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Abstract

We study ternary relational semantics for symmetric versions of the Lambek calculus
with interaction principles due to Grishin (1983). We obtain completeness on the basis of a
Henkin-style weak filter construction.1

1 Background, motivation

The categorial calculi proposed by Lambek and their current typelogical extensions respect an
“intuitionistic” restriction: in a Gentzen presentation, Lambek sequents are of the form Γ ⇒ B,
where B is a single formula, and Γ is a tree structure with formulas A1, . . . , An at the yield.
Depending on the particular calculus one works with, the antecedent structure can degener-
ate into a list or a multiset of formulas. The intuitionistic restriction is a serious expressive
limitation when it comes to using the Lambek framework in the analysis of natural language
syntax and semantics. Core phenomena such as displacement or scope construal are beyond
the reach of the basic Lambek calculus; to deal with such phenomena, various extensions have
been proposed based on structural rules, which can be introduced implicitly or explicitly, and
with global or modally-controlled application regimes. The price one pays for such extensions is
high: whereas the basic Lambek calculus has a polynomial recognition problem [3], already the
simplest extension with an associative regime for ⊗ is known to be NP complete as shown in
[8].

In a remarkable paper written in 1983, V.N. Grishin [4] has proposed a different strategy for
generalizing the Lambek calculi. The starting point for Grishin’s approach is a symmetric ex-
tension of the Lambek calculus: in addition to the familiar operators ⊗, \, / (product, left and
right division), one also considers a dual family ⊕,�,;: coproduct, right and left difference.2

The resulting vocabulary is given in (1).

A,B ::= p | atoms: s sentence, np noun phrases, . . .
A⊗B | B\A | A/B | product, left vs right division
A⊕B | A�B | B ; A coproduct, right vs left difference

(1)

Algebraically, the Lambek operators form a residuated triple; likewise, the ⊕ family forms a dual
residuated triple. The minimal symmetric categorial grammar, which we will refer to as LG∅,

1We thank Anna Chernilovskaya and the anonymous MOL’07 referees for helpful comments on an earlier
version of this paper.

2A little pronunciation dictionary: read B\A as ‘B under A’, A/B as ‘A over B’, B ; A as ‘B from A’ and
A�B as ‘A less B’. We follow [6] in using the notation ⊕ for the coproduct, which is a multiplicative operation.
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consists of just the preorder axioms of (2), i.e. reflexivity and transitivity of the derivability
relation, together with the (dual) residuation principles given in (3). This minimal system
preserves the polynomiality of the asymmetric NL as shown in [2].

(refl) A ` A; from A ` B and B ` C infer A ` C (trans) (2)

(rp) A ` C/B iff A⊗B ` C iff B ` A\C
(drp) B ; C ` A iff C ` B ⊕A iff C �A ` B

(3)

The minimal symmetric system LG∅ doesn’t have the required expressivity to address the linguis-
tic problems mentioned in the introduction. For every theorem of the (non-associative) Lambek
calculus, LG∅ also has its image under arrow reversal. Interaction between the ⊗ and the ⊕
family, however, is limited to glueing together theorems of the two families with the transitivity
rule.

What makes Grishin’s work attractive from the perspective of categorial grammar, is the system-
atic theory he presents for extending LG∅ with extra axioms. In section 2.7 of his paper, Grishin
presents sixteen options for extending LG∅. Eight of these represent the familiar associativity
and/or commutativity postulates for ⊗ and symmetrically ⊕. Since these choices destroy sen-
sitivity for word order and/or constituent structure, we will ignore them. The remaining eight
options are principles of interaction relating connectives from the ⊗ and the ⊕ family. They
naturally cluster in two groups of four, which we will refer to as G↑ and G↓.

Consider first the group G↑ (the Class IV postulates, in Grishin’s own terminology) which con-
sists of the principles in (4). G1 and G3 have been called mixed associativity principles, G2
and G4 mixed commutativity principles. We think the use of the concepts “associativity” and
“commutativity” is misleading here: as we will see below, the ⊗ and ⊕ families have individual
interpreting relations of fusion and fission respectively. We prefer to refer to G1–G4 as (weak)
distributivity principles.

(G1) (A ; B)⊗ C ` A ; (B ⊗ C) C ⊗ (B �A) ` (C ⊗B)�A (G3)
(G2) C ⊗ (A ; B) ` A ; (C ⊗B) (B �A)⊗ C ` (B ⊗ C)�A (G4) (4)

Intuitively, the interacion principles in (4) deal with the situation where a difference operation
(; or �) is trapped in a ⊗ context where they are inaccessible for logical manipulation. Consider
first G1 and G2. On the lefthand side of the turnstile, a formula A ; B occurs as the first or
second coordinate of a product. The postulates invert the dominance relation between ⊗ and ;,
raising the subformula A to a position where it can be shifted to the righthand side by means of
the dual residuation principles of (3). G3 and G4 are the images of G1 and G2 under left-right
symmetry.

Interaction principles dual to those in (4) are given in (5): they deal with the situation where
a left or right implication is trapped within a ⊕ context, this time raising the A subformula to
the position where it can be shifted to the lefthand side by means of the residuation principles
of (3). We leave it to the reader to check that the forms Gn′ in (5) are indeed derivable from
the respective Gn in (4) and (2)-(3).

(G1′) (C ⊕B)/A ` C ⊕ (B/A)
(G2′) (B ⊕ C)/A ` (B/A)⊕ C

A\(B ⊕ C) ` (A\B)⊕ C (G3′)
A\(C ⊕B) ` C ⊕ (A\B) (G4′) (5)
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Figure 1: The Lambek-Grishin landscape

Consider next the group G↓ (the Class I postulates in Grishin’s classification), consisting of the
interaction principles in (6) — the converses of the principles in group G↑. G↑ and G↓ represent
two independent options to extend LG∅ with interaction principles. The general picture that
emerges then is the landscape of Figure 1 where the minimal symmetric Lambek calculus is
extended either with G1–G4 or with their converses, or with the combination of the two.

(G1−1) (A ; B)⊗ C a A ; (B ⊗ C) C ⊗ (B �A) a (C ⊗B)�A (G3−1)
(G2−1) C ⊗ (A ; B) a A ; (C ⊗B) (B �A)⊗ C a (B ⊗ C)�A (G4−1) (6)

Linguistic applications The choice we are making for the extension of LG∅ is motivated by
the linguistic application: we consider the full set of structure-preserving interaction principles,
while rejecting same-sort associativity and/or commutativity options. Grishin’s own paper opts
for an associative regime, with both the same-sort associativity for ⊗ and ⊕, and the mixed
associativity of the G↓ group, i.e. G1−1 and G3−1 of (6). In the first thorough exposition of
Grishin’s work before it was translated in English, Lambek [6] also adopts the associative regime,
but explores the mixed associativities of both the G↓ and the G↑ groups.

We give two simple illustrations of the potential of the Lambek-Grishin systems in Figure 1 to
address the problems with asymmetric Lambek calculi mentioned in the introduction. The first
is an example of non-local scope construal; the second is a case of non-peripheral extraction.
In both cases, we start from a lexical type assignment from which the usual Lambek type is
derivable, cf. the assignments in (7). What this means is that whatever could be done with the
Lambek types can still be done; but thanks to the Grishin interaction principles, we will be able
to do more.

someone (s� s) ; np ` s/(np\s)
which (n\n)/((s� s)⊕ (s/np)) ` (n\n)/(s/np) (7)

In (8) one finds one of the two derivations for a sentence of the type ‘Alice thinks someone
left’. Whereas the Lambek assignment s/(np\s) is restricted to local construal in the embedded
clause, the assignment (s � s) ; np also allows construal at the main clause level. It is this
non-local construal that is represented by (8). By means of the interaction principle G2, the
(s � s) subformula raises to the top level leaving behind a np resource in situ; (s � s) then
shifts to the succedent by means of the dual residuation principle, and establishes scope via the
dual application law. Notice that with only the mixed associative interactions, the ; connective
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would be trapped in the ⊗ context, and the derivation would fail. The reader is invited to consult
[1] for a detailed analysis of scope construal along these lines. Semantically, the analysis of [1]
is based on a Curry-Howard interpretation of Lambek-Grishin derivations in the continuation-
passing style; this interpretation associates (8) with the reading (∃ λx.((thinks (left x)) a)) as
required.

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s))) ` s s ` (s � s)⊕ s

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s))) ` (s � s)⊕ s
trans

(s � s) ; (np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s)))) ` s
drp

np ⊗ (((np\s)/s)⊗ (((s � s) ; np)︸ ︷︷ ︸
someone

⊗(np\s))) ` s
G2 (8)

The second example is for displacement as in ‘(movie which) John saw on TV’. In the derivation
(9) we make use of the combined G↓,↑ principles, i.e. the principles (4) and their converses (6).
We abbriviate (np\s)/np as tv (transitive verb) and (np\s)\(np\s) as adv (adverb). The (s/np)
subformula is added to the antecedent via the dual residuation principle, and lowered to the
target tv via applications of (Gn−1). The tv context is then shifted to the succedent by means
of the (dual) residuation principles, and the relative clause body with its np hypothesis in place
is reconfigured by means of (Gn) and residuation shifting.

np⊗ ((tv ⊗ np)⊗ adv) ` s s ` (s� s)⊕ s

np⊗ ((tv ⊗ np)⊗ adv) ` (s� s)⊕ s
trans

tv ` ((np\(s� s))/adv)⊕ (s/np)
Gn, rp

np⊗ ((tv � (s/np))⊗ adv) ` s� s
rp,drp

(np⊗ (tv ⊗ adv))� (s/np) ` s� s
Gn−1

np⊗ (tv ⊗ adv) ` (s� s)⊕ (s/np)
drp

(9)

An attractive property of the Lambek-Grishin systems in Figure 1 is that the expressivity resides
entirely in the interaction principles: the composition operation ⊗ in itself (and the dual ⊕)
allows no structural rules at all, which means that the resulting notion of wellformedness is fully
sensitive to linear order and constituent structure of the grammatical material. It is shown in
[7] that the relation of type similarity of LG∅ + G↑ is as strong as similarity in (associative,
commutative) LP: A ∼ B iff the images of A and B in a free Abelian group interpretation are
equal. In LP one obtains this notion of ∼ by sacrificing order and constituent sensitivity; in
the Lambek-Grishin setting, the same notion of similarity is obtained in a structure-preserving
way.

2 Relational semantics

Let us turn now to the frame semantics for LG. In (10) and (11) we compare the truth conditions
for the fusion and fission operations. From the modal logic perspective, the binary type-forming
operation ⊗ is interpreted as an existential modality with ternary accessibility relation R⊗. The
residual slashes are the corresponding universal modalities for the rotations of R⊗. For fission ⊕
and its residuals, the dual situation obtains: ⊕ here is the universal modality interpreted w.r.t. an
accessibility relation R⊕; the coimplications are the existential modalities for the rotations of
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R⊕. Notice that, in the minimal symmetric logic LG∅, R⊕ and R⊗ are distinct accessibility
relations. Frame constraints corresponding to the Grishin interaction postulates of the group G↑
or G↓ will determine how their interpretation is related.

x  A⊗B iff ∃yz.R⊗xyz and y  A and z  B
y  C/B iff ∀xz.(R⊗xyz and z  B) implies x  C
z  A\C iff ∀xy.(R⊗xyz and y  A) implies x  C

(10)

x  A⊕B iff ∀yz.R⊕xyz implies (y  A or z  B)
y  C �B iff ∃xz.R⊕xyz and z 6 B and x  C
z  A ; C iff ∃xy.R⊕xyz and y 6 A and x  C

(11)

Henkin construction To establish completeness, we use a Henkin construction. In the Henkin
setting, “worlds” are (weak) filters: sets of formulas closed under `. Let F be the formula
language of (1). Let F` = {X ∈ P(F) | (∀A ∈ X)(∀B ∈ F) A ` B implies B ∈ X}. The set of
filters F` is closed under the operations (· ⊗̂ ·), (· ;̂ ·) defined in (12) below. It is easy to show
that X ⊗̂ Y and X ;̂ Y are indeed members of F`.

X ⊗̂ Y = {C | ∃A,B (A ∈ X and B ∈ Y and A⊗B ` C)}
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and A ; C ` B}, alternatively
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and C ` A⊕B}

(12)

To lift the type-forming operations to the corresponding operations in F`, let bAc be the principal
filter generated by A, i.e. bAc = {B | A ` B} and dAe its principal ideal, i.e. dAe = {B | B ` A}.
Writing X∼ for the complement of X, we have

(†) bA⊗Bc = bAc ⊗̂ bBc (‡) bA ; Cc = dAe∼ ;̂ bCc

proof (†)(⊆) Suppose C ∈ bA⊗Bc, i.e. A ⊗ B ` C. With A′ := A and B′ := B we claim
∃A′, B′ such that A ` A′, B ` B′ and A′⊗B′ ` C, which by (Def ⊗̂) means that C ∈ bAc ⊗̂ bBc
as desired. For the (⊇) direction, we will prove the following lemma:

Lemma 1. A⊗B ∈ X implies bAc ⊗̂ bBc ⊆ X.

Since A⊗B ∈ bA⊗Bc by definition, we then have bAc ⊗̂ bBc ⊆ bA⊗Bc.

proof of lemma 1. Suppose C ∈ bAc ⊗̂ bBc, i.e. ∃A′, B′ such that A′ ∈ bAc i.e. A ` A′,
B′ ∈ bBc i.e. B ` B′, and A′ ⊗ B′ ` C. By Monotonicity, A ⊗ B ` A′ ⊗ B′. By Transitivity,
A⊗B ` C. Together with A⊗B ∈ X this implies C ∈ X as desired.

The (‡) case is entirely similar. (‡)(⊆) Suppose B ∈ bA ; Cc, i.e. A;C ` B. With A′ := A and
C ′ := C we claim ∃A′, C ′ such that A′ ` A, C ` C ′ and A′ ; C ′ ` B, which by (Def ;̂) means
that B ∈ dAe∼ ;̂ bCc as desired. For the (⊇) direction, we show that the folloing holds:

Lemma 2. A ; C ∈ X implies dAe∼ ;̂ bCc ⊆ X.

Since A ; C ∈ bA ; Cc by definition, we then have dAe∼ ;̂ bCc ⊆ bA ; Cc.

proof of lemma 2. Suppose B ∈ dAe∼ ;̂ bCc, i.e. ∃A′, C ′ such that A′ 6∈ dAe∼ i.e. A′ ` A,
C ′ ∈ bCc i.e. C ` C ′, and A′ ; C ′ ` B. By Monotonicity, A ; C ` A′ ; C ′. By Transitivity,
A ; C ` B. Together with A ; C ∈ X this implies B ∈ X as desired.
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Canonical model Consider Mc = 〈W c, Rc
⊗, Rc

⊕, V c〉 with

W c = F`
Rc
⊗XY Z iff Y ⊗̂ Z ⊆ X

Rc
⊕XY Z iff Y ;̂ X ⊆ Z

V c(p) = {X ∈ W c | p ∈ X}

Truth lemma We want to show for any formula A ∈ F and filter X ∈ F` that X  A iff
A ∈ X. The proof is by induction on the complexity of A. The base case is handled by V c. Let
us look first at the connectives ⊕,;,�.

Coproduct X  A⊕B iff A⊕B ∈ X

(⇒) Suppose X  A ⊕ B. We have to show that A ⊕ B ∈ X. By (Def ⊕) we have that
∀Y, Z (Y ;̂ X ⊆ Z and Y 6 A) implies Z  B. Setting Y := dAe∼ (therefore, A /∈ Y and, by IH
for Y , Y 6 A) and Z := Y ;̂ X, the antecedent holds, implying Z  B. By IH and the choice
of Z we then have B ∈ Z and B ∈ dAe∼ ;̂ X. By (Def ;̂) B ∈ dAe∼ ;̂ X means ∃A1, A2 such
that A1 6∈ dAe∼, A2 ∈ X and A2 ` A1 ⊕B. A1 6∈ dAe∼ means A1 ` A, hence from A2 ` A1 ⊕B
we get A2 ` A⊕B by Transitivity. Since X is a filter, from A2 ∈ X and A2 ` A⊕B we obtain
A⊕B ∈ X as desired.

(⇐) Suppose A ⊕ B ∈ X. We have to show that X  A ⊕ B, i.e. ∀Y, Z (Rc
⊕XY Z and Y 6

A) implies z  B. Assume Rc
⊕XY Z and Y 6 A. We have to show Z  B. Using IH and the

facts we already have (Rc
⊕XY Z and A 6∈ Y and A⊕B ∈ X) we conclude that A ; (A⊕B) ∈ Z.

But A ; (A⊕B) ` B, so B ∈ Z and by IH Z  B. This is what was needed to show.

Left difference X  A ; B iff A ; B ∈ X

(⇒) Suppose X  A ; B. We have to show that A ; B ∈ X. X  A ; B means ∃Y, Z such
that Rc

⊕ZY X, i.e. Y ;̂ Z ⊆ X, and Y 6 A and Z  B. By IH A 6∈ Y and B ∈ Z. Since also
A ; B ` A ; B, from (Def ;̂) we conclude that A ; B ∈ Y ;̂ Z and therefore A ; B ∈ X as
desired.

(⇐) Suppose A ; B ∈ X. We have to show that X  A ; B. It was shown in Lemma 2 that
A ; B ∈ X implies dAe∼ ;̂ bBc ⊆ X, which means we have Rc

⊕bBcdAe∼X. Since A 6∈ dAe∼
and B ∈ bBc, by IH we claim ∃Y, Z such that Rc

⊕ZY X and Y 6 A and Z  B, which means
X  A ; B as desired.

Right difference X  B �A iff B �A ∈ X

(⇒) Suppose X  B�A, i.e. ∃Y, Z such that X ;̂Z ⊆ Y (Def Rc
⊕) and Y 6 A and Z  B, i.e. by

IH B ∈ Z. To show that B �A ∈ X, we reason by contradiction and assume B �A 6∈ X. From
this assumption and B ∈ Z we have (B �A) ; B ∈ X ;̂ Z by (Def ;̂). Since (B �A) ; B ` A,
A ∈ X ;̂Z, so also A ∈ Y . Contradiction with Y 6 A, hence the assumption B�A 6∈ X doesn’t
hold, as required.

(⇐) Suppose B � A ∈ X. To show that X  B � A we proceed by contraposition and assume
X 6 B�A, i.e. ∀Y, Z (Rc

⊕ZXY and Y 6 A) implies Z 6 B, alternatively (X ;̂ Z ⊆ Y and Z 
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B) implies Y  A. Setting Y := X ;̂ Z and Z := bBc, the antecedent holds, hence X ;̂ Z  A
and by IH A ∈ X ;̂ Z. By (Def ;̂) this means ∃A1, A2 such that A1 6∈ X, A2 ∈ bBc and
A2 ` A1 ⊕ A. ¿From A2 ∈ bBc we have B ` A2, so by Transitivity, B `> A1 ⊕ A, and by Dual
residuation, B�A ` A1. Since A1 6∈ X, B�A 6∈ X, contradicting our original assumption.

For the ⊗, /, \ connectives, we refer to [5] (Theorem 3.3.2, p 75), repeated here for conve-
nience.

Product X  A⊗B iff A⊗B ∈ X

(⇒) Suppose X  A ⊗ B, i.e. ∃Y,Z such that Y ⊗̂ Z ⊆ X, Y  A and Z  B. By IH, A ∈ Y
and B ∈ Z. Since A⊗B ` A⊗B, by (Def ⊗̂) we have A⊗B ∈ X as desired.

(⇐) Suppose A ⊗ B ∈ X. In Lemma 1 we have shown that this implies bAc ⊗̂ bBc ⊆ X,
i.e. Rc

⊗XbAcbBc by (Def Rc
⊗). Since A ∈ bAc, B ∈ bBc, by IH we have bAc  A, bBc  B. By

the truth condition for ⊗ this means X  A⊗B as desired.

Right division We do X  A\B iff A\B ∈ X. The / case is symmetric.

(⇒) Suppose X  A\B, i.e. ∀Y, Z if Rc
⊗ZY X and Y  A then Z  B. Putting Y := bAc and

Z := bAc ⊗̂X, since bAc ⊗̂X ⊆ bAc ⊗̂X we have Rc
⊗ZY X by (Def Rc

⊗), and since A ∈ bAc also
bAc  A by IH, hence bAc ⊗̂ X  B, and by IH B ∈ bAc ⊗̂ X. By (Def ⊗̂) this means ∃C,D
such that C ∈ bAc i.e. A ` C, D ∈ X and C ⊗ D ` B. By Transitivity, A ⊗ D ` B and by
Residuation, D ` A\B. Hence A\B ∈ X as desired.

(⇐) Suppose A\B ∈ X. We have to show that X  A\B, i.e. ∀Y, Z if Rc
⊗ZY X and Y  A then

Z  B. Suppose the antecedent holds, which means Y ⊗̂X ⊆ Z by (Def Rc
⊗) and A ∈ Y by IH.

Together with A\B ∈ X we have A⊗ (A\B) ∈ Z by (Def ⊗̂). Since A⊗ (A\B) ` B, also B ∈ Z.
By IH Z  B which means the consequent of the truth condition for \ holds, hence X  A\B
as desired.

This establishes the Truth Lemma, from which completeness immediately follows.

Theorem Completeness of LG∅. If |= A ` B, then A ` B is provable in LG∅.

proof Suppose A ` B is not provable. Then, by the Truth Lemma, Mc, A 6 B. Since
Mc, A  A, we have Mc 6|= A ` B, and hence 6|= A ` B.

Completeness of extensions with G↑ and/or G↓ In the minimal symmetric system, the R⊗
and R⊕ accessibility relations are distinct. For the extensions with Grishin interaction principles,
we have frame constraints relating the interpretation of R⊗ and R⊕. Consider first the group G↑.
We take (G1) as a representative: (A;B)⊗C ` A; (B⊗C). The other axioms in the group are
dealt with analogously. For (G1) we have the constraint in (13) (where R(−2)xyz = Rzyx).

∀xyzwv (R⊗xyz ∧ R
(−2)
⊕ ywv) ⇒ ∃t (R(−2)

⊕ xwt ∧ R⊗tvz) (13)
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In (†) we depict X  (A ; B) ⊗ C, with W 6 A, V  B and Z  C; in (‡) X  A ; (B ⊗ C).
Dotted lines represent Rc

⊕, solid lines Rc
⊗.

We have to show that in the Henkin model ∀X, Y, Z, V, W construed as in (†), there is a fresh
internal T connecting the root X to the leaves W,V,Z as in (‡). The solution T := V ⊗̂ Z gives
us Rc

⊗TV Z since V ⊗̂Z ⊆ V ⊗̂Z. To also show Rc
⊕TWX, i.e. W ;̂T ⊆ X, suppose A′ ∈ W ;̂T .

We need to show that A′ ∈ X. By (Def ;̂) A′ ∈ W ;̂ T means ∃A1, A2 such that A1 6∈ W ,
A2 ∈ T and A1 ; A2 ` A′. Since T := V ⊗̂Z, A2 ∈ T means ∃B1, B2 such that B1 ∈ V , B2 ∈ Z
and B1⊗B2 ` A2. Taking the configuration (†) together with A1 6∈ W and B1 ∈ V , we conclude
Y  A1 ; B1 which in (†) together with B2 ∈ Z implies that X  (A1 ; B1) ⊗ B2. By the
Truth Lemma, this means that (A1 ; B1)⊗B2 ∈ X and since X is a filter and (Gl1) an axiom,
A1 ; (B1 ⊗ B2) ∈ X. But since B1 ⊗ B2 ` A2 we conclude that A1 ; A2 ∈ X. Together with
A1 ; A2 ` A′, since X is a filter, we obtain A′ ∈ X as desired.

Consider next the group of interaction principles G↓, the converses of G↑. As a representative,
we take (Gl1)−1: (A ; B)⊗ C a A ; (B ⊗ C).

This time, we have to show that in the Henkin model ∀X, T, Z, V,W construed as in (‡), there
is a fresh internal Y connecting the root X to the leaves W,V,Z as in (†). Let Y := W ;̂ V .
Since W ;̂ V ⊆ W ;̂ V , Rc

⊕V WY holds. To show that also Rc
⊗XY Z, i.e. Y ⊗̂ Z ⊆ X, suppose

A′ ∈ Y ⊗̂ Z, and let us show that A′ ∈ X. By (Def ⊗̂), A′ ∈ Y ⊗̂ Z means ∃A2B1 such that
A2 ∈ Y , B1 ∈ Z and A2 ⊗ B1 ` A′. Since we had Y := W ;̂ V , A2 ∈ Y by (Def ;̂) means
∃A3C1 such that A3 6∈ W , C1 ∈ V and A3 ; C1 ` A2. Given that C1 ∈ V and B1 ∈ Z, in the
configuration (‡) we have T  C1 ⊗B1, and since A3 6∈ W , X  A3 ; (C1 ⊗B1). By the Truth
Lemma this means that A3 ; (C1⊗B1) ∈ X, and also (A3 ;C1)⊗B1 ∈ X, since X is a filter and
we have (Gl1)−1. Since A3 ; C1 ` A2, we can conclude A2 ⊗ B1 ∈ X, and since A2 ⊗ B1 ` A′,
also A′ ∈ X as desired.

3 Concluding remarks

We have established completeness for the minimal symmetric Lambek calculus LG∅ and for
its extension with interaction principles. The construction is neutral with respect to the choice
between G↑ and G↓: it accommodates G1–G4 and the converses G1−1–G4−1 in an entirely similar
way. In further research, we would like to consider more concrete models with a bias towards
either G1–G4 or the converse principles, and to relate these models to the distinction between
‘overt’ and ‘covert’ forms of displacement, as illustrated in the examples of scope construal (8)
and extraction (9).
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