Prosody: speech rhythms and melodies

5. The Prosody of Sentences and Words

Dafydd Gibbon

Summer School Contemporary Phonology and Phonetics Tongji University 9-15 July 2016

Shanghai Summer School 2016

The syntax (= structure) of prosody

- The forms of a <u>language</u> (morphemes, words, sentences, ...) are described by a <u>grammar</u>.
- The components of a <u>grammar</u>: <u>Vocabulary</u> (Lexicon, Dictionary, Inventory)
 - List of items (phonemes, morphemes, words, idioms, ...)
 - Set of paradigmatic (classificatory, similarity) relations

<u>Constructor</u> (Rule system, Constraint system)

- Generator / Parser (creation and analysis of structures)
- Set of syntagmatic (compositional) relations

The syntax (= structure) of prosody

- Compositional operations in prosody:
 - Sequencing:
 - concatenation of tokens (cf. standard phonologies & grammars)
 - Parallelism:
 - synchronisation; overlap (cf. autosegmental phonology)
 - Grouping:
 - generalisation; domain (cf. metrical phonology)
- These operations are interpreted in terms of temporal relations

Formal Foundations of Prosody: Event logics

• Event relations such as the following (symbols modified):

Precedence: $A \prec B$ Immediate Precedence: $A \wedge B$ Overlap: $A \circ B$ Include: $A \supset B$

Ontological decision:

- points?
- intervals?

Think of the interval tiers and point tiers in Praat TextGrids.

Event Phonology (Steven Bird; Julie Carson-Berndsen)

Shanghai Summer School 2016

Formal Foundations of Prosody: Allen's Interval Algebra

	Relation	Illustration	Interpretation		
	X < Y $Y > X$	<u> </u>	X takes place before Y		
	XmY YmiX	XY	X meets Y (i stands for inverse)		
	X o Y Y oi X	X Y	X overlaps with Y		
	X s Y Y si X	X Y	X starts Y		
	X d Y Y di X	<u> </u>	X during Y		
	X f Y Y fi X	<u>X</u> <u>Y</u>	X finishes Y		
Shanghai S	X = Y	<u>X</u> <u>Y</u>	X is equal to Y		

An apparently simple question:

IF PROSODY MARKS GRAMMATICAL STRUCTURES,

CAN PROSODY MARK RECURSION?

First: sequences

and a scale of formal grammars

A complexity scale of formal grammars

A complexity scale of formal grammars

A complexity scale of formal grammars

Shanghai Summer School 2016

Recursivity and the hierarchy of formal grammars

This is the dog that chased the cat that ate the mouse ... Right-branching linear recursion / iteration.

If the man who John met goes home then Jane will smile Centre-embedding hierarchical recursion.

June, Jane and Jean love Mick, Dick and Nick, respectively Recursive cross-serial dependency.

twin cylinder over head cam shaft motor bike

Mismatch between linear syntagmatic and hierarchical hermeneutic recursion.

Confusion in the 'recursion' / 'merge' discussion!

Note that hierarchies *per se* are defined recursively at an abstract level, but they do not necessarily represent recursivity!

Shanghai Summer School 2016

- A general definition of a branching structure is recursive in the mathematical sense:
 - branching nodes

dominate branching nodes

dominate branching nodes ...

- until leaf nodes are reached

• Not every branching structure in linguistics is recursive in this mathematical sense:

If a symbol in a tree recurs lower down in the tree

- then the tree is <u>recursive</u> and may be <u>arbitrarily deep</u> and a set of such trees in principle requires infinite memory
- otherwise the tree is <u>not recursive</u>, <u>fixed finite depth</u> and only requires finite memory:

the <u>Prosodic Hierarchy</u> with the <u>Strict Layering Hypothesis</u> simple sentences and simple phrases syllables

. . .

- Grammars which only require finite memory generate
 - either non-recursive trees of finite depth
 - unilaterally right or left branching recursive trees

can easily be modelled as 'flat grammar' by means of finite state automata

- $S \rightarrow john VP$
- $VP \rightarrow laughed$

 $VP \rightarrow said that S$ John said that John said that ... John laughed

- Grammars which only require finite memory generate
 - either non-recursive trees of finite depth
 - unilaterally right or left branching recursive trees

and can easily be modelled as 'flat grammar' by means of finite state machines

• Linear recursion (left or right branching, not both)

{the car, Jim's car, Jim's dad's car, Jim's dad's mate's car, ...}

Left-branching: $A \rightarrow B car$, $B \rightarrow B \{ dad's, mate's \}$, $B \rightarrow \{ the, Jim's \}$ Right-branching: $A \rightarrow \{ the, Jim's \}$ B, $B \rightarrow \{ dad's, mate's \}$ B, $B \rightarrow car$

• Equivalent to iteration (flat recursion):

- Jim's (dad's, mate's)* car

• Linear recursion (left or right branching, not both)

{the car, Jim's car, Jim's dad's car, Jim's dad's mate's car, ...}

Left-branching: $A \rightarrow B car$, $B \rightarrow B \{ dad's, mate's \}$, $B \rightarrow \{ the, Jim's \}$ Right-branching: $A \rightarrow \{ the, Jim's \}$ B, $B \rightarrow \{ dad's, mate's \}$ B, $B \rightarrow car$

• Equivalent to iteration (flat recursion):

- Jim's (dad's, mate's)* car

• Tree structures are not necessary, but helpful for semantic interpretation and/or information structure:

Shanghai Summer School 2016

• Linear recursion (left or right branching, not both)

Shanghai Summer School 2016

• Linear recursion (left or right branching, not both)

This simple grammar, a finite state machine represented as a transition diagram, is compatible with both left and right branching grammars

Shanghai Summer School 2016

- Centre-embedding recursion has different properties:
 - Logical centre-embedding:
 - if then
 - (why -) because
 - Descriptive centre-embedding:
 - relative clauses (restrictive, non-restrictive)
 - The man whose brother, who married Jane, is a doctor is a teacher.
 - Declarative centre-embedding:
 - Indirect speech:
 - That what I said is true is obvious.
 - Parenthetic centre-embedding:
 - Rosie's birthday, by the way, was last Tuesday.
 - Last Tuesday, which, by the way, was Rosie's birthday, I left.

- Centre-embedding recursion
 - is rarely necessary at the level of language forms: replaceable by a linear sequence of flat forms with pointers – delegated to semantics and thus to general cognitive processes

Try to find an intonation which marks the structure of this sentence!

If, if it rains tomorrow then we'll visit the museum, then, if it rains the day after then we'll go to the art gallery, ok?

- Centre-embedding recursion:
 - is rarely necessary at the level of language forms: replaceable by a linear sequence of flat forms with pointers – delegated to semantics and thus to general cognitive processes

Try to find an intonation which marks the structure of this sentence!

If, as you say, if it rains tomorrow then we'll visit the museum, then, please listen closely, if it rains the day after then we'll go to the art gallery, ok?

- Centre-embedding recursion:
 - is rarely necessary at the level of language forms: replaceable by a linear sequence of flat forms with pointers – delegated to semantics and thus to general cognitive processes
 - *Try to find an intonation which marks the structure of this sentence!*

If, as you say,

if it rains tomorrow then we'll visit the museum,

then, please listen closely,

if it rains the day after then we'll go to the art gallery, ok?

a "structure-marking" strategy

- Centre-embedding recursion:
 - is rarely necessary at the level of language forms: replaceable by a linear sequence of flat forms with pointers – delegated to semantics and thus to general cognitive processes

Try to find an intonation which marks the structure of this sentence!

You said, if it rains tomorrow we'll visit the museum. So if it rains the day after, we'll go to the art gallery, ok?

a "de-embedding" strategy

- Centre-embedding recursion:
 - is heardly become a real of leasenees of arbitrary depth are a real problem for prosodic marking, which only works to a depth of about 2 or 3.
 C This is not an accident, and affects more than prosody.
 Try Even with the memory enhancement of written language, centre-embedded constructions with depth more than 2 or 3 are very difficult to understand.

a "de-embedding" strategy

- In fact marking any kind of hierarchy with prosody is a problem, beyond depth 2 or 3
 - stress levels are usually limited to 2 or 3 (primary, secondary, unstressed)
 - Bierwisch and others criticised unlimited derivation of stress levels from generative gramar hierarchies:

26

An apparently simple question:

IF PROSODY MARKS GRAMMATICAL STRUCTURES,

CAN PROSODY MARK RECURSION?

The answer:

FLAT, ITERATIVE RECURSION – NO PROBLEM.

CENTRE-EMBEDDED RECURSION – LIMITED DEPTH

Shanghai Summer School 2016

Syntagmatic structure of English intonation:

Pierrehumbert's Finite Machine Model

Shanghai Summer School 2016

Shanghai Summer School 2016

Gibbon: Prosody

Shanghai Summer School 2016

The finite depth grammar of the Prosodic Hierarchy

Prosodic Category inventory:

PC = {Utt, IP, PhP, PrWd, omega, Ft phi, syll, mora, segment}

Prosodic Hierarchy ordering:

L = <Utt, IP, PhP, PrWd, omega, Ft phi, syll, mora, segment>

11 = Utt, 12 = IP, ... 19 = segment

Structural constraints on Pros

Strict Layering Hypothesis:

PC at L_i dominates only PC at L_{i+1}i

But iterative recursion at the same rank is ok.

- Fixed depth (no recursion): No PC at L_i dominates a PC at L_{i+1}
- Exhaustivity: All PCs at L_i are dominated by a single PC at L_{i-1}

Headedness:

– Every PC at L_i immediately dominates a PC at L_{i+1}

Shanghai Summer School 2016

(a popular topic these days)

from the point of view of a computational linguist

Shanghai Summer School 2016

- In fact marking any kind of hierarchy with prosody is a problem, beyond depth 2 or 3
 - stress levels are usually limited to 2 or 3 (primary, secondary, unstressed)
 - Bierwisch and others criticised unlimited derivation of sentence and word stress levels from generative gramar hierarchies:

Shanghai Summer School 2016

- In fact marking any kind prosody is a problem, be for the Nuclear Stress Rule:
 - stress levels are usually lir starting at the root: secondary, unstressed)
 - Bierwisch and others critic sentence and word stress hierarchies:

for each path to a leaf: stress level = number of nodes to before the first strong node (if any)

Shanghai Summer School 2016

•	In fact marking any kind	Equivalent bracket-counting
	prosody is a problem, be	left-right algorithm for the Nuclear Stress Rule:

- stress levels are usually lir set counter to 1: secondary, unstressed)
- Bierwisch and others critic if item is left bracket: sentence and word stress hierarchies:

R: root s: strong w: weak

```
counter = counter + 1
if item is right bracket:
  counter = counter - 1
if item is leaf:
  if previous item = left bracket:
    stress = counter
  if next item = right bracket:
     stress = counter - 1
```

(((the

man)

(in

(the

car)))(saw

Shanghai Summer School 2016

Equivalent bracket-counting • In fact marking any kind left-right algorithm for the prosody is a problem, be **Nuclear Stress Rule:** stress levels are usually lir set counter to 1: secondary, unstressed) Bierwisch and others critic if item is left bracket: counter = counter + 1sentence and word stress if item is right bracket: hierarchies: and others cri counter = counter -1 stress levels from generati if item is leaf: R: root if previous item = left bracket: s: strong stress = counter w: weak if next item = right bracket: stress = counter - 1

4

(((the

3

man)

Gibbon: Prosody

5

(the

4

(in

3

car)))(saw

Mary))

Syntagmatic structure of English intonation:

Pierrehumbert's Finite Machine Model

Shanghai Summer School 2016

Shanghai Summer School 2016

Gibbon: Prosody

Shanghai Summer School 2016

The finite depth grammar of the Prosodic Hierarchy

Prosodic Category inventory:

PC = {Utt, IP, PhP, PrWd, omega, Ft phi, syll, mora, segment}

Prosodic Hierarchy ordering:

L = <Utt, IP, PhP, PrWd, omega, Ft phi, syll, mora, segment>

11 = Utt, 12 = IP, ... 19 = segment

Structural constraints on Pros

Strict Layering Hypothesis:

PC at L_i dominates only PC at L_{i+1}i

But iterative recursion at the same rank is ok.

- Fixed depth (no recursion): No PC at L_i dominates a PC at L_{i+1}
- Exhaustivity: All PCs at L_i are dominated by a single PC at L_{i-1}

Headedness:

– Every PC at L_i immediately dominates a PC at L_{i+1}

Shanghai Summer School 2016

Prosodic grammar – tone sandhi

Downstep, upstep in Niger-Congo tone systems

Tem (ISO 639-3 *kth*) as a clear case example:

- Phonetic interpretation of Tem tone sequences:
 - inventory of 2 tones, H and L
 - L H: partial automatic downstep producing terracing
 - H L: complete automatic upstep
 - L semiterrace sequences: quasi-constant low
 - Initial H, L: extra high, extra low, respectively
 - Notation:
 - Underlying tone categories: upper case (H, L)
 - Surface *phonetic pitch categories*: lower case (h, !h, l, ^l)

Thus, in a traditional notation:

 $H \rightarrow !h / L$ (terrace restart by automatic partial downstep) L \rightarrow ^l / H (semiterrace extension by automatic total upstep)

					· ·				
Н	L	Н	Н	L	L	L	н	L	L
h	!!	^h	h	!!	I	I	!h	<u>^ </u>	I

Shanghai Summer School 2016

Shanghai Summer School 2016

So how does this work?

Shanghai Summer School 2016

So how does this work? Your turn!

Shanghai Summer School 2016

So how does this work?

- 1. Start at the start node with an input string of tones and an empty output string.
- 2. Choose an arrow with a left-hand symbol which matches the next input tone.
 - 1. Add the right-hand tone to your output string.
 - 2. Continue to the next input tone and the node at the end of the arrow.
- 3. When the last input tone has been successfully dealt with in this way, then if you are at an end node you have finished.
- Otherwise the model is rubbish and you need to revise it! :) Shanghai Summer School 2016 Gibbon: Prosody

Downstep, upstep in Niger-Congo tone systems

Sino-Tibetan tone Kuki-Thadou

"monkey big"

File Edit Query View Select Interval Boundary Tier Spectrum Pitch Intensity Formant Pulses

Shanghai Summer School 2016

Shanghai Summer School 2016

Sino-Tibetan tone: Tianjin Mandarin

Tone sandhi in Chinese tonal systems: Tianjin Mandarin

Jansche, M. 1998. A Two-level Take on Tianjin Tone. In: I. Kruij-Korbayova, ed. *Proceedings of the Third ESSLLI Student Session*. Chapter 12. Shanghai Summer School 2016 61

Tone sandhi in Chinese tonal systems: Tianjin Mandarin

 Sorry, can't give you any more information than this, but I can let you have the article by Martin Jansche :) Summary: what you should know about by now

- Prosodic grammar:
 - different notations for transcribing and visualising prosody
 - different models for representing the structure of prosody
 - different patterns for typologically different languages