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Investment under Risk

How to Invest Your Savings

The Situation

You have m > 0e left. Savings account or asset market?

You get the safe return R > 0 on the savings account,

for λe invested into the asset, you get λX e tomorrow, for an
unknown X

Basic Assumptions

X is a random variable on a probability space (Ω,F ,P)

the distribution of X is known

the utility of k is u(k) for an increasing function u(x)

maximize EPu ((m − λ)R + λX ) over λ ∈ R
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Investment under Risk

How to Invest: Capital Asset Pricing Model

Further Assumptions

risk aversion ⇔ u concave

the degree of risk aversion at x is ρ(x) = −u′′(x)
u′(x)

if ρ(x) = a > 0 is constant, then u(x) = − exp(−ax)

X is normally distributed, mean µ, variance σ2
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Investment under Risk

How to Invest: Solution

Optimal Investment

Expected utility for investment λ

EPu ((m − λ)R + λX ) = − exp

(
−a(m − λ)R − aλµ+

1

2
a2λ2σ2

)
maximize (m − λ)R + λµ− 1

2aλ2σ2

λ∗ = µ−R
aσ2

How to Invest

Investment = excess return / (risk aversion · variance )
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Knightian Uncertainty

Critique of the Probabilistic Model

Frank Knight: Risk, Uncertainty, and Profit

Risk = “Roulette” = objective probabilities

Uncertainty = “Horse Races” = no probabilities

many entrepreneurial decisions are “horse–races” (start–up)

financial markets:

well-known assets, options, mortality risk, car insurance etc. =
“roulette”
credit-risk (rating AA) rather “horse race”
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Knightian Uncertainty

Uncertainty Measures

Probability–Free Ansatz

Approach without fixing a priori a probability measure
a measurable space (Ω,F )
Let X be the set of all bounded, measurable functions
X : (Ω,F )→ (R,B) = uncertain payoffs, positions

Uncertainty Measure

An uncertainty measure is a mapping E : X → R that is

cash invariant: E (X + m) = E (X ) + m for m ∈ R
monotone: X ≥ Y ⇒ E (X ) ≥ E (Y )

diversification–friendly = concave:
E (λX + (1− λ)Y ) ≥ λE (X ) + (1− λ)E (Y )

homogenous (maybe): E (λX ) = λE (X ) for λ > 0
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Knightian Uncertainty

Uncertainty Measures: Representation

Theorem

Every continuous uncertainty measure has the form

E (X ) = inf
P∈P

EP(X )

for a set P of probability measures on (Ω,F )

Remark

without positive homogeneity:

E (X ) = inf
P

EP(X ) + c(P)

for a penalty function c(P) c describes the trust in the specification P
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Investment under Uncertainty

Investment under Uncertainty

Uncertain Capital Asset Pricing

keep constant absolute risk aversion, u(x) = − exp(−ax)

specify a set of distributions for X

X normal with mean µ ∈ [m,M], variance σ2 ∈ [s2,S2]

Optimal Investment

minimize the expected utility over set of priors, or

(m − λ)R + λµ− 1
2aλ2σ2

worst case: maximal variance S2

minimal mean m if λ ≥ 0, maximal mean else

λ∗ = 0 if m < R < M ! (cautious investment)

λ∗ = m−R
aS2 if m > R
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Mathematics

Law of Large Numbers go

Multiple Prior Martingale Theory go

Modified Hamilton–Jacobi–Bellman Equations

Economics

Robust Investment

Optimal Control

Finance under Volatility Uncertainty (Jörg Vorbrink’s Talk)

Regulation of Financial Markets go
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Prospects of Uncertainty Theory Law of Large Numbers

Large Numbers

Probability

Let (Xn) be a sequence of independent and identically distributed random
variables with mean µ = EPX1 ∈ R. Then
1
n

∑n
k=1 Xk → µ a.s.

Law of Large Numbers under Uncertainty

Now let E be an uncertainty measure.

to clarify: independent, identically distributed

suppose −∞ < m = infp∈P EPX1 ≤ M = supP∈P EPX1 <∞
then:

1

n

n∑
k=1

Xk ∈ [m,M] quasi–surely

go
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Value at Risk and the Financial Crisis

“All began with Basel II.” Peter Biendarra

Basel II Rules for Capital Requirements

Value–at–Risk is used to regulate liquidity of banks

Minimum Capital ≥ 8% · [Assets + 12.5 · Value–at–Risk]

What is Value at Risk?

choose a ”small” confidence level α = 5%, 1%, 0.01%

V@R is 10 Mio $, if the probability to lose more than 10 Mio $ is α

P[−X ≥ V@Rα(X )] = α, i.e. a quantile
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Value at Risk is Manipulable

Problems

not sensitive:

take a huge risk with probability smaller than α
Value at Risk does not “see” the risk
the asset market is willing to pay high returns (premia) for banks that
take such risks
Asset–Backed Commercial Paper without any liquidity, but high risks
were created

V@R punishes diversification

the “P” is arbitrarily (and wrongly) specified or “calibrated”
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Risk Measure

Monetary risk measures have the form
ρ(X ) = supP∈P EP(−X ) = −E (X )

if well constructed: sensitive, manipulation–proof

convex, i.e. encourage diversification

Case study (Dana, R.): market breakdown with “stress–testing”,
perfect markets with uncertainty measures
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Multiple Prior Martingales

Definition

An adapted, bounded process (St) is called a multiple prior
supermartingale iff

St ≥ ess inf
P∈P

EP [St+1 |Ft ]

holds true for all t ≥ 0.
multiple prior martingale: =
multiple prior submartingale: ≤

Remark

Some assumptions on P needed:

time–consistency

P weakly compact in ca(Ω,F )
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Characterization of Multiple Prior Martingales

Theorem

(St) is a multiple prior submartingale iff (St) is a P–submartingale.

(St) is a multiple prior supermartingale iff there exists a P ∈P such
that (St) is a P–supermartingale.

(Mt) is a multiple prior martingale iff (Mt) is a P–submartingale and
for some P ∈P a P–supermartingale.

Remark

For multiple prior supermartingales: ⇐ holds always true.⇒ needs
time–consistency. For infinite time horizon: weak compactness in ca(Ω,F )
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