TGA: a web tool for Time Group Analysis Dafydd Gibbon

Universität Bielefeld, Germany

Requirements specification

- Annotation mining is the extraction of information from annotations, e.g. Praat TextGrids.
- In <u>speech technology</u>, annotated data are generally mined (semi-)automatically and efficiently.
- In <u>phonetics</u>, manual mining (with Praat visualisations) or semi-manual mining (with Praat TextGrid files), plus spreadsheet calculations, is common, but inefficient.
- The Time Group Analyser is <u>designed to support</u> phoneticians by performing a wide range of relevant

Summary statistics:

Summary table of global and accumulated TG duration functions (some do make sense) Time Group criterion: <u>pausegroup,</u> local threshold: <u>10,</u> Min valid TG length: <u>2</u> Only inter-pause intervals measured; pauses not included						
Overall duration:	6070	Overall raw longer, ms:	1510	Overall raw shorter, ms:	1410	
Overall min:	50.00	Overall max:	500.00	Overall range:	450.00	
Valid Time Groups:	4	Overall rate/sec:	5.11			
Components: global	tendencie	8				
Overall mean:	195.81	Overall median:	160.00	Overall SD:	102.26	
Overall npvi:	54.00	Overall intercept:	192.18	Overall slope:	0.24	
Mean of means:	196.00	Median of means:	194.50	SD of means:	23.89	
Mean of medians:	187.50	Median of medians:	170.00	SD of medians:	43.95	
Mean of SDs:	93.25	Median of SDs:	89.12	SD of SDs:	18.97	
Mean of nPVIs:	58.00	Median of mnPVIs:	52.00	SD of nPVIs:	5.59	
Mean of intercepts:	154.94	Median of intercepts:	137.78	SD of intercepts:	56.84	
Mean of slopes:	7.52	Median of slopes:	9.90	SD of slopes:	14.97	

computational tasks:

- a) extract <u>durations</u> from TextGrids to table format,
- b) calculate basic <u>descriptive statistics</u>, slope, *nPVI* ...,
- c) construct <u>novel visualisations</u> of timing structure:
- iambic/trochaic <u>Difference Tokens</u> for study of rhythm,
- Time Trees for comparison with language structure.

Design and implementation*

Components: correlations								
mean::TGdur:	0.384	median::TGdur:	-0.296	SD::TGdur:	0.935			
nPVI::TGdur:	-0.623	slope::TGdur:	0.875	intercept::TGdur:	-0.762			
nPVI::mean:	0.408	slope::mean:	-0.020	intercept::mean:	0.288			
nPVI::median:	0.931	slope::median:	-0.710	intercept::median:	0.832			
nPVI::SD:	-0.317	slope::SD:	0.666	intercept::SD:	-0.483			

Difference Token Patterns and Time Tree Induction:

$ \langle \ / \ \rangle \ / \ \rangle \ \rangle = \langle \ $ 'mO: 'nju:z @ 'baUt D@ 're vr@n 'sVn 'mjVN 'mu:n $ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	'mO::160 'nju:z:330 @:60 'baUt:150 D@:100 're:160 vr@n:210 'sVn:290 'mjVN:290 'mu:n:500 PAUSE :117 # iambicTTgt: (('mO: 'nju:z) ((((@ 'baUt) ((D@ 're) vr@n)) 'sVn) ('mjVN 'mu:n))) iambicTTgte: ('mO: 'nju:z @ 'baUt D@ 're vr@n ('sVn 'mjVN) 'mu:n PAUSE) trochaicTTIt: (('mO: ('nju:z @)) ('baUt D@) ('re (vr@n ('sVn ('mjVN ('mu:n PAUSE))))))) trochaicTTIte: ('mO: 'nju:z @ 'baUt D@ 're vr@n 'sVn 'mjVN 'mu:n PAUSE)
$\begin{bmatrix} / / / / / / / / / / / / / / / / / / /$	'faUn:260 d@:80 r@v:50 D@:170 ,ju::140 nI:80 fI:140 'keI:160 Sn:260 'tS3:tS:360 PAUSE:184 # <u>iambicTTgt</u> : ('faUn (((d@ (r@v D@)) ((ju: ((nI fI) 'keI)) Sn)) 'tS3:tS))) <u>iambicTTgte</u> : ('faUn d@ r@v D@ ju: nI fI 'keI Sn 'tS3:tS PAUSE) <u>trochaicTTIt</u> : ((('faUn d@) r@v) ((D@ ju:) nI) fI 'keI (Sn ('tS3:tS PAUSE)))) <u>trochaicTTIte</u> : ('faUn d@ r@v D@ ju: nI fI 'keI Sn 'tS3:tS PAUSE)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'hu:z:260 'kV:110 r@nt:160 II:90 In:150 'dZeII:280 PAUSE:30 # iambicTTgt: ('hu:z (('kV r@nt) ((II In) 'dZeII)))) iambicTTgte: ('hu:z 'kV r@nt II In 'dZeII PAUSE) trochaicTTlt: (((('hu:z 'kV) (r@nt II)) (In ('dZeII PAUSE))))) trochaicTTIte: ('hu:z 'kV r@nt II In 'dZeII PAUSE) f@:280 't{ks:290 I:60 'veI:180 Zn:260 PAUSE:674 #
f@ 't{ks I 'veI Zn	iambicTTgt: (f@ ('t{ks (((I 'veI) Zn) PAUSE))) iambicTTgte: (f@ 't{ks I 'veI Zn PAUSE)

syllable props, pausal group stats, *Diff Tokens*, Time Trees, <u>-CSV</u> for further processing.

Samples of output type (from Aix-MARSEC) Text extraction:

'mO: 'nju:z@ 'baUt D@ 're vr@n 'sVn 'mjVN 'mu:n 'faUn d@ r@v D@ ,ju: nI fI 'keI Sn 'tS3:tS 'hu:z 'kV r@nt lI In 'dZeIl f@ 't{ks I 'veI Zn

Syllable duration properties:

Duration properties (syllables) Attributes Values Attributes Values

trochaicTTlt: ((f@, ('t{ks I)) 'veI Zn PAUSE) trochaicTTlte: (f@ 't{ks I 'vel Zn PAUSE)

Token *n*-gram distribution:

Difference unigram ranks and counts (n=35): 1.[46%(16):] 2.[26%(9):] 3.[11%(4):] 4.[11%(4):] 5.[6%(2):]Difference digram ranks and counts (n=31): $1.[23\%(7):\] 2.[23\%(7):\] 3.[13\%(4):\] 4.[13\%(4):\] 5.[6\%(2)://] 6.[6\%(2):/] 6.[$ (2):+/] 7.[3%(1):\=] 8.[3%(1):=\] 9.[3%(1):=/] 10.[3%(1):+\] 11.[3%(1):+=] **Difference trigram ranks and counts (n=27) 1.**[15%(4):/\\] **2.**[11%(3):\\\] **3.**[11%(3):\\#] **4.**[11%(3):\\] **5.**[11%(3):/\] **6.** [7%(2)://] 7.[4%(1):/=] 8.[4%(1):/=] 9.[4%(1)://] 10.[4%(1):=/#] 11.[4%(1):=/#](1):= 12.[4%(1):+] 13.[4%(1):+=] 14.[4%(1):+] 15.[4%(1):+]Difference quadgram ranks and counts (n=23) $1.[9\%(2):\sqrt{}] 2.[9\%(2):/(\sqrt{}] 3.[9\%(2):/(\sqrt{}] 4.[9\%(2):/(\sqrt{}] 5.[4\%(1):/(\sqrt{}] 6.[4\%)]$ $(1):\\ 7.[4\%(1):\\ 8.[4\%(1):\] 9.[4\%(1):\] 10.[4\%(1):\] 11.[4\%)$ $(1): \sqrt{1} 12.[4\%(1):=/\sqrt{1} 13.[4\%(1):/\sqrt{1} 14.[4\%(1):/\sqrt{1} 15.[4\%(1):/\sqrt{1} 16.$ $[4\%(1):+\sqrt{}]$ 17. $[4\%(1):+=\sqrt{}]$ 18. $[4\%(1):+/\sqrt{}]$ 19. $[4\%(1):+/\sqrt{}]$ Difference quingram ranks and counts (n=19) **1.**[11%(2):///\] **2.**[5%(1):\\\#] **3.**[5%(1):\\=\] **4.**[5%(1):\\=\#] **5.**[5%(1):\/\\] 6.[5%(1):VV] 8.[5%(1):VV] 8.[5%(1):VV] 9.[5%(1):=VV] 10.[5%(1):VVV]11.[5%(1):/()= 12.[5%(1)://()] 13.[5%(1):/()] 14.[5%(1):/()] 15.(1):+///] **16.**[5%(1):+=///] **17.**[5%(1):+///] **18.**[5%(1):+///]

Applications in timing analysis Comparison of measures in Aix-MARSEC genres:

<i>n</i> :	31	intercept:	192.177
min:	50	slope:	0.242
max:	500	std:	102.258
mean:	195.81	nPVI:	54
median:	160.0	rPVI:	97
total:	6070	100*rPVI/med:	61
range:	450	nPVI*med/100:	86
		P	

See also Yu (TRASP 2013) for application to Mandarin varieties. <u>Conclusion</u>: TGA tool facilitates efficient timing analysis.

TRASP 2013, Aix-en-Provence

*http://wwwhomes-uni-bielefeld.de/gibbon/TGA