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1 Introduction and motivation

Dichotomisation of continuous outcomes is a common practice despite numerous ar-
guments against it (Ragland (1992); Royston et al. (2006)). A reason for this lies in
the interpretation of results in terms of population at risk or patients who require a
treatment. The distributional method for the dichotomisation of continuous outcomes
has been developed to allow comparisons of proportions to complement a comparison
of means with equal precision. The original work was developed for the comparison of
two groups for outcomes normally distributed with equal variance in the two groups
(Peacock et al. (2012)). Due to the restrictive nature of the equal variance hypothesis
the method has been further developed to provide a correction for unequal variances
(Sauzet and Peacock (2014)). In Sauzet et al. (2015b) the question of the robustness to
deviations from normality has been addressed and showed that for small deviations the
method worked well. In case of perturbation to the normal distribution (e.g. because
of an excess of patients with hight blood pressure or preterm babies having much lower
birthweights) a method based on the skew-normal distribution (Azzalini (2005)) has
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also been proposed in Sauzet et al. (2015b).

Because most analysis comparing continuous outcomes between two groups are not
performed with a t-test but with potentially complex regression models, with the distri-
butional method adjusted comparisons of proportions can also be be obtained to reflect
the results of linear possibly mixed models (Sauzet et al. (2015a)).

A module of Stata commands has been developed to cover all the applications of
the distributional methods which have been developed so far. In the following we use
examples to illustrate the usage of the various commands and options in the module.

2 Distributional estimates for the comparison of propor-
tions

2.1 The normal method

In this section we review the basic principle of the distributional method as published
in Peacock et al. (2012) and Sauzet and Peacock (2014)

The distributional method is a large sample approximation method for the estima-
tion of proportions and their standard errors assuming a normal distribution for the
data. It is based on the delta method and uses estimates for the mean and variance
from the data. We recall here the formulae obtained to compute estimates and standard
errors for proportions, difference in proportions, risk ratios and odds ratios derived from
the normal distribution.

Lets Xn be the sample mean of n independent identically normally distributed
random variables Xi, i = 1...n. Lets x0 be a real number. The random variable p(Xn)
for the proportion of the population with outcome value under the threshold (cutpoint)
x0 is defined as

p(Xn) =

∫ x0

−∞
fN(Xn,σ2)(t)dt (1)

where fN(µ,σ2) is the density function of the normal distribution with mean µ and
variance σ2. It is a function of the sample mean with variance σ2. According to the
delta method p(Xn) is asymptotically normally distributed with mean p(xn) (mean
sample estimate) and standard deviation

sd(p(Xn)) =
s√
n
fN(xn,s2)(x0)

so the estimate for the proportion under the quantile xo is estimated by
∫ x0

−∞ fN(xn,s2)(t)dt
with standard error s√

n
fN(xn,s2)(x0) where s the sample estimate for the standard de-

viation assumed to be the known standard deviation in the population.

Therefore, for two groups, if the variance is assumed to be the same in both groups,
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we obtain estimates for the difference in proportion d as the difference between the
estimated proportions with standard error using for the common standard deviation
the pooled estimate from the data :

spooled =

√
(nt − 1)s2t + (nc − 1)s2c)

(nt + nc − 2)
(2)

se(d) =

√
s2pooled
nt

f2
N(xt,nt ,s

2
pooled)

(x0) +
s2pooled
nc

f2
N(xc,nc ,s

2
pooled)

(x0) (3)

Estimates for the standard error for the log risk ratio log(rr) is obtained through
the function h(Xn) = log(p(Xn)). The standard error for the log risk ratio is

se(log(rr)) =

√√√√s2pooled
nt

f2
N(xt,nts

2
pooled)

(xo)

p2t
+
s2pooled
nc

f2
N(xc,ncs

2
pooled)

(xo)

p2c
(4)

Estimates for the standard error for the log odds ratio is obtained through the

function g(Xn)) = log( p(Xn)

1−p(Xn)
). The standard error for the log odds ratio is

se(log(or)) =

√√√√s2pooled
nc

f2
N(xc,nc ,s

2
pooled)

(xo)

p2c(1− pc)2
+
s2pooled
nt

f2
N(xt,nt ,s

2
pooled)

(xo)

p2t (1− pt)2
(5)

The equal variance condition can be relaxed by either providing a known ratio of
variances between the two groups or when this is not possible by adding a correction fac-
tor to the standard error which otherwise would be underestimated when the variances
are not assumed known. Moreover this correction factor can also be used to correct
the standard errors for large effects (see Sauzet and Peacock (2014)) as the variability
due to using the observed pooled standard deviation need to be accounted for in the
standard error whether the variances are assumed equal of not.

2.2 The skew-normal method

The principle of the skew-normal method is the same as for the normal method but
using the skew-normal distribution defined by Azzalini (2005). This distribution is a
generalisation of the normal distribution which works by adding a third parameter α
defining the skewness ( α = 0 gives the normal distribution). We briefly recall how the
formula for the standard errors are obtained (Sauzet et al. (2015b)).

Lets Xn be the sample mean of n independent identically skew-normal distributed
random variables Xi, i = 1...n with mean µ, variance σ2 and skewness parameter α.
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Lets x0 be a threshold of interest. The random variable p(Xn) for the proportion of the
population with outcome value under the threshold x0 is defined as

p(Xn) =

∫ x0

−∞
2
e
−1

2w2 (t−(Xn+α
′))2

√
2πw2

(∫ α(t−(Xn+α
′))/w

−∞

e
−1
2 r2

√
2π

dr

)
dt (6)

where α′ = µ− wµz and w2 = σ2/(1− µ2
z) with µ2

z = 2
π

α2

1+α2 (see Azzalini (2005))

From the delta method we obtain that p(Xn) is approximately normally distributed
with standard deviation

w2

√
n

(
1− µ2

z

)
p′(µ)2.

The formula for p′(µ) was derived in Sauzet et al. (2015b) where we obtained, Φ
being the standard normal cumulative distribution function:

p′(Xn) = −2
e
−1

2w2 (x0−(Xn+α
′))2

√
2πw2

Φ(α(x0 − (Xn − α′))/w).

The formulae for the standard error for the difference in proportions d, log risk ration
log(rr) and log odds ration log(or) follow:

se(d)2 =
w2

1√
n1

(
1− µ2

z

)2e
−1

2w2
1
(x0−(µ1+α

′
1))

2√
2πw2

1

Φ

(
α
x0 − (µ1 − α′1)

w1

)2

+

w2
2√
n2

(
1− µ2

z

)2e
−1

2w2
2
(x0−(µ2+α

′
2))

2√
2πw2

2

Φ

(
α
x0 − (µ2 − α′2)

w2

)2

se(log(rr))2 =
1

p21

w2
1√
n1

(
1− µ2

z

)2e
−1

2w2
1
(x0−(µ1+α

′
1))

2√
2πw2

1

Φ

(
α
x0 − (µ1 − α′1)

w1

)2

+

1

p22

w2
2√
n2

(
1− µ2

z

)2e
−1

2w2
2
(x0−(µ2+α

′
2))

2√
2πw2

2

Φ

(
α
x0 − (µ2 − α′2)

w2

)2

se(log(or))2 =
1

(p1(1− p1))2
w2

1√
n1

(
1− µ2

z

)2e
−1

2w2
1
(x0−(µ1+α

′
1))

2√
2πw2

1

Φ

(
α
x0 − (µ1 − α′1)

w1

)2

+

1

(p2(1− p2))2
w2

2√
n2

(
1− µ2

z

)2e
−1

2w2
2
(x0−(µ2+α

′
2))

2√
2πw2

2

Φ

(
α
x0 − (µ2 − α′2)

w2
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2.3 The distributional method for adjusted distributions

Distributional estimates can also be obtained to describe an adjusted difference in
means, i.e. following a linear regression model of the form

Yi = β0 + βri + βXi + εi

where Y is a random variable and εi is the error term for observation i following a
normal distribution with a mean of 0 and variance σ2

e . An exposure is defined by a
categorical variable R with k + 1 levels, e.g. not smoking during pregnancy, smoking
regularly, smoking occasionally. We recall how the distributional method can be used
in the context of a regression model (see also Sauzet et al. (2015a))

Then using the marginal means E(Y |R = r) for the k + 1 levels of exposures,
we obtain k + 1 adjusted distributional probabilities for each level of the exposure
r = 0, 1, .., k,

pr = P (Y < a|R = r) = P (ε+ E(Y |R = r) < a) =

Φ

(
a− E(Y |R = r)

σe

)
for a linear regression.

The method can be generalised to mixed models for example with simple random
intercept model with two levels

Yi = β0 + βri + βXi + µi + εi

where β is a vector of fixed effects and µi a random element with mean zero and a
variance σ2

r and the error term εi with variance σ2
e . Then:

pr = P (Y < a|R = r) = P (µ+ ε+ E(Y |R = r) < a) =

Φ

(
a− E(Y |R = r)√

σ2
e + σ2

r

)

The standard errors are obtained as seen in section 2.1.

3 The distdicho and distdichoi commands

Because the distributional method is a complement to a comparison of means, the
distdicho command and its immediate form distdichoi first returns the results of
a t-test followed by a table containing the relevant information for each groups and
the distributional estimates for difference in proportions, risk ratio and odds ratio,
their standard error and a confidence interval. The confidence interval is based on
the assumption of a normal distribution of the estimate. For small sample sizes the
confidence interval might be too narrow (see Sauzet and Peacock (2014)). Confidence
intervals are returned using the current level in the system which can be modified using
the command set level.
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3.1 Syntax

distdicho varname1 varname2
[
if
] [

in
] [

, twovar tail(lower upper)

varr(#) unequal correction bootci nrep(#)
]
cp(#)

distdichoi #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 #cp [ upper, #varr]

3.2 Options

twovar must be specified if the two variables provided are the outcome values for each
group. Otherwise, by default the first variable provides the outcome values and the
second the group categories: exposed, unexposed.

cp(#) specifies the cutpoint under which the distributional proportions among the
exposed and the non-exposed (reference) are computed using the distributional method
described in Peacock et al. cp requires a real number.

tail(upper) provides the tail of the distribution in which the proportions are to
be computed. The default is the lower tail, tail(upper) will provide estimates in the
upper tail. For the immediate command upper must be specified to obtain estimate in
the upper tail.

varr(#) by default the the ratio of variances exposed/unexposed is assumed to be
one. Other assumed ratios can be specified with the option varr.

unequal specifies whether to use a correction for an unknown variance ratio, if no
assumption can be made about the variance ratio. For the immediate command the
this is specified by giving the value 0 for the ratio of variances.

correction for large effect sizes (>0.7) a correction factor can be used (valid for
difference in proportions only). See Sauzet and Peacock (2014).

bootci bootstrap bias corrected confidence intervals are calculated instead of dis-
tributional ones using the command bootstrap with 2000 (default) replicate under the
hypotheses for the variance specified by the command line.

nrep(#) the number of bootstrap replicates can be altered. The default value is
2000.

3.3 Examples

Birthweight, body-mass index and gestational age are outcomes taken from the St
George’s Birthweight Study (Peacock et al. (1995)). We consider various group compar-
isons including the smoking status during pregnancy yes (1)/no (0), parity first (prim-
ipari) (0) /second or subsequent (multipari) pregnancy (1), employed (1)/unemployed
(2).
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Example 1

This first dataset contains the birthweight of 1772 births of which 1599 are live term
birth (gestational age (gest ) greater or equal to 37 weeks and the variable babycon is
equal to 1). For 1458 of this birth, information about the smoking status of the mother
during pregnancy is available. Live term birth are known to be normally distributed
(Wilcox (2001)) but we can check that it is the case here by plotting the outcomes in
the two groups of smoking and non smoking mothers (see Fig. 1). We are therefore
performing the analysis to those birth by using the if qualifier . The threshold of
interest is 2500 g defining low-birthweight babies.

0
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Figure 1: Histogram of birthweights by smokers(=1) and non-smokers(=0)

There is no evidence of unequal variances between smokers and non-smokers, there-
fore we can apply the simplest form of the distributional method using the cut-point
2500g to obtain the comparison of proportions of babies whose birthweight is under the
cut-point.

. use bwsmoke

. distdicho birthwt smoke if babycon==1 &gest>=37 & gest!=., cp(2500)

Two-sample t test with equal variances
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Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

non-smok 975 3452.728 13.97786 436.4585 3425.298 3480.158
smoker 483 3266.965 19.91754 437.733 3227.829 3306.101

combined 1458 3391.189 11.66472 445.4029 3368.308 3414.071

diff 185.7634 24.30893 138.0791 233.4477

diff = mean(non-smok) - mean(smoker) t = 7.6418
Ho: diff = 0 degrees of freedom = 1456

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Distributional estimates for the comparison of proportions
below the cut-point 2500
Standard error computed under the hypothesis that
the ratio of variances is equal to 1

Group Obs Mean Std dev. Dist. prop.

non-smok 975 3452.728 436.4585 .0146009
smoker 483 3266.965 437.733 .0395829

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .024982 .0040644 .017016 .032948
Risk ratio 2.710985 .3496464 2.111901 3.480013
Odds ratio 2.781502 .3699933 2.150348 3.597909

The results show that mothers who smoke have on average babies weighing 185 g
less than mothers who don’t smoke during pregnancy. This difference, assuming the
normality of the outcome, corresponds to a difference in proportions of low birthweight
babies of almost 2.5 percentage points (difference in proportions: 0.025) between smok-
ing and non-smoking mothers with a confidence interval of [0.017, 0.033]. The precision
of this estimates reflects the precision of the difference in means.

Example 2

The outcome BMI is skewed but this can be corrected by a transformation. Inverse
BMI is reasonably normally distributed therefore we can use the distributional method
to compare the proportion of obese mothers at the begining of pregnancy between primi
and multipari. The proportion of interest is in the upper tail of the distribution of BMIs
but it is in the lower tail of the inverse BMI because inverse is a decreasing function on
positive values. The cut-point also need to be transformed and is equal to 1/30 ' 0.033.

. use bmi

. distdicho inv_bmi parity, cp(0.033)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
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primi 891 .0443954 .0001971 .0058843 .0440085 .0447823
multi 890 .0429524 .0002084 .0062174 .0425434 .0433614

combined 1781 .0436743 .0001444 .0060942 .0433911 .0439575

diff .001443 .0002869 .0008804 .0020057

diff = mean(primi) - mean(multi) t = 5.0304
Ho: diff = 0 degrees of freedom = 1779

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Distributional estimates for the comparison of proportions
below the cut-point .033
Standard error computed under the hypothesis that
the ratio of variances is equal to 1

Group Obs Mean Std dev. Dist. prop.

primi 891 .0443954 .0058843 .0298778
multi 890 .0429524 .0062174 .0500682

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0201903 .0041399 .0120763 .0283044
Risk ratio 1.675764 .17357 1.370073 2.049659
Odds ratio 1.711381 .1846074 1.387752 2.110482

While the mean values are difficult to interpret in the original scale, the proportions
are not. The distributional method for the dichotomisation of normally distributed
outcomes shows that the difference in proportions of obesity among multipari mothers
is 2 percentage points higher than among primipari mother. Also we can see that the
risk of obesity is 1.68 times higher among multipari mothers than among primipari and
the odds of obesity are 1.71 higher.

Example 3

The proportion of obese mothers can be compared between those who are employed
and those who are not. However the standard deviations of the inverse BMI cannot be
assumed to be the equal for employed and unemployed mothers (see Sauzet and Peacock
(2014)). If we fail to have any theoretical bases to provide known variance ratio, we use
a correction factor with the option uneq.

. use bmi2

. distdicho inv_bmi employ, cp(0.033) uneq

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

employed 851 .0438576 .0001936 .0056465 .0434777 .0442375
unemploy 709 .0433858 .0002427 .0064623 .0429093 .0438623
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combined 1560 .0436431 .0001528 .0060336 .0433435 .0439428

diff .0004718 .0003104 -.0001371 .0010808

diff = mean(employed) - mean(unemploy) t = 1.5199
Ho: diff = 0 Satterthwaite´s degrees of freedom = 1417.45

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9356 Pr(|T| > |t|) = 0.1288 Pr(T > t) = 0.0644

Distributional estimates for the comparison of proportions
below the cut-point .033
Standard error computed with correction for
unknown variance ratio

Group Obs Mean Std dev. Dist. prop.

employed 851 .0438576 .0056465 .027248
unemploy 709 .0433858 .0064623 .0540131

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0267651 .0076436 .011784 .0417462
Risk ratio 1.982276 .3341296 1.434148 2.739898
Odds ratio 2.038361 .3536209 1.461411 2.843085

The distributional method for the dichotomisation of normally distributed outcomes
shows that the difference in proportions of obesity among unemployed mothers is 2.7
percentage points higher than among employed mother. It shows also that the risk of
obesity (risk ratio) is almost twice among unemployed than among employed mothers
almost equal to the odds of obesity (odds ratio)

Example 4

If on the contrary we have reasons to assume that the ratio of variance unem-
ployed/employed is 1.3 then the comparisons of proportions are obtained using this
value and no correction factor is needed:

. use bmi2

. distdicho inv_bmi employ, cp(0.033) varr(1.3)

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

employed 851 .0438576 .0001936 .0056465 .0434777 .0442375
unemploy 709 .0433858 .0002427 .0064623 .0429093 .0438623

combined 1560 .0436431 .0001528 .0060336 .0433435 .0439428

diff .0004718 .0003104 -.0001371 .0010808

diff = mean(employed) - mean(unemploy) t = 1.5199
Ho: diff = 0 Satterthwaite´s degrees of freedom = 1417.45

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9356 Pr(|T| > |t|) = 0.1288 Pr(T > t) = 0.0644
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Distributional estimates for the comparison of proportions
below the cut-point .033
Standard error computed under the hypothesis that
the ratio of variances is equal to 1.3

Group Obs Mean Std dev. Dist. prop.

employed 851 .0438576 .0056465 .0274554
unemploy 709 .0433858 .0064623 .0536526

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0261972 .0046343 .0171142 .0352803
Risk ratio 1.954174 .2165354 1.575774 2.423441
Odds ratio 2.00827 .2320762 1.604792 2.513191

The known value for the ratio of variances we used is the observed one. Therefore the
estimates obtained in example 3 and 4 are the similar. However because we have been
more conservative when we did not assume we knew the variance ratio, the standard
errors are larger in example 3 than in example 4.

3.4 Saved results

distdicho and distdichoi save in r()

Scalars
r(prop1) distributional proportion estimate for the group at risk
r(prop2) distributional proportion estimate for reference group
r(propdiff) distributional estimate for the difference in proportions between the group at risk

and the reference group
r(distrr) distributional estimate for risk ratio between the group at risk and the reference

group
r(distor) distributional estimate for odds ratio between the group at risk and the reference

group
r(sediff) standard error for the distributional estimate of the difference in proportion
r(serr) standard error for the distributional estimate of the risk ratio
r(seor) standard error for the distributional estimate of the odds ratio
r(ciinf) lower limit of the confidence interval
r(cisup) upper limit of the confidence interval
r(ciinfrr) risk ratio: lower limit of the confidence interval
r(cisuprr) risk ratio: upper limit of the confidence interval
r(ciinfor) odss ratio: lower limit of the confidence interval
r(cisupor) odds ratio: upper limit of the confidence interval

4 The sk distdicho and sk distdichoi commands

The sk distdicho command has the same syntax as the distdicho command also
with an option to obtain bootstrap confidence intervals but has no method for unequal
variance.
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4.1 Syntax

sk distdicho varname1 varname2
[
if
] [

in
] [

, twovar tail(lower upper)

bootci nrep(#)
]
cp(#)

sk distdichoi #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 #cp (upper lower

)tail #α

4.2 Options

twovar must be specified if the two variables provided are the outcome values for each
group. By default the first variable provides the outcome values and the second the
group categories: exposed, unexposed.

cp(#) specifies the cutpoint under which the distributional proportions among the
exposed and the non-exposed (reference) are computed using the distributional method
described in Peacock et al. cp requires a real number.

tail(upper) provides the tail of the distribution in which the proportions are to
be computed. The default is the lower tail, tail(upper) will provide estimates in the
upper tail.

bootci bootstrap bias corrected confidence intervals are calculated instead of dis-
tributional ones using the command bootstrap with 2000 (default) replicate under the
hypotheses for the variance specified by the command line.

nrep(#) The number of bootstrap replicates can be altered. The default value is
2000.

4.3 Examples

Example 5

In the following example we show that two commands sk distdicho and distdicho

give similar results for the difference in proportions when the data is approximatively
normally distributed. We reproduce Example 1 using the command sk distdicho

instead of distdicho.

.use bwsmoke

.sk_distdicho birthwt smoke if babycon==1 &gest>=37 & gest!=., cp(2500)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

non-smok 975 3452.728 13.97786 436.4585 3425.298 3480.158
smoker 483 3266.965 19.91754 437.733 3227.829 3306.101
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combined 1458 3391.189 11.66472 445.4029 3368.308 3414.071

diff 185.7634 24.30893 138.0791 233.4477

diff = mean(non-smok) - mean(smoker) t = 7.6418
Ho: diff = 0 degrees of freedom = 1456

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Distributional estimates for the comparison of proportions
below the cut-point 2500

Alpha: .86689235

Group Obs Mean Std dev. Dist. prop.

smoker 483 3266.965 437.733 .0365651
non-smok 975 3452.728 436.4585 .0124953

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0240698 .0041428 .01595 .0321896
Risk ratio 2.926313 .4872841 2.125134 4.029538
Odds ratio 2.999422 .5115186 2.16213 4.160959

The estimates and standard errors obtained here and in Example 1 are almost iden-
tical for the difference in proportions even if the estimated skew parameter α is not
close to 0. This shows that the distributional method is robust to small variations to
normality. However because the estimated proportions for each groups vary between
Example 1 and Example 5, the risk ratios and odds ratios also vary between this two
examples.

Example 6

In Example 2 we used a transformation to obtain a normally distributed outcome.
We use the same data to compare the skew-normal approach to the transformation
approach. Note that now the proportions of interest (obesity) is in the upper tail of the
distribution.

.use bmi

.sk_distdicho bmi parity, cp(30) tail(upper)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

primi 891 22.96176 .1135206 3.388547 22.73896 23.18456
multi 890 23.84148 .1345053 4.012678 23.57749 24.10546

combined 1781 23.40137 .0885863 3.738509 23.22763 23.57512

diff -.8797151 .1759908 -1.224886 -.5345447

diff = mean(primi) - mean(multi) t = -4.9986
Ho: diff = 0 degrees of freedom = 1779
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Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

Distributional estimates for the comparison of proportions
above the cut-point 30

Alpha: 4.1193066

Group Obs Mean Std dev. Dist. prop.

multi 890 23.84148 4.012678 .0683555
primi 891 22.96176 3.388547 .0485803

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0197752 .0040157 .0119046 .0276457
Risk ratio 1.407061 .0965391 1.230598 1.608829
Odds ratio 1.436928 .1047111 1.246382 1.656604

The estimates obtained here and in Example 2 are very close because the transfor-
mation used in example 2 was quite successful in providing an approximatively normal
distribution. We still have for example a difference from about 2 percentage points in
proportions of obesity between multi and primipari mothers. However the standard
error for these estimates are smaller using the skew-normal method.

4.4 Saved results

The results saved by the the command sk distdicho are the same as the ones saved
by the distdicho command with the following also stored in r()

Scalars
r(alpha) the estimate skew-normal alpha coefficient

5 The reg distdicho command

The command reg distdicho uses the stored result of the commands regress, mixed or
xtreg to provide distributional estimates of adjusted comparisons of proportion between
the reference level of a factor and the other levels of this factor. The reference level
needs to be coded with the lowest value.

reg distdicho varname1
[
if
] [

in
] [

, tail(upper) dist(sk)
]
cp(#)

5.1 Options

Only the following option is specific to the reg distdicho command. For the other
option see the distdicho command. Because reg distdicho uses saved results from a
regression model, there is no option for bootstrop confidence intervals.

dist The default is that the errors in the regression model are assumed normally
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distributed. If there remain a perturbation to the normal distribution, the skew-normal
method can be used with the option dist(sk)

5.2 Examples

Example 7

Example 1 is revisited again but we would like estimate of proportion comparison
adjusted for gestational age.

.use bwsmoke

.regress birthwt i.smoke gest if babycon==1

Source SS df MS Number of obs = 1578
F( 2, 1575) = 502.13

Model 175438127 2 87719063.6 Prob > F = 0.0000
Residual 275142224 1575 174693.476 R-squared = 0.3894

Adj R-squared = 0.3886
Total 450580352 1577 285719.944 Root MSE = 417.96

birthwt Coef. Std. Err. t P>|t| [95% Conf. Interval]

smoke
smoker -164.5144 22.40716 -7.34 0.000 -208.4654 -120.5634

gest 155.4258 5.051078 30.77 0.000 145.5182 165.3333
_cons -2760.235 199.78 -13.82 0.000 -3152.098 -2368.373

.reg_distdicho smoke, cp(2500)

Comparisons of proportions based on marginal effects of

regress birthwt i.smoke gest if babycon==1

Distributional estimates for the comparison of proportions below the cut-point 2500

Group Obs Mean Std dev. Dist. prop.

1 1060 3372.722 417.9635 .0183974
2 518 3208.208 417.9635 .0450923

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0266949 .0043955 .0194649 .033925
Risk ratio 2.451019 .2954949 2.014368 2.982321
Odds ratio 2.519538 .3149271 2.05612 3.087403

The adjusted difference in means of low birthweight babies between smoking and
non-smoking mothers is smaller than in Example 1 but the corresponding difference
in proportions (2.7 % compared to 2.5%) is larger due to a different position of the
proportions of the two groups.

Example 8

The last example uses the dataset smoking.dta which include multiple births from
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the book Multilevel and Longitudinal Modeling Using Stata Rabe-Hesketh and Skrondal
(2008). In the multilevel model babies are the first level and the mother the second level.

.use http://www.stata-press.com/data/mlmus2/smoking

.mixed birwt i.smoke mage year || momid:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -65291.849
Iteration 1: log likelihood = -65291.845

Computing standard errors:

Mixed-effects ML regression Number of obs = 8604
Group variable: momid Number of groups = 3978

Obs per group: min = 2
avg = 2.2
max = 3

Wald chi2(3) = 381.36
Log likelihood = -65291.845 Prob > chi2 = 0.0000

birwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

smoke
Smoker -254.4345 17.51951 -14.52 0.000 -288.7721 -220.0969

mage 10.39172 1.279693 8.12 0.000 7.883567 12.89987
year 12.96842 3.073012 4.22 0.000 6.945428 18.99141
_cons 3178.528 35.82147 88.73 0.000 3108.319 3248.736

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

momid: Identity
var(_cons) 120155.2 4429.523 111779.7 129158.2

var(Residual) 141423.3 2949.447 135759.1 147323.9

LR test vs. linear regression: chibar2(01) = 1134.56 Prob >= chibar2 = 0.0000

.reg_distdicho smoke, cp(2500)

Comparisons of proportions based on marginal effects of
mixed birwt i.smoke mage year || momi d:

Distributional estimates for the comparison of proportions below the cut-point 2500

Group Obs Mean Std dev. Dist. prop.

0 7400 3504.997 511.4475 .0247069
1 1204 3250.562 511.4475 .0711166

Stat Estimate Std error [95% Conf. Interval]

Diff. prop .0464098 .0039742 .0398727 .0529468
Risk ratio 2.878416 .1773509 2.60174 3.184514
Odds ratio 3.02223 .1987087 2.71338 3.366234

In this dataset, the mean difference in birthweight between smoking and non-smoking
mothers (254 g) adjusted for age of mother and year of birth as well as the non-
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independence of siblings in multiple birth is much larger that the one obtained in the
dataset used in the previous examples. There was no adjustment for gestational age
because the information is not available. This mean difference corresponds to 4.6 per-
centage points more low birthweight babie among the smoking mothers than among the
non-smoking mothers (95% confidence inteval [0.040, 0.053]).

5.3 Saved results

The results saved by the the command reg distdicho are the identical to the ones
saved by the distdicho command. There are saved results only if there are two levels
of risks.

6 Conclusion

The functions available in the package DistDicho make the distributional method for
the dichotomisation of continuous outcomes easily accessible either for simple compar-
ison following a t-test or to obtain adjusted comparisons. Thus effects obtained on
mean comparison can also be presented as comparison of proportion to increase the
understanding of the study results in terms of population at risk.
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