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Introduction

Modal logic is part of second-order logic. It can be identified with fragments
of monadic second-order logic using special axioms or formulas. The use of
modal logic rather than classical predicate logic (1st or higher order) has to be
defended. Apart from the motivations of modal logics and their suitedness to
intuitive thinking – something which puts modal logic indeed on a par with pred-
icate logic – the main motive for applying modal logics is actually the belief of
almost guaranteed decidability. But general results on decidability have failed
to appear except for the field of extensions of K4. For logics containing K4
Kit Fine and M. Zakharyaschev have broken ground towards general decidabil-
ity results via establishing fmp. For applications, usually more than one op-
erator is needed, so their results are of limited value there. Results for poly-
modal logics have hitherto not been obtained. This is on the one hand connected
with the fact that even for modal logics with one operator we lack sufficiently
general results (with the exception of K4) but is also connected to the fact that
several operators offer easier alleys to incompleteness and undecidability. [13;
14] has identified the reason for this twofold connection. He first finds undecid-
able polymodal logics by using known undecidable structures and then simulating
them in the language of mono-modal logic. But his examples are quite complex
and so one might still hope that some simple and yet useful class of polymodal
logics is decidable. The author admits to have had such hopes with regards to the
family of logics determined by universal sentences.

We will see that such hopes are unjustified. Polymodal logics are not just
alleys, they are highways into undecidability. There are plenty of quite simple
undecidable logics and all candidates of a natural, non-trivial class of decidable
logics have been successively destroyed by negative examples.

This paper is organized as follows. In the first section we discuss Sahlqvist’s
Theorem and propose a special quantifier complexity hierarchy for these logics
which we call the Sahlqvist Hierarchy. Then follows a section in which we in-
troduce a number of undecidable Sahlqvist logics of low complexity. In the third
section we discuss the simulation of polymodal logics in monomodal logics and
apply this technique to the previously established logics. It follows that there are
monomodal undecidable Sahlqvist logics of complexity 2, corresponding roughly
to first-order formulae of type ∀∃. In the last section we discuss several ramifica-
tions of this theme.

2



This work continues the work of Thomason and uses techniques of [5] as well
as [7] on pushing up properties. It also draws on an array of results the author has
obtained together with Carsten Grefe, which are reported in [4]. Only after comps-
ing this essay I have learnt that V. Shehtman has already used Thue-processes to
obtain undecidability results; his results, however, have been published only in
Russian. I wish to thank Herr Grefe as well as Frank Wolter, Rajeev Goré and
Valentin Shehtman for many discussions.
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1 The Sahlqvist Hierarchy

Recall from [9] the following theorem.

Theorem 1 (Sahlqvist) Let T be a modal formula which is equivalent to a con-
junction of formulae of the form �m(T1 → T2) where m ∈ ω, T2 is positive and T1

is obtained from propositional variables and constants in such a way that no posi-
tive occurrence of a variable is in a subformula of the form U1∨U2 or ♦U1 which
is itself in the scope of some �. Then T is effectively equivalent to a first-order
formula and K(T ) is d-persistent.

Throughout this essay all logics considered will be Sahlqvist logics. These log-
ics have the advantage to be complete with respect to Kripke semantics. The
conditions the axioms impose on the Kripke frames are elementary. In [6], the
elementary conditions corresponding to Sahlqvist formulae have been character-
ized. It has recently become popular to look at algorithms computing first-order
equivalents. It should be emphasized that contrary to what is stated in the litera-
ture the method has always been constructive. The word effective expresses this.
Any doubts about the effectiveness of this translation should have been removed
by the algorithm in [5], reproduced in [6], in which pairs 〈α(w), P〉 are considered
where α(w) is a first-order formula with n free variables and P an n-sequence of
modal formulae. Relative to a class X this pair denotes the fact that α(w) is equiv-
alent to the second-order formula (∃p)

∧
i≤n Pi(wi). For different classes different

rule calculi are developed which derive pairs which are valid in X under this inter-
pretation. The calculus for the union of the class of Kripke-frames with the class
of descriptive frames allows to prove Sahlqvist’s Theorem and also derive in tan-
dem the corresponding first-order properties. (For details consult [6].) Sahlqvist’s
Theorem can be generalized straightforwardly to logics with several operators, a
fact which is perhaps not so well-known. We will state the theorem in it’s general
form below.

For ease of understanding the workings of the Sahlqvist theorem we begin with
the classification of the corresponding first-order conditions. Given that we are in
the language of m-modal logics we have m modal operators �i (i ≤ m) and their
duals ♦i and on the Kripke frames m different binary accessibility relations Ci. The
standard first-order language for talking about Kripke frames uses these symbols,
the usual connectives and first-order quantifiers over worlds plus equality. Rather
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than using the standard quantifiers we use their restricted counterparts. They are
defined as follows

(∀y Bi x)φ := (∀y)(x Ci y.→ .φ) (∃y Bi x)φ := (∃y)(x Ci y ∧ φ)

From atomic formulae x = y, x Ci y we can never actually produce variable free
formulae with these quantifiers. There will necessarily be at least one free vari-
able. We are interested in formulae where there is exactly one, which we treat
as implicitly universally quantified (by an unrestricted quantifier, of course). The
first-order language with restricted quantifiers will here be referred to as R. We
assume also that R has the symbols t and f, standing for the true and the false
proposition.

Particular formulas in R are the constant formulae. A formula is called con-
stant if it is composed from the constant atomic formulae t and f. In contrast
to standard predicate logic constant formulae are non-trivial. The following are
constant formulae which are non-reducible.

(∃y B1 x) t, (∀y B1 x)(∃z B2 y) t

Constant formulae correspond to constant propositions in modal logic, in our ex-
amples ♦1> and �1♦2>. In R there exists no equivalent of prenex normal forms.
In an R-formula φ a variable is inherently universal if it is bound by a universal
quantifier which itself is not in the scope of an existential quantifier. A formula is
positive if it is composed from atomic formulae and constant formulae using only
∧, ∨ and the quantifiers. Notice that the occurring constant subformulae need not
be positive. The following is proved in [6].

Theorem 2 An R-formula is Sahlqvist iff it is equivalent to an R-formula which
is positive and in which every non-constant atomic subformula contains at least
one inherently universal variable.

We introduce a notion of a Sahlqvist Hierarchy that is supposed to classify the
complexity of a logic in terms of the quantifier alternations that occur. Sq0 is re-
served for the constant formulae. In a formula of type Sqn, n > 0, at most n − 1
alternations of quantifier type (∀, ∃) occur, with quantifiers in constant subformu-
lae being ignored. This deviates from the standard definition in the fact that we
ignore the complexity of constant subformulae. Of course, one can introduce a
standard quantifier complexity measure. However, we will propose the following
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notation. The symbol Sqn(+k) means that the formula is Sqk+n if all quantifier al-
ternations are counted, but merely Sqn if the quantifiers of constant subformulae
are ignored. For example

(∀y B1 x)[(∃z B2 y) t ∨ y C1 x]

is Sq1(+1). For the rest of this paper, we will not use this finer distinction except
for formulas of level Sqn(+0) which we also call strictly Sqn.

The following is a different formulation of Sahlqvist’s Theorem for languages
with several operators. Call a formula strongly positive if is composed from con-
stant formulae and variables with only ∧ and constant restricted boxes �i(C →,
i ≤ m. (Technically, this allows a more general notion of strong positivity which
conforms with the intended property that they commute with intersections in the
valuations (see [11]). While variables may be connected with each other only by
use of conjunction, they may be weakened by constant formulae before a box is
prefixed. So, �1(♦2>. ∨ .p ∧ �2q) is strongly positive in this new definition.)

Theorem 3 An R-formula which is Sahlqvist corresponds to modal axioms of the
form A → B where A is composed from constant formulae and strongly positive
formulae using ∧,∨, ♦ j ( j ≤ m), while B is composed from constant formulae and
variables using ∧,∨, ♦ j,� j ( j ≤ m).

It is possible to read off the position of a modal Sahlqvist formula in the hierar-
chy. Roughly, a ♦i works as a restricted existential if in the consequent, and as
a restricted universal if in the antecedent. Likewise, a �i in the consequent is a
restricted universal, but an existential in the antecedent. But these are only rules
of thumb; some modal operators will not show up as quantifiers. The following is
an example.

Alt1 ♦p ∧ ♦q.→ .♦(p ∧ q) (∀w B v)(∀x B v)(x = w)

The operator in the consequent does not introduce an existential quantifier.

All logics considered in the sequel will be of complexity Sq2, most will be of
complexity Sq1, so universal first-order modulo ignoring the constant subformu-
lae. Within Sq1 we can discern some narrower classes which are of interest in their
own right. First, the subframe logics of [2] and [15]. Elementary subframe logics
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are strictly Sq1; this means that they are Sq1 even with constant subformulae be-
ing counted. Another class are the deterministic logics; they are expressible in R
without the help of disjunction – except for the constant subformulae, which may
contain disjunctions. The intersection of the two classes, the deterministic sub-
frame logics, are exactly those logics which can be axiomatized by Horn-formulae
in the standard first-order logic. In R they are of the form A.φ, where A is a prefix
of universal quantifiers and φ a single, positive atomic formula – that is, a formula
of th ekind x = y or x C j y, j ≤ m. We call the class of logics axiomatizable by
Horn-formulae Horn-logics. We have the following inclusion diagram.

Sq0Horn

Suf Det

Sq1

���
�����

�
�

�
�

@
@

@
@

Denote by Sqn the logics axiomatizable by a set of Sahlqvist axioms of level
Sqn and by Sq f

n the finitely axiomatizable logics in Sqn.

Theorem 4 The logics Sqn form a sublattice of the latticeNm of m-modal logics,
closed in Sqn under finite intersections and infinite joins. The logics Sq f

n form a
subsemilattice.

Proof. To keep notation simple we show this for the monomodal case. Closure
under infinite joins is trivial. The only thing than remains to be proved is the
closure under meet. To this end take ∀x.α(x),∀x.β(x) ∈ Sqn. We want to show
that ∀x.α(x) ∨ ∀x.β(x) ∈ Sqn. Define formulae γk, k ∈ ω by

γk = (∀x)([
∧
j≤k

(∀y B j x)α(y)] ∨ [
∧
j≤k

(∀y B j x)β(y)])

where x C j y iff there exists a path of length j from x to y. Observe now that

∀x.α(x) ∨ ∀x.β(x) ≡
∧

k

γk

7



This equivalence is correct.For if a frame satisfies (∀x)α(x)∨ (∀x)β(x) then it also
satisfies one of the two, say (∀x)α(x). Thus it satisfies (∀x)(∀y B j x)α(y) for all j
and consequently γk for all k. For the converse assume F satisfies all γk. Take a
world w ∈ F. Then for an infinite number of k ∈ ω we have either

F |=
∧
j≤k

(∀y B j x)α(y)[w]

or
F |=
∧
j≤k

(∀y B j x)β(y)[w]

Let the first be the case. Denote by G be the subframe generated by w in F. Then
G |= (∀x)α(x). Consequently,

G |= (∀x)α(x) ∨ (∀x)β(x)

This holds for all generated subframes, and so it holds forF as well, since α(x), β(x)
are restricted. Secondly, γk ∈ Sqn. Two cases need to be distinguished. First case
is n = 0. Then γk is constant and so in Sq0 as well. Second case n > 0. Then since
the formula begins with a universal quantifier and (∀yB j x) is a chain of universal
quantifiers, the complexity does not rise. a

2 Some Simple Undecidable Logics

In the domain of polymodal logics there are already some known undecidable
logics. One example is the logic with three operators each of which satisfies
S5 and which commute pairwise. This logic arises from modelling 3-variable
fragments of predicate logic with modal operators. The axioms are Sq2. Here we
use an extremely simple tool, that of a Thue-process. The algebraic equivalent
of this process is known as the word problem in semigroups. Consider a finite
presentation of a semigroup via a set G = {g1, . . . , gm} of generators and a set
T = {ti ≈ ui|i ∈ n} of relations among these generators. The generators plus
equations form a finite presentation of the semigroup FS G(G)/T. We write T `bsg

r ≈ s to denote the fact that r ≈ s is derivable in T in the Birkhoff-calculus for
semigroups. Recall that Birkhoff’s calculus `b for equational logic consists of the
axiom (ref) `b r ≈ r, the rules (sym) r ≈ s `b s ≈ r, (trs) r ≈ s, s ≈ t `b r ≈ t,
the substitution rule (sub) s(x) ≈ t(x) `b s(u) ≈ t(u) and the rule of replacement
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(rep) u ≈ v `b t(u) ≈ t(v). The calculus `bsg for semigroups has the additional
axiom (ass) `b x(yz) ≈ (xy)z. Equivalently, T `bsg r ≈ s denotes the fact that for
the canonical homomorphism h : FS G(G)→ FS G(G)/T we have h(r) = h(s). The
following are folklore results.

• There are T over two symbols such that ‘T `bsg r ≈ s’ is undecidable.

• It is undecidable whether or not ‘T `bsg r ≈ s’ is decidable for given T over
two symbols.

Based on the free semigroup we can form the canonical Thue-frame. Its underly-
ing set of worlds is exactly the elements of FS G(G)/T – which can also be seen
as equivalence classes of terms under ≈ – and the relations are t Ci u iff u ≈ t · gi.
This construction is actually quite known in automatic theorem proving for modal
logic. We abbreviate this frame by F(T). We can determine the logic of this frame.
To do this let us introduce some notation. A term t in the language of semigroups
based on g1, . . . , gm can be seen as a complex modal operator based on m simple
modalities, ♦1, . . . , ♦m. Define

g�i P = ♦iP, (t · gi)�P = t�♦iP

For the empty word ε we agree to let ε�P = P. Analogously, t is defined. We
have t P. ↔ .¬t�¬P. Now the postulates for the logic simulating a Thue-process
will be the following.

Alt1 ♦i p ∧ ♦iq.→ .♦i(p ∧ q) (∀y Bi x)(∀z Bi x)(z = y)
D ♦i> (∃y B x)t
r ≈ s r�p.↔ .s�p x · r = x · s

The axioms Alt1 and D ensure that each point has one and only one successor
for each of the modalities ♦i. Hence each frame for such a logic can be seen as a
semigroup by taking the worlds as elements and define x · gi to be the unique gi

successor of x. By induction on the term r the composition x · r is defined. The
axiom r ≈ s says that under this identification we can reach a point via r iff we
can reach it via s. This axiom is Sq1. (But in presence of Alt1.D it is effectively a
subframe axiom as we will see below.)

Theorem 5 The logic of F(T) is exactly

ΛT =
⊗
i≤m

Alt1.D({r�p.↔ .s�p|r ≈ s ∈ T})
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Recall here from [8] the notation Λ⊗Θ and
⊗

i≤mΛi. The first denotes a bimodal
logic with first operator satisfying Λ and the second Θ; and the second an n-modal
logic where the ith factor satisfies Λi. The proof of Theorem 5 is not hard and will
be omitted.

Let us pause for a moment to reflect on the relation between Kripke frames
and semigroups. If we have an m-modal logic Λ in which every operator satisfies
Alt1.D then any (one-generated) Λ-frame for Λ can be viewed as an m-generated
semigroup. Moreover, by a slight generalization of a result by [1] we know that
Λ must be complete. Furthermore, by a result of F. Wolter reported in [5] it is
natural (= r-persistent) and ∆-elementary. So it is complete with respect to an
elementary class of models based on m-generated semigroups. The logics ΛT are
complete with respect to models based on FS G(T). We will now show that in fact
any extension of

⊗
i≤m Alt1.D can be characterized by a set of positive, universal

postulates on the semigroups (or, equivalently, the Kripke frames). The logics ΛT
are in addition characterized by disjunction-free conditions, which makes them
slightly more special. To see this notice that the postulates Alt1 and D together are
equivalent to the axiom �p↔ ♦p. Moreover, Alt1 allows to deduce the following
equivalences (and follows from them).

�(p ∨ q).↔ .�p ∨ �q ♦(p ∧ q).↔ ♦p ∧ ♦q

This allows for rather special normal forms. Given a formula P, we write it with
�i, ♦i, ∧, ∨ and ¬ in such a way that ¬ occurs only before variables. This is always
possible. Now, ∧ can be moved out of the scope of any �i, ♦i and ∨, so that P
can be written as a conjunction of conjunction-free formulae. Let Q be such a
formula. Now ∨ can be moved out of the scope of any ♦i and �i, and occurrences
of �i can be changed into ♦i. Thus Q is reduced to the following form∨

i

r�i pi ∨
∨

j

s�j¬q j

Observe now that s�j¬q j. ↔ .s j¬q j. ↔ .¬s�jq j so that we can rewrite this further
into ∧

j

s�jq j.→ .
∨

i

r�i pi

With r�i pi.↔ .ri pi, finally, we get this form∧
j

s�jq j.→ .
∨

i

ri pi
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This formula is equivalent to a Sq1 condition on frames. Consider, namely, what
happens if there are i and j such that pi = q j. In that case we have a conjunct
s�jq j in the antecedent and a disjunct ri q j in the consequent. Since we can let q j

be true at a single world, the antecedent then sets a s j-path to this world and the
consequent says that all ri-paths (i. e. the one and only ri-path) must end there.
Thus, the two paths must be identical. Hence the formula above expresses the
following universal condition, phrased here in terms of semigroups:∨

〈ri ≈ s j|pi = q j〉

Any set of axioms expresses a set of such conditions above
⊗

i Alt1.D. In partic-
ular, Thue-processes express conditions of this type which are disjunction free.

The effect of this reduction is as follows. The problem ‘ΛT ` P’ can be reduced
by the above manipulations to the problem

ΛT `
∧

j

s�jq j.→ .
∨

i

ri pi

By completeness of both logics with respect to semigroup models, this can be
checked via semigroups. Finally, the whole problem is reduced to the question

FS G(T) |=
∨
〈ri ≈ s j|pi = q j〉

In turn, since the statement is variable-free, this holds if any one of

FS G(T) |= ri = s j

holds for suitable i, j. The latter is equivalent to

T `bsg ri ≈ s j

where `bsg is the Birkhoff-calculus for semigroups. This is exactly the decidability
problem for the Thue-process.

Theorem 6 ΛT is decidable iff T is decidable. a

Immediately this offers the following results.

• There are finitely axiomatizable bimodal logics of complexity Sq1 which
are undecidable.
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• It is not decidable whether finitely axiomatizable polymodal logics of com-
plexity at least Sq1 are decidable.

There are, however, many more consequences concerning logics simulating Thue-
processes. Notice first of all that ΛT only marginally exceeds the class of Sq1-
logics. We can namely provide a different axiomatization as follows. Instead of
r ≈ s, an axiom which guarantees the existence and identity of r successors with
s successors, we are going to add the axiom

r↑ ≈ s↑ r�p ∧ s�q.→ .r q ∧ s p

which only asserts that the r successors and the s successors if they exist must be
identical. In presence of the D axiom for both relations, this axiom is equivalent
in strength to r ≈ s. The logic Λ◦

T
is defined to be ΛT without the D axioms. This

logic is strictly Sq1 and thus a subframe logic. Any subframe logic extending⊗
i≤m Alt1 is decidable (see [15] for a proof). Thus Λ◦

T
is decidable.

Call a logic globally decidable if the problem ‘�ωφ `Λ ψ’ is decidable. Here
�ωφ = {�kφ|k ∈ ω} and �0φ = φ and �k+1φ =

∧
i �i�

kφ, with �i representing the
individual boxes of the logic. (In [3] this property is called sequential decidability
but we prefer to avoid the use of the word sequential.) Notice now that we have
the following reduction.

Lemma 7 Let Λ be a polymodal logic and Λ(χ) a strengthening of this logic by
an Sq0-axiom. Then

Ψ `Λ(χ) φ ⇔ Ψ;�ω(
∧
i≤m

χ) `Λ φ

Proof. A pushing-up argument. Suppose the right hand side is false. Then there
exists a polyframe f and a model

〈 f , β, s〉 |= Ψ;�ω(
∧
i≤m

χ);¬φ

We can assume f to be generated by s. Then it is clear that f is a frame for χ
accepting Ψ but rejecting φ. Thus the left hand side is false. Assume now that the
left hand side is false. We then have a model 〈 f , β, s〉 |= Ψ;¬φ. Since f is a frame
for χ, we have 〈 f , β, s〉 |= �ω(

∧
i≤m χ). Thus the right hand side is false. a
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Theorem 8 Let Λ be a polymodal logic and χ ∈ Sq0. If Λ is globally decidable,
Λ(χ) is globally decidable and a fortiori decidable.

Proof. According to the previous lemma we have the following reduction

�ωψ `Λ(χ) φ ⇔ �ωψ;�ω(
∧
i≤m

χ) `Λ φ

Thus, if Λ is globally decidable, so is Λ(χ). a

Corollary 9 Let Λ be a polymodal logic. If Λ is globally decidable, Λ.D is glob-
ally decidable and a fortiori decidable, where Λ.D denotes the extension of Λ by
♦ j> for j ≤ m. a

Let us put this together. The logic ΛT arises from Λ◦
T

by adding all D-axioms. Λ◦
T

is decidable, ΛT is undecidable. Hence Λ◦
T

must be globally undecidable.

Corollary 10 There exist bimodal subframe logics which are decidable but glob-
ally undecidable. a

In [12] a monomodal subframe logic with similar properties is contructed. Her
example not only improves ours by having only one operator; the axioms are
actually extremely simple, namely Alt2 plus∧

i≤4

♦♦q1.→ .
∨
i< j

♦♦(pi ∧ p j)

These postulates say that a point can have at most two immediate successors
(Alt2), and at most three 2-step successors. These conditions allow to code so-
called recurrent tiling problems, which present an alternative way of proving
global undecidability. The only disadvantage of this logic for the present purposes
is that it is not in Det, the class of disjunction free logics.

The previous theorem can be strengthened even further. Suppose Λ is an m-
modal logic. Then define the m + 1-modal logic Λ� by

Λ� = Λ ⊗K4({�p→ �i p|i ≤ m})

Lemma 11 LetΛ as well asΛ� be complete. IfΛ� is decidable thenΛ is globally
decidable.
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Proof. We show that
�ωψ `Λ φ iff ψ;�ψ `Λ� φ

From there it indeed follows that Λ is globally decidable if Λ� is decidable and so
the theorem is proved. Now, if the left hand side is false, there is a model 〈 f , β, s〉
such that 〈 f , β, s〉 |= �kψ for all k but 〈 f , β, s〉 2 φ. Now let f � arise from f by
adding a new relation which interprets � and is the transitive closure of the union
of the Ci. Without doubt is f � a Λ�-frame, and 〈 f �, β, s〉 |= ψ;�ψ but 〈 f �, β, s〉 2
φ. Now assume conversely that 〈g, β, s〉 |= ψ;�ψ;¬φ. Then for a Λ�-frame g
we have 〈g, β, s〉 |= �kψ for all k. If g� results from g by removing the relation
corresponding to � we certainly have 〈g, β, s〉 |= �kψ without 〈g�, β, s〉 |= φ; and
g� is a Λ-frame, as required. a

Theorem 12 There are 3-modal Horn-logics which are undecidable.

Proof. Take Λ◦�
T

for an undecidable Thue-process T. This is a Horn-logic. Then
Λ◦
T

is globally undecidable and so by the previous lemma Λ◦�
T

must be undecid-
able. The postulates are readily checked to be Horn-definable. a

These logics are characterized by universal, deterministic (i. e. ∨-free) and
positive R-formulae. Now it is not decidable whether T a` U for two Thue-
processes T,U simply because otherwise we would be able to decide ‘T ` r ≈ s’.
Thus it is not decidable whetherΛT = ΛU, and, similarly, it is undecidable whether
Λ◦�
T
= Λ◦�

U
. This has the following consequence.

Theorem 13 It is undecidable for two Horn-theories T,U based on at least three
relations whether T a` U. a

For elementary logics this shows quite simply that it is undecidable whether two
universal theories with relational symbols have the same models.

3 Simulating Polymodal Logics

The results obtained so far have established results for polymodal logics with two
or three operators at least. Generally, it would be preferrable if we could also prove
some (un-)decidability results for mono-modal logics. The way to obtain (mainly
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negative) results is by simulating frames with several modalities by frames using
a single modality. This technique was established by [13]. Our simulations are
different but similar in spirit.

Suppose now that we have a frame 〈 f ,C,J〉 for the bimodal language with op-
erators �, �. We then construct a monomodal frame 〈 f sim,6〉 for the monomodal
language based on the operator � and it’s dual ♦ . As in Thomason’s original
example, the original set of points must be blown up and a single point must be
replaced by several copies. What is important in the construction is that the copies
of the point must be distinguishable from each other by certain constant formulae.
If that is so, the simulation is rather straightforward. Thomason’s construction is
more economical than ours; he needs two copies per point, the number of points
in the simulating frame is exactly 2 × ] f + 1, whereas in our construction it is
5 × ] f , but it is easy to see that it can be reduced to 3 × ] f + 2. However, our
construction has the advantage of being symmetrical in the operators and so we
only need to consider one case out of two in each proof. Moreover, if we ignore
the complexity of constant formulae – which we have chosen to do – then no dif-
ference in expenses will arise. Each point of the frame will be replaced by the
following frame ∇ = 〈∇, <∇〉, where ∇ = {a, b, i, p, t}. (We use a x to denote an
irreflexive point and a • to denote a reflexive point.)

•

•

•

x

x

i

a

b p

t

Q
Q

Qs

�
�

�3

-

-

�
�
�
���

Now let us be given a (generalized) bimodal frame F = 〈 f ,C,J,F〉. Then we let
f sim = f × ∇. We write xα rather than 〈x, α〉. Also, for subsets A ⊆ ∇ and Y ⊆ F
we let YA = Y×A. With this convention, f sim = f ∇. On f sim we define a relation 6
as the union of three relations, <∇, <◦ and <•. The first derives from the blowing
up of points by the frame ∇, the second codes C and the third one codes J.
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6 = <∇ ∪ <◦ ∪ <•

<∇ = {〈xα, xβ〉|α <∇ β}
<◦ = {〈xa, yi〉|x C y}
<• = {〈xb, yi〉|x J y}

Thirdly, we let Fsim be all unions of sets of the form Yα, α ∈ ∇.

Proposition 14 Fsim = 〈 f sim,6,Fsim〉 is a (generalized) monomodal frame.

Proof. A set of Fsim can be written as a union

Aa ∪ Bb ∪ Ii ∪ Pp ∪ T t

with sets A, B, I, P,T ⊆ f . Closure under union and complement is straightfor-
ward. For closure under ♦ observe

♦Aa = Aa ∪ Ai

♦Bb = Bb ∪ Bi

♦ Ii = Ii ∪ (♦I)a ∪ (�I)b

♦Pp = Pb

♦T t = T p ∪ T a

Thus Fsim is closed under ♦ . a

Alternatively, Fsim can be defined to be the smallest set containing all X∇ for X ⊆
f . Namely, observe that we can write any set Y ∈ Fsim as the union

Y = (Y ∩ f a) ∪ (Y ∩ f b) ∪ (Y ∩ f i) ∪ (Y ∩ f p) ∪ (Y ∩ f t)

The sets f α, α ∈ ∇, are definable in any of the so constructed frames by a formula
without variables, hence they are always internal. Namely, consider the following
formulae.

T = �⊥
P = �2⊥ ∧ ¬ � ⊥

A = ♦ � ⊥ ∧ ¬ �2 ⊥

B = ♦ (�2⊥ ∧ ¬ � ⊥)
I = ¬ � ⊥ ∧ ¬♦ � ⊥ ∧ ¬♦ (�2⊥ ∧ ¬ � ⊥)

Notice that B = ♦P, I = ¬T∧¬♦T∧¬♦P. In order not to complicate the notation
we do not distinguish between a formula and the set it represents in a model.
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Lemma 15 The formulas A,B, I,P,T define the sets f a, f b, f i, f p, f t, respectively.

Proof. We begin with T. xα ∈ �⊥ implies α = t because otherwise xα <∇ xβ and
thus xα 6 xβ for some β ∈ ∇. On the other hand, xt sees no points via <◦ and <•.
This shows the correctness of T. Now for P. Clearly, if xα ∈ �2⊥, then by similar
arguments α = p, t. Conversely, if α = p, t then xα ∈ �2⊥. Now P = �2⊥∧¬T and
from the previous considerations on T it follows that P defines f p. Now for A. Let
xα ∈ ♦ �⊥. Then xα 6 yt for some y ∈ f , by the correctness of T. By definition of
6 this can only hold if xα <∇ yt and so α = a or α = p. Since A = ♦ �⊥∧¬P this
proves the correctness of A. Now B = ♦P. Let xα ∈ ♦P. Then, by the correctness
of P, xα 6 yp for some y ∈ f . By definition of 6, xα <∇ yp and so α = b. Finally,
xα ∈ I iff xα < T, xα < B and xα < ♦T. The first and the second are equivalent to
α , t, b. Since ♦T defines f a ∪ f p, the third condition is equivalent to α , a, p.
Hence I = f i. a

Now that we can simulate frames and – in effect – also polymodal algebras,
we translate polymodal formulas into mono-modal formulas.

psim = p
(P ∧ Q)sim = Psim ∧ Qsim

(P ∨ Q)sim = Psim ∨ Qsim

(¬P)sim = ¬Psim

(♦P)sim = ♦ (A ∧ ♦ (I ∧ Psim))
(�P)sim = ♦ (B ∧ ♦ (I ∧ Psim))
(�P)sim = �(A→ �(I→ Psim))
(�P)sim = �(B→ �(I→ Psim))

Lemma 16 (Simulation) For all biframes F and all bimodal formulas P

F |= P ⇔ F
sim |= I→ Psim

Proof. Simple induction on P. a

We are now introducing a map (−)s : E(K⊗K)→ E(K) defined as K⊗K(X)s =

K(Xs), where Xs = {I→ Psim|P ∈ X}. As this stands, the definition of (−)s depends
on a concrete axiomatization for the bimodal logic. We will however show that the
choice of axioms is immaterial. Also, we define an unsimulation of a mono-modal
logic to be Λu = {P|I → Psim ∈ Λ}. While we cannot simply take the simulation
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of a polymodal logic to be the set of simulations of its theorems (this set happens
not to be closed under the rules), the unsimulation indeed yields a logic, no matter
what Λ is.

Theorem 17 Let Λ be a monomodal logic. Then Λu is a bimodal logic.

Proof. It has to be shown that Λu is closed under substitution, modus ponens and
the two rules of necessitation. Substitution. Let P ∈ Λu, that is, I → Psim ∈ Λ.
Take now a substitution σ and define σsim(p) = σ(p)sim. Then (I → Psim)σ

sim
=

I → (Pσ)sim as can be verified by induction. Since Λ is closed under substitution,
(I → Pσ)sim ∈ Λ and so P ∈ Λu. Modus Ponens. Let P, P → Q ∈ Λu, that is,
I → Psim, I → (P → Q)sim ∈ Λ. Then, as (P → Q)sim = Psim → Qsim we also have
I → .Psim → Qsim ∈ Λ and thus I → Qsim ∈ Λ, by which Q ∈ Λu. Necessitation.
Assume P ∈ Λu. Then I → Psim ∈ Λ. Hence �(I → Psim) ∈ Λ, and then also
A → �(I → Psim) ∈ Λ, and, finally, (�P)sim ∈ Λ, by which I → (�P)sim ∈ Λ, and
so �P ∈ Λu. Analogously for �. a

This theorem tells us that we can simulate proofs of the bimodal calculus in
the monomodal calculus and thus that the the map (−)s is independent from the
axiomatization of the logic. For if K(X) = K(Y) for different sets X,Y , then a
proof of Q ∈ K(X) for Q ∈ Y can be simulated so that Qs ∈ K(Xs) and likewise
a proof of Q ∈ K(Y) for Q ∈ X can be simulated. It follows that K(Xs) =
K(Y s). Now that this is established we come to another important property of the
simulation, namely its faithfulness. Take two different bimodal logics Λ,Θ. Their
classes of general biframes must be different, and so are then the classes of the
simulating frames. The simulating frames may not be all frames for these logics,
but they discriminate them nevertheless.

The next question to be addressed is the fate of Sahlqvist formulae under sim-
ulation. The following is easily checked.

Theorem 18 If P is a Sahlqvist formula then Ps = I → Psim is equivalent to a
Sahlqvist formula.

Proof. Let P = A → B be Sahlqvist. Ps = I → (A → B)sim is equivalent to
I ∧ Asim. → .Bsim. Clearly, if C is constant, so is C sim. Now if S is strongly
positive, so is S sim. Namely, the translation of box is a constant restricted box.

(�P)sim ≡ �(A→ �(I→ Psim))
(�P)sim ≡ �(B→ �(I→ Psim))
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Thus since A,B as well as I are constant, S sim is composed from constant formulae
and variables with ∧ and constant restricted �. Since A is composed from strongly
positive and constant formulae with the help of ∧,∨ and ♦ then so is Asim. Finally,
Bsim is positive, thus proving the theorem. a

This being the case we can actually derive the elementary condition associated
with simulation of a special Sahlqvist formula. To this end define the following
constant R-formulae.

T(x) = (∀y > x) f
P(x) = (∀y > x)(∀z > y) f ∧ (∃y > x) t
A(x) = (∃y > x)(∀z > y) f ∧ (∃y > x)(∃z > y) t
B(x) = (∃y > x)[(∀z > y)(∀u > z) f ∧ (∃z > y) t]
I(x) = (∃y > x) t ∧ (∀y > x)(∃z > y) t∧

(∀y > x)[(∀z > y)(∀u > z) f ∧ (∃z > y) t]

Now define the simulation of a first-order property inductively as follows.

(x = y)sim = x = y
(φ ∧ ψ)sim = φsim ∧ ψsim

(φ ∨ ψ)sim = φsim ∨ ψsim

(¬φ)sim = ¬φsim

((∃y . x)φ)sim = (∃v > x)(A(v) ∧ (∃y > v)(I(y) ∧ φsim))
((∃y I x)φ)sim = (∃v > x)(B(v) ∧ (∃y > v)(I(y) ∧ φsim))
((∀y . x)φ)sim = (∀v > x)(A(v)→ (∀y > v)(I(y)→ φsim))
((∀y I x)φ)sim = (∀v > x)(B(v)→ (∀y > v)(I(y)→ φsim))

Notice that we excluded a clause simulating x C y, x J y. The reason is to show
a slight twist in this simulation. Namely, x 6 y is equivalent to (∃w > x)(w = y).
This existential quantifier does not show up in the Sahlqvist Hierarchy because
x C y as well as x J y are atomic formulae. But the simulation of these formulae
do introduce an existential quantifier. So, even when the original formula was
Sq1, the simulated formula might turn out to be Sq2. This is the case exactly if the
original formula uses atomic formulae of the type x C y, x J y. Our undecidable
logics are of this kind. We summarize this in the following statement.

Theorem 19 If P is in Sqn and n is even, then I → Psim is in Sqn as well. If,
however, n is odd, then I→ Psim is in Sqn+1. a

The process of simulation can be iterated to simulate any number of relations.
The level in the Sahlqvist Hierarchy does not rise more than one, however. If n
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is even, the one step simulation remains at that level; if n is odd, the level goes
one up and stays there. This iterated simulation is nevertheless from an intuitive
point of view quite complex. However, by redefining ∇ it is possible to achieve a
simultaneous simulation of all operators. For example, with three operators, we
take the following ∇.

•

•

•

•

x

x

x

i

a1

a2

a3

t1

t2

t3

�
�

��3

-
Q

Q
QQs -

-

-

6

6

With ∇ defined as above for an arbitrary number m of points a1, . . . , am and
t1, . . . , tm we can define the sets T j and A j as follows.

T j = � j⊥ ∧ ¬ � j−1 ⊥

A j = ♦T j
∧ ♦

m
>

I =
∧

j ¬♦T j

As before, the simulation will turn a Sqn logic into Sqn if n is even and into Sqn+1
else.

Theorem 20 There exist finitely axiomatizable monomodal Sahlqvist logics of
complexity Sq2 which are undecidable.

Proof. Start with the fact that for two 3-modal subframe logics K3(X), K3(Y) (i. e.
logics with X,Y complexity Sq1(+0)) it is undecidable whether K3(X) = K3(Y).
Then simulate X and Y . Since simulation is injective, it is undecidable whether
K(Xs) = K(Y s). Xs,Y s are of complexity Sq2. a

Consider what happens if we simulate logics extending Alt1 ⊗ Alt1. Then the
simulations of the frames are frames for Alt3. Define a simulation of Λ ⊇ Alt1 ⊗

Alt1 by putting Λδ = Λsim(Alt3). Then Λ = Θ iff Λδ = Θδ. Hence we obtain the
following result.
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Theorem 21 There are finitely axiomatizable extensions of Alt3 which are unde-
cidable. a

4 More undecidability

These results can be sharpened in many ways to obtain counterexamples to more
specific conjectures. For example. Call a formula A → B non-descending if the
modal degree of A is at least that of B. If A and B contain no �i it might be rea-
sonable to believe that a calculus based on non-descending formulae of this type
is actually decidable because by reasoning forward from a formula Q we cannot
increase the nestings of ♦i and not decrease the nestings of �i, so that when we
proved Q inconsistent by deriving a contradiction P,¬P it seems prima facie plau-
sible that we can give good a priori estimates for P (and the other intermediate
formulae). But such reasoning is unjustified. The logics Λ◦�

T
are axiomatized by

non-descending formulae free of any �i. One might consider whether a require-
ment that in a formula A → B A must have strictly greater modal depth than B
would ensure decidability. Again, the answer is negative. The reasoning is rather
interesting. It is based on the following theorem.

Theorem 22 Suppose that Λ is a globally decidable m-modal logic. Then for any
φ and any k ∈ ω the extension Λ(�k⊥ → φ) is globally decidable as well.

Let us see first its consequences. Suppose that for global decidability of a logic it
is sufficient to require (among other) that for any axiom A → B the modal depth
of A exceeds that of B (or exceeds f (B) for some function f ). Take any logic Λ
axiomatized by formulae A → B where the other postulates are met but not the
requirements on depth. Observe then that

A→ B.↔ .(A ∧ �k⊥ → B) ∧ (A ∧ ♦k> → B)

so that if A∧♦k> → B meets the other criteria, it also meets the depth requirements
if k is large. In this way we split all axioms of Λ and add only one half and
have global decidability. By the above theorem, however, adding the other halves
will not destroy global decidability. So we can push decidability up. However,
in this case this amounts to pushing undecidability down, destroying any of the
decidability criteria based on complexity conditions at once.
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Now we prove the theorem. The proof is based on the observation that for
any n ∈ ω there is a finite set S (n) of substitutions such that for any finite set of
generators {a1, . . . , an} for the set algebra F of a refined frame F = 〈 f ,F〉 for the
valuation β : pi 7→ ai and any point x ∈ f

(†) 〈F, β, x〉 |= {�k⊥ → φσ|σ ∈ S (n)} ⇔ F |= �k⊥ → φ

For then it holds that for all χ, ψ based on the sentence letters p1, . . . , pn

�ωχ `Λ(�k⊥→φ) ψ ⇔ �ωχ;�ω(
∧
σ∈S (n)

�k⊥ → φσ) `Λ ψ

For a proof just check all models on one-generated refined frames F where the
underlying set algebra is generated by the values of β(p1), . . . , β(pn). By a theorem
of [10], it is enough to show the theorem in the class of refined frames.

Now on to the proof of (†). From right to left holds for any set S (n). So the
really interesting part is from left to right. We begin by constructing the S (n).
Consider the subframe C based on the set C of all points x such that 〈F, x〉 |=
�k⊥. By induction on k it can be shown that C is finite, bounded in size by a
function depending only on n (and k). C is a generated subframe hence refined.
C is therefore a full frame since it is finite. Consider now the valuation β on C.
It is possible to show that any set T ⊆ C can be presented as the extension of
τT (a1, . . . , an) under β for a suitable τT which is of modal degree ≤ 2k (see [7]).
Collect in S (n) all substitutions σ : pi 7→ τi(p1, . . . , pn) for formulas of depth
≤ 2k. S (n) is finite. We show (⇒) of (†) with these sets. To that end, assume that
F 2 �k⊥ → φ. Then there exists γ and x such that

〈F, γ, x〉 |= �k⊥ ∧ ¬φ

Then x ∈ C and so we have by the fact that C is a generated subframe

〈C, γ, x〉 |= ¬φ

Put σ : pi 7→ τγ(pi). Then γ(φ) = β(φσ) whence

〈C, β, x〉 |= ¬φσ

And so
〈F, β, x〉 |= �k⊥ ∧ ¬φσ

This demonstrates (†) and so the theorem is proved. a
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There are refinements which are still unsolved. Call a formula a path con-
tainment formula if it is of the form r�p → s�p. This states that the set of points
reachable by r-paths is included in the set of points reachable by s-paths. The
logics

ΓT =
⊗
i≤m

K.D({r�p↔ s�p|r ≈ s ∈ T})

are of this form. (Notice that D ≡ > → ♦> is a path containment formula.)

Q. Do we have ΓT = ΓU iff ΛT = ΛU?

If the answer is positive, the undecidability results hold as well for path-containment
logics.

Likewise, call a formula a path equation if it is of the form r�p → s p. This
axiom states that the set of points reachable by r-paths is identical to the set of
points reachable by s-paths. We believe that⊗

i≤m

K({r�p→ s p|r ≈ s ∈ T})

for undecidable T cannot be globally decidable.

Q. Are all polymodal logics axiomatized by path equations (globally) de-
cidable?

The results established so far let us deduce other theorems of independent in-
terest. They concern questions of pushing up decidability in the spirit of [7]. For
monomodal logics this has proved to be a rather powerful method. For polymodal
logics it would be most welcome to have analogous theorems, so that one can
prove fmp or decidability for a polymodal logic by starting with the independent
fusion of it’s monomodal fragments and then adding one by one the postulates
which mix the operators. For independent fusions these problems are largely
solved in [8]. So what about pushing up properties for some non-trivial poly-
modal axioms? Secondly, adding master- or universal modalities is an important
tool in applications for modal logics. The question which properties are preserved
under the process of adding such a modality is quite an important one. We have
already used a master modality to lower the bound for decidability. By that we
have shown that they have a destructive force concerning decidability. These re-
sults are indepdendent of the special choice of the master. We could have taken
a universal modality instead or add a postulate that the master is the (reflexive)
transitive closure of the other relations etc.
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• It is undecidable for bimodal Sq1 logics whether adding D for one operator
preserves decidability.

• There are subframe logics with three operators which are decidable while
the addition of a postulate of the form �p→ �p destroys decidability.

• There are bimodal subframe logics which are decidable, while their exten-
sion by a universal modality is not.

The last statement improves on [16] who showed that fmp can be lost under ad-
dition of the universal modality. The logic of [12] which we discussed above is
another example of a logic for which decidability is lost when the universal modal-
ity is added. The proofs are easy. Start with Λ◦

T
for an undecidable T. This is a

subframe logic and decidable. Add one by one the postulates D for the individual
operators. If both are added, decidability is lost. So at one point, adding D means
losing decidability. If it is at the first step, we could strengthen the theorem to read
subframe logic rather than Sq0. For the second theorem use a similar argument.
Here, however, the added axiom is a subframe axiom, so the property of being
subframe logic is retained. For the last assertion notice that the decidability of a
logic extended by a universal modality is equivalent to the global decidability of
the original logic. (See [3].)

Notice that we have not established that global decidability for Thue-logics
ΛT is decidable. This could be answered via the following

Q. Is it decidable for subframe logics whether adding the universal modal-
ity preserves decidability?
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