
A Unified Database of Dependency Treebanks.
Integrating, Quantifying & Evaluating Dependency Data.

Olga Pustylnikov, Alexander Mehler, Rüdiger Gleim

University of Bielefeld
Universitätsstrasse 25, D-33615 Bielefeld, Germany
Olga.Pustylnikov@uni-bielefeld.de
Alexander.Mehler@uni-bielefeld.de
Ruediger.Gleim@uni-bielefeld.de

Abstract
This paper describes a database of 11 dependency treebanks which were unified by means of a two-dimensional graph format. The
format was evaluated with respect to storage-complexity on the one hand, and efficiency of data access on the other hand. An example
of how the treebanks can be integrated within a unique interface is given by means of the DTDB interface.

1. Introduction
In this paper we present a database of dependency tree-
banks which covers 11 languages (see Table 1). The
treebanks differ with respect to the underlying depen-
dency grammar (making, for example, different assump-
tions about candidate vertices and their relations). They
also differ with respect to the annotation format in use. We
transformed all 11 treebanks into a single annotation for-
mat using an XML-based graph representation language
(see Section 2.) in order to abstract from the latter diver-
gence. This format provides interoperability on the level of
annotation of dependency data. It makes the treebanks ac-
cessible to various tools in the field of syntactic analysis by
means of a unique interface.
In order to provide database functionality within this frame-
work we made the data accessible by an XML database
called Dependency Treebank DataBase (DTDB) (see Sec-
tion 2.4.). The DTDB is based on the HyGraphDB (Gleim
et al., 2007) which provides a data definition and data mani-
pulation language to store, retrieve and manipulate depen-
dency tree data. To the best of our knowledge, the DTDB
is the largest resource of this kind in the field of syntactic
analysis. It is of interest for all researchers developing and
evaluating dependency treebanks. Further, we describe a
data definition language for mapping newly provided de-
pendency treebanks onto our representation format and for
integrating them into the DTDB.
The paper is organized as follows: Section 2. gives an
overview of the DTDB and introduces its data model used
to model dependency treebanks. Subsections 2.1. and 2.2.
describe the treebanks and the format used for the unifi-
cation. Subsection 2.3. presents the evaluation of the for-
mat with respect to the initial formats used to annotate the
treebanks. Subsections 2.4. and 2.5. describe the database
functionality of the DTDB with an emphasis on querying
and data definition. Section 3. summarizes the results.

2. The Dependency Treebank Data Base
The lack of collaboration between the projects developing
treebanks (Kakkonen (2005)) caused the establishment of
a variety of co-existing annotation formats (e.g., the Penn
Treebank (Marcus et al., 1993), TUT (Bosco et al., 2000b),

NEGRA (Skut et al., 1998), CoNNL-X (Sang and Buch-
holz, 2000) or SUSANNE (Sampson, 1995)). Some effort
in unification of annotations was done e.g. by Pustejovsky
et al. (2005) for four English treebanks or by Buchholz
(2006) for treebanks of different languages. Pustejovsky
et al. (2005) show that the unification of formats even for
the same language within the same linguistic field can be a
hard task.

2.1. Treebanks
In our case, we deal not only with treebanks of different
languages; the dependency grammar used for annotation is
also slightly different. We can see that from Table 1, where
the divergence of grammars is exemplified by means of the
role of punctuation. Italian, Romanian and Russian do not
consider punctuation marks as nuclei of dependency trees,
whereas the other eight languages do. Obviously, unifica-
tion of treebanks is more than a simple mapping from one
notation of a grammatical relation onto an other. It requires
an understanding of what the grammatical relation means
for the particular language. However, some parts of the
grammar can be appropriate to the one language but have a
different or no meaning in an other language. The conse-
quence from the above considerations should be to reana-
lyze the treebanks in the following way:

1. to identify grammatical relations shared by the tree-
banks and to identify those whose meanings diverge
among grammars (or languages)

2. to define the unified grammar based on relations in-
duced in step 1.

3. to re-annotate the treebanks by means of the new cu-
mulative grammar.

On the one hand, the annotation effort resulting from the
above procedure is comparable to creating the treebanks
from scratch and is consequently very high. The reusability
of such a grammar is also limited, since additional modifi-
cations on the grammar are needed when it comes to apply
it to a new treebank. On the other hand, the question arises
whether such a unification on the level of grammar does in

Treebank Language Punctuation included Reference Format used

Alpino Treebank v. 1.2 Dutch yes van der Beek et al. (2002) CoNLL

Danish Dependency Treebank v. 1.0 Danish yes Kromann (2003) TIGER-XML

Sample of sentences of the http://www.phobos.ro/

Dependency Grammar Annotator Romanian no roric/DGA/dga.html simple XML

Russian National Corpus Russian no Boguslavsky et al. (2002) RNC-XML

A sample of the Slovene

Dependency Treebank v. 0.4 Slovene yes Džeroski et al. (2006) TEI

Talkbanken05 v. 1.1 Swedish yes Nivre et al. (2006) TIGER-XML

Turin University Treebank v. 0.1 Italian no Bosco et al. (2000a) TUT format

CESS - Catalan Dependency Treebank Catalan yes Civit et al. (2004) CoNLL

Cast3LB - Spanish Dependency Treebank Spanish yes Civit and Martı́ (2005) CoNLL

Prague Dependency Treebank 2.0 Czech yes Hajič (1998) PDT

BulTreeBank Bulgarian yes Osenova and Simov (2004) CoNLL

Table 1: The Treebank Database. General Properties.

general make sense since languages and grammars used to
describe a language are initially different.
In this paper we give up the idea of unifying treebanks on
the level1 of linguistic theory. Instead, we develop a format,
which is general enough to cover the diversity of particular
languages and grammars.

2.2. eGXL - Towards a unified format for Treebank
Representation

In order to find a unique representation for treebanks, we
focus on a “least common denominator” all treebanks share
- namely the dependency (tree) structure and make it the
core structure of the new representation. Since trees are
but a special case of (directed) graphs, we choose the graph
model GXL2 as a base of unification. That means, treebank
elements (words) are represented as nodes (or vertices) and
dependency relations as edges (or arcs) in the graph theoret-
ical sense. But how to account for the variation among tree-
banks concerning e.g. different types of node attributes?
This is done by means of the ‘Types’ graph separating,
so to speak, the secondary (e.g. morphological, parts-of-
spreech) information from the core (i.g. dependency / con-
stituent phrase) structure. This results in a two dimensional
data model which we call eGXL (extended GXL) consist-
ing of a ‘Types’ graph and a ‘Sentences’ graph (see
Figure 1).
Each instance of the secondary information, e.g. a POS
(parts-of-speech) attribute, is given a unique identifier in
the ‘Types’ graph. These attributes are listed only once
in the head part of the document and accessed further on
via IDREF attributes (i.g. references to the corresponding
id) from the ‘Sentences’ graph. The ‘Sentences’
graph expresses the dependency structure of a sentence
by means of node (=words) and rel (=dependency re-
lations) elements (see Figure 2 for an overview). Thus, the

1See (Pustylnikov and Mehler, 2008) for an overview of levels
along whose treebanks can be compared.

2Graph eXchange Language (Holt et al. (2006)) which has
been recently used to deal with different types of corpora: Mehler
and Gleim (2005), Mehler et al. (2007), Ferrer i Cancho et al.
(2007), Pustylnikov and Mehler (2008).

Figure 1: The two-dimensional model of eGXL.

‘Sentences’ part preserves its structure among differ-
ent treebanks whereas the ‘Types’ graph can vary allow-
ing the integration of specific corpus details. This repre-
sentation3 circumvents the need to unify all particular fea-
tures of treebanks, however it allows to treat the treebanks
as parts of a whole sharing a single structure.

Figure 2: The basic structure of eGXL.

The basic structure of eGXL is visualized in Figure 2.
Square objeckts represent eGXL elements, down-arcs il-

3See http://ariadne.coli.uni-bielefeld.de/
wikis/treebankwiki/ for a detailed documentation on
eGXL and on treebanks transformed into it.

lustrate the hierachical embedding among them. Thus, a
graph element, for instance, contains node’s and rel’s, a
rel element contains relend’s and so on. Circles represent
attributes of a particular eGXL element. Links between cir-
cles represent cross references, which are instantiated by
means of XML-IDREF. The underlying XML-Schema is
accessible from 4.
Any treebank can be transformed to eGXL by passing the
following steps:

1. identify tokens (or pharses, depending on the theory in
use) as basic elements (nodes) and syntactic relations
as edges between them

2. identify attributes of nodes (e.g. morphological fea-
tures, POS) and attributes of (syntactic) relations (e.g.
types of relations like head, object, etc.)

3. build the Types graph:

<graph id="Types">
<node id="t1" name="noun" />
...

</graph>

node each instance of an attribute identified in 2.
id a unique identifier
name the attribute-value

4. construct the Sentences graph

<graph id="Sentences">
<graph id="g8">
<node id="s8_1" form="Detta" pos="t151" />
<node id="s8_2" form="vill" pos="t245" />
...
<rel>
<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_1" />

</rel>
...

</graph>

node each instance of a token identified in 1.
id a unique identifier
form word form
pos a reference to the POS node of the Types graph
rel a (syntactic) relation tag
relend a relation anchor
direction=‘in’ start of the relation (e.g. head verb)
direction=‘out’ end of the relation (e.g. dependent argument)

2.3. Complexity of eGXL
Figure 4 of the Appendix compares two different represen-
tations of a sentence from the Swedish treebank, namely
the original one with its eGXL counterpart. Obviously, the
unified representation (eGXL) increases the complexity of
a sentence, and consequently, the storage costs of the tree-
bank. In order to evaluate the increase of complexity for
all the formats, we counted the logical annotation elements
needed to represent a unit (e.g. word, syntactic relation
etc.) of a treebank. We call it the Logical Scaling Factor
(LSF) which was calculated for the word related treebank
elements and for the syntactic relations. The LSF’s of the
original format were compared against the LSF’s of eGXL.

4http://ariadne.coli.uni-bielefeld.de/
indogram/resources/XML\%20Schemata/eGXL-1.
0.xsd

The header of the documents or the Types graph are not
taken into consideration, since they do not contribute to an
increase of a total document size by increasing the number
of sentences.
Further, we compare the sizes of the input file(s) and the
respective output file(s). In case of a treebank consisting
of multiple documents we compare the size of the directory
containing those documents. The Czech treebank (PDT)
is stored in zip-archived files. In this case, we calculated
the expected size of the unpacked files which is given as an
approximate value.
Table 2 shows the results. The last column (LSF)
should be read in the following way: the first two val-
ues separated by a colon present the number of ele-
ments needed to represent a word and any of word re-
lated features. The first number before the colon is
the LSF for the input format, and the number after the
colon is the LSF for eGXL. Thus, the eGXL notation
<node form=‘house’ pos=‘..’ leads to an LSF
= 1, resulting from a single representation of each node re-
lated feature (i.g. 1 attribute for form, 1 for pos etc.).
The second pair of colon-separated-numbers is attributed
to dependency relations. The eGXL relations are more so-
phisticated including 2 elements: rel and relend and 2 at-
tributes: direction and target which leads to an LSF of 4.
Again, the first number after the dash is the LSF of the input
format and the number after the colon of eGXL.

Format Size Before Size eGXL LSF

CoNLL (ALP) 8,72 MB 36,5 MB 1 : 1|1 : 4

PDT ∼ 534 MB 253 MB 1 : 1|5 : 4

TUT 4,73 MB 14,5 MB 1 : 1|1 : 4

TIGER-XML (DDT) 28,1 MB 16,5 MB 1 : 1|9 : 4

TEI (SDT) 3,49 MB 6,45 MB 1 : 1|1 : 4

RNC-XML 46,5 MB 96,6 MB 1 : 1|1 : 4

simple XML (ROM) 6,70 MB 5,5 MB 1 : 1|3 : 4

Table 2: Transformation Costs.

As can be seen from the table word related features use one
logical element for a feature among all formats. In cases
where the input format uses 1 form to encode a dependency
relation and eGXL uses 4, we have an increase of storage
costs. But in cases where more than 4 elements are used in
the input format, eGXL has a sparser representation. That
means, the complexity of eGXL results from the way the
dependency relations are modeled. More specifically, the
separation of node specific elements from the dependency
structure (two-dimensional model) leads to the complexity-
increase. Note, that TIGER-XML also makes this separa-
tion, which is however more complex using 9 elements for
the syntactic relations.

2.4. Graph Database
Up to now we have described a unified graph based repre-
sentation of dependency treebanks and its serialization by
means of eGXL documents. Treating treebanks as sets of
documents suffices for storage and exchange but it is not
suitable for further annotation, queries and reuse. In or-
der to account for interoperability, parallel access, efficient

(and safe) means for further annotation and modification
of data the next step implies the integration of treebanks
in a Database Management System (DBMS). State of the
art DBMSs like Tamino (SoftwareAG, 2006) or DB2 XML
(Wong, 2003) might suffice to operate on eGXL, since it
is an XML based language. Any queries and data mani-
pulation would then have to be formulated via the XQuery
interface. But despite of the fact that XQuery is power-
ful and suitable for many cases, it tends to be rather awk-
ward and inefficient when it comes to deal with the com-
plexity of graph structures. This is all the more because
most XML DBMSs do not scale well on large datasets. In
order to tackle this problem we use HyGraphDB, a DBMS
optimized for graph representation and retrieval. The sys-
tem relies on BerkeleyDB5 as a base to manage the data.
HyGraphDB offers an extensive programming interface to
browse and manipulate GXL based graph structures includ-
ing eGXL.

2.5. Access Methods
The DTDB can be accessed by two different means. The
most convenient way is to use our web based corpus man-
agement system Ariadne6 to upload, manage and access de-
pendency treebanks. Figure 5 of the Appendix illustrates
an exemplary use case of the system. The left side shows
a menu allowing to navigate through the system. The mid-
dle part of Figure 5 shows the interface for browsing and
querying of treebanks. As soon as a treebank document is

Figure 3: The Tree View Dialog.

in the basket, a query term can be entered into the query
field. We can select whether to search for word forms or
for lemmata and press the search button. The response is
given in the lowermost sub-window as a list of sentence
trees containing the query term.

5http://www.oracle.com/database/
berkeley-db.html

6http://ariadne.coli.uni-bielefeld.de:
8080/Ariadne/

The tree view (Figure 3) shows the syntactic representa-
tion of a treebank, i.g. dependency or constituent phrase
structure. We can browse the corresponding sentences by
marking a particular node, then, the subtree governed by
this node appears in the window above the tree view. The
query term (if available) is marked red within the subtree.
The second way to access the unified dependency treebanks
is via the HyGraphDB C++ API. It offers the full flexibil-
ity to access and manipulate every level of a graph struc-
ture. Indices offer fast lookup for occurrences of word-
forms, POS and alike. That way queries of arbitrary com-
plexity can be formulated if they are not already supported
by the web based interface. The treebanks can be accessed
via the API in order to be used for the calculation of the
fingerprints.

3. Conclusion
In this paper we presented the Dependency Treebank
DataBase DTDB consisting of 11 treebanks. All treebanks
were transformed into a single generic format which uses
graph representations and which allows to map all kinds of
syntactic structures.
We evaluated the efficiency of the format from the point of
view of storage complexity. We calculated the LSF for two
kinds of information: word related and syntactic structure
related features. It turned out, that eGXL provides a 1:1
mapping of word related features. In case of syntactic struc-
tural information the representation is more complex, this is
on the one hand, due to XML syntax used and on the other
hand, due to the separation of word and structure related
information. This separation enables to compare the tree-
banks on the level of syntactic structure, which all the tree-
banks have in common, and at the same time to disregard
the word related differences attributed to a particular tree-
bank. The two-dimensional approach in representing syn-
tactic structures and combined with XML gives a good so-
lution in terms of unification. This approach is also imple-
mented in TIGER-XML. However, TIGER-XML was pri-
marily designed for constituent phrase grammar containing
more additional tags and is more complex when it comes to
deal with dependency structures (see DDT), which have no
phrase-phrase relations.
Finally, we described a database interface operating on tree-
banks by means of the unification format. The database al-
lows to browse, query and visualize the syntactic structure
of treebanks. Additional functionality can be easily imple-
mented by means of the API.

References
Boguslavsky, I., Chardin, I., Grigorieva, S., Grigoriev, N., Iomdin,

L., Kreidlin, L., and Frid, N. (2002). Development of a depen-
dency treebank for russian and its possible applications in NLP.
In Proc of LREC 2002.

Bosco, C., Lombardo, V., Vassallo, D., and Lesmo, L. (2000a).
Building a treebank for Italian: a data-driven annotation
schema. In Proc. of LREC 2000.

Bosco, C., Lombardo, V., Vassallo, D., and Lesmo, L. (2000b).
Building a treebank for Italian: a data-driven annotation
schema. In Proc. of LREC 2000.

Buchholz, S. (2006). CoNLL-X shared task on multilingual de-
pendency parsing. In Proc. of the 10th Conference on Compu-
tational Natural Language Learning, page 149164.

Civit, M., i, N. B., and Valverde, P. (2004). CAT3LB: a Treebank
for Catalan with Word Sense Annotation. In TLT2004, pages
27–38. Tubingen University.

Civit, M. and Martı́, M. (2005). Building Cast3LB: A Spanish
Treebank, a Research on Language and Computation. Springer
Verlag, pages 549–574.

Džeroski, S., Erjavec, T., Ledinek, N., Pajas, P., Žabokrtský, Z.,
and Žele, A. (2006). Towards a Slovene dependency treebank.
In Proc. of LREC 2006.

Ferrer i Cancho, R., Mehler, A., Pustylnikov, O., and Dı́az-
Guilera, A. (2007). Correlations in the organization of large-
scale syntactic dependency networks. In TextGraphs-2: Graph-
Based Algorithms for Natural Language Processing, pages 65–
72.

Gleim, R., Mehler, A., and Eikmeyer, H.-J. (2007). Representing
and Maintaining Large Corpora. In Proceedings of the Corpus
Linguistics 2007 conference.

Hajič, J. (1998). ”Building a Syntactically Annotated Corpus:
The PragueDependency Treebank”. In Hajičová, E., editor,
Issues of Valency and Meaning. Studies in Honour of Jarmi-
laPanevová, pages 106–132. Karolinum, Charles University
Press, Prague, Czech Republic.

Holt, R. C., Schürr, A., Elliott Sim, S., and Winter, A. (2006).
GXL: A graph-based standard exchange format for reengineer-
ing. Science of Computer Programming, 60(2):149–170.

Kakkonen, T. (2005). Dependency Treebanks: Methods, Anno-
tation Schemes and Tools. In Proceedings of the 15th Nordic
Conference of Computational Linguistics (NODALIDA 2005),
pages 94–104, Joensuu, Finland.

Kromann, M. T. (2003). The danish dependency treebank and
the underlying linguistic theory. In Nivre, J. and Hinrichs, E.,
editors, Proc. of TLT 2003. Växjö University Press.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993).
Building a large annotated corpus of English: the Penn Tree-
bank. In Computational Linguistics 19.

Mehler, A., Geibel, P., and Pustylnikov, O. (2007). Structural
Classifiers of Text Types: Towards a Novel Model of Text Rep-
resentation. To appear in: LDV Forum.

Mehler, A. and Gleim, R. (2005). The net for the graphs – to-
wards webgenre representation for corpus linguistic studies. In
Baroni, M. and Bernardini, S., editors, WaCky! Working papers
on the Web as corpus, pages 191–224. Gedit, Bologna, Italy.

Nivre, J., Nilsson, J., and Hall, J. (2006). Talbanken05: A swedish
treebank with phrase structure and dependency annotation. In
Proc. of LREC 2006.

Osenova, P. and Simov, K. (2004). BTB-TR05: BulTree-
Bank Stylebook. BulTreeBank Project Technical Report Nr. 05.
Technical report, Linguistic Modelling Laboratory, Bulgarian
Academy of Sciences.

Pustejovsky, J., Meyers, A., Palmer, M., and Poesio, M. (2005).
Merging PropBank, NomBank, TimeBank, Penn Discourse
Treebank and coreference. In Proceedings of the Workshop on
Frontiers in Corpus Annotations II: Pie in the Sky, pages 5–12,
Ann Arbor, Michigan. Association for Computational Linguis-
tics.

Pustylnikov, O. and Mehler, A. (2008). Towards a Uniform Repre-
sentation of Treebanks: Providing Interoperability for Depen-
dency Tree Data. In Proc. ICGL 2008.

Sampson, G. (1995). English for the Computer. Clarendon Press,
Oxford.

Sang, E. F. T. K. and Buchholz, S. (2000). Introduction to the
conll-2000 shared task: Chunking.

Skut, W., Brants, T., Krenn, B., and Uszkoreit, H. (1998). A Lin-
guistically Interpreted Corpus of German Newspaper Text. In
Proceedings of the ESSLLI Workshop on Recent Advances in
Corpus Annotation, Saarbrücken, Germany.

SoftwareAG (2006). Tamino xml server. http://www.
softwareag.com/de/Images/FS_Tamino_
ServerTech_100506_e_tcm17-5580.pdf
(downloaded 2007-11-06).

van der Beek, L., Bouma, G., Malouf, R., and van Noord, G.
(2002). The Alpino dependency treebank. In Computational
Linguistics in the Netherlands CLIN, Radopi.

Wong, C. (2003). An introduction to sql/xml func-
tions in db2 udb and the db2 xml extender. http:
//www.ibm.com/developerworks/db2/library/
techarticle/dm-0311wong/index.html (down-
loaded 2007-11-06).

Appendix

<sentence id="8" user="" date="">
<word id="1" form="Detta" postag="POOP" head="2" deprel="OO"/>
<word id="2" form="vill" postag="WVPS" head="0" deprel="ROOT"/>
<word id="3" form="jag" postag="POPPHH" head="2" deprel="SS"/>
<word id="4" form="bestämt" postag="AJ" head="2" deprel="AA"/>
<word id="5" form="bemöta" postag="VVIV" head="2" deprel="VG"/>
<word id="6" form="." postag="IP" head="2" deprel="IP"/>

</sentence>

vill

ww
ww

ww
ww

w

¾¾
¾¾
¾¾

AA
AA

AA
AA

QQQQQQQQQQQQQ

VVVVVVVVVVVVVVVVVVV

Detta jagbestämtbemöta .

<graph id="g8">
<node id="s8_1" form="Detta" pos="t151" cat="t298"/>
<node id="s8_2" form="vill" pos="t245" cat="t187"/>
<node id="s8_0"/>
<node id="s8_3" form="jag" pos="t152" cat="t306"/>
<node id="s8_4" form="bestämt" pos="t26" cat="t254"/>
<node id="s8_5" form="bemöta" pos="t227" cat="t312"/>
<node id="s8_6" form="." pos="t86" cat="t86"/>
<rel>

<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_1" endorder="1" />

</rel>
<rel>

<relend direction="in" target="s8_0" />
<relend direction="out" target="s8_2" endorder="2" />

</rel>
<rel>

<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_3" endorder="3" />

</rel>
<rel>

<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_4" endorder="4" />

</rel>
<rel>

<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_5" endorder="5" />

</rel>
<rel>

<relend direction="in" target="s8_2" />
<relend direction="out" target="s8_6" endorder="6" />

</rel>
</graph>

Figure 4: A Sentence from the Swedish Dependency
Treebank, in the original format (upper listing) and in
eGXL (lower listing).

Figure 5: Web based user interface to upload and work on dependency treebanks

