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Natural Logic and Semantics

Introduction

What it’s all about

By natural logic I mainly mean the study of inference,
formulated in languages as close to natural language as possible,
and not via translation to standard logical systems.
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Introduction

Fitch 1972

1 John is a man Hyp

2 Any woman is a mystery to any man Hyp

3 Jane Jane is a woman Hyp

4 Any woman is a mystery to any man R, 2

5 Jane is a mystery to any man Any Elim, 4

6 John is a man R, 1

7 Jane is a mystery to John Any Elim, 6

8 Any woman is a mystery to John Any intro, 3, 7
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Introduction

Current interest

Fitch’s work lacked a syntax or semantics.
In particular, one could not ask traditional questions about it.

There are also a series of fairly recent papers from areas like
Artificial Intelligence
Natural Language Processing
Knowledge Representation
which do propose fragments and get soundness and decidability
results.
As far as I know,
the interesting mathematical question of completeness is always
left open.
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Introduction

Logic and language: a tough example of

syllogistic reasoning

Example

All xenophobics hate all Albanians
All yodelers hate all zookeepers
All non-yodelers hate all non-Albanians
All wardens are xenophobics

All wardens hate all zookeepers

Does the conclusion follow?
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Syntax

“Syntax”

We start with variables X, Y, . . ., representing plural common
nouns of English.
V is the set of variables in what follows.
We also start with verbs V.
We assume that there is a complementation operation ′ : V → V
on the variables such that X ′′ = X for all X.
We also also names J (John), M (Mary), . . ..
Sentences S of the following very restricted forms:

All X are Y
Some X are Y
All X V all Y

J is an X
J is M
All X V some Y
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Sematics

Model-Theoretic Semantics

A model M = (M, [[ ]]) consists of

a set M

a subset [[X ]] ⊆ M for each variable X

and an element [[J ]] ∈ M for each name J.

We then set [[X′ ]] = M \ [[X ]].
And we say

M |= All X are Y iff [[X ]] ⊆ [[Y ]]
M |= Some X are Y iff [[X ]] ∩ [[Y ]] 6= ∅
M |= J is an X iff [[J ]] ∈ [[X ]]
M |= J is M iff [[J ]] = [[M ]]
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Sematics

The Usual Semantic Definitions

If Γ is a finite or infinite set of sentences,

M |= Γ

M |= S for all S ∈ Γ.

Γ |= S

Every model M which makes all sentences in Γ true also makes S
true.
We say Γ semantically entails S .
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Proof System

Proof Trees

We are going build proof trees using various sets of rules.
The rules will be presented in a completely syntactic way.

Γ ` S

There is a proof tree for whose leaves are labeled with members of
Γ and whose root is labeled S .
We say Γ proves, or derives, S .

All the systems in this talk will be sound:

If Γ ` S, then Γ |= S.

We shall be interested in completeness results of the form:

If Γ |= S , then Γ ` S .

This would say that the system is strong enough to represent
everything about entailment we could possibly want.
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Proof System

Proof Rules: All

All X are X
All X are Z All Z are Y

All X are Y
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Proof System

Proof Rules: All

All X are X
All X are Z All Z are Y

All X are Y

Theorem

The logic above is complete.

This seems to be the simplest completeness theorem in logic.
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Completeness

Proof of completeness

Suppose that Γ |= All X are Y.
Let M be the set of variables.
Define A ≤ B to mean that Γ ` All A are B.
Check that this is reflexive and transitive, using the logic.
The semantics is via downsets:

[[A ]] = ↓A = {B : B ≤ A}

By transitivity, M |= Γ.
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Completeness

Proof of completeness

Suppose that Γ |= All X are Y.
Let M be the set of variables.
Define A ≤ B to mean that Γ ` All A are B.
Check that this is reflexive and transitive, using the logic.
The semantics is via downsets:

[[A ]] = ↓A = {B : B ≤ A}

By transitivity, M |= Γ.
In more detail, suppose Γ contains All C are D.
Then if W ≤ C , then also W ≤ D.
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Completeness

Proof of completeness

Suppose that Γ |= All X are Y.
Let M be the set of variables.
Define A ≤ B to mean that Γ ` All A are B.
Check that this is reflexive and transitive, using the logic.
The semantics is via downsets:

[[A ]] = ↓A = {B : B ≤ A}

By transitivity, M |= Γ.
So [[X ]] ⊆ [[Y ]].
But by reflexivity X ∈ [[X ]].
And so X ∈ [[X ]]; this means that X ≤ Y .
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Completeness

That’s “all”, folks!

All X are X
All X are Z All Z are Y

All X are Y
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Going further

Intersecting Adjectives

The sense in which an intersecting adjective determines a
property can be described as follows. If Dana is a female
student and if Dana is also an athlete, then Dana is a
female athlete.

Keenan and Faltz, 1985, p. 123

We’ll add a single intersecting adjective, red.
We’ll add it productively, so that red red car counts as a N.
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Going further

Intersecting Adjectives

For each intersecting adjective, say red, we select a set, say red,
and then

[[red X ]] = red ∩ [[X ]].
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Going further

Proof Rules: Intersecting Adjectives

All red X are X
All X are red Z All X are Y

All X are red Y

Note that we understand the letters above to be Ns, so to avoid
confusion it would be better say

All red N are N
All N are red P All N are M

All N are red M
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Going further

Proof Rules: Intersecting Adjectives

All red X are X
All X are red Z All X are Y

All X are red Y

Note that we understand the letters above to be Ns, so to avoid
confusion it would be better say

All red N are N
All N are red P All N are M

All N are red M
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Going further

A Deduction

All N are red P All N are M
All N are red M

Let’s make a substitution:

N 7→red X
M 7→red X
P 7→X

and so we get

All red X are red X All red X are red X
All red X are red red X

The premises of this being axioms, `All red X are red red X
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Going further

A Deduction

All N are red P All N are M
All N are red M

Let’s make a substitution:

N 7→red X
M 7→red X
P 7→X

and so we get

All red X are red X All red X are red X
All red X are red red X

The premises of this being axioms, `All red X are red red X
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Going further

Completeness

Fix a set Γ of sentences, and suppose that Γ |= S .
We must show that Γ ` S .
Construct a model M by

M = the variables
[[X ]] = ↓X

(= {Y : Γ ` All Y are X})
red =

⋃
X ↓ red X
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Going further

Completeness

Fix a set Γ of sentences, and suppose that Γ |= S .
We must show that Γ ` S .
Construct a model M by

M = the variables
[[X ]] = ↓X

(= {Y : Γ ` All Y are X})
red =

⋃
X ↓ red X
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Going further

Completeness, continued

Lemma

[[N ]] =↓N for all nouns N.

Proof.

It is sufficient to do this for nouns of the form red X.
If Γ ` All Y are red X, then easily Y ∈ [[red X ]].
If Y ∈ [[red X ]] = red ∩ [[X ]], then

1 There is some Z such that Γ ` All Y are red Z.

2 Γ ` All Y are X

So by our logic, Γ ` All Y are red X.
This completes the proof.
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Going further

Completeness, concluded

Lemma

[[N ]] =↓ N for all nouns N.

So at this point we have a model M, and this lemma.
The lemma easily implies that M |= Γ.
Completeness means:

If Γ |= All N are M, then Γ ` S .

This follows just as in the basic logic of All.
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Syllogistic Logic

Proof Rules All and Some

All X are X
All X are Z All Z are Y

All X are Y

Some X are Y
Some Y are X

Some X are Y
Some X are X

All Y are Z Some X are Y
Some X are Z
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Syllogistic Logic

Proper Names

J is J
J is M M is F

J is F
M is J
J is M

M is an X J is M
J is an X

All X are Y J is an X
J is a Y

J is an X J is a Y
Some X are Y
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Syllogistic Logic

A tougher example of syllogistic reasoning

Example

All xenophobics hate all Albanians
All yodelers hate all zookeepers
All non-yodelers hate all non-Albanians
All wardens are xenophobics

All wardens hate all zookeepers

Why does the conclusion follow?
Take a warden. He or she will be a xenophobic, and hence hate all
Albanians.
If also a yodeler, he or she will certainly hate all zookeepers; if not,
he or she will hate all non-Albanians and hence hate everyone
whatsoever, a fortiori all zookeepers.
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Syllogistic Logic

A tougher example of syllogistic reasoning

Example

All xenophobics hate all Albanians
All yodelers hate all zookeepers
All non-yodelers hate all non-Albanians
All wardens are xenophobics

All wardens hate all zookeepers

Why does the conclusion follow?
Take a warden. He or she will be a xenophobic, and hence hate all
Albanians.
If also a yodeler, he or she will certainly hate all zookeepers; if not,
he or she will hate all non-Albanians and hence hate everyone
whatsoever, a fortiori all zookeepers.



Natural Logic and Semantics

Syllogistic Logic

Syllogistic logic with complement

All X are X
Some X are Y
Some X are X

Some X are Y
Some Y are X

All X are Z All Z are Y
All X are Y

Barbara

All Y are Z Some X are Y
Some X are Z

Darii

All Y are Y ′

All Y are X
Zero

All Y ′ are Y
All X are Y

One

All X are Y ′

All Y are X ′ Antitone Some X are X ′

S
Ex falso quodlibet
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Syllogistic Logic

Why study this?

? Completeness results have an intrinsic value.

? This line of work may have a practical value also (cf.
Sukkarieh 2005).

? There are complexity reasons.

? For this talk, the interesting point is the investigation of
non-Boolean structure.
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Orthoposets

Orthoposets

Definition

An orthoposet is a tuple (P,≤, 0, ′) such that

poset ≤ is a reflexive, transitive, and antisymmetric
relation on the set P.

zero 0 ≤ p for all p ∈ P.

antitone If x ≤ y , then y ′ ≤ x ′.

involutive x ′′ = x .

inconsistency If x ≤ y and x ≤ y ′, then x = 0.

A Key Point

Orthoposets need not have a meet or join operation.
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Orthoposets

The Chinese lantern M2
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Here and elsewhere, we understand (x ′)′ = x , 0′ = 1, 1′ = 0.
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Orthoposets

Orthoposets

Example

For all sets X we have an orthoposet (P(X ),⊆, ∅, ′), where
a′ = X \ a for all subsets a of X .
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Orthoposets

Orthoposets from the logic

Let Γ be any set of sentences in the fragment.
Let V be the set of variables.
We already know the preorder ≤:

X ≤ Y iff Γ ` All X are Y.

We have an induced equivalence relation ≡, and we take VΓ to be
the quotient V/≡.
If there is some X such that X ≤ X′, then set 0 to be [X].
We finally define [X]′ = [X′].
If there is no X such that X ≤ X′, we add fresh elements 0 and 1
to V/≡.
It is not hard to check that we have an orthoposet VΓ.
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Orthoposets

Points of orthoposets

A point of a orthoposet P = (P,≤, 0, ′) is a subset S ⊆ P with the
following properties:

up-closed If p ∈ S and p ≤ q, then q ∈ S.

complete For all p, either p ∈ S or p′ ∈ S.

pairwise compatible For all p, q ∈ S, p 6≤ q′.
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Orthoposets

Points are sets

There are four points here •, •, •, and •:
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Orthoposets

Points need not be filters

Let X = {1, 2, 3}, and let P(X ) be the power set orthoposet.
Then S is a point, where

S = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

It is easy to check that the points on this P(X ) are exactly S as
above and the three principal ultrafilters.
S shows that a point of a boolean algebra need not be a filter.
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Orthoposets

The Extension Lemma for pairwise

consistent sets

Lemma

Let S ⊆ P be pairwise consistent: (∀p, q ∈ S)p 6≤ q′.
Then for all x ∈ P, either S ∪ {x} or S ∪ {x ′} is again pairwise
consistent.

Proof.

Suppose not. Then x and x ′ figure in to problems both times.
There is some p ∈ S such that p ≤ x ′.
There is some q ∈ S such that q ≤ x ′′ = x .
And now: q ≤ x ≤ p′. Ooops!

Lemma

If x 6≤ y, then {x , y ′} is pairwise consistent.
Thus there is a point S containing x but not y .
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Orthoposets

The Extension Lemma for pairwise

consistent sets

Lemma

Let S ⊆ P be pairwise consistent: (∀p, q ∈ S)p 6≤ q′.
Then for all x ∈ P, either S ∪ {x} or S ∪ {x ′} is again pairwise
consistent.

Lemma

If x 6≤ y, then {x , y ′} is pairwise consistent.
Thus there is a point S containing x but not y .
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Orthoposets

Representation Theorem

Let P = (P,≤, ′) be an orthoposet.
Let points(P) be the set of points of P.
We already know how to endow this with an orthoposet structure.
Let m : P → P(points(P)) be given by

m(p) = {S : p ∈ S}.

Theorem

m is a strict morphism of orthoposets:
it preserves 0, ′, and ≤ in a strict way: p ≤ q iff m(p) ⊆ m(q).

Corollary

Every orthoposet is isomorphic to a sub-orthoposet of a power set
orthoposet.
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Orthoposets
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Orthoposets

How the representation works
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Orthoposets

Sources the Representation Theorem

N. Zierler and M. Schlessinger

Boolean embeddings of orthomodular sets and quantum logic.
Duke Mathematical Journal 32 (1965), 251–262.

F. Katrnoška

On the representation of orthocomplemented posets.
Comment. Math. Univ. Carolinae 23 (1982), 489–498.

C. S. Calude, P. H. Hertling, K. Svozil

Embedding quantum universes into classical ones.
Foundations of Physics, 29, 3 (1999), 349-379.
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Completeness of syllogistic logic with complement

A system which we have seen

All X are X
Some X are Y
Some X are X

Some X are Y
Some Y are X

All X are Z All Z are Y
All X are Y

Barbara

All Y are Z Some X are Y
Some X are Z

Darii

All Y are Y ′

All Y are X
Zero

All Y ′ are Y
All X are Y

One

All X are Y ′

All Y are X ′ Antitone Some X are X ′

S
Ex falso quodlibet
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Completeness of syllogistic logic with complement

The canonical model

Lemma

Let Γ be consistent in `. There is a canonical model
M = (M, [[ ]]) such that

1 M |= Γ.

2 If M |= All X are Y, then Γ ` All X are Y.

Proof.

Let VΓ be the syntactic orthoposet for Γ. Let M = points(VΓ).
The interpretation [[ ]] : V → P(M) is given by

V n // VΓ
m // P(points(VΓ)) = P(M)

Key point If Γ contains Some U are V, need a point including
{[U], [V]}.
If none exists, then wlog U ≤ V ′. But then Γ is inconsistent.
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Completeness of syllogistic logic with complement

If Γ is consistent and Γ |= Some X are Y, then

Γ ` Some X are Y
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Completeness of syllogistic logic with complement

If Γ is consistent and Γ |= Some X are Y, then

Γ ` Some X are Y

Lemma (Ian Pratt-Hartmann 2007)

There is some existential sentence in Γ, say Some A are B, such
that

Γall ∪ {Some A are B} |= Some X are Y .

Proof.

If not, then for every T ∈ Γsome , there is a model
MT |= Γall ∪ {T} and MT |= All X are Y ′. Take the disjoint
union of the models MT to get a model of Γall ∪ Γsome = Γ where
S fails.
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Completeness of syllogistic logic with complement

If Γ is consistent and Γ |= Some X are Y, then

Γ ` Some X are Y

Fix A and B as in the now-proven claim.
Consider the model M = M(VΓall

) of points on VΓall
. M |= Γall .

Consider {[A], [B], [X ′]}. If this set were a subset of a point x ,
then consider {x} as a one-point submodel of M. In the
submodel, Γall ∪ {Some A are B} would hold, and yet Some X are
Y would fail since [[X ]] = ∅.
We use a lemma to divide into cases:

1 A ≤ A′.

2 A ≤ B ′.

3 A ≤ X .

4 B ≤ B ′.

5 B ≤ X .

6 X ′ ≤ X .
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Completeness of syllogistic logic with complement

If Γ is consistent and Γ |= Some X are Y, then

Γ ` Some X are Y

Next, consider {A,B,Y ′}. The same analysis gives two other
cases: A ≤ Y and B ≤ Y .
Putting these together with the other two gives four pairs.
The case when A ≤ X and B ≤ Y is representative:

All B are Y

All A are X Some B are A
Some B are X
Some X are B

Some X are Y

The other cases are similar. This completes the proof.
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Completeness of syllogistic logic with complement

Boolean connectives are (more than) ok

1 All substitution instances of propositional tautologies.

2 All X are X

3 (All X are Z) ∧ (All Z are Y) → All X are Y

4 (All Y are Z) ∧ (Some X are Y) → Some Z are X

5 Some X are Y → Some X are X

6 ¬(Some X are X) → All X are Y

7 Some X are Y ′ ↔ ¬(All X are Y)

See  Lukasiewicz (1951) and Westerst̊ahl (1989) for related
completeness results.
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Completeness of All, verbs and complement

Verbs again, using see for the verb

All X see all Y All X ′ see all Y
All Z see all Y

LEM

All X see all Y All X see all Y ′

All X see all Z LEM′

All X see all A All Y see all Z All Y′ see all A′

All X see all Z
3pr

A Fitch-style system is more elegant.
But this system seems to be easier to analyze.
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Completeness of All, verbs and complement

1 All xenophobics hate all Albanians Hyp

2 All yodelers hate all zookeepers Hyp

3 All non-yodelers hate all non-Albanians Hyp

4 All wardens are xenophobics Hyp

5 Jane Jane is a warden Hyp

6 All wardens are xenophobics R, 4

7 Jane is a xenophobic All Eliim, 6

8 All xenophobics hate all Albanians R, 2

9 Jane hates all Albanians All Elim, 8

10 Jane is a yodeler Hyp

11 Jane hates all zookeepers Easy from 2

12 Jane is not a yodeler Hyp

13 Jane hates all zookeepers See below

14 Jane hates all zookeepers Cases 10-11, 12-13

15 All wardens hate all zookeepers All Intro
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Completeness of All, verbs and complement

1 Jane is not a yodeler Hyp

2 Jane hates all Albanians R, above

3 All non-yodelers hate all non-Albanians R, above

4 Jane hates all non-Albanians All Elim, 1, 3

5 Bob Bob is a zookeeper Hyp

6 Bob is Albanian Hyp

7 Jane hates Bob All Elim, 2

8 Bob is not Albanian Hyp

9 Jane hates Bob All Elim, 4

10 Jane hates Bob Cases

11 Jane hates all zookeepers All Intro
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Completeness of All, verbs and complement

The Canonical Model, again

Let M be the set of all points.
Let [[X ]] = {S ∈ M : X ∈ S}, and let

[[see ]] = {(S, T ) : (∃A ∈ S)(∃B ∈ T ) Γ ` All A see all B}.
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Completeness of All, verbs and complement

The Canonical Model, again

Let M be the set of all points.
Let [[X ]] = {S ∈ M : X ∈ S}, and let

[[see ]] = {(S, T ) : (∃A ∈ S)(∃B ∈ T ) Γ ` All A see all B}.

Lemma

Fix Γ, and also fix X and Y such that

Γ 6` All X see all Y .

Then there are points S∗ and T ∗ such that X ∈ S∗, Y ∈ T ∗, and
for all A ∈ S∗ and B ∈ T ∗, Γ 6` All A see all B.

This completes the proof!
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Conclusions

Summary

The completeness results in this talk

All
All + an intersective adjective
All + Some + noun-level complements
All + verbs + noun-level complements
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Conclusions

Natural logic and semantics: some

programs

– there’s still more to do on the extensional fragments
– intensionality would be a very natural next step
– there are several ways in which one would want to align this work
with psychological studies of inference
– we have a model-theoretic syntax, why not a proof-theoretic
semantics?
– it’s clear that inference/entailment is not really the right notion,
so we should propose other ones, perhaps using defaults,
probability, revision, etc.
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