Knightian Uncertainty in Economics and Finance

Frank Riedel

Institute of Mathematical Economics Bielefeld University

Soft Opening of the Bielefeld Graduate School in Theoretical Sciences Marienfeld 2011

Outline

- Investment under Risk
- 2 Knightian Uncertainty
- 3 Investment under Uncertainty
- Prospects of Uncertainty Theory

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

4□ > 4□ > 4 = > 4 = > = 900

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

Basic Assumptions

* X is a random variable on a probability space (Ω, \mathcal{F}, P)

 \circ the utility of k is u(k) for an increasing function u(x)

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

Basic Assumptions

• X is a random variable on a probability space (Ω, \mathscr{F}, P)

* the utility of k is u(k) for an increasing function u(x)

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

- X is a random variable on a probability space (Ω, \mathscr{F}, P)
- the distribution of X is known
- the utility of k is u(k) for an increasing function u(x)
- maximize $E^P u ((m \lambda)R + \lambda X)$ over $\lambda \in \mathbb{R}$

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

- X is a random variable on a probability space (Ω, \mathscr{F}, P)
- the distribution of X is known
- the utility of k is u(k) for an increasing function u(x)
- maximize $E^P u ((m \lambda)R + \lambda X)$ over $\lambda \in \mathbb{R}$

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

- X is a random variable on a probability space (Ω, \mathscr{F}, P)
- the distribution of X is known
- the utility of k is u(k) for an increasing function u(x)
- maximize $E^Pu\left((m-\lambda)R+\lambda X
 ight)$ over $\lambda\in\mathbb{R}$

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

- X is a random variable on a probability space (Ω, \mathscr{F}, P)
- the distribution of X is known
- the utility of k is u(k) for an increasing function u(x)
- maximize $E^P u ((m \lambda)R + \lambda X)$ over $\lambda \in \mathbb{R}$

The Situation

- You have $m > 0 \in$ left. Savings account or asset market?
- You get the safe return R > 0 on the savings account,
- for $\lambda \in$ invested into the asset, you get $\lambda X \in$ tomorrow, for an unknown X

- X is a random variable on a probability space (Ω, \mathscr{F}, P)
- the distribution of X is known
- the utility of k is u(k) for an increasing function u(x)
- maximize $E^P u ((m \lambda)R + \lambda X)$ over $\lambda \in \mathbb{R}$

- risk aversion $\Leftrightarrow u$ concave
- ullet the degree of risk aversion at x is $ho(x) = -rac{u''(x)}{u'(x)}$
- if $\rho(x) = a > 0$ is constant, then $u(x) = -\exp(-ax)$
- X is normally distributed mean u variance σ^2

- risk aversion $\Leftrightarrow u$ concave
- the degree of risk aversion at x is $\rho(x) = -\frac{u''(x)}{u'(x)}$
- if $\rho(x) = a > 0$ is constant, then $u(x) = -\exp(-ax)$
- **X** is normally distributed, mean μ variance σ^2

- risk aversion $\Leftrightarrow u$ concave
- the degree of risk aversion at x is $\rho(x) = -\frac{u''(x)}{u'(x)}$
- if $\rho(x) = a > 0$ is constant, then $u(x) = -\exp(-ax)$
- X is normally distributed, mean μ , variance σ^2

- risk aversion $\Leftrightarrow u$ concave
- the degree of risk aversion at x is $\rho(x) = -\frac{u''(x)}{u'(x)}$
- if $\rho(x) = a > 0$ is constant, then $u(x) = -\exp(-ax)$
- X is normally distributed, mean μ , variance σ^2

- risk aversion $\Leftrightarrow u$ concave
- the degree of risk aversion at x is $\rho(x) = -\frac{u''(x)}{u'(x)}$
- if $\rho(x) = a > 0$ is constant, then $u(x) = -\exp(-ax)$
- X is normally distributed, mean μ , variance σ^2

Optimal Investment

ullet Expected utility for investment λ

$$E^P u ((m - \lambda)R + \lambda X) = -\exp\left(-a(m - \lambda)R - a\lambda\mu + \frac{1}{2}a^2\lambda^2\sigma^2\right)$$

- maximize $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- $\lambda^* = \frac{\mu R}{a\sigma^2}$

How to Invest

Investment = excess return / (risk aversion \cdot variance

Optimal Investment

ullet Expected utility for investment λ

$$E^P u\left((m-\lambda)R + \lambda X\right) = -\exp\left(-a(m-\lambda)R - a\lambda\mu + \frac{1}{2}a^2\lambda^2\sigma^2\right)$$

- maximize $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- $\lambda^* = \frac{\mu R}{a\sigma^2}$

How to Invest

Investment = excess return / (risk aversion · variance `

Optimal Investment

ullet Expected utility for investment λ

$$E^P u((m-\lambda)R + \lambda X) = -\exp\left(-a(m-\lambda)R - a\lambda\mu + \frac{1}{2}a^2\lambda^2\sigma^2\right)$$

- maximize $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- $\lambda^* = \frac{\mu R}{a\sigma^2}$

How to Invest

Investment = excess return / (risk aversion · variance `

Optimal Investment

• Expected utility for investment λ

$$E^P u((m-\lambda)R + \lambda X) = -\exp\left(-a(m-\lambda)R - a\lambda\mu + \frac{1}{2}a^2\lambda^2\sigma^2\right)$$

- maximize $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- $\lambda^* = \frac{\mu R}{a\sigma^2}$

How to Invest

Investment = excess return / (risk aversion \cdot variance

Optimal Investment

• Expected utility for investment λ

$$E^P u((m-\lambda)R + \lambda X) = -\exp\left(-a(m-\lambda)R - a\lambda\mu + \frac{1}{2}a^2\lambda^2\sigma^2\right)$$

- maximize $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- $\lambda^* = \frac{\mu R}{a\sigma^2}$

How to Invest

 $Investment = excess return / (risk aversion \cdot variance)$

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:
 - well-known assets, options, mortality risk, car insurance etc. = "roulette"
 - credit-risk (rating AA) rather "horse race"

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:
 - well-known assets, options, mortality risk, car insurance etc. = "roulette"
 - credit-risk (rating AA) rather "horse race"

- Risk = "Roulette" = objective probabilities
- Uncertainty = "Horse Races" = no probabilities
- many entrepreneurial decisions are "horse-races" (start-up)
- financial markets:
 - well-known assets, options, mortality risk, car insurance etc. = "roulette"
 - credit-risk (rating AA) rather "horse race"

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o (\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X} \to \mathbb{R}$ that is

• cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in$

◆ロ > ◆部 > ◆注 > ◆注 > 注 り Q G

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o (\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X}\to\mathbb{R}$ that is

- cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in\mathbb{R}$
- ullet monotone: $X \geq Y \Rightarrow \mathscr{E}(X) \geq \mathscr{E}(Y)$
- diversification–friendly = concave:

$$\mathscr{E}(\lambda X + (1 - \lambda)Y) \ge \lambda \mathscr{E}(X) + (1 - \lambda)\mathscr{E}(Y)$$

• homogenous (maybe): $\mathscr{E}(\lambda X) = \lambda \mathscr{E}(X)$ for $\lambda > 0$

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o(\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X}\to\mathbb{R}$ that is

- cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in\mathbb{R}$
- monotone: $X \ge Y \Rightarrow \mathcal{E}(X) \ge \mathcal{E}(Y)$
- diversification–friendly = concave:

$$\mathscr{E}(\lambda X + (1 - \lambda)Y) \ge \lambda \mathscr{E}(X) + (1 - \lambda)\mathscr{E}(Y)$$

• homogenous (maybe): $\mathscr{E}(\lambda X) = \lambda \mathscr{E}(X)$ for $\lambda > 0$

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o (\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X}\to\mathbb{R}$ that is

- cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in\mathbb{R}$
- monotone: $X \ge Y \Rightarrow \mathscr{E}(X) \ge \mathscr{E}(Y)$
- diversification–friendly = concave:

$$\mathscr{E}(\lambda X + (1 - \lambda)Y) \ge \lambda \mathscr{E}(X) + (1 - \lambda)\mathscr{E}(Y)$$

• homogenous (maybe): $\mathscr{E}(\lambda X) = \lambda \mathscr{E}(X)$ for $\lambda > 0$

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o (\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X}\to\mathbb{R}$ that is

- cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in\mathbb{R}$
- monotone: $X \ge Y \Rightarrow \mathscr{E}(X) \ge \mathscr{E}(Y)$
- diversification–friendly = concave: $\mathscr{E}(\lambda X + (1 \lambda)Y) \ge \lambda \mathscr{E}(X) + (1 \lambda)\mathscr{E}(Y)$
- homogenous (maybe): $\mathscr{E}(\lambda X) = \lambda \mathscr{E}(X)$ for $\lambda > 0$

Probability-Free Ansatz

Approach without fixing a priori a probability measure a measurable space (Ω, \mathscr{F})

Let ${\mathscr X}$ be the set of all bounded, measurable functions

 $X:(\Omega,\mathscr{F}) o(\mathbb{R},\mathbb{B})=$ uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping $\mathscr{E}:\mathscr{X}\to\mathbb{R}$ that is

- cash invariant: $\mathscr{E}(X+m)=\mathscr{E}(X)+m$ for $m\in\mathbb{R}$
- monotone: $X \ge Y \Rightarrow \mathscr{E}(X) \ge \mathscr{E}(Y)$
- diversification–friendly = concave: $\mathscr{E}(\lambda X + (1 \lambda)Y) \ge \lambda \mathscr{E}(X) + (1 \lambda)\mathscr{E}(Y)$
- homogenous (maybe): $\mathscr{E}(\lambda X) = \lambda \mathscr{E}(X)$ for $\lambda > 0$

Uncertainty Measures: Representation

Theorem

Every continuous uncertainty measure has the form

$$\mathscr{E}(X) = \inf_{P \in \mathscr{P}} E^P(X)$$

for a set \mathscr{P} of probability measures on (Ω, \mathscr{F})

Remark

without positive homogeneity:

$$\mathscr{E}(X) = \inf_{P} E^{P}(X) + c(P)$$

for a penalty function c(P) c describes the trust in the specification P

Uncertainty Measures: Representation

Theorem

Every continuous uncertainty measure has the form

$$\mathscr{E}(X) = \inf_{P \in \mathscr{P}} E^P(X)$$

for a set \mathscr{P} of probability measures on (Ω, \mathscr{F})

Remark

without positive homogeneity:

$$\mathscr{E}(X) = \inf_{P} E^{P}(X) + c(P)$$

for a penalty function c(P) c describes the trust in the specification P

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

```
Optimal Investment
```

- wayst case maximal variance 52

- * $\lambda' = 0.0 \ m < R < M A$ (cautious investments)
- $0 \lambda' = \frac{m-1}{2} \text{ if } m > K$

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- ullet specify a set of distributions for X
- ullet X normal with mean $\mu \in [m,M]$, variance $\sigma^2 \in [s^2,S^2]$

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

Optimal Investment

• Illillillize the expected utility over set of priors, or

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- ullet minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{C^2}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M ! (cautious investment)
- $\lambda^* = \frac{m-K}{2S^2}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{R}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{2S^2}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{aS^2}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{aS^2}$ if m > R

Uncertain Capital Asset Pricing

- keep constant absolute risk aversion, $u(x) = -\exp(-ax)$
- specify a set of distributions for X
- X normal with mean $\mu \in [m, M]$, variance $\sigma^2 \in [s^2, S^2]$

- minimize the expected utility over set of priors, or
- $(m-\lambda)R + \lambda\mu \frac{1}{2}a\lambda^2\sigma^2$
- worst case: maximal variance S^2
- minimal mean m if $\lambda \geq 0$, maximal mean else
- $\lambda^* = 0$ if m < R < M! (cautious investment)
- $\lambda^* = \frac{m-R}{aS^2}$ if m > R

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton–Jacobi–Bellman Equations

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton–Jacobi–Bellman Equations

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton-Jacobi-Bellman Equations

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton–Jacobi–Bellman Equations

- Robust Investment
- Ontimal Control
- = Finance under Volatility Uncertainty (Jörg Vorbrink's Tall
- Regulation of Financial Markets

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton–Jacobi–Bellman Equations

- Robust Investment
- Optimal Control
- Finance under Volatility Uncertainty (Jörg Vorbrink's Talk)
- Regulation of Financial Markets

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton-Jacobi-Bellman Equations

- Robust Investment
- Optimal Control
- Finance under Volatility Uncertainty (Jörg Vorbrink's Talk)
- Regulation of Financial Markets 🕬

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton-Jacobi-Bellman Equations

- Robust Investment
- Optimal Control
- Finance under Volatility Uncertainty (Jörg Vorbrink's Talk)
- Regulation of Financial Markets 📭

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton-Jacobi-Bellman Equations

- Robust Investment
- Optimal Control
- Finance under Volatility Uncertainty (Jörg Vorbrink's Talk)
- Regulation of Financial Markets

Mathematics

- Law of Large Numbers
- Multiple Prior Martingale Theory
- Modified Hamilton-Jacobi-Bellman Equations

- Robust Investment
- Optimal Control
- Finance under Volatility Uncertainty (Jörg Vorbrink's Talk)
- Regulation of Financial Markets

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_{k}\rightarrow\mu$ a.s.

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_k\to\mu$ a.s.

- Now let \mathscr{E} be an uncertainty measure.

$$\frac{1}{n}\sum X_k\in[m,M]$$
 quasi–surely

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_{k}\rightarrow\mu$ a.s.

- Now let \mathscr{E} be an uncertainty measure.
- to clarify: independent, identically distributed

$$\frac{1}{n} \sum_{k=1}^{n} X_k \in [m, M] \quad \text{quasi-surely}$$

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_{k}\rightarrow\mu$ a.s.

- Now let & be an uncertainty measure.
- to clarify: independent, identically distributed
- suppose $-\infty < m = \inf_{p \in \mathscr{P}} E^P X_1 \le M = \sup_{P \in \mathscr{P}} E^P X_1 < \infty$

$$\frac{1}{n} \sum_{k=1}^{n} X_k \in [m, M] \quad \text{quasi-surely}$$

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_{k}\rightarrow\mu$ a.s.

- Now let & be an uncertainty measure.
- to clarify: independent, identically distributed
- suppose $-\infty < m = \inf_{p \in \mathscr{P}} E^p X_1 \le M = \sup_{P \in \mathscr{P}} E^p X_1 < \infty$

$$\frac{1}{n} \sum_{k=1}^{n} X_k \in [m, M] \quad \text{quasi-surely}$$

Probability

Let (X_n) be a sequence of independent and identically distributed random variables with mean $\mu = E^P X_1 \in \mathbb{R}$. Then $\frac{1}{n}\sum_{k=1}^{n}X_{k}\rightarrow\mu$ a.s.

- Now let & be an uncertainty measure.
- to clarify: independent, identically distributed
- suppose $-\infty < m = \inf_{p \in \mathscr{P}} E^p X_1 \le M = \sup_{P \in \mathscr{P}} E^p X_1 < \infty$
- then:

$$\frac{1}{n} \sum_{k=1}^{n} X_k \in [m, M] \quad \text{quasi-surely}$$

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks
- Minimum Capital $\geq 8\% \cdot [Assets + 12.5 \cdot Value-at-Risk]$

"All began with Basel II." Peter Biendarra

- Value-at-Risk is used to regulate liquidity of banks
- Minimum Capital $\geq 8\% \cdot [\mathsf{Assets} + 12.5 \cdot \mathsf{Value-at-Risk}]$
- What is Value at Risk?
- ullet choose a "small" confidence level lpha=5%,1%,0.01%
- V@R is 10 Mio \$, if the probability to lose more than 10 Mio \$ is a
- \bullet $P[-X \geq V\mathbb{Q}\mathbb{R}_{\alpha}(X)] = \alpha$, i.e. a quantile

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks
- $\bullet \ \ \mathsf{Minimum} \ \ \mathsf{Capital} \ \ge 8\% \cdot [\mathsf{Assets} + 12.5 \cdot \mathsf{Value-at-Risk}]$
- What is Value at Risk?
- choose a "small" confidence level $\alpha = 5\%, 1\%, 0.01\%$
- ullet V@R is 10 Mio \$, if the probability to lose more than 10 Mio \$ is a
- $P[-X \ge V@R_{\alpha}(X)] = \alpha$, i.e. a quantile

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks
- Minimum Capital $\geq 8\% \cdot [\text{Assets} + 12.5 \cdot \text{Value-at-Risk}]$
- What is Value at Risk?
- choose a "small" confidence level $\alpha = 5\%, 1\%, 0.01\%$
- \bullet V@R is 10 Mio \$, if the probability to lose more than 10 Mio \$ is α
- $P[-X \ge V@R_{\alpha}(X)] = \alpha$, i.e. a quantile

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks
- Minimum Capital $\geq 8\% \cdot [\text{Assets} + 12.5 \cdot \text{Value-at-Risk}]$
- What is Value at Risk?
- choose a "small" confidence level $\alpha = 5\%, 1\%, 0.01\%$
- ullet V@R is 10 Mio \$, if the probability to lose more than 10 Mio \$ is lpha
- $P[-X \ge V@R_{\alpha}(X)] = \alpha$, i.e. a quantile

"All began with Basel II." Peter Biendarra

- Value—at—Risk is used to regulate liquidity of banks
- Minimum Capital $\geq 8\% \cdot [\text{Assets} + 12.5 \cdot \text{Value-at-Risk}]$
- What is Value at Risk?
- choose a "small" confidence level $\alpha = 5\%, 1\%, 0.01\%$
- ullet V@R is 10 Mio \$, if the probability to lose more than 10 Mio \$ is lpha
- $P[-X \ge V@R_{\alpha}(X)] = \alpha$, i.e. a quantile

Value at Risk is Manipulable

Problems

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha

- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

Value at Risk is Manipulable

Problems

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset–Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

Value at Risk is Manipulable

Problems

- not sensitive:
 - \bullet take a huge risk with probability smaller than α
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- not sensitive:
 - ullet take a huge risk with probability smaller than lpha
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- not sensitive:
 - \bullet take a huge risk with probability smaller than α
 - Value at Risk does not "see" the risk
 - the asset market is willing to pay high returns (premia) for banks that take such risks
 - Asset-Backed Commercial Paper without any liquidity, but high risks were created
- V@R punishes diversification
- the "P" is arbitrarily (and wrongly) specified or "calibrated"

- Monetary risk measures have the form $a(X) = \sup_{X \in \mathcal{X}} a(X) = \mathcal{E}(X)$
- if well constructed: sensitive, manipulation—proof
- convex, i.e. encourage diversification
- Case study (Dana, R.): market breakdown with "stress-testing" perfect markets with uncertainty measures

Risk Measure

• Monetary risk measures have the form

$$\rho(X) = \sup_{P \in \mathscr{P}} E^P(-X) = -\mathscr{E}(X)$$

- if well constructed: sensitive, manipulation-proof
- convex, i.e. encourage diversification
- Case study (Dana, R.): market breakdown with "stress-testing", perfect markets with uncertainty measures

- Monetary risk measures have the form $\rho(X) = \sup_{P \in \mathscr{D}} E^P(-X) = -\mathscr{E}(X)$
- if well constructed: sensitive, manipulation-proof
- convex, i.e. encourage diversification
- Case study (Dana, R.): market breakdown with "stress-testing", perfect markets with uncertainty measures

- Monetary risk measures have the form $\rho(X) = \sup_{P \in \mathscr{D}} E^P(-X) = -\mathscr{E}(X)$
- if well constructed: sensitive, manipulation-proof
- convex, i.e. encourage diversification
- Case study (Dana, R.): market breakdown with "stress-testing", perfect markets with uncertainty measures

- Monetary risk measures have the form $\rho(X) = \sup_{P \in \mathscr{D}} E^P(-X) = -\mathscr{E}(X)$
- if well constructed: sensitive, manipulation-proof
- convex, i.e. encourage diversification
- Case study (Dana, R.): market breakdown with "stress-testing", perfect markets with uncertainty measures

Definition

An adapted, bounded process (S_t) is called a multiple prior supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P \left[\left. S_{t+1} \, \right| \mathscr{F}_t \right]$$

holds true for all $t \ge 0$. multiple prior martingale: = multiple prior submartingale: \le

Remark

Some assumptions on ${\mathscr P}$ needed.

time-consistency

• $\mathscr P$ weakly compact in $\operatorname{ca}(\Omega,\mathscr F)$

Definition

An adapted, bounded process (S_t) is called a multiple prior supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P \left[\left. S_{t+1} \, \right| \, \mathscr{F}_t \right]$$

holds true for all $t \ge 0$. multiple prior martingale: = multiple prior submartingale: \le

Remark

Some assumptions on ${\mathscr P}$ needed:

- time-consistency
- \mathscr{P} weakly compact in $\operatorname{ca}(\Omega,\mathscr{F})$

Definition

An adapted, bounded process (S_t) is called a multiple prior supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P \left[\left. S_{t+1} \, \right| \mathscr{F}_t \right]$$

holds true for all $t \ge 0$. multiple prior martingale: = multiple prior submartingale: \le

Remark

Some assumptions on ${\mathscr P}$ needed:

- time-consistency
- \mathscr{P} weakly compact in $ca(\Omega, \mathscr{F})$

Definition

An adapted, bounded process (S_t) is called a multiple prior supermartingale iff

$$S_t \geq \operatorname*{ess\,inf}_{P \in \mathscr{P}} \mathbb{E}^P \left[\left. S_{t+1} \, \right| \mathscr{F}_t \right]$$

holds true for all $t \ge 0$. multiple prior martingale: = multiple prior submartingale: \le

Remark

Some assumptions on ${\mathscr P}$ needed:

- time-consistency
- \mathscr{P} weakly compact in $ca(\Omega, \mathscr{F})$

Theorem

- (S_t) is a multiple prior submartingale iff (S_t) is a \mathscr{P} -submartingale.
- (S_t) is a multiple prior supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a multiple prior martingale iff (M_t) is a \mathscr{P} -submartingale and for some $P \in \mathscr{P}$ a P-supermartingale.

$\mathsf{Theorem}$

- (S_t) is a multiple prior submartingale iff (S_t) is a \mathscr{P} -submartingale.
- (S_t) is a multiple prior supermartingale iff there exists a $P \in \mathcal{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a multiple prior martingale iff (M_t) is a \mathscr{P} -submartingale and for some $P \in \mathscr{P}$ a P-supermartingale.

Remark

$\mathsf{Theorem}$

- (S_t) is a multiple prior submartingale iff (S_t) is a \mathscr{P} -submartingale.
- (S_t) is a multiple prior supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a multiple prior martingale iff (M_t) is a \mathscr{P} -submartingale and for some $P \in \mathscr{P}$ a P-supermartingale.

Remark

$\mathsf{Theorem}$

- (S_t) is a multiple prior submartingale iff (S_t) is a \mathscr{P} -submartingale.
- (S_t) is a multiple prior supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a multiple prior martingale iff (M_t) is a \mathscr{P} -submartingale and for some $P \in \mathscr{P}$ a P-supermartingale.

Remark

$\mathsf{Theorem}$

- (S_t) is a multiple prior submartingale iff (S_t) is a \mathscr{P} -submartingale.
- (S_t) is a multiple prior supermartingale iff there exists a $P \in \mathscr{P}$ such that (S_t) is a P-supermartingale.
- (M_t) is a multiple prior martingale iff (M_t) is a \mathscr{P} -submartingale and for some $P \in \mathscr{P}$ a P-supermartingale.

Remark

