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Abstract

Timelines interpreting interval temporal
logic formulas are segmented into strings
which serve as semantic representations
for tense and aspect. The strings have
bounded but refinable granularity, suit-
able for analyzing (im)perfectivity, dura-
tivity, telicity, and various relations includ-
ing branching.

1 Introduction

A sentence in the simple past, such as (1a), ut-
tered at (speech) time S can be pictured as a time-
line (1b), describing an event E (Ernest explain-
ing) prior to S.

(1) a. Ernest explained.

b. E S (depicting E ≺ S)

We can view the event E in (1b) as an unbroken
point, wholly to the left of S, E≺ S. By contrast, in
the timeline (2a) for the progressive (2b), E splits
into three boxes, the middle of which contains also
a reference time R (Reichenbach, 1947).1

(2) a. E E,R E (depicting R @ E)

b. Ernest explaining

The relation of R inside E, R @ E, breaks E
apart, moving us away from conceptualizing E as
a point. Indeed, it has become common practice
in linguistic semantics since (Bennett and Partee,
1972) to evaluate temporal formulas at intervals,
rather than simply points. Interval temporal logics
are, however, notoriously more complex than or-
dinary (pointwise) temporal logics (Halpern and
Shoham, 1991; Marcinkowski and Michaliszyn,

1Boxes are drawn instead of the usual curly braces {, }
around the elements of a set to reinforce a reading of (1b) and
(2a) as comic strips, with time standing still within a box, but
between boxes, progressing from left to right.

2013). That said, for linguistic applications to
tense and aspect, the present paper derives strings
such as (1b) and (2a) from timelines for interval
temporal logic, in effect reducing these timelines
to finite models of ordinary temporal logic. This
reduction rests on certain assumptions that require
explanation and defense.

We begin with temporal formulas, which for the
sake of brevity, we hereafter call fluents. A fluent
such as E, R or S can occur as a whole, as E and
S do in (1b), or as segmented, as E does in (2a).
We formulate the notions of whole and segmented
model-theoretically in section 2, defining a map
ϕ 7→ ϕ◦ on fluents ϕ through which the picture
(2a) is sharpened to (3) with E◦ segmented.

(3) E◦ E◦,R E◦ (segmented E◦, whole R)

The map ϕ 7→ ϕ◦ is essentially a universal grinder
(the right half of an adjoint pair with a universal
packager, max)

whole
segmented

≈ count
mass

pointing to well-known “parallels between the
mass-count distinction in nominal systems and
the aspectual classification of verbal expressions”
(Bach, 1986a). The aspectual classification to
which the whole/segmented contrast pertains is
that of perfectives and imperfectives

whole
segmented

≈ perfective
imperfective

as opposed to Aktionsart. A variant of the
Aristotle-Ryle-Kenny-Vendler aspectual classes
(Dowty, 1979) which can be reduced to durativ-
ity and telicity (Comrie, 1976; Moens and Steed-
man, 1988; Pulman, 1997) is analyzed in section
3 through strings that arise naturally in the investi-
gation of grinding in section 2.

Some restraint on grinding is called for, as the
simplest strings are the most coarse-grained. Sec-
tion 4 enshrines this restraint as a principle, whilst



accommodating refinements as required. The idea
is that strings can be refined by enlarging some
contextually supplied set X of (interesting) flu-
ents: the larger X is, the finer the grain becomes.
An inverse system of string functions πX indexed
by different finite sets X of fluents is constructed,
and applied for an account of relations between
strings as well as branching time. The relations
here go beyond the familiar order ≺ for tense,
stretching to the progressive and the perfect, from
a variety of perspectives.

2 Segmented versus whole fluents

Fix a set Φ of fluents. Fluents in Φ are interpreted
relative to a Φ-timeline, a triple A = 〈T,≺, |=〉
consisting of a linear order ≺ on a non-empty set
T of (temporal) points, and a binary relation |=
between intervals I (over ≺) and fluents ϕ ∈ Φ.
An interval is understood here to be a nonempty
subset I of T with no holes — i.e. t ∈ I whenever
t1 ≺ t ≺ t2 for some pair of points t1, t2 in I .2

I |= ϕ is pronounced “ϕ holds at I” or “I satisfies
ϕ” (in A).

A fluent ϕ is said to be A-segmented if for all
intervals I and I ′ such that I ∪ I ′ is an interval,
ϕ holds at I and at I ′ precisely if it does at their
union

I |= ϕ and I ′ |= ϕ ⇐⇒ I ∪ I ′ |= ϕ.

A simple way for a fluent ϕ to be A-segmented is
by holding at an interval I precisely if it holds at
all points of I

I |= ϕ ⇐⇒ (∀t ∈ I) {t} |= ϕ

in which case we say ϕ is A-pointed.3 A fluent is
A-singular if at most one interval satisfies it. Gen-
eralizing A-singular fluents, we call a fluent ϕ A-
whole if for all intervals I and I ′ such that I ∪ I ′
is an interval,

I |= ϕ and I ′ |= ϕ implies I = I ′.

That is, any number of intervals may satisfy a A-
whole fluent so long as no two form an interval.
A A-whole fluent ϕ defines a quantized predicate
(Krifka, 1998) insofar as no two distinct intervals
can satisfy ϕ if one is a subset of the other. But the

2Not much would be lost were we to take an interval I ,
as in (Halpern and Shoham, 1991), to be a pair of points t, t′

with t � t′, or, as in (Allen, 1983), t ≺ t′.
3For finite T , A-segmented is the same as A-pointed.

ban on pairs of intervals satisfying ϕ is wider un-
der A-wholeness. For example, over T = {1, 2}, a
fluent holding at exactly {1} and {2} is not whole,
even though {{1}, {2}} is quantized.
A-wholeness shares half of A-segmentedness: a

fluent ϕ is A-summable if for all intervals I and I ′

in A such that I ∪ I ′ is an interval,

I |= ϕ and I ′ |= ϕ implies I ∪ I ′ |= ϕ.

Apart from the restriction that I ∪ I ′ is an interval,
A-summability coincides with additivity in (Bach,
1981), illustrated in (4).

(4) Ed slept from 3 to 5pm, Ed slept from 4 to
6pm |− Ed slept from 3 to 6pm

The other half of A-segmentedness (differentiat-
ing it from A-wholeness) is the subinterval prop-
erty (Bennett and Partee, 1972), enjoyed by states
and activities.

(5) Ed slept from 3 to 6 |− Ed slept from 3 to 5

A fluent ϕ is A-subinterval-persistent (A-sip) if
for all intervals I and I ′ in A,

I ⊆ I ′ and I ′ |= ϕ implies I |= ϕ .

It is useful to associate with any fluent ϕ a fluent
ϕ◦ that holds precisely at subintervals of intervals
satisfying ϕ

I |= ϕ◦ ⇐⇒ (∃I ′ ⊇ I) I ′ |= ϕ .

We say ϕ is A-equivalent to ψ and write ϕ ≡A ψ
if for every interval I ,

I |= ϕ ⇐⇒ I |= ψ.

Clearly, ϕ is A-sip iff ϕ ≡A ϕ◦. Also, ϕ◦ is A-sip
and we can say more if ϕ is A-whole.

2.1 An adjoint pair
The map ϕ 7→ ϕ◦ is one half of a pair for break-
ing down and building up fluents. To describe the
other half, more definitions are helpful. Given a
fluent ϕ and a relation r between intervals, let us
form the modal fluent 〈r〉ϕ that holds at an interval
r-related to one satisfying ϕ

I |= 〈r〉ϕ ⇐⇒ (∃I ′) I r I ′ and I ′ |= ϕ.

Note ϕ◦ is just 〈⊆〉ϕ. Apart from ⊆, other useful
examples of relations r between intervals I and I ′

include full precedence ≺

I ≺ I ′ ⇐⇒ (∀t ∈ I)(∀t′ ∈ I ′) t ≺ t′



and a relation m called meet in (Allen, 1983) and
abutment in (Hamblin, 1971).

I m I ′ ⇐⇒ I ≺ I ′ and I ∪ I ′ is an interval.

Now, let mi be the inverse of m

I mi I ′ ⇐⇒ I ′ m I

and max be a function on fluents that maps a fluent
ψ to its conjunction with ¬〈mi〉ψ and ¬〈m〉ψ

max(ψ) = ψ ∧ ¬〈mi〉ψ ∧ ¬〈m〉ψ.

Proposition 1.

(a) For all A-whole ϕ, ϕ◦ is A-segmented and
ϕ ≡A max(ϕ◦).

(b) For all A-segmented ψ, max(ψ) is A-whole
and ψ ≡A (max(ψ))◦.

As to the promised adjunction, let us agree to write
ϕA for the set of intervals satisfying ϕ

ϕA = {I | I |= ϕ}

(so ϕ ≡A ψ iff ϕA = ψA) from which we define
two pre-orders on fluents

ψ ⊆A ψ
′ ⇐⇒ ψA ⊆ ψ′A

ϕ ⊆A ϕ′ ⇐⇒ (∀I ∈ ϕA)(∃I ′ ∈ ϕ′A) I ⊆ I ′

that apply to A-segmented fluents ψ and A-whole
fluents ϕ respectively, for the equivalence

max(ψ) ⊆A ϕ ⇐⇒ ψ ⊆A ϕ◦

making max left (lower) adjoint to (of) ·◦.
Next, we turn to linguistic applications and the

correspondences

whole
segmented

≈ count
mass

≈ perfective
imperfective

.

The notion that imperfectives are mass and perfec-
tives count is argued in (Herweg, 1991), building
on (Galton, 1984; Galton, 1987) for a concept of
pofective event-type very close to that of A-whole
fluent above. Perfectives contrast with imperfec-
tives according to (6).

(6) a. viewed from outside, completed, closed

b. viewed from inside, ongoing, open-ended

Towards formalizing (6), let us say an interval I is
inside an interval I ′, written I @ I ′, if I ′ extends
to the left and also to the right of I

I @ I ′ ⇐⇒ (∃t′ ∈ I ′) {t′} ≺ I and

(∃t′′ ∈ I ′) I ≺ {t′′}

(called during in (Allen, 1983)). Next, we intro-
duce an A-whole fluent V for viewpoint to picture
a perfective view (6a) of E and an imperfective
view (6b) as (7a) and (7b) respectively.

(7) a. V◦ E,V◦ V◦ (depicting E @ V)

b. E◦ E◦,V E◦ (depicting V @ E)

The idea now is to spell out what strings such as
(7a) and (7b) mean.

2.2 Segmentations and strings
A segmentation (seg) is a sequence I = I1I2 · · · In
of intervals such that

Ii m Ii+1 for 1 ≤ i < n

or equivalently,

n⋃
i=1

Ii is an interval, and Ii ≺ Ii+1 for 1 ≤ i < n.

Given a sequence I = I1I2 · · · In of intervals and
an interval I , we write I↗ I to mean

I is a seg and I =
n⋃
i=1

Ii,

in which case we say I is a seg(mentation) of
I . We extend satisfaction |= to segs I1 · · · In and
strings α1 · · ·αm of finite subsets αi of Φ, requir-
ing that the lengths be the same and that Ii satisfy
every fluent in αi

I1 · · · In |= α1 · · ·αm ⇐⇒ n = m and

(∀ϕ ∈ αi) Ii |= ϕ for 1 ≤ i ≤ n.

For example, if E and V are A-singular (or just
A-whole)

(∃I) I |= E◦ E◦,V E◦ ⇐⇒ (∃I |= E)

(∃J |= V) J @ I.

Next, I |= s extends from a string s to a set L
of strings, with L holding at I if some string in L
does

I |= L ⇐⇒ (∃s ∈ L) I |= s.



We then define ϕ to be A-segmentable as L if an
interval I in A satisfies ϕ iff every, or equivalently,
some seg of I satisfies L

I |= ϕ ⇐⇒ (∀I↗ I) I |= L

⇐⇒ (∃I↗ I) I |= L .

Proposition 2. If ϕ is A-summable, ϕ◦ is A-
segmentable as the infinite language

ϕ◦
+ = ϕ◦ + ϕ◦ ϕ◦ +

ϕ◦ ϕ◦ ϕ◦ + · · ·

of strings ϕ◦
n, n ≥ 1. Moreover, the following

five conditions are pairwise equivalent.

(i) ϕ is A-segmented

(ii) ϕ is A-segmentable as ϕ◦
+

(iii) ϕ is A-segmentable as ϕ +

(iv) ϕ is A-sip and A-summable

(v) ϕ ≡A max(ϕ)◦.

As for A-whole fluents, we bound the strings
in ϕ◦

+, adding ¬〈mi〉ϕ◦ to the initial boxes and
¬〈m〉ϕ◦ to the final boxes to form the language

L(ϕ) = ϕ◦,¬〈mi〉ϕ◦,¬〈m〉ϕ◦ +

ϕ◦,¬〈mi〉ϕ◦ ϕ◦
∗
ϕ◦,¬〈m〉ϕ◦ .

Proposition 3. The following conditions (i)-(iv)
are pairwise equivalent.

(i) ϕ is A-whole

(ii) ϕ ≡A max(ϕ◦)

(iii) ϕ is A-segmentable as L(ϕ)

(iv) I |= ϕ ϕ◦ + ϕ◦ ϕ for no seg I.

3 Durative and/or telic strings

For any integer n > 1, an interval may have a wide
variety of segmentations of length n, Propositions
2 and 3 notwithstanding. Even if

I |= V ∧ 〈A〉E,

a seg I1I2 of I need not satisfy

V◦, 〈⊇〉E V◦ + V◦ V◦, 〈⊇〉E

(as E may straddle the line between I1 and I2), and
if E is A-singular, the string

V◦ E,V◦ V◦

holds in only one out of a possible multitude of
segs of I with length 3. The choice of a seg can
be a delicate matter. A string of sets of fluents ex-
presses such a choice. The present section links
that choice to aspect, stepping from a fluent ϕ to
a set L of strings of finite sets of fluents, without
requiring that L hold at every seg of every interval
satisfying ϕ. That is, the account of aspect given
below makes essential use of the string represen-
tations over and above the fluents from which the
strings are formed. Fluents/intervals describe ob-
jective matters of fact; strings/segmentations em-
body, in addition, particular perspectives on these
matters.

A concrete linguistic illustration is provided by
the notion that some events are punctual — i.e.,
lacking in internal structure. (Comrie, 1976) dis-
cusses the example of cough, noting that “the
inherent punctuality of cough would restrict the
range of interpretations that can be given to im-
perfective forms of this verb” to an iterative read-
ing (of a series of coughs), as opposed to a single
cough, which he refers to as semelfactive. Comrie
concedes, however, that, in fact, one can imagine

a situation where someone is comment-
ing on a slowed down film which incor-
porates someone’s single cough, as for
instance in an anatomy lecture: here, it
would be quite appropriate for the lec-
turer to comment on the relevant part of
the film and now the subject is cough-
ing, even in referring to a single cough,
since the single act of coughing has now
been extended, and is clearly durative, in
that the relevant film sequence lasts for
a certain period of time. (page 43)

The earlier contention that coughing can only be
read iteratively suggests that the intervals spanned
by single coughs are too small for our “normal”
segmentations. These segmentations consist of
intervals too big for “punctual” events, leading
to a representation of a ϕ-semelfactive as 〈A〉ϕ
rather than say, (8), with a middle box ϕ◦ of in-
ternal structure supporting the progressive.

(8) ϕ◦,¬〈mi〉ϕ◦ ϕ◦ ϕ◦,¬〈m〉ϕ◦



The special context provided above by an anatomy
lecture overturns this restriction, making (8) avail-
able after all. The punctual-durative distinction is
evidently not cast in stone. But just what is du-
rative? The simple proposal this section explores
is that what is durative is a string α1α2 · · ·αn of
sets αi of fluents with n ≥ 3. Between the first
box α1 and the last box αn is a string α2 · · ·αn−1

representing internal structure that, for n ≥ 3, is
non-empty.4

Apart from the length n of a string α1 · · ·αn,
there is also the matter of what fluents to box in
a string, describing the interior as well as the im-
mediate exterior of the situation the string repre-
sents. (The string in (8) is just an example to flesh
out or otherwise revise.) Of particular relevance
to temporal extent are any fluents chosen to mark
the boundaries of the situation. An example in (9)
is the fluent ψ which makes the string “telic” by
appearing in all its boxes negated, except for the
rightmost box, which it marks.

(9) ϕ◦,¬ψ ϕ◦,¬ψ ψ

Whether or not the intervals described by α1 and
αn count as part of the situation represented by the
string is independent of (10).

(10) a. α1 · · ·αn is durative if it has length n ≥ 3

b. α1 · · ·αn is telic if the negation of some
ψ in αn appears in αi for 1 ≤ i < n.

While (10a) says α1 · · ·αn has internal structure,
(10b) says α1 · · ·αn culminates in some fluent
ψ ∈ αn. (10b) is even more representational than
(10a) in that it depends not only on segmenting an
interval but on the choice of fluents we put into
a string describing that segmentation. As Krifka
notes, the telic-atelic distinction lies not “in the na-
ture of the object described, but in the description
applied to the object” as

one and the same event of running can
be described by running (i.e. by an atelic

4Segmentations of the full linear order T into 2 or 3 inter-
vals are central to the interpretation of event radicals in (Gal-
ton, 1987). A formal occurrence is defined there to be a pair
B,A of intervals such that either AB ↗ T or AIB ↗ T
where I is the complement T − (A ∪ B). The intuition is
that B is before, and A after the situation with temporal ex-
tent T − (A ∪ B). The first box α1 and last box αn of a
string α1 · · ·αn above (with n ≥ 3) represent final and initial
subintervals of B and A, respectively (constituting external
structure). The middle bit α2 · · ·αn−1 describes a segmen-
tation of T − (A ∪ B). Segs generalize formal occurrences,
elaborating on internal as well as external structure.

predicate) or by running a mile (i.e. a
telic, or delimited, predicate)

(Krifka, 1998, page 207).5 Krifka goes on to lo-
cate telicity not in objects but in sets P of objects
meeting the condition in (11a), based on a proper
part relation < on objects induced by a sum oper-
ation ⊕ according to (11b).

(11) a. P is quantized if there are no x, y ∈ P
such that x < y

b. x < y ⇐⇒ x 6= y and x⊕ y = y

Under (11), the predicate run a mile is quantized,
whereas the predicate run is not, even though one
and the same run may belong to both predicates.
But what about run to the post office? Surely, the
second half of any run to the post office is also a
run to the post office. A telic string may fail to
be quantized because its left boundary (inception)
has not been specified.

3.1 Subsumption and superposition
Some notation from (Fernando, 2004) will come
in handy in what follows. Given strings s and s′ of
sets, we say s subsumes s′ and write s� s′ if they
have the same length and are related component-
wise by inclusion

α1 · · ·αn � α′1 · · ·α′m ⇐⇒ n = m and

αi ⊇ α′i for 1 ≤ i ≤ n.

For instance,

ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ ψ � ϕ ϕ ϕ .

We extend subsumption � to languages L existen-
tially (just as we did with |=)

s� L ⇐⇒ (∃s′ ∈ L) s� s′

so that a string s is durative iff s� + and telic

iff s � ¬ψ
+
ψ for some ψ. A binary operation

on strings of the same length complementing sub-
sumption � is superposition & obtained by com-
ponentwise union

α1 · · ·αn & α′1 · · ·α′n = (α1 ∪ α′1) · · · (αn ∪ α′n).

5Notice that the condition (10b) for telicity is not met by
(8), but by the string

ϕ◦,¬〈mi〉ϕ◦, 〈m〉ϕ◦ ϕ◦, 〈m〉ϕ◦ ϕ◦,¬〈m〉ϕ◦

provided 〈m〉ϕ◦ is understood to be the negation of ¬〈m〉ϕ◦.
An alternative to leaving ψ existentially quantified in (10b) is
to specify the fluent ψ and work with the notion of “culimi-
nating in ψ.”



For instance, ϕ ϕ ϕ & ¬ψ ¬ψ ψ =

ϕ,¬ψ ϕ,¬ψ ϕ,ψ and for strings s and s′ of
the same length,

s� s′ ⇐⇒ s = s & s′

s & s′ = least �-upper bound of s and s′ .

We extend & to sets L and L′ of strings (of possi-
bly different lengths) by collecting superpositions
of strings from L and L′ of the same length

L & L′ = {s & s′ | s ∈ L, s′ ∈ L′

and length(s)=length(s′)}

(a regular language provided L and L′ are (Fer-
nando, 2004)). Notice that

{s}&{s′} = {s&s′} if length(s)= length(s′)

and the durative strings in L can be obtained by
superposing L with +

L& + = {s ∈ L | s� +}.

3.2 Application to Aktionsart

Semelfactives, activities (= processes), achieve-
ments (= culminations) and accomplishments (=
culminated processes) are commonly differenti-
ated on the basis of durativity and telicity (Moens
and Steedman, 1988; Pulman, 1997).

(12) a. A semelfactive is non-durative and atelic

b. An activity is durative but atelic

c. An achievement is non-durative but telic

d. An accomplishment is telic and durative

Under the present approach based on strings, (12)
can be sharpened to (13).

(13) a. A ϕ-semelfactive � 〈⊃〉ϕ

b. A ϕ-activity � ϕ ϕ ϕ + (presupposing
ϕ is A-segmented)

c. A ψ-achievement � ¬ψ ψ

d. An accomplishment built from a ϕ-activity

culminating in ψ

� ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ
+
ψ

(presupposing ϕ is A-segmented)

(Bach, 1986a) argues that processes are mass
and events are count, raising the question: how
does the A-segmented/whole opposition sit with
our account (13) of semelfactives, activities,
achievements and accomplishments? Bach’s pro-
cesses are the activities in (13b), represented by
the durative strings in the language ϕ + that a A-
segmented fluent ϕ is A-segmentable as. Where
A-whole fluents fit in (13) is, however, not im-
mediately obvious. But as pointed out by (Com-
rie, 1976) for coughs and by (Krifka, 1998) for
(mile-long) runs, there is an element of perspective
(over and above pure, objective facts) that makes
Aktionsart pliable. An achievement may, for in-
stance, be coerced into an accomplishment to in-
terpret the progressive in (14).

(14) The train was arriving when Anna went to or-
der a drink.

A seg II ′ satisfying an achievement ¬ψ ψ
might, for some segmentation I1I2I3 of I , be re-
fined to the seg I1I2I3I

′ satisfying an accomplish-
ment ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ ψ with preparatory
process/activity ϕ ϕ ϕ , for some A-segmented
ϕ.

As representations, strings are slippery in a
way that fixed pairs A, I are not; a shorter string
might describe a larger interval than a longer string
does. Strings are not so much finished objects
as makeshift representations subject to refinement.
So should A-whole fluents go into these strings?
The simplest examples of A-whole-fluents are
A-singular fluents (harking back to Davidson’s
events as particulars). Conceptualizing event time
at some level of abstraction as an interval is rea-
son enough to form a fluent picking out that inter-
val. And with an A-singular fluent ϕ comes the A-
segmented fluent ϕ◦, and the fluents ¬〈mi〉ϕ◦ and
¬〈m〉ϕ◦ from which to form the language L(ϕ)
which ϕ is A-segmentable as (Proposition 3).

(Dowty, 1979) explores the hypothesis that

the different aspectual properties of the
various kinds of verbs can be explained
by postulating a single homogeneous
class of predicates – stative predicates
– plus three or four sentential operators
and connectives

(page 71). A simplified event-based reformulation
(15) of the Vendler classes in terms of Dowty’s
operators DO, BECOME and CAUSE is given in
(Rothstein, 2004), page 35.



(15) states λe.P (e)

activities λe.(DO(P ))(e)

achievements λe.(BECOME(P ))(e)

accomplishments λe.∃e1, e2.[e = e1 ⊕S e2

∧(DO(P ))(e1) ∧ Cul(e) = e2]

Dowty’s CAUSE operator is reworked in (15) with
a sum operation ⊕S producing singular entities,
and a culmination function Cul. The resulting ac-
complishment e is the sum e1⊕S e2 of its prepara-
tory process (activity) e1 and culmination e2. To
bring (13) in line with (15), we put

DO(P ) ≈ P P P
+

BECOME(P ) ≈ ¬P P

and require that P be A-segmented. Defining

du(L) = L& +

cu(L,ψ) = (L& ¬ψ
+

) ψ

yields

P P P
+

= du( P
+

)

¬P P = cu( , P )

and for accomplishments as culiminated activities,

cu(du( ϕ +), ψ) = ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ
+
ψ

= du( ϕ,¬ψ ) ψ .

Left out of (13) are the states in (15), which can
be compared to A-segmented fluents in the present
framework. As noted in (Dowty, 1986), one might
also require that stative fluents be inertial, for
which see (Fernando, 2008).

4 Desegmenting and branching time

Why segment an interval? The two reasons given
above are (1) to get a handle on durativity and
telicity, and (2) to unwind an interval fluent such
as E∧〈A〉R to a string E◦ E◦,R E◦ interpreted
against segmentations (i.e. finite timelines). Nei-
ther reason justifies grinding indefinitely. The
thrust of the present section is to leave segs as
coarse as possible, segmenting only if necessary,
leading to a notion of time that may branch.

4.1 Desegmenting via π

Quantifying the model A out of the notion of A-
segmentability and weakening the connection be-
tween intervals and segs, let us agree that a lan-
guage L depicts ϕ if for all models A, L is A-
satisfiable precisely if ϕ is

(∃ seg I) I |= L ⇐⇒ (∃ interval I) I |= ϕ.

Trivially, ϕ depicts ϕ, but there are more inter-
esting examples. Unwinding the modal operator
〈�〉 and conjunction ∧ in the fluent S ∧〈�〉ϕ,

ϕ S + ϕ S depicts S ∧ 〈�〉ϕ.

The language ϕ S + ϕ S reduces the infinite

language
∗
ϕ

∗
S
∗

depicting S ∧〈�〉ϕ to two
strings. This reduction illustrates the possibility
that under suitable assumptions on a language L
depicting ϕ, the strings in L can be simplified in
two ways:

(w1) any initial or final empty boxes can be
stripped off, and

(w2) all repeating blocks αn (for n ≥ 1) of a box
α can be compressed to α.

More precisely, we implement (w1) by a function
unpad defined on strings s by

unpad(s) =


unpad(s′) if s = s′ or

else s = s′

s otherwise

so that unpad(s) neither begins nor ends with .
For (w2), all blocks αn+1 in s are compressed in
bc(s) to α

bc(s) =


bc(αs′) if s = ααs′

α bc(βs′) if s = αβs′ with
α 6= β

s otherwise

so that if bc(s) = α1 · · ·αn then αi 6= αi+1 for i
from 1 to n − 1. We then compose bc with unpad
for π

π(s) = unpad(bc(s)).

One can check that

{π(s) | s ∈
∗
ϕ

∗
S
∗
} = ϕ S + ϕ S .



Clearly, π(s) is never longer than s, and π(s) =
π(π(s)) for all strings s.

As for the “suitable assumptions” on L under
which L can be reduced to {π(s)|s ∈ L}, it is
helpful to consider the fluent R ∧ 〈@〉ϕ. Can we
unwind 〈@〉 in R,〈@〉ϕ ? Assuming ϕ◦ is A-
summable for all models A,

ϕ◦ R,ϕ◦ ϕ◦ depicts R ∧ 〈@〉ϕ.

Now, let us call a string s = α1 · · ·αn of sets αi
of fluents A-reducible if every fluent appearing in
two consecutive string positions αiαi+1 in s (for
some 1 ≤ i < n) is A-summable. (For exam-
ple, ϕ◦ R,ϕ◦ ϕ◦ is A-reducible, provided ϕ◦
is A-summable.) Let us say a seg I refines a seg
I1 · · · In if for all i from 1 to n, Ii is the union of
some subsequence of I.

Proposition 4. For any A-reducible string s, ev-
ery seg I that satisfies s refines some seg I′ that
satisfies π(s). Consequently, if for all s ∈ L, s is
A-reducible and π(s) ∈ L, then L is A-satisfiable
iff {π(s)|s ∈ L} is

(∃ seg I) I |= L ⇐⇒ (∃ seg I) I |= {π(s) |
s ∈ L}.

4.2 Relativizing π to a finite set X of fluents

Next, we fix a notion of bounded granularity
through a finite set X of fluents of interest, which
we can expand to refine granularity or contract to
coarsen granularity. An instructive example for
orientation is the representation of a calendar year
of twelve months as the string

smo = Jan Feb Mar · · · Dec

of length 12, or, were we also interested in days
d1,d2. . .,d31, the string

smo,dy = Jan,d1 Jan,d2 · · · Jan,d31

Feb,d1 · · · Dec,d31

of length 365 (for a non-leap year). Un-
like the points in the real line R, a box
can split, as Jan in smo does (30 times) to
Jan,d1 Jan,d2 · · · Jan,d31 in smo,dy, on in-

troducing days d1, d2,. . ., d31 into the picture.
Reversing direction and generalizing from mo =

{Jan,Feb,. . .Dec} to any set X of fluents, we de-
fine the function ρX on strings (of sets) to compo-
nentwise intersect with X

ρX(α1 · · ·αn) = (α1 ∩X) · · · (αn ∩X)

throwing out non-X’s from each box (keeping
only the elements of X) so that

ρmo(smo,dy) = Jan
31

Feb
28
· · · Dec

31
.

Next, we compose ρX and π for the function πX
mapping a string s of sets to

πX(s) = π(ρX(s)) = unpad(bc(ρX(s)))

so that for example,

πmo(smo,dy) = π( Jan
31

Feb
28
· · · Dec

31
)

= smo

and

π{E◦}( E◦ R,E◦ E◦ ) = π( E◦ E◦ E◦ )

= E◦ .

In general, a description sX of granularity X can
be refined to one sX′ of granularity X ′ ⊇ X pro-
vided πX maps sX′ to sX . More precisely, given
some large set Φ of fluents, let Fin(Φ) be the set
of finite subsets of Φ. A function f with domain
Fin(Φ) mapping X ∈ Fin(Φ) to a string f(X)
over the alphabet 2X is said to be π-consistent if
whenever X ⊆ X ′ ∈ Fin(Φ),

f(X) = πX(f(X ′)).

Let us write ILπ(Φ) for the set of all π-consistent
functions. “IL” here stands not for intensional
logic but for inverse limit — to be precise, the in-
verse limit of the restrictions of πX to (2X

′
)∗ for

X ⊆ X ′ ∈ Fin(Φ) (all computable by finite-
state transducers). That said, ILπ(Φ) is inten-
sional: time branches under the relation ≺Φ be-
tween f, f ′ ∈ ILπ(Φ) given by

f ≺Φ f ′ ⇐⇒ f 6= f ′ and (∀X ∈ Fin(Φ))

f(X) is a prefix of f ′(X)

(where s is a prefix of s′ if s′ = sŝ for some
possibly empty string ŝ). The intuition is that a
temporal moment comes with its past, and that
an f ∈ ILπ(Φ) encodes the moment that is X-
approximated, for each X ∈ Fin(Φ), by the last



box in f(X), with past given by the remainder of
f(X) (leading to that box). More precisely, ≺Φ is
tree-like in the sense of (Dowty, 1979).

Proposition 5. ≺Φ is transitive and left linear: for
every f ∈ IL(Φ),

(∀f1 ≺Φ f)(∀f2 ≺Φ f) f1 ≺Φ f2 or

f2 ≺Φ f1 or f1 = f2.

Moreover, no element of ILπ(Φ) is ≺Φ-maximal.

Maximal chains, called histories in (Dowty, 1979),
figure prominently in possible worlds semantics.
While we can pick one out in ILπ(Φ) to represent
an actual history, it is far from obvious what sig-
nificance maximal ≺Φ-chains have in the present
framework, which is closer in spirit to situation
semantics (Bawise and Perry, 1983), updated in
(Cooper, 2005; Ginzburg, 2005).

Tha handbook chapter (Thomason, 1984) opens
with the declaration

Physics should have helped us to re-
alise that a temporal theory of a phe-
nomenon X is, in general, more than a
simple combination of two components:
the statics of X and the ordered set of
temporal instants. The case in which
all functions from times to world-states
are allowed is uninteresting; there are
too many such functions, and the the-
ory has not begun until we have begun
to restrict them. And often the princi-
ples that emerge from the interaction of
time with the phenomena seem new and
surprising.

For a non-empty set W of worlds, and a linearly
ordered set T of time instants, Thomason com-
pares T × W -frames, not unlike that in (Mon-
tague, 1973), unfavorably to tree-like frames, of
which ≺Φ above is an example, when paired with
a ⊆-maximal ≺Φ-chain. The crudeness of the
cartesian product × aside, one may ask where T
comes from, as Bach pointedly does in page 69 of
(Bach, 1981), to say nothing of W . The answer
from ILπ(Φ) involves strings formed from flu-
ents. The projective system (πX)X∈Fin(Φ) gives
for every finite subset X of Φ, a choice of X-
approximations in (2X)∗, including for X =
{e, e′} with e 6= e′, 13 strings sr corresponding
to the Allen interval relations r between intervals
e and e′ (Allen, 1983); see Table 1 (Fernando,

r ∈Allen sr ∈ (2{e,e
′})+

e = e′ e, e′

e s e′ e, e′ e′

e si e′ e, e′ e

e f e′ e′ e, e′

e fi e′ e e, e′

e d e′ e′ e, e′ e′

e di e′ e e, e′ e

e o e′ e e, e′ e′

e oi e′ e′ e, e′ e

e m e′ e e′

e < e′ e e′

e mi e′ e′ e

e > e′ e′ e

Table 1: The Allen relations in (2{e,e
′})+

2012). Under the projections πX , these strings
are most naturally viewed as indices for evalu-
ating an expression ϕ as an extension or deno-
tation, as prescribed by Carnap-Montague inten-
sions (Fernando, 2011). In (Bach, 1986b), an
event type such as KISSING induces a function
EXT(KISSING) that maps histories to subparts
that are temporal manifestations of KISSING,
treating input histories as indices and output mani-
festations as extensions. Under the current frame-
work, EXT(KISSING) can for any X ∈ Fin(Φ),
be given as a binary relation between strings in
(2X)∗ thatX-approximate indices and extensions.

5 Conclusion

Segmentations arise naturally in the view from
(Klein, 2009) that

The expression of time in natural lan-
guages relates a clause-internal tempo-
ral structure to a clause-external tem-
poral structure. The latter may shrink
to a single interval, for example, the
time at which the sentence is uttered; but
this is just a special case. The clause-
internal temporal structure may also be
very simple – it may be reduced to a sin-
gle interval without any further differen-
tiation, the ‘time of the situation’; but if
this ever happens, it is only a borderline
case. As a rule, the clause-internal struc-



ture is much more complex. (page 75)

The simplest case described by the passage is il-
lustrated by the picture (16) of the clause-internal
event (or situation) time E preceding the clause-
external speech (utterance) time S.

(16) E S + E S depicting E∧〈≺〉S

Slightly more complicated is the picture (3) of
event time E with R inside it.

(3) E◦ E◦,R E◦ (segmented E◦, whole R)

Whereas E in (16) is unbroken and whole, the
“differentiation” in (3) puts E through a universal
grinder ·◦ described in section 2, alongside notions
of A-whole and A-segmented fluents, the contrast
between which surfaces in pairs such as (17) and
(18).

(17) Ernest was explaining 6|− Ernest explained

(18) Ernest was laughing |− Ernest laughed

The non-entailment (17) is clear from (19).

(19) Ernest was explaining when he was made to
stop.

To extract a rigorous account of (17) versus (18)
from the assumption that explaining is whole and
laughing is segmented (as fluents) would require
stepping beyond lexical/internal aspect (consid-
ered in sections 2 and 3 above) to grammati-
cal/external aspect, hinted at in (3), as well as
tense. Some details compatible with the present
approach can be found in (Fernando, 2008).6 Suf-
fice it to say that additional temporal parameters
from tense and aspect enlarge the set X of fluents
that, under the inverse limit ILπ(Φ) in section 4,
refines granularity. While we have taken pains to
show how to interpret a string of subsets of Φ in

6An alternative would be to follow along (Galton, 1984;
Galton, 1987). There are likely to be many ways to fill in
the details. In the case of the perfect, for instance, the basic
approach outlined here is, as far as I can tell, neutral between
extended now accounts (Pancheva, 2003) augmented with (7)

(7) a. V◦ E,V◦ V◦ (depicting E @ V)

b. E◦ E◦,V E◦ (depicting V @ E)

and consequent-state approaches (Moens and Steedman,
1988; Kamp and Reyle, 1993; Pulman, 1997) that might be
augmented with inertia (Dowty, 1986) and forces (Fernando,
2008).

a segmentation (essentially, a finite, ordered par-
tition of an interval from a Φ-timeline), no Φ-
timeline is used to define ILπ(Φ), resulting in a
notion of time that branches (away from any single
segmentation or timeline). There is sure to be junk
in ILπ(Φ) to throw out; but what use tense and
aspect might have for timelines not represented in
ILπ(Φ), I fail to see (apart from linking tempo-
rality up with other linguistic mechanisms such as
quantification). Work on tense and aspect has led
to extensions of ordinary temporal logic in three
directions.

(20) a. addition of temporal parameters (e.g. R)

b. expansion of points to intervals

c. recognition of events and states

Stringing together finite sets of fluents, we attend
to (20c) in sections 2 and 3 above, and to (20a)
in section 4, putting the distinction (20b) between
points and intervals down to the set X of fluents
under consideration.7
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