
 1 Rhythm in a Semiotic Framework 

 Rhythms in music and language are semiotic events: regularly repeated 
structured temporal patterns of human experience in performing and 
perceiving music, dance and speech, and, more metaphorically, to events 
of non-human origin such as animal sounds, and to regularly repeated 
spatial patterns in the visual arts and in the dynamics of natural phe-
nomena. The aim of the present chapter is to examine the frequencies 
of speech rhythms in the newly developed framework of Rhythm Zone 
Theory (RZT), and to illustrate a possible application domain in the field 
of foreign language fluency assessment, using two non-fluency markers 
derived from RZT. These two aspects of theory and practice relate to two 
of the main research interests  amicae optimae laudataeque libri huius . 
This work is exploratory and concerned with methodological issues; the 
case study is illustrative of the method rather than primarily evidential. 
The background to the work is formulated in Time Type Theory (Gib-
bon 1992,  2006 ;  Gibbon & Griffiths 2017 ), which provides an ontol-
ogy of four linguistically relevant time concepts: (1)  abstract categorial 
time , as in duration contrasts between long and short vowels; (2)  abstract 
relational (‘rubber’) time , as in the sequential and hierarchical relations 
postulated in linguistic descriptions; (3)  clock time , as in measurements 
of time points and intervals in a speech signal and (4)  cloud time , as in 
the intuitively perceived timing of actual utterances as they are made. The 
present chapter is concerned with clock time. 

 From a semiotic point of view, rhythms have functional, formal and 
physical characteristics: functions in communication, forms as sequences, 
hierarchies and parallel streams and physical characteristics in the move-
ments of a musician or in the movements of the organs of speech in the 
vocal tract. In the long history of the scientific treatment of rhythms, the 
complex interactions of the three semiotic principles of function, form 
and physics have often, intuitively, been taken to reflect emotions associ-
ated with rhythmical aspects of human behaviour and perception, such 
as faster and slower breathing, heartbeats or limb movements which are 
determined by the properties of human anatomy and physiology. The 
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literature on these topics is legion, and the present chapter focuses only 
on a very small part of this literature. 

 The functional aspects of rhythms are perhaps the most complex and 
the least researched: the importance of rhythms as cohesive means of 
framing speech and music into coherent, manageable information pat-
terns is perhaps most obvious in speech, and the emotional heartbeats of 
rhythm are perhaps most obvious in music, but rhythms in both speech 
and music share cohesive and emotional functions. A more general func-
tionality of rhythm is described in a thought experiment of whether there 
could be a world with time as its only dimension ( Strawson 1959 ), in 
which dynamic changes in amplitude (and thus also rhythms) may be 
interpreted as approaching and disappearing sound source objects. 

 The formal characteristics of rhythms are linear and hierarchical patterns 
of sounds in time. In linguistics, particularly in the phonology of sentences 
and words, there is an extensive field of research in modelling these patterns, 
most clearly represented in the  nuclear stress rule  and the  compound stress 
rule  of generative phonology (after Chomsky & Halle 1968), the  metrical 
grid  (after Liberman & Prince 1977), the  prosodic hierarchy  (Selkirk 1984), 
 beats and binding  (Dziubalska-Kołaczyk 2002) and other variants of and 
successors to generative phonology. In linguistic studies a certain scepticism 
about phonetic studies of rhythm reigns, suggesting that rhythms are pri-
marily cognitive constructs, or even not identifiable in physical terms at all. 

 The physical characteristics of rhythms are found in the dynamics of 
the production of sounds with musical instruments and the voice, and 
in the perception of these sounds. In musicology and in phonetics, there 
have been many approaches to capturing, describing and explaining the 
physical characteristics of rhythm. In phonetics, much effort has been 
spent on investigating ‘the’ rhythm of a language, dialect or idiolect with 
various phonetic methods, for instance by investigating repeated tem-
poral patterns aligned with syllables and words. These studies have not 
been particularly successful, and many have relied on human filtering 
of the speech signal through the procedures of manual annotation (and 
automatic annotation, i.e., annotation by supervised machine learning 
involving bootstrapping with manual annotations). More success has 
been achieved by studies of rhythms as oscillations (see Section 3). 

 A terminological clarification is necessary at this point. Speech involves 
approximate frequency ranges of three different types, of which only the 
first is relevant for the present study: 

 1. From 0 Hz . . . 20 Hz: the domain of the varying frequencies and their 
phases which characterise the rhythms of speech sounds, syllables, 
words, phrases and larger discourse units, which determine the low fre-
quency outline (the  amplitude envelope ) of the speech signal; events in 
this frequency range are perceived as separate beats rather than as tones. 

 2. 80 Hz .  .  . 400 Hz (adult male and female voices): the domain of 
the  fundamental frequency  of the voice, which relates to tones, pitch 
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accents and intonation, the domain usually shown in F0 tracks, 
‘pitch’ tracks; in this frequency range, events are perceived as tones. 

 3. 80 Hz .  .  . 4000 Hz: the domain of the  spectral formants  shaped 
by the oral and nasal cavities of the vocal tract, which characterise 
vowels and consonants and voice quality, the domain usually shown 
in spectrograms; particularly in the mid and upper sections of this 
frequency range, events are perceived as sound qualities. 

 The following sections concentrate on these temporal physical char-
acteristics, and show that ‘the’ rhythm of a language is best not thought 
of as ‘the’ rhythm at all: there are many rhythms, in different temporal 
domains, and each of the rhythms is highly variable both in frequency and 
in phase. The physical characteristics of speech rhythms are measurable 
and visualisable using signal processing methods, also in neurophysiologi-
cal domains. Finally, an application of this recent methodology in a practi-
cal field will be demonstrated: the capturing of temporal non-fluency in 
readings by low proficiency adult Cantonese learners of L2 English. 

 2 Irregularity and Isochrony: The Annotation Method 

 One basic method of investigating speech timing is by aligning linguistic 
units with segments of the speech signal, measuring the duration of these 
units, and performing descriptive statistical analyses and structure build-
ing on these duration measurements. Annotation (also known as labelling 
or phonetic alignment) is a method of pairing the components of a tran-
scription of a speech recording ( labels ) with  time-stamps  which indicate 
the beginning and end, or the beginning and length (more rarely: the mid-
dle) of these components, with the aid of speech visualisation software. 
For manual annotation, the most popular software tool is  Praat  ( Boersma 
2001 ); cf. also  Wavesurfer  ( Beskow & Sjölander 2004 ),  Transcriber  ( Bar-
ras et al. 2001 ),  Annotation Pro  ( Klessa & Gibbon 2014 ). The annotations 
produced with each tool are largely interconvertible. For semi-automatic 
annotation, a convenient software tool is  SPPAS  (Bigi 2015). The first 
tools for the annotation method were originally developed in speech 
technology, for bootstrapping supervised machine learning procedures in 
statistical automatic speech recognition. Three main kinds of approach 
based on the annotation method have emerged: one-dimensional, two-
dimensional and three-dimensional irregularity and isochrony models. 

 The one-dimensional approaches are based on the calculation of 
an index based on the descriptive statistics of label durations. These 
approaches have been used to investigate the temporal typology of differ-
ent spoken languages, and are necessarily based on an assumption that the 
kind of unit to be labelled (vocalic and consonantal sequences; syllables; 
feet; word) is universally found in all languages. The simplest index is the 
 standard deviation  of the durations of the units of the relevant type (for 
variants of this index cf.  Roach 1982 ;  Scott et al. 1985 ). One problem 
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with this approach is the hidden factor of  speech tempo : the unit rate per 
second may vary for different reasons during an utterance. This hidden 
factor of speech tempo variation is abstracted out by the  normalised Pair-
wise Variability Index  ( nPVI ), which averages the normalised duration 
differences between neighbouring units, yielding an index with an asymp-
tote of 200: 0≤ i <200. The lower the index, the more regular the timing of 
the units measured. The original version of the  nPVI  formula is recast here 
in order to express the functionality of the operations more transparently: 

1 1100 / ,i i i inPVI mean absolute d d mean d d

 Formally, the  nPVI  is a variant of the Canberra Distance measure, 
applied to a pair consisting of a vector and the identical vector shifted to 
the right (or left) by one position. Canberra Distance is in turn a normal-
isation of the well-known Manhattan Distance measure (Taxicab Dis-
tance). Typical  nPVI  values are discussed by  Low et al. (2000 ) and many 
others. Values related to the present study are discussed by  Gibbon and 
Yu (2015 ): with measurements based on read-aloud texts, Chinese, said 
to be a  syllable-timed  language, has  nPVI  values around 35, Farsi around 
45 and English, as a  stress-timed  or  foot-timed  language, around 60. 

 The one-dimensional indices are measures of irregularity or relative 
isochrony, and provide a useful heuristic for the initial study of low fre-
quency speech timing, but the popular term ‘rhythm metrics’ rather than 
‘isochrony metrics’ is seriously misleading: the rhythmic criterion of simi-
larity of repeated utterance segments, the alternation or ‘boom-de-boom 
boom’ component 1  of rhythm, is actually factored away by taking the 
absolute value of the subtraction. The subtraction operation reduces tim-
ing relations to a local binary isochrony relation.  Nolan et al. (2014 ) dis-
puted the point that the  nPVI  defines a binary relation, but the binarity 
of the modified Canberra Distance measure can hardly be denied. Speech 
rhythms are not necessarily binary trochaic and iambic patterns, how-
ever, which the binary subtraction operation implies, but can be ternary 
anapaestic ( weak-weak-strong ), dactylic ( strong-weak-weak ), amphibra-
chic ( weak-strong-weak ), or even more complex. These more complex 
patterns are not captured by the currently proposed isochrony indices; if 
desired, however, arbitrarily complex  n -ary relations can easily be defined 
by using a vector shift of more than one position. It would also be help-
ful to note the standard deviation of the differences in order to estimate 
the validity of the index, since the index varies wildly throughout utter-
ances, but this is not done in the available literature. A two-dimensional 
version of the  PVI  approach was developed by  Asu and Nolan (2006) 
and   Nolan and Asu (2009 ), combining analyses of foot patterns (cf. also 
 Roach 1982 ) and syllable patterns. 

 A different two-dimensional model was developed by  Wagner (2007 ), 
in which rhythm is represented as a ‘neighbour relation’ (cf.  Figure 8.1 ): 



   Figure 8.1   Wagner Quadrant Representation of the Four Binary Duration Relations 
Between Adjacent Syllables, Relative to Mean Duration (Z-Score 
Transformed): English (left); Right Skew, Clustering in Bottom Left 
Quadrant, Mandarin (Right, No Skew, Clustering Around the Mean).  
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durations are normalised by z-score transformation, and durations of 
neighbouring pairs are represented on the  x  and  y  dimensions of a scatter 
plot. If the unit type is syllable, then ‘syllable timing’ is indicated if the 
pairs are distributed evenly and symmetrically around the zero points of 
the two axes, while ‘foot timing’ is indicated if the distribution is highly 
skewed to the upper right quadrant (above the means), with the major-
ity of points being in the negative (below the means) lower left quadrant 
of the scatter plot. The criticism of restriction to binary relations still 
applies, but only partially: the skewed distribution of points between the 
negative and the positive quadrant may indicate that the timing pattern 
is non-binary. 

 A three-dimensional model (cf.  Figure 8.2 ) was developed by Gibbon 
(2003, 2006), also based on durations of annotated categories such as 
words, with duration relations between neighbours being used to hierar-
chically adjoin units in a tree structure (the first and second dimensions), 
with the option of strict binary or non-binary adjunction, and the option 
of  strong-weak  or  weak-strong  pairing, with  weak  and  strong  interpreted 
as  shorter  and  longer  respectively (the third dimension). The resulting 
tree patterns are mapped to grammatical and discourse structures. 

 To summarise, the annotation-oriented approaches are useful transforms 
of the speech signal and the isochrony metrics have the indisputable 
merit of being easy to calculate, but they are neither rhythm models nor 
rhythmicity indices. Their epistemological status is that of heuristic strat-
egies which are human-filtered by manual annotation (or semi-automatic 
annotation, statistically trained on prior manual annotations in a super-
vised machine learning procedure). They are in need of a theoretical 
foundation. 

   Figure 8.2   Time Tree Spanning 3 Seconds of a Story (The Tiger and the Mouse), 
Iambic Time Relations.  
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 3 Rhythm Frequencies and Rhythm Zone Theory 

 The present approach seeks to provide an objective measure of rhythm 
which is independent of human-filtered annotations and derives timing 
properties directly from the speech signal. The basic idea is that speech is a 
complex signal consisting of a carrier signal which is simultaneously mod-
ified in two ways: by  frequency modulation  (functioning as tone, pitch 
accent, intonation) and by  amplitude modulation  (functioning as phones, 
syllables, words), and that these two types of modulation both have rhyth-
mic properties. This approach is represented from the point of view of 
speech production by the oscillator theories of rhythm (e.g.,  Cummins & 
Port 1998 ;  O’Dell & Nieminen 1999 ;  Barbosa 2002 ;  Inden et al. 2012 ). 

 From the point of view of speech analysis (and speech perception mod-
elling), the signal is decomposed by a  frequency demodulation  function 
(in phonetic terminology: F0 extraction, ‘pitch’ tracking) in the frequency 
range 80 . . . 400 Hz, and by a very complex  amplitude demodulation 
function , which maps the signal in the range 80 . . . 4000 Hz to categorial 
units of phones, syllables, words, etc. The amplitude demodulation func-
tion also tracks the outline of the waveform (the amplitude envelope) in 
the range 0 . . . 20 Hz, the low frequencies which underlie perception of 
the long-term rhythmic patterns of phones, syllables, words, etc. These 
low frequency rhythmic patterns and their phases are revealed by spectral 
analysis of the amplitude envelope. A paradigm has developed in which 
the amplitude envelope demodulation method of rhythm modelling has 
been proposed as a more adequate approach to the modelling of rhythm 
than the isochrony metric approach ( Todd 1994 ;  Cummins et al. 1999 ; 
 Liss et al. 2010;   Tilsen & Johnson 2008 ;  Hermansky 2010 ;  Leong et al. 
2014 ;  Leong & Goswami 2015 ;  Ludusan et al. 2011 ;  Tilsen & Arvaniti 
2013 ;  Tilsen 2016 ;  He & Dellwo 2016 ;  Varnet et al. 2017 ;  Ojeda et al. 
2017 ; Gibbon 2018). 

 Three steps are primarily involved, with a fourth step for spectral edge 
detection (rhythm zone boundary detection) introduced recently (Gibbon 
2018). The four steps are illustrated in  Figure 8.3 : 

 1. Input the signal from a recording (instruction here: “Count as quickly 
as possible from one to thirty!”) and store the  waveform , illustrated 
as an oscillogram ( Figure 8.3 , top left). The signal length is about 
10 seconds, the 30 words occur with a frequency of about three per 
second, and the periodicity corresponds to an average word length of 
about 0.3 seconds. 

 2. Extract the  amplitude envelope  of the waveform. To do this, in formal 
terms a  Hilbert Transform  is performed on the waveform segment of 
interest, and the absolute value of the transformed signal is low-pass 
filtered, leaving the  positive amplitude envelope , the outline of the 
shape of the signal ( Figure 8.3 , bottom left). In the implementation 
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used here, instead of the Hilbert Transform an efficient peak-tracing 
algorithm was used on the rectified (absolute) signal, also yielding 
the positive amplitude envelope. By extraction of the envelope, fre-
quencies in the range 0 . . . 20 Hz are selected, and higher frequencies 
discarded. 

 3. Extract the frequency spectrum of the amplitude envelope within the 
range 0 . . . 20 Hz ( Figure 8.3  top right) by means of a  Fast Fourier 
Transform  (FFT) on the amplitude envelope in order to extract the 
low frequency spectrum of the amplitude envelope, the  Amplitude 
Envelope Spectrum  (AES). The AES contains the low frequencies 
with which phones, syllables, words, etc. occur. The phases of these 
frequencies are not focussed in this study. The frequencies and their 
phases are fairly regular in the present counting data type, which is 
reflected in rather clear and plausible prominent frequencies. 

 4. Conceptualise different low frequency spectral ranges below 20 Hz 
as  Rhythm Zones  (RZ) and perform  edge detection  on the AES (intro-
duced to spectrum processing by  Jassem et al. 1983 ) to identify the 
Rhythm Zone Edges (RZE). At the present stage, an elementary vari-
ety of edge detection by differencing the digital envelope spectrum 
is used; other algorithms are under development. The result of edge 
detection is the  Amplitude Envelope Difference Spectrum  (AEDS), 
shown in  Figure 8.3 , bottom right. 

 Having defined the signal processing procedure, a technical definition 
of ‘rhythm’ can be given: a  rhythm  is defined as a prominent frequency 
in the amplitude envelope spectrum. A series of rhythms defined in this 
way is referred to as a  Rhythm Spectrum . Frequency ranges containing a 
rhythm in this sense are referred to as a  Rhythm Zone . The top right graph 

   Figure 8.3   Counting From 1 to 30 (English). 1. Top left: Waveform (oscillogram). 
2. Bottom left: Waveform, showing rectified waveform and amplitude 
envelope modulation. (3) Top right: Amplitude envelope spectrum. (4) 
Bottom right: Amplitude envelope difference spectrum.  
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in  Figure 8.3  shows two prominent frequencies in the amplitude envelope 
spectrum. As predicted from the instruction to count from one to thirty 
as quickly as possible, and from a rough inspection of the oscillogram, 
the AES shows a rhythm at 3.18 Hz, indicating a periodicity of 314 ms 
(corresponding approximately to syllable articulation rate). The AEDS 
displays the edges of the main rhythm zones. Accordingly, the present 
approach is referred to as  Rhythm Zone Theory  (RZT). 

 The RZT algorithm is entirely agnostic about the linguistic units 
involved, but in the present example, taking the a priori instruction to 
the speaker to count from one to thirty into account, the main linguistic 
unit can be identified as a word, either a monosyllable (e.g.,  one ,  two , 
etc.) or polysyllabic (e.g.,  seven ,  eleven , . . .  thirty  etc.). There are minor 
rhythms, the strongest of which has a rhythm at 8.09 Hz, with a period 
(unit length) of 123 ms, for which the relevant linguistic unit can be tenta-
tively identified as the syllable components of polysyllabic words. Higher 
frequency rhythms are associated with weak and reduced syllables, with 
syllabic sonorants, and with the rhythms of syllable constituents. 

  Figure 8.3  visualises a clear case of rhythm identification based on 
RZT: counting is a highly regular genre of speech production. In con-
trast,  Figure 8.4  visualises the reading of a fable, a genre which is open 
to more rhythmic variation and to potential dominance of the spectrum 
by higher ranking discourse rhythm types, rather than by the syllable and 
word domain rhythms of  Figure 8.3 . The most prominent rhythm shown 
in  Figure 8.4  (top right), 0.18 Hz (5.596 s), corresponds to about half of 
the recording, determined by the long pause shown in the oscillogram at 
approximately 6.5 s. The rhythms at 1.36 Hz (733 ms) and 1.82 Hz (549 
ms) indicate a dominance of phrasal and discourse rhythms over syllabic, 
foot or word rhythms. Other less prominent spectral frequency peaks are 
associated with shorter components of the speech signal, for example at 
about 3.5 Hz (286 ms), for strong or stressed syllables and at about 5.5 

   Figure 8.4   Beginning of a Story (Native Speaker English). The prominence of 
rhythms and rhythm zone edges is shown by relative height of the 
peaks in the spectra.  
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Hz (181 ms) for weak syllables and longer phones. In the more complex 
narrative data of  Figure 8.4 , the shifting phases of the frequencies, which 
are not separately captured in this study, lead to a more complex and 
‘noisy’ spectrum visualisation. 

 Summarising: Rhythm Zone Theory (RZT), the theoretical foundation 
of the present four-step approach to phonetic rhythm analysis, makes the 
following explicit claims: 

 1. RZT has no need of subjectively influenced transcription and anno-
tation, but applies directly and reproducibly to the speech signal. 

 2. RZT postulates that speech has rhythms of many different frequen-
cies, putatively correlating with phone, syllable, foot and word tim-
ing patterns through phrase and discourse timing patterns, and that 
rhythms may vary in frequency and phase through longer discourses. 

 3. RZT conceptualises rhythms dynamically in terms of frequencies in 
Hertz, rather than statically in terms of the durations of pre-defined 
linguistic units in seconds or milliseconds, enabling a rhythm to be 
defined precisely and completely as a frequency in the long-term 
amplitude envelope spectrum associated with temporal phase shifts. 
Clearly, durations and rhythms have a simple relation, but the mind-
set underlying a frequency model differs greatly from the mindset 
underlying the descriptive statistics of unit durations. 

 4. RZT defines rhythms as occurring in rhythm zones, that is, the fre-
quency ranges which surround rhythms; rhythm zone boundaries are 
fuzzy, partly caused by shifting oscillation phases during utterances. 

 5. RZT provides empirical signal-based evidential grounding which can 
be utilised in  post hoc  validation of how linguistic units align with 
physical rhythms, for example using annotations and annotation-
mining techniques ( Gibbon & Yu 2015 ). The rhythm alignments 
range from speech sound rhythms through syllable, word and phrase 
rhythms to discourse rhythms. 

 4 The Use Case of Foreign Language ‘Fluency’ Assessment 

 4.1 The Background 

 The assessment of proficiency in a foreign language is as complex as 
the language itself, with the degree of proficiency understood as distance 
from native-like performance. In the present context, we understand flu-
ency in a narrow sense, to refer primarily to prosodic aspects of profi-
ciency in spoken language. We distinguish between four main kinds of 
fluency in this area and characterise the polysemy of ‘fluency’ through 
proof by contradiction in terms of four antonyms:  non-fluency  (due to 
lack of knowledge of a language);  disfluency  (due to lack of practice in a 
language);  impediment  (such as stuttering) and  aphasia . The boundaries 
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between the categories may be fluid. For the area of foreign language 
learning and teaching, the relevant category is non-fluency. Disfluency 
plays an important role, but it may also be a characteristic of native 
speakers. Impediment or aphasia may also play a role in some cases. 
Almost paradoxically, non-native speech is more complex than native 
speech, at least in relation to non-fluency, though not in terms of gram-
mar, vocabulary and discourse strategies. 

 Within the area of non-fluency based on lack of knowledge, there are 
many potential  non-fluency markers , from the discourse rank through 
phrasal and word rank to speech sounds. Among these are the prosodic 
non-fluency markers of rhythm and melody, which occur at every rank. 
The present contribution excludes melodic non-fluency marking of into-
nation, stress accent, tone and pitch accent and concentrates on selected 
aspects of speech timing. 

 Many timing related fluency or non-fluency markers have been dis-
cussed in the literature, including speech rate, phonation time ratio 
(speech:pause ratio), syllable pruning, mean length of interpausal unit 
(‘length of run’), ratio of silent pauses, ratio of filled pauses, number 
of pauses, total pause time. Timing measures which explicitly involve 
linguistically identified categories, such as mean words per minute, self-
repairs, repetitions, reformulations, replacements, false starts, hesitations, 
are excluded from the present study. Partial overviews are provided by 
 Ellis (2009 ),  Kuhn & Stahl (2000 ),  Lambert & Kormos (2014 ). Other 
markers based on the isochrony metrics discussed in Section 2 have been 
used in the context of foreign language learning and teaching, most com-
prehensively by  White and Mattys (2007 ) and  White et al. (2012 ). The 
majority of these markers are identified via manual annotation tech-
niques of various kinds, including otherwise objective methods which 
use automatic speech recognition, bootstrapped by the human-filtering 
training step of prior manual annotation ( Cucchiarini et al. 2000 ,  2002 ; 
Zechner et al. 2009). 

 The present exploratory case study has a somewhat different aim: to 
outline the potential of the RZT approach for characterising learner 
speech in terms of rhythms. The main assumptions are: 

 1. Native Speaker (NS) reading and Non-Native Speaker (NNS) read-
ing are different specialised ‘sub-genres’ of the general genre of read 
speech, even when NNS speech is an imitation of NS speech rather 
than just reading: a non-native learner reading English or Chinese is 
not dealing with exactly the same genre as a native speaker reading 
English or Chinese, because of non-fluency issues. 

 2. The envelope spectral properties of reading in the NNS sub-genre are 
more similar to each other than to those of the NS reading sub-genre, 
and can be distinguished automatically from NS reading on the basis 
of Rhythm Zone Theory. 
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 4.2 Method 

 The participants are 12 EFL students selected from two college English 
courses at Jinan University (JNU), Guangzhou, China, with a relatively 
low proficiency level. The courses are designed for non-English major 
or minor students from various departments, and span three semesters 
(College English Elementary, Intermediate and Advanced, from Septem-
ber 2017 to December 2018). The classes are facilitated by a mobile app 
named  Moso Teach , 2  which enables the students to record their speech 
in and after class. 

 Data are collected from recordings of the same text, an exhortative 
fable, by the 12 students in 2017 and 2018, totalling 24 recordings. In 
addition, a recording of the same text by a native speaker was taken from 
a JNU in-house EFL course and used for comparison. 

 A number of practical contributory factors to the heterogeneity of the 
data must be taken into account. The recordings were deliberately made 
in a realistic scenario: a classroom situation without direct supervision 
of the recording process, in a relatively noisy environment (cf. the high 
noise floor shown in the first second of the oscillogramm of  Figure 8.6 ), 
with different recording devices (smartphone brands) with different auto-
matic gain control properties and coding standards, with different overall 
speech loudness due to distance from microphone, and therefore differ-
ent signal-to-noise ratios. The software implementation was designed to 
overcome these practical hurdles as far as possible using different kinds 
of filtering ( Figure 8.5 ). 

 An RZT analyser with a command line interface and graphic output 
was implemented, operationalising the four steps of the RZT methodol-
ogy ( Figure 8.5 ). Versions of the Python 2.7 code are available on GitHub 
and are interoperable on Linux, Windows and MacOS. The 24 record-
ings were automatically analysed and the following properties extracted: 

 1. The first six most prominent frequencies in the AES, and in the AEDS. 
 2. Standard deviation (SD) based features: (1) SD of the selected spec-

trum region; (2) SD of the spectrum region lower than the most 
prominent frequency; (3) SD of the spectrum region higher than the 
most prominent frequency; (4) mean difference between (2) and (3); 
(5) mean ratio between (2) and (3). 

 4.3 Results 

 4.3.1 Visualisation 

  Figure 8.3  and  Figure 8.4  show relatively ‘well-behaved’ speech: regular 
counting, and story reading by a native speaker. The NNS story read-
ings introduce a whole new range of noisy non-fluency factors on speech 
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timing, which are predicted to be detectable by RZT analysis. In prin-
ciple, it should also be possible to distinguish between different degrees 
of NNS-ness by looking for rhythms in the different rhythm zones deter-
mined by the many phrasal and discoursal factors which affect the timing 

   Figure 8.5   Data Flow in the RZT Implementation With Numbering Showing the 
Four Steps of the RZT Procedure.  
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   Figure 8.6   Beginning of a Story (NNS Cantonese English). The prominence of 
rhythms and rhythm zone edges is shown by relative height of the 
peaks in the spectra.  



122 Dafydd Gibbon and Xuewei Lin

of reading performance. In contrast to the relatively regular patterns of 
 Figure 8.3  and  Figure 8.4 ,  Figure 8.6  shows same story as in  Figure 8.4  
being read by an adult Cantonese learner of English. The NNS patterns 
are rather different from those of the NS, in this case clustering around 
the 5 Hz, 200 ms periodicity area, implying that the major rhythm is syl-
labic. Auditory inspection of the recording shows that the reading has 
very mechanical strong syllable timing, as in the Cantonese source lan-
guage or due to a handling strategy for non-fluency. 

 4.3.2 Rhythms as Prominent Frequencies 

 For the first exploratory investigation, the first 60 s segment of each 
recording was analysed and the six most prominent frequencies were 
extracted as basic rhythms. Clearly, for a full and quantitatively interest-
ing experiment far more data are needed in order to confirm the claims, 
but the aim here is to use visualisations to probe for basic trends when 
RZT is applied, and to open up a path to future research. No definitive 
claim to statistical significance is made at the present stage. The means 
for the six prominent frequencies were plotted for the 12 NNS against 
the six NS prominent frequencies, for 2017 and 2018 ( Figure 8.7 ). 

 The first conspicuous feature of the visualisation is the distance between 
the NS rhythms and the NNS rhythms: Pearson’s  r  = 0.04, Gosset’s two-
tailed paired t-test shows a significant difference,  = 0.05 and the mean 
difference is 1.3 Hz. The second conspicuous feature is the very close 
similarity of the NNS group in 2017 and 2018, with a barely perceptible 
lower trend for 2018; Pearson’s  r  = 0.97, Gosset’s t-test shows no sig-
nificant difference, and the mean difference is indeed only 0.07 Hz. The 
third conspicuous feature is the close clustering of the NNS rhythms in 
the rhythm zone between about 1.8 Hz and 2.7 Hz ( SD  = 0.14 Hz), cor-
responding to periodicities of 0.6 s and 0.4 s respectively. Identification 

   Figure 8.7   Prominent Rhythms: Means for NNS Against NS Values for Each 
Prominence Position.  
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of the linguistic units involved, presumably syllables or words, would 
involve detailed analysis of an annotation of the signal, but that is beyond 
the signal processing remit of the present study. 

 The conclusions to be drawn tentatively from the relations visualised in 
 Figure 8.7  are (1) that RZT does not distinguish between different stages 
of low-performing learning; (2) RZT distinguishes clearly between low-
performing (NNS) and high-performing (NS) categories; (3) in the low per-
forming category (NNS) the faster word or long syllable rhythms dominate, 
while in the high performing (NS) category slower phrasal rhythms dominate. 

 4.3.3 Variability of Rhythm Zones 

 For the exploratory analysis of RZ variability, the first 170 seconds of 
each recording were divided into 16 consecutive segments of 5 seconds 
each, with the difference spectra for each segment restricted to the spec-
trum segment 1 . . . 10 Hz. The decision to use 5 second segments is based 
on informal empirical comparison of differently sized segments, which 
showed that longer segments were unduly influenced by random length 
pauses, while shorter segments did not capture the frequency range of 
interest, which roughly corresponds to syllables, words and short phrases. 
Four metrics were extracted from each segment: the most prominent 
edge frequency in the AEDS; the mean of the differences in the AES from 
which the AEDS is derived; the standard deviations of the spectrum seg-
ment lower than (SDleft) and higher than (SDright) the most prominent 
edge frequency, respectively. Additionally the overall mean line is shown, 
as well as a linear regression ( TaaG ,  Trend at a Glance ) line. 

  Figure 8.8  illustrates the variability of the most prominent edge fre-
quency, and consequently of the associated rhythms and rhythm zone 
edges. Lines based on descriptive statistics derived from the rhythm zones 
associated with these edges, show the following patterns: 

 1. The values associated with the prominent frequency and with each 
statistic vary considerably during the utterance. 

 2. The NS and NNS prominent frequency variations follow a different, 
slower trend, with skewing of the ‘sawtooth’ alternations in frequency. 

 3. The mean over all most prominent edge frequencies is almost exactly 
5 Hz, corresponding to a periodicity of 200 ms, the same for both 
speakers. The syllable rates in manual annotations of the same 
recordings are 4.16 and 3.59, respectively, both of which fall into the 
higher frequency zone above the most prominent edge, so possibly 
the edge can be interpreted as a boundary between shorter and lon-
ger units such as words or feet. 

 4. An interesting and more complex marker of a potential difference 
between the NS and NNS timing patterns is the ratio between the 
standard deviations of the frequency range above the most prominent 
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edge frequency and the frequency range below this frequency: 7.4 
and 2.3 respectively. A possible interpretation of these ratios is that 
the NNS rhythms concentrate on higher frequencies, shorter period-
icities, while the NS uses varied long-term rhetorical strategies. 

 5. The TaaG regression line tends to fall for the NS and rise for the 
NNS, indicating a shift of the most prominent edge indicating a 
move to lower frequency edges, and the opposite for the NNS. 

  Figure 8.9  shows the overall values for the rhythm zone edge markers 
for the NS and the two NNS readers A and B, and for the two years 2017 

   Figure 8.8   Examples of English NS (US) and Cantonese NNS: The Most Prominent 
Rhythm Zone Edges in Each of a Series of 35 × 5s Consecutive Segments 
in the Speech Signal, Covering 180s of the Utterance.  
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   Figure 8.9  Average Value for Frequency Standard Deviation Markers.  
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and 2018, revealing a strong similarity between the NNS in contrast to 
the considerable distance between NNS and NS. These differences sug-
gest again that these spectral markers are not very good at distinguishing 
between different low performing adult non-native readings, but that the 
NS sub-genre can be clearly distinguished from the NNS sub-genre of 
reading aloud. 

 5 Summary, Conclusion and Outlook 

 The Rhythm Zone Theory (RZT) of speech rhythm was described in some 
detail. Unlike many previous approaches to rhythm analysis, RZT does 
not start with linguistic units and search for correlates, nor does it relate 
exclusively to expert annotation decisions on time domain concepts such 
as isochrony and duration variability. RZT concentrates exclusively on 
demodulating the physical oscillations of amplitude-modulated signals in 
the low frequency domain, replacing the heuristic isochrony metrics with 
a computationally well-defined model of multiple rhythm frequencies in 
rhythm zones bounded by fuzzy edges in the amplitude envelope spectrum, 
thus extending earlier approaches to amplitude envelope spectrum analysis. 

 The mindset of conceptualising rhythms—in the plural—in terms of 
oscillations with identifiable frequencies, rather than in terms of single 
indices of or binary relations between the durations of speech segments, 
promises returns which isochrony heuristics have largely failed to find. 
The restriction to signal processing is, additionally, orders of magnitude 
faster in application and opens up a prospect of application in classifica-
tion by unsupervised machine learning methods. 

 In an exploratory application of RZT to the analytic evaluation of 
fluency, it was shown that native-speaker reading can be clearly distin-
guished from non-native Cantonese learner readings, but that a finer 
classification among the non-native learners cannot be achieved with the 
methods used. The result gives rise to the expectation that in the long 
term some markers of fluency can be captured automatically and with-
out prior annotation in easily usable online or handheld applications for 
direct feedback to students. In order to proceed in this direction, not only 
rhythm frequencies need to be captured, but also the phases of these fre-
quencies, in order to be able to capture rhythm variations. 

 Notes 

  1 . Informal remark by Fred Cummins, lecture ca. 2003. 
  2 .  www.mosoteach.cn . 
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