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1 Introduction

(1) In this talk it is argued that nonlocal MCTAG is not a suitable candidate for the
representation of natural language syntax, since (unless P=NP) it is not a
polynomially parsable grammar class even if we only consider linguistically relevant
subclasses.

(2) For this purpose, we take the following result from Rambow and Satta (1992);
Rambow (1994):

Theorem 1. There exist languages generated by nonlocal MCTAGs for which the
membership problem is NP-hard.

and show that a simple argument extends it to the following cases:

(i.) Restriction to languages generated by lexicalized languages

(ii.) Restriction to languages generated by grammars with dominance links

(3) These cases are linguistically more relevant than arbitrary MCTAGs because:

• It is generally accepted that only the lexicalized variants of TAGs are suitable
candidates for encoding natural language.

• It is an open question whether lexicalization restricts the weak generative power
of nonlocal MCTAG, therefore Theorem 1 does not trivially extend to
lexicalized cases.

• The restrictions on nonlocal MCTAG (i.) and (ii.) above specifically have been
proposed by Becker et al. (1991) for long-distance scrambling.

– In German (and in many other SOV languages: Korean, Hindi, Japanese...)
a constituent of an embedded clause may be moved from that clause into a
higher clause.

– More than one constituent may undergo movement into higher clauses. In
this case, the scrambled constituents need not retain their original relative
order to each other after scrambling.
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2 Concepts: A Reminder

(4) A Tree adjoining Grammar (TAG) is a kind of tree-rewriting system. The
operations, substitution and adjunction, are schematically shown in Figures 1 and 2.

Figure 1: Substitution.

Figure 2: Adjoining.

(5) In a multi-component TAG (MCTAG) (Joshi, 1985; Weir, 1988), instead of auxiliary
trees being single trees we have auxiliary sequences, where a sequence consists of one
or more (but still a fixed number of) auxiliary trees. Adjunction is defined as the
simultaneous adjunction of all trees in a sequence to different nodes.

• In a tree-local MCTAG, all trees from one sequence S must be simultaneously
adjoined into the same elementary tree T .

• In a set-local MCTAG, all trees from one sequence S must be simultaneously
adjoined into trees that all belong to the same sequence S2.

• If this requirement is dropped altogether, we obtain non-local MCTAG.

(6) An MCTAG is lexicalized iff each elementary tree contains at least one terminal.

(7) In an MCTAG with dominance links each auxiliary sequence contains two trees. In
the final derived tree, the foot node of one of the trees of each sequence has to
dominate the root node of the other tree of the sequence. We may impose additional
constraints between the two nodes such as c-command.
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0 Unrestricted
1 Context-sensitive

1.2? Non-local MCTAG, general case
1.25 Lexicalized non-local MCTAG

1.5 Set-local MCTAG, LCFRS, etc. (mildly context-sensitive)
1.75 TAG proper, tree-local MCTAG (only weakly equivalent)

2 Context free
3 Fnite state
4 Non-counting
5 Fnite

Figure 3: The Chomsky hierarchy (extended, following Kornai).

2.1 Outline of the talk

• Sketch of the original proof by Dahlhaus and Warmuth (1986); Rambow and Satta
(1992).

• Restriction to dominance links.

• Restriction to lexicalization.

• Discussion of the linguistic implications: What is the status of German scrambling?

3 NP-hardness of membership for nonlocal MCTAG

(8) Reduction from 3-Partition:
Instance. A set of 3k natural numbers ni, and a bound B.
Question. Can the numbers be partitioned into k subsets of cardinality 3, each of
which sums to B?

(9) An instance of 3-Partition can be described as the sequence 〈n1, . . . , n3k, B〉, or
equivalently as the string xan1xan2 . . . xan3k(ybB)k where a, b, x, y are arbitrary
symbols.

(10) The MCTAG G1 (see figure 4) has the property that 〈n1, . . . , n3k, B〉 is an instance of
3-Partition if and only if the string xan1xan2 . . . xan3k(ybB)k is accepted by G1.
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(11) All derivations allowed by G1 follow the same general pattern:

step 1 Initialize the derivation by αstart.

step 2 Create k triples by using βcreate−triple as many times as needed.

step 3 Pick the X and some Y (resp. Ŷ ) and use βconsume−y (resp. βconsume−ŷ) to generate
xa on the left and yb (resp. b) on the right. This introduces X on the left and Y on
the right.

step 4 Optionally use βfill−triple to add an equal number of a’s and b’s to the left and right.

step 5 Finally replace X by a and Y by b. Either βclose−triple or βend can be used for this.
The only difference consists in whether another X is introduced. But there is no real
choice here: If there are any Y ’s or Ŷ ’s left on the right, they need to be consumed by
introducing an X on the left and then going through step 3 through step 5 again
with that X. If not, no X can be introduced or the derivation would get stuck.

(12) The MCTAG G1 in “multicomponent CFG” (USCG) format:

start S → XY Ŷ Ŷ

create-triple Y → Y Ŷ Ŷ Y

consume-y X → xaX, Y → ybY

consume-ŷ X → xaX, Ŷ → bY

fill-triple X → aX, Y → bY

close-triple X → aX, Y → b

end X → a, Y → b

(13) Sample derivation of the 3-partition instance: 〈4, 1, 3, 2, 5, 3;B = 9〉

init S

step 1 start X Y Ŷ Ŷ

step 2 create-triple X Y Ŷ Ŷ Y Ŷ Ŷ

step 3 consume-y xaX Y Ŷ Ŷ ybXŶ Ŷ

step 4 fill-triple xaaX Y Ŷ Ŷ ybbY Ŷ Ŷ

step 4 fill-triple xaaaX Y Ŷ Ŷ ybbbY Ŷ Ŷ

step 5 close-triple xaaaaX Y Ŷ Ŷ ybbbbŶ Ŷ

step 3 consume-ŷ xaaaa xaX Y bY Ŷ ybbbbŶ Ŷ

step 5 close-triple xaaaa xaX Y bŶ ybbbbŶ Ŷ

step 3 consume-ŷ xaaaa xa xaX Y bŶ ybbbbŶ bY

step 4 fill-triple xaaaa xa xaaX Y bŶ ybbbbŶ bbY

step 5 close-triple xaaaa xa xaaaX Y bŶ ybbbbŶ bbb

step 3 consume-ŷ xaaaa xa xaaa xaX Y bŶ ybbbbbY bbb

step 5 close-triple xaaaa xa xaaa xaaX Y bŶ ybbbbbbbbb

step 3 consume-y xaaaa xa xaaa xaa xaX ybY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaX ybbY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaX ybbbY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaaX ybbbbY bŶ ybbbbbbbbb

step 5 close-triple xaaaa xa xaaa xaa xaaaaaX ybbbbbbŶ ybbbbbbbbb

step 3 consume-ŷ xaaaa xa xaaa xaa xaaaaa xaX ybbbbbbbY ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaaa xaaX ybbbbbbbbY ybbbbbbbbb

step 5 end xaaaa xa xaaa xaa xaaaaa xaaa ybbbbbbbbb ybbbbbbbbb
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4 Restriction to dominance links

Theorem 2. There exist languages generated by nonlocal MCTAGs with dominance links
for which the membership problem is NP-hard.

Proof. We simply add vacuous dominance links to all the tree sequences in G1 in the
manner shown in G2 (Figure 5). None of these dominance links will ever rule out a
derivation because they only require that some X-like symbol (i.e. X, X) dominate some
Y-like symbol (i.e. Y, Y , Ŷ ). But in fact even without the dominance links it can never be
the case that a Y-like symbol dominates an X-like symbol. In every tree set in G1, the tree
with the X-like foot node contains only X-like non-terminals and the tree with the Y-like
root node contains only Y-like non-terminals. By straightforward induction, every tree
derived by G1 can be shown to have the property that all X-like symbols dominate all
Y-like symbols. Therefore the links in G2 are vacuous and the languages generated by G1

and G2 are identical.

5 Restriction to lexicalization

Theorem 3. There exist languages generated by nonlocal lexicalized MCTAGs (with or
without dominance links) for which the membership problem is NP-hard.

Proof. The grammar G1 (or G2) can also be modified to get a lexicalized grammar G3 that
accepts a slightly different language than G1 and G2 do (with an obvious polynomial-time
mapping between the two). The resulting grammar G3 is shown in Figure 6.

6 NP-completeness

Theorem 4. Any lexicalized nonlocal MCTAG is at most NP-complete.

Proof. In a lexicalized grammar, every derivation step introduces terminals to the
derivation. So it always takes at most |w| steps to derive w.

7 Implications

(14) Unless P=NP, MCTAG with dominance links cannot be parsed in polynomial time
and is therefore outside LCFRS.

(15) The conjecture by Rambow (1994) that dominance links do not decrease the weak
generative power of MCTAG is confirmed.

(16) The proposal by Becker et al. (1991) to model German scrambling by nonlocal
MCTAG with dominance links is undermined.

(17) On the other side, it should be noted that there exist alternative views on the
complexity of scrambling.
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(18) Becker et al. (1991) assumed that any number n of verbal arguments can be
scrambled at once and that all scrambling orders are possible.

(19) Recent results (Chen-Main and Joshi, 2007) about tree-local MCTAG indicate the
following:

(a) for certain classes of scramblings (permutations) all patterns are possible for all
n (number of arguments)

(b) for all other classes of scramblings (permutations) not all derivations are
possible for n > 3.

(20) These combinatorial properties of tree-local MCTAG are relevant because judgments
about scramblings beyond 4 arguments (some even at the level of 4 arguments) are
impossible in general, although some special cases (such as no permutation or an
end-around permutation, for example) are much easier to judge positively for all n.

(21) Thus, it may be that the only data that would discriminate between a
polynomial-time and an NP-complete grammar class is unavailable for judgments,
presumably due to processing costs.

8 Appendix
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G2 = (NT,Σ, S, I,A) where

NT = {X,X, Y, Y , Ŷ }

Σ = {a, b, x, y}

I = {αstart}

A = {βcreate−triple, βconsume−y, βconsume−ŷ, βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

ǫ

S → XY Ŷ Ŷ βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

Y → Y Ŷ Ŷ Y

βconsume−y =



















βconsume−y.1 XNA

xa X
OA

X∗

βconsume−y.2 Y NA

yb Y
OA

Y ∗



















X → xaX, Y → ybY

βconsume−ŷ =



















βconsume−ŷ.1 XNA

xa X
OA

X∗

βconsume−ŷ.2 Ŷ NA

b Y
OA

Ŷ ∗



















X → xaX, Ŷ → bY

βfill−triple =























βfill−triple.1 X
NA

a X
OA

X
∗

βfill−triple.2 Y
NA

b Y
OA

Y
∗























X → aX, Y → bY

βclose−triple =



















βclose−triple.1 X
NA

a XOA

X
∗

βclose−triple.2 Y
NA

b Y
∗



















X → aX, Y → b

βend =







βend.1 X
NA

a
X

∗

βend.2 Y
NA

b Y
∗







X → a, Y → b

Figure 4: The MCTAG G1 with its corresponding CFG rules.
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G2 = (NT,Σ, S, I,A) where

NT = {X,X, Y, Y , Ŷ }

Σ = {a, b, x, y}

I = {αstart}

A = {βcreate−triple, βconsume−y, βconsume−ŷ, βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

ǫ

βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

βconsume−y =



















βconsume−y.1 XNA

xa X
OA

X∗

βconsume−y.2 Y NA

yb Y
OA

Y ∗



















βconsume−ŷ =



















βconsume−ŷ.1 XNA

xa X
OA

X∗

βconsume−ŷ.2 Ŷ NA

b Y
OA

Ŷ ∗



















βfill−triple =























βfill−triple.1 X
NA

a X
OA

X
∗

βfill−triple.2 Y
NA

b Y
OA

Y
∗























βclose−triple =



















βclose−triple.1 X
NA

a XOA

X
∗

βclose−triple.2 Y
NA

b Y
∗



















βend =







βend.1 X
NA

a
X

∗

βend.2 Y
NA

b Y
∗







Figure 5: The MCTAG with dominance links G2. (Identical to G1 except for the dominance links.)
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G3 = (NT,Σ, S, I,A) where

NT = {X,X, Y, Y , Ŷ }

Σ = {a, b, x, y,#}

I = {αstart}

A = {βcreate−triple, βconsume−y, βconsume−ŷ, βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

#

βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

#

βconsume−y =



















βconsume−y.1 XNA

xa X
OA

X∗

βconsume−y.2 Y NA

yb Y
OA

Y ∗



















βconsume−ŷ =



















βconsume−ŷ.1 XNA

xa X
OA

X∗

βconsume−ŷ.2 Ŷ NA

b Y
OA

Ŷ ∗



















βfill−triple =























βfill−triple.1 X
NA

a X
OA

X
∗

βfill−triple.2 Y
NA

b Y
OA

Y
∗























βclose−triple =



















βclose−triple.1 X
NA

a XOA

X
∗

βclose−triple.2 Y
NA

b Y
∗



















βend =







βend.1 X
NA

a
X

∗

βend.2 Y
NA

b Y
∗







Figure 6: The lexicalized MCTAG G3. (Identical to G1 except that new terminals have been added
to αstart and to βcreate−triple.) 9
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