
Computational Phonology

Syntagmatic computing

2019-07-16, 14:30-16:30

Dafydd Gibbon

Bielefeld University
Jinan University, Guangzhou



Objectives

● To claim that markedness, defaults and optimality are 
related, in the form of
– ‘logical preferences’: ranking, elsewhere conditions, exceptions
– ‘empirical preferences’: frequency, familiarity, statistics

● To demonstrate computation of the three structural 
dimensions of the architecture of language and speech:
– Composition: ranked, grouped, parallel syntagmatic relations
– Classification: paradigmatic relations
– Interpretation: modelling relations

● To show that computation is essential for
– Phonological theory
– Phonological hypothesis testing
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Types of Computing in Phonology

● Syntagmatic computing (composition)
– Well-formedness of category combinations

● Serial: strings, hierarchical grouping
● Parallel: distinctive features, autosegmental tiers

● Paradigmatic computing (classification)
– Sets: classification, categorisation
– Properties: criteria for identifying sets

● Interpretative computing (phonetic modelling)
● Categorial ←→ physical representation levels
● Mapping:

– Derivation (Generative Phonology)
– Transduction (Finite State Phonology)
– Selection (Optimality Theory)



Domains of Computational Phonology

● Syntagmatic (compositional) relations:
– Autosegmental phonology
– Metrical phonology
– Finite state phonology

● Paradigmatic (classificatory) relations:
– Feature theories, feature geometry
– Inheritance phonology

● Interpretative (mapping) relations:
– Generative phonologies
– Optimality theoretic phonologies
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Syntagmatic Computing
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Syntagmatic computing (compositionality of categories)

● Simultaneous
– Feature bundles
– Feature geometry
– Three-dimensional phonology

● Sequential
– Stress cycle
– Metrical Phonology

● Sequential-simultaneous
– Autosegmental Phonology
– Finite State Phonology
– Inheritance Phonology

FSA, FST
Inc. formal defs.
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Syntagmatic Complexity

This is the dog that chased the cat that ate the mouse ...

Right-branching linear recursion / iteration.

If the man who John met goes home then Jane will smile

Centre-embedding hierarchical recursion.

June, Jane and Jean love Mick, Dick and Nick, respectively

Recursive cross-serial dependency.

(3)

(2)

(1)

Regular languages

Chomsky Type 3,
Regular grammar

 ↔
Finite State Automaton

Context-free languages

Chomsky Type 2,
Context-free grammar

 ↔
Push-Down Automaton

Context-sensitive languages

Chomsky Type 1,
Context-sensitive grammar

 ↔
Linear Bounded Automaton
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Syntagmatic Complexity

This is the dog that chased the cat that ate the mouse ...

Right-branching linear recursion / iteration.

(3)
Regular languages

Chomsky Type 3,
Regular grammar

 ↔
Finite State Automaton

Chomsky maintained in Syntactic Structures (1957) that

English is not a finite state language.

● This means that there are structures which are more complex than 
regular languages.

● But it turns out that these more complex structures are hardly ever found 
in everyday spontaneous dialogue, and are restricted to formal, 
rehearsed speech and writing, including mathematics.

● Very many parts of language are indeed ‘finite state’, including phonology 
and prosody, morphology, most parts of sentence, text and discourse 
structures.
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Syntagmatic Complexity

This is the dog that chased the cat that ate the mouse ...

Right-branching linear recursion / iteration.

(3)
Regular languages

Chomsky Type 3,
Regular grammar

 ↔
Finite State Automaton

● Very many parts of language are indeed ‘finite state’, including phonology 
and prosody, morphology, most parts of sentence, text and discourse 
structures.

● Why is this so?
● The set of syllables in any language is finite and can be described with 

a non-iterative finite state automaton or non-recursive regular grammar.
● The set of words in any language is not finite, but can be described by 

an iterative finite state automaton or a right-recursive (or left-recursive) 
regular grammar.
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Syntagmatic Complexity

This is the dog that chased the cat that ate the mouse ...

Right-branching linear recursion / iteration.

(3)
Regular languages

Chomsky Type 3,
Regular grammar

 ↔
Finite State Automaton

● Very many parts of language are indeed ‘finite state’, including phonology 
and prosody, morphology, most parts of sentence, text and discourse 
structures.

● Why is this so?
● A finite state automaton or regular grammar only requires finite memory.

All the other more complex kinds of grammar require, in principle, 
non-finite memory

● It is plausible that real-time speech uses finite memory
It is implausible that real-time speech uses non-finite memory.

● It is plausible that memory can be expanded by rehearsal and by the 
use of writing, which employs external storage.
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Syntagmatic Complexity

This is the dog that chased the cat that ate the mouse ...

Right-branching linear recursion / iteration.

(3)
Regular languages

Chomsky Type 3,
Regular grammar

 ↔
Finite State Automaton

● Very many parts of language are indeed ‘finite state’, including phonology 
and prosody, morphology, most parts of sentence, text and discourse 
structures.

● Why is this so?
● The set of syllables in any language is finite and can be described with 

a non-iterative finite state automaton or non-recursive regular grammar.
● The set of words in any language is not finite, but can be described by 

an iterative finite state automaton or a right-recursive (or left-recursive) 
regular grammar.

So what are these – the finite state automaton, the regular grammar?
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Syntagmatic computing: State Machines

The most basic computing mode is the State Machine
– A set of states of the system
– A set of transitions between states
– Conditions on the transitions
– A starting state
– A set of terminating states

The simplest and classic type: Finite State Automaton (FSA)
– Finite automaton (DFSA), described by a quintuple:

< Q, Σ, δ, q0, F >
Q = a finite set of states
Σ = a finite, nonempty input alphabet
δ = a series of transition functions
q0  = the starting state

F = the set of accepting (terminating states
● Deterministic: exactly one transition function for every σ  Σ from every q  Q∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q
● Nondeterministic: more than transition function for any σ  Σ from any q  Q.∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q
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Syntagmatic computing: State Machines

Finite automaton (FSA), described by a quintuple:
< Q, Σ, δ, q0, F >

Q = a finite set of states
Σ = a finite, nonempty input alphabet
δ = a series of transition functions
q0  = the starting state
F = the set of accepting (terminating states

● Deterministic (DFSA): exactly one transition function for every σ  Σ from every q  Q∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q
● Nondeterministic (NDFSA): more than transition function for any σ  Σ from any q  Q∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q

● Known principles:
– An FSA with a transition which has the empty input symbol   is ϵ  is 

an NDFSA.
– For any NDFSA there is a weakly equivalent DFSA.
– For any FSA there is a weakly equivalent regular grammar in 

the Chomsky-Schützenberger hierarchy of formal grammarsand 
vice versa.
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Syntagmatic computing: State Machines

There are several  equivalent 
formalisms for FSTs

0 1 2 3

p i p

tat

0 1 2 3*

*0 p, t

1 i, a

2 p, t

BNF notation:

0  ::= p | t 1
1  ::= i | a 2
2 ::= p | t

p
0 →  1

t
i

1 → 2
a
p

2 → 
t

Chomsky notation:

Transition diagram:

Transition table:
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State Machines and Grammars

Formal grammars have the structure < N, T, P, S>

N is a set of non-terminal symbols
the non-terminal vocabulary (sometimes called variables)

T is a set of terminal symbols, N ∩ T = ∅
the terminal vocabulary

S is a starting string in S  N*∈ Σ from every q ∈ Q
for context-free and regular grammars called starting symbol

P is a set of production rules of the form α → β
α and β are strings of symbols from (N  T)*∪ T)*
conditions on  α and β are different for each type of grammar
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State Machines and Grammars

Type 0: Unrestricted Grammars
– α  (N  T)* N (N T)*∈ Σ from every q ∈ Q ∪ T)* ∪ T)*
– β  (N  T)*∈ Σ from every q ∈ Q ∪ T)*

Type 1: Context-sensitive Grammars
|α| <= |β|, where there is no deletion

Type 2: Context-free Grammars
Phrase Structure Grammars, Constituent Structure Grammars

like Type 1, but
α  N, |α| = 1∈ Σ from every q ∈ Q

Type 3: Regular Grammars
like Type 2 but
1) β  T, or∈ Σ from every q ∈ Q
2) Either left regular or right regular, but not mixed:

left regular: β = B a, right regular: β = a B
for a  T, B  N∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q
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State Machines and Grammars

Type 0: Unrestricted Grammars
– α  (N  T)* N (N T)*∈ Σ from every q ∈ Q ∪ T)* ∪ T)*
– β  (N  T)*∈ Σ from every q ∈ Q ∪ T)*

Type 1: Context-sensitive Grammars
|α| <= |β|, where there is no deletion

Type 2: Context-free Grammars
Phrase Structure Grammars, Constituent Structure Grammars

like Type 1, but
α  N, |α| = 1∈ Σ from every q ∈ Q

Type 3: Regular Grammars
like Type 2 but
1) β  T, or∈ Σ from every q ∈ Q
2) Either left regular or right regular, but not mixed:

left regular: β = B a, right regular: β = a B
for a  T, B  N∈ Σ from every q ∈ Q ∈ Σ from every q ∈ Q

The linguist’s favourite type:

In principle: Type 2

In Practice: Type 3
right-branching
(right regular)
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Computational Syllable Phonotactics



Fudan University, Shanghai, July 2019 D. Gibbon: 1 Computational Phonology 19

Computational Syllable Phonotactics

ONSET CODAPEAK

SYLLABLE
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Computational Syllable Phonotactics

Notice that this is 
right-branching.

And what about 
Pǔtōnghuà?

Onset CodaPeak

Syllable
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Computational Syllable Phonotactics

Notice that this is 
right-branching.

Initial Final

Consonantal Sonorant

Syllable

Syllable

Onset CodaPeak

Syllable
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Computational Syllable Phonotactics

Onset CodaPeak Initial Final

Consonantal Sonorant

? ? ? ? ? ? ? ?

SyllableSyllable

Syllable

? ?

What do we call these finer 
grained end nodes?
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Computational Syllable Phonotactics

Onset CodaPeak Initial Final

Consonantal Sonorant

Presupposed by constraints 
in Optimality Theory:

ONSET
PEAK
NOCODA

? ? ? ? ? ? ? ?

SyllableSyllable

Syllable
SYLLABLE → ONSET NUCLEUS
NUCLEUS → PEAK CODA

? ?

There are many more constraints.
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Computational Syllable Phonotactics

Onset CodaPeak Initial Final

Consonantal Sonorant

Presupposed by constraints 
in Optimality Theory:

ONSET
PEAK
NOCODA

? ? ? ? ? ? ? ?

SyllableSyllable

Syllable
SYLLABLE → ONSET NUCLEUS
NUCLEUS → PEAK CODA

? ?

Linguists love drawing trees, but 
tend to forget about the 
underlying grammars!
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Computational Phonotactics: English asymmetries
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Computational Phonotactics: English asymmetries

What do the constraints on 
English syllable patterns really 

look like?

Let’s take a look at a Finite 
State Automaton
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Computational Phonotactics: English asymmetries

English onset constraints:
1 rule per context

#   s + ...
q1 → s  q2

#  post-s AnteriorVoicelessCons
q2 → p
q2 → t
q2 → k
q2 → m
q2 → n
q2 → l
q2 → w

#   post-s VoicelessStop + Gliquid
q2 → t q4
q2 → p q6
q2 → k q7

#   post-s VoicelessStop + Gliquid
q4 → r

#   post-s VoicelessStop + Gliquid
q6 → r
q6 → l

#   post-s VoicelessStop + Gliquid
q7 → r
q7 → l
q7 → w

#  post-s VoicessCons + j
q2 → p q3
q2 → t  q3
q2 → k q3

#  Consonant + j + u
q3 → j
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Computational Phonotactics: English asymmetries

#   s + ...
q1,s,q2;

#  post-s AnteriorVoicelessCons
q2,p,q9;
q2,t,q9;
q2,k,q9;
q2,m,q9;
q2,n,q9;
q2,l,q9;
q2,w,q9;

#   post-s VoicelessStop + Gliquid
q2,t,q4;
q2,p,q6;
q2,k,q7;

#   post-s VoicelessStop + Gliquid
q4,r,q9;

#   post-s VoicelessStop + Gliquid
q6,r,q9;
q6,l,q9;

#   post-s VoicelessStop + Gliquid
q7,r,q9;
q7,l,q9;
q7,w,q9;

#  post-s VoicessCons + j
q2,p,q3;
q2,t,q3;
q2,k,q3;

#  Consonant + j + u
q3,j,q9;

English #s__ onset constraints,
Implementation as an NDFST
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Computational Phonotactics: English asymmetries

English #s__ onset constraints

http://localhost/Syllables/English/english-syllonsets-demo.html

http://localhost/Syllables/English/english-syllonsets-demo.html
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Computational Phonotactics: English asymmetries

English syllable structure, parallel 
transitions reduced to one, with a 

single vocabulary item

http://localhost/Syllables/English/english-syllables-demo.html

http://localhost/Syllables/English/english-syllables-demo.html
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Computational Phonotactics: English asymmetries

English onset structure in full detail, 
one transition per vocabulary item
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Computational Phonotactics: English asymmetries

English syllable structure in full detail, 
one transition per vocabulary item

http://localhost/Syllables/English/english-syllables-demo.html

http://localhost/Syllables/English/english-syllables-demo.html
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Computational Phonotactics: English asymmetries

How many English syllables are there?

Two answers:
1) Lexical syllables
2) Generalised (potential) syllables

http://localhost/Syllables/English/english-syllables-demo.html

http://localhost/Syllables/English/english-syllables-demo.html
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Computational Phonotactics: Pǔtōnghuà symmetries
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Computational Phonotactics: Pǔtōnghuà symmetries
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 1:

Pinyin table, grouped initials, non-deterministic

Exact model: sound and complete

How many syllables?

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 1:

Pinyin table, grouped initials, non-deterministic

Exact model: sound and complete

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 2:

Pinyin table, grouped finals, deterministic

Exact model: sound and complete)

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 3 (full):

Node inserted for onset glides

Complete, overgeneralises slightly)

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 3 (compact):

Node inserted for onset glides

Complete, overgeneralises slightly)

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 4 (full):

Nodes inserted for onset glides and coda nasals

Complete, overgeneralises slightly, the most complex model

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Phonotactics: Pǔtōnghuà symmetries

Model 4 (compact):

Nodes inserted for onset glides and coda nasals

Complete, overgeneralises slightly, the most complex model

http://localhost/Syllables/Mandarin/

http://localhost/Syllables/Mandarin/
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Computational Sentence Prosody - Pierrehumbert
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Computational Sentence Prosody - Pierrehumbert

Empirical overgeneration:
1)Accents in a sequence tend to be all H* or all L*
2) Global contours tend to be rising with L* 

accents, falling with H* accents
3) Global contours may span more than 1 turn

Empirical undergeneration:

1)Paratone hierarchy not included
2)No time constraints

Pierrehumbert’s regular grammar / finite state transition network

Not the first (cf. Reich,
’t Hart et al., Fujisaki, …)

But linguistically the most 
interesting.

Intonational iteration as a layered hierarchy
of loops (linear abstract oscillations)
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Computational Sentence Prosody - Pierrehumbert

initial=q0

terminal=q4

fst=

q0,H%,x,q1;

q0,L%,x,q1;

q0, ,x,q1;

q1,H*,x,q2;

q1,L*,x,q2;

q1,L*+H-,x,q2;

q1,L-+H*,x,q2;

q1,H*+L-,x,q2;

q1,H-+L*,x,q2;

q1,H*+L-,x,q2;

q2,H-,x,q3;

q2,L-,x,q3;

q3,H%,x,q4;

q3,L%,x,q4;

http://localhost/Syllables/Prosody/pierrehumbert.html

http://localhost/Syllables/Prosody/pierrehumbert.html
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Computational Sentence Prosody - Pierrehumbert

Pierrehumbert’s FST with 
additional iteration loops for

● Intermediate Phrase
● Intonation Phrase

http://localhost/Syllables/Prosody/pierrehumbert.html

http://localhost/Syllables/Prosody/pierrehumbert.html


Fudan University, Shanghai, July 2019 D. Gibbon: 1 Computational Phonology 47

Computational lexical prosody: Niger-Congo terraced tone
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Computational lexical prosody: Niger-Congo terraced tone

From an allotonic point of 
view:

● 3 cycles
● 1-tape (1-level) transition 

network

Niger-Congo Iterative Tonal Sandhi – a 1-tape FSA

At the most abstract level, 
just one node with H and L 
cycling around it.
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Computational lexical prosody: Niger-Congo terraced tone

From an allotonic point of 
view:

● 3 cycles
● 2-tape (= 2-level) transition 

network

Niger-Congo Iterative Tonal Sandhi – a 2-tape FST

Syntagmatic + Interpretative Computing
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Computational lexical prosody: Niger-Congo terraced tone

From phonetic signal 
processing point of view:

● 3 cycles
● 3-tape (= 3-level) transition 

network

Niger-Congo Iterative Tonal Sandhi – a 3-tape FST

Syntagmatic + Interpretative Computing
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Computational lexical prosody: Niger-Congo terraced tone

# Niger-Congo terraced tone sandhi, 2 tones

initial=q0

terminal=q1,q2

fst=

q0,H,h,q1;
q0,L,l,q2;

q1,H,h^,q1;
q1,L,l^,q2;

q2,L,l!,q2;
q2,H,h!,q1;

Implementation 
as FST

http://localhost/Syllables/Prosody/nigercongo.html

http://localhost/Syllables/Prosody/nigercongo.html
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Computational lexical prosody: Tianjin tone sandhi
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Computational lexical prosody: Niger-Congo terraced tone

Martin Jansche 1998
Tianjin Mandarin tone sandhi

Tianjin Dialect Iterative Tonal Sandhi
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FSTs in Automatic Speech Recognition:

Hidden Markov Models (HMMs)
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FSTs in Automatic Speech Recognition: HMMs

Estimation of 
probabilities

Prediction

Training 
data

Test data

Application 
data
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FSTs in Automatic Speech Recognition: HMMs

Estimation of 
probabilities

Prediction

Training 
data

Test data

Application 
data
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FSTs in Automatic Speech Recognition: HMMs

Prediction

Application 
data
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FSTs in Automatic Speech Recognition: HMMs

Estimation of 
probabilities

Prediction

Training 
data

Test data

Application 
data
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To be continued ...
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