coordination though

John [put on the table]s\np/np and [opened]s\np/np an extremely heavy

book which seemed to be made of stone

– p.30



Combinators

� can be handled with crossed backward function composition
B

×
<

x/y, z \ x → z/y

� semantics as in harmonic (=non-crossed) function composition

– p.31



Combinators

John
lex

np

put
lex

s \ np/pp/np

on
lex

pp/np

the
lex

np/n

table
lex

n
A>

np
A>

pp
T<

s \ np \ (s \ np/pp)
B

×
<s \ np/np

Principia
lex

np
A>

s \ np
A<

s

– p.32



Combinators

� effect of B
×
<:

� “forward looking gaps” (/np) can originate from any linear
position

� “backward looking gaps” (\np) must be left peripheral
� seems to cover subject/object asymmetry in English correctly
� crossed forward composition would have mirror-image like

effect
x/y, y \ z → x \ z

– p.33



Combinators

man
lex

n

who
lex

n \ n/(s \ np)

I think that
...

s/s

likes Keats
...

s \ np
B

×
>s \ np

A>
n \ n

A<
n

– p.34



Combinators

Dutch

� recall the Dutch/Swiss German cross-serial dependencies

dat Jan Marie Pieter Arabisch laat zien schrijven
THAT JAN MARIE PIETER ARABIC LET SEE WRITE

‘that Jan let Marie see Pieter write Arabic’
� can be dealt with using a generalized version of B

×
>

x/y, y \ z/w → x \ z/w

– p.35



Combinators

� Lexion
� Jan, Marie, Pieter, Arabisch := np
� laat := s \ np \ np/vpi
� zien := vpi \ np/vpi
� schrijven := vpi \ np

– p.36



Combinators

Jan
lex

np

Marie
lex

np

Pieter
lex

np

Arabisch
lex

np

laat
lex

s \ np \ np/vpi

zien
lex

vpi \ np/vpi
B

×
>s \ np \ np \ np/vpi

schrijven
lex

vpi \ np
B

×
>

s \ np \ np \ np \ np
A<

s \ np \ np \ np
A<

s \ np \ np
A<

s \ np
A<

s

– p.37



Combinators

� how do we prevent derivation of the (ungrammatical)

dat Jan Marie laat Pieter zien Arabisch schrijven
� solution:

� availability of combinatorial rules is cross-linguistically
parameterized

� English has B
×
< while Dutch has B

×
> etc.

� furthermore, instances of combinatorial rules may be
restricted for a particular language

� Dutch: forward application

(x/y), y → x

is only licit if the first atom in y 6= vpi

– p.38



Conclusion

� main features of CCG
� strong connection between syntax and semantics
� strictly compositional
� mono-stratal
� (almost) lexicalized

� differences to other versions of Categorial Grammar
� language specific parametrization of combinatory rules
� language specific parametrization of rule instances

– p.39


	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammar
	Basic Categorial Grammars
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Combinators
	Conclusion

