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Abstract

New genomic tools and resources are now being used to both understand honey bee health and 

develop tools to better manage it. Here, we describe the use of genomic approaches to identify and 

characterize bee parasites and pathogens, examine interactions among these parasites and 

pathogens, between them and their bee hosts, and to identify genetic markers for improved 

breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be 

used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based 

technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and 

strategies to reduce risk. The increased use of genomic analytical tools and manipulative 

technologies has already led to significant advances, and holds great promise for improvements in 

the health of honey bees and other critical pollinator species.

Introduction

The winter of 2006–2007 ushered in a new era in bee biology, with the simultaneous 

discovery of the devastating effects of Colony Collapse Disorder on US honey bee 

populations [1] and the culmination of a multi-year, international effort to sequence and 

analyze the Apis mellifera honey bee genome with a large series of papers in Nature, 

Science, PNAS and elsewhere [2]. As for other topics such as social behavior [3], the 

knowledge and tools that derived from the honey bee genome sequencing project were 

quickly deployed to address CCD [4]. In the following years these resources, for honey bees 

and soon for other bee species, have formed the basis for new approaches to the study of bee 

health. This review summarizes the progress and challenges associated with applying 

genomics to understand the mechanisms by which abiotic and biotic factors undermine bee 

health and to develop novel strategies to mitigate the effects of these stressors.
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Comparative analyses of immune genes

Over the past several years there has been a steady increase in the availability of genome 

sequence information for a variety of insect species, including several bee species [5]. 

Additional sequencing and analyses substantially improved the A. mellifera genome in 2014, 

resulting in the identification of more than 5000 additional protein coding genes [6]. 

Sequenced genomes were recently reported or are underway for a managed Asian honey bee 

species, Apis cerana [7], a halictid bee, Lasioglossum albipes [8], two bumble bee species, 

Bombus terrestris and B. impatiens [9], and several other bee species [10]. In addition, 

transcriptomes for over ten bee species have been published (for example, [11–13]).

Comparisons across a broad range of insect species have provided important insights into 

the molecular mechanisms regulating several traits of bees, including immunity. In the first 

such comparison, between A. mellifera and the only two other sequenced insect genomes at 

the time (Drosophila melanogaster and Anopheles gambiae) it was observed that though 

honey bees have a fully intact immune system with genes corresponding to all known 

branches of the immune response pathway, they appeared to have fewer of the canonical 

insect immune genes [14]. However, as more genomes became available, this difference was 

not observed and honey bees are now thought to have a typical complement of canonical 

immune related genes [15, 16]. Comparisons across bee species suggest that these canonical 

immune genes are rapidly evolving, and thus may allow different species to adapt to species-

specific immune challenges [13]. However, more recent studies suggest that this rapid 

evolution is not due to positive selection but rather relaxed selection [17]. This might be the 

case because bees do not rely exclusively on canonical immune genes to fight infection, but 

can employ other genes and mechanisms to combat diseases and parasites, such as social 

immunity (behavioral mechanism to reduce disease load, [18]) or increased genetic diversity 

[19]. Consistent with this speculation, analyses of gene expression changes in response to 

immunostimulation revealed that honey bees (and other insects) may employ a much 

broader array of genes than those identified as part of the canonical immune pathways, 

though the functional significance of these gene expression changes remain to be determined 

[20, 21].

Using genomic tools to investigate the effects of biotic and abiotic 

stressors on bee health

Many studies have used analyses of gene expression as a way to probe effects of various 

stressors on bee health. The underlying idea is that changes in gene expression can provide a 

sensitive indication of effects that will eventually negatively impact a variety of 

physiological systems. This approach also has provided insights into the mechanisms 

underlying tolerance or resistance to these stressors (see also [22, 23], this issue). For 

example, viral infections in developing honey bee pupae led to changes in expression of 

genes encoding ribosomal RNA and proteins, consistent with viral impacts on protein 

translation [24]. Changes in expression of these genes were also found in gut samples from 

bees collected from colonies exhibiting symptoms of CCD [25], in accordance with the 

possibility that CCD, at least in some cases, involves infections with multiple viruses [26]. 

Viral infection caused upregulation of genes in the RNAi pathway in honey bee fat body 
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tissues [21], supporting previous studies demonstrating that the RNAi pathway plays an 

important role in mediating antiviral responses in insects [27]. Introduction of non-viral 

double-stranded RNA also can reduce viral titers in honey bees (likely by non-specific 

activation of the RNAi pathway, [28]), and thus may serve as a therapeutic tool to reduce 

viral infections in bee colonies (see below for further discussion). Exposure of young bees to 

neonicotinoid pesticides altered expression of a gene that regulates NF-κB-mediated 

antiviral immune responses, resulting in increased viral titers in pesticide-treated bees [29]. 

Finally, viral infection also caused changes in DNA methylation patterns in fat body tissue 

for a set of genes previously associated with antiviral responses in vertebrates but not insects 

[21], and thus this may represent a heretofore undescribed genomic response to viral 

infections. However, it is important to note that most studies only show correlations between 

stressors and changes in gene expression or methylation levels, and detailed functional 

analyses of these processes must be performed.

Characterizing transcriptional responses to Nosema microsporidia infections has also helped 

explain the bewildering diversity of effects that Nosema has on bees. Nosema are gut 

parasites, and infections lead to increased hunger, accelerated behavioral maturation from 

brood care to foraging, reduced flight capabilities, and premature death [30]. Examination of 

genome-wide expression patterns demonstrated that the primary impact of Nosema in honey 

bee fat body tissue is on expression of genes in metabolic and nutritional pathways, which 

appears to subsequently lead to the transcriptional and physiological changes associated with 

accelerated behavioral maturation, altered immune function, and reduced longevity [31].

Global gene expression studies have also suggested that nutrition and diet can mitigate the 

effects of pesticides. Exposure to pesticides caused upregulation of detoxification genes in 

abdominal tissues, which should reduce the impacts of the pesticides, and altered expression 

of immune genes, which is consistent with studies demonstrating that pesticide-exposed 

bees are immunocompromised [32–36]. Interestingly, the effects of pesticide exposure on 

gene expression in fat body tissue are similar to those caused by consuming a rich diet of 

honey and pollen (versus sucrose)[36]. Honey and pollen contain a variety of chemically 

complex secondary plant compounds and thus may trigger similar "detoxification" responses 

as pesticides. Indeed, feeding honey bees p-coumaric acid, a constituent of honey, or 

quercetin, found in both honey and pollen, caused upregulation of detoxification genes and 

improved detoxification abilities [37–39]. However, while short-term feeding with pollen 

prior to pesticide exposure does confer some benefit in terms of longevity (consistent with a 

priming effect), long-term feeding is significantly more beneficial, suggesting that natural 

pollen/honey based diets result in improved overall health, which in turn improves responses 

to pesticides and other stressors [36].

Do different stressors elicit common or distinct transcriptional responses in bees? 

Parasitization with Nosema and Varroa cause similar changes in brain gene expression, 

despite the fact that these parasites infect their hosts at different life stages (adult for 

Nosemapupae for Varroa)[40]. Nosema parasitization, injection with E. coli bacteria, and 

exposure to pesticides all triggered similar changes in gene expression in fat body tissues 

[20, 31, 36]. In contrast, gene expression changes induced by viral infection appear to be 

fairly distinct, and the effects of infection vary with the type of virus, developmental stage of 
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infection, duration of infection, and tissue [21]. Similarly, while pesticide exposure 

generally causes changes in expression of detoxification genes, the identities of these genes 

can vary greatly across pesticides and studies [32, 33, 35, 36]. Comparing and contrasting 

the effects of biotic and abiotic stressors on gene expression in a variety of tissues is a 

promising avenue to understand how these stressors affect bee health.

Genome sequencing of bee parasites and microbial communities

Genomic resources for honey bees have been used to generate great insight into the possible 

mechanisms underlying molecular and physiological responses to stressors, but it is also 

necessary to generate genomic resources for the parasites and pathogens infecting bees to 

fully understand and potentially mitigate the effects of the diseases they cause (see also [41], 

this issue). Recently, genomic information for several key parasites of honey bees has been 

produced, including a partial genome sequence for the parasitic mite Varroa destructora 

major cause for bee decline across the world [42]; whole genome sequences for the gut 

microsporidian parasites Nosema apis and Nosema ceranaewhich have been associated with 

increased mortality and colony loss [43, 44]; and a draft genome sequence for the gut 

trypanosomatid parasite Lotmaria passim (previously identified as Crithidia mellificae), 

which has been linked to colony losses in Europe [45, 46]. Additionally, genome sequences 

have been generated for two key honey bee brood parasites: Paenibacillus larvaethe 

bacterial species that causes American foulbrood, and Ascosphaera apisthe fungal species 

that causes chalkbrood [47–49]. Genome sequencing has been used to define and 

characterize variants of two major viral pathogens of honey bees, Deformed Wing Virus 

(DWV) and Israeli Acute Paralysis Virus (IAPV) [50].

Genomic information obtained from these sequences can be used to identify pathogen/

parasite-specific gene sequences for RNAi-based control measures (see below), develop 

molecular diagnostic markers to efficiently monitor parasite/pathogen load and spread, or to 

generate insights into the mechanisms mediating host-parasite interactions and potentially 

host resilience to these disease agents. Furthermore, metagenomic approaches have allowed 

for characterization of the beneficial microbes found in honey bees, and the factors that may 

perturb these communities (see [51], this issue).

Using genomics to reveal hidden diseases

Genomic approaches have greatly facilitated the identification of previously unknown or 

uncharacterized pathogens and parasites in honey bee populations. However, it must be 

noted that if parasites and pathogens are very different from previously sequenced species, 

identification based simply on genomic sequence alone can be challenging. Furthermore, 

while genomics approaches can reveal an association of a parasite or pathogen with 

particular symptoms, additional testing is necessary to provide causation. For example, 

historically, 18 viruses were known to infect honey bees [52]. Metagenomic sequencing of 

control and collapsing honey bee colonies indicated that prevalence of a relatively 

understudied virus, IAPV, was higher in collapsing colonies [4]. It was subsequently shown 

that IAPV was present in the US before the occurrence of CCD [53], but more 
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comprehensive longitudinal studies indeed demonstrated that colonies with high levels of 

IAPV are less likely to survive the winter [54].

High-throughput sequencing of RNA extracted from honey bees from colonies of US 

migratory beekeeping operations led to the identification of four additional viruses (Aphid 

Lethal Paralysis virus, Big Sioux River virus, and Lake Sinai viruses 1 and 2), some which 

reached high levels of prevalence [55]. Similar molecular screens later identified Lake Sinai 

viruses 3 and 4 in US and European honey bee populations [26, 56]. Genomic and molecular 

diagnostic approaches also demonstrated that US and European colonies are frequently 

infected with the trypanosome Lotmaria passim (previously identified as Crithidia 

mellificae) [46, 55, 56]. L. passim was not previously considered to be a significant threat to 

honey bee health, but more recent studies in Europe demonstrated that levels of L. passim 

are strongly associated with winter colony losses [56]. Recent studies also have suggested 

that a plant virus (tomato ringspot virus) can also infect honey bees [57], though further 

analyses are necessary to confirm replication with bee hosts and negative health effects.

Genomic approaches have also helped disentangle the complex pathogen-parasite-host 

interactions that have been observed between DWV, Varroa mites, and honey bees. DWV is 

found in nearly all honey bee populations, with Varroa mites both transmitting the virus and 

triggering elevated viral titers [58]. Interestingly, DWV titers also reach very high levels in 

bees when the cuticle is pierced by a needle [59, 60], and thus it may be the mechanical 

trauma from Varroa feeding that immunocompromises the bee, rather than factors 

introduced by Varroa during feeding. Recent studies have demonstrated that when DWV is 

introduced to a host bee by Varroa or injection, there is selective amplification of 

genotypically distinct, highly virulent strains of DWV, which in some cases correspond to a 

recombinant DWV-Varroa destructor virus strain [60, 61]. Further studies are needed to 

determine the mechanisms by which these strains specifically amplify under these 

conditions, though it has been hypothesized that this represents a trade-off between anti-

Varroa/melanization and anti-viral immune responses [62].

New diagnostic tools derived from genome sequences have facilitated our ability to detect 

pathogens and track their spread across bee populations. For example, Varroa mites were 

recently introduced into honey bee populations in Hawaii, New Zealand, and Kenya, and 

molecular techniques allowed for the rapid analyses of these populations to determine the 

extent of the distribution of Varroa-associated viruses, and their impacts on bee health [61, 

63, 64]. Furthermore, molecular approaches have demonstrated that pathogens from 

commercial bumble bee colonies can spill over into wild bumble bee colonies [65] and may 

cause declines in wild species [66]. Similarly, pathogens and parasites of honey bees can 

infect populations of other bees and insects, likely via horizontal transmission by feeding on 

common flowering plants [67–71].

Using genomic approaches to combat stressors

Ever since the discovery of honey bees resistant to the bacterial disease American Foulbrood 

[72], it has been known that there can be considerable heritable variation in the sensitivity of 

different bee genotypes to parasites and pathogens. These discoveries have fueled an interest 
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in identifying the underlying genetic factors that drive this variation to breed more resilient 

stocks of bees. Breeding programs have generated stocks of bees that are more resistant to 

Nosema in Denmark, and this difference is associated with increased expression of immune 

genes [73] and inferred sequence variation in four locations in the genome [74, 75]. 

Similarly, there is variation in resistance to Varroa mites in both natural and selected 

populations of honey bees. Resistance to Varroa is driven by multiple physiological and 

behavior traits, and different quantitative trait loci (QTLs) have been found that are related 

to these different traits, including grooming (where mites are removed from a nestmate's 

body, [76]), hygienic behavior (removal of parasitized brood, [77]) and suppressed 

reproduction of female mites feeding on developing pupae [78]. Genetic differences in 

resistance to viruses have also been observed, though these have not been mapped to 

specific genomic regions [79]. Thus far, genetic differences in response to other major 

stressors of bees (pesticides and poor nutrition) have not been investigated.

While it has been possible to identify several genomic regions associated with variation in 

resilience to different stressors, identifying the specific genes and using this information to 

breed and maintain improved stocks of bees can been challenging (for review, see [80], this 

issue). Variation in many of these traits is influenced by variation in many genes, thus 

setting up the possibility of many complex interactions among genes in determining 

phenotypic differences. In other words, a particular genetic variant that is associated with 

variation in grooming behavior or pathogen resistance in one population may not be casually 

relevant in a different population. Furthermore, honey bee queens typically mate with an 

average of 12 drones, always outside the hive [81]. Thus, beekeepers must use instrumental 

insemination or tightly controlled breeding yards to limit uncontrolled gene flow into 

selected stocks. In addition, there can be negative effects of inbreeding or low genetic 

diversity in a colony [19, 82, 83], requiring that stocks include considerable genetic diversity 

at non-selected loci.

There are exciting new technical developments that will greatly improve our ability to 

functionally characterize pathways involved in mediating bee health (rather than relying 

simply on correlations) and potentially breed more resilient bees. Recently, the piggyBac-

derived transposon was used to transform honey bees and drive expression of an exogenous 

green fluorescent protein gene [84], which, together with the development of general 

genome editing tools such as CRISPRs and TALENs [85], lays the groundwork for the 

development of transgenic bees with enhanced genetic resistance to different stressors. It 

should also be possible to generate transgenic strains of beneficial bee gut microbes [86], 

which could produce key nutrients, pesticide detoxification enzymes, or biotic factors 

targeting parasites or pathogens.

The use of double-stranded RNA (dsRNA, which activates the RNAi pathway and reduces 

RNA levels of target genes) has greatly enhanced our ability to study the function of genes 

involved in bee health[54, 62], and is a promising new tool for mitigating the impacts of 

parasites and pathogens. Feeding parasitized honey bees with dsRNA corresponding to 

Nosema or Varroa genes reduces expression levels of these genes in populations of Nosema 

and Varroa collected from these parasitized bees, and reduces levels of both parasites in 

bees [87, 88]. Importantly, in the case of the experiments using Varroathere was 
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bidirectional transfer of the dsRNA: dsRNA was fed to the bee, passed from the bee gut to 

the hemolymph, from the hemolymph to the Varroaand then back to the bee. Similarly, 

feeding honey bees viral dsRNA can reduce viral titers, reduce mortality of individual bees, 

and have positive effects on colony health parameters [89, 90].

Using RNAi to reduce levels of pathogens and parasites has both advantages and 

disadvantages. dsRNA should in theory be highly specific for its target gene sequence, 

which should limit off-target effects [91]. However, if relatively long sequences are used to 

develop dsRNA constructs, they are likely to contain fragments that match the host bee's 

genome sequence. Indeed, feeding bees with dsRNA corresponding to green fluorescent 

protein (a gene sequence not found in bees) resulted in altered developmental timing and 

significant gene expression changes, specifically in bee genes that had small regions 

matching sequences found in the introduced dsRNA [92]. Furthermore, a previous study 

indicated that non-sequence specific dsRNA can trigger a general antiviral immune response 

[28], which can be both beneficial, since it can impact a broad range of viruses and viral 

strains, and potentially problematic, if external, non-target dsRNA is introduced in large 

quantities for other applications, such as to control crop pests or weeds [93]. Though a 

second study found no effect of non-specific dsRNA on viral titers [90], further testing is 

needed to determine whether chronic exposure to dsRNA impacts bee immune function in a 

positive or negative way. Additionally, because most pathogens and parasites are broadly 

circulating in the environment, even if the dsRNA treatments are very effective, they will 

have to be frequently applied, or detailed studies will be needed to determine the most 

effective time period for treatment (eg, treatments for Varroa are most effective in the fall, 

prior to the production of winter bees; for review see [94] this issue). As with all efforts to 

manage pests, parasites, and pathogens, an Integrated Pest Management approach should be 

employed, to reduce off-target effects, reduce the likelihood of resistance development, and 

reduce costs (see [95], this issue, for a discussion of IPM approaches to pollinator health).

Conclusions

The development of genomic resources and tools in honey bees has tremendously facilitated 

our ability to dissect the intricate mechanisms that regulate bee health. Furthermore, 

genomics has allowed us to make discoveries that have launched new fields of inquiry, 

including the identification of new parasites, pathogens, and genetic mechanisms that 

combat these. Finally, genomics is providing desperately needed tools to better diagnose and 

manage bee diseases. These tremendous advances have all been made possible with 

completion of the sequencing of the honey bee genome in 2006. With the development of 

the next generation of genomic tools and resources for a broader array of bee species, the 

next decade will bring even greater advances in our understanding and management of bee 

health and biology.
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Highlights

• Genomics facilitates identification and diagnosis of bee parasites and pathogens

• Conserved and unique genetic mechanisms mediate responses to different 

stressors

• Multiple genetic factors underlie population variation in resilience to stressors

• Genomic technologies can provide several new approaches for improving bee 

health

• Genomic technologies should be incorporated and subjected to an Integrated 

Pest and Pollinator Management strategy
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Box: From the bench to the beehive: using genomics to improve bee health

1. Identification and characterization of bee parasites, pathogens and 
beneficial microbes. Metagenomic sequencing of honey bee populations has 

identified several new viruses and demonstrated that a largely ignored honey 

bee parasite, Lotmaria passim (previously identified as Crithidia mellificae), is 

prevalent in honey bee populations and associated with colony losses [45, 46, 

55, 56]. Similarly, genomic approaches have demonstrated that honey bees host 

a multitude of species of microbes which may positively impact bee health (see 

[51], this issue). A comprehensive analysis of the parasites, pathogens and 

beneficial microbes circulating within bee populations is necessary for a 

complete understanding of bee health. Furthermore, since viruses and parasites 

apparently transmit between populations of bees and other insects readily, this 

screening should be performed on a broad array of species.

2. Develop molecular diagnostics for rapid and inexpensive monitoring of bee 
diseases. It is impossible to fix what you don't see. Beekeepers need new, cost-

effective tools to be able to rapidly diagnose their colonies for diseases, as well 

as information on treatment thresholds. This is the first step in an "Integrated 

Pest Management" approach to bee diseases. At this point, beekeeper-accessible 

protocols for monitoring and treatment threshold have only been developed for 

Varroa mites. All other viruses and pathogens require specialized screening 

using relatively expensive molecular or microscopy instrumentation, and 

treatment thesholds have not been well-defined.

3. Develop molecular tools to control bee parasites and pathogens. Several 

studies have demonstrated that RNAi approaches can successful reduce parasite 

and pathogen loads in bees [87–90]. These tools are very promising, since they 

can specifically target genetic sequences in pathogens and parasites, thereby 

reducing off-target effects and potentially reduce the likelihood for selecting for 

resistant strains. However, there has been indication that off-target effects can 

occur (see text), and thus additional testing should be performed to ensure that 

these treatments do not cause unintended effects on bees. Finally, as in all 

treatments, it is important to develop an Integrated Pest Management approach, 

to reduce off-target effects, reduce the likelihood of resistance development, and 

reduce costs and labor.

4. Identify factors that improve resilience which can be incorporated into 
management practices. Genomic approaches have provided considerable 

information about the types of genes that mediate the effects of stressors on 

bees, and genes that can underlie sensitivity and resilience to these stressors. 

However, breeding and maintaining genetic stocks of bees is challenging. Thus, 

these studies should be examined to identify management practices that can be 

easily employed to improve bee health. For example, recent studies 

demonstrated that both pesticides and rich (honey/pollen) diets impacted the 

same suite of genes, and, based on those results, the authors developed and 
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validated the hypothesis that complex diets (pollen) reduced mortality in 

pesticide-exposed bees [36].
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Figure 1. Genomic approaches to bee health
(1) Sequencing the genome of parasites and pathogens can provide information about unique 

gene sequences that can be targeted by RNAi approaches, allow for the development of 

efficient molecular diagnostic tools, and characterize mechanisms for host-parasite 

interactions and virulence. (2) Genome sequences and quantitative genetic studies of bees 

can identify gene variants associated with resilience to different stressors, which can be used 

in breeding and stock improvement programs. (3) Metagenomic approaches can identify and 

characterize pathogenic and beneficial microbes. (4) Functional genomic studies to identify 

host and parasite gene expression changes (changes in the levels of RNA produced by a 

given gene) associated with infection or other stressors can help characterize mechanisms 

for host-parasite interactions and resilience. Graphical design by Harland Patch and Nick 

Sloff (Penn State University).
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