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About this Book

This book is intended as a course in modal logic for students who have had prior
contact with modal logic and wish to study it more deeply. It presupposes training
in mathematics or logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book. Knowledge of basic logic—propositional
logic, predicate logic—as well as basic mathematics will of course be very helpful.
The book treats modal logic as a theory, with several subtheories, such as complete-
ness theory, correspondence theory, duality theory and transfer theory. Thus, the
emphasis is on the inner structure of the theory and the connections between the
subdisciplines and not on coverage of results. Moreover, we do not proceed by dis-
cussing one logic after the other; rather, we shall be interested in general properties
of logics and calculi and how they interact. One will therefore not find sections de-
voted to special logics, such as G, K4 or S4. We have compensated for this by a
special index of logics, by which it should be possible to collect all major results on
a specific system. Heavy use is made of algebraic techniques; moreover, rather than
starting with the intuitively simpler Kripke—frames we begin with algebraic models.
The reason is that in this way the ideas can be developed in a more direct and co-
herent way. Furthermore, this book is about modal logics with any number of modal
operators. Although this may occasionally lead to cumbersome notation, it was felt
necessary not to specialize on monomodal logics. For in many applications one op-
erator is not enough, and so modal logic can only be really useful for other sciences
if it provides substantial results about polymodal logics.

No book can treat a subject area exhaustively, and therefore a certain selection
had to be made. The reader will probably miss a discussion of certain subjects such
as modal predicate logic, provability logic, proof theory of modal logic, admissibility
of rules, polyadic operators, intuitionistic logic, and arrow logic, to name the most
important ones. The choice of material included is guided by two principles: first, I
prefer to write about what I understand best; and second, about some subjects there
already exist good books (see [182], [43]], [31], [157]], [224]), and there is no need to
add another one (which might even not be as good as the existing ones).

I got acquainted with modal logic via Montague Semantics, but it was the book
[169] by WoLrGaNG RAUTENBERG that really hooked me onto this subject. It is a pity
that this book did not get much attention. Until very recently it was the only book
which treated modal logic from a mathematical point of view. (Meanwhile, however,
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vi About this book

the book [43] has appeared in print, which is heartily recommended.) However,
twenty years have passed from its publication and many strong and important results
have been found, and this was the reason for writing this book.

My intellectual credits go not only to WOLFGANG RAUTENBERG but also to SIEGFRIED
BREITSPRECHER — whose early death saddened me greatly — for teaching me alge-
bra, HELmut SarzmaNN for his inspiring introduction to geometry and linear algebra,
and to WALTER FeLscHER for his introduction to logic and exact mathematics. Further-
more, [ wish to thank Kit FINe for making an exception and taking me as his student
in Edinburgh. He too taught me logic in his rather distinct way. More than anyone
in the last years, FRaANk WOLTER has been an inspiration and collaborator. Without
him, this book would not have been written. Thanks to CArRsTEN GRrEFE for his help
both with some of the pictures as well as modal logic, and thanks also to ANDREAS
BuLL and MARTIN MiTTELMAIER. Thanks to MoNikA Bubbg, Sam DorNER, Kit FINE,
CLEMENS HENDLER, CARSTEN IHLEMANN, Tomasz KowaLskl and TIMOTHY SURENDONK
for careful proofreading and RAJEEV GORE and MisHA ZAKHARYASCHEV for their ad-
vice in many matters. The final draft was carefully read by Hans MieLkE and BiraiT
NrrzscHE. Special thanks go to ARmIN EckEer for his never ending moral support.

No endeavour can succeed if it is not blessed by love and understanding. I am
fortunate to have experienced both through my wife Jonanna Domokos, my parents,
my brother and my sister. This book is dedicated to all those to whom it gives
pleasure. May it bring — in its own modest way — a deeper understanding of the
human spirit.

Berlin, March 1999
Marcus Kracht

Added. A number of errors in the printed version have been brought to my attention
by GuraMm BezHANISHVILL, LLoyD HUMBERSTONE, and ToMasz KowaLsKI.



Overview

The book is structured as follows. There are ten chapters, which are grouped
into three parts. The first part contains the Chapters[I]—[3] the second part the Chap-
ters 4] —[7] and the third part the Chapters [§]—[I0] The first part contains roughly the
equivalent of a four hour one semester course in modal logic. Chapter 1| presents
the basics of algebra and general propositional logic inasmuch as they are essential
for understanding modal logic. This chapter introduces the theory of consequence
relations and matrix semantics. From it we deduce the basic completeness results
in modal logic. The generality of the approach is justified by two facts. The first is
that in modal logic there are several consequence relations that are associated with a
given logic, so that acquaintance with the general theory of consequence relations is
essential. Second, many results can be understood more readily in the abstract set-
ting. After the first chapter follow the Chapters[2]and[3] in which we outline the basic
terminology and techniques of modal logic, such as completeness, Kripke—frames,
general frames, correspondence, canonical models, filtration, decidability, tableaux,
normal forms and modal consequence relations. One of the main novelties is the
method of constructive reduction. It serves a dual purpose. First of all, it is a totally
constructive method, whence the name. It allows to give proofs of the finite model
property for a large variety of logics without using infinite models. It is a little bit
more complicated than the filtration method, but in order to understand proofs by
constructive reduction one does not have to understand canonical models, which are
rather abstract structures. Another advantage is that interpolation for the standard
systems can be deduced immediately. New is also the systematic use of the dis-
tinction between local and global consequence relations and the introduction of the
compound modalities, which allows for rather concise statements of the facts. The
latter has largely been necessitated by the fact that we allow the use of any number
of modal operators. Also, the fixed point theorem for G of Dick pE JongH and Gio-
VANNI SAMBIN is proved. Here, we deduce it from the so—called Beth—property, which
in turn follows from interpolation. This proof is originally due to CRAIG SMORYNSKI
[200].

The second part consists of chapters on duality theory, correspondence theory,
transfer theory and lattice theory, which are an absolute necessity for understand-
ing higher modal logic. In Chapter 4| we develop duality theory rather extensively,
starting with universal algebra and Stone-representation. Birkhoff’s theorems are



viii Overview

proved in full generality. This will establish two important facts. One is that the
lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of
the variety of modal algebras. Secondly, the characterization of modally definable
classes of generalized frames in terms of closure properties is readily derived. After
that we give an overview of the topological and categorial methods of Grovannt Sam-
BIN and VIRGINIA VAccaro, developed in [186]] and [187]. Furthermore, we study the
connection between properties of the underlying Kripke—frame and properties of the
underlying algebra in a descriptive frame. We will show, for example, that subdirect
irreducibility of an algebra and rootedness of dual descriptive frame are independent
properties. (This has first been shown in [185].) We conclude this chapter with a
discussion of the structure of canonical frames and some algebraic characterizations
of interpolation, summarizing the work of LarRisA Maksmova. An algebraic char-
acterization of Halldén—completeness using coproducts is derived, which is slightly
stronger than that of [153]. Chapter [5develops the theme of first—order correspon-
dence using the theory of internal descriptions, which was introduced in MaRrcus
Kracar [121]. We will prove not only the theorem by HEnbrik SanLqvist [183] but
also give a characterization of the elementary formulae which are definable by means
of Sahlqvist formulae. This is done using a two—sided calculus by means of which
correspondence statements can be systematically derived. Although this calculus is
at the beginning somewhat cumbersome, it allows to compute elementary equivalents
of Sahlqvist formulae with ease. Moreover, we will show many new corollaries; in
particular, we show that there is a smaller class of modal formulae axiomatizing the
Sahlqgvist formulae. On the other hand, we also show that the class of formulae de-
scribed by van BENTHEM in [[10]] which is larger than the class described by Sahlqvist
does not axiomatize a larger class of logics. Next we turn to the classic result by
Kir FinNe [65]] that a logic which is complete and elementary is canonical, but also
the result that a modally definable first-order condition is equivalent to a positive
restricted formula. This has been the result of a chain of theorems developed by
SorLomoN FErerMAN, RoOBERT GoLpBLATT and mainly JoHAN van BENTHEM, see [10]. In
Chapter [6] we discuss transfer theory, a relatively new topic, which has brought a lot
of insights into modal logic. Its aim is to study how complex logics with several
operators can be reduced to logics with less operators. The first method is that of a
fusion. Given two modal logics, their fusion is the least logic in the common lan-
guage which contains both logics as fragments. This construction has been studied
by Frank WorLrer in [233], by Kit FINe and GerHARD ScHURzZ [67], and by FrRank
Worrer and Marcus KracHr in [132]. For many properties P it is shown that a fu-
sion has P iff both fragments have P. In the last section a rather different theorem is
proved. It states that there is an isomorphism from the lattice of bimodal logics onto
an interval of the lattice of monomodal logics such that many properties are left in-
variant. This isomorphism is based on the simulations defined by S. K. THomAsON in
[208,210]. Some use of simulations has been made in [[127]], but this theorem is new
in this strong form. Only the simulations of THomasoN have these strong properties.
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Extensive use of these results is made in subsequent chapters. Many problems in
modal logic can be solved by constructing polymodal examples and then appealing
to this simulation theorem. Chapter [/| discusses the global structure of the lattices
of modal logics. This investigation has been initiated by Wim BLok and WoOLFGANG
RAUTENBERG, wWhose splitting theorem [170] has been a great impulse in the research.
We state it here in the general form of FRANK WorTeR [234], who built on [120]]. The
latter generalized the splitting theorem of [170] to non—weakly transitive logics and
finitely presentable algebras. [234] has shown this use to be inessential; we show in
Section that there exist splitting algebras which are not finitely presentable. In
the remaining part of this chapter we apply the duality theory of upper continuous
lattices, which are also called frames or locales (see [110]) to modal logic. One re-
sult is a characterization of those lattices of logics which admit an axiomatization
base. This question has been put and answered for K4 by ALExaANDER CHAGROV and
MicHAEL ZAKHARYASCHEV [42]. The argument used here is rather simple and straight-
forward. We prove a number of beautiful theorems by Wim BrLok about the degree of
incompleteness of logics. The way these results are proved deserves attention. We
do not make use of ultraproducts, only of the splitting theorem. This is rather advan-
tageous, since the structure of ultraproducts of Kripke—frames is generally difficult
to come to terms with. Finally, the basic structure of the lattice of tense logics is
outlined. This is taken from [123].

The last part is a selection of issues from modal logic. Some topics are devel-
oped in great depth. Chapter [§] explores the lattice of transitive logics. It begins
with the results of Kit FINE concerning the structure of finitely generated transitive
frames and the selection procedure of MICHAEL ZAKHARYASCHEV, leading to the coffi-
nal subframe logics and the canonical formulae. The characterization of elementary
subframe logics by Kit FINE is developed. After that we turn to the study of logics
of finite width. These logics are complete with respect to noetherian frames so that
the structure theory of Kir FINE [66]] can be extended to the whole frame. This is the
starting point for a rich theory of transitive logics of finite width. We will present
some novel results such as the decidability of all finitely axiomatizable transitive log-
ics of finite width and finite tightness and the result that there exist 13 logics of finite
width which bound finite model property in the lattice of extensions of S4. The first
result is a substantial generalization of [247], in which the same is shown for exten-
sions of K4.3. In Chapter [9] we prove a series of undecidability results about modal
logics using two main ingredients. The first is the simulation theorem of Chapter [6]
And the other is the use of the logics K.alt,,. The latter have been studied by KrisTer
SEGERBERG [197]] and Fasio BerLissima [5] and their polymodal fusions by CARSTEN
GrerE [91]. The latter has shown among other that while the lattice of K.alt,; is
countable, the lattice of the fusion of this logic with itself has 2™ many coatoms.
Moreover, the polymodal fusions of K.alt; can be used to code word problems as
decidability problems of logics. Using this method, a great variety of theorems on
the undecidability of properties is obtained. This method is different from the one
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used by LiLia CHAGROVA [44], and ALEXANDER CHAGROV and MICHAEL ZAKHARYASCHEV
[41]. Their proofs establish undecidability for extensions of K4, but our proofs are
essentially simpler. The proofs that global finite model property (global decidability)
are undecidable even when the logic is known to have local finite model property (is
locally decidable), are new.

We conclude the third part with Chapter [I0] on propositional dynamic logic
(PDL). This will be a good illustration of why it is useful to have a theory of arbitrar-
ily many modal operators. Namely, we shall develop dynamic logic as a special kind
of polymodal logic, one that has an additional component to specify modal operators.
This viewpoint allows us to throw in the whole machinery of polymodal logic and
deduce many interesting new and old results. In particular, we will show the finite
model property of PDL, in the version of Ronir Parika and DexTer Kozen [118]],
of PDL with converse, by DimiTER VakARELOV [217]], and of deterministic PDL by
MorpecHAT BEN—ARI, JosepH I. HALPERN and AMIR PNuELL [7]. Again, constructive
reduction is used, and this gives an additional benefit with respect to interpolation.
We have not been able to determine whether PDL has interpolation, but some pre-
liminary results have been obtained. Moreover, for the logic of finite computations
we show that it fails to have interpolation and that it does not have a fixed point theo-
rem. Largely, we feel that an answer to the question whether PDL has interpolation
can be obtained by closely analysing the combinatorics of regular languages.
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Part 1

The Fundamentals






CHAPTER 1

Algebra, Logic and Deduction

1.1. Basic Facts and Structures

In this section we will briefly explain the notation as well as the basic facts and
structures which will more or less be presupposed throughout this book. We will
assume that the reader is familiar with them or is at least willing to grant their truth.

SEeTs, Functions. We write {x : ¢(x)} for the set of all objects satisfying ¢. Given
aset S, p(S) denotes the powerset of S, #S the cardinality of S. For functions we
write f : A — B to say that f is a function from A to B, and f : x — y to say that
f maps (in particular) x to y. The image of x under f is denoted by f(x). We write
f + A > Bif fis injective, that is, if f(x) = f(y) implies x = y for all x,y € A;
and we write f : A - B if f is surjective, that is, if for every y € B there is an
x € Asuch thaty = f(x). ForasetS C A, f[S] := {f(x) : x € S}. We put
f'o):={x: f(x) =y}. Foraset T CB, f'[T]:={x: fx)eT}. Iff:A— B
andg: B— Cthengo f: A — Cisdefined by (g o f)(x) := g(f(x)). The image
of f : A — B, denoted by im[f], is defined by im[f] := f[A]l. MY denotes the set of
functions from N to M. If C C A then f | C denotes the restriction of f to the set C.

CARDINAL AND ORDINAL NUMBERS. Finite ordinal numbers are constructed as fol-
lows. We start with the empty set, which is denoted by 0. The number 7 is the set
{0,1,...,n—1}. ‘i <n’ is synonymous with ‘i € n’. In general, an ordinal number is
the set of ordinal numbers smaller than that number. So, in constructing ordinals, the
next one is always the set of the previously constructed ordinals. There are two types
of ordinal numbers distinct from 0, successor ordinals and limit ordinals. An ordinal
A1is a successor ordinal if it is of the form « U {«}, and a limit ordinal if it is not 0 and
not a successor ordinal. Finite numbers are successor ordinals, with the exception of
0. Ordinal numbers are well-ordered by the inclusion relation €. A well-order < on
a set R is a linear ordering which is irreflexive and such that any nonempty subset
S C R has a least element with respect to <. Ordinal numbers can be characterized
as sets well-ordered with respect to € such that every element of an ordinal « is an
ordinal. Any well-ordered set is isomorphic to a pair (k, €), « an ordinal. ‘«x < A’ is
synonymous with ‘« € A°. The Axiom of Choice is equivalent to the statement that
every set can be well-ordered. Throughout this book we will be working with the
standard set-theory ZFC (ZERMELO—FRAENKEL set theory plus the Axiom of Choice).
(See [220] and [114}115] for an introduction to set theory.)
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One can define the sum, product and exponentiation for ordinals. The sum and
product of ordinals is generally not commutative. 1 + w = w, but w + 1 # w. And
2-w=wbutw-2=w+w # w. Cardinal numbers are special kinds of ordinals,
namely those ordinals A for which no u < A can be mapped onfo A. Finite ordinals
are cardinals. w also is a cardinal here always denoted by 8y. Cardinal arithmetic
is different from ordinal arithmetic, except for finite numbers. If @ or § is infinite,
however, we have @ + 8 = « - 8 = max{a,B}. A set M has cardinality « if there
is a bijection f : @ — M. The set 2™ of all functions from M to 2 has the same
cardinality as the powerset @(M). Therefore we will occasionally identify o(M)
with 2M.

If @ is a cardinal, a* denotes the least cardinal greater than «. This is always
defined. For @ = n we have a* = n+ 1. For @ = N,, k an ordinal, N} := N,,;.
We know that always a < 2%. The Generalized Continuum Hypothesis (GCH) is the
conjecture that a* = 2%. For @ = Ny, the cardinality of the set of natural numbers,
this is the Continuum Hypothesis (CH). CH (and also GCH) is actually independent
of ZFC. We will state our results so that they are independent of CH and GCH.

LarTices AND ORDERINGS. A partial order on a set S is a relation < which is (1.)
reflexive, that is, x < x for all x € S, (2.) transitive, that is, x < y and y < z implies
x < zforall x,y,z € S, and (3.) antisymmetric, which means that for all x,y € § if
x <yandy < xthen x = y. A chain is a partial order in which for any two x,y we
have x < yory < x. (If either x < y or y < x we say that x and y are comparable.)
Let X € S. Then

X = {y:@AxeX)y<x)}
X b Axe X)) > )
If X = {x} then we write | x and T x rather than | {x} and T {x}. A set of the form | X

(TX) for some X is called a lower cone (upper cone).
A lattice is a triple & = (L, M, L) satisfying the following laws for all x,y,z € L

xMNynz) = (xNynz xU(yuUz = (xuUyUz
xMy = yhx xUy = yUux
xx = X xUx = X
xMOyux) = x xU(ynx)y = x

These laws are referred to as the laws of associativity, commutativity, idempotence
and absorption. We call x My the meet of x and y and x U y the join of x and y. In
a lattice we can define a partial ordering < by setting x < y iff x Ly = y. It turns out
that x < y iff x My = x. From the laws above follows that < is a partial order, and
x My is the greatest lower bound (glb) of x and y, and x Ul y the least upper bound
(lub) of x and y. Conversely, if < is a partial ordering on V such that the glb and the
lub for any pair of elements exists, then (V, glb, lub) is a lattice.

There is a principle of duality in lattices which states that any law valid in all
lattices is transformed into a valid law if M and LI are exchanged. This is due to
the fact that the laws postulated for lattices come in pairs, one the dual of the other.
Let & = (L,M,U). We say that £°? = (L, L, M) is the dual lattice of £. The partial
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order obtained for £°? is simply the converse ordering. (Usually, since x < y means
that in the graphical representation x is below y, £°7 is obtained from £ by putting
everything upside down.)

We say that L is a bottom element if L < x for all x, and that T is a fop element
if x < T for all x. A structure (L, L, T, 1, L) whose reduct to M and LI is a lattice
with top element T and bottom element L is called a bounded lattice. An element
x is an atom if fornoy, L <y < x, and a coatom if fornoy, x <y < T. Two
lattices £ = (L,M,U) and M = (M, M, ) are isomorphic iff the ordered sets (L, <)
and (M, <) are isomorphic. If a lattice also has infinite meets and joins, that is, if the
glb as well as the lub of infinite sets exists, then £ is called complete. These infinitary
operations are denoted by [] and |_|. We write [ ],cyy or simply []Y for the meet
of Y. Similarly for the join. Notice that complete lattices always have a bottom and
a top element. It can be shown that a lattice has infinitary glb’s iff it has infinitary
lub’s. An element x of a lattice is join compact if from x < | |Y we may conclude
that x < | | Y, for a finite Yy C Y. A lattice is algebraic if every element is the least
upper bound of a set of join compact elements. A lattice is distributive if it satisfies
the identities

xN(yuz) xmy)u(xng)
xU(ynz) (xuy)yn(xuz)
It can be shown that either of the two equations implies the other.

A filter is a nonempty set F' C L such that F = T F and such that if x,y € F then
also x My € F. A filter is principal if it is of the form T x for some x € L. A subset
I C Lisanidealif I = |Iand for x,y € [ also x Uy € I. Anideal [ is principal if
I = | x for some x € L.

A boolean algebra is a structure B = (B, 0, 1,—,N, V) such that the restriction
BT {N,U,0,1}:=(B,0,1,Nn,U)is a bounded distributive lattice, and — : B — Bisa
function satisfying for all x:

-—x = X
XN—-x =
xU-x = 1
as well as the so—called de Morgan Laws
-(xUy) =(=0n=y), —xNy) =0 U=y

We also use the notation (),cy x or () X, and likewise for | J, as for lattices. This is
in general only defined if X is finite. A general reference for the kind of concepts
introduced so far is [37]], [52] and [90].

CrosURE OperaTORS. Let S be a set. A map C : 9(S) — @(S) is called a
closure operator if it satisfies the following properties, referred to as extensivity,
monotonicity and idempotence.

(ext) X C C(X)
(mon) X C Y implies C(X) € C(Y)
(ide) C(CX)) = CX)
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A set of the form C(X) is called a closed set. Obviously, C(X) is the smallest closed
set containing X. Given a closure operator C, any intersection of closed sets is closed
again. Thus, the closure C(X) can also be defined via

Caqusz;xyzcw»

The closed sets form a lattice, with M being standard set intersection, and X LI Y =
C(X UY). A closure operator is called finitary if it satisfies

(fin)  C(X) = \(C(E) : E C X, E finite )

If a closure operator is finitary, the lattice of closed sets is algebraic, and conversely.
The join compact elements coincide with the sets C(E), E finite. For general refer-
ence see [52].

2-Varuep Logic. We will assume familiarity with classical logic, and in some
sections predicate logic and some model theory is required as well. Nevertheless,
for reference, let us fix here what we mean by classical logic. First of all, to avoid a
terminological clash, we talk of 2—valued logic when we refer to classical logic in the
usual sense. In fact, 2—valued only refers to the fact that we allow exactly two truth
values, denoted by 0 and 1. Furthermore, in the languages of 2—valued logic we have
primitive sentence letters functioning as propositional variables, and various logical
symbols with fixed meaning throughout this book. These are the constants verum T,
and falsum L, the negation —, the conjunction A, disjunction V, implication — and
biimplication <. We may identify the set of truth values with the set 2 (= {0, 1}, see
above). When we speak of boolean logic we mean 2—valued logic for the language
in which only T, = and A are basic, and all other symbols are defined in the usual
way. A valuation is a function from the variables into the set 2. The truth value of
a complex proposition is calculated using the truth tables of the symbols, which are
standard. We say ¢ comes out frue under a valuation, if it receives the value 1. A
formula ¢ is a fautology if it is true under all valuations. Formally, boolean logic is
the logic of the boolean algebra 2, which is the algebra based on the set 2 with the
usual interpretation of the symbols. Again, using the set interpretation of numbers,
A will come out as intersection, V as union and — as relative complement. (Notice
namely, that 0 = @, 1 = {@} and 2 = {@,{@}}.) A good reference for basic logical
concepts is [199]] or [84].

Bmary RevLarions. The binary relations over a set M form a boolean algebra
with respect to intersection, complement relative to M X M, bottom element @ and
top element V,, := M X M. Another special constant is the diagonal, Ay := {{x, x) :
x € M}. Moreover, the following operations can be defined. First, for two relations
R,S C M x M we can define the composition Ro S := {{x,z) : (Ay € M)(xRy S 2)}.
From the composition we define the n—fold product R" of a relation by R” := Ay, and
R™! := Ro R". The transitive closure R* of R is the union | Jy.,, R". The reflexive
transitive closure R* of R is | J, <, R", or equivalently, R* U Aj,. Finally, for each
relation R there is the converse R~ := {{y, x) : xRy}. For the converse we have the
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following identities

(RUS)” = R US™
(RoS)™ = S-oR"
®) = ®)

Groups AND SEMIGROUPS. Given a set G and a binary operation - on G which
is associative, (G, -) is called a semigroup. If 1 € Gissuchthat1-x = x-1 = x
for all x € G, then 1 is called a unit. Moreover, (G, 1,-) is called a monoid. A
particular example is provided by strings. Let A be a set. Then A* denotes the set
of finite strings over A. (For many purposes one may define strings as functions
from a natural number to A; however, for us, strings are basic objects. They simply
are sequences of symbols.) Strings are denoted by vector arrow, e. g. X, ¥, if it is
necessary to distinguish them from simple symbols. Given ¥ and ¥, X"y or X - ¥
denotes the concatenation of strings of ¥ and y. The empty string is denoted by &.
(A*,g,” ) is a monoid. A string ¥ is a prefix of y if there is a & such that ¥ = ¥°il. ¥
is a postfix of ¥ if there exists a & such that ¥ = i~ X. Xis a substring if there are i

IS

and V such that y = i~ X" V. Every string ¥ has a length, denoted by |x]. It is defined
inductively as follows:

€] = 0,
B = 1, ifXeA,
Xy = A+
Suppose we have an additional operation ~' : G — G such that the following laws
hold for all x,y € G:
x-x o= 1,
x'x o= 1.

Then the structure (G, 1,7, -} is called a group.

1.2. Propositional Languages

A propositional language L consists of three things: (1) a set var of (proposi-
tional) variables, (2) a set F' of (propositional) function symbols and (3) a function
Q: F - w. Q(f) is the arity of f. Q is called the signature of L. The cardinality of
var is a matter of choice. Unless otherwise stated we assume that var = 8. Hence
we have countably and infinitely many variables. Sometimes we consider the case
of languages with finitely many variables; these are called weak languages. Since
the set var is usually fixed, L is uniquely identified by Q alone.

To take an example, let us consider the language B, consisting of the function
symbols A, V, =, L and T, where Q(A) = Q(V) =2,Q(=) = 1land X(T) = Q(L) = 0.
So, A and V are binary function symbols, which is to say that their arity is 2; — is
a unary function symbol, in other words a function symbol of arity 1 and — finally
— T and L are nullary function symbols: their arity is zero. The propositional lan-
guages are a family of languages which are syntactically impoverished. There is only
one type of well-formed expression, that of a proposition. The symbol f can also be
understood as a function taking Q(f) many propositions, returning a proposition (see
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below the definition of the term algebra). Predicate logic knows at least two types of
meaningful expressions: terms and formulas. x + y is a term, x + y = 2 is a formula.
Natural languages have even more categories to classify meaningful expressions, for
example noun phrases, verb phrases, adjectival phrases and so on. Thus, from this
point of view, propositional languages are the poorest kind of language, those with
a single type only. The freedom lies in the set of basic functions. There are quite
meaningful n—ary functions for every n, for example exactly one of Ap,Aj,... or
A,—1. In boolean logic such functions are rarely studied because they can be pro-
duced by composing A and —; however, in other logics — e.g. intuitionistic logic —
these definability results no longer hold.

Let X be a set. An X-string is a finite string consisting of symbols from X U F.
For a string ¥ we write ¥ C S if all members from X are in S. The set of Q-terms
over X, Tmq(X), is defined to be the smallest set of strings satisfying

(1) Forall x € X, x € Tmq(X).
(2) Forall f € F and t;, € Tmo(X), k < Q(f), also

fAla ol fo(n)-1 € Tmqa(X)

This way of writing a term will be called prefix notation otherwise also known as
Polish Notation. The more conventional notation with brackets and binary function
symbols in between their arguments will be referred to as infix notation. Typically,
we will write X for a sequence of elements otherwise denoted by xy, ..., x;— for
some k. Moreover, for an n—ary function f we will write f(t,...,?,—;) instead of
Sfoigty ... 11 If we do not want to highlight the arity of f we will write f (#) for
f(to, t1,...,t,-1). When the length of the sequence, n, is suppressed in the notation,
in the context f(X), the sequence is assumed to be of the required length, namely
Q(f). Finally, if f is a binary termsymbol we also write ty f #; or (tp f ;) (depending
on readability) rather than f~#y"#,. (This is the infix notation.) The set X is taken in
the context of propositional logic to be the set of variables, sometimes also denoted
by var. We write var(t) for the set of variables occurring in ¢ and sf(¢) for the set of
subterms or subformulae of . We define them formally as follows. var(¢) := sf(H)NX,
and

sf(x:) {xi}

sf(f(to, - . ., tap-1)) {f(to, ...t~} Y Uicap) SF ()
Nullary functions are also referred to as constants. The cardinality of the set of

constants is usually considered independently of the cardinality of functions. The
cardinality of Tmq(X) is infinite except in some trivial cases.

ProposiTioN 1.2.1. Tmq(X) is finite exactly when (i) X is empty, there are no
constants and any number of n—ary functions for n > 0, or (ii) X is finite and there
exist finitely many constants and no n—ary functions for any n > 0. If the cardinality
of Tmq(X) is infinite it is equal to the maximum of Ny and the cardinalities of the set
of variables, the set of constants and the set of function symbols.



1.2. Propositional Languages 9

Proor. Let C denote the set of constants and F' the set of functions of arity > 0.
Let a := §X + §C, B := #iF and y := §Tmq(X). Obviously, if @ = 0, y = 0 as well. If
B = 0then y = . This is finite if @ is. The theorem holds in all these cases. Now
assume that F # @ and X U C # @. Define the sets S;, i < w, as follows.

So = XucC
S SiU{f(®):¥CS;, feF}

Then
Tmo(X) = _J$;
<w

If F # @and Sy # @, then §; # @ and also S; € S;+;. Hence vy is at least
No. If Sy and F are finite, so is S; for every i < w. Hence the theorem holds in
these cases. Finally, let @ be infinite. Then @ = max{#X, §C}. It can be shown that
8S i1 =4S, - B = max{§S;,B}). Hence for i > 0, #S; = 5. So, v = #S| = max{a, B},
showing the theorem. O

Typically, we think of the function symbols f as standing for functions, taking Q(f)
many inputs and yielding a value. This is codified in the notion of an Q-algebra.
(For basic concepts of universal algebra see [37] and [89].) An Q-algebra is a pair
A = (A, I), where A is a set, and [ a function assigning to each f € F an Q(f)-ary
function from A to A. This definition is somewhat cumbersome, and is replaced by
the following, less rigorous definition. An Q-algebra (or simply an algebra) is a
pair A = (A, f‘21 . f € F)), where A is a set, the underlying set of 2, and for each
f € F, f%is an Q(f)-ary function on A, in symbols f* : A% — A. One very
important Q—algebra is the algebra of Q—terms over a given set X. Let us denote by
f not only the function symbol £, but also the function Tmq(X)*") — Tma(X) : (t;
J < Qf)) = f(to,t1,...,ta()-1)- Now, since the set of Q-terms is closed under
(application of) the functions f for every f € F, the following is well-defined.

Ima(X) := (Tma(X), F).

This is called the algebra of Q—terms over X or simply the termalgebra (over X).
In addition to the termalgebras we have the trivial algebra 1 := ({0}, (! : f € F)),
where £1(0,...,0) = 0. In addition to the primitive functions f¥, f € F, we can
form complex functions by composition of functions; in algebra, for example, + and
- are primitive functions, and x-(y+z), x-y+x-z are complex functions (and the terms
are distinct even though they represent identical functions from R3 to R). A term—
function of U is now generally defined to be any primitive or complex function of
A. Given a set A a clone of term—functions is a set Cl of functions f : A" — A for
some m < w satisfying
(1) For all n < w the projections p! : A" — A of an n—sequence to the i—
component are in CL
(2) Foralln < wif f: A* > Aisin Cland g; : A" — A are in Cl for i < k,
then the composition f[go,...,gk-1] : A" — A is also in ClL. It is defined
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by
flgos-- .. &-11@) = f(go(@), ..., g-1(d))
where @ € A",

Let A be an Q-algebra. The clone generated by the functions f¥ is called the clone
of term functions of U, and is denoted by Clo(2). Clo,(2) denotes the set of n—ary
term functions of A. A polynomial of the algebra U is a termfunction of the algebra
Ay, where Wy denotes the algebra A expanded by constants ¢, with value a for each
a € A. We denote by Pol,,(2) the set of all n—ary polynomials of U, and by Pol(2)
the set of polynomials of 2. The elements of Pol;(2) are called translations. The
reader may verify the following fact. Given a polynomial p(¥) € Pol,() there is
a term function f(Z,y) € Clo,.,, () for some m € w and some b € A™ such that
p(d) = f(d, l;) for all @ € A”. This means that every polynomial results from a term
function by supplying constants for some of the arguments.

An Q-homomorphism (or simply a homomorphism) from the algebra A =
(A,(f\21 : f € F)) to the algebra B = (B, (f23 :feF))yisamaph:A — B such that
for all f € F and all elements a; € A, j < Q(f),

h(f"(ao, . ... aa;pn-1) = fE(h(ap), . . ., hagg)-1) .

In case h : A — B is a homomorphism we write & : A — B. To rephrase the for-
mal definition, homomorphisms are maps which preserve the structure of the source
algebra; the source elements compose in the same way in the source algebra as their
images do in the target algebra. A homomorphism 42 : A — A is called an endo-
morphism of A. A bijective endomorphism is called an automorphism of A. We
write End() for the set of endomorphisms of A and Au#(A) for the set of automor-
phisms of A. End() is closed under composition, and so the endomorphisms form
a semigroup with id4 as unit. Moreover, if # : A — A is an automorphism, so is
hl:A— A

THEOREM 1.2.2. Let Q be a signature and W an Q—algebra. Put

Cnd(A)
Aut(A)

(End(Q),idy, o) ,
(Aur(N), idp, ™", 0) .

Then Cnd(N) is a semigroup and Wut(N) is a group.

A map h : A — Binduces an equivalence relation ker(h) on A via (x,y) € ker(h)
iff A(x) = h(y). We call ker(h) the kernel of /. Given an equivalence relation ®, the
sets [x]® := {y : x ® y} are called the cosets of ®. For a set D, we write [D]® :=
Uxep[x]1®. With ® = ker(h) we call the cosets also fibres of 4. If h : AW — B is a
homomorphism, it induces a special equivalence relation on A, called a congruence.
A congruence (relation) on 2 is a set ® C A X A which is an equivalence relation
and for all functions f and sequences X = (xo, ..., Xa(p)-1) and ¥ = (Yo, ..., Ya)-1)
if x;®@y; for all j < Q(f) then also f*(¥)® f*(§). Each congruence relation on A
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defines a so—called factor algebra 2/® whose elements are the cosets [x]® of the
equivalence relation, and the operations [f*]® act blockwise in the following way.

[FMOx%10, . . ., [xa)-110) = [f (X0 - - - » Xa()-1)]O.

It is the fact that ® is a congruence relation that makes this definition independent of
the choice of the representatives. The reader may check this for known cases such as
groups, lattices etc. The map x +— [x]® is an Q—homomorphism from U onto A/B.
We write A - A/O to highlight the fact that the map is surjective. The following is
now straightforwardly proved.

ProposiTioN 1.2.3. Let h : A - B be a surjective homomorphism. Then © :=
ker(h) is a congruence, and B = W/O. An isomorphism is given by the map t :

h(x) > [x]®.

Since  is surjective, ¢ is defined on all elements of B and is well-defined by
construction of [x]®.

Let E € A X A. The smallest congruence relation containing E is denoted by
®(E). The map E — O(E) is a closure operator with closed sets being the con-
gruences. The congruences on an algebra form a complete lattice, [ ] being inter-
section and |_| the smallest congruence containing the members of the union. We
denote this lattice by Con(2). The bottom element of this lattice is the diagonal
A ={({a,a) : a € A}, and the top element is V = A X A. An algebra is simple if it has
only these congruences and they are distinct. The congruence ®(E) can be computed
explicitly. Let

ET := {{t(a), (b)) : {a,b) € E,t € Pol;(A)}.
This is the closure of E under translations. Then @(E) is the smallest equivalence
relation containing E7. The rationale behind this is the following characterization of
congruence relations.

ProposiTioN 1.2.4. Let A be an algebra. A binary relation on A is a congruence
on W iff it is an equivalence relation closed under translations.

Proor. Clearly, a congruence relation must be an equivalence relation. Con-
versely, let ® be an equivalence relation and ¢ a translation. Then #(x) = f(x, @) for a
term function f(x, y). Assume x® y. Then

tx) = f(x,@) O f(y,ad) = 1(y) .
Hence @ is closed under translations. Conversely, let ® be translation closed and
X={(x;:i<n),¥=y:i<n)ben-long sequences such that x; ®y; for all i < n.
Assume that f is a an n—ary term function. Then we have
f(x()’--wxn—l) ) f(y()’xl,n-,xn—l)
O f(Vo, Y1, X2, 05 Xno1)

) f(yo»"',yn—l)‘
By transitivity, f(X) ® f(3). ]
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ProposiTiON 1.2.5. Let ®;, i € I, be congruences of a given algebra . Then let ¥
be the transitive closure of the equivalence relation | J;c; ®;. Then ¥ is a congruence
on W and identical to | |;.;0;. Hence, {x,y) € | |,;0; iff there is a number n < w,
elements z;, i < n+ 1, and a sequence j(i), i < n, of elements in I such that

x=200;0)2109j1)22 -+ Zn-1Oju-12n =Y

ProoF. | ;¢ ®; is symmetric and reflexive; so is its transitive closure, V. There-
fore, we only need to verify that W is closed under translations. To see that, let
(x,y¥) € ¥. Then there exist elements z;, i < n + 1, and a sequence j(i), i < n, of
elements of / such that

X=20 ®j(0) 21 ®j(1) 22+ Zn-1 ®j(n—1) in=Y
Now let f € Poli(2) be a translation. Then
() = f(20) Ojio) f(21) Oj1) f(z2) ... f(Zu-1) Oju-1) f(zn) = f)
Hence (f(x), f(y)) € V. O

We derive the following useful consequence. Let {(a,b) € | |{®; : i € I). Then
for some finite set Iy C I, {a,b) € | |(O®; : i € Iy). Moreover, for a set E of equations,
O(E) = (IO(Ep) : Eg C E, §Ej < Np).

ProposiTion 1.2.6. Let A be an Q-algebra. Then Con(Q) is algebraic. The
compact elements are of the form O(E), E a finite set of equations. Moreover,

O(E) = |_JO(Ey) : Eo € E,#Eo < No)

Term algebras have the important property that for any function v : X —
A where A is the underlying set of U there is exactly one Q-homomorphism v :
Img(X) — WUsuch that v | X = v. v can be defined inductively as follows.

(1) For x € X we have v(x) = v(x).
(2) Forevery f € F and terms #; (k < Q(f)):

V([ (tos - tacp-1) = (o), - . ., W(tap-1)) -

We note the following useful fact. If & : A — B is a homomorphism then h o v :

X —» B,and hov = hov. Givenv : X — A and a term t = #(xo, ..., Xx,_1) then
V() € A. Hence each term ¢ defines a term—function ¥ : A” — A on U such that
Mag, ..., an_1) = V(t(xg,...,Xx,—1)) Where v(x;) = a;, i < n. A mapo @ X —

Tmqa(X) is called a substitution. A substitution defines a unique homomorphism
o Tma(X) — Tmg(X); conversely, any homomorphism of this type is determined
by a substitution. So, substitutions are simply endomorphisms of the term algebra.
We usually write 7 for o(¢). It is also customary to write f[u/x] or t[x — u] to
denote the result of applying to ¢ the substitution o : x = u,y = y (for all y # x).
Given a set V of variables we denote by #[u,/x : x € V] the result of simultaneously
substituting u, for x forall x € V.
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Exercise 1. Let A be a set, and E C A X A. Show that the least equivalence relation
over A containing E, e(E), can be computed in three steps. Let r(E) = E U Ay
denote the reflexive closure, s(E) = E U E~ the symmetric closure, and #(E) = E*
the transitive closure. Then e(E) = t(s(r(E))).

Exercise 2. (Continuing the previous exercise.) Show that if E is reflexive, that is,
E = r(E) then so is E™; and that if E is symmetric, then so is E7. Hence show that
®(E) can be computed in four steps as follows. (i) close E reflexively, (ii) close E
symmetrically, (iii) close under translations and (iv) close E transitively.

Exercise 3. Show Theorem [1.2.2]

1.3. Algebraic Constructions

We have already encountered the notion of a homomorphism of Q—algebras and
congruences. Here we will state and prove some extremely useful theorems about
these constructions and also introduce some (more) notation. If 2 : A — B is
surjective we write h : A - B and call B a homomorphic image of A. If £ is
injective we write & : A »» B. Furthermore, if A C B and the natural inclusion
h:A — B: x— xis a homomorphism we say that U is a subalgebra of B and
write A < B. If & is both surjective and injective, it is called an isomorphism. 2 and
B are isomorphic if there exists an isomorphism 2 : A — B. We know that each
homomorphism from U to B induces a congruence on A and that each congruence
on an algebra is associated with a surjective homomorphism. There is a one—to—one—
connection between congruences and the natural factor algebras, where we compute
with blocks rather than elements. Moreover, the following holds.

ProposiTioN 1.3.1. (1.) Let A be an algebra and ®; C ®,. Then ©, induces a
congruence on /0O, denoted by @, /0®,. Moreover,

A/0,)/(0,/0)) =A/0O, .

(2.) Let h : A - B be surjective and let ® be a congruence on B. Then there exists
a congruence ®© on W such that N/ = B/O. (3.) Let N < B be a subalgebra and
®p be a congruence on B. Then Op | A := O N A X A is a congruence on .

Proor. (1.) ®,/0; can be defined as follows. [[x]®](®,/0,) := [x]O,. This
is independent of the choice of x as a representative of the class [x]®;, since ®,
includes ®;. The map [x]®; — [x]®; is a homomorphism with kernel ®,/0;, as is
immediately verified. (2.) Put ® := {{a, b) : h(a) ® h(b)}. Let h/® : [x]D > [A(x)]®.
This is well defined because it does not depend on the choice of x as a representative
of its class. By definition, //® is injective; it is also surjective. It is also not hard to
see that it is a homomorphism. (3.) Put ®4 := @ | A. @4 is clearly an equivalence
relation. Now let t € Pol1(®B), a,b € A. Then t(a), t(b) € A, since U is a subalgebra.
Hence if (a,b) € ®4 we have (t(a), #(b)) € @4 by the fact that ®@p is a congruence
and U is closed under translations. |
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THEOREM 1.3.2. The map ® +— ®/0O is an isomorphism from the interval [@®, V]
in the lattice Con(N) onto the lattice Con(U/0).

Proor. By the previous proposition this map is bijective. It is easy to see that it
is an order isomorphism, thus it is a lattice isomorphism as well. m]

Next we define the product of algebras. Let U;, j € J, be a family of algebras. Then
the underlying set of the product is the cartesian product of the sets, X;c;A;, which
is the set of functions s with domain J and value s(j) € A;. Denote this set by P.
The operations are defined pointwise, that is, if f is an n—ary function symbol, and
S0s ..., 8,—1 € P, then

TR0 500D = FUC0Ds - $0m1() -
Then the product of the U; is

]_[mj = (PAf*: feFy)

jeJ
The projection maps p; : P — A; : s — s(i) are homomorphisms. If ®;, j € J,
are congruences on the ; then there is a natural congruence X;c; ®; on the product
defined by s (Xje; ®;) tiff for all j € J we have s(j) @, #(j). For every family of maps
hj: A; — B; there exists a map

[Tw:[Tow-]]%-

jel jel jel
If all h; are injective (surjective) then so is [];;. The kernel of [, h; is exactly
Xjerker(h ;). However, not every congruence on the product can be obtained in this
way. (The easiest example are sets, that is, algebras with no functions. There a
congruence is just an equivalence relation. An equivalence on a product set is not
necessarily decomposable.)

If K is a class of Q-algebras for a fixed Q, then by H()X) we denote the class
of all algebras B which are homomorphic images of algebras in K, we denote by
S(X) the class of subalgebras of algebras in K and by P(X) the class of algebras
isomorphic to products of algebras in K. A variety is a class closed under all three
operators H, S and P.

THEOREM 1.3.3. Let Q be a signature and X a class of Q—algebras. The smallest
variety containing X is the class HSP(X).

Proor. All operators are individually closure operators. Namely, we have K C
O(X) for all O € {H, S, P}. For if A is in K, then since the identity 1y : A — A is an
isomorphism, A € S(K) as well as A € H(K). Moreover, U is a product of U (take
a singleton index set). Secondly, if X € L then O(X) € O(L) for O € {S,H,P},
as is immediate from the definition. We will leave it as an exercise to show that
HH(X) € H(X), SS(X) <€ S(X) and PP(X) C P(X). Furthermore, SH(X) C
HS(X). Forlet € < B and B = A/O for some congruence @. We may assume that
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B = A/O. Then C is a set of blocks of the form [x]®. Put D := {x : [x]® € C}.
Then [D]® = C. Moreover, by the fact that C is closed under the operations [f]®
it follows that D is closed under all operations of A. Hence ® < A. Since we
have hg | D : © —-» €, it follows that © € HS(X). Also, we have noted that
PH(X) € HP(X). Finally, PS(X) € SP(X) since the product of subalgebras is a
subalgebra of the product of the B; as we have noted above. With these commutation
laws we have HHSP(X)) ¢ HSP(X), S(HSP(X)) ¢ HSSP(X) = HSP(X) and
P(HSP(X)) € HPSP(X) € HSPP(X) = HSP(X). This shows the theorem. O

Let A be a cardinal number. An algebra U is A-generable or 1-generated if
there exist elements a,, 4 < A, such that the smallest subalgebra containing all these
elements is U itself. Likewise, since the smallest subalgebra containing these ele-
ments is the set of all elements obtainable by applying the functions to these ele-
ments, A is A-generated iff there exists a surjective homomorphism Tmg(X) —» 2,
where X is a set of cardinality 4. An algebra U is called freely 1-generated in a
class XK if if there is a set X C A of cardinality A such that for every mapv : X —» B
there is exactly one homomorphism % : A — B such that 4 [ X = v. We write v for
h. We say also that U is freely generated by X. In the class of all Q-algebras, the
term algebras Tmgq(X) are freely generated by X. (They are also called absolutely
free Q—algebras.)

ProposiTioN 1.3.4. Let X be a class of algebras, and let A and B be freely 1—
generated in K. Then W = B,

Proor. Let X € A and Y C B be subsets of cardinality A such that U is freely
generated by X and B freely generated by Y. By assumption, there exist maps p :
X —>Yandg:Y — Xsuchthatgop = 1yand pog = 1y. Thenp : A - B and
q : B — Ware (uniquely) defined extensions of p and g. Moreoever, pogq [ Y = 1y,
and so p o g = 1y, since there is exactly one homomorphism extending 1y, and the
identity is a homomorphism. Likewise g o p = 1y is proved. Hence U and B are
isomorphic. O

The previous theorem has established the uniqueness of free algebras. Their
existence is not generally guaranteed. To have free algebras for all cardinalities of
generating sets is a nontrivial property. A central theorem of universal algebra states
that all nontrivial varieties have free algebras. The proof looks difficult, but the
argument is simple. Take a cardinal A and consider all pairs (f, 2) where A € X and
f 14— A. LetS be the set of such pairs. It is used as an index set in the product

Poo= [ ] o
(feS
Let € be the subalgebra generated by the functions s,,, with u € A, where s,((f, %)) =
f(u). Lete : € > P, be the inclusion map. We claim that € is freely generated by

the s,,. To that end, let v : 5, +— a, be any map into an algebra A € XK. Then let g be
defined by g(u) := v(s,). The pair ¢ = (g, ) is in §. Hence there is a projection p, :
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B, — A such that p.(s,) = su(c) = a,. The composition p, o ¢ is a homomorphism
from € to A. By Fry(X) we denote the algebra freely generated by X in V; and for a
cardinal number A we denote by Fry(A) the freely A—generated algebra in V. Given
a set X of generators, and a variety V, there may be several terms denoting the same
element in the free algebra Fry(X), since it is in general a homomorphic image of
the term algebra Tmgq(X). Nevertheless, we will not distinguish between a term #(%)
and its equivalence class in Fry(X).

THeEOREM 1.3.5. Let V be a variety of Q-algebras for a given Q. For every
cardinal vy there exists in 'V a freely y—generated algebra. Every algebra of V is the
homomorphic image of a free algebra in V.

The reader may care to note that it may happen that the variety is trivial, contain-
ing up to isomorphism only the algebra 1. In that case even though we start off with
a set of larger cardinality, the free algebra will be isomorphic to 1, so the generators
turn out to be equal as elements of the algebra. If we insist on the generators as being
elements of the free algebra then the previous theorem is false just in case we have a
trivial variety. However, under a different reading the theorem makes sense, namely
if we take the following definition of a free algebra. An algebra U is free over X if
there is amap i : X — A such that for any map j : X — B there is a homomorphism
h : W — B for which j(x) = h o i(x) for all x € X. In the case of the trivial variety, X
can have any cardinality, and yet A = {0}. In the sequel we always assume to work
with nontrivial varieties, whenever this should make a difference.

TueoreM 1.3.6. Let V be a variety, i : X > Yand p : Y - X. Then i :
Fry(X) = Fry(Y) and p : Fry(Y) » Fry(X).

Proor. If i : X > Y there exists a g such that g o i = 1x. It follows that g o i is
the identity on §ry(X). Since g o i = g o i, g is surjective and i is injective. Similarly
it is shown that p is surjective. O

ProposiTioN 1.3.7. Let V be a variety and W an algebra of V. Then there exists
a free algebra § and a homomorphism h : § - AU.

For a proof note that there exists a surjection v : A - A. Hence we also have
that v : Fry(A) —» A

Exercise 4. Show that either a variety contains up to isomorphism only the trivial
algebra 1 or it contains infinite algebras.

Exercise 5. Let L be a language with signature Q. Let y be the cardinality of
Tmgq(@). Then show that any variety of Q—algebras which is nontrivial contains an
algebra of any infinite cardinality 6 > 7.

Exercise 6. Show with a specific example that the claim of the previous exercise
need not hold for finite ¢.
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Exercise 7. Show that for any class of algebras, HH(XK) C H(X) as well as SS(X) C
S(X) and PP(X) € P(X). Hint. For the last claim take a collection (/; : j € J) of
pairwise disjoint index sets, and assume that there is an algebra %;, for every i; € I,
Jj € J. Then each B := [ic;, s is a product, and € := []c; B, is a general element
of PP(X). Now let K := | c; /; and put D := [];cx Uy Show that € = D.

1.4. General Logic

In our view, logic is the study of truth and consequence. In logic we study
(among other things) whether a statement ¢ follows from some set A of other state-
ments. We usually write A + ¢ if this is the case. We interpret this as follows: if all
X € A are true then so is ¢. Of course, we must specify what we mean by being true.
However, already on these assumptions there are some nontrivial things that can be
said about the relation +. To write them down, we will — in accordance with our
notation in connection with modal logic — use lower case Greek letters for terms
of propositional logic, since these terms are thought of as formulae. We also will
henceforth not distinguish between L as a set of function symbols and the terms of
L, namely the set Tmg(var); given this convention - C (L) X L. Moreover, we
write £ + T'if forall ¢ € T, £ + ¢. It is also customary to use X; A for £ U A and
%; ¢ instead of £ U {¢}. This notation saves brackets and is almost exclusively used
instead of the proper set notation.

(ext.) IfpeXthenX + .
(mon.) If ¥ C Athen X + ¢ implies A + ¢.
(trs.) IfX+TandT + @ then X+ .

(Observe that (mon.) is derivable from (ext.) and (trs.).) For suppose that ¢ € X.
Then if all y € X are true, then ¢ is true as well. Thus (ext.) holds. Furthermore, if
X Feand X C Aandifall y € A are true, then all terms of X are true and so g is true
as well; this shows (mon.). The third rule is proved thus. If £ + I and A + ¢ and all
terms of Z are true then all formulae of I are true by the first assumption and so ¢ is
true by the second.

In addition, there are two other postulates that do not follow directly from our
intuitions about truth—preservation.

(sub.) If £ + ¢ and o is a substitution then X7  ¢”.
(cmp.) X + o iff there exists a finite £y C X such that Xy F .

The postulate (sub.) reflects our understanding of the notion of a variable. A variable
is seen here as a name of an arbitrary (concrete) proposition and thus we may plug in
all concrete things over which the variables range. Then the relation X + ¢ says that
for any concrete instances of the occurring variables, the concretization of X ¢ is
valid. So, the rule p A g + g A p — being valid — should remain valid under all con-
cretizations. For example, we should have Aristotle was a philosopher and Socrates
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was a carpenter + Socrates was a carpenter and Aristotle was a philosopher. Sup-
pose now that we have a substitution 0. Then — contrary to what one might think —
¢7 is not a concretization of ¢; however, every concretization of ¢ is a concretiza-
tion of ¢. One may therefore think of o as a sharpening, since given ¢ it returns a
more specific proposition ¢”. Thus, X7 + ¢ simply is a statement over a subset of
concretizations of X + ¢. Since it holds for all of them X7 + ¢” holds as well. The
algebraic argument is simple. Namely, a concretization is, formally speaking, just a
homomorphism g : Tmg(X) — A. A concretization of ¢7 is just the value S(o(¢))
under a homomorphism. But 8(¢”) = 8 o o(¢), and since S o o : Tmp(X) — U, it
is a concretization as well. Hence any concretization of ¢ is in fact a concretization
of .

The last postulate (cmp.) is called compactness, a term borrowed from topol-
ogy. Another term is finitary. (cmp.) is not at all justifiable from our notions of truth.
In fact, it fails e. g. in logics with infinitary operations. We have {¢; : i € w} + A{¢; :
i € w) even though no finite set I' C {¢; : i € w} exists such that ' - A{y; : i € w).
One might expect that if we only have finitary operations, the truth of any term if
entailed by X will already be entailed by some finite subset of . But this is known to
be false as well (see [232]). Indeed, the most plausible justification comes from the
interpretation via deduction. For suppose we read X + ¢ as there is a proof of ¢ from
Z. Then, since such a proof is a finite object, we can use only finitely many terms of
2 in it.

DeriNtTiON 1.4.1. Let £ be a propositional language and +C (L) X L. F is
called a finitary consequence relation over L if it satisfies (ext.), (mon.), (trs.),
(sub.) and (cmp.). A pair (L, +) where L is a propositional language and v+ a finitary
consequence relation over L is called a (propositional) logic.

Notice the following. In contrast to the standard literature, we require both (sub.)
and (cmp.), since we want to deal almost exclusively with such logics. If (cmp.) is
not assumed, we explicitly say so. Hence, in sequel, by a consequence relation we
actually understand a finitary consequence relation. Moreover, when there is no risk
of confusion we will speak of the logic ; this is justified especially when it is clear
over which language + is defined. A general reference for consequence relations is
[232]]. A logic * is called inconsistent if - = @(Tmgq(var))x Tmg(var). Alternatively,
+ is inconsistent if + p for some p. It follows that in an inconsistent logic I" + ¢ for
all T and ¢. Likewise, a set I" (a formula ¢) is consistent if there is a formula y such
that I ¥ y (¢ ¥ x). The terms ¢ satisfying @ + ¢ are called the tautologies of the
logic. We denote the set of tautologies of + by Taut(r).

A rule is a pair p = (%, ¢) where X is a finite set. X is called the set of premises
of p and ¢ the conclusion. If §£ = n, p is called an n—ary rule. Furthermore, p is a
proper rule if n > 0, and an axiom otherwise. p is a derived rule of + if p € F.
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DeriNtTION 1.4.2. Let L be a language and R a set of rules over L. Then by +*
we denote the least consequence relation v such that R C +. R is a rule base of +
ifr =1k

To characterize H* define an instance of p = (T, @) to be any pair (A, ¥) such that
there is a substitution o with ¢” = ¢ and X7 = A. Every rule justifies all instances
of itself, by (sub.). Suppose that a set of rules R is given. Then X +® ¢ iff there is a
proof tree deriving ¢ from X. A proof tree of ¢ from X is a tree (T, <) (where the
root is the largest element with respect to < and < is completely intransitive) labelled
with formulae from £ in such a way that (i) the root has label ¢, (ii) the leaves have
labels from X and (iii) if {y; : i < n} is the set of elements > x, y; has label ¢; and x
has label i, then ({¢; : i < n},¥) is an instance of some p € R.

An alternative characterization is via sequences. Given R we define now an R—
proof from X to ¢ to be any finite sequence (g; : i < A) such that ¢, = ¢ and for
any k < A either (i) ¢« € Z or (ii) for some set A such that A C {¢, : p < «}, (A, )
is an instance of a rule in R. Now set X rg ¢ iff there exists an R—proof from X to ¢.
The reader may verify that if we have a proof tree, there exists an enumeration of the
nodes of a tree such that the corresponding labels, if written down according to that
enumeration, form an R—proof; and that if we have an R—proof of ¢ from X, we can
define a proof tree for ¢ from . To see the correctness of this characterization of ¥,
we prove the following theorem.

THEOREM 1.4.3. Let R be a set of rules and put Z v ¢ iff there exists an R—proof
of ¢ from X. Then - = +-X,

Proor. It is not hard to see that + C +X. To show that the two are equal it
suffices to establish that I as defined is a consequence relation. (ext.) If ¢ € X then
the sequence consisting of ¢ alone is a R—proof of ¢ from X. (mon.) If & is a R—proof
of ¢ from X then it is also an R—proof of ¢ from any A 2 X. (sub.) If @ is an R—proof
of ¢ from X and o is a substitution then @’ is an R—proof of ¢ from X7. (cmp.) If
@ is an R—proof of ¢ from X then let X be the set of terms occurring both in £ and
@. Since & is finite, so is £y. Moreover, @ is a R—proof of ¢ from X;. (trs.) Suppose
that I+ " and that I - ¢. By (cmp.) we can assume that I is finite, so without loss
of generality letI" = {y; : i < n}. Let @ be an R—proof of ¢ from I" and ﬁ,- an R—proof
of y; from Z, i < n. Now let

=B B ... Bi"d
It is straightforward to check that Z is a proof of ¢ from X. O

Let R be a set of rules. We say that a rule p can be derived from R if p € +X.
Alternatively, p = (A, ¢) then p € X if there exists an R—proof of ¢ from A. If p is
a rule, let -* denote the least consequence relation containing both + and p. For a
consistent - put

E(r) := {n: thereis an n—ary rule p ¢+ such that ¥** p}



20 1. Algebra, Logic and Deduction

E(r) contains the arity of all rules p such that -*# is a proper, consistent extension of
. We call E(+) the extender set of +-. Obviously, a consequence relation is maximal
among the consistent consequences relations iff its extender set is empty.

Let X be a set of formulae. A rule (A, ) is called admissible for X if X is
closed under the application of p. That is, if for some substitution o, o[A] C Z,
then o(p) € X. p is admissible for + if p is admissible for Taut(+). Equivalently,
p is admissible for + if for all substitutions o, ¢” is a tautology, that is, @ rg ¢,
whenever all members of A7 are tautologies. F is called structurally complete if
every admissible rule of  is derivable.  is called Post—complete if O ¢ E(+).

ProposiTion 1.4.4 (Tokarz). (1) A consequence relation v is structurally com-
plete iff E(+) C {0}. (2) A consequence relation is maximally consistent iff it is both
structurally complete and Post—complete.

Proor. (2) follows immediately from (1). So, we show only (1). Let - be struc-
turally complete. Let p be a rule such that +* is a proper and consistent extension
of . Since F is structurally complete, the tautologies are closed under p. It follows
that p must be a O—ary rule. For the other direction assume that F is structurally in-
complete. Then there exists some p which is admissible but not derivable. p is not
an axiom. Hence +** properly extends +. Since + is consistent, p is not a tautol-
ogy of +. Since p is admissible, p is not a tautology of +**, and so the latter is also
consistent. O

It will be proved later that 2—valued logics with T, — and A is both structurally
complete and Post—complete. Now, given +, let

T(F) := {+': Taut(+') = Taut(+)}

Then T'(+) is an interval with respect to set inclusion. Namely, the least element is
the least consequence containing all tautologies of . The largest is the consequence
+*R where R is the set of all rules admissible for . As we will see in the context
of modal logic, the cardinality of T(+) can be very large (up to 2% for countable
languages).

Another characterization of logics is via consequence operations or via theories.
This goes as follows. Let (L, +) be a logic. Write " = {¢ : X + ¢}. The map X +— XF
is an operation satisfying the following postulates.

(ext.) T CX.

(mon.) ¥ C Aimplies X" C AF.
(trs.) pasial
(sub.) o[ZF] C (o[Z]) for every substitution o.

(cmp.) " = UE - 2o € 2, X finite).

Actually, given (cmp.), (mon.) can be derived. Thus the map £ +— X' is a closure
operator which is compact and satisfies (sub.). This correspondence is exact. When-
ever an operation Cn : p(L) — (L) on sets of L—terms satisfies these postulates,
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the relation X +¢, ¢ defined by X ¢, ¢ iff ¢ € Cn(X) is a consequence relation, that
is to say, (L, F¢,) is a logic. Moreover, two distinct consequence operations deter-
mine distinct consequence relations and distinct consequence relations give rise to
distinct consequence operations.

Finally, call any set of the form X" a theory of +. By (trs.), theories are closed
under consequence, that is, X" not only contains all consequences of X but also all
of its own consequences as well. We may therefore say that the theories of + co-
incide with the deductively closed sets. Given I, the following can be said about
+—theories.

(top.) L is a +—theory.

(int.) If T;,i € I, are +—theories, so is (\(T; : i € I).
(sub.) If T is a F—theory, o a substitution then

o Tl={p:¢” €T}isa +—theory.
(cmp.) If T;, i € 1, is an ascending chain of —theories then

\KT; : i €1)is ar—theory.

Again, the correspondence is exact. Any collection T of subsets of L satisfying
(top.), (int.), (sub.) and (cmp.) defines a consequence operation £ +— X" by X =
(XT : T € T, T 2 Z) which satisfies (ext.), (mon.), (trs.), (sub.) and (cmp.). The
correspondence is biunique. Different consequence operations yield different sets of
theories and different collections of theories yield different consequence operations.
The theories of a logic form a lattice. This lattice is algebraic if the consequence
relation is finitary. The converse does not hold; this has been shown by BuRGHARD
HerrMANN and FRaNK WorTER [[103].

Exercise 8. Give a detailed proof of Theorem[I.4.3]

Exercise 9. Let R be a set of axioms or 1—ary rules. Show that A +* ¢ iff there exists
ad € Asuch that 6 -8 .

Exercise 10. Show that every consistent logic is contained in a Post—complete logic.
Hint. You need Zorn’s Lemma here. For readers unfamiliar with it, we will prove
later Tukey’s Lemma, which will give rise to a very short proof for finitary logics.

Exercise 11. Show that in 2—valued logic

proeYiep ey oo Ag oY A
Y1y ey B Ve o Vi
peoy Foop oy

Thus if ¢ = ¢ is defined by + ¢ < ¢, then = is a congruence relation. What is the
cardinality of a congruence class? Hint. We assume that we have &y many proposi-
tional variables. Show that all congruence classes must have equal cardinality.
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Exercise 12. Show that there is no term ¢ in T, V, A such that ¢ + =p + ¢ in classical
logic. Hint. Show first that one can assume var(¢) = {p}.

Exercise 13. Show that if (L,+) is a logic, the map £ +— X" is a finitary closure
operator.

Exercise 14. Show that if X + XF is a finitary closure operator, the system of deduc-
tively closed sets satisfies (top.), (int.), (sub.) and (cmp.).

Exercise 15. Show that if the system of —closed sets satisfies (top.), (int.), (sub.)
and (cmp.), then (L, +) is a logic.

1.5. Completeness of Matrix Semantics

Fundamental for the study of algebraic logic is the notion of a logical matrix.
While for algebraic purposes we need only an algebra in order to compute terms,
truth is extraneous to the notion of an algebra. Boolean algebras as such are neu-
tral with respect to the notion of truth, we must stipulate those elements which we
consider as true. The link between 1 and true is conventionally laid. One must be
aware, therefore, that this is just a convention. We might, for example, consider 0
rather than 1 as true, and it turns out, that the logic of the algebra (2, A) where 0 is
considered true is the same as the logic of (2, V) where 1 is considered true, if A is
translated as V.

DEerintTiON 1.5.1. An Q—-matrix for a signature Q is a pair M = (A, D) where
A is an Q—-algebra and D C A a subset. A is called the set of truth values and
D the set of designated truth values. An assignment or a valuation into
M is a map v from the set of variables into A. We say that v makes ¢ true in M if
V(p) € D; otherwise we say, it makes ¢ false.

With respect to a matrix 9t we can define a relation gy by
Arg ¢ & forall assignments v : If V[A] C D then v(p) € D .

Given a class S of matrices (for the same signature) we define
ks = ﬂ(l—gjgi NMes).

THEOREM 1.5.2. Let Q be a signature. For each class S of Q—-matrices, +g is a
(possibly nonfinitary) logic.

Proor. We show this for a single matrix. The full theorem follows from the fact
that the intersection of logics is a logic again. Let M € §. (ext) If ¢ € X and
V[X] € D then ¥(¢) € D, by assumption. (mon.) Let £ € A and X Fgy . Assume
V[A] € D. Then v[X] € D as well, and so v(¢) € D, by assumption. (trs.) Let X rou I’
and I' Fgp . Assume v[Z] € D. Then we have V[I'] € D and so v(¢) € D. (sub.)
Assume X kg ¢ and let o be a substitution. Then v o o is a homomorphism into



1.5. Completeness of Matrix Semantics 23

the algebra underlying M and v o o’[X] = V[X7]. Hence if V[Z7] € D we also have
v(¢”) € D, as required. m|

THEOREM 1.5.3 (Wéjcicki). For each logic (L, ) there exists a class S of matri-
ces such that + = rg.

Proor. Given the language, let S consist of all (Tmg(var), T) where T is a the-
ory of +. First we show that for each such matrix I, + C rgy. To that end, assume
Z + ¢ and that V[X] € T. Now Vv is in fact a substitution, and 7 is deductively closed,
and so v(p) € T as well, as required. Now assume X ¥ ¢. We have to find a single
matrix Mt of this form such that X kg, ¢. For example, Mt := (Tmg(var), ). Then
with v the identity map, V[X] = £ C X*. However, ¥(¢) = ¢ ¢ X' by definition of X"
and the fact that X ¥ ¢. O

We add the remark that if 9t is a matrix for +, then the set of truth values must
be closed under the rules. The previous theorem can be refined somewhat. Let
M = (A, D) be a logical matrix, and ® a congruence on A. O is called a matrix
congruence if D is a union of ®@-blocks, that is, if x € D then [x]® C D, and
likewise, if x ¢ D then [x]® N D = @. Then we can reduce the whole matrix by ®
and define /0 = (A/O, D/O).

Lemma 1.5.4. Let M be a matrix and ® be a matrix congruence of M. Then
Fa = Fa/e-

Proor. Let X kg . Let v : var — A/O be a valuation such that V[X] C [D]®.
Then let w : var — A be defined by taking w(p;) € v(p;). (Recall that v(p;) is a union
of ®-blocks.) By assumption, [W[X]]® C [D]®, since [D]® is a union of blocks, and
O is a congruence. Hence w(p) € D, by which v(¢) = [w(p)]® € [D]®, as required.
Now assume X Fyy/@ ¢. Let w be a valuation such that w[Z] € D. Then define v to be
the composition of w with the natural surjection x — [x]®. Then v[X] C [D]®. By
assumption, v(¢) € [D]O, so that v(¢) = [x]® for some x € D. Consider w(p). We
know that v(¢) = [W(¢)]® = [x]®. Thus w(p) = y for some y® x. Since D consists
of entire ®-blocks, y € D, as required. O

Call a matrix reduced if the diagonal, that is the relation A = {{x,x) : x € A}, is
the only matrix congruence. It follows that we can sharpen the Theorem [I.5.3]to the
following

THeOREM 1.5.5. For each logic (L, ) there exists a class S of reduced matrices
such that + = rg.

Let 8 be a class of Q-matrices. § is called a unital semantics for  if - = rg
and for all (%, D) € § we have §D < 1. (See Janusz CzeLakowski [49}[50]. A unital
semantics is often called algebraic. This, however, is different from the notion of
‘algebraic’ discussed in Wim BLok and Don Picozzi [29]].) The following is a useful
fact, which is not hard to verify.
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ProposITION 1.5.6. Let + have a unital semantics. Then in + the rules p; q; ¢(p) +
©(q) are valid for all formulae .

Notice that when a logic over a language L is given and an algebra U with ap-
propriate signature, the set of designated truth values must always be a deductively
closed set, otherwise the resulting matrix is not a matrix for the logic. A theory is
consistent if it is not the entire language, and maximally consistent if it is maximal
in the set of consistent theories. One can show that each consistent theory is con-
tained in a maximally consistent theory. A direct proof for modal logics will be given
below. It is interesting to note that for classical logics the construction in the proof of
Theorem [I.5.3]can be strengthened by taking as matrices in S those containing only
maximally consistent theories. For if £ ¥ ¢ then X; —¢ is consistent and so for some
maximally consistent A containing £ we have —¢ € A. Taking v to be the identity,
V[Z] = £ C A, but v(p) ¢ A, otherwise A is not consistent. Furthermore, there is a
special matrix, Taut = (Tmg(var), @"). Recall that @" are simply the tautologies of
a logic.

THEOREM 1.5.7 (Wéjcicki). F is structurally complete iff + = Fzoy.

Notes on this section. The concepts of logical consequence and logical ma-
trix are said to date back to the work of JaN Lukasiewicz and ALFRED Tarski [141]].
Many results of this section are claimed to have been folklore in the 1930ies. The-
orem [1.5.3|is due to Ryszarp Wéicickr [229]. The converse of the implication in
Proposition also holds on condition that the logic has tautologies. This is
proved in [50], where it is attributed to unpublished work by Roman Suszko. The
notion of structural completeness has been introduced by W. A. PoGorzeLskr [162]
who proved also that classical logic is structurally complete. For general reference
on consequence relations and algebraic semantics see Ryszarp Wéscickr [232].

Exercise 16. Prove Proposition[1.5.7]
Exercise 17. Characterize gy where 0t = (A, D), where D = @ or D = A.

1.6. Properties of Logics

Logics can have a number of highly desirable properties which one should al-
ways establish first whenever possible. The first is decidability. A logic (L, ) is said
to be decidable if for all finite X and all terms ¢ we can decide whether or not X + ¢.
In other words, we must have a procedure or an algorithm that yields a (correct) an-
swer to the problem ‘T + ¢’. (To be exact, we should speak of the problem ‘X + ¢?’,
but the question mark generally will be omitted.) This comprises two things (i) the
algorithm terminates, that is, does not run forever and (ii) the answer given is correct.
Predicate logic is not decidable; the reason is that its expressive power is too strong.
Many propositional logics, on the other hand, are decidable. 2—valued logics are an
example. This follows from the next theorem, first shown by R. Harrop in [100]].
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THEOREM 1.6.1 (Harrop). Suppose that M = (U, D) is a finite logical matrix.
Then (L, ray) is decidable.

Proor. Basically, the decision algorithm is that of building ‘truth tables’. Given
a finite X and a term ¢, there exist only finitely many valuations v : var(Z)Uvar(yp) —
T. It is a finite problem to compute all the values V(i) for ¢ € X to check whether
v[XZ] € D and then to see whether v(¢) € D as well. |

This procedure is generally slower than tableaux—methods, however only mildly
so (see [51]). Tableaux—methods allow for a guided search for falsifying assignments
which in many cases (and certainly in many applications) reduces the search space
rather drastically. However, the truth—table method is in certain cases also rather
efficient. There is namely a certain tradeoff between the length of a formula and the
number of variables it contains. The length of a computation for a given formula ¢
depends exponentially on the number of variables (so this is indeed expensive), but
only quadratically on the length of ¢. (See Section[I.8]) For if ¢ has n variables, and
It has k elements, then k" assignments need to be checked. Given a particular as-
signment, the truth value of ¢ with respect to that assignment can be checked simply
by induction on the constitution of ¢. If ¢ contains £ many symbols different from
variables, then £ many steps need to be performed. Each step takes time propotional
to the length of ¢. In total we get a bound on the time of ¢ - € - |¢| - k".

Secondly, we investigate the notion of implication. Of particular importance in
logic are the modus ponens and the deduction theorem. To explain them, assume
that we have a binary termfunction - (p, g), written p - ¢. The rule of modus
ponens for -» — (mp-».) for short — is the rule ({p, p - ¢}, g). There are many
connectives which fulfill modus ponens, for example A and —. We write (mp.) for
(mp—.). -» is said to satisfy the deduction theorem with respect to + if for all Z, ¢,
¥

() Loty o Zre->y.

A logic (L, F) is said to admit a deduction theorem if there exists a term p - ¢
such that (1) holds. Given the deduction theorem it is possible to transform any
rule different from (mp.) into an axiom preserving the consequence relation. (To be
precise, we can also rewrite (mp.) into an axiom, but we are not allowed to replace it
by that axiom, while with any other rule this is possible in presence of the deduction
theorem and (mp.).) For example, the rule p;q + p A g can be transformed into
F p —» (@ » (pAq). Hence it is possible to replace the original rule calculus
by a calculus where modus ponens is the only rule which is not an axiom. In such
calculi, which are called mp—calculi or also Hilbert—style calculi for -, validity of
the deduction theorem is equivalent to the validity of certain rules.

THEOREM 1.6.2. An mp—calculus for —», (L,v), has a deduction theorem for —»
iff » satisfies modus ponens and the following are axioms of v:
(wk) p > (g~»p),
(fd)(p»>(@—>r)»>(p>q > (p—>r).
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Remark. (wk.) is the axiom of weakening and (fd.) is known as Freges Dreier-
schluf3, named after GortLoB FREGE. There is also a rather convenient notation of
formulae using dots; it is used to save brackets. We write ¢. - . for (¢) - ().
For example, (fd.) can now be written as

p-»q>r>»>(p>»>q9.>».p>r)
Now we prove Theorem

Proor. (=) Suppose both modus ponens and (F) hold for . Now since ¢ F ¢,
also ;¢ + ¢ and (by (7)) also ¢ F ¥ - ¢ and (again by (1)) F ¢ - (f - ¢). For
(fd.) note that the following sequence

(p. > > X, 0 > Y, 0,4 > x4, x)

proves . » W —>» x;@ > Y;¢ F x. Apply (F) three times and (fd.) is proved.
(<) By induction on the length of an R—proof @ of ¢ from X U {¢} we show that
¥ + ¢ » . Suppose the length of @ is 1. Then ¢ € X U {¢}. There are two cases:
(1) ¢ € X. Then observe that (¢ - (¢ > ¥), ¥, ¢ - ) is a proof of ¢ - i from X.
(2) ¥ = ¢. Then we have to show that £ + ¢ - ¢. Now observe that the following
is an instance of (fd.): (p. » (Y » @) » @) » (¢ » (Y » ¢). » . » ¢). But
@. » (Y » ) » ¢pand 9. » .Y - ¢ are both instances of (wk.) and by applying
modus ponens two times we prove ¢ —» ¢. Now let @ be of length > 1. Then we may
assume that ¢ is obtained by an application of modus ponens from some formulae y
and y — ¢. Thus the proof looks as follows:

RS PR T/ 1/ AN
Now by induction hypothesis £ + ¢ - y and T + ¢. - .(y - ¢). Then, as
@ » (y » ). » (¢ » x. » .o » ) is atheorem we get that T + ¢ —-» iy with two
applications of modus ponens. O

The significance of the deduction theorem lies among other in the fact that for a
given set X there exists at most one consequence relation + with a deduction theorem
such that X is the set of tautologies of +-. For assume A + ¢ for a set A C L. Then by
compactness there exists a finite set Ag € A such that Ag F ¢. Let Ag := {0; : i < n}.
Put

ded(Ap, @) := 09 » (01 » ... (0p—1 > ®)...)
Then, by the deduction theorem for —»

Avr g = @+ ded(A, @)

THEOREM 1.6.3. Let + and +' be consequence relations with Taut(+) = Taut(+’
). Suppose that there exists a binary termfunction —-» such that + and v’ satisfy a
deduction theorem for —-». Then + = +'.

+ has interpolation if whenever ¢ + ¥ there exists a formula y with var(y) C
var(y) N var(y) such that both ¢ + y and y + . Interpolation is a rather strong
property, and generally logics fail to have interpolation. There is a rather simple
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theorem which allows to prove interpolation for logics based on a finite matrix. Say
that +- has a conjunction if there is a term p A g such that the following are derivable
rules: {{p,q}, p A g) and both {({p A g}, p) and ({p A g}, q). In addition, if + = g
for some logical matrix we say that I has all constants if for each t € T there exists
a nullary term—function t such that for all valuations v v(f) = t. (Note that since
var(t) = @ the value of t does not depend at all on v.) This rather complicated
definition allows that we do not need to have a constant for each truth—value; it
is enough if they are definable from the others. For example in classical logic we
may have only T = 1 as a primitive and then 0 = =T. Notice also the following.
Say that an algebra is functionally complete if every function A" — A is a term—
function of 2U; and say that 2 is polynomially complete if every function A" — A
is a polynomial function. Then any functionally complete algebra is polynomially
complete; the converse need not hold. However, if U has all constants, then it is
functionally complete iff it is polynomially complete.

THEOREM 1.6.4. Suppose that M is a finite logical matrix. Suppose that vy has
a conjunction A and all constants, then vy has interpolation.

Proor. Suppose that (7, §) + (g, F), where 7 = (r; : i < n). Clearly, var(y) ¢
var(yp), iff n > 0. We show that if n # 0 there exists a

v =y G ro,. . ra2)

such that ¢ + ¢! + . The claim is then proved by induction on n. We put

Y@ 10, ra) = \W@ro,. T, D i ET)
Now observe that ¢ + i implies

e(P. @ F (g, 10, -5 T2, 1)

for every t. Now we apply the rule for conjunction for each t € 7', and obtain

eB.Dr \NW@ro,....ra2 D teT) (=9,
Furthermore, ' + i, that is,

NG 70,102, D) F 0G0, Tat)

For if V(lﬁl) is true then for any extension v* with r,,_; € dom(v*) we have v_+(1//) €
D. |

The following is an instructive example showing that we cannot have interpo-
lation without constants. Consider the logic of the 2—valued matrix in the language
C" = {A, =}, with 1 the distinguished element. This logic fails to have interpolation.
For it holds that p A =p + g, but there is no interpolant if p # g. This is surprising
because the algebra (2, —,N) is polynomially complete. Hence, polynomial com-
pleteness is not enough, we must have functional completeness. In other words, we
must have all constants. Let us also add that the theorem fails for intersections of
logics with all constants and conjunction.



28 1. Algebra, Logic and Deduction

A property closely related to interpolation is Halldén—completeness. It is named
after SOREN HALLDEN, who discussed it first in [93]. (See also [191]].) A logic is called
Halldén—complete if for all formulae ¢ and ¢ with var(¢) N var(y) = @ we have
that if ¢ +  and ¢ is consistent then + . 2-valued logics are Halldén—complete.
Namely, assume that ¢ is consistent. Let v : var(yy) — 2 be any valuation. Since ¢ is
consistent there exists a u : var(¢) — 2 such that u(¢) = 1. Put w := u U v. Since u
and v have disjoint domains, this is well-defined. Then w(¢) = 1, and so w(y) = 1.
So, v(¥) = 1. This shows that + . The following generalization is now evident.

THEOREM 1.6.5 (Los & Suszko). Let M be a logical matrix. Then vy is Halldén—
complete.

Thus, failure of Halldén—completeness can only arise in logics which are not de-
termined by a single matrix. In classical logic, the property of Halldén—completeness
can be reformulated into a somewhat more familiar form. Namely, the property says
that for ¢ and ¢ disjoint in variables, if ¢ V ¥ is a tautology then either ¢ or ¢ is a
tautology.

Finally we turn to structural completeness. Recall that structural completeness
means that all admissible rules are derivable. The converse is always valid.

THEOREM 1.6.6. Suppose that M is a logical matrix and vy has all constants.
Then it is structurally complete and Post—complete.

Proor. Suppose that p = ({@o,@1,...,¢@u-1},¥). Assume n > 0. We show
that if p is not derivable it is not admissible. So, assume p ¢ rgy. Then there is
av : var — T such that v(gg), W¢1),...,v(@,—1) € D while ¥(y) ¢ D. Consider
the substitution o(p) := v(p), where v(p) is the constant with value v(p). Then ¢,
@f,..., 0 are in D under all homonFrphisms, so they are theorems. But /7 is not
in D for any homomorphism. So p is not admissible in Fgy. If n = 0, the addition
of ¢ as an axiom makes the logic inconsistent. For ¥ is constant, with value ¢ D.
Hence, ¥ oy p. So, adding ¢ yields an inconsistent logic. Therefore, adding
makes the logic inconsistent. O

Notes on this section. In [140] a consequence relation F is called uniform if for
sets I and A and a single formula ¢ such that var(A) N var(I'; ¢) = @ we have: if
I'; A+ pthenT F ¢. Obviously a uniform consequence relation is Halldén—complete.
It is shown in that paper that a consequence relation is uniform iff it is of the form
+on for a single logical matrix. It was noted by Ryszarp Wéscickr [230] that for con-
sequence relations that need not be finitary this works only on the assumption that r
is regular. Finitary consequence relations are always regular.

Exercise 18. Let S be a finite set of finite matrices. Show that g is decidable.
Exercise 19. Let M = (T, D) be a logical matrix. Show that a connective (=

termfunction) —» satisfies the rule of modus ponens for rgy if whenever a € D and
a »¥ b e D then also b € D; in other words, this is the truth table for »<:
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»|D D
D |%x D
D|x x

Read this as follows. D stands for any element of D, D for any element of T — D.
* stands for an arbitrary element. How many binary connectives of classical logic
satisfy (mp.)?

Exercise 20. Let Mt = (T, D) be a logical matrix. Show that —» satisfies the deduction
theorem if it has the truth table below.

»|D D
D|D D
D|D D

Thus the above truth table requires only thata »¥ b ¢ Difa € Dbut b ¢ D.

Exercise 21. Let M = (T, D) be a logical matrix. Show that A is a conjunction if it
has the following truth table.

1.7. Boolean Logic

The result of the previous sections will now be applied to the most fundamental
logic, namely boolean logic. This chapter may be skipped by all those readers who
are acquainted with the theory of boolean algebras. The main purpose is to repeat
whatever will be essential knowledge for the rest of this book. Before we begin,
let us agree that we will use the term boolean logic to denote what otherwise may
also be called classical logic. The reason for not using the latter is a clash in termi-
nology, because there are also classical modal logics. To distinguish them from the
traditional classical logic we call the latter boolean logic.

We distinguish between boolean logic and 2—valued logic, which is a logic
whose semantics consists of matrices with at most 2 elements. A set of term func-
tions is complete or a basis if the smallest clone of functions containing this set is
the clone of all term—functions. Examples of bases are {1, —, N}, {—, L}, and {{, L},
where p | g := =(p N g). Our set of primitive symbols is {1, —,N}. This set is a
basis, as is well-known. Notice that if we need only a polynomially complete set of
basic functions, T is redundant. (However, notice that by the theorems and exercises
of the previous section, in the language of — and A 2—valued logic does not have
interpolation.)
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DermniTioN 1.7.1. A boolean algebra is an algebra B = (B, 1,—,N) of the
signature {0, 1,2) such that N is commutative, associative and idempotent, with neu-
tral element 1, and — is a map satisfying the following conditions with 0 := —1 and
xUy:=—(=xN-y).

-—Xx = X
XN —x 0
(xNy)Uxn-y) X

Recall that in Section[I.T|we defined a boolean algebra as a bounded distributive
lattice with a negation satisfying the de Morgan laws and the identities above. We
need to verify that if we define 0, U as above, then (B,0, 1,N,U, —) satisfies the
description of Section The most difficult part is the proof of the distributivity
law.

Lemma 1.7.2. In a boolean algebra, U is associative, commutative, idempotent,
and 0 U x = x.

The proof of this fact is left as an exercise. Put x < y iff x Ny = x. It follows
that x = y iff x < y and y < x. For if the latter holds then x = xNy = yNnx =y. Then
x = y=-xUy. Moreover, x & y := (x = y) N (y — x). For the proof of the next
theorem observe that

xN0=0

ForxnO0=xNnxnNn-x)=xNx)N—-x=xN-x=0.

Lemma 1.7.3. In a boolean algebra, the following holds.

1) x<yiffxn-y=0.

2) x<yifx—>y=1

B) x=yiffxeoy=1

@ x<yiff-y<-x

Proor. (1) Ifx<ythenxN-y=xNny)N(=y)=xnNnynN-y)=xn0=0.If
on the otherhand xN—y =0thenx = (xNy)U(xN—-y) = (xNy)U0 = xNy, by the
previous theorem. Hence x <y. 2.) xN—-y=—-(x = y),sox < yiff xNn -y = 0iff
x—>y=10@)x=yiffx<yandy<xiffx—o>y=landy—->x=1iffxoy=1.
@)x<yiffxn-y=0(by(l.))iff -yn-—-x=0iff -y < —x(againby (1.)). O

Lemma 1.7.4. In a boolean algebra, the following holds.
MHx->0—-2=Ny) >z
2)xNny<z & x<y—z
The law (2.) is known as the law of residuation.

Proor. (1.) This is also easily proved from the other laws. For x — (y — 2z) =
-xN-=-(-0oN-2)) =-xNnyN-2) =-((xNny)yN-z = xNy — z (2)
xNy<ziff(xNy) > z=1ifx > (y - 2) =10y (1)) iff x <y - zby (2.) of
Lemmal(l.7.3 o
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Lemma 1.7.5. In a boolean algebra, x N (x — y) < y.

Proor. From —y N x < x N —y we deduce —y < x — (x N —y), by residuation.
So, —(x - —(x > y)) <y, whichisxN(x - y) < y. O

ProposiTiON 1.7.6. In a boolean algebra, x N (yUz) = (xNy) U (x N 2).

Proor. We have x Ny < xsince xNyNx = xNy, and likewise x Nz < x.
Furthermore, xNy <y < yUz Hence xNy < yUz, and likewise x Nz < yU z. This
shows one inequality. For the other, observe that

xNUzN-(xNy)N—-(xNgz)

xN(=y =N —=-y)

N(x — —2)
< (=y=9N-yn-z
< zN-z
= 0
So, by (1.) of Lemma[[.73] x N (y Uz) < (xNy) U (x N 2). m|

An alternative characterization of a boolean algebra is the following. (B, 0, 1, —, N, U)
is a boolean algebra iff its reduct to {0,1,N,U} is a bounded distributive lattice,
and — a function assigning to each x € A its complement. Here, an element y
is a complement of x if yN x = 0 and y U x = 1. In a distributive lattice, y
is uniquely defined if it exists. For let y; and y, be complements of x. Then
yi=@Uy)Ny =xNy)U@Ny) = yNy, and so y; < y,. By the
same argument, y, < y;, and so y; = y,. In addition, if y is the complement of x, x is
the complement of y. The second definition is easily seen to be equivalent (modulo
the basic operations) to the one of Section Call y a complement of x relative to
zif xNy=0and xUy = z. The law (xNy) U (xN—y) = x is (in presence of the other
laws) equivalent to the requirement that x N —y is the complement of x Ny relative to
x. Namely, xNny)n(xN-y)=xNn(ynN-y)=0.

Given boolean logic, what are the deductively closed sets in B? To answer this
note that we have x = yiff x < yandy < xiff x & y = 1. Now if S is deductively
closed, it must contain all tautologies and be closed under the rule (mp.). Soif x € §
and x = y € § theny € §. We deduce first of all that S is not empty; namely, 1 € S.
(Recall that 1 is assumed to be the value of T, which is in the language; if it is not,
then at least we have x U —x € § for an arbitrary x if S is not empty.) Furthermore,
ifxeSandx <ythenx - y=1¢€S andsoyeS. Finally, if x,y € S then also
xNyeS since x = (y = xNy) =1 and by applying the previous rule twice we get
the desired result. The following definition summarizes this.

DerintTiON 1.7.7. A filter in a boolean algebra W is a subset F of A satisfying
the following.
(fil.) 1 e F.
(i) Ifxe Fand x <ytheny¢€ F.
(fin.) Ifx,ye FthenxNye€F.
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A filter is trivial or improper if it is the entire carrier set. A maximal proper filter
is called an ultrafilter.

ProposiTiON 1.7.8. A subset of a boolean algebra is deductively closed iff it is a
filter.

Proor. The direction from left to right has been shown already. Now let F be a
filter. Consider x € Fandx - y€ F. ThenxN(x - y) e F. ButxNn(x — y) =
xN(=xUy)=0.UxNy=xNy So,xNye F. NowxNy<yandsoye€ F as
well. |

We have characterized the deductively closed sets; these turn out to be also the sets
which are congruence classes of the top element. Furthermore, if F is a filter, then
the relation x ~p y defined by x <> y € F is a congruence. First of all, it is reflexive,
since x <> x = 1 € F. Second, it is symmetric since x < y = y < x. And it is
transitive, for if x ~r yand y ~r zthenx & y€ Fandy < z € F and

xeynNnyez =@nNny.U.—xn-y)yNnyNzU.—-ynN-z)
=(xNyNzU.—xN-yN-y)
<(xNzU.—-xN-2)
=xeZ

and so x <> z € F by (fin.) and (fi<.). Finally, it has to be checked that it respects the
operations. Now, if x & y € F, we have —x & —y = x & y € F as well. Secondly,
ifxeyeFandzo ue Fothenalso(xNz) o Nu) < (xeo 20Ny o u) ekF,
as one can check. So, if we have a filter ', we also have a congruence, denoted
by ®f. Moreover, F = [1]®f. The homomorphism with kernel ®f is denoted by
hp. Clearly, if F and G are filters and F C G then O C @g, and conversely. We
conclude the following.

ProposiTioN 1.7.9. Let A be a boolean algebra. The map f : ® — Fg := {x :
x® 1} is an isomorphism from the lattice of congruences of W onto the lattice of
filters of N. Furthermore, if F is a filter, then O defined by xOpy iff x & y € F is
the inverse of F under f.

The following are equivalent definitions of an ultrafilter.

ProposiTioN 1.7.10. Let B be a boolean algebra not isomorphic to 1. A filter U
is an ultrafilter iff either of (1.), (2.), (3.).
(1.) Forall x: —x e U iffx ¢ U.
(2.) U is proper and for all x,y: if xUy e U thenxe U orye U.
(3.) The algebra B/ U is isomorphic to 2.

Proor. First we show that U is an ultrafilter iff U satisfies (3.). Namely, U is
maximal iff @y is maximal in Con(2) iff the interval [@y, V] = 2 iff A/U is simple
(by Proposition [I.3.2). A boolean algebra is simple iff it is isomorphic to 2. For if
there exists an element x # 0, 1 then the filter F = {y : y > x} is distinct from the
trivial filters. Now we show that U is an ultrafilter iff U satifies (1.). Suppose that U
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is an ultrafilter. Then, by (3.), /U = 2. So forevery x € A, [x]®y = 0 or [x]®y = 1.
Thus either [x]®y = 1, which means x € U, or [-x]®y = 1, which means —x € U.
Both cannot hold simultaneously. Next suppose that (1.) holds. Then if U C V, there
exists an x € V — U. By (1.), however, —x € U and so —x € V. Hence 0 € V, and
V is not proper. So, U is an ultrafilter. Thirdly, we show that U satisfies (2.) iff U
satisfies (1.). Suppose U satisfies (1.). Then U is proper. For 0 ¢ U, since 1 € U (by
(1.)). Now suppose that x ¢ U andy ¢ U. Then —x,—y € U and so (—xN —y) € U.
Therefore, by (1.), x Uy ¢ U. Hence U satisfies (2.). Conversely, assume that U
satisfies (2.). Then since (1 =) x U —x € U we conclude that x € U or —x € U. Not
both can hold simultaneously, since U is proper. Hence x ¢ U iff —x € U. So, U
satisfies (1.). |

We know that boolean logic is complete with respect to matrices (B, F), where B
is a boolean algebra and F a deductively closed set. This is so because in the term
algebra the relation =:= {(x,y) : x < y = 1} is a matrix congruence. (See exercises
of Section[I.4}) The deductively closed sets of a boolean algebra are the filters. The
congruence associated with F, @, is a matrix congruence and so we may factor
again by the congruence ®r. Hence boolean logic has a unital semantics. Now,
suppose we can show that every nontrivial filter is contained in an ultrafilter. Then
we may further deduce that boolean logic is complete with respect to matrices I =
(B, F) where F is an ultrafilter. By the previous theorem, Mt/@F = (2,{1}). So
the matrix consisting of the algebra 2 with the distinguished element 1 characterizes
boolean logic completely. This is less spectacular if we look at the fact that boolean
logic is actually defined this way; rather it tells us that the set of equations that we
have chosen to spell out boolean logic is complete — for it reduces an adequate set
of matrices to just the algebra 2 with D = {1}, exactly as desired.

The next result is of extreme importance in general logic. It deals with the
existence of filters and ultrafilters — or, as is equivalent by Proposition —
with the existence of homomorphic images of boolean algebras. Let us take a subset
E C A and ask when it is possible to extend E to a proper filter on A.

ProposiTioN 1.7.11. The least filter containing an arbitrary subset E is the set
(E) defined by
(EY={x:x> ﬂX,X a finite subset of E}

(E) is proper iff every finite subset of E has a nonzero intersection. In this case we
say that E has the finite intersection property.

Proor. First of all, E C (E). For x > ({x}. (E) is also a filter. For if X = @,
then N X = 1, so (fil.) is satisfied. Next let x € (E) and x < y. We know that there
is a finite X such that x > (\X. Then also y > (X and so y € (E). This shows
(fi<.). Finally, if x,y € (E) then x > (X, y > (Y for some finite X, Y C E. Then
xNy>(XUY); and X U Y is finite. To see that (E) is the least filter, observe that
for every finite subset X we must put () X € (E). For either X = @ and so (") X must
be added to satisfy (fil.), or X = {x} for some x, and then () X = x must be added to



34 1. Algebra, Logic and Deduction

satisfy E C (E). Or X > 1 and then () X must be added to satisfy (fin.). Finally, to
satisfy (fi<.) all elements of (E) must be taken as well. So no smaller set suffices. It
is then clear that if for no finite set X we have (" X = 0, (E) is not the full algebra,
since 0 ¢ (E). Butif () X = O for some finite X then by (fi<.), y € (E) forally. O

Now we show that every proper filter is contained in an ultrafilter. Equivalently,
every set with the finite intersection property can be embedded in an ultrafilter. The
proof will be of quite general character, by appealing to what is known as Tukey’s
Lemma. (See [215]. This lemma is actually the same as OswALD TEICHMULLER’S
Principle D, 3rd Version from [205].) To state the lemma, consider a set S and a
property P of subsets. P is said to be of finite character if P holds of aset X C §
iff it holds of all finite subsets of X. If P is of finite character, then if 7 has P and
S C T then also S has P. For every finite subset of S is a finite subset of T, and so if
S fails to have P, this is because some finite subset S fails to have P, which implies
that T fails to have P, since So C 7.

TueoreM 1.7.12 (Tukey’s Lemma). Suppose P is a property of subsets of S and
that P is of finite character. Then every set X C S having P is contained in a set X*
which is maximal for P.

Proor. By the axiom of choice, S can be well-ordered by an ordinal A; thus
S ={s, : @ < 4}. By induction over A we define X, for @ < 1. We put X := X. If X,
is defined, and @ + 1 # A then put X,41 := X, U {s.} if this set has P, and X, := X,
otherwise. For a limit ordinal @ we put X, := [J,<, Xi- Now let X* := X,;. We
claim that X* has the desired properties. X* contains X. It has P; for X, has P by
assumption. In the successor step this remains true by construction and in the limit
step by the finite character. For either the sequence (X, : « < @) is stationary from
a certain ordinal 8. Then X, = X, in which case X, has P by induction hypothesis.
Or the sequence is strictly ascending. Then any finite subset of X, is contained in
a X for some B < «; and then X, has P by the finite character of P. Finally, we
must verify that X* is maximal. Suppose that X* C Y and Y has P. Take an element
y € Y. y = s, for some y < A. Consider the definition of X,,;. We know that
Xy41 € X* C Y. Since Y has P, X" U {s,} has P as well, since P is closed under
subsets. Therefore X,,; = X, U {s,}, showing y € X*. Since y was arbitary, X* = Y.
Hence the set X* is maximal. O

CoroLLARY 1.7.13. Every set with the finite intersection property is contained in
an ultrafilter. In particular, every proper filter is contained in an ultrafilter.

Proor. By Tukey’s Lemma. The property P is taken to be generates a proper
filter. It is of finite character. For X generates a proper filter iff X has the finite
intersection property iff every finite subset of X has the finite intersection property
iff every finite subset generates a proper filter. O
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THEOREM 1.7.14. Boolean logic in the language T, — and A is the logic of the
matrix 2 := ({0,1},1,—,N,{1}). Boolean logic is structurally complete and Post—
complete. It has interpolation and is Halldén—complete.

For a proof note that we have established that boolean logic is the logic of the
matrix 2. Furthermore, it has all constants, since T has value 1 and L has value
0. It follows that it has interpolation by Theorem (since the matrix is finite,
the logic has conjunction and all constants), and that it is structurally complete and
Post—complete by Theorem[1.6.6] It is Halldén—complete by Theorem[I.6.3]

Exercise 22. Show that {—, N} is polynomially complete and that {1, —, N} is func-
tionally complete.

Exercise 23. Let — be an operation satisfying — — x = x. Let N be a binary oer-
ation, and put x Uy := —(—x N —y). Show that N is associative (commutative,
idempotent) iff U is associative (commutative, idempotent). Hint. Show first that
x Ny = —(—x U —y), so that only one direction needs to be established in each case.

(This shows Lemmal[I.7.2})

Exercise 24. Show that each proper subspace of a vector space is contained in a
hyperplane, i. e. a maximal proper subspace.

1.8. Some Notes on Computation and Complexity

In this section we will briefly explain the basic notions of computability and
complexity. Although we shall prove only very few results on complexity of modal
logics we shall nevertheless mention a fair number of them. This section provides
the terminology and basic results so that the reader can at least understand the results
and read the relevant literature. The reader is referred to MicHAEL R. GaRey and
Davip S. Jounson [73] for an introduction into complexity theory. For our purposes
it is best to define computations by means of string handling devices. The most
natural one is of course the Turing machine, but its definition is rather cumbersome.
We shall therefore work with a slightly easier model, which is a mixture between a
Turing machine and a so—called Semi-Thue Process. Let us now fix an alphabet A.
Members of A shall be written in small caps to distinguish them from symbols that
merely abbreviate or denote symbols or strings from A.

DEeriNiTiON 1.8.1. Let A be a finite set and V ¢ A. A string handling ma-
chine over A is a finite set T of pairs {X,¥) such that X and y are strings over AU{V}
in which V occurs exactly once. We call members of T instructions.

The symbol V is used to denote the position of the read and write head of the
Turing machine.

DeriNiTION 1.8.2. Let T be a string handling machine over A and X and ¥ strings
over AU{V}. Then X =t Vifthere is a pair {ii, V) € T and strings w\ and Wy such that



36 1. Algebra, Logic and Deduction

~ ~~

X =W W, and ¥ = W~V "Wy. In that case we say that ¥ is 1—step computable
from X ¥ is n+1-step computable from % in symbols X =7+ 3, if there is a
Zsuch that X =7 7 =7 y. ¥ is computable from X if X = y for some n € w. We
write X =7. y.

We also call a sequence (¥; : i < n) a T—computation if for every j < n — 1
we have X¥; =7 ¥j,1. s called a halting string for T if there is no string that is
computable from ¥. A halting computation is a computation whose last member is
a halting string.

DEeriNiTION 1.8.3. Let f : A* — A" be a function and T a string handling ma-
chine over some alphabet C = A U B, where B is disjoint from A. We say that T
computes f with respect to B,E, # € B if for every X € A* the following holds:

(1) V£~ f(2)# is computable from V"B~ X #.
(2) V£~ f(X) # is a halting string for T.
(3) There is no halting string for T different from V"€ f(2)~# which is com-
putable from V"B~ X #
f is called nondeterministically computable if there exists a string handling
machine that computes f (with respect to some elements).

The elements B and E are used to mark the begin and the end of the computation
and # to mark the end of the input string. Notice that it is not possible to define a
string handling machine that computes f(¥) from ¥ simpliciter. For we would have
no means to distinguish whether we just started the computation or whether we just
ended it; nor could we tell where the input ended. Notice that the symbol B also
marks the begin of the input string, whence a separate marker is not needed for that
purpose. In the definition above we shall say that T computes f(¥) from X in n steps
if

TBTX # = VE () #

Note that it is not required that all computations terminate; but if a computation halts,
it must halt in the just specified string. If f is only a partial function we require that
if f is undefined on ¥ then there is no halting computation starting with V"~ %" #.
This allows us to define the notion of a computable function from A* to B*, which is
namely also a partial function from (A U B)* to (A U B)*. We shall present a simple
example. Let A = {r, s} and let f : ¥ — ¥ Rr. Here is a string handling machine that
computes this function:

T: := {{VB#, VER#),
(VBR,BRVC), (VBs,BsVc),
(Vcr,rRVC),  (Vcs,sVc),
(Vc#, VDr#),
(RVD, VDR),  (sVD, VDs),
(BVD, VE)}

The verification that this machine indeed computes f is left to the reader.
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The above definition of computability is technical. Yet, ALonzo CHURCH ad-
vanced the conjecture — also known as Church’s Thesis — that any function that
is computable in the intuitive sense is also computable in the technical sense. (See
Steven C. KrLeenE [116] for details.) The converse is of course clear. Notice that
if A consists of a single letter, say A, then the set of natural numbers can be iden-
tified simply with the set of nonempty sequences over A, where n is represented by
the sequence consisting of n consecutive as. (ArLaN TuriNG used n + 1 as to code
n, but this is unnecessary given the present setting.) It can be shown that under this
coding any recursive function on the natural numbers is computable, and that any
computable function is recursive. There are other codings of the natural numbers
that work equally well (and are less space consuming), for example p—adic represen-
tations.

The above definitions can be generalized by admitting computation not on one
string alone but on several strings at the same time. This model is more general but it
can be shown that it does not generate a larger class of computable functions (mod-
ulo some coding). The benefit is that it is much easier to see that a certain function
is computable. A string handling machine with k—strings is a finite set of k—tuples
of pairs of strings over A U {V} in which V occurs exactly once. Computations now
run over k—tuples of strings. The definitions are exactly parallel. A replacement is
done on all strings at once, unlike a multihead Turing machine, which is generally
allowed to operate on a single tape only at each step. We can now define the no-
tion of a computable k—ary function from A* to A" in much the same way. Notice
that for 7' to compute f we shall simply require that the initial configuration is the
sequence (V"B"X;"# : i < k), and that the the halting configuration is the sequence
(VE" f(D) #,(VE# : i < k— 1)). The fact that the starting state and the end state
appear on each tape is harmless. Given f : (A*)} — A*, we shall define a unary func-
tion f7 : (AU {c})* — A*, where ¢ ¢ A, as follows. If ¥ = y,"c™y; "¢ ... Vi1 ¢ #,
then

7@ = f(G i< n))
Otherwise, f7(X) := c. The following now holds.

THEOREM 1.8.4. f is computable on a string handling machine with k strings iff
f° is computable on a string handling machine with one string.

The proof of this theorem is not hard but rather long winded.

With these definitions we can already introduce the basic measures of complex-
ity. Let f : A* > A" and h : w — w be functions. We say that T computes f in
h—time if for all ¥, T computes f(¥) from X in at most h(|x]) steps. We say that T
computes f in h-space if there is a computation of V"~ f(X)"# from V"B~ X # in
which every member has length < |X]. Typically, one is not interested in the exact
size of the complexity functions, so one introduces more rough measures. We say
that 7 computes f in O(h)-time if there is a constant ¢ such that 7 computes f is
¢ - h—time for almost all ¥. Analogously with space. Now, before we can introduce
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the major classes of complexity, we shall have to define the notion of a deterministic
machine.

DEerNiTION 1.8.5. Let T be a string handling machine. T is called determinis-
tic if for every string X there exists at most one string ¥ which is 1-step computable
from . A function f : A* — A* is deterministically computable if there is
a deterministic string handling machine that computes f with respect to some ele-
ments.

It is easy to see that the machine 7 defined above is deterministic. Namely, a
string handling machine T is deterministic if for any pair (¥,¥) € T there exists no
other pair (i, V) € T such that i is a substring of X. This is obviously satisfied. The
following theorem shall be stated without proof.

THEOREM 1.8.6. A function f : A* — A* is nondeterministically computable iff
it is deterministically computable.

DerintTioN 1.8.7. P denotes the class of functions deterministically computable
in polynomial time, NP the class of functions nondeterministically computable in
polynomial time. Similarly, EXPTIME (NEXPTIME) denotes the class of
function deterministically (nondeterministically) computable in exponential time. PSPACE
denotes the class of functions deterministically computable in polynomial space.

The reason why there is no class NPSPACE is the following result from [189].

THeEOREM 1.8.8 (Savitch). If a function is computable by a nondeterministic ma-
chine using polynomial space then it is also computable by a deterministic machine
using polynomial space.

We have
P € NP € PSPACE < EXPTIME € NEXPTIME

Most inclusions are by now obvious. Notice that if a deterministic machine runs
in h-time it can write strings of length at most O(h). When using a machine with
several strings the complexity does not change. It can be shown, namely, that if 7
is a string handling machine with k strings computing f in O(h) time, then there is
a string handling machine 7% computing ¥ in O(h*) time. Moreover, T% can be
chosen deterministic if 7 is. It is therefore clear that the above complexity classes
do not depend on the number of strings on which we do the computation, a fact that
is very useful.

Talk about computability often takes the form of problem solving. A problem
can be viewed as a subset S of A*. To be exact, the problem that is associated with
S is the question to decide, given a string ¥ € A*, whether ornot ¥ € S.

Derinttion 1.8.9. A problem is a function f : A* — {0, 1}. f is trivial if f is
constant. We say that a problem f is C if f € C, we say that it is C-hard if for any
g € C there exists a p € PSPACE such that g = f o p. Finally, f is C—complete if it
is both in C and C-hard.



1.8. Some Notes on Computation and Complexity 39

A problem that is C—complete is in a sense the hardest problem in €. For any
other problem is reducible to it. Given a set S, we shall denote by ‘x € S?° the
problem of deciding membership in S, which is simply defined as the function that
gives 1 if the answer is ‘yes’ and O if the answer is ‘no’. (This is also the characteristic
function of S.) For amusement the reader may show that any nontrivial problem that
is in P is also P-complete. In connection with these definitions we have

DEermNtTioN 1.8.10. A subset of A* is decidable if its characteristic function is
computable.

We shall spend the rest of this section illustrating these concepts with some
examples from logic. We have introduced languages in Section To adapt the
definitions of that section to the present context we need to make the alphabet finite.
This is not entirely straightforward, since we have infinitely many variables. There-
fore, let F be the set of function symbols, and X := {p; : i € w} our set of variables.
Let us first assume that F is finite. Take symbols p, 0 and 1 not occurring in F or X.
So, we shall replace the variable p; by the sequence P~ X, where ¥ € {0, 1)* is a binary
string representing the number i in the usual way. That is to say, we put u(0) := 0
and u(1) := 1, and if ¥ = x0"x;" ... x,_| then i = u(¥), where

P = > 2 ()

j<n

In the same way we can obviously also code a countable F' by means of a single
symbol F followed by a binary string. In this way, the entire logical language can be
written using just the symbols F, p, 0 and 1. We will however refrain from using this
coding whenever possible. We shall note here that the typical measure of length of
a formula is the number of symbols occurring in it. We call this the symbol count
of the formula. However, the actual string that we write to denote a formula can be
longer. Since a variable counts as one symbol, the coding is not length preserving.
Rather, a formula with n symbols is represented by a string of length at most nlog, n
if we allow renaming of variables. Given ¢, || counts the length of a minimal rep-
resenting string. This additional factor by which |¢| is longer than the symbol count
is usually (but not always!) negligeable. If the set of function symbols is infinite,
there is no a priori upper bound on the length of the string in comparison to the sym-
bol count! It is for these reasons that complexity is always measured in terms of the
length of the string representing the formula. There is another way to represent a for-
mula, which we refer to as the packed representation. It is described in the exercises
below since it will only be relevant in Section [3.6]

We shall now go into the details of certain basic string properties and manipu-
lations. First of all, let Q : F — w be a signature and X = {p; : i € w}. We shall
provide a procedure to decide whether or not a given string is a term. Define the
weight pg of a symbol as follows.
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palp) = -1
pa(f) = Q-1
For a string ¥ = xp"x;" ... " x,-; we put

pa(X) = Zpg(xi)

i<n
It is useful to observe the following

LemMma 1.8.11. Let X be a string such that po(X) < 0. Then there exists a prefix
¥ of X such that po(¥) = pa(X) — 1.

This lemma is proved by induction on the length of ¥. For the sake of precision
define an occurrence of a string X in ¥ to be a pair (&, ¥ such that i~ ¥ is a prefix of
¥. Two string occurrences (i, ) and (V, 7) overlap if either (a) i is a prefix of ¥ and
¥ is a proper prefix of i~ % or (b) Vis a prefix of i and X is a proper prefix of V"¥.

ProposiTioN 1.8.12. A string X is an Q—term iff it has the property (P).

(P). pa(¥) = —1 and for every prefix ¥ of X: pa(¥) > 0.
In particular, no proper prefix of a term is a term, and no two distinct occurrences of
subterms overlap.

Proor. We begin by showing how the other claims follow from the first. If ¥
is a term and ¥ a proper substring, then po(¥) > —1, and so ¥ is not a term. Next,
let X = iy~ il il U3 ils, and assume that i, "il, as well as il,"if3 are terms and both
i) # € and i3 # &. Then we have pq (il " il3) = pq(ily) +pa(if3). Now, since i, " i3 has
Property (P), pa(ilz) > 0. Now, likewise —1 = pq(il)) + pa(i2), whence pq(id;) < 0.
So, il "il; does not have (P), and hence is not a term, contrary to our assumption.

We now show the first claim. This is done by induction on the length of X.
Clearly, for strings of length 0 and 1 the claim is true. (Notice that po(e) = 0.) So,
let |4 > 1. Assume that the claim is true for all strings of length < |¥]. Assume first
that X is a term. Since X has length at least 2, the first symbol of ¥ is some f € F of
arity at least 1. So,

X=f"% "% ... T Xo(p)-1
By inductive hypothesis, po(¥) = —1 for all i < Q(f). Hence we have pq(¥) =
Q(f) — 1 - Q(f) = —1. Now it is easy to see that for no prefix i of ¥ po(@d) > 0.
Hence X has Property (P). Conversely, assume that X has Property (P). Take the first
symbol of ¥. It is some f € F of arity at least 1. Let ¥ be such that ¥ = f~y. Then
pa() = —1. If the arity of f is 1, then X is a term iff ¥ is. Then ¥ has (P) and so
is a term, by inductive hypothesis. Therefore ¥ is a term as well. Now suppose that
Q(f) > 1. Then po(¥) = —Q(f). Using Lemma|[l.8.11]it can be shown that ¥ is the
product of strings #;, i < Q(f), which all have (P). By inductive hypothesis the ii; are
terms. So is therefore %. ]
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We shall note here the following corollary. If F' is infinite, we code it as de-
scribed above by strings of the form F~¥. Q is defined on these strings. We shall
recode the signature as a function from binary strings to binary strings. Namely, we
let

Q) = (QEF D)
We shall say that Q is computable if Q' is.

ProposiTioN 1.8.13. Assume that L is a language with a computable signature.
Then the set of terms over F is decidable.

The proof is not difficult.

It is possible to convert a term in prefix notation into a string in the typical
bracket notation and conversely. To that end, we assume that the signature consists of
symbols of arity < 2. The procedure is as follows. Take a string ¥ in prefix notation.
Start from the left end. Assume ¥ = " f~Z and n := [)]. Then let i be the smallest
prefix of Z such that f~i is a term and let Z = @~ V. Then let X' := y~(Cf ") V.
We call this the insertion of brackets at the place n. The procedure is now simply
the following. Start at the left end of ¥ and add brackets whenever the described
situation occurs. Continue as long as possible. Call the resulting string b(X). Now let
b(%) be given. Pick a symbol f of arity 2 following a symbol (. Then it is contained
in a sequence of the form (" f"iiy~il;~) where iy and i, are terms. (This needs to
be defined for sequences which contain brackets but is straightforward.) Replace
this sequence by ("itp" f"i;"). Continue whenever possible. Finally, some brackets
are dropped (the outermost brackets, brackets enclosing variables). The resulting
sequence is a term in usual bracket notation.

To close, let us describe a procedure that evaluates a term in a finite algebra
given a particular valuation. It is commonly assumed that this can be done in time
proportional to the length of the string. The procedure is as follows: identify a min-
imal subterm and evaluate it. Repeat this as often as necessary. This procedure if
spelled out in detail is quadratic in the length of the string since identifying a min-
imal subterms also takes time linear in the length of a string. As this procedure is
repeated as often as there are subterms, we get in total an algorithm quadratic in
the length. We shall now describe the algorithm in detail. So, let U be a finite Q—
algebra. For each element a of the algebra we assume to have a primitive symbol,
which we denote by a. Let the term be given as a string, and the valuation as a se-
quence of pairs (P~ %, B(P"X)). It is not necessary to have all values, just all values for
variables occurring in ¥. We shall describe a procedure that rewrites ¥ successively,
until a particular value is determined. We start by inserting S(p~ %) in place of P~ %.
We treat the elements as variables, assigning them the weight —1. Let (i, y) be an
occurrence of a substring, where ¥ has length > 1. We call pq(#) its embedding
number. An occurrence of a substring is with maximal embedding number is of the
form f~ag"a,” ... aq)-1, where all d; are (symbols denoting) elements of A. The
procdure is therefore as follows. Look for an occurrence of a nontrivial substring
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with maximal embedding number and compute its value. Replace that string by its
value. Continue as long as possible. The procedure ends when ¥ is a single symbol.

Now let a formula ¢ of boolean logic be given. We can solve the problem
whether ¢ is a theorem nondeterministically by guessing a valuation of the variables
of ¢ and then evaluating ¢. A valuation is linear in the length of ¢. Hence, the
problem whether a formula is a theorem of boolean logic is in NP. Alternatively,
the problem whether a boolean formula is satisfiable is also in NP. Moreover, the
following holds:

THeEOREM 1.8.14 (Cook). Satisfiability of a boolean expression is NP—complete.

This result may appear paradoxical since we have just proved that satisfiability is
computable nondeterministically in O(n?) time. So, how come it is the hardest prob-
lem in NP? The answer is the following. If a problem S is in NP it is polynomially
reducible to the satsifiability problem; the reduction function is itself a polynomial p
and this polynomial can have any degree. Hence the harder S the higher the degree
of p.

It has been shown by L. J. STockMEYER and A. R. MEYER [203]] that the problem
of satisfiability of quantified boolean formulae is PSPACE—complete. (Here, quanti-
fiers range over propositional variables.)

Exercise 25. We can represent the natural number n either as the sequence u~!(n)
over {0, 1} or as a sequence of n 1s. Show that the mappings converting one repre-
sentation to the other are computable.

Exercise 26. Show that if f, g : A* — A" are computable then so is g o f. Show that
if f and g are in C for any of the above complexity classes, then so is g o f.

Exercise 27. Let A be a fixed alphabet, and let ¢ (for comma) { and ) be new symbols.
With the help of these symbols we can code a string handling machine 7 by a string
TT. (This is not unique.) Now let C be the enriched alphabet. Let f : C* x C* — C*
be defined as follows. If ¥ € A* and ¥ = T for some string handling machine using
the alphabet A then f(%,) is the result that T computes on X if it halts, and other-
wise f is undefined. Show that f is computable. (This is analogous to the Universal
Turing Machine.)

Exercise 28. Prove Lemmal|l.8.11
Exercise 29. Here is another way to represent a formula. Let ¢ be a formula, say

Apo V p1—po, which in infix notation is just (pg A (p1 V =1pp)). The string associated
with it is APO V P1-P0. Now enumerate the subformulae of this formula. We shall
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use for the nth subformula the code s~ ¥, where X is the binary representation of n:

sO PO

sl : pl

s10  : =pr0
sll  : vel=r0

s100 : AP0V P1=PO

Now replace to the right of this list the immediate subformulae by their respective
code, starting with the smallest subformulae that are not variables. (For example, the
least line becomes s100 A sOs11.) Finally, write these lines in one continuous string:

sOPOs1p1s10—s0s11 Vv s1s10s100 A sOs11

Denote the resulting string by ¢*. Give upper and lower bounds for |¢*| in compari-
son with |¢|. Show that given a sequence X one can compute in linear time a formula
¢ such that ¥ = ¢*. This representation can be used to code a set A of formulae as
follows. Each subformula ¢ of some member of A that is itself in A is denoted not
by ¢* but simply by its code s~ %. How is |A*| related to card(sf[A])?






CHAPTER 2

Fundamentals of Modal Logic I

2.1. Syntax of Modal Logics

The languages of propositional modal logic used in this book contain a set var =
{p: : i €y} of variables, a set cns of propositional constants, the boolean connectives
T,—-,A and a set {O0; : i € «} of modal operators. O;¢ is read box i phi. T is in
cns. With each operator 0O0; we also have its so—called dual operator ¢; defined by
O := —0;—¢. In what is to follow, we will assume that there are no basic constants
except T; and that there are countably many propositional variables. So, y = Ny
unless stated otherwise. The number of operators, denoted by « throughout, is free to
be any cardinal number except 0; usually, « is finite or countably infinite, though little
hinges on this. Theorems which require that « has specific values will be explicitly
marked. By P, we denote the language of k—modal logic, with no constants and
No many propositional variables. Also, P, denotes the set of terms also called well—
formed formulae of that language. If k = 1 we speak of (the language of) monomodal
logic, if k = 2 of (the language of) bimodal logic. Finally, -~ and O; are assumed to
bind stronger than all other operators, A stronger than V, V stronger than — and .
So, 0jp A g — pis the same as ((O;p) A q) — p.

P, is the set of terms or formulae or propositions as defined earlier. Metavari-
ables for propositional variables are lower case Roman letters, such as p, g, r, metavari-
ables for formulae are lower case Greek letters such as ¢, y,¢. In addition, rather
than using indices to distinguish modal operators we will use symbols such as m,
B, f1, O, 01, m, and similar abbreviations for their duals. We denote by [|P,]| the
cardinality of the set of terms over P,. With the cardinality of the set of variables, of
the set of constants and the set of operators the cardinality of P, is fixed. Namely, by
Proposition[I.2.T| we have

1Pl = max{No, fvar, fcns, «} .

Since we standardly assume to have at most &, variables and constants, the latter
reduces generally to ||P,|| = max{y, «}.

45
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The modal depth or (modal) degree of a formula is the maximum number of
nestings of modal operators. Formally, it is defined as follows.

dp(p) =0 p € var U cns
dp(—¢) = dp(p)

dple Ny) = max{dp(e), dp()}

dp@jp) = 1+dp(p)

The boolean connectives will behave classically. As for the modal operators,
the interest in modal logic lies in the infinitely many possibilities of defining their
behaviour. First of all, according to the theory outlined in Chapter [I] a modal logic
must be a relation + C p(P,) X P, satisfying (ext.), (mon.), (cut.), (sub.) and (cmp.).
Moreover, we generally assume that the boolean connectives behave as in boolean
logic. There is a special set of consequence relations — by no means the only ones
— which have a deduction theorem for —. Such consequence relations are fully de-
termined by their sets of tautologies. Indeed, it is standard practice to identify modal
logics with their set of tautologies. We will stick to that tradition; however, we will
see in Section[3.1|that for a given set of tautologies there exist other consequence re-
lations with useful properties. Thus we call a set A C P, a modal logic if A contains
all tautologies of boolean logic, is closed under substitution and modus ponens, that
is, if ¢ € A then ¢” € A for a substitution o, and if ¢ € A and ¢ — ¥ € A then
¥ € A. The relation +, is then defined via

(cmp.) A rp @ iff there is a finite set Ag C A such that ded(Ag, @) € A .

Let a logic A be given. Fix an operator O of the language for A. O is called clas-
sical in A if the rule (clO.) is admissible; if (moO.) is admissible in A, O is called
monotone in A. Finally, if (mn.) is admissible, and if A contains the axiom of box
distribution, which is denoted by (bd—.) O is called normal in A.

Fpou Fo—o Y (mn.) Fo

o) o ooy I op > oy ) g

(bd—.) F O(p — ¥). — .0¢ — Y

A normal operator O of A is monotone in A; a monotone operator of A is classical in
A. A logic is classical (monotone, normal) if all its operators are classical (mono-
tone, normal). Two formulae ¢, Y are said to be deductively or (locally) equivalent
in a logic A if ¢ & ¥ € A. Classical logics have the property that ; and y, are
deductively equivalent in A, if y, results from ¢ by replacing in ¢| an occurrence
of a subformula by a deductively equivalent formula.

ProposiTioN 2.1.1. Let A be a classical modal logic and ¢ < ¢, € A. Let | be
any formula and let yr, result from replacing an occurrence of ¢ in Y| by ¢>. Then
lﬁ] L l//z € A.

Proor. Notice that the following rules are admissible in addition to (clz.), by
the axioms and rules of boolean logic.
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Fay o a FBL < B (=) Fap & ap

cdA. _ =
( ) Fal/\,B1<—>cx2/\ﬁ2 F o) © nar

By induction on the constitution of ¢ it is shown that | < ¢, € A, starting with
the fact that ¢; & ¢, € A and p & p € A the claim follows. O

ProposiTioN 2.1.2. Let A be a classical modal logic. Then for any formula ¢
there exists a formula W which is deductively equivalent to ¢ and is composed from
variables and negated variables, 1 and T using only A, Vv, O; and ¢}, j < k.

For this theorem it makes no difference whether the symbols L, V and ¢;, j <
Kk, are new symbols or merely abbreviations. The dual of a formula is defined as

follows.
d _

p = p

(T)¢ = 1

()¢ = T

(A = vyl
(evy) = i ay?
@)y = 0!
0 = o

The dual is closely related to negation. Recall, namely, that in boolean algebra nega-
tion is an isomorphism between the algebras (A, —, N, U) and (A, —, U, N). The fol-
lowing theorem — whose proof is an exercise — states that for axioms there typically
are two forms, one dual to the other.

ProposiTioN 2.1.3. Let A be a classical modal logic. Then ¢ — ¥ € A iff
Yl — ¢l e A

In monotone logics we can prove that an alternative version of the (bd—.) pos-
tulate, (bdA.), is equivalent.

(bdA.) FO(p AY). & .0p A Oy

ProposiTioN 2.1.4. Let A be a classical modal logic, and 00 be a modal operator
of the language of A. (1.) (mn.) is admissible for an operator O in A if OT € A. (2.)
If A contains (bd—.) and OT then O is normal in A. (3.) If O is monotone in A, the
postulates (bdA.) and (bd—.) are interderivable in A.

Proor. (1.) By assumption, OT € A and therefore - OT < T. Now assume
+ ¢. Then + ¢ & T and so, by (clO.), + Op < OT. Using this equivalence we
get - Oy < T, that is, + Og, as required. (2.) By (1.), (mn.) is admissible. (3.)
Assume (bd—.) is in A. Then, since - ¢ A . — .p and + ¢ A . — . we have,
by (mo0.), + O(¢ A ¥) — Op and + O(p A ) — O¢. Now by boolean logic we get
FO(p AY). — .O¢p A Oy. Next, since it holds that - ¢. — . — (¢ A ), with (moQO.)
we get - Op. — .OW — (¢ Ay)). Using (bd—.) and some boolean equivalences
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we get - Op. — .O¢ — O(p A ¥), from which the remaining implication of (bdA.)
follows. Now assume (bdA.) isin A. Then + O(p — ¥) A Op. — .O(@ = Y. A .p).
Furthermore, we get - O(p — ¥.A.¢) — O, by (mor.). Hence + O(¢ — ¥)AOp. —
.0y, which is equivalent to (bd—.). O

The smallest classical modal logic will be denoted by E,, the smallest monotone
logic by M, and the smallest normal modal logic by K, (after SauL KripkEg). The in-
dex « is dropped when « = 1, or whenever no confusion arises. Notice that since
these logics are determined by their theorems, it is enough to axiomatize their theo-
rems. This is different from an axiomatization of the proper rules (see Section [3.9).
Notice, namely, that when our interest is only in axiomatizing the theorems, we can
do this using the admissible rules for deriving theorems. A classical logic (mono-
tone logic) can be identified with its set A of theorems, which is a set containing all
boolean tautologies and which is closed under modus ponens, substitution and (cld.)
or, for monotone logics, (mod.). A quasi-normal logic is a modal logic containing
K. A quasi-normal logic is normal iff it is closed under (mn.). Notice that in a nor-
mal logic, the rule (monO.) is in fact derivable. The smallest normal k—modal logic
containing a set X of formulae is denoted by K,(X), K,.X or K,®X, depending on the
taste of authors and the circumstances. The smallest quasi—normal logic containing
a set X is denoted by K, + X. Similarly, if A is a (quasi—)normal logic then the result
of adding the axioms X (quasi—)normally is denoted by A & X (A + X). In particular,
there is a list of formulae that have acquired a name in the past, and modal logics are
denoted by a system whereby the axioms are listed by their names, separated mostly
by a dot. For example, there are the formulae D = ¢T,4 = ¢0p — ¢Op. The logic
K(¢T) is denoted by KD or also K.D, the logic K(¢¢p — ¢p) is denoted by K4, and
so forth. We will return to special systems in Section[2.5]

Let us now turn to the calculi for deriving theorems in modal logic. Let a logic
be axiomatized over the system K, by the set of formulae X, that is, consider the logic
now denoted by K, ® X. For deducing theorems we have the following calculus. (We
write + ¢ for the fact ¢ € K, @ X. Also, Fgc ¢ means that ¢ is a substitution instance
of a formula derivable in the calculus of boolean logic.)

(bc.) Foiftpe (bd—.) +DOip = ¥). — .09 > Oy
(i<k)
(ax) FgforallpeX (mp.) W
He Fe .
(sh.) F o (mn.) F O (i<k)

Thus, there are axioms (bc.), (ax.), (bd—.) and the rules (mp.), (sb.) and (mn.)
(for all operators). Notice that the way in which we have stated the rules they are
actually so called rule schemata. The difference is that while in an ordinary rule
one uses propositional variables, here we use metavariables for formulae. Thus, with
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an ordinary rule the use of a rule schema like + ¢/ + O;p is justified from the rule
F po/ F O;po by uniform substitution of ¢ for pg. In view of the fact proved below
that any proof can be rearranged in such a way that the substitutions are placed at the
beginning, we can eliminate the substitutions since we have rule schemata.

Although the ordering of the application of the deductive rules (mp.), (sb.) and
(mn.) is quite arbitrary it is actually the case that any proof can be reorganized in
quite a regular way by rearranging the rules. Consider an application of (mn.) after
(mp.) as in the left hand side below. There is an alternative proof of + 0Oy in which
the order is reversed. This proof is shown to the right.

Fo Fo—o Y
Fy
I—Dl,b
Fe—oy
Fo FOlp = ¥) FO(p = ¢). » .Op - OY
F Op FOp — Oy
I—Dl,b

This shows that (mn.) can be moved above (mp.). However, this does not yet show
that all applications of (mn.) can be moved from below applications of (mp.). A
correct proof of this fact requires more than showing that the derivations can be
permuted. One also needs to show that the procedure of swapping rule applications
will eventually terminate after finitely many steps. In this case this is not hard to
prove. Observe that the depth in the proof tree of the particular application of (mn.)
decreases. Namely, if the depth of ¢ is i and the depth of ¢ — ¥ is j then the
depth of + y is max{i, j} + 1 and so the depth of + Oy is max{i, j} + 2. In the second
tree, the sequent + O has depth i + 1 and the sequent  O(¢ — ) is j+ 1. Both
are smaller than max{i, j} + 2. Let the deepest applications of (mn.) be of depth §.
By starting with applications of depth 6 we produce applications of depth < ¢, so
the instances of (mn.) of depth ¢ can all be eliminated in favour of (twice as many)
applications of depth < §. Now it is clear that the reduction will terminate.

Next we look at substitution. The place of (sb.) in the derivation can be changed
quite arbitrarily. This is due to the fact that our rules are schematic, they are oper-
ative not only on the special formulae for which they are written down but for all
substitution instances thereof. So, if we apply a certain rule, deriving a formula ¢
and apply (sb.) with the substitution o, then in fact we could have derived ¢ directly
by applying (sb.) on all premises of the rule and then using the rule.

Fe Fo—= Y Fo Fo =Y
HyY Fo” - y)”
Y Y

Notice that (¢ — )7 is the same as + ¢ — 7. Finally, note that (mn.) can be
permuted with (sb.), that is, the two derivations below are equivalent.
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Fey Fey
+ 900' + ngo
FOje” F(Oje)”

Notice that (Op)” = O(¢”), so the second derivation is legitimate. We have now
established that (sb.) can always be moved at the beginning of the proof. Hence
it can be eliminated altogether, as we have remarked earlier. The proof that this
commutation terminates is here simpler than in the first case.

We can now prove an important theorem about the relation between quasi—
normal closure and normal closure. To state it properly, we introduce the following
important bit of notation. Given a set A of formulae, put

=OA = A

RA = {Od:i<k,d€A}
A = m(RFA)

R¥A = g ®A

ROA 1= ey BFA

The notation RXA is also used for ®=¥A. In all these definitions, A may also be
replaced by a single formula. If, for example, « = 2 then

R'e {Doe, T1p)
= = {OpOog, DoOip, 01 Doy, 0101 ¢)

®“A is effectively the closure of A under all rules (mn.) for each operator.

THEOREM 2.1.5. Let A be a normal logic. Then A ® A = A + R’A. Moreover,
¥ € A® A iffy can be derived from A U RYA® by using modus ponens alone, where
A is the closure of A under substitution.

Proor. We can arrange it that a derivation uses (mn.) only at the beginning of
the proof. (mn.) is a unary rule, so it can under these circumstances only have been
applied iteratively to an axiom. Likewise, the use of substitution can be limited to
the beginning of the proof. O

In case ®XA is finite, we also write ®*A in place of /\ ®A and ®=¥A in place of
A ®=¥A. Here, for a finite set I" of formulae, A I" simply denotes the formula Ay :
v € I'). However, notice that the latter definition is not unambigous. First, we need
to fix an enumeration of I, say, I' = {y; : i < n}. Next, we let AT := A,.,v:. The
latter is defined inductively by

Ni<o Vi =T

Nict Vi = Yo

Nic2Yi = YoA
/\i<n+l Yi = (/\i<n 71’) A Yn

In the last line, n > 2. Technically speaking, A I' depends on the enumeration of I'.
This will not matter as long as we deal with formulae up to deductive equivalence.
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However, in syntactic manipulations (for example, normal forms) the differences
need to be dealt with. Here we fix beforehand a well-order on the set of formulae.
This well-order defines a unique order on I

Finally, we introduce the notion of a compound modality. Suppose that ¢ is a
formula such that #var(¢) = 1 (that is, ¢ contains occurrences of a single sentence
letter) and which is built using A and O;, j < «. Then ¢ is called a compound
modality. For example, Op0;p A O;0¢pp is a compound modality, and so is Op(p A
O, p). We say that ¢ is normal in A if from ¥ € A we may infer () € A, and if
oW1 = ¥n). = o) = eWn) € A. So, a normal compound modality satisfies
the same axioms and rules as a normal operator, except that it is not necessarily a
primitive symbol of the language.

ProposiTiON 2.1.6. Let ¢o(p) be a compound modality. If all operators occurring
in ¢ are normal, so is .

Proor. We show by induction that the compound modalities admit (mn.) and
satisfy (bdA.). We leave it to the reader to verify that the operators are classical. Let
w(p) = Y1(p) A Ya(p). Assume that ¢ and ¢, are normal. Then

Fyi(p A Aa(p A q)
Foogi(p) Ai(g) Aa(p) Aga(q)
Foodn(p) Aa(p). A (g A alq)
Foo(p) Ae(q)

and conversely. Thus ¢ satisfies (bdA.). Now assume + y. Then F ¢ (y) and F 2 (y),
by assumption. Thus + 1 (x) A ¥2(x), that is, F ¢(x), as required. Now let ¢ = 0.
Then we have

e(p Ag) FOp(p A @F O;(F(p) Ay(g)F Opp(p) AOj(q) ,

and conversely. Furthermore, from F y we may conclude F ¥(y), by normality of i,
and + O(y), by normality of O0;. O

o(p A q)

It follows that a compound modality can be rewritten into the form A;_, ¥i(p),
where each y;(p) consists just of a string of modal operators prefixed to the variable.
We will use the following notation for such operators. If o is a finite sequence in «
write O for the operator prefix obtained in the following way.

o/ =0

JO AT
j O = I:I]I:I

Moreover, for the empty sequence €, O° will be the empty prefix. So, 0@ = ¢ (the
two are syntactically equal). Modulo deductive equivalence in K, any compound
modality is of the form A, , 0% p. Let s be a finite set of finite sequences in k. Then

o'p = /\ o'p

TES

The following theorem is easily proved.
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ProposiTiON 2.1.7. Any compound modality is deductively equivalent to a com-
pound modality of the form O°p, where s a finite set of finite sequences of indices.

To make life easy, we use B as a variable for an arbitrary compound modality.
With Y a set we write BY for {B6 : 6 € Y}.

ProposiTioN 2.1.8. Let A be a normal modal logic, X a set. Then y € A ® X iff
there is a compound modality B and a finite set Y C X*, X* the closure of X under
substitution, such that BY Fp .

Proor. Clearly, we know that if y € A & X then ¢ can be derived from A and
a finite subset ¥ € X* using modus ponens and (mn.). Then y can be derived from
A and a finite set Z of formulae of the form B,y;, i < m, y; € Y, using only (mp.).
Put @p := A, Bip. Then By; +k, B;x;. Thus the compound modality B and the set
{xi : i < m] fulfill the requirements. O

Let 8, and &, be two compound modalities. We write 8] <, B, if B;p — H|p €
A. Tt is not hard to see that this ordering is transitive and reflexive. Put @, ~, &, if
both B; <, B, and B, <, B;. We define

(8, U EL)(p) B1p A B2p
(@ oEy)(p) = ®E(@2p)

ProposiTioN 2.1.9. The compound modalities, factored by the equivalence ~,
form a semilattice with respect to U and a monoid with respect to o and O°¢. Moreover,
the following distribution law holds.

By o (B2 U B3) ~a (8 0 82) U (8; © B3)
The proof of this theorem is straightforward.

Exercise 30. Show that in classical logic, the formula ded(\¥, ¢) defined in Sec-
tion[1.6|is equivalent to A yey . — ..

Exercise 31. Show that negation is a classical modal operator but not monotone.
Show also that O;¢ < —¢;—¢ is a theorem in E,.

Exercise 32. Show that in a classical logic, (moQ.) is interderivable with the rule
(mo9.).

o0 ot S

Exercise 33. Prove Propositions and

Exercise 34. The least modal logic is the logic which is just the closure of the tau-
tologies of boolean logic under substitution and modus ponens. Show that in the
minimal modal logic ¢ is a theorem iff there exists a substitution o such that ¢ = ¢
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for some non—-modal, boolean tautology . Show further that X + ¢ iff there exists a
substitution o~ such that X = Y and ¢ = ¢ for some non—-modal Y and ¢ such that
Y + . Thus the minimal modal logic is decidable. Hint. Show that in each proof
subformulae of the form O¢ can be replaced by a variable p; for some i.

Exercise 35. Show that all compound modalities are classical if the basic operators
are classical.

2.2. Modal Algebras

From the general completeness theorems for logics we conclude that for modal
logics of any sort there is a semantics based on term algebras and deductively closed
sets. Moreover, consequence relations for modal logics of any kind are determined
by matrices of the form (Tm(var), A), where A is deductively closed, or, to be more
general, by matrices (2, D) where A = (A, 1,—,N,(m; : i € k)) is an algebra of an
appropriate signature and D a deductively closed set. We focus here on algebras
whose reduct to the boolean operations is a boolean algebra. Call an expanded
boolean algebra an algebra (A, 1, —,N, F), where (A, 1,—,N) is a boolean algebra
and F a set of functions. We are interested in the question when a modal logic is
complete with respect to matrices over expanded boolean algebras.

THEOREM 2.2.1. Let A be a classical modal logic. Then A is determined by a
class of reduced matrices over expanded boolean algebras.

Proor. Let Tm(var) be the algebra of terms. Define an equivalence relation ®
on the set of formulae by ¢ ©® y iff ¢ & ¥ € A. By Proposition ®isa
congruence relation on Tm(var). Moreover, if ¢ is a formula and A a deductively
closed set then either [6)]® N A = @ or [6]® C A. Hence ® is admissible in any
matrix M := (Tm(var), A), where A is a deductively closed set with respect to 4.
N/O is an expanded boolean algebra. Now, by the results of Section Fa is the
intersection of all gy, where It = (Im(var), A), A deductively closed in +-». Hence
it is the intersection of Fyy/@. O

The converse of this implication is not generally valid. This theorem explains the
fundamental importance of classical logics in the general theory of modal logic.
We can now proceed to stronger logics and translate the conditions that this logic
imposes into the language of expanded boolean algebras. For example, the postulate
of monotonicity is reflected in the following condition.

(mna.) If a < b then m;a < m;b

In the general theory it has been customary to reserve the term modal algebra for
expanded boolean algebras which correspond to normal modal logics.

DerntTION 2.2.2. A (poly—) modal algebra is an algebra
A = <A’17_’m’<.i : l<K>>
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where the following holds.
() (A, 1,—,N) is a boolean algebra.
2)ml=1landm(xNy)=mx.N.Myforalli<«kandx,y e A.
With « given, A is called k—modal.

Let U and B be two boolean algebras. Amap 2 : A — B with (1) = 1 and
h(x N'y) = h(x) N h(y) is called a hemimorphism. The name derives from Greek
hemi- (half) and morphe (shape), just like homomorphism is from Greek homo-
(same) and morphé. So, the name says that a hemimorphism preserves only half the
shape. By definition, then, a modal algebra is a boolean algebra expanded by a set
of endo—hemimorphisms. We will expand on this theme in Section [4.5]

The abstract machinery of general logic can provide us now with the canonical
definition of a model. A model consists of a matrix and a valuation. A matrix is
a pair consisting of an algebra and a deductively closed set. In classical logics we
have seen that the algebras can be reduced to expanded boolean algebras and that we
can choose maximally consistent sets, that is, ultrafilters. The general completeness
theorem says that if in a logic A we have X ¥ ¢ then there is a model for A such
that X holds in the model but ¢ does not.

DermntTioN 2.2.3. An algebraic modelis a triple M = (U, B, U) where W is a
modal algebra, B a map from the set of variables into A and U an ultrafilter in . We
say that ¢ holds in M, in symbols M & ¢, if B(p) € U. We write (N, U) £ ¢ if for all
B, (U, B,U) £ ¢ and we write U & ¢ if for all ultrafilters U and all valuations 3 we
have (A, B,U) E ¢.

ProposITION 2.2.4. Let A be a modal algebra. Then A e ¢ iff for every B, B(g) =

Proor. Suppose that A £ ¢. Then (U, 5, U) k ¢ for all valuations  and ultrafil-
ters U. Hence, given 8, B(¢) € U for every ultrafilter. So, B(¢) = 1 for all 8. Now
assume A ¢ ¢. Then there exists a valuation 8 and an ultrafilter U such that 8(¢) ¢ U.
Hence for this 8, B(¢) # 1. O

ProposiTiON 2.2.5. Let M = (A, B, U) be an algebraic model. Then
(i.) ME - iff ME .
(ii.) MeeAY iff MEpand ME Y.

This notion of algebraic model was chosen to contrast it with the geometric
models based on Kripke—models. However, recall from Chapter the notion of
a unital semantics. A class of matrices based on modal algebras is called a unital
semantics in the sense of that definition if it has at most one designated element.
Since the set of designated elements is deductively closed, and so is a filter, in an
algebra of the class of modal algebras there is always a designated element and it is
the unit element, 1. By the Proposition for a modal logic which has a unital
semantics we must have p; g; ¢(p) + ¢(q). Putting T for p we get g; o(T) + ¢(g). In
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particular, for ¢(g) := O;q we deduce that ¢ + O;q. Although this is not a rule of
the standard consequence relation, we will show in Chapter [3.1] that for each logic
there exists a consequence relation, denoted by -4, with the same tautologies, in
which the rules ({p},0;p), j < k, are derived rules. Since we are mostly interested in
tautologies only, it is justified to say that there is a unital semantics for modal logic.

For an algebra A we write ThU = {p : A £ ¢} and for a class K of algebras
we put ThX = ((ThU : A € K). Furthermore, for a set A of formulae we write
Alg(A) to denote the class of algebras such that 2 £ A. The operators Th and Alg are
antitonic. That means, if X € £ then ThL 2 ThX, and if A € Z then AlgA 2 Alg X.

ProposITION 2.2.6. Let A be a set of k—modal formulae, and X a class of k—modal
algebras. Then the following holds.
(1) ACThX iff AlgA 2 XK.
(2) ACThAIgA.
(3) XCAlgThX.
(4) AlgA = AlgThAlg A.
5) ThX =ThAIlgThX.

Proor. (1.) A C ThX iff for all A € K we have A £ A iff for all A € K we
have A € Alg A iff X € AlgA. (2.) From AlgA C Alg A we deduce with (1.) that
A € ThAIgA. (3.) From ThX € ThX and (1.), X € AlgThX. (4.) By (3.),
AlgA C AlgThAIgA. By (2.), A € ThAIgA, and so AlgA 2 Alg Th Alg A. The two
together yield the claim. (5.) Analogous to (4.). O

Hence, the maps X — Alg ThX and A — Th Alg A are closure operators. The
closed elements are of the form Alg A and ThX, respectively. The next theorem
asserts that the closed elements are varieties and normal modal logics, as expected.

ProposiTioN 2.2.7. For all A, Alg A is a variety of k—-modal algebras. For all X,
Th X is a normal k-modal logic.

Proor. For the first claim it will suffice to show that Alg {¢} is a variety. For in
general, Alg A = (N e Alg {e}. Tt is left as an exercise to verify that the intersection
of varieties is a variety. So, let ¢ be given. We have to show that Alg {¢} is closed
under products, subalgebras and homomorphic images. First, if Th2; 2 ® then also
Th [1ie; W; 2 @. For let B := [[;; ; and g; : B - U, be the projection onto the ith
component. Let y be a valuation on B. Then §; := g; o ¥ is a valuation on ;, and
we have B.(¢) = 1. However, B,-(go) = g; o Y(¢). Hence, foralli € I, g; o y(¢) = 1.
Thus y(¢) = 1. So, B k ¢. This shows closure of Alg® under products. Next let
i:B>> AWand A k ¢. Suppose 7y is a valuation into B. Then S := i o y is a valuation
into 2. By assumption, B(¢) = 1. However, B(¢) = i o y(¢) = 1; hence ¥(¢) = 1,
since i is injective. Thus Alg {¢} is closed under subalgebras. Finally, we show that
if h : A - Bthen ThB 2 ThA. Now suppose that y is a valuation on B. Take a
valuation 8 such that A(B(p)) = y(p). Then 1 = B(p) implies 1 = A(B(g)) = Y(¢).
Thus, Alg {¢} is also closed under homomorphic images; and so it is shown to be a
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variety. Now, take a class K of modal algebras. We want to show that its theory is a
modal logic. We leave it to the reader to verify that the intersection of modal logics
is again a modal logic. Hence we may specialize on the case K = {2}. Clearly, since
A is an expanded boolean algebra, Th 2 contains all boolean tautologies. Moreover,
by definition, it is a classical logic, contains O; T and satisfies (bdA.). Hence we have
a monotonic logic by the first fact, and we have (bd—.) by the equivalence of the
latter with (bdA.) in monotonic logics. |

Let us now note that we have shown that each set of formulae gives rise to a variety
of algebras. They can be obtained rather directly by appeal to Theorem[1.5.3] It says
that a logic is determined by its reduced matrices. Now define an equivalence =, by
¢ =x Y iff o & € AL If A is classical, this is a congruence. Hence put

Sra(var) ;= Tm(var)] =

The boolean reduct of Fr, (var) is a boolean algebra. So, the algebra is an expanded
boolean algebra.

Lemma 2.2.8. Let A be classical. Then Th §rp(var) = A.

Proor. Suppose ¢ ¢ A. Then ¢ #o T and so because for the natural map
v /=5 we have v(p) # 1. Therefore we also have (Fr, (var), {1}) # ¢. Hence
there is an ultrafilter U not containing ¢, and for that ultrafilter (Fr,(var), v, U) £ ¢,
as required. On the other hand, if ¢ € A and h : Tmp(var) — Fra(var) is a
homomorphism, then let o be a substitution defined by o(p) = ¥, for some ¢,
such that h(p) = v(¥,). Then h(p) = v o o(p) and so h = v o . In particular
h(p) = v o o(p). Since ¢ € A we also have o(¢) € A by closure under substitutions.
Thus v(o(¢)) = 1, by definition. Consequently, h(¢) = 1 for all i, showing that
Fra(var) E . O

This last theorem is extremely important. It tells us not only that each logic has an
adequate set of algebras, it also tells us the following.

THEOREM 2.2.9. The map Alg is a one—to—one map from normal k—modal logics
into the class of varieties of k—-modal algebras.

Proor. Clearly, we have shown that each set of formulae defines a variety of
x—modal algebras, and each class of k—modal algebras defines a normal k—modal
logic. Furthermore, for two logics A # O the varieties must be distinct, because
either A 2 ® or ® 2 A. In the first case Frp(var) ¢ Alg® and in the second case
Fre(var) ¢ Alg A. O

This shows that algebraic semantics provides enough classes to distinguish logics.
We will see in Section [4.2] that distinct varieties give rise to distinct logics, so that
the correspondence is actually exact. Notice also the following. The cardinality of
the free algebra is at most ||P,||. Moreover, for a countermodel of ¢ we only need to
consider finitely generated subalgebras of that algebra.
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Figure 2.1.

THEOREM 2.2.10. Let A be a k—modal logic with at most countably many vari-
ables, k > 0. If ¢ ¢ A then there exists an algebra W of cardinality < max{Ny, k} such
that W ¢ . In particular, if k is at most countable, so is .

Exercise 36. Prove Proposition[2.2.3]
Exercise 37. Let B = [];c; U;. Show that ThB = ,; ThA,.

Exercise 38. Show that the (possibly infinite) intersection of varieties is a variety
again. Likewise, show that the (possibly infinite) intersection of normal modal logics
is a normal modal logic again. Hint. Use closure operators.

2.3. Kripke—Frames and Frames

The most intuitive semantics for normal (and also quasi—normal) logics is based
on relational structures, so—called frames. A frame is defined in two stages. First,
a Kripke—frame for P, is a pair f = (f,(<; : i < k)) where f is a set, called the
set of worlds, and each «;, i < «, is a binary relation. <; is called an accessibility
relation. More precisely, <; is the accessibility relation associated with O;. It is not
required that the set of worlds be nonempty. Frames can be pictured in much the
same way as directed graphs. In fact, with only one accessibility relation, the two
are one and the same thing. The worlds are denoted by some symbol, say e, and
the relation is just a collection of arrows pointing from a node x to a node y just in
case x <y. Some authors do not use arrows; instead they have an implicit convention
that the arrows point from left to right or from bottom to top. (This is similar to
the conventions for drawing lattices.) Especially when there is only one relation,
several shorthand notations are used. First, o standardly denotes a reflexive or self—
accessible point, while e denotes an irreflexive point. Figure illustrates this.
There are four points, one is irreflexive. Another convention is to use e for reflexive
and x for irreflexive points. In the case of more than one relation, Kripke—frames are
the same as edge—coloured directed multigraphs. Technically, colours are realized as
indices decorating the arrows. Notice that the shorthands for reflexive and irreflexive
points are now insufficient, so it is generally better to use a subscripted turning arrow
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FiGure 2.2.
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instead (O for example). In that case we will use e for worlds throughout. A
substitute policy for a polymodal Kripke—frame f = (f,(<; : i < k)) is to present
itas aset{f; : i < «}, f; = (f, <), of monomodal frames. This makes drawing of
the frames simpler, although imagining such a frame is more difficult as compared
to the coloured graphs.  Each particular pair (x,y) such that x <; y is also called a

Jj—transition or simply transition of the frame. We also write x — y for the fact that
there is a j—transition from x to y. This notation is generalized to sets of sequences s

in the following way. Given a set of sequences s the symbols x <* y and x 5 y are
synonymous. For a sequence 7, x <7 y is defined by induction on the length. If 7 = €
(the empty string), x <" y iff x = y; if T = 77, j < «, then x <7 y iff there exists a z
such that x <™ z and z <; y. Finally, for s = {r; : i < n}, where each 7; is a sequence,
x <%y iff x <"y for some i < n.

Typically, the idea of these pictures is grasped rather quickly once the reader has
played with them for a while. Readers who wish to have more examples of Kripke—
frames might take a map of the bus connections of some area. The points are the
bus stops, and each bus line defines its particular accessibility relation between these
stops. A pointed Kripke—frame is a pair (f, x) where x € f. A model based on
f consists of two more things, a valuation and a specification of a special reference
world. A valuation is a function 8 : var — 2/. A Kripke-model is a triple 9t :=
(f,B, x), where x € f and B is a valuation on {. For every proposition in P, we can
now say whether it is accepted or rejected by the model. This is defined formally as
follows.

(md0.) (.8, x)Fp iff  xe€p(p)

(md-.) (7,B8,x)F = iff (5.8, x)e¢

mdA.) B x)eEeAy iff  (,B8,x)Epand{f,B,x) kY
(mdo;.) (,B,x) E O iff forallywithx<;y (,B,)F¢

Notice that when defining the model condition for a formula ¢ it is not necessary to
assume that 8 is defined on all variables; all that is needed is that it is defined on all
variables of ¢. From a theoretical point of view it is mostly preferrable to assume
B to be a total function. However, for practical computation and decidability proofs
(see Section we will prefer 8 to be a partial function, defined at least on the
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relevant variables. If 8 is a partial function we also say that it is a partial valuation.

Given a valuation 8, we can extend 8 to a map 8 which assigns to each formula
the set of worlds in which it is accepted.

(hex.)  B(e) = {x: (1B, x) F ¢}

Itis not hard to see that B(=¢) = f—B(p) and that B¢ Ay) = B(¢) NB(). Therefore,
B is a boolean homomorphism from the boolean algebra of modal propositions into
the powerset algebra of f. Moreover,

B@ip) = {x: (V)(x < y. = (1.B,y) F o)}
Thus define the following operation on subsets of f
(algo.) ma:={x:(Vy)(x<y. = .ye€a)l
Then B(0¢) = m;B(p).

DerintTiON 2.3.1. A (polymodal) frame is a pair § = (f, F) where | = (f,{<; :
i < k)) is a Kripke—frame and F a set of subsets of f such that (F, f,—, N, (M; : i < k))
is a polymodal algebra. Alternatively, F is a set of subsets closed under boolean
operations and the operations W; defined via (algQ.) on the basis of the relations <;
underlying §. A pointed frame is a pair (&, x) where § is a frame, and x € f a
world.

Standardly, frames in our sense are called generalized frames. For the purpose
of this book, however, we want to drop the qualifying phrase generalized. This has
several reasons. First, the nongeneralized counterparts are called Kripke—frames,
and so there will never be a risk of confusion. Second, from the standpoint of Du-
ality Theory it is generalized frames and not Kripke—frames that we should expect
as natural structures. (See Chapter [d]) And third, given that there exist numerous
incomplete logics it is not a luxury but simply a necessity to use generalized frames
in place of Kripke—frames.

In a frame (f,F), a set a C f is called internal or a situation if ¢ € F. If
a ¢ F, a is external. So, a frame combines two things in one structure: a Kripke—
frame and an algebra. Due to the presence of the underlying relational structure,
it is unnecessary to specify the operations of that algebra and so it shows up in an
impoverished form only as a set of sets. From an ideological standpoint we may call
frames also realizations of algebras. More on that in Section[4.6] A valuation into
a frame is a valuation into the underlying Kripke frame which assigns only internal
sets as values. Since the set F is closed under all relevant operations, the following
is proved by induction on the structure of the formula.

Proposition 2.3.2. Let (f,F) be a frame and 3 : var — 2f be a valuation on .
If B(p) is internal for all p € var then B(p) is internal for all . Moreover, B is a
homomorphism from Tmp (var) to (F,1,—,N,(W; : j < k)).
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A (geometric) model based on the frame § is a triple (¥, /3, x), where S is a
valuation and x a world. Notice that models based on frames as well as Kripke—
frames are called geometric because they use a world to evaluate propositions. Recall
that in the algebraic model we had ultrafilters; an algebraic model is a triple (2, 3, U),
where U is an ultrafilter on 2. We will see in Chapter [4] that every modal algebra is
isomorphic to an algebra of internal sets over some Kripke—frame. Thus the principal
difference between the algebraic and the geometric approach is the use of ultrafilters
as opposed to worlds. In that respect an algebraic model is still more flexible. For if
we have a world x, we also have a corresponding ultrafilter, U, := {a : x € a}. But
not every ultrafilter is of this form. There exist, however, classes of frames where
every model based on an ultrafilter has an equivalent model based on a world. These
frames are called descriptive. More on that in Section 4.6

Now we come to the interaction between models and logics. Consider a model
M = (F, B, x). Define Th(M) := {¢ : M E ¢}. Then Th(M) is closed under modus
ponens. Moreover, for each ¢ we have either ¢ € Th(9t) or ¢ € Th(9t) but not
both, by (md-.). So, the set Th(9t) is a theory (by mp—closure) and a maximally
consistent theory. Now, suppose we abstract away from the valuation; that is, we
take the pointed frame (&, x) and define

(tpf.) (F,x)EQ & for all valuations 8 we have (&, 3, x) E ¢

Then the theory of the pointed frame Th (¥, x) = {¢ : (&, x) E ¢} is still closed under
modus ponens; however, we no longer have either ¢ € Th (g, x) or —¢ € Th(%, x),
even though ¢V ~¢ € Th (%, x). Simply take ¢ := p, where p is a variable. However,
Th (%, x) is closed under substitution. Hence, it is a quasi—normal logic, since it
contains all booelan tautologies and (bd—.). In a last step we abstract from the
worlds and consider the theory of the frame alone.

(tfr.) TEQ & for all worlds x and all valuations 8 (&, 8, x) F ¢

Th$ = {¢ : & F ¢} is called the theory of §. This time we not only have closure
under (mp.) and (sb.) but also under (mn.). Suppose, namely, that ¢ € Th§. Then
for all points and all valuations (3, 3,y) F ¢. Take a valuation 8 and a point x. Since
for all y such that x «; y we already have (§, 3, y) £ ¢, we now have (§, 5, x) £ O;.
Hence, since both x and 8 have been chosen arbitrarily, 0,0 € Th §.

THEOREM 2.3.3. Let (§, x) be a pointed frame. Then Th (§, x) is a quasi—-normal
logic. For all frames Th § is a normal logic.

Now, given a quasi—normal logic A and a pointed frame (3, x), we say that (i, x)
is a pointed frame for A if Th (F, x) 2 A; likewise, & is a frame for A or a A—frame
if Th& 2 A. For a given logic A we denote the class of A—frames by Frm(A) and the
class of A—Kripke—frames by Krp(A). We conclude this section with an important
theorem concerning the generated substructures. Consider a generalized frame (f, F)
and an internal set g € F. g is called open if for all x € g and all y such that x <; y
for some j then also y € g. So, g contains all successors of points contained in g.
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We put <1f. = <;N(gxg) andg:= (g, (<1§ : j < k). gis a Kripke—frame. Finally,
G:={ang:aeF}={bC g:beF}. Gisclosed under relative complements; for if
b e Gthen g—b = gnN(f —b) € F; Gis also closed under intersection. Furthermore,
if b € G, then
lé’;b = (xeg: (Vy)(x<1§.y:,~yeb)}

= {xeg:(Vnx<jy=>yeb)

= gNn Ijb s
since g is successor closed. So the map b — g N b is in fact a homomorphism of the
modal algebras. Thus ® := (g, G) is a frame; we say, it is a generated subframe
of §. We denote this by ® < §. In the picture below the box encloses a generated
subframe.

THEOREM 2.3.4. Let ® be a generated subframe of & and x € g. Then Th (6, x) =
Th (g, x). Moreover, Th® D Th §.

Notes on this section. The idea of a Kripke—frame is generally credited to SauL
KrrpkE ([134]), though it can already be found in works of RuboLr Carnap ([38])
and Stic KANGER. Also, Biarnt Jonsson and ALFReD Tarskr in [[113]] presented a fully
fledged algebraic theory of algebras for modal logic. In it they also show that certain
logics have the property that the algebraic structures of that logic are closed under
completion (see Section [4.6)), which they use to show that these logics are complete
with respect to Kripke—frames with certain properties. The notion of a general frame
first appeared with S. K. THoMason in [206]. Before that it was customary to use the
notion of a model, which was just a Kripke—frame together with a valuation. In the
language of generalized frames, a model was equivalent to a generalized frame in
which the internal sets were exactly the definable sets.

Exercise 39. Prove Theorem 2.3.4]

Exercise 40. Let ¢(p) be a compound modality. We say that ¢(p) is based on <, if
for all models: (¥, 5, x) & ¢(p) iff for all y > x we have (&, 5,y) £ p. For example,
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Ficure 2.4. A contraction

[ ) [ ]
0 0
0,1
10 10
0.1 0,1
o ———>0
00 0,1 00

O, is based on <;. Show that if ¢ is a compound modality based on < and v is a
compound modality based on « then ¢ A i is based on <U <« and @[/ p] is based
on<o <

Exercise 41. (Continuing the previous exercise.) Show that [p?] defined by [p?]qg :=
p A g is a normal modal operator. On which relation is this operator based?

2.4. Frame Constructions I

In this section we will introduce a number of ways of creating frames from
frames; in particular, these are the subframes, p—-morphic images and disjoint unions
or direct sums. These notions will first be introduced on Kripke—frames and then
lifted to (general) frames. The most important notion is that of a p—morphism. Let
m: f — gbeamap. misap—-morphism from f to g, in symbols 7 : f — g, if the
following holds.

(pml.) For x,y € f:if x <; y then m(x) <; n(y).
(pm2.) Forxe€ fandu € g: if m(x) <; u then there isa y € f such that
u=mn(y)and x <;y.

We refer to (pml.) as the first condition and to (pm2.) as the second condition on
p—morphisms. If 7 is injective, we write  : f >> g. If in addition r is the identity
on g, g is a generated subframe of f. If x is surjective we call 7 a contraction and
say that g is a p-morphic image or contractum (plural: contracta) of §. We write
n : f —» g. Figure 2.4] provides an example. The Kripke—frame on the right is a
contractum of the Kripke—frame on the left. Another example is (w, <). The
one—element Kripke—frame consisting of a reflexive point is a contractum of (w, <).
Each contraction 7 : f - g induces an equivalence relation ~, on f by x ~, y iff
n(x) = n(y). The equivalence relations induced by p—morphisms can be characterized
intrinsically as follows. A net on f is an equivalence relation ~ such that if x ~ x’
and x <; y then there exists ay’ ~ y such that x" <;y’. This latter condition is called
the net condition. Given a net ~, define [x] := {x" : x ~ X'}, and put [x] <; [y] iff
there exist x” € [x] and y € [y] such that x" <;)y’". We denote by f/~ the Kripke—frame
with worlds [x], x € f, and relations as just defined. We leave it to the reader to
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verify that the map x — [x] : f — f/~ is a contraction if ~ is a net, and that if 7 is
a contraction, then the equivalence ~, induced by r is a net. Nets are just a suitable
way to picture contractions.

Proposition 2.4.1 (Net Extension I). Suppose that § > g and that ~ is a net on
f. Define ~xC gxgbyx=yiff(i.) {x,y} C fand x ~yor (ii.) {x,y} € f and x = y.
Then ~ is a net on g.

The proof is easy and omitted. This theorem is of extreme practical importance;
it says that if ¢ is a contractum of a generated subframe f of g, then it is a generated
subframe of a suitably defined contraction image d of g, see picture below. The maps
denoted by dashed arrows are in some sense unique (we will come to that later), this
is why we put an exclamation mark.

f
¢

If B is a valuation, and 7 a p—morphism, 7 is called admissible for § if for
every x € g and every set S(p) either 77'(x) € B(p) or n7'(x) € —B(p). In other
words, the partition that 7 induces on f must be finer than the partition induced by
the sets B(¢). In that case we can say that 8 induces a valuation y on g by taking
v(p) := {n(x) : x € B(p)}. We say that vy is the image of 8 under 7. Moreover, we
will also write 8 for the valuation 7 if no confusion arises. It should be clear that
every valuation on g can be seen as the image of a valuation on f under a contraction.
Now take an arbitrary p-morphism 7 : f — g. Then the following important theorem
holds.

ProposiTioN 2.4.2. Let r : | — g and let m be admissible for B. Then for every

xef

E—

|

itk =

g
¥
D

@BxEe & (gp,7(x)F¢

Proor. For variables this is true by construction; the steps for - and A are easy.
Now let ¢ = ¢;i. Assume (f,3,x) £ ¢;y. Then there is a y such that x <; y and
({,B,¥) ¥ . By (pml.), n(x) <; n(y), and by induction hypothesis (g, 8, 7(y)) F .
This gives (g,8,n(x)) E ¢;y. Now assume that the latter holds. Then for some u
with 71(x) <; u we have (g, 8, u) £ . By (pm2.) there exists ay such that x <;y and
7(y) = u. By induction hypothesis, (f, 8,7) £ ¢ and so (f,8, x) £ 0, asrequired. O

A remark on the proof. As is often the case, the induction is easier to perform
using ¢; rather than O;. Although the latter is a primitive symbol of the language,
we allow ourselves for the purpose of proofs to take either as primitive and the other
as composite, whichever is best suited for the inductive step.

Now let 7 : f — g be a p—morphism. Let im[r] C g be the set of points 7(x)
for x € f. This is the so—called image of x. It is a subframe of g. Moreover, the
following geometric analogue of the first Noether Isomorphism Theorem holds.
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ProposiTiON 2.4.3. Let w: § — g be a p—morphism. Then there are maps p : T —»
im[n] and { : im[n] > g such that ©r = { o p.

Proor. Put p(x) := n(x) and {(u) := u. First, we show that im[n] is a generated
subframe. This shows that { is a p—morphism. To that end let u# := n(x) and u <; v.
Then by (pm2.) there is a y such that x <; y and n(y) = v. Hence, ¢ : im[n] > g.
Now, consider the map p. Take x, y with x <;y. Then, by (pm1.) 7(x) <; 7(y), whence
p(x) <; p(y). Finally, let p(x) <; u. Then, by definition, 7(x) <; u and by (pm2.) there
is a y such that x <; y and p(y) = n(y) = u. This shows p : f — im[x]. That p is
surjective follows immediately from the definition. O

Take now Kripke—frames, f; = (f;, (<1§. 1j<k)),iel Let

B s=axr
i€l i€l
be the disjoint union of the sets f;. (For simplicity, we standardly assume that the
sets f; are pairwise disjoint and then we put @ie 1 Ji = Ules fi- In general, this is not
without complications, however.) Based on this set we can define the frame @id ii
called the direct sum or disjoint union, via

- (G2, (i y)) i € Ix,y € firx <l y)

J
Burfi = (B fird<T 1 j <)
Intuitively, the direct sum consists of several components, and two points are j—
related iff they are from the same component and are j-related in that component.

The components are just placed next to each other, with no interaction. The direct
sum has the following property.

THEOREM 2.4.4. Let §;, i € I, be Kripke—frames. Then there exist embeddings
€ :fi— @ie ; Ti. Moreover, for every Kripke—frame Y) with p-morphisms k; : f; = b,
i € I, there exists a unique 7 : @ie[ fi — b, which is a p—-morphism such that
noe€ =k foralliel

Proor. It is easy to check that the identity embeddings ¢ : f; — @ie[ f; are
injective p—morphisms. Now assume that b is given and «; : f; = b, i € I. We have to
define 7. Take an element z € EBieIfi' There is an i € I such that z = (i, x) for some
x € fi. Put n(2) := k;(x). m as defined is a p—morphism. For if z «; 7’ for some z and
7, then there is an i and x, x” € f; such that z = (i, x) and 7’ = (i, x"). By construction,
x <; x'. Then n1(z) = k;(x) < ki(x") = n(z’), by the fact that «; satisfies (pm1.). Now
assume 71(z) <; u, z = {i, x). Then n(z) = k;(x) and by the fact that «; satisfies (pm2.)
we have a x” such that x <; x” and x;(x’) = u. Then n({i,x")) = «(x’) = u. So,
7 is a p—morphism; moreover, by definition we get (7 o €)(x) = 7w({i, x)) = ki(x)
for x € f;. Finally, let us see why x is unique. So let { be another map satisfying
all requirements. Let x € f;. Then {({i,x)) = (£ o €)(x) = ki(x) = (mo g)(x) =
n({i, x)). O
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A valuation ¢ on @ie ; fi uniquely determines a valuation §; on §; by {i} X 8i(p) =
o(p) N ({i} x f;). Conversely, given a family S;, i € I, of valuations into f; there is a
unique valuation ., B; on P, f; defined by

EPsow =i <

i€l i€l
The following theorems are left as exercises.

ProposiTioN 2.4.5. Let g, |, f;, i € I, be Kripke—frames.

(1) Ifg »> f then Th(f) € Th(g).
(2) If g - fthen Th(g) € Th(f).
(3) Th(P,., ) = Nier Th().

THEOREM 2.4.6. Let A be a normal polymodal logic. Then if T is a Kripke—frame
for A, so is any generated subframe and any p—morphic image. Moreover, any direct
sum of Kripke—frames for A is again a Kripke—frame for A.

To generalize these notions to frames we need to consider what happens to the
internal sets. First, consider a subframe f > ¢, and let § = (f,F) as well as & =
(9, G). For simplicity we assume that f € g. The map a — a N f is a boolean
homomorphism from (G, g, —, Ny to (2/, f,—,Ny. Consider now the fact that any
valuation 8 on g defines a valuation y on f, namely, y(p) := B(p) N f. In order
for theorems like Proposition to hold we need that for every valuation S the
corresponding valuation 7 is a valuation on &. Hence, we must require that a — an f
is a homomorphism from (G, g, —, N) onto (F, f, —,N).

DEeriNiTION 2.4.7. A map ;. f — g is an embedding of the frame § = (f,F)
in the frame ® = (g, G) if (0.) m is injective, (1.) n(f) € G, (2.) m : f — gisap—
morphism and (3.) the map n~' : a — {x : n(x) € a} is a surjective homomorphism
from (G, g,—,N,(M; : i € k)) to the algebra (F, f,—,N,(M; : i € k)). If all that is the
case we write p : § > ©. If in addition f C g, and r the natural inclusion map we
call § a generated subframe of ® and write n : § < ® or simply § < ®.

The surjectivity of the map n~! for embeddings is actually quite important for
generalizing the factorization theorem, Proposition It would fail otherwise.
Several remarks are in order. First, notice that while the map on the frames goes from
f to g, the corresponding map 71 on the algebras goes from (G, g, —, N, (W, : i € k))
to (F, f,—, N, (m; : i € k)). Moreover, for generated subframes, rather than requiring
that the map is a well-defined homomorphism we require that the map is onto, that
is, all sets of F are restrictions of sets in G. A last point is the requirement that the
image of f under x is internal. This is added for theory internal reasons, since if
this definition is generalized to subframes, this clause is needed. However, it can be
shown to be unnecessary for generated subframes.

Next we turn to contractions. Again, we study the map a — 7 '[a]. This is
a boolean homomorphism from 2¢ to 2/ and we need to make sure that it is also
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a homomorphism of the modal algebras on the frames. Hence, consider the set
¢ := n'[m;a]. It contains all y such that for all u with 7(y) <; u we have u € a. On
the other hand, the set d := m j(n‘l [a]) is the set of all y such that for all z such that
y<;zwehave n(z) € a. If y € c and y < z then 7(y) € m;a. By (pml.) n(y) <; n(z),
hence 7(z) € a, and so z € 77 '[a]. Thus y € d. Now let y € d. To see that y € ¢, we
have to show that 71(y) € m;a. So, assume 7(y) <; u. By (pm2.) there is a z such that
n(z) =uandy<;z. Thenz € 7 1al, by assumption on y, and so u € a, as required.
So, the map a +— 7n~'[a] is indeed a homomorphism of modal algebras.

DEeriNiTION 2.4.8. Let § and ® be frames and nt : f — g amap. mis a contrac-
tion from § to ® if (0.) & is surjective, (1.) m is a p—morphism and (2.) 7' is an
injective homomorphism from (G, g,—,N,(M; : j € k)) into (F, f,—,N,(W; : j € k)).
If all that is the case, we write m : § —» ©.

A nontrivial example is Q := (w, <,0) with O the set of finite and cofinite
subsets of w. Take the Kripke—frame f, = ({0,...,n — 1}, <) where i <« jiff i < jor
i=j=n-1.Next,letg, :=({0,1,...,n— 1}, «), where « = n X n. It turns out

that f, is a contractum of €2, while g, is a contractum only for n = 1. However, g, is
a contractum of (w, <), the underlying Kripke—frame of Q. (It follows that also all
f, are contracta of {(w, <).) We can, finally, define the notion of a p—morphism for
frames.

DEeriNiTION 2.4.9. Let & and ® be frames and m : f — g a map. mwis a p—
morphism from § to ®, in symbols 7w : § — ©, if (1.) n : T — g is a p-morphism
of the underlying Kripke—frames and (2.) n~" is a homomorphism from the modal
algebra (G, g,—,N,(M;: jex))to(F, f,—,N,(W;: j€K)).

In fact, given (1.) it is not necessary to require 7! to be a homomorphism.
Rather, it is enough to require

(pm3.) If a € G then 7~ '[a] € F.

ProrosiTiON 2.4.10. Amap h : f — g is a p—-morphism from & to ® iff it satisfies
(pml.), (pm2.) and (pm3.).

We refer to (pm3.) as the third p—morphism condition. Notice that with the defi-
nitions given an embedding is an injective p—morphism and a contraction a surjective
p—morphism. A generalized frame is contractible to a Kripke—frame if the algebra of
sets is finite. This is the content of the next theorem.

THEOREM 2.4.11. Let & = (§,F) be a generalized frame and F finite. Define an
equivalence relation x ~ y on points by

x~ye MaeF)(x€a. & .yea).
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Put [x] :={y : x ~ y}, [f] := {[x] : x € f} and [x] <; [y] iff there exist X € [x]
andy € [y] such that x <;7y. Then x = [x] is a p-morphism from § onto the frame
(14 2 J < 6,210,

Proor. We have to check the second clause of the p-morphism condition. (The
first is satisfied by definition of <; on [f].) Let [x] <; u. Then there is a y such that
u = [y]. We have to show that there is a y such that x <;y andy ~ y. To see this,
let a, be the intersection of all elements in F containing y (equivalently, let a, be the
unique atom containing y). Since F is finite, a, € F. Theny ~ y iff y € a, iff a5 = a,.
It is checked that x <; y iff a, < #;a,. Now since [x] <; [y] there are X € [x] and
Y € [y] such that X <;7y. It follows that a;z < a5. Since az = a, and a5 = a, we
conclude a, < 4;a,, from which x € ;a,. And so there is a y’ ~ y such that x <; y".
So, the map is a p-morphism. We have seen that the classes p~!([x]) are internal sets
of the form a, defined earlier. Hence, each set has a preimage. O

DEerINiTION 2.4.12. Let §, @ € I, be frames. The disjoint union of the §;,
denoted by @ie] &, is defined as follows. Then underlying Kripke—frame is @ie] fi.
A set is internal if it is a union | J;g;{i} X a;, where a; € F; for each i € I.

ProposiTioN 2.4.13. Let &, i € I, be frames. There exist embeddings e; : &; »>
@ie] i such that for all & and embeddings d; : §; = © there exists a p—morphism
n: @, T — O suchthatd; = moe; foralliel

Proor. Follow the proof of Theorem[2.4.4] The construction is completely anal-
ogous. We only have to check that the map r satisfies the third condition on p—
morphisms. To this end consider an internal set a of ®. Let a; := d;l [a]. By the fact
that d; is a p-morphism, this is an internal set of ;. Now, 77 '[a] = Uje/{i} X d;'[al.
By definition of @ie ; i, this is an internal set. |

A net on a generalized frame & is a net ~ on f such that for each a € F the set
[al. :={y: (Ax € @)(x ~ y)} is a member of F. We write §/~ for the quotient, which
is defined by

&=/~ Alxl:xea}:acl))

ProposiTion 2.4.14 (Net Extension II). Let § be a frame, and ® < §. Let ~ be a
neton ®. Let x = yiff (i.) x,y € gand x ~ y or (ii.) x,y € f —gand x = y. Then =
is a net on §.

Proor. In view of Proposition [2.4.1] we only have to check that for each a € F
we have [a]. € F. To see this,letb :=angandc:=an(f —g). Since g € F we
have b, ¢ € F. Then [a]. = [b]. U c. By assumption on ~, [b]. € F. Hence the claim
is proved. O

Exercise 42. Let ® be a frame and f C g. Show that the mapa — an fisa
boolean homomorphism from 2¢ to 2/. Hence, the condition (2.) of Definition [2.4.7]
is necessary only to ensure that this map is a homomorphism of the modal algebras,
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that is, that it commutes with the modal operators. Show that it is sufficient.

Exercise 43. Show that if in Definition we did not require 77! to be surjective,
then there were injective p—morphisms which are not embeddings.

Exercise 44. Let 7 : § - ® be a p-morphism and x € g. Show that if there
is no chain of length k x = xo <; x; < x2... <; x; then the same holds for 7(x)
as well. Show that if 7m(x) #4; m(x) then a '(n(x)) is a j—antichain, that is, for all
vz € (m(x) y 4 z.

Exercise 45. Prove Proposition and Theorem [2.4.6]

Exercise 46. Formulate and prove Proposition and Theorem for (gener-
alized) frames instead of Kripke—frames.

Exercise 47. Let f = (f,(<; : j < k)) be a Kripke—frame and G a subgroup of the
group Aut(f) of automorphisms of f. Put

[x] :={y: thereexists g € G : g(x) =y} .

Also, put [x] <; [y] if there exist X € [x] andy € [y] such that X <i;y. Show that
x — [x] is a p-morphism. (An automorphism of f is a bijective p—morphism from f
to f. The automorphisms of a structure generally form a group.)

2.5. Some Important Modal Logics

Among the infinitely many logics that can be considered there are a number of
logics that are of fundamental importance. Their importance is not only historical
but has as we will see also intrinsic reasons. We begin with logics of a single oper-
ator. Here is a list of axioms together with their standard names. (In some cases we
have given alternate forms of the axioms. The first is the one standardly known, the
second a somewhat more user friendly variant.)
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Inc L

4 OOp — Op
D OT

B p — Oop
T p—Op

5 Op — OOp

alty Op — Op
Op A Og. = .0(pAq)
O0p — OOp
oOp — O0p
OPAOG. = (P AOG NV O(gAOP)VOPpAQ)
o(@p — p) - Op
Op — O(p A —0p)
Grz o@(p—0p) > p) —p
p = 0(p ADO(=p - O-p))

In addition, there are also logics with special names. For example, S4 is K4.T, S5 is
K4.BT or, equivalently, S4.B. (The dot has no meaning; it is inserted for readability.
Occasionally, several dots will be inserted.) The letter S stems from a classification
by C. I. LEwis, who originally introduced modal logic as a tool to analyse condition-
als. He considered five systems, called S1 to S5, among which only the last two —
namely S4 and S5 — were based on normal modal logics. D originally comes from
deontic, since this postulate was most prominent in deontic logic, the logic of obliga-
tions. Nowadays, D is associated with definal, lit. meaning without end, because in
frames satisfying this postulate every world must see at least one world. G is named
after Kurt GODEL, because this axiom is related to the logic derived by interpreting
O as provable in Peano Arithmetic (= PA); the logic K4.G is called the provability
logic. Often G is also called GL, where L stands for M. H. L6B, who contributed
the actual axiomatization. In [201], RoBerT SorLovay showed that if O is read as it
is provable in PA that then the logic of this modal operator is exactly K4.G. For
the history of this logic see the entertaining survey by GEorGE BooLos and GIovannt
SamBi, [32]]. Finally, the axiom Grz is named after the Polish logician GrRzEGOR-
czyk. Usually, the logic S4.Grz is called GrRzeGorczyks logic. Some authors use G
for K4.G and Grz for S4.Grz. The reason will be provided in the exercises; namely,
it turns out that K.G as well as K.Grz contain the axiom 4. We will use the same
convention here, if no confusion arises. 1 is known as McKINsEY’s axiom, therefore
also denoted by M. 2 is called the GEAacH axiom.

For theoretical purposes, the following two infinite series of axioms are impor-
tant.

alt,, Nicns1 ODi- = - Vicjans1 O(Di A pj)

<m+1

trs,, O p. — O p

QW=

The first holds in a Kripke—frame iff any point has at most n successors, the second
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Ficure 2.5. Important Extensions of K

Inc

Thie] Tho]

\
S5 Grz
K.alt; K5 G S4.3
\54
K4

K.trs,

holds in a Kripke—frame iff any point that can be reached at all can be reached in
m steps. There are not so many polymodal logics which have acquired fame. How-
ever, the most useful logics occur as extensions of a logic with several operators in
which the logic of a single operator on its own belongs to one of the systems above,
and the axioms specifying the interaction of these operators are of a rather simple
type. Therefore, the polymodal logics in which there are no axioms mixing the op-
erators, are an important basic case. The following notation is used here. Given
two monomodal logics, A; and A,, the symbol A; ® A, denotes the smallest normal
bimodal logic in which the first operator satisfies the axioms of A; and the second
operator the axioms of A;. A; ® A, is called the fusion or independent join of
the two logics. Similarly, the notation ®i<ﬂ A; denotes the fusion of ¢ many modal
logics; in general each A; can be polymodal as well. In this logic the operator O;
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satisfies exactly the postulates of A;. Given a logic A, the operator O is called m—
transitive if 05"p — 0<"*!'p € A. O is weakly transitive if it is m—transitive for
some m. A polymodal logic A is called weakly transitive if there is a compound
modality B such that for every compound modality &’, Bp — B'p € A. If « is finite,
we call A m—transitive if it contains the axiom trs,, below and weakly transitive if
it is m—transitive for some m. This notion of weak transitivity coincides with the one

defined earlier for arbitrary «, as can easily be demonstrated.

trs,, ®<"p, — . =" p

(Recall the definition of ® from Section[2.1]) If each basic operator is weakly transi-
tive, A is said to be weakly operator transitive. K4 ® K4 is operator transitive, but
not transitive (as can be shown). A logic is of bounded operator alternativity if for
each operator there is a d such that that operator satisfies alt,;. A is of bounded al-
ternativity if it has finitely many operators and is of bounded operator alternativity.
A logic A is called cyclic if for every compound modality @ there exists a compound
modality B such that p —» B¢ p € A.

Furthermore, the postulates ¢;p — ¢;p are considered. On Kripke—frames they
force the relation <«; to be included in <. Also, the postulates ¢;¢;p <> ¢ ;0;p say that
any point reachable following first <; and then <; is reachable following <; and then
<i; — and vice versa. This is a kind of Church—Rosser Property with respect to i and
Jj. Sometimes, only one implication is considered. Quite interesting is the following
construction. Consider a (polymodal) logic A with operators O0;, i < x. Add a new
operator m = O,. Then call m a master modality if it satisfies the postulates of K4
and the interaction postulates ¢;p — ¢p. If m satisfies S5 it is called a universal
modality.

Important bimodal logics are tense logics. A tense logic is a normal extension
of

Kir=K;®{p > oop,p— aocp)

Here, we have used @ for Op and g for O;. If A is a monomodal logic, then A.t is ob-
tained by interpreting O as 5. There is also the possibility to interpret O as &1. Tense
logical axioms can be derived from monomodal axioms by choosing either interpre-
tation for the operator. Thus, if ¢ is an axiom and we want to interpret the operator
as @, we write ¢*, and if we want to interpret the operator as g1 then we write ¢~.
So, we have logics like S4.7, S5.f and K4.2.D*.D™. The latter is actually the same as
K4D.z.D~. A logic A with 2k operators is called connected if there exists a permuta-
tion 7 : 2k — 2k such that 7> = id and for each i < 2k, p — 0;0x(i), P — Or)0i € A
A connected logic is cyclic.

Exercise 48. Recall from Proposition that Ko g — ¢ = Koy — ¢, Write
down the axioms you obtain for the axioms presented in this section if you apply this
operation.
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Exercise 49. Show that K.G 2 K4. Proceed as follows. Suppose we have an in-
transitive Kripke—frame f and we want to show that it is also not a Kripke—frame for
K.G. Then there must be points x <t y < z such that x # z. Now put as a valuation
B(p) = {y,z}. Then x £ Op; ~0(p A =¢Op). But this trick works only for Kripke—
frames. Nevertheless, it gives a clue to a solution which is completely syntactical,
and therefore completely general. Assume that {¢¢p, =0p} is consistent in K.G.
Then put ¢ := pV Op. Now {00p, 70p} Fk.g O¢. Show that this leads to a contradic-
tion. The relation with the Kripke—frame is the following. A violation of transitivity
can be documented by taking y(p) := {z}. Now we have y(¢) = {y,z} = B(p), the
desired set documenting the failure of G. (The proof that transitivity is deducible in
K.G is attributed to Dick bE JonGgH and GIOVANNI SAMBIN in [9].)

Exercise 50. Show as in the previous exercise that K.Grz 2 K4. Hence, 4 is dis-
pensable in the axiomatization.

Exercise 51. Show that S4.Grz = K@ p — ¢(p A O(=p — O-p)). (See [14].)

Exercise 52. Show that K4 ® K4 is operator transitive but not weakly transitive.
Hint. Consider the frame 3 = (w, <, <) with x <y iff y = x + 1 and x is even, x < y
iff y=x+ 1 and xis odd.

2.6. Decidability and Finite Model Property

Recall that a logic A is called decidable if one can decide for every finite set A
and a formula ¢ whether or not A 5 ¢. It follows from the deduction theorem that
a logic is decidable iff for every formula ¢ we can decide whether or not ¢ € A. In
other words, A is decidable iff the problem ‘¢ € A? is computable iff the set A is
decidable. We shall also say that a modal logic A is C—computable or in C, where C
is a complexity class, if ‘¢ € A?” isin C. Likewise, C—hardness and C—completeness
of A are defined. Now let A be a finite set. A set M C A* is called recursively
enumerable if it is either empty or there exists a computable function f : w — A*
such that the set rangef = flw] = M. (So, M # @ is recursively enumerable if we
can, so to speak, make an infinite list of M.) A set is co-recursively enumerable or
co-r. e. if its complement is recursively enumerable. M is called recursive if it is
recursively and co—recursively enumerable.

ProposiTiON 2.6.1 (Post). Let A be finite and M C A*. The problem ‘x € M?’ is
decidable iff M is both recursively enumerable and co—recursively enumerable.

First, let &~ : w — A" be a computable bijection. For a proof note that if
‘x € M? is decidable, define f as follows. If M is not empty, pick ¥ € M. Then
put f(n) := h(n) if h(n) € M, otherwise f(n) := X. This function enumerates M.
So, M is recursively enumerable. Likewise we show that it is co—recursively enu-
merable. Now assume that M is both recursively and co-recursively enumerable,
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@ # M and A* # M, and let f and g enumerate M and A* — M. Define h as follows.
h(X) := 1 if there is an n € w such that f(n) = X; h(X) := 0 if there is an n € w such
that g(n) = ¥. It is easy to see that this is a computable function. It follows from
Proposition that if k < w then the set of well-formed formulae is decidable.
A particular consequence of Proposition [2.6.1]is that a logic A is decidable iff A is
recursive. Unfortunately, this does not apply to the particular axiomatizations. There
are recursively axiomatized (even finitely axiomatized) logics which are undecid-
able. However, if A is recursive then it is recursively axiomatizable. Moreover we
have the following.

ProposiTION 2.6.2. (k < Ni.) Let A be a recursively enumerable set of modal
formulae. Then K, ® A is recursively enumerable.

Proor. We show how to make an infinite list of the tautologies. Classical logic
is decidable, hence the tautologies of PC are recursively enumerable. The primitive
instances of (bd—.), which are of the form

[:lj(p() — pl) - .|:|ij — Djp|

are enumerable, since k is. Fix an enumeration g of A, an enumeration & of all
classical tautologies and an enumeration ¢ of the instances of (bd—.). Put f(3i) :=
g(), f(Bi+1) := h(i), and f(3i+2) := £(i). This gives an enumeration of the axioms.
We show how to enumerate the theorems of K, & A. The problem is that we have
to calculate the consequences of A with respect to the rules, namely, modus ponens,
the necessitation rule and the substitution rule. The reader is asked to think about
the fact that it is enough to use finitary substitutions rather than substitutions. A
substitution o is called finitary if o(p) # p only for finitely many p. The finitary
substitutions can be enumerated. We leave this to the reader. (Basically, it amounts
to showing that the finite sequences of natural numbers are enumerable. In effect,
this is what we will be showing here as well, though in disguise.) Thus, assume
that the substitutions are somehow enumerated. Now begin the enumeration of the
theorems simply as a list. The list is produced in cycles. The nth cycle consists
of f(n) and all one—step consequences of theorems of the previous cycles, but with
substitution restricted to the first n substitutions and (mn.) restricted to the first n
boxes according to the enumeration. If the list has k entries up to the nth cycle, then
there are k X n consequences with respect to (mn.), at most k£ X k consequences with
respect to (mp.) and kX n consequences with respect to (sb.). So in each cycle the list
is finite. Let us show that this list contains all theorems. The proof is by induction
on the length of the derivation of ¢ from A. Case 1. ¢ is a classical tautology or a
member of A. Then for some i ¢ = f(i), and so ¢ is in the ith cycle. Case 2. ¢ = O\
By inductive hypothesis, i occurs in the list, say in the kth cycle. Let O; be the jth
modality according to the enumeration €. Then ¢ occurs in the cycle max{k, j} + 1.
Case 3. ¢ is the result of applying modus ponens to ¥ — ¢ and . By induction
hypothesis, the latter are in the list. Then ¢ is the next cycle. Case 4. ¢ = o (). Let
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¥ be in the mth cycle and £ := max{k, m}. Then ¢ occurs in the ¢ + 1st cycle. This
concludes the proof. O

The last proof applies as well to all other logics, classical, monotone etc. Typi-
cally, since logics are mostly given in such a way that one can deduce that they are
enumerable, it is mostly the enumerability of the nontheorems which is problematic.
Only very recently, VALENTIN GorANKO in [83], has given some proof procedures for
enumerating the nontheorems directly. (The proof of their correctness has interest-
ingly been given by means of semantic arguments.) Let us now say that a logic A
is recursively axiomatizable (finitely axiomatizable) if there exists a recursively
enumerable (finite) set A such that A = K, @ A. And let us say that A is strongly re-
cursively axiomatizable if a recursive set axiomatizing A can be given. It is a priori
possible that all modal logics are finitely axiomatizable; it may, namely, very well
be that although a logic can be axiomatized by an infinite set of formulae, a finite set
would have been enough. We will show below that this is false. The following is a
consequence of the compactness theorem.

ProposiTION 2.6.3. Let A be finitely axiomatizable and A = K, ® A. Then there
exists a finite Ag C A such that A = K, ® Ay.

Proor. Let A = K, & A. Since A is finitely axiomatizable, there is a finite set
I" such that A = K, @ I'. Then there exists a proof of AT from A and the classical
tautologies. This proof is finite, so it uses only a finite number of formulas in A.
Let them be collected in Ag. Then we have A 2 K, ® Ay 2 K, ® T = A, and so
A=K, ®A. O

So if A is a set of axioms for A such that no finite subset axiomatizes A, then A
cannot be finitely axiomatized. Decidability is usually brought into correspondence
with the finite model property defined below (see next section). However, rather than
with finite model property it is primarily connected with constructibility of models,
at least if the language is countable, which we will now assume. Recall that we
have shown that any logic A is complete with respect to some class of algebras; in
particular A is the theory of the algebra §r,(var). This being so it is nevertheless
not at all clear that we can always produce these algebras. In particular, if A is
undecidable, then even though we can enumerate all formulae, we are not able to
construct Fr (var) from the definition, since we have

Sra(var) = Im(var) =

where ¢ =5 Y iff ¢ & ¥ € A. The problem is simply that we cannot even decide
whether or not a formula ¢ is in the class of T. On the other hand, suppose that
A is decidable. Then choose an enumeration for of the formulae; for simplicity
for(0) := T. Furthermore, we assume to have an inverse "¢, yielding for each
formula ¢ a k € w such that for(k) = ¢. We are going to produce an enumeration
v of the equivalence classes as follows. We start with y(0) := for(0) = T. Then
v(i + 1) := for(k) where k is the smallest number such that for no k&’ < k, for(k") =4



2.6. Decidability and Finite Model Property 75

for(k). In other words, we choose a subsequence s; of w such that for(s;) is the first
formula in the enumeration that does not belong to one of the already established
equivalence classes. Then y(i) := for(s;). Since the logic is decidable, this is indeed
an (algorithmic) enumeration of the equivalence classes. Furthermore, for each ¢
we can decide whether or not it belongs to a given class, and we can compute the
number u(p) of the class of ¢. Namely, take k := "¢”, and enumerate all for(k")
for all ¥’ < k. Then calculate the y(i) up to (at most) k and see which is the first i
such that y(i) & ¢ € A. Now, the algebra Fr(var)/ =5 formed by calculating with
numbers instead of formulae. For example, let m and n be given. The conjunction
is a function conj : w X w — w defined by conj(i, j) := u(y(@ A y(j)). Likewise,
all other functions of §r,(var) can be reproduced as functions over w. Instead, we
could also use the representatives (i) as the underlying set of the algebra.

DEFINITION 2.6.4. (k < N1.) A modal algebra is called effective if its underlying
set is w, and the functions 1, —, N, and W;, j < k, are computable. In general, an
algebra is called effective if its underlying set is w and all basic term—functions
are computable.

DerintTION 2.6.5. Let 'V be a variety of k—-modal algebras. 'V is said to have
constructible free algebras if for any finite set of generators the congruence
=\, defined by ¢ =5 Y iff ¢ & W € A, is a decidable subset of the set of pairs of
terms.

What we have shown is that if A is decidable, its variety has constructible free
algebras, which are also effective algebras.

ProposITION 2.6.6. Suppose that W is an effective algebra. Then ThU is co—
recursively enumerable.

Proor. Enumerate all partial valuations into 2, and enumerate the formulae.
Given a partial valuation and a formula with variables in the domain of that valuation
we can compute the value of the formula under the given valuation, since the algebra
is effective. It is therefore possible to enumerate all pairs (¢, a) where ¢ is a formula
and a a value of ¢ under some valuation. Consequently, choosing among this set
only the pairs for which a # 1 we obtain an enumeration of the nontheorems. O

This proof needs some explanations. If an algebra based on the set w is not effective,
there is a formula ¢ and a valuation 3 such that B(¢) cannot be determined even
when SB(p) is known for all relevant variables. For by definition of effectiveness the
primitive functions are not all computable. So, let f; be a primitive function of A
which is not computable. Then ¢(7) := f;(j) is a formula such that B(¢) cannot be
computed for any given 3.

CoroLLARY 2.6.7. A logic A over a countable language is decidable iff A is
recursively axiomatizable and A is the logic of an effective algebra.
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FiGure 2.6.
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(It is enough to have completeness with respect to a recursively enumerable class
of effective algebras in addition to recursive axiomatizability. This has been pointed
out to me by MICHAEL ZAKHARYASCHEV.) Above we have seen that it is actually enough
to have the free algebra be effective, with no assumptions on axiomatizability. Why
is it then that the constructibility of §r,(var) is enough to guarantee the decidability,
while otherwise effectiveness is apparently not enough? The reason for that is that
the theory of the free algebra is the theory of (Fr,(var),v), where v is the natural
valuation. If we have completeness with respect to such a pair then theoremhood is
easy to decide. In fact, then the assumption that the underlying algebra is effective is
sufficient.

DEerINITION 2.6.8. A logic A has the finite model property (fmp) if for all
¢ ¢ A there exists a finite frame & such that & ¥ ¢. A is tabular if there is a finite
Kripke—frame § such that A = Thi.

By Theorem [2.4.T1) we know that A has the finite model property iff for each
non-theorem ¢ there exists a finite Kripke—frame f for A with f ¥ ¢.

THEOREM 2.6.9 (Harrop). (k < No.) Suppose that A has the finite model property.
If A is finitely axiomatizable, A is decidable.

Proor. Suppose that A = K, @ A for a finite A. Then A is recursively enumer-
able; we need to show that it is co-recursively enumerable. Let us first show that it
is possible to enumerate the frames for the logic A. To see that, observe that in order
to decide for ¥ whether or not § £ A we just have to check whether or not § F A.
Since A is finite, this can be decided in finite time. Hence, since we can enumerate
all frames, we can also enumerate the A—frames. Furthermore, we can enumerate all
models (&, 3, x) where § assigns values only for finitely many variables. For each
model we can enumerate easily all formulas which are false. Hence we have an enu-
meration n : w X w — wff which returns for a pair (i, j) the j* formula refuted by
model number i. Since w X w can be enumerated, say by p : w = w X w, we can
finally enumerate all nontheorems by n o p. O

The use of the finite axiomatizability is essential. For recursive axiomatizability this
theorem is actually false, see ALASDAIR URQUHART [216] and also [122].

Finally we give the proof that there are uncountably many logics. We work here
in monomodal logic, that is, there is just one operator. Let us take the following
frames. ¢, := ({0, 1,2,...,n},<) withi< jiff (a) j=i— 1 or (b)i = j = n. Consider
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the following formulae
Ky = 0™ T AO@"LA-O" L)
Lemma 2.6.10. ¢, F -k iff n = m. (¢, J) E K, iff j = 1.

Proor. Consider (¢, j) F k,. If j > n then ¢O" L is not satisfied; if j < n then
o™ 1T is not satisfied unless j is reflexive; but if it is, the formula ¢(0"L A —=0""! 1)
is not satisfied. So we must have j = n. Now assume m > n. Then ¢O"L is not
satisfied at j = n. If, however, m < n then ¢(0"L A =0 T) is false at j = m. Thus
m = n = j, as required. O

This innocent example has a number of consequences. Take any subset M C w
and let (M) = K&®{-«, : n € M}. Then: : 2 — E(K) is injective. Forif M # N then
there isam € M but m ¢ N (or the other way around). Then all axioms of «(N) are
satisfied on ¢,,, but not all axioms of t(M). We conclude that Frm(c(M)) # Frm(«(N)).
Thus the two logics are different.

TueoREM 2.6.11. There are 2™ k-modal logics, for all k > 0. Moreover; there
exist 2™ many non—recursively axiomatizable logics and there exist recursively ax-
iomatizable, undecidable logics.

Proor. We have seen that the map ¢ is injective, so there are at least 2% log-
ics. However, our language has countably many formulae, and a logic is a set of
formulae, so there are at most 2%, Since there can be only countably many algo-
rithms, there are 2™ non-recursively enumerable subsets of w and so there are 2™
many non—recursively axiomatizable logics. Finally, take a recursively enumerable,
but non—recursive set M (such sets exist). The logic ¢«(M) is recursively enumerable,
by definition. But it cannot be decidable, since that would mean that we can decide
‘=k; € (M), or, equivalently, ‘j € M’. O

There exist also finitely axiomatizable undecidable logics. The first was es-
tablished by StepHEN Isarp [107]], basically through coding the action of a ma-
chine in modal logic. Subsequently, many alternative ideas have been used, for
example undecidable problems of group theory by VALENTIN SHEHTMAN ([198]), the
tiling problem in Eprra Spaan [202] and Thue—problems (see among others MARrcuUs
Kracar [127]]). We will return to this subject in Section 9.4

Exercise 53. Show the following variant of Proposition [2.6.3] Ler ® be a logic and
A be finitely axiomatizable over ©. Suppose ® = A ® A. Then there exists a finite set
Ao C A such that A = O @ A.

Exercise 54. Give an example of a logic ® which is finitely axiomatizable as a nor-
mal extension of K; but not as a quasi—normal extension.

Exercise 55. Let X be a recursively enumerable set of effective k—-modal algebras.
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Show that Th X is co—recursively enumerable.

Exercise 56. Show that Theorem [2.6.91 holds also for infinite k. Hint. A finite axiom
system uses only finitely many basic operators.

Exercise 57. Let T be a theory of classical predicate logic, in any given signature.
Show that T is recursively axiomatizable iff it is strongly recursively axiomatizable.

2.7. Normal Forms

This chapter introduces a very basic method for proving that the logic K, is de-
cidable, using the fact that it has the finite model property. This proof was first given
by Kir FInE [64]. The finite model property is among the best—studied properties of
logics. We will show a fair number of strong results on the finite model property
later but shall be content in this section to show only a single result, namely the finite
model property of the base logic K,. There are many proofs of this fact but only very
few proofs are constructive and do not presuppose heavy theory. For example, the
proof by filtration — which we will present later — presupposes that we can show
the existence of at least one model, from which we then obtain a finite model. The
basic method here is syntactic in nature. We will start by proving that formulae can
be rewritten into a somewhat more user—friendly form.

DeriniTiON 2.7.1. A formula ¢ is called strictly simple of degree 0 if it is
of modal degree 0 and of the form T or \ ., q; n > 0, where each q; is either a
variable or a negated variable; moreover, no conjunct may occur twice. ¢ is called
sitmple of degree 0ifitis L or a nonempty disjunction of pairwise distinct strictly
simple formulae of degree 0. ¢ is called strictly simple of degree d+1 ifit is
of modal degree d + 1 and of the form

A /\ Os(pXj A /\ S(Hw; 5
j<p Jj<q

where u is strictly simple of degree 0, no conjunct of ¢ occurs twice, s : p — K,
t 1 q — K are functions, x; are simple of degree < d and all w; are strictly simple
of degree < d. ¢ is simple of degree d+1 if it is of modal degree d + 1 and a
disjunction of pairwise distinct strictly simple formulae of degree < d + 1. Moreover,
a modal formula of degree 0 is called standard of degree 0 if it is simple of
degree 0; a modal formula of degree d + 1 is called standard of degree d+1 if it
is a disjunction of strictly simple formulae in which the functions s are injective and
in which for a subformula of the form 6 jy y is standard of degree dp(y).

It is important to get used to simple formulae, so the reader is asked to prove
some easy properties of them.

Lemma 2.7.2. (i) Any subformula of a simple formula is simple. (ii) If a formula
is simple of degree d+1 it is composed from variables (constants) and their negations,
and formulae Oy, where s is simple of degree d, using only A, V and ¢ ;.
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ProposiTioN 2.7.3. Every formula ¢ can effectively be tranformed into a simple
formula deductively equivalent to ¢ in K,.

Proor. We prove in a rather detailed way how to obtain a form that contains
negation only directly in front of variables. The method to convert ¢ into full simple
form is similar. Take a formula ¢ and apply the following reductions from left to
right as often as possible.

“WAY) ~ WV
~WVyY) ~ WA
—|—|[,0 ~> 110

It is clear that some reduction will apply as long as some operator is in the scope
of —. Moreover, each step is an equivalence. (This follows from Proposition [2.1.1])
Thus all we have to show is that there is a terminating reduction series. To see this,
we have to monitor two parameters, namely ¢, the length of a longest subformula
of the form -, and k, the number of the subformulae of length £ of the form —.
As long as there is a subformula =i of length ¢, we apply the reduction algorithm
to that subformula. The result is always a formula in which k is decreased by 1. If
k = 1, then in the next step £ decreases. Proceeding this way, we will eventually
reach ¢ < 2, which means that the subformulae are of the form —p;, p; a variable,
or —¢;, ¢; a constant. This shows how to throw negation in front of variables and
constants. To obtain simple form use the following reductions

AW VY) ~> (AP VI(eAY)
O VyY) ~ Vo

pAp ~ P

Vo ~ P
It is proved analogously that these reduction terminate and that after their termination
the formula is in the desired form. ]

ProposiTioN 2.7.4. Every formula ¢ can be effectively transformed into a deduc-
tively equivalent standard formula.

Proor. First, transform ¢ into simple form. Let y be a strictly simple subformula
of minimal degree that is not standard. Then it contains two conjuncts of the form
0,01, Oj02. ¢ is defined by eliminating that occurrence of O;0 and replacing the
occurrence of ;o7 by O;(01 A 02). ¢ is deductively equivalent to ¢. Iterate this as
often as possible. Now repeat this construction for other nonstandard subformulae of
minimal degree. Each time the construction is performed it either reduces the number
of nonstandard subformulae of least degree, or it increases the minimal degree of a
nonstandard subformula. The procedure terminates and yields a standard formula.

]
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The next definition is crucial for the definition of the finite model. In order to
understand it, we explain first the notion of in conjunction with. First, say that an
occurrence of i in y is a conjunct of y if this occurrence of i in y is only in the scope
of A. An occurrence of ¢/ is in conjunction with an occurrence of ¢, in the formula
¢ if Y1 and i, are conjuncts of some subformula containing both occurrences of ¢
and ;.

DEeFINITION 2.7.5. Let ¢ be a standard formula. ¢ is called explicit if for every
strictly simple subformula p A N\, OsiXi A N j<q Oy and every j < q there exists
an i such that t(j) = s(i) and a disjunct a of y;, such that every conjunct of « is a
conjunct of w.

THEOREM 2.7.6. For each ¢ there exists a standard and explicit Y such that ¢ <
¥ € K,.

Proor. First, turn ¢ into standard form. Call a subformula 0O;(\/; ¢;) unleashed
if for every ¢,y it occurs in conjunction with, one ; is such that all conjuncts of
¥; are conjuncts of y. Let ¢ be the largest number such that there is a subformula
0,(V; ;) of degree 6 which is not unleashed. Now take the subformulae which are
of degree ¢ and not unleashed. Let O0;(\/; ¥;) be one of them. Suppose it occurs in
conjunction with a subformula ¢ ;7. Then add \/; ; as a conjunct to 7; perform this
for formulae of degree ¢ which are not unleashed. Now distribute A over Vv, and then
¢; over V. We will then end up with formulae of the form ¢;(i); A 7) in place of
0 ;7. ¢ is not of the form x| V x2, and standard. Thus the resulting subformulae are
simple. Finally, to convert the formula into standard form we only have to drive V
outside, and so all subformulae O;(\/; §;) of degree ¢ are now unleashed. Thus, we
may proceed to smaller subformulae. Since we never change the modal degree of
the modal formulae involved, this procedure ends. m]

We work through a particular example to give the reader a feeling for these
definitions. Take the language « = 2, the operators being & and &1. Then let ¢ be the
formula

p-A.G(SOp Ao@-p). A.S(mpV oOp)

We can push negation inside in the second conjunct, distribute ¢ over V in the third,
and kill double negation.

p-A.g(@o-pVaop)A(omp)V(6op)
Next, we can distribute V and get

[p-A.m@(ao—pV aoep). A.o-pl
vV [p.A.r(BE-pV BSP). A.S5Op]

Now the formula is in standard form. However, it is not explicit. Namely, in both
disjuncts, the second conjunct is of the form @y while it is in conjunction with a
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formula of the form ¢y. Thus, we must add ¢ as a conjunct to y. Subsequently, we
can distribute ¢ and V.

[p.A.@(ao—-pVaoep)Aoe(@a—pA-pl
vV [p-A.m(@o-pVaop) As(@ep A -p)l
VvV [p-A.p(@r-pVaop) Ao(@a-pAop)l
vV [p.A.(@a-pVvaop) Ao(@epAop)]

We have unleashed formulae of degree 3, but there have appeared new formulae of
lower depth with must also be unleashed. After distribution etc. the formula is in
standard and explicit form.

[p.A.@3(BE-pV BSP) A S(BE-p A -p)]
vV [p.A.g(@a-pVaop) As(@mop A-p)]
vV [p.-A.a(@a-pVadcp) As(@o-pAS(pAap)l
vV [p.A.p(@a-pVaop) As@ep Ao A op)]

Call ¢ clash—free if there do not exist occurrences of subformulae of the form p; and
—p;, for some i, in conjunction with each other.

Lemma 2.7.7. Let ¢ be standard and explicit and not of the form 1V x». Suppose
that it contains an occurrence of a formula of the form p; A —~p; A w which is not in
the scope of a box. Then ¢ is inconsistent in K,.

Proor. By assumption, p; and —p; are not in the scope of vV and Oj, for any
J < k. Clearly, from the assumptions, ¢ is composed from p; A =p; A w and other
formulae using only A and ¢ ;. Then ¢ is inconsistent. O

There is an algorithm which converts a formula into a clash—free formula. More-
over, there is an algorithm which in addition preserves simplicity, explicitness and
being standard. Namely, suppose that p; and —p; are in conjunction with each other.
Then remove from ¢ all subformula occurrences in conjunction with these occur-
rences, and replace p; and —p; together by L. If necessary, remove L in disjunction
with some formula. This converts ¢ into clash—free and standard form. It is some-
what cumbersome but not difficult to verify that the resulting formula is also explicit
if ¢ has been explicit.

Given a standard, explicit and clash—free formula ¢ we build a set of models as
follows. Let us assume ¢ = \/,., @i, ¢; strictly simple. Then for each ¢; we build a
separate model; the collection of the models is the model-set of ¢. We will see that
¢ is consistent iff the model set is non—empty iff n > 0. Thus assume n = 1, that is, ¢
is now strictly simple. Take a node x,, as the root, and for each subformula ¢ ;y not in
the scope of a box take a point x,. Then, as it is directly verified, y is strictly simple,
standard, explicit and clash—free. For two subformulae ¢,y and ¢,y put x, <; x, iff
0 ;x is a conjunct of ¢. (In that case, j = g.) A valuation is defined as follows. Let
x, be a point constructed for the formula y. If p; is a conjunct of y then x, € B(p;),
and if —p; is a conjunct of y then x, ¢ B(p;). In case where neither p; nor —p; is a
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conjunct B(p;) can be fixed arbitrarily. Since y is clash—free, a model can always be
defined. A model for ¢ thus obtained is called a direct model.

Lemma 2.7.8. Let ¢ be strictly simple, standard, explicit, and clash—free. Let
(},B, x,) be a direct model of ¢. Let ¢ ;y not occur in the scope of a box. Then if r is

a conjunct of x, x, € BW).

Proor. By induction on the constitution of ¢ (and y). For ¢ a variable, this is
true by construction. Also, the definition is sound, by assumption. Now assume
¥ = w1 Awy. Then if ¥ is a conjunct of y so are w; and w,. By induction hypothesis,
Xy, € B(wl) and x, € E(a)z). Then x, € ,[_f(wl A wy), as required. The case ¥ = ¥ Vi,
does not arise. Next assume iy = ¢ ;w. Then there exists a j—successor x,, of x,. By
induction hypothesis x,, € B(w), and so X, € B(). Finally, let y = Ojw. Let y be
a j—successor of x,. Then y = x, for some 7 such that ¢;7 is a conjunct of y. By
explicitness, some disjunct w; of w (or y itself) is a conjunct of 7. By hypothesis,
X € B(wi). Hence x, € /_3(1//). |

THEOREM 2.7.9. K, has the finite model property.

Proor. Start with ¢ and convert it into standard and explicit form. Let ¢ be a
disjunction of ¢;, i < n. If ¢; contains a clash we have ¢; + L by Lemma[2.7.7} If
¢; does not contain a clash then by Lemma there exists a finite model for ¢;.
Hence, either all ¢; contain a clash, in which case ¢ + L, or there is a model for some
¢; and hence for . O

Related to standard formulae are the normal forms which are also in use in
boolean logic. The difference with standard formulae is that normal forms give rise
to unambiguous direct models on a given set of variables. One can define normal
forms with respect to standard formulae by the following fact. In addition to being
standard (i) a normal form is consistent, (ii) a normal form is always reduced; it
contains no occurrences of ¢ in conjunction with a different occurrence of ¢ and no
occurrence of ¢ in disjunction with another occurrence of ¢, and (iii) a normal form
is complete for given modal depth &; if ¢ is in normal form, y of depth less than §
and ¢ A y is consistent, then ¢ F y. (i) is easy to achieve. We can start from a simple
formula and just throw away all disjuncts containing a clash. (ii) is likewise easy to
get. Simply drop multiple ocurrences of the same formula. (iii) is possible only on
one condition, namely that we work over a finite vocabulary. By finite vocabulary
we mean both that there are finitely many modal operators and that there only finitely
many propositional variables and constants. Thus, let us assume that we have a finite
set J C « and a finite set P = {p; : i < n}. Then the normal forms of degree k over
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J and P are defined inductively as follows.

X = Niec Pi N Nige —pi Ccn
nf(J, P,0) = (:Ccn}

X]g[]l-) = Aien(j) Ok A Nien(j) =0 x¥ D(j) € nf(J, P,k)
X5 = XA N Xp, C € n,D(j) € nf(J, Pk)
nf(LPk+1) := {)(’g% :Cccn,D:J— p(nf(J, P, k))}

PropositioN 2.7.10. Let ¢ be a modal formula of depth k based on the variables
of P and the operators of J. Then there is a set'Y C nf(J, P, k) such that

(p(—)\/lPEK

Proor. By induction on k. For k = 0 this is the familiar disjunctive normal form
for boolean logic. Now let k > 0. Then ¢ is a boolean combination of variables
and formulae ¢ 3y with dp(y) < k. By inductive hypothesis each i is equivalent to
a disjunction of a set Ny of normal forms of degree k — 1. If N, = @, then ¢ ;i is
equivalent to ¢; 1, hence to L. If Ny, # @ then 0y = ¢; \/ Ny, = V{(Ox : x € Ny).
After this rewriting, bring ¢ into disjunctive normal form. Each conjunct of ¢ is now

of the form
uU=vA /\ OjXIZ‘_l A /\ —|<>j/\/]é_l
CeG CeH
where v is nonmodal and GNH = @, G and H sequences of subsets of nf(J, P,k—1).
This is not necessarily in normal form, since we may have G U H C nf(J, P,k — 1).
But if there is a ¢ ;¥ which has not yet been included in G U H we expand u by the
disjunction ¢y V =0y, and we get

HEUAONX.V .UA—O)

In this way we can expand u so as to include all ¢ v, x € nf(J, P, k—1). The same with
v. Repeat this procedure as often as necessary. Finally, we reach normal form. O

Lemma 2.7.11. Any two distinct normal forms of nf (J, P, k) are jointly inconsis-
tent.

Proor. By induction on k. If k = 0, then let C,C’ C n two distinct subsets.
Without loss of generality we may assume C — C’ # @. Then )(2 A )(g, = 1. For
there is an i € C such that i ¢ C’. Then x2 + p; but ¥, + =p;. Now let k > 0. If
x and y’ are distinct forms, then either they have distinct nonmodal components, or
there is a j € J such that D(j) # D’(j). In the first case we already have seen that
there arises a contradiction. In the second case, assume without loss of generality,
w € D(j) — D'(j). Then y + ¢ w but x’ + =¢w, a contradiction. O

ProposiTiON 2.7.12. The formulae of degree k with variables from the set P =
{p; : i < n} and modal operators from J form a boolean algebra. The number of
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atoms is bounded by the number b(j, n, k) defined by

b(j, n,0) = on
b(j,n k+1) b(j, n,0) - 27bnb

Proor. We have seen that each formula is equivalent to a disjunction of normal
forms, so there are at most 270K+ D formulae, where b(j, n, k + 1) is the cardinality
of nf(J, P,k + 1). Moreover, since the normal forms are mutually inconsistent, they
form the atoms of this algebra. The number of atoms is obtained by multiplying the
choices for a normal form of degree 0 with the choices of j—long sequences of sets

of normal forms of degree k. The latter is nothing but 20007 = 2j-b(ink) O

Thus, each set of normal forms individually presents a representative for a class of
equivalent propositions. With a normal form we can associate a direct model as
before. However, this time there are no clashes, and the valuation 8 is uniquely
defined. For if x, is given, then ¢ is equivalent to ¢ A p; V ¢ A =p;, so that it must be
equivalent to either of them, showing that p; or —p; must be a conjunct of ¢.

Notice that there are nontrivial propositions with no variables as we have seen
earlier. Their number is bounded by the modal degree and the set of occurring opera-
tors. In many logics, however, there are up to equivalence only two distinct constant
propositions, L and T. We say that such logics have trivial constants.

TueEOREM 2.7.13. A modal logic A has trivial constants iff for every operator O,
either 0;1L € A or ¢;T € A.

The proof is simple and is omitted. Notice that the postulate O;L says that no
world has a j—successor, while ¢;T says that every world has a j—successor.

Normal forms are closely connected with a technique called unravelling intro-
duced in Section[3.3] The method of unravelling can be used to show that K, is com-
plete with respect to completely intransitive trees, by first showing that it is complete
and then using unravelling to get a totally intransitive tree from a model. This is
somewhat better than the proof via normal forms, which established completeness
with respect to acyclic frames only. Furthermore, we can show now the following
rather important fact. (Recall the definition of ® from Section [2.1])

THEOREM 2.7.14. Let k be finite and N an n—generated k—modal algebra. If
A e =L, k> 0, then Wis finite with at most 2°©*=1 elements.

Proor. Let ay,...,a,-1 be the generators of A. An arbitrary element of U is
of the form ¢[ay, ..., a,—1], where ¢ is a formula in the variables py, ..., p,—1. We
will show that for any formula ¢ there exists a formula [¢]; of degree < k such that
®* 1L A ¢ is deductively equivalent to ®* 1 A [¢]; in K,. Since the number of such
formulae is at most 2°®*=D 'we are done. So, let ¢ be of depth > k. We assume that
negation is in front of variables, double negations killed. Let [¢]; denote the formula
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obtained as follows.

[plo = 1L [=rlo = L

[Pli+t = p [-plis1 = —p

e AY = el AWk eVl = [elV Wk
Ojel+1 = Ojlelk [@eler = Ojlelk

Roughly speaking, [¢]; is the result of replacing all occurrences of subformulas
embedded exactly k times by modal operators by L. Then ¢ is the result of re-
placing some occurrences of L by some formulae y we have [¢]; + ¢. (Notice,
namely, that the occurrences are not embedded in any negation.) It remains to be
shown that ®*1;¢ r [¢];. This is done by induction on k and ¢. The case k = 0
is straightforward. Now let k > 0. Let ¢ = ¥ A w. By inductive hypothesis,
[elk = [W]k A [w]k. By inductive hypothesis IZI"J_;lp F [¥]x and RL:w - [w.
Hence ka_;t,// A w F [yl A [w]k- Analogously the case ¢ = ¢ V w is treated.
Now assume ¢ = O; and k > 0. Then "' 1L;y + [];—;. From this we obtain
=EL; Oy + O;[Ylk-1. Since [0k = O;[]r-1 we obtain the claim. Analogously for
p=04. |

Exercise 58. Prove Lemma[2.7.2]

Exercise 59. Let (f, 5, x) be a model. Show that there exists exactly one normal form
x of degree n for given J and P such that (f, 8, x) £ y. This form will be denoted by

X" (x).

Exercise 60. With notation as in the previous exercise, let w ~, x if y"(w) = ¥"(x).
Letw = xif w ~, x for all n. Show that the map x — x/ = is a p-morphism, and
compatible with the valuation.

Exercise 61. Call (f,8) condensed if ~ is the identity. Let (f, 3, wy) be condensed
and f generated by wy. Show that there exists a {-localic map from )(f(wo) into f.
(See Section [3.3|for a definition.)

Exercise 62. Let y and y* be normal forms. Call y* an elaboration if it is of depth
at least that of y, and if y* + y. Characterize this notion syntactically.

Exercise 63. Show that in K.alt; every formula is equivalent to a formula of the
following alt,—form. For degree 0, a formula is in alt;—form iff it is in disjunctive
normal form. A formula of degree d + 1 is in alt;—normal form iff it is of the form
either uAOL and d = 1 or u A ¢ where u is a alt;—form degree 0 and ¢ an alt;—form
of degree d.
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2.8. The Lindenbaum-Tarski Construction

An important question from the model theoretic point of view is the problem
whether for a given logic A there is a frame & such that A = Th(g). Notice that
in Section we have shown that there exist algebras of this sort. We will now
show that there are also frames with this property. The solution is due to LINDENBAUM
and Arrrep Tarski. The basic idea is that a world is a maximally consistent set
of formulae. Given a logic A this is a set W C wff such that W is consistent but
no proper superset is. The intuition behind this terminology is that a world is an
existing thing and everything we say about it should therefore be either true or false.
Clearly, one is more inclined to say that there can be only one world, the world we
are living in, so speaking of collections of worlds can then only be metaphorical.
There are ways to get around this apparent problem. For now we are interested in
the connection between our logic and the worlds that might exist. The basic result
of this section is that if we define a certain natural frame from A over a given set of
propositional variables then the theory of that frame will be exactly A. This shows
that every modal logic is the theory of a single frame and so frame semantics is
as good as algebraic semantics. In Chapter ] we will see that this is no accident.
The construction is a specialization of a general technique to form geometric models
from algebraic models. We proceed as follows. First, we show that there are enough
maximally consistent sets (or worlds). This proof is completely analogous to that of
Corollary[I.7.13] Second, we establish the frame based on these worlds. And thirdly
we show that the logic of this frame is A.

Let us begin with the question of the existence of worlds. With respect to a logic
A aworld is a maximally A—consistent set of formulas. The next lemma asserts that
for any consistent collection of facts there is a world in which it is realized.

Lemma 2.8.1. Every A—consistent set is contained in a maximally A—consistent
set.

The proof is immediate from Tukey’s Lemma. A maximally consistent set is
also deductively closed, as can easily be shown. We note the following properties,
of which we will make tacit use later on. These are easy to prove (cf. Section [I.7).

LemMma 2.8.2. Let W be a deductively closed set of formulae.

(1) W is consistent iff for no ¢: ¢ € W and ~¢ € W.

Q) oAy eWifeeWandy e W.

Q) IfpeWoryeWthenoV yeW.

(4) W is maximally consistent iff it is consistent and ¢ V y € W implies o € W
orx € W, forall ¢ and .

(5) W is maximally consistent iff for all ¢: ~¢ € W exactly if o ¢ W.

We now need to specify the relations in which these worlds stand to each other.
For that we have a plausible definition. Given a modal operator O; (and its dual
¢;) and two worlds W and X we want to say that X is j—possible at W if the total
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collection of facts in X is j—possible at W, that is, we would like to say that
WX o o \Xxew

However, X is infinite, so we cannot define things in this way. We have no infinite
conjunction, only a finitary one. So our best approximation is

Wa;X <« forall finite subsets X, of X: Oj/\Xo ew

This is actually how we define the accessibility relation. However, this definition can
be phrased more elegantly. Notice, namely, that if X, is a finite set then A X € X.
For from A Xy ¢ X follows \/{—¢ : ¢ € Xy) € X, so for one ¢ € X also - € X,
which cannot be.

To introduce the definition in its final form let us agree on the abbreviation
¢S :={0j¢: ¢ €S} Then we define

(acc) WX & OXCW
There is an alternative characterization as follows.

Lemma 2.8.3. Let W and X be worlds. Then the following are equivalent.
(1) Porallpe X: 0jp e W.
(2) Forallojpe W: p € X.

Proor. Suppose that the first holds and assume ¢ ¢ X. Then —¢ € X and so
0j—p € W. Since bg ¢;m¢. < .-O;p we also have -O;0 € W. Thus O;p ¢ W,
by consistency of W. So, the second holds. Now suppose that the second holds and
assume ¢ ¢ W. Then we have —¢;p € W, thus O;~¢ € W, which by assumption
implies ~¢ € X. Hence ¢ ¢ X. So, the first holds. O

The construction also yields enough worlds in the following sense. If ¢ jo € W then
there is an X such that W <; X and ¢ € X. For consider the set § := {¢} U {x :
O;x € W}. If it is consistent, there is a world X 2 § and we must have W <; X by
construction. So we have to show that S is consistent. Suppose it is not. Then there
is a finite set S¢ € S which is inconsistent. Without loss of generality S = {¢} U TY.
Now Ty +p =, and so O;Ty +o O;—¢. Since O;T) € W we must have O;—~¢p € W,
which is to say —¢ jo € W, and so by consistency of W, ¢;¢ ¢ W. This is contrary to
our assumptions, however. Thus, S is consistent and successor worlds containing ¢
exist.

Proposrion 2.8.4. Whenever W is a world and ¢ jpo € W there exists a world X
such that W <; X and ¢ € X.

Finally, the internal sets must be specified. This is most straightforward. Internal
sets are those which are specifiable by a proposition. Define ¢ by

p=X:peX}

We call v : p > p the natural valuation.
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LemMa 2.8.5. Let o :={X : 9 € X} and v : p & p. Then for all ¢, v(¢) = ¢.

Proor. By induction on ¢. Suppose ¢ = —y. Then =y = {(W : -y € W} and
by induction hypothesis ¥(y) = ¥ = {W : y € W}. Since the worlds are maximally
consistent, y € W is the same as =y ¢ W, so =y = —y = —W(y), from which the
claim follows. Now assume ¢ = y| A x2. We have y1 A x2 = ¥1 N 2, as is easily
checked. Therefore ¥(x| A x2) = V(x1) N ¥(x2) = X1 N¥2 = X1 A x2. Finally, assume
that ¢ = ¢;¥. We have W ¢ 5,} iff ¢;x € W iff there is a j—successor X such that
X € X (by Proposition[2.8.4) iff there is a_j—successor X such that X € }iff W € ¢ jx.

Hence v(¢) = v(0;x) = ¢;¥(x) = ¢;¥ = 0;¥ = @, as required. m|

Under the supposition that the valuation is the natural valuation the internal sets
are exactly those which are values of the formulae of our modal language.

DEerINITION 2.8.6. Let A be a normal logic. Denote the set of worlds by Wa and
let Wy = (¢ : ¢ € wff}. Define <j by X<;Y iff forallOjp € X, ¢ € Y (= (acc.)). Then
the canonical frame for A is the frame Canp(var) = (Wx, (< : j < k), Wr). The
underlying Kripke—frame is denoted by canp(var). The global canonical model
for A is the pair {Cany (var),v) where v(p) = p = {W : p € W}. A local canonical
model is a triple (Cany (var), v, X), where X is a world.

What we know now is that if a formula ¢ is not in A, then there exists a W such
that ~¢ € W, since —¢ is consistent with A. Then (Cany, v, W) E =¢. But can we be
sure that A is the logic of the frame? Is it possible that there are countermodels for
axioms of A? We will show that this is not the case. The reason is the choice of the
internal sets. Notice that the internal sets can be ‘named’ in the canonical model by
a formula. Namely, for every a € W, there exists a ¢ such that a = ¢ = ¥(¢). So,
let 8 be an arbitrary valuation. Then for each p there exists a formula ¢, such that
B(p) = v(¢p). Then for an arbitrary formula i,

BW) =v(le,/p: p € var(y)])

Thus, if a model exists for ¢ based on the valuation 3, then for some substitution o, a
model for 7 exists based on the valuation v. Another way of seeing this is using the
Theorem [2.8.8] below. Suppose namely that an axiom ¢ of A is violated. Then, by
our arguments, a substitution instance ¢” (which is also an axiom) is violated on the
canonical model. This means, however, that there is a world W such that —¢” € W.
Now, since —¢” is inconsistent with A this simply cannot be. Hence we have shown
that no axiom can be refuted on any model based on the canonical frame.

THEOREM 2.8.7 (Canonical Frames). Let A be a normal polymodal logic. Then
A = Th Cany (var).

In writing €ana (var) we have indicated that the canonical frame also depends
on the set of variables that we have available. In fact, the structure of the canonical
frame is up to isomorphism determined only by the cardinality of the set of variables.
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(We will see that even the logic really depends on the latter.) We have assumed that
this set has countably many elements. Thus we also write €any (o).

A different proof of Theorem consists in showing that the algebra of in-
ternal sets is isomorphic to Frp(var). This follows from the fact that the algebra of
sets is the direct image of the map ¢ + . We have verified above that this map is a
homomorphism and that ¢ = ;l?iﬂ? A @ © .

THEOREM 2.8.8. The algebra of internal sets of Cany (var) is isomorphic to Frp(var).
An isomorphism is given by the map ¢ — @.

Analogous techniques can be used for quasi—normal logics. Suppose that 'V is a
quasi—normal logic extending A. Then any W—consistent set is contained in a max-
imally W—consistent set. For this set there is a model of the form (Can, (var), v, W).
Again, since a quasi—normal logic is closed under substitution, we get that (Can (var), W) E
Y.

THEOREM 2.8.9 (Canonical Frames for Quasi—-Normal Logics). Any quasi—nor-
mal logic ¥ 2 A can be obtained by

¥ = ﬂ Th{Canp (var), W)
WeS

forasetS C Wy.

In a normal logic we have S = W, by closure under (mn.).

As we have noted earlier in connection with free algebras, the structure of
Canp(var) only depends on the cardinality of the set var. Let it be . Then we
also write Canp (@) and call it the a—canonical frame for A. As it will turn out,
the structure of a canonical frame depends nontrivially on the cardinality of the set
of variables. The question is whether the canonical frames for A for different car-
dinalities of the variables are related by certain p—morphisms. We will show that
a function between two cardinal numbers induces a p—morphism of the associated
canonical frames. So, take two cardinals @ and 8 and a function f : @ — 8. f
induces a homomorphism Ay : Tm(a) — Im(B) defined by hr(p;) = pri). hy
is uniquely determined by f. Moreover, the Theorem below mirrors The-
orem showing that the maps between the algebras have a correlate for the
canonical frames.

Lemma 2.8.10. Let X be a world in the language over{p; : i < S}and f : @ — B.
Then h}l [X] is a world in the language with variables {p; : i < a}.

Proor. (1.) h;l[X] is deductively closed. For let ;¢ — ¢ € h}l[X]. Then
he(p) € X and hp(p) — hp(y) € X. Since X is deductively closed, hs(¥) € X.
So, ¥ € h}l[X]. ) h}l[X] is consistent. For if ¢;—¢ € h;l[X] then hs(p) € X
and —hys(p) € X. But X is consistent. So, either hs(¢) ¢ X or -h,(¢) ¢ X. Hence
either ¢ ¢ h;l(X) or ~p ¢ h;l[X]. 3. hj:l[X] is maximally consistent. For let
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Vi e h;l[X]. Then hp(¢) V hy() € X. By maximality of X, hr(¢) € X or
h¢() € X. Thus we have ¢ € h}l[X] ory € h}l[X]. o

THEOREM 2.8.11. Let a and B be cardinal numbers and f : @« — B a map. Let
Xy denote the map X — h;'[X]. Then Xy : Canp(B) — Cany(a). Moreover, if f is
injective, Xy is surjective and if f is surjective then X ¢ 1s injective.

Proor. By the previous lemma, X, is a map between the sets of worlds. Now
assume that Y and Z are worlds over {p; : i < §} and Y <; Z. We claim that X((Y) <;
Xp(Z). ForletOjp € Xz(Y) = hJj‘[Y]. Then O;h¢(p) € Y. Hence hy(p) € Z, since
Y < Z. This shows ¢ € hj:l[Z] = X¢(Z). The first condition for p—morphisms
is proved. Now assume that Y is a world over {p; : i < B} and U a world over
{pi : i < a}; and let X;(Y) <; U. Then for every O;¢ such that O;hs(¢) € ¥ we
have ¢ € U. Let Yy := {¢ : Oj¢ € Y}. The set hy[U] U Yy is consistent. For
take finite sets Ag € hg[U] and A; C Y5. We have h}l[Ao] C U and hj:l[l:lJ-Al] c
h}‘,'[Y]. By assumption on Y and U, h}'[Al] C U. Therefore, the set h;'[Ao;Al]
is A—consistent. Then Ag;A; is A—consistent as well. So, every finite subset of
h¢[U] U Yg is A—consistent. This set is therefore A—consistent and has a maximally
consistent extension. Call it V. Then for every Oj¢ € Y we have ¢ € V, and so
Y <; V. Furthermore, hjjl[V] 2 hjjl[hf[U]] D U. Since h}l[V] is consistent and
U maximally consistent, h;l[V] = U, and that had to be shown. This proves the
second p—morphism condition. Finally, let @ be an internal set of €any(e). Then
X9l = X/ (V) : ¢ € Y} = {Z : hylp) € Z} = hy(g). Therefore, X;'[g] is an
internal set of €an, (8) showing that Xy is indeed a p-morphism.

Now assume that f : @ — S is injective and let U be a world over the set
{pi : i < a}. Then hy[U] is a world over {psq : i < a}. Hence it is a consistent set
over {p; : i < B}. Let V 2 hs[U] be a world. Then hjj‘[V] 2 h}l[hf[U]]. Hence,
Xp(V) = h_’:l[V] = U. So Xy is onto. Now assume that f is surjective and let Y and
Z be two different worlds over {p; : i < 8}. Then there exists a formula ¢ such that
@ € Ybut ¢ ¢ Z. There exists a formula ¢ over {p; : i < a} such that hy()) = ¢.
(Simply choose a function g : 8 — « such that g o f(i) = i, for all i < @. Then put
W = hg(p).) It follows that y € X,(Y) but ¢ & X4(2). ]

An application of these theorems can be found in so—called weak canonical
frames. Suppose we restrict ourselves to a finite subset, say {po,..., ps-1}. Lan-
guages and logics based on finitely many variables are called weak in [66]. If A is a
logic then A | n denotes the set of theorems of A in the variables {p; : i < n}. Itis
clear that A = [ J,c, A [ n. So a logic is determined already by its weak fragments.
As it turns out, Canyy,(n) = Cana(n). (This is straightforward to verify.) We call a
frame of the form Canp(n), n € w, a weak canonical frame. It follows from The-
orem[2.8. 11| that if n < m, Cana(n) — Cana(m) and so Th €any(n) 2 Th Cany (m).
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The situation is therefore as follows.
A =ThCana(Rp) € ... C ThC€ana(2) € Th€anp (1) € Th Cany (0)
Equality need not hold. Furthermore, the following is easy to establish.

THEOREM 2.8.12 (Weak Canonical Frames). Let A be a normal logic. Then
A = Npew Th Canp(n).

The question arises what happens if a logic is equal to the theory of one of its
weak frames.

DEerNtTION 2.8.13. Let A be a modal logic. We call A n—characterized if
A =ThCany(n) .

©® is n—axiomatizable over A if ® = A & A for some set A with var[A] C
{p; : i < n}. O is n—axiomatizable if ® is n—axiomatizable over K,. If ® is n—
axiomatizable over A it need not be n—axiomatizable simpliciter, for A itself may not
be n—axiomatizable. Clearly, if ® is finitely axiomatizable, it is also n—axiomatizable
for some n, but the converse need not hold. Furthermore, for every n one can find a
logic which is n + 1—axiomatizable, but not n—axiomatizable.

Exercise 64. Let Mt = (§F, B, x) be a local model. Show that Th M, the theory of the
point x in the model, is a maximally consistent set.

Exercise 65. Show that two worlds X, Y in the canonical frame are different iff there
is a formula ¢ such that ¢ € X and ¢ ¢ Y. Show that X +4; Y iff there is a formula
¢ such that O;p € X but ¢ ¢ Y. Show that for every ultrafilter U in W, U # @.
(The first property is called differentiatedness, the second tightness and the third
compactness. See Section[4.6])

Exercise 66. Let Aj, A, be two normal logics. Show that A; C A; iff Cany,(Ro)
is a generated subframe of Cans, (Ng). Hint. Every A—consistent set is also Aj—
consistent.

Exercise 67. Show that Cang(Ny) contains 20 many worlds, and 2% worlds without
successor. Show that if A is a normal logic and 7', U worlds such that T <; U then
there are 2™ i—predecessors of U. What about the weak canonical frames?

Exercise 68. Let A be a logic and g a finite Kripke—frame for A. Show that (g, 2) is
a generated subframe of Cany (Ny).

Exercise 69. Show that Th(n,>) is O—axiomatizable. Hint. The axiom O"L is
obviously not sufficient, but a good start. Now choose additional constant axioms
carefully so that only the intended frames remain as frames for the logic.
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2.9. The Lattices of Normal and Quasi-Normal Logics

Recall that a lattice is complete if any set S has a least upper bound, denoted by
L] ces x or simply by |_|S, and a greatest lower bound, denoted by [ ] . x or simply
by []S. A lattice has greatest lower bounds iff it has least upper bounds. Hence,
a lattice is complete iff it has least upper bounds. We can rephrase completeness
by using limits of directed systems. Let I = (I, <) be a partially ordered set. This
set is directed if for i, j € I there exists a k € [ such that i, j < k. An indexed
family (x(i) : i € I) is called an upward directed system over J if x(i) < x(j)
whenever i < j. For example, let S be a subset of L. Take I := S<™, the set of
all finite subsets of S, ordered by inclusion. For a d € I put x(d) := | |d. Let
S* = (x(d) : d € S<™). S* is an upward directed system. For an upward directed
system X = {x; : i € I} we write limy X to denote the least upper bound. It is clear
that we have lims S* = |_|S. (With S given, the set  is uniquely defined, and may be
dropped.) Analogously a downward directed system is defined. For a downward
directed system we write limy .S for the intersection. If S is upward (downward)
directed, sois xUS = {xUy:ye StandxnS ={xmy:ye S} Alattice
is called upper continuous if intersection commutes with upward limits, that is, if
xMlim § = lim (xM1S) for all upward directed sets S. It is called lower continuous if
join commutes with downward limits, that is, if xUlim S = lim(xU S). A complete
lattice is continuous if it is both upper and lower continuous.

THEOREM 2.9.1. A complete, distributive lattice is upper continuous iff it satisfies
the law (jdi.) and lower continuous iff it satisfies the law (mdi.).

(jdi.) am| |B LJ(an B)
(mdi.) aU[B [(au B)

Proor. We show only the first claim, the second is dual. Let B be a set and B*
be the family of finite joins of elements of B. This is an upward directed system.
Then, by distributivity, the family a 1 B* defined by a1 B* := (a1 | |d : d € B<*0)
is identical to the family

(@anB)" :={ ], gaNx:deB™).

Thus we have the following identities.

an| B = anlimB*
limanm B*
lim(a ™ B)*
= | J@nB)

O

DeriNiTiON 2.9.2. A locale is a complete, distributive and upper continuous
lattice. A homomorphism from a locale £ to a locale M is amap h : L - M
commuting with finite intersections and arbitrary joins.
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We need to comment on this definition. Locales are also called frames in the
literature and what we have called a homomorphism of locales is actually a ho-
momorphism of frames (see [110]); a homomorphism between locales goes in the
opposite direction. (The open sets of a topological space form a locale; the maps
between them are continuous maps. More about this in Chapter[7]) However, due to
a clash in terminology we have departed from this convention.

Logics in general are ordered by set inclusion. Moreover, they form a lattice with
respect to this ordering. Normal modal logics are identified with their tautologies,
so Ay < A, is equivalent with the fact that all tautologies of A; are tautologies of
A,. Tt is possible to spell out exactly how to compute the join and meet of two
logics if their axiomatization is known. Moreover, we will show that the lattice of
normal logics is distributive and upper—continuous. First of all, however, note that
if A;, i € I, is an indexed family of normal logics, then the intersection ();c; A; is
a normal modal logic as well. The reason is simply that if each A; is individually
contains the classical tautologies and the (bd—.) postulates and is closed under the
rules (sub.), (mp.) and (mn.), so is the intersection. (The reader might also recall that
logics are defined as closed sets of a closure operator; an intersection of any number
of closed sets is always closed.) The union, however, is generally not closed under
these operations. On the other hand, if the logics A; are axiomatized as K, & X;,
then the least logic containing all A; must be K, & | J,; X;. So, an axiomatization
of the union is quite easily obtained. We are interested in an axiomatization of the
meet as well. To this end, let us concentrate on the case of a finite intersection, say
of K, & X; and K, & X;. The next theorem tells us how the intersection can be
axiomatized. The notation ¢ V ¥ is used to denote the disjunction of ¢ and ¢ for
some suitable renaming o of variables such that var(¢”) N var(y) = @.

THEOREM 2.9.3. (i) Let A\ = K+ X, and Ay = K, + X, be quasi—normal logics.
Then Ay N Ay = K, + Y where

Y={oVy:peX,yecX}.

(ii) Let A = K& X; and Ay = K& X, be two normal modal logics. Then Ay N Ay =
K& Y where

Y ={mp V @y : ¢ e X,y e Xo, B a compound modality} .

Remark. The logic A; N A, defined above does not depend on the choice of the
renaming o of variables in ¢ V .

Proor. The second claim follows from the first as follows. Assume that If A; =
K, ® X;. Then A| = K, + {By : ¢ € X, B compound}, and similarly for A,. Then
by (i), A1 N Ay = K, + Z for the set

Z:={E1¢ V By : ¢ € X1, € X,, By, B, compound}
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However, the set Y as given in (ii) is actually sufficient. For notice that if &(p) :=
B (p) A Hy(p) then in K, we have Ba VvV BB + B V #,6; and so every member of
Z can be deduced from a member of Y. Since the intersection is a normal logic, we
actually have A N A, = K, @Y. So let us prove the first claim. Let ¢ V ¢ € Y. Then
AroevygandAyroVysothat K, +Y CK, + X aswellas K, + Y C K, + Xo.
For the converse implication let y € K@ X; as well as y € K& X,. Then y can
be derived from substitution instances ¢* of some ¢ € X; using modus ponens, and
from instances ¢V of some ¢ € X, using modus ponens. Now, in boolean logic, a
formula y follows both from a set V of formulae and from a set W iff it follows from
favp:aeV,pe W) (Namely, we have AV — y as wellas AW — y and
so AVV AW — ., from which the claim follows by the distributivity laws.) So
we can deduce y from formulae of the form ¢™ V ¢V with ¢ € X|, ¢ € X, for some
substitutions 7, v. Generally, it is not possible to find a single substitution p such
that " V¥ = (¢ V ¢)P, since T and v might disagree on a common variable. This is
why we take instead of ¢ the formula ¢, which is disjoint in variables from ¢. Then
there is a substitution p such that o™ V ¢¥ = (¢7 V ). O

We remark here that the infinite meet of logics cannot be given a canonical axiom-
atization in this way. This should be at least plausible from the construction of the
set Y above. This construction breaks down in the infinite case. This is the reason
why lattices of modal logics are not continuous, that is, do not satisfy all infinite
distributive laws. At the moment it is not proven that the construction does not work.
We will provide an explicit counterexample in the exercises.

THEOREM 2.9.4. The set of quasi—normal k—modal logics operators is a locale.
Proor. Let ® = K, + X, A; = K, + Y;. Then
on |_|ieIAi = (Kk + X) r (KK + Uiel Yi)
= KetlpVvy:peXyeUqi)
= KK+U,-€1{90V.¢/Z<,0€X,I,0€Y,‘}
= Y KetlpVvyipeXyey)
= Ui Ke+X)N(K+Y)
= e ONA;

Moreover,

O LU (A MAL) K+ XUfpVy:peY,yel,)
Kc+{oVy:peXUY,peXUY,)

OUADMOUAy)

The step from the first to the second line needs justification. Put A :== X U {p V i :
peY,pe,andZ :={p Viy:p € XUY ¥y € XUY,). Assume ¢ € A. Then
either ¢ € X or ¢ is of the form ¢ V y where ¢ € Y| and y € Y,. Assume the first.
Observe that ¢ V ¢ € X. Clearly, ¢ € K, + ¢ V ¢, and hence ¢ € K, + £. Now
assume ¢ ¢ X. Then it is of the form ¢ V y, with ¢y € Y| and y € Y>. Then also
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¢ € X. This shows K, + A € K, + Z. For the converse inclusion, assume ¢ € X.
Then ¢ = V y where v € X UY; and y € X U Y. If either y € X or y € X, then
¢ € K, + X and so ¢ € K, + A. However, if € Y| and y € Y, then ¢ € K, + A,
since it is in A modulo renaming of some variables. O

THEOREM 2.9.5. The set of normal k—modal logics forms a locale. Moreover; the
natural embedding into the locale of quasi—-normal logics is continuous, that is, it is
a homomorphism with respect to the infinitary operations.

Proor. Clearly, since the infinite intersection of normal logics is a normal logic,
the embedding is faithful to arbitrary intersections. What we have to show is that
the quasi—normal join of normal logics is also normal. To see this, let ®;, i € I, be
logics and let ¢ be deducible via (mp.) from X C | J;; ®;. Then we know that O;¢ is
deducible from O;X. By normality of the ®;, 0;X C [ J;¢; ©;. O

DEerINITION 2.9.6. Let A be a normal modal logic and ©® a quasi—normal logic.
The locale of normal extensions of A is denoted by € A; the locale of quasi—normal
extensions of © is denoted by Q®. We usually speak of the lattice of (normal)
extensions, rather than of the locale of (normal) extensions.

Some authors use NExt A instead of € A and Ext A for Q A. In algebraic terms,
the underlying set of € ® forms a principal filter in € K,. As before, the lattice
of normal extensions is a complete sublattice of Q®, the lattice of quasi—normal
extensions. Notice that when @O is not normal then ® ¢ £ ®. Nevertheless, £ © is a
principal filter in Q ® induced by the normal closure of ®, which is unique. We will
rarely study lattices of quasi—normal extensions and be concerned only with lattices
of normal extensions. The whole lattice € K, is extremely complex even for k = 1 as
we shall see. However, for some strong logics the extension lattices are completely
known, such as the logics K.alt;, S5 and even S4.3. A large part of the study in
modal logic has been centered around classifying extensions of certain strong logics
in order to gain insight into the structure of the whole lattice £ K.

Let 3 = (I, <) be a linearly ordered set. A chain over J is an indexed family
over 3, that is, an order preserving map j : 3 — EK,. The chain j is properly
ascending if for x,y € I such that x < y we have j(x) € j(y). The following is easy
to establish.

PropostTion 2.9.7. Let j : 3 — & K be a properly ascending chain. Then if
k < Ny, I is at most countable. And if k > Ny, I has cardinality < k.

Observe namely that a logic can be identified with its set of tautologies. That set
is either countably infinite (in case k < 8y) or of size x. The same holds for properly
descending chains.

Recall from Section [I.T|that an element x is join compact if for every family y;,
i € I, such that x < |_|,,y; there exists a finite J C I such that x < |_|;.,y:. A logic is
join compact in the lattice of extensions of € K, only if it is finitely axiomatizable.
Forlet A = K, ® X, and X = {¢; : i € I}. Then A < | |, K, ® ¢;. Hence by join
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compactness there is a finite J C I such that A < | |,c;Ki @ ¢i. So A = K, @ {gp; :
i € J}. Hence A is finitely axiomatizable. Now let A = K, & {¢; : i < n}. Assume
A < | ;9. So, for each i < n, ¢; € | ],/0O;. A proof of ¢; is finite and hence
uses only finitely many axioms. Consequently, there is a finite set J(i) C I such that
@i € | jes®i- Put J := Ui, J(@). Then A <[ ] ;c,®;. So A is join compact.

THEOREM 2.9.8. A logic is join compact in the lattice € K, iff it is finitely ax-
iomatizable. Every element in € K, is the join of compact elements; in other words,
& K, is algebraic.

Let us close with an important concept from lattice theory, that of a dimension.
In distributive lattices (in fact in modular lattices already) one can show that if x is
an element such that there exists a finite chainy :=yg < y; <y < ... <y, = xof
length n such that there is no u such that y; < u < y;;1, then any other such chain
is finite as well and has length n. n is called the dimension of x over y and the
codimension of y relative to x. If the lattice has a bottom element L, the dimension
of x is defined to be the dimension of x over L. If the lattice has a top element, the
codimension of x is the codimension of x relative to T. The following theorem is
of great theoretical importance and well worth remembering. It has been shown in
Davip MaKINsoN [146]].

THEOREM 2.9.9 (Makinson). There exist exactly two logics of codimension 1 in
the lattice € K, namely, the logic of the one—point reflexive frame and the logic of
the one—point irreflexive frame.

Proor. Let us first see that the logics A, = Th[e]and A, = Th[o]are of
codimension 1. To see that, we show in turn that A, = K@OL and A, = Kép < Op.
Note first that these axioms are surely contained in the theory of the corresponding
frames, so the axiomatization yields a logic which is possibly weaker, in each of the
two cases. For the inclusions ‘C’ observe the following. In K@&O.1 we have g < T,
so any formula is equivalent to a nonmodal formula, and in K@ p < Op we have
O¢ < ¢, so again any modal formula is equivalent to a nonmodal formula, by a
simple induction. Thus any axiom extending either logic can be written into a form
¢, ¢ nonmodal. But if ¢ does not hold in either logic, it does not hold in classical
logic as well. But there is no strengthening of classical logic which is consistent, by
Theorem So, K & O is maximally consistent, and contained in A,, so the
two must be equal. Likewise, K@ p & Op = A..

Let ® € A, = K & 0O, the logic of the one—point irreflexive frame. Then
O UK@®Ool is inconsistent. Thus O.L is inconsistent with ® and so we have ¢T € 0,
that is, A 2 K.D. Then any consistent formula without variables is equivalent to
either L or T. Thus the modal algebra 2° on two elements 0, 1 such that m0 = 0 and
ml = 1 is a ®-algebra. But2° F Op & p, and so Th2° = A,, so that ® C A, as
required. O

Notes on this section. The locales of modal logics are in general very complex.
Chapter [/] is devoted to the study of these locales. The results of Wim BLok and
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WoLrGaNG RAUTENBERG have been groundbreaking in this area. Lately, Kracur [131]]
has investigated the automorphisms of some locales of modal logics. These group
measure the homogeneity of the locales. Even though some results have been ob-
tained (concerning, for example, the locale of extensions of S4.3), for the standard
systems even the size of the groups is still unknown.

Exercise 70. Let K.trs,, be the logic defined by the axiom

trsm = DSmp N Ijerlp .

Show that
K = [, K trs, .

This provides an example of an infinite intersection of logics which cannot be given
a canonical axiomatization in terms of the axioms of the individual logics.

Exercise 71. Show that if A;, i € I, all have the finite model property, then so does
[ ;e Similarly for completeness.

Exercise 72. Call a logic A canonical if cany £ A. (See Section[3.2]) Show that
if A;, i € I, are canonical, so is | |,;;A;. Moreover, if Aj, A, are canonical, so is
Aq M Ay. So, the canonical logics form a sublocale of the locale of normal logics.

Exercise 73. Show that the recursively axiomatizable logics form a sublattice with
M and LI. Show that they do not form a sublattice with |_].

Exercise 74. Show that there is no order preserving injective map from the ordered
set of the real numbers into € K.

Exercise 75. Show that the finitely axiomatizable logics are closed under finite
unions. Moreover, if © is weakly transitive, the finitely axiomatizable logics in £@
are also closed under finite intersections.

Exercise 76. Show that a logic is Halldén—complete iff it is not the intersection of
two quasi—normal logics properly containing it.

“Exercise 77. Show that the infinite intersection of decidable logics need not be
decidable.






CHAPTER 3

Fundamentals of Modal Logic II

3.1. Local and Global Consequence Relations

With a modal logic A typically only the relation F, is considered as an associate
consequence relation. However, in many applications it is useful to take a stronger
one, which we will call the global consequence relation. It is denoted by I-5 and
defined as follows.

DeriniTioN 3.1.1. Let A be a modal logic. Then A v ¢ iff ¢ can be derived from
A and A using the rules (mp.) and (mn.): {{p},0;p) (j < k). We say that ¢ follows
globally from A in A if A -5 ¢. Ik is called the global consequence relation
of A.

In the light of the definitions of Section (Pr, Fay and (P, k) are actually
two different logics with identical sets of tautologies. However, since it is customary
to identify modal logics with their set of tautologies, we will differentiate -5 and IFp
by using the qualifying adjectives local and global, respectively. In I the rule (mn.)
is only admissible, whereas in I it is derivable.

The geometric intuition behind the notions of global versus local consequence
is as follows. Take a geometrical model Mt := (, B3, x) and a formula ¢. We say
that ¢ holds locally in M if (F,5,x) £ ¢ and that ¢ holds globally if (F,8) E ¢.
Alternatively, we may distinguish between local and global models. A local model
is a triple (&, 8, x) with & a frame, 8 a valuation into & and x a world. A global model
is a pair 9N := (F,B). A local extension of 9t by x is the triple 9, := (&,5, x). We
say that a local model 9t is a local A—model for ¢ if Mt is a model based on a frame
for A and ¢ holds locally in it; and we say that a pair 9t is a global A—-model for ¢
if every local expansion of 9t is a local A—model for ¢. By the deduction theorem
for 5 and Theorem we have the following completeness result. A 5 ¢ iff for
every A—frame and every local model 9t based on it, ¢ is true in M if A is true in IN.
It will be shown below that an analogous completeness result holds with respect to
I-». Fundamental for the completeness is the following fact. (Recall that R“A was
defined to be the closure of A under (mn.).)

ProposiTion 3.1.2 (Local-Global). For any given logic A, A Fp W iff RCA ko Y
iff 8BAg Fa W for some compound modality B and a finite set Ay C A.

99
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Proor. In Section [2.1]it was proved that any derivation of a formula  can be
transformed into a derivation of ¢ in which all applications of (mn.) are done before
(mp.). Hence, if A 5 ¢ then ¢ is derivable from the closure of A under (mn.)
by means of (mp.) only. This shows the first equivalence. The second holds by
compactness and the fact that for any pair B, 8" of compound modalities there exists
a compound modality B” such that " p 5 Bp; &' p. O

ProposiTion 3.1.3. Let A be a modal logic. Then A wp ¢ iff for every global
model M = (F, B) such that § = A, we have Wk ¢ if M E A

Proor. Assume A -5 ¢. Then R“A 5 . Now let it = (§F,3) be a global A—
model and assume 9 = A. Take a local expansion N, := (&,[, x). Then %N, F RVA.
Hence N, £ ¢. Since this does not depend on the choice of x, 9N £ ¢. Now assume
that A ko ¢. Then R“A ¥4 ¢. Thus the set R“A U {—¢} is consistent and is therefore
contained in a maximally consistent set W. Let §§ be the subframe of Cany(var)
generated by W, and let x be the natural valuation, defined in Section @ Then
(&, &) E A, but (§, k) ¥ ¢, as required. |

The previous theorem established the correctness of the notion of global conse-
quence. From now on the relation 5 will also be called the local consequence
relation if that qualification is necessary. Many notions that we have defined so far
now split into two counterparts, a local and a global one. However, some care is
needed due to the fact that many definitions take advantage of the fact that -, admits
a deduction theorem whereas I-5 generally does not (see below). For example, by
the definitions of Section a logic is called globally complete if for every finite
set A of formulae and each formula ¢ if A ¥, ¢ then there exists a Kripke—frame f
for A and a valuation 8 such that (f,8) £ A but (f,8) ¢ ¢. (Instead of a finite set A
we may just take a single formula 6, e. g. A A.) If the frame can always be chosen
finite then we say that A has the global finite model property. Likewise, A is glob-
ally decidable if for finite A the problem ‘A I ¢’ is decidable, that is, we have an
algorithm which for any given finite set A and formula ¢ decides (correctly) whether
or not A IF5 ¢. Similarly, for a given complexity class C we say that A is globally
C—computable (globally C-hard, globally C—complete) if the problem ‘A I ¢?°
is in C (is C-hard, is C—complete). A is locally decidable (locally complete etc.) if
it is decidable (complete etc.) simpliciter.

We have seen earlier that the semantics for the local consequence relation leads
to pairs (2, F) where U is a modal algebra and F a filter. Since the set of designated
elements must be closed under all rules, for -, we must now also require the set of
designated elements to be closed under the algebraic counterpart of the rule (mn.).

DeriniTioN 3.1.4. Let N be a modal algebra, and F C A a filter. F is called
open if it satisfies (fim.): If a € F and j < k then alsom;a € F.

Lemma 3.1.5. Let N be an algebra and F be an open filter. Define Of by a O b
iffa & b e F. Then O is a congruence.
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Proor. In Section[I.7]we have shown that ® is a congruence with respect to the
boolean reduct. Hence, we only need to verify that if @ ®¢ b then also m;a O m;b.
So, suppose that a @ b. Then, by definition, a «& b € F. Thus, a — b € F, from
which (@ — b) € F, since F is open. Hence, by (mp.) closure, m;a — m;b € F.
Similarly, m;b> — m;a € F is shown, which together with m;a — m;b gives B;a <
m;b € F. And that had to be demonstrated. O

Usually, we write 2/ F instead of A/Op.

THEOREM 3.1.6. Let A be a modal logic. The global consequence relation of A
has a unital semantics.

Proor. Let 8 be the set of all pairs (2, F) where (i.) U is a modal algebra, (ii.)
F an open filter in U, (iii.) k@ ry 2 ko and (1v.) (U, F) is reduced. By the results of

Section|[1.5]
N ﬂ Faur)
(AF)es
By Lemma[3.1.5)(%, F) is reduced only when F = {1}. Thus, I has a unital seman-
tics. |

As a useful consequence we note the following theorem.
Lemma 3.1.7. Let A be a modal logic, ¢1, ¢, and ¥ be modal formulae. Then
01 © @2 kA Y1) © Ylen) .

The characterization of I, in terms of matrices fits into the geometrical picture
as follows. If A is a A—algebra and (2, {1}) a reduced matrix, then a valuation g into
that matrix makes ¢ true just in case B(¢) = 1. If U is the algebra of internal sets of
a frame §, then 1 is simply the full underlying set, namely f. So, the corresponding
geometrical model is nothing but the global model (3, 5).

Now we turn to the interconnection between local and global properties of a
logic.

ProposiTion 3.1.8. If A is globally decidable (has the global finite model prop-
erty, is globally complete) then A is locally decidable (has the local finite model
property, is locally complete).

We will now prove that K, has the global finite model property. The proof is an
interesting reduction to the local property. Notice that K, has the local finite model

property, by Theorem [2.7.9]
LemMa 3.1.9. Let k := §(sf(¢) U sf()). Then we have

erg ¥ if xgkgarKsz.

Prook. Surely, if ®=%¢ Fg_ i, then also ¢ g . So, assume B2 ¢ g .
Then there exists a finite model (f, 8, wo) E ®S2A¢; - rooted at wy. Moreover, the
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construction for Theorem [2.7.9] shows that we may assume that f is cycle—free, and
that between any pair of points there exists at most one path. Let A := sf(¢) U sf(¥)
andput S(y) = {xy € A : (f,8,y) £ x}. Let g be the set of all y in f such that along
any path from wy to y there are no two distinct points v and w such that S (v) = S (w).
Then any path from wy to y € g has length < 2%, because there are at most 2 subsets
of A. Now define «; on g as follows. y «; ziff (1.) y <; z or (2.) for some u ¢ g we
have y < u and S(z) = S (u). Put y(p) := B(p) N g. We will now show that for every
yegandy € A
Gymex & &BMEX-

This is true for variables by construction. The steps for negation and conjunction
are clear. Now let y = ¢;0. If (f,5,y) £ ¢;0 then for some z such that y <; z
we have (f,,z) £ 6. There are two cases. Case 1. z € g. Then by induction
hypothesis, (g,v,z) & 6. From this we conclude (g, y,y) £ ¢;0, since y «; z. Case 2.
z ¢ g. Then there is a u € g such that S (#) = S(z). Therefore, by construction of g,
¥ «; u. Furthermore, (f, 8, u) £ ¢ by definition of S (). So, (g, v, u) £ ¢ by induction
hypothesis. From this follows (g,¥,y) £ ¢;0, since y «; u. This exhausts the two
cases. Now suppose (g,7,y) k ¢;0. Then (g,y,z) £ ¢ for some z such that y «; z.
By induction hypothesis, (f,5,z) £ 0. If y <; z, then also (f, 8,y) k ¢;0. If, however,
y #; z, then there is a u such that y <; u and S(4) = S(z). By definition of §(-),
(f,B,u) £ 6, from which (f,8,y) £ ¢;0 as well. Now since from wy there is always
a path of length < 2* to any point y € g, we have (f,8,y) £ ¢ for all y € g, and so
(a8,7,y) E ¢ for all y. Consequently, (g, y, wo) F B“p; ~, as required. m]

THEOREM 3.1.10. K, has the global finite model property.

Notice that even if f was originally cycle—free, we might have inserted cycles
into g. This is in some cases unavoidable. For example, there is no finite cycle—free
model against 0T g p, but there are infinite cycle—free models as well as finite
models with cycles. The bound for & in the proof can be improved somewhat (see
exercises). This theorem has a great number of strong applications as we will see in
the next section.

VALENTIN GorANKO and SoLomoN Passy have shown in [87] that the global prop-
erties of a logic A correspond to the local properties of a logic A® which arises from
A by adding a so—called universal modality. (See Section [2.5]) Recall that A® is
defined by

A" :=A®S5({0jp = Oxp 1 j <k}
Abbreviate O, by m. It is not hard to show that the canonical frames for A" satisfy
two properties. (1.) The relation « (:= <) is an equivalence relation on the set of
points, (2.) For all j < «, <; C «. (It also follows from the results of Section @)
By completeness with respect to canonical frames, A® is complete with respect to
frames satisfying (1.) and (2.). Moreover, a rooted generated subframe of a frame &
satisfying (1.) and (2.) actually satisfies (1’.) « = f x f. Thus, A™ is complete with
respect to frames satisfying (1’.) and (2.). It is easy to construct such frames when
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given a frame & for A. Namely, put < := f X f(=: <), f* 1= (f,{(<j: j <k +1))
and §" := (f*,F). Since mya = @ iff a # f, and m,f = f, F is closed under m.
Consequently, F" is well-defined. Moreover, if § is a frame for A, F® is a frame for
A™ — and conversely.

Recall the definition of P, from Section Continuing our present notation
we write P, (m) for the language obtained from P, by adding O,. Let us agree to call
a formula plain if it does not contain any universal modality. So, ¢ € P,(m) is plain
iff ¢ € P,. A degree 1 combination of plain formulae is a formula ¢ € P,(m) such
that no m occurs in the scope of another occurrence of m.

ProposiTion 3.1.11. Let A be a modal logic, A a set of plain formulae, and ¢ a
plain formula. Then A 5 ¢ iff MA Fps @. In particular,

Fa @ iff Fam @ .

Proor. Suppose that A -5 ¢. Then R“A Fp ¢ and so B”A Fxs ¢. Now BA s
R“A, as can be shown easily. Hence MA Fx= ¢. Now assume that A ¥, ¢. Then
there exists a global model M := (F,B) such that N £ A and N £ ¢. Thus for some
local extension N, N, ¥ ¢. Then M := (F",B, x) is a local A"-model such that
I E WA; -, as required. m]

A sharper theorem can be established. Before we can prove it, however, we need the
following auxiliary theorem concerning simplifications of formulae.

Lemma 3.1.12. Let A be a polymodal logic and A™ be the extension by a uni-
versal modality. Then any formula in P,(m) is deductively equivalent to a degree 1
combination of plain formulae.

Proor. Let ¢ be given. We can assume ¢ to be in normal form. The following
equivalences are theorems of K¥ for® =0;, j <k, or@m = m.

EEp < HBLlLVHEp

Heép < HLVeép

H(gVHEp) < HgVHEp

B(gVep) < HgVep

H(g Amp) < HgAEBEp

BlgAep) o BLV(BgA4p)
Analogous equivalences can be derived for the dual operator from these upper six
equivalences. The lemma now follows by induction on the degree of ¢. O

THeEOREM 3.1.13 (Goranko & Passy). For the following properties B, A has P
globally iff A™ has B locally: decidability, finite model property, complete-
ness.

Proor. One direction follows from Proposition [3.1.11} namely, if A® has P
locally, A has ‘B globally. So we have to prove the converse direction. The idea to
the proof is to reduce a statement of the form ‘rs ¥’ to a boolean combinations of



104 3. Fundamentals of Modal Logic I1

problems of the form ‘y Iy ¢’. (Moreover, this reduction will be effective, so it is
enough for the proof of decidability of ‘+xs ¢’ if we show the problems ‘y I ¢’
to be decidable.) Now start with ‘Fps ’. Transform ¢ into conjunctive normal
form. This does not affect theoremhood of . So, without loss of generality y can
be asumed to be already in conjunctive normal form. Moreover, we have seen in
Lemma [3.1.12] that y is deductively equivalent to a degree 1 combination of plain
formulae. So, we may as well assume that it is already of this form. If ¢ is of
the form Y| A Y, the problem ‘Fas Y’ is equivalent to the conjunction of ‘Fas i’
and ‘Fa= »’. Hence, assume now that i is not of that form. Then ¢ is of the form
Vi<, Mp; V 0 VT, where all p;, o and 7 are plain. We claim that Fxs \/,_, Bp; V4TV T
iff either for some i < n =0 ko p;, or =0 k5 7. To see this, assume that the left
hand side fails. Then there exists a local A®"-model (F, 3, x) £ A, “Wp;; B—0; —T.
We may assume that § = G" for some A—frame ®. Then M := (G, L) is a global
A—model and M k£ -0 as well as M & p; for all i < n and M £ 7, as required. Now
assume that the right hand side fails. Then there exist global A—models M; = (&;, B:)
such that M; £ —o, M; £ p; for all i < n and a global A—-model N = (®,y) such
that Bt £ o and N ¥ 7. In particular, N, £ -7 for some local extension N, of N. Put
9 =P, , 5:06. Lets := P, Bi®y. Then (H", 6, x) & A, ~Wp;; W—07; =7, This
concludes the proof in the case of decidability. For completeness and finite model
property, notice that in the previous construction if &; and ® are (finite) Kripke—
frames, so is H". O

Notes on this section. The universal modality has enjoyed great popularity in modal
logic. It was observed in [86] that the universal modality has in conjunction with
nominals the same expressive power as the difference operator, explored by MAARTEN
pE RukE in [177]]. It was proved subsequently that A™ shares few properties with A
(apart from those which they must share by virtue of the results of this section).
In passing from A to A" finite model property can get lost (FRank Worter [235]),
decidability (Epita Spaan [202]) and even completeness, see Section The num-
ber k in Lemma 3.1.9|cannot be significantly reduced. In Marcus Krachr [130]] it is
shown that asymptotically k must be at least as large as 2¢V*, where n is the size of ¢.
Moreover, Epita Spaan [202] has shown that K.alt; is globally PSPACE—complete
and that K, is globally EXPTIME—-complete. So, adding the universal modality can
raise the complexity to any higher degree.

Exercise 78. Prove Proposition

Exercise 79. Show the following improved bounds for global to local reduction.
Define A := sf(¢) U var(y). Further, let u := max{dp(y), 2**}. Show that

@I, ¥ & R bk, ¥
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Exercise 80. Let A be a logic. Let r(¢, ) be such that ¢ IFy ¢ iff RS ¥V 1y y.
Now let A be a logic which is locally decidable, but not globally decidable. (Such
logics exist, see Section[9.4]) Show that r(¢, ) is not computable.

Exercise 81. (R. E. LapnEr [[137].) Let A C S5 be consistent. Show that satisfiability
of a formula is NP—complete. Hint. Clearly, the problem is NP-hard. To show that
it is in NP, show that any formula can be reduced to a formula of depth 1.

Exercise 82. Show that a modal logic is locally tabular iff it is globally tabular.

3.2. Completeness, Correspondence and Persistence

Clearly, Kripke—models are easier to handle than canonical frames. Mostly, it is
easier to reason in a Kripke—structure than to reason syntactically by shuffling for-
mulae. Moreover, canonical models are very difficult structures. All the knowledge
of a logic is coded in the canonical frame, so there is little hope that we can use
the canonical frame in any effective way. However, the abstract existence of such a
frame alone can provide us with many important results. Consider the basic logic
K,. We know that Kripke frames satisfy all postulates of K,. Now, if ¢ is not a
theorem of K,, then we can base a countermodel for ¢ on the canonical frame, that
is we have a world X such that

(Cang, (var),v,X) £ -

where v(p) := {X : p € X}. However, as the Kripke structure underlying that frame
satisfies K,, we can actually forget the internal sets. Then, using the same valuation
we have

(cang (var),v,X) E -
We have established now that K, is complete by using the canonical frame and ‘for-

getting’ the internal sets. If this is possible, a logic is said to be canonical or c—
persistent.

Derinttion 3.2.1. A logic A is called a—canonical if for every B < a, A C
Th cana(B). A logic A is canonical or c—persistent if it is a—canonical for every
a, and it is called weakly canonical if it is Xyp—canonical.

The following is an easy consequence of the definition.

ProposiTiON 3.2.2. Let @, 8 be cardinal numbers and @ < 3. Let A be p—
canonical. Then A is also a—canonical.

Proor. By assumption, there exists an embedding f : @« > S. By Theo-
rem [2.8.11] this induces a contraction Xy : Cana(8) - Cana(a). By assumption,
cana(B) E A. Then also canp (@) E A. |
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DermNtTioN 3.2.3. A logic A is called complete if it is the logic of its Kripke—
structures. N is called a—compact if every consistent set based on < a many vari-
ables has a model based on a Kripke—frame for A. A is called strongly compact
or simply compactif A is a—compact for every a and A is called weakly compact
if it is Ng—compact.

Obviously, if a logic is compact, it is also weakly compact, and if it is weakly
compact it is complete. Neither of the converses hold; there are complete logics
which are not weakly compact and there are logics which are weakly compact but not
strongly compact. (This has been shown first in [66], who also defined the notions
of weak and strong compactness.) The reader may verify that logics axiomatized
by constant axioms are 1-compact. Compactness is rather closely connected with a
different property of logics, called complexity (see [82]]).

DEerNtTION 3.2.4. A logic A is a—complex if every f—generable algebra, where
B < «, is isomorphic to a subalgebra of the algebra of all subsets of a Kripke—frame
for A.

a—complexity is not directly equivalent with a—compactness if « is finite. Rather,
the right notion to choose here is global a—compactness. A logic A is globally a—
compact if for every pair consisting of a set ® and a formula ¢, based together on
S—many variables, 8 < «, if ® k5 ¢ then there exists a Kripke—frame f £ A, and a
valuation g such that (f, 8) £ @ but (f, 8) ¥ ¢. If a logic is locally @ + 1-compact then
it is also globally a—compact.

THEOREM 3.2.5 (Wolter). Let A be a k—-modal logic. A is globally a—compact iff
it is a—complex. Moreover, if A is globally a + 1—compact, it is locally a—compact.

Proor. Suppose A is a—complex and take a set @ and a formula ¢ such that
O KA ¢. Assume that ® and ¢ are based on § many variables, § < @. Then there
exists a model (2, y) £ ® such that (U, y) # ¢. By assumption, there exists a Kripke—
frame f such that U is a subalgebra of the algebra B of subsets of f. Let¢ : A »—» B
be an embedding. Then ¢ := ¢ oy is a valuation on f. Now, for every ¢ € ® we
have y(y) = 1, and so 5(;&) = 1 as well. Thus (f, 0) £ ®. However, since y(¢) # 1,
also (f, ) ¥ ¢. For the converse assume that A is globally a—compact. Let A be a
[B—generable algebra, where 8 < @. Then choose a generating set X such that §X = .
For each a € X take a variable p, and let y be the valuation defined by y(p,) := a.
7y is surjective by choice of X. Let U() be the collection of ultrafilters of A. For
every U € U(), 7_1[U ] :={¢ : ¥(¢) € U} is a maximally A—consistent set in the
variables p;, i < . Now A is a—compact and therefore for any 7_1[U ] there is a
A—Kripke—-model (gy, 0y, xu) F 7’1 [U]. We assume that the gy are disjoint and take
g := @ ay and 6(p) := P, 6u(p). It then follows that g £ A and that the algebra
B generated by the y(p,), a € A, is a subalgebra of A. We show that in fact B = A.
Namely, this holds if

lp:¥(p) =g ={p:dp)=1}.
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In fact,

Yo =1 o (VaE)y(Ep) =1
o (YB) VU e U)y(mp) € U
e (VE)(YU e UQ)meey '[U]
o (YB)VU € UQD) gy, oy, xy) F Hp
© (3,0 F¢
& e =g

Now for the second claim. Assume that @ is a locally consistent set, based on 8
many variables, 8 < @. Then let ¥ = {p, — ¢ : ¢ € ®}. BR“Y; p, is based on
< a + 1 variables and is also consistent. For take a finite subset S; S is without loss
of generality of the form B(p, — Dy); pa, B a compound modality and @, a finite
subset of ®. By assumption, ®( has a Kripke-model (f,, x), since @ is locally
consistent. (If a logic is globally @ + I—compact, it is also complete for formulas
with < @ many variables.) Now put 8*(p,) := {x}. Then

(f,,B*,x) F EE(Pa il q)O);pa .

Hence S is consistent. Since S was arbitrarily chosen, B8“Y; p, is consistent. Con-
sequently, R“Y ¥5 —p,, from which ¥ ¥, —p,. By @ + 1-compactness, there exists
a Kripke-model (g, y) £ ¥ such that (g, y,y) F p, for some y. Then (g,7y,y) £ ©, by
construction of V. O

CoRrROLLARY 3.2.6 (Wolter). Let a be infinite, A a normal modal logic. Then A is
a—complex iff it is globally a—compact iff it is locally a—compact.

If @ < B and A is a—canonical then A is not necessarily S—canonical. It is an open
problem, for example, whether N;—canonicity implies NX;—canonicity. It is possible
to show that we cannot give any finite bound ny such that a logic is canonical if
it is np—compact. A simple but instructive example is the case of logics extending
K.D. The 1—canonical frame consists of a single reflexive point (since there are only
trivial constant propositions) and so every extension is 1—canonical. But they are not
all Ny—canonical. For example, take the logic Grz.3. By a theorem of Kitr FINE in
[63] Grz.3 is weakly compact. (An exercise with hints how to prove this theorem
is provided in Section [6.5]) We show that it is not 8;—compact, from which follows
(with the next theorem) that it is not N{—canonical.

Y :={po} U{O(p; = Opix1) ;i € w}U{O(p; —» O-py) 1 i < j < w}

Each finite subset is satisfiable, taking a suitably large chain (n, <). For take a finite
subset X. Without loss of generality we assume that X is the subset containing the
formulas in which all and only the variables up to number ng occur. If i < ng, then
if p; is true at a point x, it must have a successor y at which p;.; holds. Moreover,
y 4 x. So let us take f(ng) := ({0, 1,...,n},<). This is a Grz.3—frame. (For let
(f(no),B, k) £ ¢p. Let € be the largest number such that £ € S(p). Then (f(ng),[, ) k
p;0(=p — O-p), since for any successor j > € if j £ —p then j > € and j F O-p,
by choice of ¢. Hence (f(ng),8,k) £ ¢(p A O(—=p — O-p)), and that had to be
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shown.) If we put B(p;) := {i}, then (f(np),5,0) £ X. Now let { be a Grz.3—frame
and (f,3,x) £ Y. Then pick x; € B(p;). Then for all i, x; < x;;; (by linearity of the
frame) and x; 4 x; for all j > i. Thus we have a strictly ascending chain of points.
Put y(p) := {x2 : k € w}. We have

({7, x0) £ Op; =0(p AO(=p — ¢=p)) .

Thus, { is not a frame for Grz. Contradiction.
In the exercise we have put a proof that G is not 2—compact. This has been
shown by WARREN GoLDFARB (see [32]) and also in [66]. However, G is 1-compact.

ProposiTiON 3.2.7. Let A be a logic. If A is a—canonical, it is a—compact. In
particular, if A is (weakly) canonical it is (weakly) compact.

The proof is easy, once we know that logics are generally complete with respect
to their canonical frame. The converse of this statement is false. FRANK WoLTER [240]
shows that the tense logic of the reals is compact but not canonical. So, which logics
are canonical? This question has been answered for all standard systems. Gener-
ally, failure of canonicity is hard to demonstrate, whereas the contrary is normally
straightforward. K.D, K4, K5, K.alt;, S4.3, S5 are all canonical, G and Grz are not.

ExampLE. We show that S4 is canonical. The proof for canonicity is in two stages.
First we show so called correspondence of the axioms with properties of Kripke
frames. Let f = (f, <) be a Kripke frame. Then the following holds.

(cot.) fEp—>Op iff  {is reflexive
(cod.)) fEOOp — Op iff fis transitive

First (cot.). Suppose that f is reflexive, 8 is a valuation and x a world. Then (f,3, x) £
p implies (f,3,x) £ Op. Suppose now that f is not reflexive, say x # x. Then let
B(p) := {x}. Then we have (f,5,x) £ p; -0p. Now (co4.). Suppose f is transitive,
then it satisfies 4. For let (f, 8, x) £ 00p. Then there are y and z such that x <y < z
(f,B,2) E p. By transitivity, x <z and so (f, 8, x) £ ¢p. Now assume f is not transitive.
Then there are points x < y < z such that x 4 z. Choose S(p) := {z}. Then (f,5, x) £
QOp; =0p.

So, if we can show that the Kripke structure underlying the canonical frame is
reflexive and transitive, we have proved that S4 is canonical. Assume then that the
canonical stucture is not reflexive. Then for some set X, X # X; by definition, there
must be a formula ¢ such that ¢ € X but ¢¢ ¢ X. Hence ¢ A =0p € X, and so
the canonical frame does not satisfy the axiom p — ¢p. Contradiction. Hence the
structure is reflexive. Now assume it is not transitive, that is, there are sets X <Y < Z
such that X # Z. Then there is a formula ¢ such that ¢ € Z but ¢¢ ¢ X. However,
again by definition, ¢¢ € Y and so ¢0¢ € X, showing that =0¢p A ¢00p € X, in
contradiction to the assumption that our frame satisfies the axiom (4.).
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Lemma 3.2.8. Let s be a finite set of finite sequences over k. Let X and Y be
worlds such that for all ¢ we have O°¢ € X only if ¢ € Y. Then X <* Y in the
canonical frame for K,.

Proor. First we show the claim for sequences. This in turn is shown by induc-
tion on the length of the sequence. If o has length O the claim is immediate. So let o
be a sequence and o~ = j~ 7t for some sequence 7 and j < k. Let Ay := {y : O € X},
Ay =0y eYtand A := AgUA;. Then O;A) C X and ¢;A; € X. We claim
that A is consistent. To that end, let Ag C Ag and A; C A, be finite sets. There exists
a o € Aj such that 6 +p ¢ for all & € Ay, as is easily shown. Now assume that
Ao; A is A—inconsistent. Then Ag; 6 Fo L. From this it follows that O;Ag k5 O;76
and so O;Ag; ¢,0 is inconsistent in A. However, 0O;A; ¢ ;0 € X and X is A—consistent.
Contradiction. Therefore, A is consistent and there exists a world Z containing A.
Then X <; Z by definition of the canonical frame, and Z <" Y by induction hypothe-
sis. Hence X <« Y. Now let s := {0 : i < n} be a set of finite sequences over k and
assume that X #° Y. Then for every i < n there exists a ¢; such that 0%¢ € X but
peY. Putp:=V,,¢. ThenD'p e Xbutp ¢ Y. O

THEOREM 3.2.9. Let s and t be finite sets of finite sequences over k. Then K, &
O'p — O'p is canonical. Moreover, the canonical frame satisfies <' C <°.

Proor. We prove the second claim first. Let X and Y be worlds such that X <’ Y.
Assume that 0@ € X. Then also O'¢ € X. Since X <' Y we have ¢ € Y. Hence by the
previous lemma X <* Y. So, <’ C <*. To show that K, @ 0°p — O’p is canonical it
is enough to show that if f is a Kripke—frame such that < C <* then f £ O*p — O'p.
But this is straightforward. O

As an example, let f = (f, <, €) be a bimodal Kripke—structure. f satisfies 0p —
#p iff < C«. fsatisfies 04p — #Op iff <o 4« C < o<, Also, f satisfies O#p « ¢Op iff
< and < commute.

DeriniTioN 3.2.10. Let ¢ a modal formula and « be a first—order formula in the
language of predicate logic with <; and equality. ¢ corresponds to « iff a Kripke
structure § satisfies ¢ exactly if it satisfies a.

In light of this definition the following correspondences are valid.
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Axiom \ FIRST-ORDER PROPERTY \ DEScrIPTION
0T (VoI (x < y) definality
p—=op (Yx)(x <x) reflexivity
p — 0O0p Vxy)(x <y = y<x) symmetry

OOp — Op Vxy2)(x <y Ay<z. — .x<z) | transitivity
oOp — O0p | Vxyz)(@Aw)(x <y Ax<z. — . | convergence
Y<IWAZ<IW)

Op — Op (Vxyz)(x 9y A x <z. — .y = ) | partial functionality
op > 00p | Vxy2)(x<y A x<z.— .y<z) | euclideanness
3 VMxy)(x<ayAx<z. —. local connectedness

y<zVy=2zVz<dy)

For polymodal logics similar correspondences can be established. Important are
the tense postulates p — Og0;p and p — O;0pp. A frame satisfies the first iff the
relation < is contained in the converse of <, that is, if x <p y implies y <; x. For a
proof assume that x <9 y #4; x. Then put B(p) := {x}. Then (f,8,y) £ O;—p and so
(f,B,x) £ p;0o0;—p. So the axiom is violated. Assume then that the frame satisfies
the first order property. Pick a valuation 8 and a point x. Assume (f, 3, x) £ p. Take
a y such that x <9 y. Then y <; x and so (f,5,y) £ ¢;p. Thus, as y was arbitrary,
(f, B, x) E Op01 p, which had to be shown.

THEOREM 3.2.11. A bimodal Kripke structure satisfies K.t iff < is the converse
Of <.
We conclude with a general theorem on logics of bounded alternative.

THeEOREM 3.2.12 (Bellissima). Every logic of bounded alternative is canonical
and hence compact and complete.

Proor. Let A be of alternative o and ¢ an axiom of A. We want to show that
cana(Np) E ¢. To see that, assume that there is a point x and a valuation 8 such
that (canA(No) B, x) E —g. Let d be the modal depth of ¢. Then there are at most
l+a+a®+...+a = €= L points reachable in at most d steps from x. Let the
set of these pomts be X. We clalm now that for any set 7 C X there is an internal
set T° in Canp (Np) such that T° coincides with T on the d-transit of x. Thus if we
put y(p) := B(p)° then we have (can,(Ny), v, x) £ =, and since the y(p) are internal,
we now have (Cana (Np), v, x) ¥ ¢, which had to be shown. Now for the existence of
these sets. Let X = {xo, ..., x,—1}. For each pair i, j we have a set S (i, j) containing
x; but not x;. (For if x; and x; are different, they represent different ultrafilters, and so
there is a formula ¢ such that ¢ € x; but ¢ ¢ x;. Now let S(7, j) ;=9 = {X : ¢ € X} in
the canonical frame.) Then let S (i) = (;,; S (i, j). S (i) contains x; but none of the j.
Thus, for any subset ¥ C X put Y° = (J{S (i) : i € Y}. Y? is internal. This concludes
the proof. O

Exercise 83. Prove the remaining correspondence properties.
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Exercise 84. Show that a frame ® satisfies D iff the underlying Kripke structure
satisfies (Vx)(Iy)(x < y). Show that K.D is canonical.

Exercise 85. Show that S5 is canonical. Hint. Show that the axiom B is valid in a
Kripke structure iff that structure is symmetric. Proceed as with S4.

Exercise 86. Show that the tense logic K.z is canonical and complete.

Exercise 87. Show that a finite Kripke—frame satisfies G iff it is transitive and ir-
reflexive.

Exercise 88. Show that a finite Kripke—frame satisfies Grz iff it is reflexive, transi-
tive and antisymmetric, that is, if x <y and y < x then x = y.

Exercise 89. Show that if K @ ¢ is canonical for all ¢ € X, then K @ X is canonical
as well.

Exercise 90. Let A be complete. Define the Kripke—consequence I—’j\ for A as fol-
lows. @ I—Ij\ @ iff for every A—Kripke—frame f if (f, 3, x) £ @ then also (f,5, x) E ¢.
Show that -5 C I—I/‘\ and that equality holds iff A is compact iff I—]/‘\ is finitary (or com-
pact).

“Exercise 91. Show that if A is not complete, then it may well be that I—I[‘\ is finitary.
In that case, however, I—’j\ must be strictly stronger than 4.

“Exercise 92. Show that G is 1-compact but not 2—compact. Hint. To show the first
claim show that one can only define boolean combinations of statements of the form
O"1 A —O""! L, stating that there exists no upgoing chain of points of length n + 1.
Show then that any infinite set of such formulae if jointly consistent has a model
based on a Kripke—frame. For the second claim, consider the following formulae.
Put

i i==0(pAOL)AO(p AT L) .
Show that the following set is consistent, but has no model based on a Kripke—frame
{0wo} U {O(pi = Opiv1) 11 € w}.

(This is the solution of WARREN GOLDFARB as given in [32]].)

“Exercise 93. Let us consider a fixed set {p; : i < n} of sentence letters and define for
aset S C nthe formulae ys := A5 pi A Aigs —pi- Consider the following formulae

O = /\ O(ys AOL). » .0(@p, = pn) = Opy .

Scn

Show that the logic K; @ ¢, is n — 1-canonical but not n—compact.
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3.3. Frame Constructions II

This chapter is devoted to the question of making models as small as possible
or to produce models that satisfy certain properties. Before we enter this discussion,
we introduce some very important terminology. First, let f = (f,(<; : i < x)) be a
Kripke—frame and g C f. Let g = (g,<<1? 10 < k)) with <1§.] = <;N g xg. Then we
call g a subframe of f, in symbols g E {. For a general frame &, ® is a subframe if
geF,gCf,and G ={ang: a € F}. In general, for any subset p C f,{pNa:acF}
is called the trace algebra of & in ®. The trace algebra is actually closed under
complement and union, as is verified. Moreover,

l‘?b = {xeg:(\/yD‘jx)(yEb)}
{xeg:(Vnyx)(yEg.::».yeb)}
gnml(g—b)

Hence, the subframe based on an internal set is always well-defined. A valuation 8
on f defines a valuation y on g in the natural way, by y(p) := B(p) N g; this valuation
is often also denoted by S. Let us be given a Kripke—frame f and a subset S. We put
suci(S) = {y : Ax € §)(x < y)}. The m—wave Waveff”(S) and the m—transit Tr’f"(S)
of § in { are defined as follows.

Wave?(S ) = S

Wavef1 (S) = Ujersuci(S)
Wave™'(S) = Wave](Wave'(S))
Tri'(S) = Uicm Wavei(S)
Tri(S) = Uiew Tr(S)

Tr;(S) is called the transit of S in §. All these definitions just define subsets of
frames; but if f = (f,(<; : j < «)) is a polyframe and 2 C f then we can regard
naturally as a subframe ) = (A, <<1? 1 j < k)) where <1? = <; N h X h. Similarly,
we write Tr{"(S) for the subframe based on the mtransit of . If there exists an
element w such that f = Tr;({w}) (which we will also denote by Tr;(w)) then f is
called rooted and w the root of f. Rooted frames are sometimes also called one—
generated. However, we will avoid this terminology. All definitions apply equally
to generalized frames, where the waves and transits are computed with reference to
the underlying Kripke—frames. Put x < y if y € Trs(x) and x < y if Trs(y) S Tri(x).
Put Cy(x) = {y : x <y < x} and call it the cycle of x. A set M is a cycle if it is of the
form Cy(x) for some x. A frame is cyclic if its underlying set is a cycle. The depth
of a point in a frame  is defined as follows.

dp(x) :={dp(y) : x <y}

This is generally not a good definition, e. g. in the frame (w, <). Hence, we require
that the definition is applied only to points for which there is no infinite chain (x; :
i € w) such that xo = x and x; < x;;;. In this case the depth is well-defined and
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yields an ordinal number. (This number is not necessarily finite.) In all other cases,
x is said to have no depth.

Dermnttion 3.3.1. Let | be a Kripke—frame. A precluster is a maximal set P of
points such that for all x,y € P and all j < k we have sucj(x) = suc;(y). A cluster
is a maximal connected set C of points such that for all x,y € C and all j < k we
have suc j(x) = suc;(y).

A cluster is a cycle in a precluster, but not conversely. Given a frame f and
a precluster P the map collapsing P into a single point can be turned into a p-—
morphism. This can be derived from a more general theorem which we will now
present. Let § be a frame and ® E § be a subframe. Assume that for all x,y € g
and all j < « we have suc;(x) N (f — g) = suc;(y) N (f — g). Then we call & a local
subframe of .

ProposiTion 3.3.2 (Net Extension III). Let § be a frame and ® T § be a local
subframe. Let ~ be aneton ®. Put x ~ yif(i.) x,y€ gand x ~yor (ii.) x,ye f— g
and x =y. Then = is a net on §.

Proor. Let x <tjyand x ~ x’. If x ¢ g then x = x” and then trivially x" <; y. So,
suppose that x € g. Then x’ € gand x ~ x’. Assume y ¢ g. By assumption on g,
sucj(x) N (f — g) = suc;j(x’) N (f — g), so that x’ <; y. Assume now y € g. Since ~
is a net there exists a y’ such that y ~ y" and x” <; y’. This shows that ~ is a net on
g. Next,leta € F. Thena = bUcwhere b :=angandc :=an(f—-g). Now
[al~ = [b]s U [c]s = [P]. U c € F, since [b]. € F by the fact that ~isaneton §. 0O

This theorem allows several generalizations, but in this form it is most useful (and
simple). There is another very useful operation that allows to replace a subframe by
a larger subframe. In this construction we say that & is obtained by blowing up ¥
by a p—morphism.

TueOREM 3.3.3 (Blowing Up). Let ® C Fand c : H » ©. Assume that h is
disjoint with f (and so also with g). Define a new frame R as follows.

k =(f-gUh
< = <15ﬂ(f—g)2U<1?
Ul(x,y) s x € f,y € h,x <] e(y)
Uiy s x € hyy € fre(x) <l y)
K :={aUb:aecFbeH,ang=0}

If G ={cla] : a € H} then & is a frame. The map d defined by d(x) := x if x ¢ h and
d(x) := c(x) otherwise is a p—-morphism of ] onto J.

Proor. First we verify that d is a contraction of the Kripke—frames. To see that,
assume x <1’J‘. y. If {x,y} € k— h then x <15. yand d(x) = x as well as y = d(y). If
{x,y} C hthen x <1’j? y. Then d(x) = ¢(x) and d(y) = c(y) and so by assumption on
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c, c(x) <1§ c(x). Hence d(x) <1§ d(). Next,let x € k—hand y € h. Then x <1'j‘. y
iff x <1§ c(¥). Since x = d(x) and c(y) = d(y), the claim follows. Likewise for the
last case, that x € hand y € k — h. This shows the first p-morphism condition.
Next, let x € k, u € f and assume d(x) <1§ u. Let {x,u} € f—g. Then x = d(x)
and u = d(u) and x <1’]f u, as required. Next assume {x,u} C g. Then, since ¢
is a p—morphism, there exists a y € h such that x <1i? y and ¢(y) = u. Then also
d(y) = u and x <1’j? y. Third, assume x € gand u € f —g. Then d(u) = u and
X <1’Jf u by construction. The remaining case is also straightforward. To see that & is a
frame, we must show that K is closed under boolean operations and 0’}‘. . The boolean
operations are straightforward. To show closure under ¢, we take a set a € K. It
is of the form a; U a, where a; € Fand a; C f — g and a, € H. By assumption,
by := claz] € G and so also b, € F. (1.) Qljfal = ((k-=hn Ol;al) Utn Ql;al).
k-h)n 0’1‘.a1 =(f-gnN Qfal eF. hn 0’;a1 =c'[gn Ofal] € H. So this case is
settled. (2.) #5ar = (k=h)N#a)U(hN¥ar). (k—h)N#ar = ¢ [( f—g)mj by] € F.
hn o’jaz =clgn bez]. This concludes the proof that § is a frame. Finally,
¢! : F — Kis clearly injective. This concludes the proof of the theorem. O

CoroLLARY 3.3.4 (Multiplication). Let & be a frame, and ® E §. There exists a
natural p—morphism c : @id ® » 6 : (x,i) = x. The result & of blowing up & by ¢
is a frame. We say that & has been obtained from § by multiplying ® (8] times).

The depth of a modal formula corresponds quite directly to the bounded transits.
ProposiTioN 3.3.5. Let (f, 8, x) £ ¢ and k = dp(yp). Then
(TH).Lx) E .

Proor. By induction on k = dp(p). If k = 0, then it is easy to check that
{{x}, B, x) £ ¢ as well, by the fact that the evaluation clauses are only (md-.), (md A .)
and so do not change the world at which we evaluate. Now suppose that ¢ = O\,
dp(y) = k. Then

fLBxyeO & forallys;x (LAY EY

& forallys;x (Tef().B.y)E Y
& forally>;x (Tet'(0).B.y) Fy
o (Erf”(x),ﬁ, Xy E O

O

Having established that a consistent formula has a finite model we can also give
some bounds for the size of such a model. We can actually use the bounds obtainable
from the proof directly, but we seize the opportunity to introduce the method of
filtration. By itself it is a rather crude method for proving finite model property, and
many people have found ingenious ways of refining it so that it allows to give proofs
for many standard systems. Here we only present the most basic variant. Suppose
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that we have a model (3,3, x) £ ¢. Assume S to be defined only for the variables
of ¢. Now let X := sf(¢). Let v ~x w iff they satisfy the same formulae of X, that
is, for all € X (¥,5,v) £ ¥ & (&,B,w) £ . This is an equivalence relation. Let
[v] :={w:v ~x w}and [f] = {[v] : v € f}. There are at most 28X distinct classes, so
871 < 2#%. Now put [v]<;[w] iff there exists V' € [v] and w € [w] such that V' <; w.
Next define y by y(p) = {[v] : (&.8,v) £ p}. This is well-defined by the fact that
if v E p then p € var(p) and if v ~x w then also w £ p. This model is said to be
obtained by filtrating the original model. Then

(LA <)y [xD kg

Namely, by induction on ¢ € X we show that [v] k y iff v £ ¢. This is straightforward
for variables, and the only critical step is » = ¢;y. Here, assume [v] £ ¢;y. Then
[w] & x for some w such that [v]<i;[w]. Then there exist v and w such that vV ~x v,
w ~x wand v <; w. Thus w £ y by construction and induction hypothesis and so
VE Oy, showing v £ ¢y by v ~x V. Conversely, if v £ ¢ ;x then for some j—successor
w we have w £ y and so [w] E y by induction hypothesis. By construction, [v]<i;[w]
and so [v] F ¢y, as required.

THEOREM 3.3.6. Let ¢ be consistent in K,. Then there exists a model with at
most 2F points, where k = Hsf ().

Normal forms are closely connected with a technique called unravelling. There
are more or less cautious variants of unravelling. The most basic method is the
following. Suppose we have a pointed Kripke—frame (f, wp). A path of length r in
(f,wp) is a function 7 : r + 1 — f such that 7(0) = wo and for alli < r + 1 we
have 7(i) <; n(i + 1) for some j < x. We say that 7(0) is the begin point and 7(r)
the end point of 7, denoted by ep(x). The length of 7 is denoted by £(x). We say
that 7% : m — fextends 7 : n — fif n < mand for all i < n, n(i) = 77 (). The
unravelling of degree r of (f, wy) is denoted by u,(f, wy), and defined as follows. It is
a frame based on the set of paths of length < r. The relation <; is defined by 7 <; 7*
iff (i.) £(n*) = €(m) + 1, (ii.) 7™ extends  and (iii.) ep(7) < ep(n*). So, m<; a* if x*
is the path that goes just one step further than & and to a point which is j—accessible
from the end point of 7. u, thus defined has a unique generating point, namely the
path mp : 1 — f, sending 0 to wy; we denote it by (wg). The map ep(—) : 7 — ep(n)
sending each path to its end point is not quite a p—morphism. However, with respect
to points of restricted depth, it is as good as a p—morphism. We formalize this as
follows. Say that i : f — g is n—localic with respect to § C f if the following holds.

(gmf.) Ifx,y € Tr'(S) and x <; y then A(x) <; h(y)
(gmb.) If x € T""!(S) and h(x) <; u then
x <; y for some y such that h(y) = u

It is easy to verify that the map ep : u,(f,wg) — f is r—localic with respect to (wyg).
The next theorem then says that whenever we can satisfy a formula ¢ of depth < r at
wy then it can be satisfied in 1,(f, wyp) at the path .
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ProrosiTioN 3.3.7. Let | and g be Kripke—frames. Suppose that h : f — g
is n—localic with respect to S and that w € S. Let B, 'y be valuations such that
v(p) = h[B(p)). Then for all formulae ¢ of degree < n

fBw)E@ 1d (8,7, h(w)) £ ¢

The proof is an easy induction on ¢ and is left to the reader. The frame 1u,, is a
subframe of u,, if m < n. It consists of the m—transit of  in u,,. The total unravelling
1, is the union of all u,,, n € w. This is well-defined.

THEOREM 3.3.8. Let (f,wg) be a pointed Kripke—frame. The map ep, sending
each path beginning at wy to its end point, is a p—morphism from (u,, (wy)) onto

(f, wo)-

Proor. The map is onto by definition of the transit. Now take m, 7" such that
7 < n*. Then ep(n) <j ep(n™*), by construction. Next assume ep(m) <t; u. Then the
path 7+ defined by extending 7 by just one more point, namely u, is a well-defined
path and we have 7 <; 7% by construction. O

The method of unravelling can be used to show that K, is complete with respect to
completely intransitive trees, by first showing that it is complete and then using un-
ravelling to get a totally intransitive tree from a model. This is somewhat better than
the proof via normal forms, which established completeness with respect to acyclic
frames only. Finally, let us note that if & = (f,F) is a frame and ¢q : u,(f,wp) - fa
total unravelling, then we can define a system U of sets by U := {¢"'[a] : a € F}. By
the fact that we have a p-morphism, U, (F, wo) := (uy(f, wp), U) has the same modal
theory as . This fact is of some importance.

We remark here that there is a more extreme variant of unravelling, which is as
follows. Define a k—path to be a sequence m = (wy, A9, Wi, A1, Wa, ..., w,) such that
w; <y, wiy for every i < n. We say that 7 starts in wg and ends in w,,. Put 7 <; 7/
if 77 = (wg, g, w1, A1y ..., Wy, Ay, Wpy1 for some A, < k and some w,,; € f. Then
we can form the frame x,(f, wp) of all k—paths in f starting at wy. (The definition
of x,(f, wo) is analogous. It is the subframe of x—paths of length < n.) The map ¢
sending r to the sequence (w; : i < n + 1) is a p-morphism onto u,(f, wp). It follows
that there is a p—morphism from x,,(f, wg) onto the transit of wy in f, namely the map
sending each x—path to ints end point. In x,(f, wp) for any pair x and y of points there
is at most one relation <; such that x <; y. This is not so in 1,,(f, wo). For practical
purposes the difference between these constructions is only marginal.

Exercise 94. Show by means of filtration that K, has the global finite model property.
Exercise 95. Generalize the method of unravelling to unravellings generated by sets

rather than points. That is, form the frame consisting of paths starting in a given set
S.
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Exercise 96. A forest is a disjoint union of trees. Show that every Kripke—frame is
the p—morphic image of a forest of intransitive, irreflexive trees.

3.4. Weakly Transitive Logics I

The notion of a weakly transitive logic plays a pivotal role in modal logic. Many
theorems hold only for weakly transitive logics. In this section we will collect some
elementary facts about them. In Section .3 we will return to that subject matter
again. First recall that a logic is weakly transitive iff there exists a maximal modal-
ity with respect to <5, where <, is defined by B <, & iff @@p — Bp € A (see
Section [2.1). Moreover, we have seen in Theorem that logics axiomatized by
axioms of the form Bp — B’ p are canonical and that the frame property determined
by them is elementary.

ProposiTiON 3.4.1. Let A be a weakly transitive logic with master modality 8.
Then B = O° for some finite set of paths s and A is complete with respect to frames
satisfying

vyeTrix) < x<'y.

Proor. The first claim has been shown in Section 2.1l For the second claim we
show that the canonical frame for A satisfies the property. Suppose that ¥ € Tr(X) in
Cana(var). Then there exists a sequence o of numbers < « such that X < Y. Now
@°'p — 87p € A. Thus, by Theorem[3.2.9] <” C <*, which means that X <* Y, as
desired. O

ProposiTioN 3.4.2. The weakly transitive k—modal logics form a filter in the lat-
tice € K,. This filter is not principal. For a given compound modality 8 there exists
a least logic such that B is maximal with respect to <p.

Proor. The first claim is straightforward. To see that there is no least weakly
transitive logic observe that K, has the finite model property. So, if ¢ ¢ K, there
exists a finite f such that f # ¢. For some n, f is n—transitive. Hence, ¢ ¢ K,.trs,.
This shows that

K, = ﬂ K.,.trs,

However, K, is not weakly transitive since we standardly assume « > 0. Finally, let
& be given. Then put

A:=K,®{mp — & p: @ compound}

This is the smallest logic in which @ is maximal with respect to <. ]

ProposiTiON 3.4.3. Let A be a logic. A is weakly transitive iff for every A—
algebra and every principal open filter F of W, F is principal as a boolean filter.
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Proor. Suppose that A is weakly transitive with master modality @B. Let F be a
principal open filter, generated by the element a. We claim that Ba is the smallest
element of F. To see this, observe that the least open filter containing a set E is
the least boolean filter containing the set E¥ := {@’e : e € E,® compound}. This
is the algebraic analogue of Proposition [3.1.2] Since @ is the master modality, we
have me < ®’e for all @’. Hence, the open filter generated by E is the boolean filter
generated by BE := {Be : e € E}. In particular, if E = {a} this shows that the open
filter is principal as a boolean filter. Now assume that A is not weakly transitive.
Then let A := Fo({p}). The open filter generated by (the equivalence class of) p in A
is not principal as a boolean filter; otherwise it has a smallest element. This element
is of the form @p for some compound modality 8. Then, for any compound modality
@', Bp < B p, which is the same as Bp — B’ p € A. Hence A is weakly transitive,
contrary to our assumption. ]

The following is proved in [30] using algebraic methods.

THEOREM 3.4.4 (Blok & Pigozzi). Let A be a modal logic. \+p admits a deduction
theorem iff A is weakly transitive.

Proor. Suppose -5 admits a deduction theorem. Then there exists a term p - g
such that for all sets of formulae A and formulae ¢ and

€3] Ao Ibp Y S Albp @ > Y

Now since p - ¢ Fa p - g we deduce that p » ¢;p ko g. By Theorem [3.1.2]
there exists a compound modality @ such that B(p - q); Bp A ¢. By the Deduction
Theorem for the local consequence of A, B(p —» ¢q) Fpo Bp — g. Now let &’
be an arbitrary compound modality. Replacing g by B p we get B(p - B’ p) Fa
BEp — B p. Notice now that B(p —» ®'p) is a theorem of A; for since p Ik &'p
we immediately get Fx p —-» B p, using (}). And so B(p - ®'p) is a theorem as
well. Hence we have 5 Bp — B’ p. This shows that A is weakly transitive. For the
converse, assume A is weakly transitive. Then there exists a compound modality &
such that Bp — @'p € A for all compound modalities B’. Put p » ¢ := Bp — q.
We claim that () holds with respect to =». For assume A; ¢ -5 . By Theorem|3.1.2
there exists a B’ such that 8’A; B¢ A . Since By 5 B’ ¢, we also have B8'A; By Fp
Y and so B’'A +x By — . Hence A - By — i, as desired. The other direction of
(%) is straightforward. |

We close with the following useful observation. Given that A is m—transitive and
that we have finitely many operators, then Bp := R="p for some m is a master
modality (though clearly not the only one). Hence if ¥ < N8y a weakly transitive logic
is m—transitive for some m. There is an analogue of the next theorem without the
assumption k < Ny, but we leave the generalization to the reader.

THEOREM 3.4.5. (k < Ny.) If a modal logic is m—transitive then every extension
of A can be axiomatized by formulae of modal depth < m + 1.
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Proor. Suppose that A is m—transitive and let ¢ be a formula. Take a fresh
variable gy for each subformula and define w as follows.

w = (gp © p:pEvar(p))

AN NGy © gy 1 Y€ sf(e)

A Nayny © Gy Ny =Y A x € sf(@))

A Nqow © O;qy : O € sf(p))
(Obviously, the variables g, must be pairwise distinct and distinct from the variables
of ¢.) Consider a model (&, 8, wo) £ R="w A —=q,. Let & be rooted at wy. Then
it follows that (&,8) F w, since A is m—transitive. By induction on ¢ it is shown
using Lemma that (§.8) £ g, © ¢. Hence (§,B,wo) £ —¢. Conversely,
assume (§,v,x) £ —. Put y(q,) = B(). Then (F,7,x) £ R<"w A qy. Thus
A®p=A®R"w — q,, and we have dp(8~"'w — q,) = m + 1. m|

Exercise 97. Show that a weakly transitive logic is globally decidable iff it is
locally decidable. Likewise for globally complete and global finite model property.

Exercise 98. Formulate and prove a version of Theorem [3.4.5] that does not restrict
« to be finite.

3.5. Subframe Logics

In [66], Kit FINE introduced the notion of a subframe logic for logics extending
K4 and proved that all subframe logics have the finite model property. This will be
shown again in Chapter [8.3] In Worrer [244] this concept was extended to general
logics and it was shown that there exist subframe logics without the finite model
property. Nevertheless, subframe logics have been established as an important tool
in modal logic. The notion of a subframe logic is based on the concept of a subframe
as defined previously. The algebraic concept corresponding to it is the notion of a
relativization.

DerniTioN 3.5.1. Let A = (A, 1,—,N,(M; : j < k))and b € A. Put A, := {c :
c <byand W, := (Ap,b,—, N, (l;’. : j < k)) where — is the relative complement and
llj’.c :=bnNmib — c). An algebra B is called a relativization of Wif B = Ay, for
some b € A.

DeriniTioN 3.5.2. A logic is called a subframe logic if its class of frames is
closed under taking subframes. Alternatively, a logic is a subframe logic if its class
of algebras is closed under relativizations.

THEOREM 3.5.3 (Wolter). (k < Ny.) Every subframe logic of bounded operator
alternative has the finite model property.

Proor. Every logic of bounded alternative is complete by Theorem|3.2.12] Hence
if ¢ ¢ A then there is a Kripke—frame f such that (f, x) # ¢ for some x and f £ A. Let
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d be the modal depth of ¢. Then ir?(x) E . ‘Ir?(x) is finite, and by the fact that A is
a subframe logic it is also a frame for A. O

In Chapter [8.3| we will show the subframe theorem of [66]. The proof is some-
what long and tedious. However, there are some restricted variants which can be
proved with less effort. We present one here. It is illustrative in the sense that it
demonstrates that the subframe property is not straightforward in case we fail to
know about completeness.

THEOREM 3.5.4 (Fine). Every subframe logic extending G has the finite model
property.

Proor. Observe that the G—axiom states that for every set @ and x € a there is a
maximal successor, that is, a point y such that x <y € a but no successor of y is in a.
Furthermore, by transitivity, if # has a successor in a then it has a maximal successor
in a as well. The maximal points of a can be defined by a " m —a. Let ¢ ¢ A. Then
for n := #var(p) we have (Cany (n), B, wo) £ —¢ for some 5 and x. Now let M be the
set of points x such that x £ i for some ¢y € X U {0¢} but x E O—y. M is an internal
set and so defines a subframe M. There exists a w* € M such that w* £ ¢. For if
wo ¢ M then wy F ¢ and so wy F ¢(¢ A O—¢). Hence there exists a w* such that
wo <w* and w* E ¢; O-¢. From this follows w* € M. Let y be the restriction of 8 to
M. Then (M, y,w*) £ . This is proved by showing that for all y € X and x € M

M, y,x) Ex = (Canp(n),B,x) E x .
This holds for y = p by definition of y. The steps for A and — are straightforward.
Now let y = 0. From left to right is immediate. Now assume that (Cany (n), 3, x) £
. Then there exists a y such that x <y and (Cany (n), 8, y) £ ¢; O It follows that
y € M; by induction hypothesis, (I, y,y) £ . By assumption on A, M £ A. M is
not necessarily finite. However, 9t £ 0" L for some m. For let x € M; put P(x) :=
{ox € X : (M, y,x) E Ox}. If x <y then P(y) € P(x). Let m := {0y : Ox € X}. Then
M £ 0" L. By Theorem [2.7.14] the set of internal sets is finite. By Theorem [2.4.T1]
the refinement map is a p—morphism. It has a finite image. Hence A has the finite
model property. O

Now we show that the satisfiability of a formula ¢ on a subframe of § can be
translated into the satisfiability of another formula, which can be derived syntacti-
cally from ¢.

qlx = qAx

(=) L x = xA=(elyx)
A iy = (@lAWly
@e) L x = xAQix = (@lx)

We call ¢ | y the localization of ¢ to y.

Lemma 3.5.5. Let § be a frame, ® = §,. Let B : var — f andy : var — g such
that B(p) = g and y(q) = B(q A p) for all g # p. Then B(¢ | p) = ¥(p).
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Proor. For a variable ¢, x € B(q | p)iff x € B(g A p)if x e B(g) NB(p)iff x € g
and x € y(q). Further, x € B((—¢) | p) iff x € B(p A ~(¢ | p))iff x € g and x & ¥(¢)
iff x € g and x € y(—¢). The step for conjunction is straightforward. Now we turn to
0;.

x € B@e) L p)
iff  xep(pAgip—=(elp)
iff xegandxempB(p— (¢l p)
iff xegandforeveryye gsuchthaty>;x:y eBelp
iff xe€gandforeveryye gsuchthaty>;x:y€y(p)
iff  xey@p)
This ends the proof. O

Consequently, p — (¢ | p) holds in & iff ¢ holds in all subframes of . Now define
@'/ := p — (¢ | p), where p is a variable not occurring in ¢. (For our purposes it
will not matter which variable gets chosen.)

Tueorem 3.5.6. Let A = Ky & A be a logic. The smallest subframe logic con-
taining A, A% is axiomatizable by K, ® A*f. The largest subframe logic contained
in Nis equal to Agr = K ® {0 1 ¢ € A).

If follows immediately that a logic A is a subframe logic iff for every ¢ € A also
sf
e A.

CoroLLARY 3.5.7 (Wolter). Let S F K, denote the set of k—modal subframe log-
ics. This set forms a complete lattice with the operations of € K,. The natural
embedding of 8F K, into € K, commutes with infinite meets and joins.

Proor. Let A;, i € I, be a set of subframe logics. Let & be a frame and ® a
subframe of §. Then if & £ |_|;A;, then & £ A; for all i € I. By assumption, ® £ A;
foralli € I, and so ® F | |;A;. This shows that the infinite join is a subframe logic.
Next assume that ¢ € [ ];A;. Then for all i € I, ¢ € A;. By assumption on the A,
¢*/ € A; foralli € I. Hence ¢*/ € [];A;. Hence, the infinite meet is a subframe
logic. O

In Worrer [234] an infinite series of incomplete subframe logic has been con-
structed. The simplest is the following logic, which is actually one of the earliest
examples of an incomplete logic, taken from van BENTHEM [9]]. Moreover, in CREsS-
weLL [48] it is shown that this logic is decidable, thus showing that there exist decid-
able, but incomplete logics. CREssWELL uses RaBIN’s Theorem, but the result follows
easily from Corollary [2.6.7] Take the frame Q,,; to be (w + 2, <, 0) with

. B<a and Ba<w+?2
a<p ift {BSO/ and B<a=w
For the algebra O of sets we take the smallest algebra of sets on that frame. This
is an infinite algebra. We will approach its structure in stages. First of all, take the
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Ficure 3.1.
w+1 w 3 2 1 0

generated subframe of finite numbers and let F be the trace algebra on that set. We
claim that F is nothing but the algebra of finite and cofinite sets. To show this, two
things are required. We have to show that it is closed under all operations, and that
each set is definable by a constant formula. The first is not so hard. The finite and
cofinite sets are closed under intersection and complement. Furthermore, if a C w is
an arbitrary subset, let n be the largest number such that [0, n] C a; n exists iff a # w.
Then ma = [0,n + 1], as is readily checked. Thus, ma is finite whenever a # w.
Moreover, Bw = w, which is cofinite. This shows the closure under the operations.
Now, let us define the following constant formulae.

f(0) = Ol
fn+1) = of(n). A.O-0f(n)

It is straightforward to verify that f(n) can only be true at n, so that all singleton
sets are O—definable, that is, definable by means of a constant formula. The smallest
boolean algebra containing them is the algebra of finite and confinite sets. Lets go
one step further and take the subframe generated by w. Here it turns out that the
trace of O contains all finite sets which do not contain w, and all infinite sets which
do contain w. For the extension of the formulae f(n) is still {n}, n < w. The set
of these sets is closed under the operations, as is easily verified. Finally, we let us
consider Q. Observe that the extension of the formula f(w + 1) is exactly {w + 1}
where
flo+1):=-00L.

This means that the full algebra consists of all sets whose trace relative to the frame
generated by w is either finite and does not contain w, or is infinite and contains w.

We claim that ThQ,,,, is a subframe logic. To that end take an internal set g in
that frame. If it is finite, it does not contain the point w and the trace algebra is the
powerset algebra. Therefore, the frame is isomorphic to a generated subframe. If g
is infinite, however, it contains w, and the subframe is isomorphic to either Q. or
the subframe generated by w. We conclude that Th Q. is a subframe logic.

THEOREM 3.5.8 (Wolter). Th Q.1 is an incomplete subframe logic.

Proor. To begin, G.3 is a subframe logic; it has the finite model property and is
therefore complete. Now, take the logic A with the following axioms.

ap — o(p A —~0p)), OPANOG. — (P AOGV HGAOP)VOPAQ) .

Take a frame § for A, and a point x. Then — by choice of the axioms — for every
successor y of x the subframe generated by y satisfies G.3. Q. satisfies the axioms
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of A, since the subframe generated by w satisfies G.3. Now consider the logic A ® ¢
with
@:=0g A=0(gATOg) AOp. = O0p .

This formula implies in conjunction with the other axioms that when we have a
violation of the G—axiom at a point x then x must have a reflexive successor. (This
successor can of course be x.) ¢ € ThQ,,1. Now, any Kripke—frame for A @ ¢ must
be a frame for G.3. For if we have a Kripke—frame f for A and x a point then either
the transit of x is a G.3—frame or only the transit without x is. In the latter case x has
a reflexive successor; let it be y. Then since (f, x) F O(Op — ¢(p A =0p)) and x < y
we have (f,y) E 0p — O(p A =0p). This enforces that the transit of y in f is a frame
for G. But this cannot be, since then we must have y # y. Contradiction. The proof
is now almost complete. First, we have

A®¢pCThQ,.; C G3.

Equality of the last two cannot hold, because the formula ¢p A =0(p A =0p)) is
satisfiable in Q.. All logics in between A @ ¢ and G.3 have the same Kripke—
frames. Hence, any such logic if not equal to G.3 is incomplete. Th €, is such a
logic. O

Now, even if subframe logics may be incomplete, in case of their completeness
we can show that they are complete with respect to frames of size N if ¥ < &, and «
if 8; < k. This may not seem such an improvement. However, it is a priori not clear
that complete logics are complete with respect to countable models even in the case
k = 1. Secondly, the proof method itself is well-worth remembering. It will be used
in many variations throughout this book. For extensions of K4 this theorem has first
been proved in Kit FINE [66].

THEOREM 3.5.9. (k < Ny.) Let A be a subframe logic and suppose that A is
complete with respect to Kripke—frames. Then A is complete with respect to Kripke—
frames of cardinality < Ny.

Proor. Let =¢ ¢ A. Then there exists a A—model (i, 8, wp) £ ¢, T a Kripke—
frame. Put Sy := {wp}; let 5o be the subframe of f based on Sy, and let yy(p) :=
B(p) N So. Inductively we define sets S ,; given S, s, is the subframe based on S,
and y,(p) := B(p) N S,,. The construction of the S, is as follows. Suppose that there
exists a O/ € sf(¢) and a x € §, such that (f, 8, x) £ —~O;i but (s,,y,,x) £ O
Then let y := y(x,0,) € f be a point such that x <; y and (f, 8, y) £ —. Then let

Sn+1 = Sn U {y(x, Dj!//) X e Sm Dj‘/’ € sf(<p)’<5nv7n,x> F Dj';b} .
Finally, we put g := U, Sis 0(p) := B(p) N g. gis finite if S,,;; = S, for some 7,
else g is countably infinite. We claim that for every x € g and every ¥ € sf(¢)
(8,6, X) Y e &B.x)EY

The proof is by induction on . For variables this is immediate; for ¢ = | A ¥
and ¥ = - this is also immediate. Now assume finally that v = O;7. Suppose
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that (g,0,x) ¥ O;7. Let n be the smallest number such that x € §,. Then, by
construction, there exists a point y € §,4+; such that x <; y and (f,8,y) £ -7. By
induction hypothesis, (g,d,y) £ —7. Since y € g we have (g,0,x) ¥ -~O;7. The
converse direction is straightforward. O

We give an example to show that completeness is necessary for the proof method
to work properly. Take the logic Th Q,,,; defined above. Let 8(p) be a set containing
the point w. Then (Q,+1,8,w) E p. Itis clear that S = S in the construction.
However, the frame based on a single reflexive point is not a frame for the logic.
This shows that in the incomplete case we cannot get rid of the restriction that the
subframe is based on an internal set. Since internal sets need not be countable, the
proof methods fails in this case as it stands.

Let us define the Kuznetsov—index, Kz(A), of a complete logic A to be the
supremum of the cardinalities of minimal frames refuting nontheorems of A.

Kz(A) = supygpinf{if : T £ ¢}

The Kuznetsov—-index is finite if A is tabular, and > N, otherwise. We have shown
that if A is a complete subframe logic, the Kuznetsov—index does not exceed .
In general, following CHaGROV and ZAKHARYASCHEV the complexity of a logic is a
function fj such that f(n) is the supremum of the cardinalities of minimal models
refuting nontheorems of length n. If A has the finite model property and « is finite
then fx(n) is finite for every n. Clearly, the Kuznetsov—index is the supremum of
all fa(n). It is shown in CHAGROV and ZaKHARYASCHEV [43] that there exists a logic
with Kuznetsov—Index 3, where 3 is the so—called beth—function; roughly, 3, is the
A—fold iteration of the exponentiation function. In Kracut [129], for each countable
ordinal A a logic with Kuznetsov—Index 3, is constructed. Furthermore, it is shown
that there exists a logic whose Kuznetsov—Index is the least strongly inaccessible
cardinal.

Exercise 99. Show that S5 is a subframe logic.
Exercise 100. Show that G.3 is a subframe logic.

Exercise 101. Show that A®¢ = Th Q. and that they are immediately below G.3,
i. e. there is no logic ® with A®@ ¢ € © C G.3.

“Exercise 102. Show that there is a descending chain of &) many incomplete sub-
frame logics. Hint. Extend the construction of Q.| above to frames Q, based on
ordinal numbers @ < w X w. You have to put <y iff B = w X k+ m and (a.)
vy=wXk+nandm < nor(b.) y = wx(k+1). Let the algebra of sets be the minimal
algebra. Now show that all the logics of Q, are different.

Exercise 103. Let x > 8. Show that if a subframe logic is complete with respect to
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Kripke—frames, it is complete with respect to Kripke—frames of cardinality < «.

Exercise 104. Assume that « < N;. Show that a subframe logic is globally complete
with respect to Kripke—frames if it is globally complete with respect to Kripke—
frames which are finite or countably infinite. Show the same for §&;—compactness.

Exercise 105. Let § be a frame, and § = Trg(S). Show that a — a N S is a homo-
morphism of (F,1,—,N,(m; : j < «)) onto the trace algebra over S. Remark. This
shows that in contrast to arbitrary subframes, the generated subframes need not be
based on internal sets.

Exercise 106. Let « be countable and A a canonical k—modal logic. Show that the
Kuznetsov—index of A is < 2%,

3.6. Constructive Reduction

In Section we have proved the global finite model property for the basic
logic K,. We will now use this proof to obtain a number of other results on (global)
finite model property using a technique which we call constructive reduction. This
technique is syntactic. The standard situation is that certain properties have been
established for a logic A, for example K, and that we consider an extension A ® A for
some set of axioms A. It would be rather unfortunate not to be able to use knowledge
about A for A @ A. However, in the overwhelming number of cases nothing can
be inferred for A @ A from A. On the other hand, many standard systems are an
exception to this. Before we investigate the formal background of this method, let us
see some nontrivial applications.

THEOREM 3.6.1. Let A have the global finite model property and let y be a con-
stant formula. Then A ® y has the global finite model property as well.

Proor. We show that

Phasy Y ©  @xia Y.
From right to left is trivial. From left to right, take a proof of y from ¢ in A @ y.
We know that we can move substitutions at the beginning of the proof. Now y is
constant, so we cannot derive anything but y from y using substitutions. Hence
the proof is a proof in A of ¢ from ¢ together with y using (mn.) and (mp.), as
required. O

THEOREM 3.6.2. K4 has the global finite model property.
Proor. Let A be a set of formulae. Put
X4(A) :={Oy — OOy : Oy € sf[A]}.

We show that
erkay o @ Xu({o, ¥} Fx ¥
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From right to left is straightforward. For the direction from left to right, assume
; Xa({p, ¥} kg ¥ is not the case. Then there exists a finite model (f, 8, x) such that
{8 E o; Xu({p, y}) but (F, 8, x) £ . T = (f, <). Let « be the transitive closure of <.
We show that for all subformulae y of ¢ or ¢ and all worlds y

Q) (i 4BNEx & (f,LBMEX

This then establishes (f, €,8) £ ¢ and (f, <, 5, x) £ =. (f, €} is transitive; therefore
(f, <) £ K4. We show () by induction on y. For variables there is nothing to show.
The steps for — and A are straightforward. Now let y = Oy’. Assume (f, <,5,y) #
Oy’. Then there is a z such that y < z and (f, «, 5, z) £ —y’. By induction hypothesis,
(f,<,B,2) £ =x’. By definition of « there is achainy = yp<y; <... <y, = z
Now (f, <,B8,yn-1) E ~Oy’. If n — 1 > 0 then (f, 9,8, y,—2) £ -O0y’. Since Oy’ —
o0y’ € Xa({e,¥}) and (f, <,B,y.-2) £ Xa({p,¥}) we must have (f,<,B,y,-2) F
—0Oy’. Iterating this argument we get (f,<,8,y) £ —-Oy’. So, (f,<,B,y) ¥ Oy’
Clearly, if (f, <,8,y) ¥ Oy’ then (f, «,8,y) ¥ Oy’, since < C «. O

A note on the reduction sets. Since ¢ is not a primitive symbol, some care
is needed in the formulation of the reduction sets. The following definition of a
reduction set for K4 will not do.

Y4(A) := {00y — Ox : Ox € sfIA]l}

(Here, ¢ abbreviates -O0-.) Take for example the set A = {-OOp,Op}. It is K4—
consistent. Yet, there is no subformula of a formula of A that matches ¢y for some y.
Hence, Y4(A) = @. But A is clearly K—consistent. So, this definition of the reduction
sets does not work. The reader may pause to reflect on why the chosen reduction
sets actually avoid this problem.

THEOREM 3.6.3. The basic tense logic K.t has the global finite model property.

Proor. Let
Xi(A) = {=x = Oo—~Oux : Oy € sf[A]}
U {=x — O;-Ooy : Doy € sf[A]}.
‘We show that

(&) ety o @ Xi({o, ¥} bk ¥

Proceed as in the previous proof. Let M = (f, 5, wp) be a local model where f =
(f, <0, <1) is a finite K,—Kripke—frame such that (f, 8) £ ¢; X;({¢, y}) and (f, B, wo) E
. Let €p:= <9 U <] and < := <y U <;. Then the frame (f, <o, 4;) is a tense
frame, for < = (<o U <7)™ = <5 U <1 = «;. For all y € sf(¢) U sf () we have

@) (fi 4,4, Ex © (f,<0,<L.BMEx.

This is clear for variables; the steps for = and A are straightforward. Now let y =
Oo7. From left to right is clear. Now the direction from right to left. Assume that
(f, €0, €1, B,y) £ Op7. Then there is a w such that y €49 w and (f, <, <1, 3, w) £ —T.
By induction hypothesis, {f, <9, <1,8,w) £ —-1. If y <9 w, we are done; for then
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(f,<0,<1,B,y) ¥ Oo7 (= x). Otherwise w<;y. Now, (f, <o, <1, 8, w) £ O;=0yT, since

<f’ <o, ql,ﬁ’ W> F XI({§03 le,}) Thus <f7 <o, <‘1,)’> F —20p7. SO, <f’ <o, qlsﬁ’y> £ OoT.
The step y = O;7 is analogous. O

Informally, we say that a property B pushes up or can be pushed up from A to
A @ A if we can prove that A @ A has ‘P on the condition that A has PB. Properties
that can be dealt with in this way are among other decidability, finite model prop-
erty, completeness and interpolation. The fundamental property in this connection is
decidability. Notice that given A, A, A and ¢, there is a set Y € ®“A* such that

AFA@A(,D S Y9A'_A90

(Recall that A* denotes the closure of A under substitution.) We call Y a local re-
duction set for A and ¢. Moreover, if A is finite then Y can be chosen finite. A local
reduction function for A & A with respect to A is a function X : p(P,) — o(P,)
such that (i) X(A U {¢}) is a local reduction set for A and ¢ and (ii) X(A) is finite
whenever A is finite. We will write X(¢) rather than X({¢}). Note that there are two
cases. (a.) ¢ ¢ A®A. Then Y = @ is a reduction set, (b.) ¢ € A ® A. Then there is
a proof of ¢ from A in ®“A° using only modus ponens. Obviously, this proof uses
only a finite subset of R“A*, and we take Y to be this subset. Similarly, there is a
finite set Y C A® such that

AlFpaga @ =3 A Y kp @

Such a Y is called a global reduction set for A and ¢. A global reduction function
for A ® A with respect to A is a function X : p(P,) — ©(P,) such that (i) X(A U {¢})
is a global reduction set for A and ¢ and (ii) X(A) is finite whenever A is finite. We
note the following properties of reduction sets. The proof is left as an exercise.

PropostTioN 3.6.4. (1.) There exists a reduction function X for A®A with respect
to A\ such that (a.) var[X(A)] C var[A], (b.) X(A) = UX(Ag) : Ao € A, Ay finite)
(2.) Let X, Y : 9(P,) — o(Py) be functions mapping finite sets to finite sets such that
X(A) C Y(A) forall A. Then if X is a (globalflocal) reduction function for A ® A with
respect to A\ then so is Y.

As (1b.) shows, we may always assume that the reduction function is determined
by its values on finite sets. This means that we may actually restrict our attention to
functions from finite subsets of P, to finite subsets of P,. If A & A is decidable and
A enumerable, a local reduction set can always be constructed. For suppose that
¥ is given. Then start enumerating the proofs of A @ A in which (sub.) is applied
before (mn.) and (mn.) before (mp.); in parallel, enumerate the nontheorems of
A ® A. If ¢ is a theorem, it will occur at end of a proof II. The reduction set will
then consist in all formulae to which only (mp.) is applied in I1. (This is more than
necessary, but certainly a sufficient set.) If ¢ is a nontheorem, then the empty set is a
reduction set for ¢. Similarly, if A®A is globally decidable, it allows the construction
of global reduction sets. Conversely, suppose we are able to produce for each ¢ a
local reduction set. Then decidability can be pushed up. To see the first, assume
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A is decidable and let ¢ be given. Construct X({¢}). Since A is decidable, we can
decide X({¢}) Fa ¢, which by definition of the reduction sets is nothing but Faga ¢.
Similarly for global decidability. For the purpose of the next theorem, a computable
function from p(P,) to p(P,) is a function f such that (i.) f(A) = U{(f(Ay) : Ag C
A, Ay finite) and (ii.) there exists an algorithm computing f(A) for any given finite
A.

DermntTion 3.6.5. A logic A @ A is said to be locally constructively re-
ducible to A if there is a computable local reduction function for A ® A and A.
A @ A is said to be globally constructively reducible to A if there is a com-
putable global reduction function.

THEOREM 3.6.6. Suppose A @ A is globally (locally) constructively reducible to
A. Then A @ A is globally (locally) decidable if A is.

In many cases, it is possible to show that other properties can be pushed up as
well. For example, for transitivity we have established that X, : A — {Oy — OOy :
Oy € sf[A]} is a global reduction function, and that furthermore any frame satisfying
both ¢ locally and X4({¢}) globally satisfies ¢ also when the relation < is replaced
by the transitive closure. It then is a K4—frame and a finite transitive model for ¢.
So if A is a monomodal logic whose frames are closed under passing from < to its
transitive closure then we can push up the global finite model property from A to
A.4. We will show here that many of the standard systems mentioned in Section[2.5]
have global finite model property. The following are global reduction functions.

X4(D) = {Oy — OOy : Oy € sf[A]}

Xr(A) = {Ox — x:0Oyx € sflAl}

Xp(A) = {-x — O-Oy: 0Oy € sf[A]}

Xg(A) = {=Oy — -0O(y vV -Oy) : Oy € sf[A]}

XGr(A) = {=Oy — -0O(y vV -O(y — Oy)) : Oy € sf[Al}
Xan(A) = {=0Oy — O-x : Oy € sf[A]}

The reader may check that the formulae are indeed axioms. The reduction of A.4
to A has been proved for those logics whose class of frames is closed under passing
from < to the transitive closure. Now, for reflexivity we claim that if the class of
frames for A is closed under passing from < to its reflexive closure, denoted by <°*,
then the above function achieves global reduction. Namely, suppose that we have a
A—frame f and (f, 8) £ Xr({/; ¢}). Let {* be obtained by changing < to its reflexive
closure. By definition, f* £ A and so {f* ¥ A.T. By induction on the set sf(¢) we
show that for all w in the transit of x

(J*.B.wy Ex A (f.B.w) Ex

The only critical step is y = Or. From left to right this follows from the fact that if
x <y then also x <* y. For the other direction, assume we have (f*, 8, w) ¥ Or. Then
there is a v such that w <® v and (f*,8,v) £ =-7. If v # w, we are done for then also
w < v. So assume the only choice for v is v = w and that w # w. Then we have
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(f,B,w) £ Ot. But (f,B,w) £ OT — T, by choice of the reduction function. Hence
{,B,w) £ 7, and so (f*,5,w) E T, a contradiction. So there always is a successor
v # w, and it is safe to close < reflexively.

The proof for B is the same as for tense logic, so we will omit it here. We can
use this technique iteratively to show that a logic defined by a mixture of reflexiv-
ity, transitivity or symmetry axioms has the finite model property. However, since
each particular pushing up has its preconditions, some care is called for. The idea is
always the following. Assume A has the global finite model property; then construc-
tively reduce A @ ¢ to A. This works if we can be sure that the procedure that turns
a frame f for K, into a frame ¥ for K, @ ¢ also turns a frame for A into a frame for
A & ¢. The proof of the following theorem illustrates this.

THEOREM 3.6.7. Let A be a finitely axiomatizable polymodal logic based on pos-
tulates of reflexivity, transitivity and symmetry for its operators, in any combination.
Then A has the global finite model property.

Proor. Let A = K, ®R® S & T, where R is a set of reflexivity postulates, S a
set of symmetry postulates and 7 a set of transitivity postulates. First of all K, has
the global finite model property, so we need to consider finite Kripke—frames only.
We will start with K, and add the postulates one by one. First, we add all ¢ € R.
The map f — §# is defined by taking the reflexive closure of the relation <; for some
Jj- Since each of the reflexivity postulates concerns a different operator, it does not
matter in which order we add the axioms. In the end we obtain a frame ® satisfying
all ¢ € R. Next we turn to S. The map f — {#, ¢ € §, is now the map which turns
<; into its symmetric closure. Since the symmetric closure of a reflexive relation is
again reflexive, f¥ satisfies all postulates of R. Moreover, the symmetric closure of
one relation does not interfere with any other relation, so ¥ satisfies all symmetry
postulates that f satisfies. Thus we can construct a frame for R U S. Now we turn to
T'; the transitive closure of a reflexive relation is reflexive, and the transitive closure
of a symmetric relation is again symmetric. O

There remain the sets for G, Grz and alt;. Now, both G and Grz are transitive
logics. (This is the content of some exercises in Section ) We will now show that
the functions above establish a reduction from G to K4 and a reduction from Grz to
S4. The first of these has been shown by PuiLipPE BaLsiant and ANprReAs HERZIG in

[3].
THEOREM 3.6.8. G has the global finite model property.

Proor. We establish that the reduction function is a reduction function from the
logic to K4, which has global finite model property by Theorem[3.6.2} Moreover, K4
is transitive, so we only need to consider reductions where the antecedent is identical
to T. Thus let f be a finite transitive frame and

(4,8, wo) E ;05 {=Oy — —O(y V -Oy) : Oy € sf(p)} .
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Now, pick points from the frame as follows. Put S := {wg}. The sets S, are now
defined inductively. Let x € S, and Oy € sf(¢) such that (f,3,x) ¥ Oy, and no
successor of xin §,, — {wy} exists such that (f, 8, y) £ =y. Then, by assumption on the
reduction function, (f, 8, x) E ¢(=xy AOy). Hence there exists a X such that X £ —y; Oy.
(Moreover, if x = wy, then X # wy. For Xis irreflexive, and so wy <X implies wy # X.)
It follows that X is irreflexive. Put S,,; := S, U {x}. The selection ends after some
steps, since f is finite. Call the resulting set g. Let < := <nN(gxg)—{{wo, wo)}. Then
put g := (g, <®). (Alternatively, we might simply take g to be the subframe consisting
of wy and all irreflexive points from f, with the transition wy — wy being removed.)
g is transitive and irreflexive, hence it is a frame for G. Put y(p) := S(p) N g. We
now show that for every subformula i of ¢ and every point y € g, {(a,7,y) F ¥
iff (f,B8,y) £ . This holds for variables by construction, and the steps -, A are
straightforward. Now let (g, ¥, y) # Oy. Then also (f, 3, y) ¥ Oy. Conversely, suppose
that (f, 8, y) ¥ Oy, for some Oy € sf(¢). Then also (g,5,y) ¥ Oy, since a successor z
for y has been chosen such that (f, 8, z) £ y; O—y. By induction hypothesis, (g, y,2) E
X- Moreover, y <8 z. For if y # wy this holds by definition of <. For y = wy observe
that either wo </ wp, and then z # wy, since z # z. From this follows wq < z. Or else,
wo 47 wp, in which case wy <€ z anyway. And so (g,y,y) # Oy, as required. |

TueoreM 3.6.9. Grz has the global finite model property.

Proor. As in the previous proof, this time reducing to S4. By Theorem
S4 has the (global) finite model property. Let (f, 5, wg) a finite S4—model such that

(f, B, wo) £ ;05" {=0y - =0(y V ~O(y — Oy)) : Oy € sf(¢)} .

We select a subset g of f in the following way. We start with S¢ := {wo}. S, is de-
fined inductively as follows. If x € S, and (f, 8, x) £ —=Oy, but no y exists in S, such
that x <t y and (f, 8, y) E =y, then we choose a successor y of x as follows. By choice
of the reduction function there is a successor y of x such that y £ —y; O(y — Oy).
Therefore (i) the entire cluster C(y) satisfies -y, (ii) no point in a cluster succeeding
C(y) and different from C(y) satisfies y. Then S,;; := S, U {y}. This procedure
comes to a halt after finitely many steps. The resulting set is called g, and the sub-
frame based on it g. It is directly verified that g contains at most one point from
each cluster. (Moreover, the selection procedure produces a model whose depth is
bounded by the number of formulae in sf(¢) of the form Oy as can easily be seen.)
So all clusters have size 1. g is reflexive and transitive, being a subframe of f. So, g
is a Grz—frame. Let y(p) := B(p) N g. It is shown as in the previous proof that for
every subformula y of ¢ and every x € g, (g,v, x) F y exactly when (f,3, x) £ x. In
particular, {g,y, wo) F ¢. This concludes the proof. |

Obviously, to have local reduction functions is much stronger than to have global
reduction functions. Yet, for practical purposes it is enough to compute global re-
duction functions, since most standard systems are globally decidable. Thus, the
additional gain in establishing a local reduction, which is possible in many cases, is
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rather marginal. Moreover, as we will see, many properties can be pushed up even
when we have global reduction functions and no local functions. We shall end the
section by a few remarks of complexity. We shall state here without proof that the
size of the reduction sets of this section is quadratic in the size of the initial set (if the
size is simply the sum of the lengths of the formulae contained in it). This is actually
easy to verify. However, if we change to the packed representation (see the exercises
of Section[I.8) then the increase is only linear. To verify this is left as an exercise. It
follows that the logics discussed in this section are globally EXPTIME, since K is.
One has to take note here that the typical complexity measures are established with
respect to the length of the set, not with respect to the length of the packed represen-
tation, which can in extreme cases be exponentially smaller. Yet, they can typically
be redone with respect to the length of the packed representation. To verify that K
is globally EXPTIME even with respect to the packed representation, tableaux can
be used. Moreover, using tableaux one can show that K4 is globally PSPACE from
which the same follows for the systems extending K4. Unfortunately, reduction sets
do not allow to show that K4 is in PSPACE.

Exercise 107. Show Proposition [3.6.4]

Exercise 108. Show that the symmetric closure of a transitive relation does not need
not be transitive again.

Exercise 109. In the next three exercises we will show a rather general theorem on
reduction of A.G and A.Grz to A for logics containing K4. Let A 2 K4 have finite
model property. Say that a A is a cofinal subframe logic if it is closed under taking
away from a finite frame any set of points which is not final. Here a point x is final if
for all y x <y implies y < x. Now let (f, 8) and ¢ be given, and f be finite. Say that x
is ¢—maximal if for some subformula y, y is satisfied at x and whenever y satisfies y
and x <y, then also y < x. Show now that if (f, 3, x) £ ¢, and if we take the subframe
g of all p—maximal points, then {g,5,y) F ¢ for some y. Show that every final point
of fis in g. Thus, if A is a cofinal subframe logic, and { is a finite frame for A, so is
g. Give the global reduction sets!

Exercise 110. (Continuing the previous exercise.) Now show that the reduction
function given above for G establishes that if A is a cofinal subframe logic, then
there exists a global reduction function for A.G to A.

Exercise 111. (Continuing the previous exercise.) Show that the reduction function
for Grz establishes that there is a reduction function any A.Grz to A, provided that
A is a subframe logic.

Exercise 112. Using the Lemma [3.1.9] produce local reduction sets for the logics
for which global reduction sets have been given.
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Exercise 113. Let X be any of the reduction functions of this section. Show that
there is a constant cy such that for every set A: |X(A)*| < c|A*|, where A* is the
packed representation of A.

3.7. Interpolation and Beth Theorems

Recall from Section [1.6] the definition of interpolation. Interpolation is defined
with respect to the consequence relation. Since a modal logic admits several conse-
quence relations, we have several notions of interpolation, in particular global and
local interpolation.

DEerNtTION 3.7.1. A modal logic A has local interpolation if for every pair ¢
and  of formulae with ¢ +x ¥ there is a y such that var(y) C var(e) N var(y) and
¢ kA xy as well as y +o W. A has global interpolation if for every pair ¢, ¥ of
formulae with ¢ I+ Y there is a y such that var(y) C var(e) Nvar(y) and ¢ k5 x as
well as y Fp Y.

These definitions are taken from [151]], though the terminology used here is
more systematic. Since we have a deduction theorem for local deducibility, we can
reformulate local interpolation in such a way that it depends only on the set of theo-
rems. A has the Craig Interpolation Property if whenever ¢ — ¢ € A there exists
a y which is based on the common variables of ¢ and ¥ such that ¢ — y; y — ¥ € A.
A logic has the Craig Interpolation Property iff it has local interpolation.

ProposiTion 3.7.2. If A has local interpolation it also has global interpolation.

Proor. Suppose that A has local interpolation. Let ¢ o . Then for some
compound modality B we have By Fx . Whence by local interpolation there is a y
with var(y) C var(p) N var(y) such that By o x and y Fa Y. Hence ¢ I x as well

as y Ika . m|

The converse implication does not hold, as has been shown in [151]]. Interpolation is
closely connected with the so—called Beth property. It says, in intuitive terms, that if
we have defined p implicitly, then there also is an explicit definition of p. An explicit
definition is a statement of the form y < p where p ¢ var(y). An implicit definition
is a formula ¥(p, §), such that the value of p in a model is uniquely defined by the
values of the variables ¢. The latter can be reformulated syntactically. In a logic F,
¢(p, @) implicitly defines p if ¢(p, §); o(r,§) + p < r. Given A, we may choose
+ to be either 5 or IF5. This gives rise to the notions of local and global implicit
definitions.

DerNtTiON 3.7.3. A is said to have the local Beth Property if the following
holds. Suppose ¢(p, q) is a formula and

(P, Qi e(r,§) Fa p o 7.

Then there exists a formula y(§) not containing p as a variable such that

o(p. ra p o X -
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Analogously, the global Beth property is defined by replacing + by I-.

The notion of definability was introduced by BetH in [16] under the name Padoa’s
Method. The lack of the deduction theorem for the global consequence makes the
global Beth property somewhat more difficult to handle than the local equivalent.
For the local Beth property we can actually prove that it is equivalent to the Craig
Interpolation Property.

THeEOREM 3.7.4 (Maksimova). Let A be a classical modal logic. Then A has
local interpolation iff it has the local Beth property.

Proor. Suppose first that A has local interpolation. Assume that ¢ defines g
implicitly, that is,
() (P @) (P Fap o
Then we also have ¢(p, §); p +a ¢(r,§) — r and thus by interpolation there is a x(§)
such that
) (P, @) p Fa X (@ kA @(r.§) > 1
We claim that x(g) is the desired explicit definition, that is, that the following holds.

@(p, @) Fa p © X (.

One implication holds by definition of the interpolant; for ¢(p,q); p ta x(§). For
the other direction, observe that we have y(q) +a ¢(r,§) — r. Using the deduction
theorem we can derive ¢(p,q) +a x(§) — r. Now replace r by p, and the de-
sired conclusion follows. Now for the converse, assume that A has the local Beth
Property. We will show that if ¢(p,§) Fa ¥(r,G) then there is a y(§) such that
(P, Q) Fa x(@) Fa ¥(r,§). Let us call this the 1-interpolation property, since we
can get rid of a single variable in ¢ and a single variable in . The n—interpolation
property is formulated similarly, but with the difference that we can eliminate up
to n variables in the premiss and up to n in the conclusion. One can easily show
that 1-interpolation property implies n—interpolation for every n, and hence the lo-
cal interpolation property. We leave this to the reader. The hard part is to show
I-interpolation. Thus, assume ¢(p, §) Fa ¥(r, ). Define

61(p. @) == (p = ¢(p, D) A W(p,q9) — p).
Since we have 81(p, §); 61(r, §) Fa p < r, we get a formula y1(§) such that

61(p, Q) Fa P © x1(@).
We then have

@(p. @ p Fa x1(q) X1(@) kA pVY(P,G).
Now define
62(p.§) := (=p = @(p. ) N W(p,§) = ~p).
Again, it is checked that 9, is an implicit definition and so we can use Beth’s property
again to get a y»(q) with ¢(p, ) Fa p < x2(§). After some boolean rewriting

o(p, i —p Fa x2(@) “w2(Q) Fa ~p V(P ) .
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Next we define the following formula

53(Pa‘7) = ([7 - (p(ﬂp, q))) A (W(Pa‘?) i P)

We have ¢(=p, §) Fa ¥(r, §) and so it is checked that 63(p, §) also provides an implicit
definition of p. And so we get a third formula y3(§), such that 3(p, §) Fa p < x3(Q.
From this we get

(=P, D p Fa x3(4) X3(@) kA p V(P 9.
Substituting —p for p in the first statement we get
@(p, @); —p A x3(@)-
Finally, define
04(p. @) := (=p = ©(=p. D) A W(p.§) = =p).
This defines p implicitly, and so we have a y4(§) with 64(p, §) Fa p < xa(q). We
get after rewriting
(=P, @); ~p Fa ~xa(q) “xa(@) Fa =p V Y¥(p, D).

Substituting —p for p in the first statement we get

o(p, @) p Fa —wa(@.

The desired interpolant is
X(@) = 1@ A xa(@) V (=x2(D A x3().

Namely, ¢(p, @); p Fa x1(@) A ~x4(@) and s0 ¢(p, §); =p Fa ~x2(§) A xa(q), so that
©(p, @) +a x(§). Furthermore, x1(§) A =x4(§) ta ¥(p,q) and in addition —y2(g) A
3@ ra ¥(p, §), from which x(§) Fa ¥(p, §), as required. |

THEOREM 3.7.5. A classical modal logic with local interpolation also has the
global Beth—property.

Proor. Assume that o(p, §); ¢(r, §) ko p <> r. Then for some compound modal-
ity B we have
Bo(p, §); Bo(r,§) ko p © T.

This can now be rearranged to

Bo(p, Q); p Fa Bo(r,q) — 1.

We get an interpolant y(g) and so we have By(p, §); p Fa x(§), from which Be(p, §) Fa
p = X(@. So o(p,q) Fao p — x(§). And we moreover have x(§) +a Be(r,§) — r,
from which we get Bo(r, §) Fa x(§) — r, and so ¢(r, ) Fa x(§) — r. Replacing r
by p we get the desired result. O

The picture obtained thus far is the following.
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local interpolation _— global interpolation

|

local Beth Property _ global Beth Property

It can be shown that there exist logics without global interpolation while having the
global Beth Property and that there exist logics with global interpolation without the
global Beth Property. An example of the first kind is the logic G.3. See [150].

Recall from Section the notion of Halldén—completeness of a logic. As
with interpolation the notion of Halldén—completeness of A splits into (at least) two
different concepts.

DeriNtTION 3.7.6. Let A be a modal logic. A is locally Halldén—complete if
whenever ¢ +x ¥ and var(p) N var(y) = @ we have ¢ o L or ko . A is globally
Halldén—complete if whenever ¢ \+x  and var(e) Nvar(y) = @ we have ¢ I+ L
orlkp Y.

Global Halldén—completeness is called the Pseudo Relevance Property in [153].
In the literature, a logic A is called Halldén—complete if for ¢ and ¢ disjoint in vari-
ables, if ¢ Vi € A then ¢ € A or ¢ € A. Clearly, this latter notion of Halldén—
completeness coincides with local Halldén—completeness. This follows from the
deduction theorem, since ¢ k5 ¥ is equivalent to 5 —¢ V. Local (global) Halldén—
completeness nearly follows from the corresponding interpolation property. Namely,
if we have Fp ¢V then —¢ A . We then get a constant formula y such that =@ 5 x
and y Fo ¥. On the condition that we can choose y to be either T or L we get our
desired conclusion. For y = T yields ko ¢ and y = L yields o ¢. Thus, if A has
trivial constants (see Section [2.6) then interpolation implies Halldén—completeness.
But this is exactly the condition we need anyway to have Halldén—completeness. For
notice that always F, —0;L vV O; L. Soif A is Halldén—complete then we have either
ko —O;L or k5 O;L. These are exactly the conditions under which A has trivial
constants.

Proposition 3.7.7. A logic A is (locally/globally) Halldén—complete only if it
has trivial constants. If A has trivial constants and has (local/global) interpolation
then it is (locally/globally) Halldén—complete.

Finally, we will establish some criteria for interpolation. Assume that we have
a logic A ® A and global reduction sets for A & A with respect to A. Let us say that
the reduction sets split if there exists a reduction function X such that (i.) for all sets
A, var[X(A)] € var[A] and (ii.) X(¢ — ¢¥) = X(¢) U X(¥).

THEOREM 3.7.8. Suppose that A ® A can be globally reduced to A with splitting
reduction sets. Then A ® A has local (global) interpolation if A has local (global)
interpolation. Moreover, A ® A is locally (globally) Halldén—complete if A is.
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PrOOE. Assume ¢ Fagq . Then Faga ¢ — ¢ and a fortiori pgs ¢ — ¥. By
global reduction we get X(¢ — ¢) IFp ¢ — ¢ and so for some compound modality
2

BX(¢ =Y ra @ = Y.
This is the same as
BX(p); BXW) kA ¢ = ¥,
by the fact that the reduction sets split. We can rearrange this into

BX(); @ ko BX() — .

By assumption on X, var[X(¢)] € var(y) and var[X(y¥)] € var(y). By local interpo-
lation for A we obtain a y in the common variables of ¢ and ¢ such that

@ BX(p) Fa x Fa BX(W) — .

From this follows that ¢ Faga ¥ Fasa ¥, by the fact that the reduction sets only
contain instances of theorems. Pushing up global interpolation works essentially in
the same way. Now for Halldén—completeness, assume that ¢ Faga ¢ for ¢ and ¢
disjoint in variables. Then

¢ BX(p) ko BX(W) — ¢

The left hand side is disjoint in variables from the right hand side, and so either
the left hand side is inconsistent or the right hand side a theorem. In the first case,
¢ Faea L. In the second case Faga ¥, as required. The proof for global Halldén—
completeness is analogous. O

In the next section we will prove that K has local interpolation. We conclude from
that the following theorem.

CoroLLARY 3.7.9. The logics K.alt|, K4, K.B, K.T, K.BT, S4, S5, G and
Grz have local interpolation.

This can be generalized to polymodal logics as well, namely to those which
have no interaction postulates for the operators, and whose logical fragments for the
individual operators is one of the above logics. This, however, will be a consequence
of a far more general result on so—called independent fusions to be developed in
Chapter[6] As an application we will prove a rather famous theorem, the so—called
Fixed Point-Theorem of SaMmBIN and DE JoNGH (see [184]; for the history see also
[32]). It is a theorem about the provability logic G. We say that a formula /(g) is a
fixed point of ¢(p, §) with respect to p in a logic A if

FA W(§) < oW(D), D).

TueEOREM 3.7.10 (Sambin, de Jongh). Let ¢(p, §) be a formula such that every
occurrence of p is modalized. Then ¢(p, §) has a fixed point for p in G.
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Proor. Consider a formula ¢(p, §) in which the sentence letter p occurs only
modalized, that is, in the scope of an 0. We show that for every finite Kripke—frame
and valuation 8 on ¢ there exists one and only one extension 8* such that (f,*)
p < ¢(p,q). To see this take a finite Kripke—frame f. The accessibility relation is
transitive and cycle—free, that is, irreflexive. 8* will be defined by induction on the
depth of a point, that is, the length of a maximal ascending chain starting at that point.
To start, consider a point x without successors. Then, since p occurs only modalized,
¢(p, @) holds at x iff ¢(_L, §) holds at x; so the value of p at x is well-defined and does
not depend on p. Put x € B*(p) iff x € B+(¢(L, ). Now assume that the claim has
been established for points of depth d. Let x be of depth d + 1. We have to show that
x € BH(p) iff x € B+ (¢(p, §)). We can regard ¢ as a boolean combination of formulae
not containing p and formulae of the form Oy. Since the value of p is already fixed
on points of lesser depth, we know whether or not x € ﬁ_+(|:1)(); also, the value of
formulae not containing p is fixed at x. Hence there is a unique way to assign p at x.
This completes the proof of the existence and uniqueness of 8*.

The first consequence is that because the extension is unique on finite frames,
we have

peoep.@iroerndrepor.
Taking ¢1(p, §) := p < ¢(p,§) we now have a global implicit definition of p. Since
G has local interpolation it has the global Beth—property and so there exists an ex-
plicit definition, that is, a ¥(§) such that

peep.g) ke p < Y@ .

From this we deduce that

p < ¢p.q) k6 Y@ < ¢W(@.]) -
(Simply replace p by ¥(q§).) We claim now that in fact

k6 Y(@) © W@ ) -

To see this, take a finite frame { for G and a valuation of §. Then there exists an
extension 8* of B giving a value to p such that (f,8%) £ p < ¢(p, ). In this model
we have (f,87) F ¥(§) < o(§),q). But then also (f,8) F ¥(§) < oW(§),q), as

required. O

The proof via the Beth—property has first been given by Smoryxskr [200]. It
is worthwile to note that many direct proofs of this theorem have been given in the
past, e. g. SamBin [184]], [188], RembHAAR—OLsoN [175] and GrerT and GoLpFARB [76].
The difficulty of these proofs varies. This proof via the Beth—property reduces the
problem to that of the interpolation of G modulo the Theorem The difficulty
that most proofs face is that the construction of the interpolant is not disentangled
from the actual fixed point property. For notice that the special property of G is
that for formulae ¢(p, §) in which p occurs only modalized, the fixed point equation
p © ¢(p,q) can be globally satisfied in one and only one way for given §. This is



138 3. Fundamentals of Modal Logic I1

proved semantically. The uniqueness of the solution then gives rise to an explicit
definition because of the Beth—property. That means that the solution is effable. The
existence of a solution then allows to deduce that this explicit definition is a fixed
point of ¢. Note that the previous proof did not depend on G, only on some critical
features of G. It trivially also holds for all extensions of G. It has been observed by
Maksmvova that this can be used to show that all extensions of G have the global
Beth—property (see [149]). To show this, two auxiliary facts must be established,
which we shall give as exercises. Call a formula ¢ g-boxed if every occurrence of a
variable from 4 is in the scope of some modal operator.

Lemma 3.7.11. Let A be a logic containing G. Let g;, i < n, be distinct variables
and p a variable not contained in . For a set S C n define ys by xs := Nies gi A

Nienes qi- If o(p, §) is G—boxed and
A+ xs = o(p.q)
then already A v ¢(p, q).
LemMma 3.7.12. Let ¢(p,q) be a formula. Then there exist §—boxed formulae
1(p, @), Y2(p, @, x1(p> @) and x2(p, §) such that

Gro(p,q) < (pVyi(p. Q) A=pVia(p, D))
Gro(p,q) < (pAx1(p, D)V (=p Ax2(p, )

THeorREM 3.7.13 (Maksimova). Let A be a logic containing G. Then A has the
global Beth property.

Proor. Suppose that ¢(p, §) is a global implicit definition of p in A. Then

o(p,q); (r, @) +a p < r. Using Lemma [3.7.12| we get g-boxed formulae y(p, §)
and y»(p, §) such that

M Arep.d o (pAx1(P. D)V (=p Ax2(p, D))
Since we also have
Aro¥e(p. ) AT @(r, @) > (p & 1)
we now get
A+ (@e(p, @) AOp(r, ) A p Ax1(p, @) A =r Axa(r, @) — (p — 1)

This formula has the form (u A p A =r) = (p — r), where u is g-boxed. This is
equivalent to =y V —p V r, or (=r A p) = —u. By use of Lemma[3.7.11] we deduce
that A + y, that is,

A+ 0p(p, @) ADe(r,§) = (1(p,§) = ~x2(r,9)) -
We substitute p for r and obtain
A+0e(p, ) = (1(p. @) = x2(p, D) -
Now from this and (7) it follows after some boolean manipulations

AT 0(p,q) — T (p & x1(p, D)
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By the fixed point theorem for G there is a (§) such that

Gro'(p o xi(p.d) = (p o ¥(@) .
So we obtain
ArO%le(p,§) = (p & W(@)
which is nothing but

o(p,q) kA p < W) .
O

Exercise 114. Show that if a logic has 1-interpolation then it has n—interpolation
for every n € w.

Exercise 115. (RautenBerG [171]].) Let A have local interpolation and let A be a set
of constant formulae. Then A & A has local interpolation.

Exercise 116. As in the previous exercise, but with global interpolation.
Exercise 117. Show that the logic of the following frame is not Halldén—complete

but has interpolation.

/
\

Exercise 118. Show that any quasi—normal logic determined by a single rooted
frame (, x) is Halldén—complete.

Exercise 119. Show that if a logic has the local Beth—property it also has the global
Beth—property.

Exercise 120. (Maksmvova [149]].) Show Lemma[3.7.11]

Exercise 121. (Maksmvova [149]].) Show Lemma[3.7.12] Hint. You may assume that
@(p, P) is is normal form. Now reduce the case where it is a disjunction to the case
where it is not.

3.8. Tableau Calculi and Interpolation

In this chapter we will introduce the notion of a tableau (plural tableaux), a
popular method for showing the decidability of logics. Since we have already estab-
lished the decidability via the finite model property, we do not need tableaux for this
purpose. However, there are additional reasons for studying tableau methods. One is
the connection between tableau calculi and interpolation. This connection has been
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explored by WorLrGaNG RAUTENBERG in [171]]. However, we will show at the end that
a proof via normal forms is also possible. Tableaux are also an efficient technique for
checking the satisfiability of a formula in a logic. They will allow to give bounds on
the complexity of the satisfiability problem. Tableaux can be described as a method
of deriving a contradiction as fast and efficiently as possible. A tableau can be seen
as computing along branches in a model to see at which point we reach an inconsis-
tency. To help in understanding these remarks, let us describe a tableau calculus for
K., which we denote here by Ck. To keep the calculus short, we assume to have only
the symbols —, A and O;. The other symbols are treated as abbreviations. The cal-
culus operates on sets of formulae. As usual, X; ¢ denotes X U {¢} and X; Y denotes
X UY. Thus X; ¢; ¢ is the same as X; ¢. The rules are as follows.

X; == X;o Ny
X0 X, 050
X; (e A 0;X;-0;
(VE) M (DjE) A mhie
X; -l X; =y X; -
W) XY
w
X

The last rules is known as weakening. We abbreviate by (OF) the set of rules
{(O;E) : j < «}. A Ck-tableau for X is a rooted labelled tree, the labels being
sets of formulae, such that (i) the root has label X, (ii) if a node x has label Y and
a single daughter y then the label of y arises from the label of x by applying one of
(=E), (AE), (OFE) or (w), (iii) if x has two daughters y and z then the label of x is
Y; —(p A ) and the labels of y and z are Y; —¢ and Y; -, respectively. There are
possibly several tableaux for a given X. (VE) introduces a branching into the tableau,
and it is the only rule that does so. A branch of a tableau closes if it ends with p; —=p
for some variable p. The tableau closes if all branches close.

Provposition 3.8.1. If X has a Cx—tableau which closes then X is inconsistent in
K,.

Proor. By induction on the length of the tableau. Clearly, at the leaves we have
sets of the form p; —p, and they are all inconsistent. So, we have to prove for each
rule that if the lower sets are inconsistent, so is the upper set. This is called the
correctness of the rules. For example, if X is inconsistent, then X; Y is inconsistent,
so (w) is correct. The boolean rules are straightforward. For (OF), assume that
X; ~p is inconsistent, that is, X rg, ¢. Then O;X rg_ Oje, that is, O;X; -~0;¢ is
inconsistent. O

The calculus is also complete; that means, if no tableau closes, then X is con-
sistent. We prove this by showing that whenever there is no closing tableau there is
a model for X. Before we proceed, let us remark that one can remove weakening
from the tableau calculus. However, this is possible only if (O,F) is replaced by the
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following rule.

X; —||:|j(,0

(O,E") Xg:={y: 0, € X}

Xo; o

Removing weakening is desirable from a computational point of view, because the
rule of weakening introduces too many options in a search space. Given a set X
we can apply 2% — 2 nontrivial weakenings but very few of them turn out to be
sensible. Instead, if one intends to speed up the proof search one has to implement a
different calculus. Moreover, one can try to close a branch as early as possible, e. g.
when hitting a set containing ¢ and —¢, where ¢ can be any formula. One can also
introduce priorities on the rules, such as to prefer applying (=E) and (VE) before
any other rule, and to delay (VE) (or (OE’)). To show that the tableau calculus is
complete we shall have to show that if no tableau for a set X closes then there is a
model for X, which will be enough to show that X is consistent. To understand how
such a model can be found we imagine the tableau as computing possible valuations
at worlds in a model. We start somewhere and see whether we can fulfill X. The
rules (—E), (AE) and (VE) are local rules. They allow us to derive something about
what has to be true at the given world. By using the rule (OE’), however, we go into
another world and investigate the valuation there. Thus, (OE’) is not local; we call
it the step rule. Once we have made a step there is no returning back. This is why
one should always apply local rules first. In fact, we can also prove that any closing
tableau gives rise to another closing tableau where (OFE") has been applied only when
nothing else was possible. Call a set downward saturated if it is closed under (—FE),
(VE) and (AE). Alternatively, X is downward saturated if (i) for every -—¢ € X also
¢ € X, (ii) for every p Ay € X both ¢ € X and ¢ € X, and (iii) for every ~(p AY) € X
either —p € X or - € X.

Lemma 3.8.2. Suppose there is a closing tableau for X. Then there is a closing
tableau for X where (QE’) is applied only to downward saturated sets.

Proor. Consider an application of (OE”) where an application of (AE) has been
possible instead:

X;o ANy, 0;Y; -0y

Y; Y
Replace this derivation by
Xio Ay;0;Y; -0

X, y,0;Y; -0x
Y; -y
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By assumption, there is a closing tableau for Y; y, so the latter tableau can be brought
to close as well. Similarly for (—=FE). With (VE) we get

X;oVy,0;Y; -0y

Y;—x
which we replace by

X;oVy;0;Y; -0y

Xipi0;Y -0y | Xsys oY -0

Yix Y-y
Again, Y;y has a closing tableau by assumption, so the latter derivation has a clos-
ing tableau. This process of swapping derivations yields less and less offending
instances, so it terminates in a derivation where (OE”) is applied only when all for-
mulae are either variables, negated variables or of the form —~O;y, O;x. |

Call a Ck—tableau good if the rule (OE”) is applied to downward saturated sets. Now
we use good tableau—derivations to find our model. Assume that no closing tableau
for X exists, hence also no closing good tableau. The frame will be based on worlds
wy for downward saturated Z. Let S x be the set of all sets in any tableau for X which
is on a branch that does not close. By assumption, X € Sy. Within Sx let Saty be
the subcollection of downward saturated sets in S x. By assumption, for each Z € Sy
there exists a saturated Z* € Satx containing X. Let Z, Y € Satx. Then put Y «; Z iff
Z is a saturation of a set U obtained by applying (O0;E") to Y. This defines the frame
Gaty = (Satx,(<; : j < «)). Furthermore, let Y € S(p) iff p € Y. By assumption,
for no p we have both p € Y and —p € Y and so the definition is not contradictory.
We will now show that if ¢ € Y then (Saty, 5, Y) E ¢. By definition of Satx we never
have both ¢ € Y and —~¢ € Y. Now, let ¢ = ¥ A Yo. If Y1 A Y € Y then both
Y1,¥, € Y and so by induction hypothesis the claim follows. Next, let ¢ = ——p.
If ¢ € Y, then also ¢ € Y and applying the induction hypothesis, the claim follows
again. Finally, if =(¢| A ) € Y then either ~¢| € Y or =, € Y. In either case we
conclude (Saty, B, Y) E ¢, using the induction hypothesis. Now assume ¢ = -0
for some . By construction there is a downward saturated Z such that ¥ <; Z and
- € Z. By induction hypothesis, (Saty, 8, Z) £ =, showing that (Saty,[5,Y) F ¢.
Now let ¢ = O and take a j—successor Z of Y. This successor is of the form U*
where U* is the saturation of U, which in turn results from Y by applying (QE’).
Thus (Saty, 8, U*) E , by induction hypothesis. Hence (Saty, 3, Y) E ¢.

THEOREM 3.8.3. A set X of modal formulae is K,—consistent iff no K,—tableau
for X closes. K,—satisfiability is in PSPACE.

Proor. Only the last claim needs proof. It is enough to see that we can do the
tableau algorithm keeping track only of a single branch, backtracking to a branching
point whenever necessary. (This is not entirely straightforward but can be achieved
with a certain amount of bookkeeping.) So, we need to show that a branch consumes
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only polynomial space. We see however that each branch of the tableau is of depth
< dp(¢) and that each node is of length < |¢[?. O

We note that by a result LabNer [[137], satisfiability is also PSPACE—complete.
(In fact, LADNER proves in that paper that all logics in the interval [K, S4] are PSPACE-
hard.) With each tableau calculus we can associate a dual tableau calculus. Notice
that for formulae a dual has been defined by reversing the roles of A and V as well
as O; and ¢;. In particular, if ¢ is a formula, —¢ is the same as ©?[=p/p]. The dual
tableau calculus consists in reversing the roles of A and Vv, O; and ¢;. Here a set X
is read disjunctively, and we attempt to show that X is a theorem. For example, the
following is a rule of the dual calculus

0, X; =00

oD
(oD) X

For suppose +k \/ X V —¢. Then ¢ +g \/ X is valid, and so is ¢ ¢ g ¢; \/ X. Hence
=00V \/ 0;X is a theorem. It is the same to show that X has a closing tableau as it
is to show that =X has a closing dual tableau. Notice that the dual of (VE) is (AE)
and has no branching, while the dual of (AE) is (VE) and does have branching. The
dual of (w) is (w), and the dual of (=F) is (—F) as is easily checked.

THeEOREM 3.8.4. ¢ € K, iff there is a closed dual tableau for {¢}.

Let us now see in what ways a tableau calculus helps in finding interpolants.
Consider ¢ Fx ¥, that is, ¢; = is K—inconsistent. Then we need to find a y in the
common variables of ¢ and i such that ¢; -y is inconsistent and y; = is inconsis-
tent as well. The idea is now to start from a closing tableau for ¢; =y and define y
by induction on the tableau, starting with the leaves. To that end, let us introduce a
marking or signing of the occurring formulae in a tableau. In the tableau we intro-
duce the marks a and ¢, where a stands for antecedent and c for consequent. Each
formula is thus signed, whereby we signal whether it is a part of ¢ or a part of ¢ in
the tableau. We start with the initial set ¢“; (=/)°. The rules are then as follows. The
tableau operates on sets of the X; ¢, where X remains unchanged when passing from
above the line to below (except for (OF)). In the marked rule, each formula in the
set X inherits its previous mark, while the newly occurring formulae after applying
the rule inherit their mark from ¢, the formula on which the rule operates. (There is
a slight twist here. A set may contain a formula ¢ that is marked ¢“ as well as ¢°. In
that case we will treat these two as distinct formulae. Alternatively, we may allow a
formula to carry a double mark, i. e. in this case ¢“.) For example, the marked rule
(VE) looks as follows.

X4 Y (e A
XY (=) X4 Y6 (=)

In (OE), a formula O of O;X has the same mark as the corresponding i in X below.
This concludes the marking procedure.
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Now suppose that we have a closing tableau. We will now define rwo tableaux,
one with formulae marked a and i and the other with formulae marked as i and c.
The first will be a tableau for ¢; =y and the second a dual tableau for y; —. Again,
the same rules for marking apply. i stands here for interpolant. The construction
will be by unzipping the original tableau as follows. Each time we have a set X in
the tableau, we show that it is of the form X = Y“; Z¢ and that there is a formula '
such that Y¢; (=y)" has a closing tableau and —Z¢; (—y)' has a closing dual tableau.
This will yield the desired conclusion; for if ¢; =y closes, we get ¢ + y, and if y; ~y
dual closes, we get F =y V i, that is, y + . In the actual proof we will construct —y
instead of y, which makes the proof easier to read. So, we will construct a y such
that ¢; y has a closing tableau, and —; y a closing dual tableau.

A dual tableau for —X is isomorphic to a tableau for X4, the dual of X. So there
is an inherent duality in the construction, which we will use extensively. The proof
will be by induction. We begin with the leaves. There are four possibilities how a
branch can close, either as (aa) p“; (-p)“ or as (ac) p“; (-p)° or as (ca) p°; (—p)* or
as (cc) p©; (=p)°. In case (aa) we choose y := T, in case (ac) we chose y := —p, in
case (ca) we choose y := p, and in case (cc) we put y := L. In each case the claim is
directly verified. Now suppose that (w) has been applied.

W) X X5, Y] Y5

X1 X5
By induction hypothesis, there is an interpolant y for X{; X. It is easy to verify that
x also is an interpolant for X{; X3; Y{'; Y5. Next, suppose (OE) has been applied, say
on the antecedent formula —0O¢.

0,X%;0;Y¢; (-0;¢)*
X4 Y (=)

(BE)

By induction hypothesis we have a closing tableau for X%; ~¢“; y' and a dual closing
tableau for y'; (=Y)°. Now consider the following rule applications.

O;~Y<, (_'Oj_‘/\/)i
—|YC; (ﬁﬁ/\/)i
_|Yc.Xi

0;X% (-0j9)% (O
X4 (o)X

By assumption, the lower line has a closing tableau; hence the upper line has a clos-
ing tableau as well. This shows that (O,x) is an interpolant for the premiss of (OE).
Now suppose that the rule has operated on a consequent formula, (~O;%)°. Then we
have to put as the new interpolating formula the dual formula, ¢ ;¥ = —-O;-y. The
argumentation now is completely dual. We have

0, X (-0~

07X (-0,%) 3 (00)
_|X(‘; _'wC;Xl

L

Xa; —|—|/\/
Xa;Xi
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The lower lines have a closing tableau, and so do therefore the premisses. In the case
where (—E) and (AE) have applied, we choose for the new interpolant the old one.
It is easy to check that this satisfies the requirements. In the first case, if (=F) has
operated on an a—formula we get

Xa; (""()D)a;)(i
X ‘pa.Xi
So, since X% ¢% x' has a closing tableau, so has X%; (==¢)* x'. On the dual side,

X¢ has remained unchanged, so nothing is to be proved. Dually if the rule (=F) has
applied to a c—formula. In case of (AE) and an a—formula we get

X4 (@ Ap)hx
By induction hypothesis, the lower set has a closing tableau; thus there is one for
the upper set. Since X¢ did not change, there is nothing to prove for X¢. If (AE) has
applied to a c—formula (¢ A ), the case is exactly dual to an application of (VE) to
an a—formula. Now, finally, the rule (VE). Since we introduce a split, there are now
two interpolation formulae, y; and y;, one for each branch. Suppose first that an
antecedent formula has been reduced. Then we put y := x1 A x2.

X (e A O A

X459 0 Ax) | XSS Axa) X (1 Ax2)!
X (=) XX X4 ()X X, =X x~XC X,
X4 (o) X (4 x5

Both tableaux can be brought to close. The first by the fact that we have chosen
;i appropriately. The second by the fact that both )("1; -X¢ and X§§ —X¢ close by
induction hypothesis. This concludes the inspection of all rules.

THeEOREM 3.8.5. K, has local interpolation. Moreover, an interpolant for ¢ and
W can be constructed from a closing tableau for ¢; —.

For special logics extending K, there exist tableau calculi which allow to con-
struct interpolants. We will display the relevant rules below.

oX; ~O¢ X;0p
) e (t.) —
X;0X; @ Xd/)
0X; -0 0X; -O¢
(g) _ (grz.)
X;0X; —p; Op X;0X; ~p; O(¢ — Op)
oX;-OY;-0O¢
(alt;).) ——
XY

It is an easy matter to verify that these rules are sound. Their completeness is harder
to verify directly, but follows easily with the help of the reduction sets.
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Now, finally, for the promised proof of interpolation for K, that does not make
use of tableaux. In fact, it will show not only interpolation but a stronger property of
K, called uniform interpolation.

DerintTiON 3.8.6. Let A be a modal logic. A has local uniform interpola-
tion if (i.) given ¢ and variables g, there exists a formula y such that var(y) C ¢
and for all formulae  such that var(p) N var(y) = § we have ¢ +p x Fa W, and (ii.)
given  and variables §, there exists a formula y such that var(y) C ¢ and for all
Sformulae ¢ such that var(¢) N var(y) = § we have ¢ Fp x ko .

The property (i.) alone is called uniform preinterpolation and the property (ii.)
alone uniform postinterpolation. By definition, if a logic has uniform preinterpo-
lation the interpolant does not depend on the actual shape of  but only on the set
of shared variables. Since ¢ 5 ¥ iff =/ F5 —¢ either of (i.) and (ii.) is sufficient
for showing uniform interpolation. We will now show that K, has uniform preinter-
polation. For simplicity we take the case of a single operator, that is, we prove the
statement for K;. But the generalization is easy enough to make. The central idea
is that when we have ¢ + i, and we have a variable p that occurs in ¢ but not in v
we want to simply erase the variable p in ¢ and define a formula ¢™® (or simply
©") such that ¢™® + . Define ¢? as follows. An occurrence of the variable p is
replaced by T if it is embedded in an even number negations, and by L otherwise.
Given this definition it is easily shown that ¢ + ¢'. This is one half of what we
need; the other half is ¢ + . Now here things can go wrong. Take, for example,
¢ :=pA-pandy := L. Clearly, ¢ + ¢. Given the current definition, ¢ = T A =.L.
This formula is equivalent to T. Hence ¢" ¥ L. To surround this problem, put ¢
into standard and explicit form. We will show in the next lemma that any model for
¢" based on an intransitive tree is the p-morphic image of a model for ¢. Here, an
intransitive tree is a frame (f, <) such that it contains no cycles with respect to <t and
in which x < z and y < z implies x = y.

Lemma 3.8.7. Suppose that ¢ is standard, explicit and clash free. Then for any fi-
nite model (f, B, x) for o™ based on an intransitive tree there exists a model {g,y, x')
for ¢ such that

i (g, <) is an intransitive tree and there exists a contraction ¢ : g —» f,

ii forall g # p, B(q) = cly(g)]
i x = c(x).

Proor. By induction on the modal depth of ¢. Assume that the depth is 0. Then
¢ = Viam vi> €ach v; a conjunction of sentence letters or their negations. Then ¢" =
Vi<m V] . Suppose that (f,8,wo) £ ¢7. We assume that 8 is defined only on the
variables of ¢". Then there exists an i < m such that (f, 3, x) £ v]. Now put y(q) :=
B(p) if g # p and y(p) := {wo} if p is a conjunct of v; and y(p) := @, else. Since ¢
is clash free, this is well-defined. Then (f,y, wo) E v;, and so (f, v, wp) F ¢. Now let
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dp(p) > 0. Then ¢ is a disjunction of formulae ¢; of the form

i =,U/\/\<>‘/’j/\|:'/\/~
j<n
Assume further that (f, 8, wg) £ ¢". B is defined only on the variables of ¢ ™. Then
for some i we have (f, 8, wp) F ¢;. Furthermore,

o =u" A\ o] Aoy
j<n

Put {* :=§, y%(p) := {wo} if p is a conjunct of i, and ¥°(p) := @ otherwise. For g # p
put y’(g) := B(g). Then (i, %, wp) £ u. Let the set of successsors of wy be suc(wg) =
{xo : @ < A}. Ais finite. Inductively, for each @ < A we perform the following
operation. Case 1. (f*,y%, x,) F l//]T. for some j. Then put J := {k : Yy & y; €
K,}. Let g be the transit of x, in {*. By induction hypothesis, there exists a model
(Bk, Ok, k) F Yy for each k € J and a p—morphism ey : by - g satisfying (ii) and (iii).
Form §**! by blowing up the frame g to EB ey Dk (See Theorem ) There exists
a p-morphism d**!' : {**! — §, obtained by extending €B, _, ex to f**'. Moreover,
Y (p) = ¥ (p) U Ures (@) ' [6k(p)], and for g # p, y**'(g) == (d**) ' [y (g)].
Case 2. (7, v%, xo) ¥ z,bJT for all j. Then at least (f%,¥%, x,) £ x ', and we proceed as
follows. We know that y is a disjunction of simple standard, explicit and clash—free
formulae ;. For some i we have (%, v%, x,) £ (7;)7. Let g be the transit of x, in
f. By induction hypothesis there exists a ) and a p-morphism e : § - g, a 6° and
y satisfying (ii) and (iii) such that (b, 6% y) £ 7;, and so (b,8°,y) £ y. Now blow
up g to b in f. This defines f**1. There exists a p—morphism detl .o+l s 5o Pyt
Y (p) ==y (p) U @) [y*(p)], and let y**1(g) := (@)~ [y*(¢)] for g # p.

It is clear that (f%, v, xg) F i iff (f”“,y‘”l,xﬁ) E ¢ for all B < @, and
(G999, xg) E ()T ifF (1, v xg) E ()T for B > . Furthermore, (71, y**1 wo) £
u. Put g := 1. Then the composition ¢ := d' o d?o...0d" : g -» §. For g # p,
¥(q) := ¥'(g), is the result of blowing up 8 by c. Moreover, c(wg) = wy, and

(8,7, wo) E ¢; ,

which had to be shown. O
TueOREM 3.8.8. K, has uniform local interpolation.

Proor. Suppose that (7, §) ¥ ¥(q, ). Let ¢o(P,§) be a standard, explicit and
clash—free formula deductively equivalent to ¢. Let 7 consist of the variables p;,
i < n. Now fori < n, let ¢i1(P,9) := @i(7,9)"T"). xy = ¢,. Then the variables
pi do not occur in y. Moreover, ¢ + y. Now assume that y ¥ . Then there exists
a finite intransitive tree fy, a valuation Sy and a wy such that (fy, 8o, wo) E x; .
By the previous lemma, if (f;, 8;, wo) F @,—;; ¢ and {; is an intransitive tree then
there exists a model (f;1,8i+1, Wo) E ¢u_i—1; ¥ such that f;; is an intransitive tree.
Hence, by induction, we have (f,, 8., wo) F ¢o; —. This means that ¢ ¥ ¢, since ¢
is deductively equivalent with ¢. This contradicts the fact that ¢ F . O
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It should be noted that the assumption that K, is complete with respect to finite
intransitive trees is rather essential for the proof method. The method of reduction
sets cannot be applied to show uniform interpolation for the standard systems. The
notion of uniform interpolation has been introduced by Anprew Prtts [161]. It has
been shown subsequently by Sivio GuiLarpr and M. Zawapowsk1 [74] and ALBERT
Visser [223] that K, Grz and G have uniform interpolation, but that S4 lacks uniform
interpolation. Furthermore, FRaNk WorTER [243] proves that uniform interpolation
is preserved under fusion. From the latter follows already that polymodal K has
uniform interpolation if only K has uniform interpolation.

Notes on this section. The notion of a downward saturated set first appeared
in Hintikka [104], who gave a tableau calculus for K4 and other systems. Tableau
calculi have attracted much interest in machine based theorem proving. The litera-
ture is too large to be adequately summarized here. Suffice to mention here the work
by MeLviNn FittinG [70], Rajeev Gorg [88] and MaRTIN AMERBAUER [1]. Further-
more, [224] contains an overview of proof theory in modal logic. Tableau calculi are
closely connected to Gentzen—calculi. A Gentzen calculus operates on pairs of sets
of formulae, (I', A), written I' + A. It is possible to reformulate a Gentzen calculus
as a tableau calculus. The method for proving interpolation employed above is quite
similar to the one introduced by S. MAEHARA in [[144].

Exercise 122. Show that the rule (4.) is sound and complete for K4. Hintz. Use the
reduction sets for K4.

Exercise 123. Show that the rule (t.) is sound and complete for K.T, and that the
rules (t.) and (4.) together are sound and complete for S4.

Exercise 124. Show that (g.) is sound and complete for G, and that (grz.) is sound
and complete for Grz. Hint. You have to use two reductions in succession here, first
one to K4 and then one to K.

Exercise 125. Show that (alt;.) is sound and complete for K.alt,.
Exercise 126. Show that ¢ Fg ¢ .

Exercise 127. (WoLter [243]].) Show that if Alg A is a locally finite variety and A
has interpolation, then A has uniform interpolation. It follows, for example, that S§
has uniform interpolation. Hint. The notion of a locally finite variety is defined in
Section You may work with the following characterization: Alg A is locally fi-
nite iff Cany (n) is finite for every n € w.

Exercise 128. Show that G and Grz are in PSPACE. Hint. Show that the length of a
branch for in a tableau for ¢ is bounded by the number of subformulae of .
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Exercise 129. Here is a tableau calculus for determining whether or not A g, ¢.
Introduce a formula diacritic *. Now replace the rule (O,F) by
-0,¢;0,X; Y*

¢ X; Y*

Furthermore, add the rule
X;Y*

X;Y*:Y
Show that A IFg, ¢ iff A*; ¢ has a closing tableau. Show then that the problem
‘W Irk, ¢? is in EXPTIME.

3.9. Modal Consequence Relations

In this section we will study the lattice of all consequence relations. Thereby
we will also elucidate the role of the consequence relations +, and I-4. We start
by defining the notion of a modal consequence relation and give some alternative
characterizations.

Derinition 3.9.1. A modal consequence relation is a consequence rela-
tion over P, which contains at least the rule (mp.) and whose set of tautologies is
a modal logic. If v is a modal consequence relation and A := Taut(v) then v is a
modal consequence relation for A. v+ is normal (quasi—normal, classi-
cal, monotone) if A is.

In sequel we will deal exclusively with normal consequence relations. Notice
that if + € @(P,) x P, is a consequence relation, then we may define +':= +
N (p(P) x Py if A < «k, and if 1 > « let +* denote the least consequence relation
over P, containing . A special case is 4 = 0.

ProposiTioN 3.9.2. Let + be a consistent modal consequence relation. Then its
reduct to the language T, — and A is the consequence relation of boolean logic.

Proor. Taut(+") contains all boolean tautologies. For we have
Taut(+®) = Taut(F) N Py .

The rule of modus ponens is contained in °. Therefore, +° contains the consequence
relation F,. If I is consistent, we have p ¥ ¢, so p ¥0 q, and so +0 is consistent too.
However, -, is maximal, and so equal to r0, m]

If + is a normal consequence relation, we denote by Q(+) the lattice of extensions
of + and by E(+) the lattice of normal extensions. We will show below that this is a
complete and algebraic lattice. Now let A be a modal logic. Then define

CRel(A) := {r: Taut(+) = A}
As we have seen in Section [I.4] of Chapter [T CRel(r) is an interval with respect

to inclusion. The smallest member is in fact +4, as follows immediately from the
definition. The largest member will be denoted by +; it is structurally complete. As
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is clear, for a given set of tautologies there exists exactly one structurally complete
logic with the given tautologies, and at most one logic with a deduction theorem for
—. H{ is the structurally complete logic with respect to A and 4 is the logic with a
deduction theorem for —.

ProposiTioN 3.9.3. Let A be a modal logic. Then
CRel(A) ={r: Fpo T+ CH}}

Moreover, + is the unique member of CRel(A) having a deduction theorem for —
and ) the unique member which is structurally complete.

To see some more examples, consider the rule ({Op}, p). It is admissible in K.
For assume that ¢ := p” is not a theorem. Then there exists a model (f, 3, x) £ —¢.
Consider the frame g based on f U {z}, where x ¢ f, and the relation «:= <U {{z,y) :
y € f}. Take y(p) := B(p). Then (g,7v, z) E “Op. We warn the reader here that even
though for any modal consequence relation, Op F p is equivalent to p + ¢p, the rule
{{p}, Op) is not admissible in K despite the admissibility of ({Op}, p). Take p := T.
0T is not a theorem of K. Similarly, the so—called MacIntosh rule ({p — Op}, op —
p) is not admissible for K. Namely, put p := 0l. 0l — OOl is a theorem but
oOL — Ol is not. Notice also that if a rule p is admissible in a logic ® we may
not conclude that p is admissible in every extension of ®. A case in point is the rule
({ap}, p), which is not admissible in K@ OL.

Recall the notation +*. This denotes the consequence relation generated by the
rules R. At present we may tacitly assume that R contains (mp.). Equivalently, +%
is the least modal consequence relation containing R. Notice that for every modal
consequence relation + there exists an R with + = +* (for example the set of all
finitary rules of r itself).

ProposiTioN 3.9.4. The set of modal consequence relations over P, forms an
algebraic lattice. The compact elements are exactly the finitely axiomatizable conse-
quence relations. The lattice of quasi—normal consequence relations is the sublattice
of consequence relations containing g, .

Proor. Clearly, the operation [ ] is set intersection, and +; U F; is the smallest
consequence relation containing both +; and +,. If +; = H* and +, = +*2 then
Fi Uk, = FRIYR2 With this latter characterization it is easy to define the infinite
union. Namely, if +; = kg, fori € I, put | |; v = S, where S := U Ri. All
rules are finitary by definition. Therefore, if a rule is derivable in 5, then it is
derivable already from a finite union of the r;. It follows that a finitely axiomatizable
consequence relation is compact, and that a compact consequence relation is finitely
axiomatizable. Moreover, the lattice is algebraic, since +% = |_| per F*. The last claim
is a consequence of the fact that +" is quasi—normal iff Taut(+’) is quasi—normal iff
Taut(+") contains K,. |
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Proposrtion 3.9.5. For each quasi—normal logic A and each quasi—normal con-
sequence relation v/,

Ao CF s A C Taut(+")
Taut(—) commutes with infinite intersections, v, with infinite intersections and joins.
ProposiTion 3.9.6. € (Fk,) is a complete sublattice of Q (Fx,).
ProposiTioN 3.9.7. In monomodal logic, v+ is maximal iff A is a coatom.

Proor. Clearly, if +, is maximal in (), A must be a coatom. To show the
converse, we need to show is that for a maximal consistent normal logic A, Fj is
structurally complete. (It will follow that CRel(A) has exactly one element.) Now,
A is Post—complete iff it contains either the formula OT or the formula p < Op.
Assume that -5 can be expanded by a rule p = (A, ¢). Then, by using the axioms
p can be transformed into a rule p’ = (A’,¢’) in which the formulae are nonmodal.
(Namely, any formula in a rule may be exchanged by a deductively equivalent for-
mula. Either 0T € A and any subformula Oy may be replaced by T,or p & Op € A
and then Oy may be replaced by y.) A nonmodal rule not derivable in F, is also
not derivable in its boolean fragment, I-(/)\. By the maximality of the latter, adding p’
yields the inconsistent logic. O

In polymodal logics matters are a bit more complicated. We will see that there
exist in fact 2% logics which are coatoms in € K, without their consequence rela-
tion being maximal. Moreover, we will see that even in monomodal logics there
exist 2% maximal consequence relations, which are therefore not of the form r, (ex-
cept for the two abovementioned consequence relations). Notice that even though
a consequence is maximal iff it is structurally complete and Post—complete, Post—
completeness is relative to the derivable rules. Therefore, this does nor mean that
the tautologies are a maximally consistent modal logic. We define the T-spectrum
of A, TSp(A), to be the cardinality of the set of consequence relations whose set of
tautologies is A.

TSp(A) := card CRel(A)
To characterize the choices for the T-spectrum we will first deal with a seemingly
different question.

ProposiTioN 3.9.8. Let A be a normal logic. Then the following are equivalent.
(1) FA = k.
(2) A admits a deduction theorem for —.
3) A2 K. ®(p—0p:j<«l
(4) A is the logic of some set of Kripke—frames containing only one world.

Proor. Clearly, if (1.) holds, then (2.) holds as well. Now let (2.) be the case.
Then since p k5 O;p, by the deduction theorem, 5 p — O;p, which gives (3.).
From (3.) we deduce (1.) as follows. Since p; p — O;p Fa O;p, and p — O;p € A,
we get p ko O;p. Therefore, Fp=F,. Finally we establish the equivalence of (3.) and
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(4.). Assume (4.). Then clearly the formulae p — O;p are axioms, since they hold
on any one—point frame. Now assume that (4.) fails. Consider a rooted generated
subframe & of Cany (var) consisting of more than one point. Such a frame must exist,
by assumption. Let X be the root and ¥ a j—successor. Then there exists a set @ such
that X € pbut Y ¢ @. Now put B(p) := . It follows that (F, 8, X) £ p; -0O,p. Hence
(3.) fails as well. |

Now let us return to the question of T-spectra. Clearly, if Fp # -5 then the
T-spectrum of A cannot be 1. We will show now that the converse almost holds.

ProposiTioN 3.9.9. Let A be a modal logic. Then the following are equivalent.

(1) The T-spectrum of A is 1.

(2) v is structurally complete.

(3) Ais the logic of a single Kripke—frame containing a single world.
(4) A is a fusion of monomodal logics of the frames e ]or[o]

Proor. The equivalence between (1.) and (2.) is immediate. The equivalence
of (3.) and (4.) is also not hard to show. If A is a fusion of logics for one—point
frames it contains for each operator either the axiom O;T or p < O;p. It means
that the relation <; is on all frames empty or on all frames the diagonal. Hence the
generated subframes of the canonical frame are one—point frames and they are all
isomorphic. Finally, we show (2.) < (3.). Assume (3.). Then by the fact that the
kA is the logic of a single algebra based on two elements, and has all constants, it is
structurally complete. Now let (3.) fail. There are basically two cases. If A is not
the logic of one—point frames, then r, is anyway not structurally complete by the
previous theorem. Otherwise, it is the intersection of logics determined by matrices
of the form (2, D), D an open filter, A the free algebra in &, generators. (In fact, the
freely O—generated algebra is enough.) U contains a constant ¢ such that 0 < ¢ < 1.
Namely, take two different one point frames. Then, say, O is the diagonal on one
frame and empty on the other. Then ¢ := 41 is a constant of the required form. The
rule ({09 T}, p) is admissible but not derivable. |

The method of the last proof can be used in many different ways.

Lemma 3.9.10. Let A be a logic and x a constant formula such that neither y
not =y are inconsistent. Then the rule p[x] := {{x}, L) is admissible for A but not
derivable in +p.

Proor. Since y ¢ A and var(y) = @, for no substitution o, ¥ € A. Hence the
rule p[x] is admissible. If it is derivable in +5 then o y — L, by the deduction
theorem. So —y € A, which is not the case. So, p[y] is not derivable. O

THEOREM 3.9.11. Let A be a logic such that F1,(0) has infinitely many elements.
Then TSp(A) = 2.
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Proor. Let A C Frp(0). Call A a block if 0,1 ¢ A and for every a,b € A, if
a # bthenanb = 0. For each a € A there exists a constant formula y, whose value
in Fra(0) is a. So, for a subset S C A, put

S ._ 3
Foi=ba U e HW

We claim that (1) |—f\ € T(Fp), 2)if S # T then I-i = l—IT\, and (3) §r,(0) contains a
block of size Ny. Ad (1). By the previous lemma, all the rules p[y,] are admissible,
by the requirement that a € A and A is a block. Ad (2). Suppose thata € S —T.
Then let U be the closure under (mp.) of y, in A. We claim that U is a theory of
+! but not of 1. To be a theory of FX for some set R no more is required than it be
closed under (mp.) and consistent if it is does not contain any y,, a € R, or else be
inconsistent (and contain all formulae). Now since a ¢ T and y, is consistent, the
(mp.) closure does not contain any y, b € T, since a N b = 0 (which means that
Xa FA —xp). Since a € S, y, kf\ L. Ad (3). We distinguish three cases. Case A.
Fra(0) has infinitely many atoms. Then the atoms form a block of size at least .
Case B. §1,(0) has no atoms. Then there exists a sequence {c; : i € w) such that
O0<ciy1 <ci<lforalli < w. Puta; := c¢; —ciy1. Then 0 < g; since ¢; > ¢;;1 and
a; < 1since ¢; < 1. Furthermore, leti < j. Thena;Na; = (ciN—ci1)N(cjN—cjs1) =
¢j N —cis1 < Ciy1 N =iy = 0. So there exists an infinite block. Case C. There exist
finitely many atoms. Then let € be the boolean algebra underlying &, (0). We claim
that € = Ax B, where A is finite and B is atomless. (This is left as an exercise.) Now
B contains an infinite block, (b; : i € w). Put a; := (1,b;). The set A :={q; : i € w}
is a block in A x B. |

CoroOLLARY 3.9.12. Let A be a monomodal logic and A C G.3. Then TSp(A) =
280,

Proor. G.3 has infinitely many distinct constants, namely 0"L, n € w. This
applies as well to A. O

Let us remain with G.3 a little bit. Consider the consequence ¢ ;. We claim that it
is maximal. To see this we need to show that it is Post—complete. This follows from
a general fact that we will establish here.

TueoreM 3.9.13. Let A be O—characterized. Then v is maximal.

Proor. Let I 2 Y. Then Taut() 2 A. Since A is O—characterized, there is a
constant y such that A € A & y C Taut(r). Therefore, y ¢ A. Two cases arise. Case
1. =y ¢ A. Then the rule p[x] is admissible in A and so derivable in Y. Therefore
plx] € I, and so since I y, also I+ L. So, I+ is inconsistent. Case 2. -y € A. Then
Taut(+) is inconsistent. So IF is inconsistent as well. |

This theorem makes the search for maximal consequence relations quite easy.
Let us note in passing that there are consequences relations +; and I, such that

Taut(r; L +y) # Taut(+y) U Taut(r,) .
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Ficure 3.2. Ty, M ={1,3,4,...}

40 30 10

4. 3. 2. 1. 0.

Namely, let F1:= F(; ; and Fy:= Fgeny . Then Taut(-i U k) = K& L, but G3LUK®
olL=Ke0Ool.

We will now investigate the cardinality of the set of coatoms in € (rg). We
will show that there are exactly 2™. Of course, showing that there are at least that
many is enough; there cannot be more. In the light of the previous theorem, we are
done if we can find 2% distinct logics which are O—characterized. Let M C w. Put
Ty :={n*:newluin®:ne M} Put

or(2) x=m’,y=n*andm>n

(1) x=m*,y=n*andm >n
x4y ©
or(3.) x=m°,y=n"andm=n

Let Ty, be the algebra of O—definable sets. Put Ty, := (T, <, Tpr). We will show
now that if M # N then ThT, # ThTy. To see this, we show that every one—
element set {n°} in T, is definable by a formula y(n) that depends only on 7, not on
M. First, take the formula

S(n)y:=0"™'LA-O"L
6(n) defines the set {n°®}. Now put
x(n) :=06(n) A =d6(n+ 1) A =06(n+1)

It is easily checked that y(n) defines {n°}. Hence, if n ¢ M, —y(n) € ThI,. So,
—x(n) € Th Ty, iff n ¢ M. This establishes that if M # N, Th Ty, # ThIy.

THEOREM 3.9.14. The lattice of normal monomodal consequence relations con-
tains 2™ many coatoms.

Notes on this section. In contrast to the theory of modal logics, the theory of
modal consequence relations is not very well developed. Nevertheless, there has
been significant progress in the understanding of consequence relations, notably
through the work of Viapmir RyBakov. In a series of papers (see [178], [179]],
[180], [181] as well as the book [182] and references therein) he has investigated
the question of axiomatizing g by means of a rule basis. A major result was the
solution of a problem by HARVEY FRIEDMAN to axiomatize the calculus of admissible
rules for intuitionistic logic. In the more philosophically oriented literature, certain
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special rules have been in the focus of attention. Typically, the notion of a rule is
somewhat more general. It is a pair (A,T'), where A and I are sets of formulae. It
is admissible for a logic A, if for every substitution o such that A C A we have
I' N A # @. Examples are the rule of margins

{p — ophip,—pH
the MaclIntosh rule (which is of course also a rule in our sense), the (strong) rules of
disjunction

(\/ opid.pi i< n)

i<n

and the weak rules of disjunction
({\/ @Ep; : B compound }, {p; : i < n})
i<n

The latter are nonfinitary rules. See for example work by BriaN CHELLAS and KRISTER
SEGERBERG [46] and TiMotHY WILLIAMSON [227]], [226]] and [228]].

Exercise 130. Show Proposition [3.9.5]
Exercise 131. Let A 2 K, ® {p — O;p : j < k}. Show that A is the logic of its 0—
generated algebra. It follows that it has all constants. However, F, is not necessarily

structurally complete. Can you explain why?

Exercise 132. Let U be a boolean algebra with finitely many atoms. Show that
A = B x €, where B is finite and € is atomless.

Exercise 133. Show that the rule(s) of disjunction are admissible for K. Hint. Start
with models refuting ¢; := p?. Now build a model refuting \/,.,, O¢p;.
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CHAPTER 4

Universal Algebra and Duality Theory

4.1. More on Products

In this chapter we will develop the algebraic theory of modal algebras, taking
advantage of some strong theorems of universal algebra. First, we know from a
theorem by GARRETH BIRKHOFF that equational classes correspond one—to—one to va-
rieties, and that the lattice of modal logics is dual to the lattice of varieties. Second,
by using the representation theory of boolean algebras by MarsHALL H. SToNE we
can derive many useful results about general frames, in particular deriving a theorem
about modally definable classes of Kripke—frames. Fuller expositions on universal
algebra can be found in [37], [89].

We have to begin by talking more about products. A generalization of the (di-
rect) product of algebras is the so—called subdirect product. We call U a subdirect
product of the B;, i € I, if A is a subalgebra of the direct product [],; B; such that
for each projection 7; : [[;; B; - B; we have m;[A] = B;. In other words, if A is
projected onto any factor of the product, we get the full factor rather than a proper
subalgebra. Moreover, also every algebra isomorphic to 2 will be called a subdirect
product of the B;. An alternative characterization of this latter, broader notion is the
following. € is a subdirect product of the B;, i € I, if there exists an embedding
J € > [l B such that for every i € I, m; 0 j : € - B;. To see a nontrivial
example of a subdirect product, take the algebra U of the frame & in Figure Itis
a subdirect product of the algebra B of the frame ®; simply take the direct product
B x B, which is isomorphic to the algebra over ® & ®. Now take the subalgebra €
generated by the encircled sets. It is isomorphic to the algebra . (The sets define
the frame $.) An algebra is called subdirectly irreducible (s.i.) if for every sub-
direct product i : A > [],;; B; we have that 1; o h : A - B; is an isomorphism
for some i € I. There are some useful theorems on subdirect products and subdirect
irreducibility. Recall that there is a smallest congruence on A, Ay = {{a,a) : a € A},
also denoted by A, and a largest congruence V4 = A X A, denoted by V when no
confusion arises. The congruences of an algebra form an algebraic lattice.

ProposiTiON 4.1.1. Let N be a subdirect product of the algebras B;, i € I. Let
7 : [lie; Bi — B, be the projections. Then we have

ﬂ ker(m; 1 A) = Ay .
i€l

159
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FiGure 4.1. A subdirect product

3\“63'—"55@7
(o

Conversely, if Ay = (ie; Oi then W is a subdirect product of the algebras W/®,, i € I.
The embedding of Winto [1;c; X/ O; is defined by the map

h(a) :={([a]l®; :ie€l).

Proor. An element of the direct product is a sequence a = (a(i) : i € I). For
two such elements we deduce from {a, b) € (;¢; ker(m; | A) that {a, b) € ker(m; [ A)
for all i € I, that is, a(i) = b(i) for all i. Hence a = b. This proves the first
claim. For the second observe first that / is a homomorphism. Now h(a) = h(b)
implies [a]®; = [b]O; for all i € I, that is {a,b) € ©; for all i. Hence a = b, since
Nic1 ®; = Ax. Now m; o h[A] = A/®;, because if [a]O; is given, then m; o h(a) =
7i(([al®; : i € 1)) = [a]®;. |

THEOREM 4.1.2. W is subdirectly irreducible iff there exists a congruence ® such
that every congruence # A contains ©. Equivalently, W is subdirectly irreducible iff
A is (~irreducible in the lattice of congruences of .

Proor. We show the second claim first. Let ();c; ®; = A for some ®; which are
all different from A. Then consider the subdirect representation i : W > [];c,(A/O;).
Then none of the maps ; o & is injective since their kernel is exactly ©;. So, U is
subdirectly irreducible. Let on the other hand (;;; ®; # A for all ®; # A. Then
in a subdirect representation i : A > [];c; B; we have (e ker(m; o h) = A and
thus ®; = A for some i € I, showing 2 to be subdirectly irreducible. Now for the
first claim. Let A be subdirectly irreducible. Then let ® := (Ng.a @. Since A is
(-irreducible, ® # A. Conversely, if there exists a congruence ® # A such that
every congruence # A contains ®, then ® = (\p.a P, s0 A is ()—irreducible. O

In case that U is subdirectly irreducible, the smallest congruence above A is
called the monolith of 2. Now recall the notation @(E) for the smallest congruence
containing E. We say E generates ®(E). A congruence is called principal if there
is a one—-membered E generating it. If E = {{a, b)} we write O(a, b) for O(E). It is
easy to see that the monolith of a subdirectly irreducible algebra is principal. The
following is due to [17].

THeEOREM 4.1.3 (Birkhoft). Every algebra is the subdirect product of subdirectly
irreducible algebras.
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Proor. For each pair a, b € A of elements consider the set E(a, b) of congruences
such that {(a,b) ¢ E(a,b). Suppose we can show that each €(a,b) has a maximal
element W(a, b) if a # b. Then let ®(a, b) be the least congruence containing {(a, b).
®(a, b) ¢ E(a, b), by definition. Consider now any congruence @ 2 W(a, b). By the
fact that W(a, b) is maximal for not being above ®(a, b), we must have ®" 2 W(a, b)Ll
®(a, b). Thus, A/¥(a, b) is subdirectly irreducible by Theorem[@} Moreover, we
have A = (.., ¥P(a, b), hence A is a subdirect product of the A/¥Y(a, b).

But now for the promised proof of the existence of W(a,b). We consider the
following property P of subsets of A X A. S has P iff @(S) does not contain {a, b).
All we have to show is that P is of finite character. For then by Tukey’s Lemma,
maximal sets exist. By Proposition[I.2.6]

0S) = |_J@(S0) : S0 5.5 finite ) ,
and so the claim is obvious. m]

We will close this discussion of decomposition by a criterion of decomposability
into a direct product.

DEerINiTION 4.1.4. Let A be an algebra. N is called directly reducible if there
exist algebras B and € such that B # 1 and §C # 1 and N = B x €. If W is not
directly reducible it is called directly irreducible.

Let A be an algebra and @, ¥ € Con(A). O and W are said to permute if oY =
Y o®. Inthiscase, ® LY =@ o V.

THEOREM 4.1.5. An algebra W is directly reducible iff there exist congruences ®
and Y, both different from V4 and Ay, such that (i.) @ UWY = Vg, (ii.) @ MY = Ay,
(iii.) ® and ¥ permute.

Proor. Suppose U is directly reducible. Then there exist algebras B and €,
such that B > 1 and §C > 1, and an isomorphism & : A — B x €. We may
actually assume that A = B x €. Let p; and p, be the canonical projections from
B x € onto B and €. These are surjective homomorphisms. Let ® := ker(p;) and
Y := ker(p,). Then ® # V4 since B is not isomorphic to 1. Also, ® # A, since €
is not isomorphic to 1. Likewise it holds that ¥ is different from V4 and A4. Now
(X0, x1) O (yo, y1) iff X0 = yo and (xp, x1) ¥ (yo, y1) iff x; = y;. It is easy to see that
®oV¥ =Yo0® = V,, showing (i.) and (iii.), and that ® N ¥ = Ay, showing (ii.).
Now assume conversely that ® and ¥ are nontrivial congruences of U satisfying (i.),
(ii.) and (iii.). Let hg : A - A/O and hy : A - A/Y be the natural maps with
kernel ® and ¥, and let & := (hg,hy) : W — A/O X A/Y be the map defined by
h(a) := ([a]®, [a]¥). This map is a well-defined homomorphism. We have to show
that % is bijective. (1.) h is injective. Let h(a) = h(b). Then [a]® = [b]O and
[a]¥ = [P]Y, hence [a](® N'¥P) = [b](® N'¥). By (ii.), a = b. (2.) h is surjective.
Let ([a]®, [b]¥) € A/® x A/Y. Since ® o ¥ = V4, by (i.) and (iii.), there exists a ¢
such that a ® ¢ ¥ b. Then [¢]® = [a]® and [c]¥ = [b]¥ and so &(c) = ([a]®, [b]V),
as required. O
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An algebra has permuting congruences if all nontrivial congruences permute
pairwise. A class of algebras is congruence permutable if all its members have
permuting congruences. The following is due to A. I. MaLcev [155].

THEOREM 4.1.6 (Malcev). Let V be a variety of algebras. 'V is congruence per-
mutable iff there exists a term p(x,y, z) such that for allN € V and all a,b € A

pla,a,b)=b,  pYa,b,b)=a.

Proor. Assume that there exists a term p(x, y, z) with the properties given above.
Then let a and b be elements such that a® o W b. Then there exists a ¢ such that
a®cY¥b. Hence

a= pm(a, b,b) ‘Pp\u(a, c,b) @pm(c, c,b)=>b.

So a¥ o ®b. Now assume that all members of V have permuting congruences.
Then in particular the algebra U := Fry({x,y,z}) freely generated by x, y and z
has permuting congruences. Let ® := O((x,y)) and ¥ := O((y, z)). Then (x,z) €
® o V¥, and so (x,z) € ¥ o ®. Hence there exists an element u such that xW u® z.
This element is of the form p™(x,y,z) for some ternary termfunction p. We claim
that x = p¥%(x,y,y) and y = p¥(x,x,y). This is enough to show the theorem.
To that end, consider the canonical homomorphism Ay. Modulo an isomorphism,
hy @ Fry(x,y,zh) » Fry(xnyh) @ x = xy = y,z >y Put B = Fy({x,y)}
hy(p'(x,y,2)) = p®(x,y,y) = hy(x) = x, since hy(u) = hy(x). So, p¥(x,y,y) = x
holds in the algebra freely generated by x and y. To see that the equation holds
in any algebra, let © be any algebra in V, and let a,b € D be elements. Let
Jj : B — D be the unique homomorphism satisfying j(x) = a and j(y) = b. Then
p®(a,b,b) = j(p®(x,y,y)) = j(x) = a. Hence the first equation holds in all algebras.
Analogously for the second equation, using the congruence ® instead. O

An algebra is said to be congruence distributive if the lattice of congruences is
distributive.

THEOREM 4.1.7. An algebra is congruence distributive if there is a ternary termfunc-
tion m(x,y, z) such that for all a,b € A:

m(a,a,b) = m(a,b,a) = m(b,a,a) = a.

Proor. First of all, from lattice theory we get @M C OMN(PLY) and ®OMY C
OnN@uUY),sothat @M ®)LU@OMNY)C O (dUY). For the converse inclusion
assume {a,b) € @ 1 (® U ¥). Then a ® b and there is a sequence c;, i < n+ 1, such
that

a=cgPc1VYey Ocs3...0c,1¥Ye,=b

We then have m(a, c¢;, b)) ® m(a, ¢;,a) = a and m(a, c;, b) ® m(b, c;,b) = b for all i so
that
m(a,c;,b) ®a®bO®m(a,ci,b)
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and m(a, ¢;, b) ® m(a, ;4 1, b) for even i. Similarly for odd i it is shown that m(a, c¢;, b) ¥ m(a, c;11, b).
Therefore m(a, c;, b) (ON®) m(a, c;;1, b) for even i and m(a, c;, b) (OMY) m(a, c;1, b)
for odd i. Thus {(a,b) € (@ M ®) LI (O M ¥). O

For example, let 2 be an algebra in which there are termfunctions M, LI such that
(A, M, U) is a lattice. Then U is congruence distributive. Namely, take

m(x,y,z):=(xUy)N(yuz)n(zUx).

This termfunction satisfies the above criterion. If in addition there is a termfunction
’ such that (A, 1,11, ) is a boolean algebra, then U has permuting congruences. For
take

p(x,y,z)=@NzUu@ny nH)uE Ny nz).
If y = z, thisreduces to p(x,y,y) = (xMy)U(xMy )L My’ My) = (xMy)L(xMy’) = x;
if x = y this gives p(x, x,z) = (xN)UxNX NZ)U' Nx' MNz) = (xNz)U (' MNz) =
z. It also follows that subalgebras, homomorphic images and products of similar
congruence distributive algebras are again congruence distributive, if the same term
can be chosen in all algebras. This is the case with modal algebras.

CoroLLARY 4.1.8. The variety of modal algebras has permuting congruences
and is congruence distributive.

Congruence distributivity is important in connection with reduced products. Let
I be an index set, [],c; B; be a product. Let F be a filter on 2! and let @ be the set
of all pairs {a, b) such that {i : a(i) = b(i)} € F. O is a congruence. This is left as
an exercise. Congruences of this form are called filtral. We define the F—reduced

product of the B; by
[ [Bi=(]B0/er.
F iel
If F is an ultrafilter, we speak of an ultraproduct. Given a class X of algebras,
Up(X) denotes the closure of K under ultraproducts. Let us note that if F C G then
there is a surjective homomorphism [ B; - [[5 B;. The following theorem is due
to Biarnt Jonsson [111], also known as Jonsson’s Lemma.

THEOREM 4.1.9 (Jénsson). Let K be a class of algebras and V = HSP(X) be
a congruence distributive variety. If W € 'V is subdirectly irreducible then N €
HSUp(X).

Proor. Leth : B —» A for B »- [];; ¢;. (This is not necessarily a subdirect
product.) Then put @ := h~'[A,]; this is a congruence. Moreover, @ is M—irreducible
in B. For if ®; M ®, = ® we have

(O1M0)/P=0,/OMO/D = Ay
in Con(2). This implies @, /® = A4 or @,/® = A4, which is nothing but ®; = ® or
0, =0. _
For subsets S of I let ®¢ denote the congruence induced on [];¢; ¢; by the prin-
cipal filter TS ={T : S C T C I}. Furthermore, let D be the set of all S C I such that
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@S I BC @, thatis, ® = ® LU (@S I B). Choose U to be a maximal filter contained
in D. Then Oy = U(@S :S e U),and so Oy | B C ®. All there is to be done is
to show that U is an ultrafilter over /. For then the map B — []y ¢, has the kernel
®y I B. So this induces an embedding B/(Oy | B) = [[y ;. Since @y | B C D,
there is a homomorphism B/(Oy [ B) » .

Now observe that if S, 7 C I then

Osur [ B=(@s | BN (Or | B).
Therefore we have for S, T € D
D=0U(@sur | B)= (DU (@5 | B) 1 (®U (@7 | B)).

Since @ is M-irreducible in Con(B) we have either & = @ LI @s | Byor® =
O L1 (7 | B). And so we conclude that

IfSuTeDthenS eDorT € D.

Furthermore
IfSeDandS CTthenT € D.

From these properties we can derive that U is an ultrafilter. For if not, there is
a set S such that neither S € U nor I —S € U. Thus there are sets K,L € U
such that S N K ¢ Dand (I — S)N L ¢ D. We show the existence of K; the
existence of L is proved analogously. Suppose that @ € D. Then D = 2! and U
is an ultrafilter by construction. Now assume @ ¢ D. Consider the system of sets
Vi={T: T2SNK,KeU}.Ifall S N K € D, we have a system of sets which is a
filter containing U and fully contained in D. In particular, S € V, contradicting the
maximality of U. So there is a K € U such that S N K ¢ D. Likewise, we have an
Le Usuchthat { -—S)NL ¢ D. Put M := KN L. U is afilter, so M € U. Thus
also M € D. Now M = (S N M) U ((I —S) N M) but neither set is in D. This is a
contradiction. O

By the fact that modal algebras are congruence distributive we can now infer
that a subdirectly irreducible algebra in the variety generated by some class of modal
algebras X is an image of a subalgebra of an ultraproduct from X. Let us return,
however, to the criterion of subdirect irreducibility. First of all, a congruence ® on
a boolean algebra A defines a homomorphism g : A -» A/O with kernel ®. Put
Fo = hg)l(l). This is a filter, as is easily checked. And we have a € F iff a® 1.
Moreover, suppose that a ® b. Then hg(a) = he(b) and so hg(a < b) = 1, whence
a & b € F. In other words, filters are the congruence classes of the top elements and
they are in one—to—one correspondence with congruences on the algebra. Let U be a
boolean algebra. We have seen in Sectionthat themap f: O Fg ={a:a0®1}
is a one—to—one map from the lattice of congruences of U onto the lattice of filters
on A. Furthermore, if F is a filter, then ®f defined by a®@p b iff a & b € F is the
inverse under f. In modal algebras, we have to take open filters rather than filters.
Recall from Section [3.1]that a filter is open if it is closed under
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(fim.) Ifae Fthenmjae F

We have shown in Lemma that open filters indeed correspond to homomor-
phisms. Any intersection of open filters is again an open filter, so the open filters
form a complete lattice, with the join F LI G defined as the smallest open filter con-
taining both F and G.

THEOREM 4.1.10. The map f : ® — Fg := {a : a® 1} is an isomorphism from
the lattice Con(N) of a modal algebra N onto the lattice of open filters on U, with
inverse F — Or := {{a,b) :a < b e F}.

In particular, if C € A then the smallest open filter containing C, denoted by
(C), can be obtained as follows.

(C) = {d : (AB)ACy Spin O = @[ | Co)).

If C is finite, then put ¢ := () C. The above condition then reduces to the condition
that d > Bc for some compound modality m=.

We now wish to characterize subdirectly irreducible modal algebras. We know
that A is subdirectly irreducible iff it has a monolith ®. © is principal, say @ =
®(a, b). Now, in terms of filters this means that there exists a unique minimal open
filter in the set of open filters # {1} and this filter is generated by a single element o
(for example 0 = a & b). To say that the filter generated by o is minimal is to say
that every other filter generated by an element a # 1 must contain o, which in turn
means that there must be a compound modality 8 such that 0 > Ba. Thus we obtain
the following criterion of [170]].

THeOREM 4.1.11 (Rautenberg). A modal algebra is subdirectly irreducible iff
there exists an element o # 1 such that for every a € A — {1} there is a compound
modality 8 such that o > Ba. Such an o is called an opremum of .

For a Kripke—frame f the question of subdirect irreducibility of the algebra Mta(f)
of all subsets of f has a rather straightforward answer. We warn the reader that this
theorem fails in general. This is discussed in Section[4.8]

THEOREM 4.1.12. For a Kripke—frame | the algebra Ma(F) of all subsets of f is
subdirectly irreducible iff | is rooted.

Proor. Suppose that f is rooted at x. Then take o := f — {x}. We claim that o is
an opremum. So take a set a C f such that @ # f. Then there exists ay € f such
that y ¢ a. By assumption, there is a k € w such that a finite path exists from x to
y. Then x ¢ Ba for some compound modality B. Thus Ba C o. By Theorem .1.T1]
Ma(f) is subdirectly irreducible. Now assume that there is no single point x which
can generate f. Then there exist two nonempty sets S and 7 such that for X := Tr(S)
and Y :=Tr(T), f =XUY,butX # fand Y # f. Suppose there exists an opremum,
0. Since mX 2 X, we must have 0 2 X. Similarlyo 2 Y,andsoo 2 XU Y = f,a
contradiction. ]
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Exercise 134. Show that the filtral congruence ®5 defined above is indeed a
congruence.

Exercise 135. Show that a boolean algebra is subdirectly irreducible iff it is isomor-
phic to 2. Hence BA = HSP(2).

Exercise 136. Suppose that ® = (G, 1,7, Visa group and ® a congruence on G.
Show that the congruence class of the unit 1 must be a normal subgroup. Further-
more, suppose that [a]® is given. Then [1]0 = a7! - [a]® = {a™' - b : b € [a]®O}.
Thus, show that there is a one—to—one correspondence between congruences on ¢
and normal subgroups.

Exercise 137. Let Z, be the additive group of integers modulo 2. That is, we have
1 -1
1 00
0 1)1

— oo

0
1
Show that the lattice of congruences of the group Z, X Z, is not distributive. Hint.
Use the previous exercise.

Exercise 138. A vector space B over a field F can be made into an algebra by adding
a unary function 6, for each » € F. Its action is defined by 6,(v) = r - v, where r - v
is the usual scalar multiplication. (Why is this complicated definition necessary?)
Again, a congruence defines a normal subgroup. Moreover, this subgroup must be
closed under all 8,. Show that there is a one—to—one correspondence between con-
gruences on B and subspaces.

Exercise 139. Continuing the previous exercise, show that a vector space is subdi-
rectly irreducible iff it is one—dimensional.

4.2. Varieties, Logics and Equationally Definable Classes

Two of the most fundamental theorems of universal algebra are due to BIRKHOFF
of which the first states that a class of algebras is definable by means of equations
iff it is a variety, that is, closed under H, S and P. The second gives an explicit
characterization of all equations that hold in a variety which is defined by some
given set of equations. We will prove both theorems in their full generality and
derive some important consequences for modal logics. To start, let Q be a signature,
L a language for Q and #(X), s(X) two terms based on the variables x;, i < n. An
Q-algebra A satisfies the equation s(X) ~ #(X), written A £ s(¥) ~ 1), if for all
@ c A, s*(d@) = *(d@). Furthermore, V k s(X) ~ () if forall W e V, A £ (D) ~ 1().
Often we write s = t, dropping the variables.
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ProposiTioN 4.2.1. The class of all algebras which satisfy an equation s =~ t is
closed under taking products, subalgebras and homomorphic images.

The proof of this theorem is routine and left as an exercise. We will prove here
that the converse is true as well. Let V be a variety, and and X a set of variables.
Then put

Eax(V) = {{s(2), #(x)) : V E s(¥) = #(), ¥ € X}

In case that X = {x; : i € w} put EQ(V) := Eqx(V). Let E be a set of equations over X.
Define Alg(E) to be the class of algebras satisfying E. By Propositiond.2.1] Alg(E) is
a variety. Moreover, for any class X of Q-algebras we always have K C Alg Eq(X).
What we have to show is that for a given variety V we have V = Alg Eq(V). There
is a way to restate this using free algebras. Recall from Section that an algebra
Fry(Y) is said to be a freely Y—generated algebra if for every algebra U € V and
every map v : Y — A there is a homomorphism v : ry(Y) — U such thatv |
Y = h. We have seen in Theorem [I.3.5]that a variety has free algebras for all sets Y.
Moreover, Alg Eq(V) has free algebras because they can be obtained from the term
algebras. Namely, if Tmqg(Y) is the algebra of Y—terms over the language L with
signature Q, define a congruence ® by s(¥) @ () iff for all A € Vand alld C A
we have s%(@) = 1¥(d). Then Tmq(Y)/O is freely generated by Y in Alg Eq(V). For
letv : Y — A be amap, U an algebra over A. Then there is a unique extension
v Tmg(Y) — A Let s(X) O #(#). Then ¥(s(X) = s"(v(X) = 1(W(#) = W(t(X)), by
definition of ®. Hence there exists a unique homomorphism v : Tmg(¥)/0 — A.

ProposiTioN 4.2.2. For any variety V, §ry(X) is a subdirect product of the
Fry(E), E a finite subset of X.

Proor. Let E be a finite subset of X. We let A(E) be the subalgebra of Fry(X)
generated by the terms x;, x; € E. Itis easy to see that A(E) is isomorphic to Fry(E).
Let kg be a map kg : X — E such that kg [ E = idg. This map can be extended
to a homomorphism kg : Fry(X) » Fry(E). (That this map is onto follows from
Theorem[1.3.6]) Let F be the collection of all finite subsets of X. We have

() ker(e) = A

EeF
For if Fry(X) £ s(X) ~ 1(X), then let E consist of the variables in . Now Fry(E) ¥
s(X) ~ 1(¥) and thus kg(s(X)) = s(X) # 1(X) = ke(1(%)). (Here we write s(X) also
for the equivalence class of the term s(¥) in the free algebras.) By Proposition
Fry(X) is a subdirect product of the Fry(E). |

CoroLLARY 4.2.3. For every variety V, V = HSP(Fry(No)).

Now, if we are able to show that Tmg(X)/0 is also the freely X—generated
algebra of V, we are obviously done. For then the classes V and Alg Eq(V) contain
the same countably generated free algebras. Now recall the construction of a free
algebra from the algebras of V from Section



168 4. Universal Algebra and Duality Theory

Prorosrtion 4.2.4. For a class K, and a set X
TIma(X)/Eqy(K) € SP(X) .

Proor. Let Q := {{(s(X), (%)) : X C X,X ¥ s ~ t}. For each € € Q we pick a
witness algebra 2. This means that there is a sequence d in 2, such that s (@) #
Y(d@). Thus we have a map ve : X — A such that v¢ : x; = a;, i < n. This
extends to a homomorphism ve : Tmg(X) — Ae. Now let £ : Tma(X) — [[eep Ae
be the canonical homomorphism defined by all the v.. We show now that ker(h) is
exactly Eqy(X). For if € = s(¥) ~ #(¥) holds in all algebras, it holds in their product
as well, and so € € ker(h). However, if it does not hold in all algebras of K, then
h(s(X)) # h(t()), for Ve(s(X)) = s¥%<(@) # 1%<(d) = v.(t(X)), as had to be shown. ]

THeEOREM 4.2.5 (Birkhoff). A class of Q—algebras is definable by means of equa-
tions over a language L of signature Q exactly if it is a variety.

In addition, an equational theory Eq(X) can actually be identified with a partic-
ular kind of congruence on Tmgq(X), the so—called fully invariant congruence.

DeFINiTION 4.2.6. A congruence © on an algebra Wis called fully invariant if
it is compatible with all endomorphisms of N. That is, © is fully invariant if whenever
h : A — Wis an endomorphism and a © b then also h(a) ® h(b).

Our aim is to show that all modal logics are theories of certain classes of alge-
bras. In order to do this, we need to be explicit about what equations can be derived
from other equations. The following axiomatization is due to BirkHorr. Unlike in
propositional calculi, we derive equations from sets of equations and not terms from
sets of terms. We write I' +y ¢ ~ s if # ~ s can be derived in finitely many steps by
applying one of the following rules in addition to (ext.), (mon.) and (trs.) of Sec-
tion[L.3]

(V1) rys=s
(V2) s=tryt=s
(V3) s=tt~urys~u
(V4)  so = fo3...5Sn1 X In-1 by f(S0,- .o 8n-1) = f(t0, .- p1)
(V5)  s(xo,...,Xp—1) = (X0, ..., Xp-1) by
s(ugy ..oy uy—1) = Uy, ..., Uy—1)

(V1), (V2) and (V3) are axioms of pure equality. (V4) is known as the replacement
rule, (V5) as the substitution rule. Notice that this calculus also satisfies (sub.) and
(cmp.), the latter by the fact that it is a calculus defined by finitary rules, so it is
finitary by the nature of a proof. In (V4), f is any n—ary term function. However, it
can be shown that it is enough to require the validity of (V4) only for the basic func-
tions, f;, i € 1. Now take a set I of equations. Consider the congruence on Tmg(X)
induced by I'. The condition of reflexivity of ® corresponds to (V1), the symmetry
to (V2) and the transitivity to (V3). Finally, (V4) corresponds to the compatibility
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with all functions. Hence, the calculus without substitution defines the smallest con-
gruence induced by I Now a substitution is nothing but an endomorphism of the
term algebra so (V5) enshrines the requirement that the congruence derivable from
I' is fully invariant.

THEOREM 4.2.7. Let I be a set of equations over L of signature Q. The smallest
fully invariant congruence on Tmq(X) containing T is the set of all s ~ t such that
Tty st

Let us call a set of the form Eq(XK) an equational theory. Then we have

CoroLLary 4.2.8 (Birkhoff). A set of equations is an equational theory iff it is
closed under the rules of .

Proor. First of all, the rules (V1) — (V5) are correct. That is, given an alge-
bra A and given a rule, if A satisfies every premiss of a rule then A also satisfies
the conclusion. (V1). Forallv : X — A we have v(s) = v(s) for any term s.
(V2). Assume that forall v : X — A, v(s) = v(t). Then forallv : X —» A
also v(t) = v(s), showing A £ t ~ 5. (V3). Assume that A £ s = £;t =~ u.
Take amap v : X — A. Then v(s) = v(¢) as well as v(f) = v(u), from which
v(s) = v(u). Thus A £ 5 =~ u. (V4). Assume that A k£ s; ~ t; forall i < n. Take v :
X — A. Then V(f(s0, ..., 50-1)) = fA0(s0), ..., V(sn-1)) = fU0(t0)s .. V(1)) =
v(f(ty,...,t,-1)). Hence A £ f(so,...,Sn-1) = f(to,..., fue1). (V5). Assume
A £ s ~ t. Define a substitution o by o : x; = u;, i < n, o : x; — x; for
i >n Thenvoo : X — A, and the homomorphism extending the map is just
Vv o 7, since it coincides on X with vo o. Now letv : X — A be given. Then
v(s(ug, ..., u,_1)) = v(o(s)) = voo(s) = voo() = v(t(ug,...,u,—1)). Thus
WE s(ug,...,up—1) =~ t(Uo, ..., U;_1).

Now let I" be any set of equations and @ its closure under (V1) to (V5). Let
A = Tmg(X)/T. Thenif s ~ r ¢ I’ we have A ¥ s ~ t. For just take the canonical
homomorphism hg : Tmg(X) — A with kernel ®. Since O is a congruence, this
is well-defined and we have hg(s) # he(f), as required. Next we have to show
that A £ I'. To see that take any equation s ~ t € 'and v : X — A. Since A
is generated by terms over X modulo ®, we can define a substitution o such that
V = hg o 0. Namely, put o(x) := #(¥), where #(¥) € h(j)l (h(x)) is freely chosen. Then
he(o(x)) = v(x), as required. Now o (s) ® o (¢), by closure under substitution, so that
V(s) = he(0(s)) = he(a(t)) = v(t). Thus A ET. O

THEOREM 4.2.9. There is a one—to—one correspondence between varieties of Q—
algebras and fully invariant congruences on the freely countably generated algebra.
Moreover, Vi C 'V, iff for the corresponding congruences ©1 2 ©;.

One half of this theorem is actually Theorem [2.2.9] The converse direction was
actually much harder to prove but makes the result all the more useful.

Consider now what this means for modal logic. (We will henceforth write again
p and g for variables instead of x and y, as well as ¢ and ¢ for formulae instead of
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s and r.) We have seen earlier for propositional formulae ¢ and ¢ that A £ ¢ =~ ¢ iff
Ak ¢ & Y =~ T. The latter is nothing but A £ ¢ < i, now read in the standard sense.
Thus the equational theory of a class K of modal algebras can be interpreted as the
logical theory of a class. We will show that if we have a class of modal algebras,
then the set of equations ¢ ~ T in that class is a modal logic, and conversely. So
the two alternative ways to specify classes of algebras — namely via equations and
via logical axioms — coincide. The equational theory of polymodal algebras is as
follows. The primitive function symbols are here taken to be T, L, =, A, V and the
modal operators O;. The following equations must hold.

PAPD ~ p pVp ~ p

PAg ~ gqAp pVyq ~ qVvp
pA(@AT) = (PAQAT pVvigVvr) = (pVq@Vr
pA(@gVp) = p pV(@Ap) =~ p

pA@Vr) = (PAQV(pAT) pV@Ar) = (pV@A(pPVr)
PAT ~ p pv1L ~ p

=(p A q) ~ (=p) V(=9 =(pVq) = (=p)A(=q)
pA(=p) ~ L pV(=p) ~ T

=(=p) ~ p -T ~ L

Dj(p/\q) = (Djp) A (qu) ;T ~ T

We call this set of equations Mal. The first five rows specify that the algebras are
distributive lattices; then follow laws to the effect that there is a top and a bottom
element, and that there is a negation. Finally, there are two laws concerning the box
operators. We define ¢ — x by (=) V x, ¢ & x by (¢ A x) V (=) A (—x)) and ¢ ¢
by —0O;—¢.

ProposiTion 4.2.10. (i)Mal,p =y Fyv o o xy = T. (ii)Malbp o xy = Ty ¢ =
X-

Proor. The proof will be a somewhat reduced sketch. A full proof would con-
sume too much space and is not revealing. The reader is asked to fill in the ex-
act details. We perform the proof only to show how the calculus works in prac-
tice. (i) Malip ~ x kv @V (=) = x V (=x);¢ V (¢) = x V (=¢), by applying
(V4). Furthermore, Mal Fy ¢ V (mp) = T;x V (-x) = T. Applying (V2) and
(V3) we get Mal;o = xy Fy o V(x) = T;x V(mp) = T. So, Mal;p = x Fy
@V (DAY (mp) =~ TAT,by (V4). Now by (VS) wehave Mal -y TAT = T;
thus Mal; o =~ y Fy (¢ V (=x)) A (¥ V (mg)) ~ T. Applying the distributivity law
twice we arrive at

Mal;p = x by (@A) VA (@) V() AV () A(—@) = T

We can replace ¢ A —¢ as well as (—y) A y by L and drop both occurrences of L from
the disjunction. Commutativity of A yields Mal; ¢ = y v (9 AY)V({(m@)A(—y)) = T,
the desired result, i. e. ¢ & y = T. (ii) (We will now write ¢ = y rather than Mal +y
@ = x.) Assume (pAx)V((=@)A(=x)) = T. Then o A((@ AX) V(=) A(x))) = @AT.
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Now ¢ A T = ¢ and so we have ¢ A (¢ A x) V ((m¢) A (=x))) = ¢. Distributing
pweget(@A@Ax)V (@A (=) A(x) = ¢. From there with associativity
(eAP) A X))V (¢ A (=) A (=) = ¢ which results in (¢ A x) V (L A (=x)) ~ x, by
(V4) with o A @ = ¢ and ¢ A (—¢) = L. This gets reduced to ¢ A y = ¢. Similarly,
one canderive g A y = y. So,Mal;p & Yy = T Fy ¢ = y. O

Let I be a set of equations. We put Th(I') :={¢ : T +y ¢ & T}. Now let A be a
modal logic. Then we define EQ(A) := {¢ = ¢ : ¢ & ¢ € A}. The proof of the next
theorem is left as an exercise.

THEOREM 4.2.11. Let T be a set of equations, A be a set of formulae. Then the
following holds.

(1) Th() is a normal modal logic.

(2) Eq(A) is an equational theory of modal algebras.
(3) ThEqTh(') = Th(I).

(4) EqThEq(A) = Eq(A).

COROLLARY 4.2.12. There is a dual isomorphism between the lattice of normal k—
modal logics and the lattice of varieties of normal modal algebras with k operators.

This is a considerable strengthening of Proposition[2.2.7] Lemma[2.2.8]and The-
orem[2.2.9] For now we do not only know that different logics have different varieties
associated with them, we also know that different varieties have different varieties
associated with them. The relation between equational calculi and deductive calculi
has been a topic of great interest in the study of general logical calculi, see [29].
W Brok and Don Picozzi have tried to isolate the conditions under which a mutual
translation is possible between these two deductive formulations of a logic. It would
take us too far afield to discuss these developments, however.

Notes on this section. In a series of papers WOLFGANG RAUTENBERG partly to-
gether with BuRGHARD HERRMANN have studied the possibility to export an axioma-
tization of a variety in the Birkhoff—calculus to a Hilbert—style proof system for the
logic determined by some unital semantics over that variety, see [102]], [174] and
[173]]. The equational rules present no problem, likewise the rule of substitution.
However, the rule of replacement is not straightforward; it may lead to an infinite
axiomatization. (See next section on that theme.) Therefore, the so—called finite re-
placement property was defined. It guarantees that adding a finite set of instances
of the rule of replacement will be sufficient for validity of all rule instances. It is
a theorem by RoBerT C. Lynpon [142] that the equational theory of any 2—element
algebra is finitely axiomatizable. In [102] it has been shown that all varieties of 2—
element algebras have the finite replacement property. It follows that the logic of any
2—element matrix is finitely axiomatizable. For 3—element algebras both theorems
are false.

Exercise 140. Prove Proposition4.2.1|
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Exercise 141. Prove Theorem [4.2.9]

4.3. Weakly Transitive Logics 11

In this section we will prove some connections between purely algebraic notions
and properties of logics. Again, weakly transitive logics play a fundamental role.
The following definition is due to T. PrRucNaL and A. WroKskT [166]].

DEerINITION 4.3.1. Let + be a consequence relation. A set A(p, q) := {0:(p,q) i €
I} is called a set of equivalential terms fort if the following holds

(eql) +A(p,p)

(eq2) Alp,q)+ Ag,p)

(eq3) Ap,q);Alg,r) + Ap, )

(eqd)  Uicai Api-gi) F AF(D), £(@)
(eq5) p;A(p,q)+q

k is called equivalential if it has a set of equivalential terms, and finitely equiv-
alential if it has a finite set of equivalential terms. If A(p,q) = {6(p,q)} is a set of
equivalential terms for v then 6(p, q) is called an equivalential term for v.

Let us investigate the notion of an equivalential logic for modal logics. Clearly,
for any modal logic A, +, is always equivalential; a set of equivalential terms is the
following.

A(p,q) :={B(p < q) : B a compound modality} .

Moreover, I, is always finitely equivalential; p < ¢ is an equivalential term for I-4.
Thus, the only remaining question is whether F is finitely equivalential. Note that if
kA is finitely equivalential it also has an equivalential term. For if A(p, q) = {6:(p,q) :
i < n}is a finite set of equivalential terms for r5 then 8(p,q) := A, 6i(p,q) is an
equivalential term.

ProposiTioN 4.3.2. Let A be a modal logic and A(p, q) a set of equivalential
terms for A. Then the following holds.

(M Alp,9rapeq
(2) peoqira Alp,q)
(3) A(p,q@) kA A(p < ¢, T)
4) A(p © q,T) ka Alp, q)

Proor. (1.) follows from (eqS) and (eq2) with the deduction theorem. For (2.)
note that p & ¢ a A(p,p) & A(p,q) (by Proposition [3.1.7). By (eql) we get
P < q ka A(p, ), as desired. To prove (3.) observe that p & g IFpx A(p & ¢q,T),
again by Proposition Since we have established that A(p,q) ko p < ¢, the
third claim follows. For (4.) observe that, by (1.), A(p & ¢, T) Fpo p < g and that
p < qlkp A(p, q) (by (2.)). m
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Now let A be a modal logic and X a set of formulae. Let X" := { : ¥ +5 ¢} and
3F = {y : 2 k5 ). Consider the set A(Z, T)" where

A, T) = {0(p,T): 6 €A, g3} .

This set is closed under (mp.). We show that it is closed under (mn.). Consider
first y € X. We clearly have A(X, T) Fao A(¥, T) and so by (eq4) also A(Z, T) Fa
A(my, BT) for all compound modalities. Since BT is a theorem, it can be substituted
by T. By (eq5), A(By, T) + 8y. So, AZ, T) + @y for all @ and ¢ € X. This shows
that A(Z, T) o ®“ZX. From this we get A(Z, T) o Z. Hence, A(Z, T) Fp RYA(Z, T),
by (2) of the previous theorem, since Z ko A(Z, T). Now let A(Z, T) Fa ¢ for some
@. Then O;A(Z, T) ko Oj¢. Since A(Z, T) +o O;A(Z, T), we have succeeded to show
that O;p € A(Z, T)". Hence A(Z, T)" 2 Z*. The converse inclusion is a consequence
of (2) of Proposition[d.3.2]

ProposiTioN 4.3.3. Let A be a modal logic and A(p, q) a set of equivalential
terms. Then for any set X

A, T =%,

DeriniTioN 4.3.4. A variety V has equationally definable principal con-
gruences (EDPC) ifthere exists a number n € w and terms s;(w, x, v, z), t{(w, x, y, 2),
i < n, such that for every A € V and a,b,c,d € A

(c,d) € O(a,b) iff s (a, b, c,d) = £ (a, b, c,d) foralli < n .

ProvrosiTioN 4.3.5. A variety V of modal algebras has EDPC iff there exists a
term u(x,y) such that for all W € V and elements a,b € A, b is in the open filter
generated by a iff u™(a,b) = 1.

Proor. Suppose that V has EDPC, and let s;(w, x, y, z) and t;(w, x,y,2), { < n, be
terms defining principal congruences in V. Then put

u(x,y) = /\ §i(x, T,y,T) & ti(x, T,y,T) .
i<n
Then u®(a, b) = 1 iff for all i < n we have s?‘(a, T,b,T) = t?l(a, T,b, T)iff (b, T) €
®(a, T) iff b is in the open filter generated by a. Conversely, let u(x, y) be a term such
that for all algebras 2 € 'V b is in the open filter generated by a iff u%(a, b) = 1. Then
letn =1, so(w, x,y,2) := u(w & x,y & z) and to(w, x,y,2) := T. Leta,b,c,d € A,
A € V. Then sf)[(a, b,c,d) = t?)[(a, b,c,d) iff u(a & b,c & d) = 1iff ¢ & disin the
filter generated by a & b iff {c,d) € O(a, b). |

We say that u(x, y) defines principal open filters in V if forall A € Vand a,b € A we
have u"(a, b) = 1 iff b is in the open filter generated by a. V has definable principal
open filters (DPOF) iff there exists a u(x, y) defining open filters. By the previous
theorem, a variety of modal algebras has EDPC iff it has definable open filters. The
following theorem has been obtained in [26].
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THEOREM 4.3.6 (Blok & Pigozzi & Kohler). For any normal modal logic A the
following are equivalent:
(1) ra is finitely equivalential.
(2) Alg A has DPOF.
(3) Alg A has EDPC.
(4) A admits a deduction theorem.
(5) A is weakly transitive.

Proor. We have shown earlier that (4.) & (5.) and we have shown in Proposi-
tion[d.3.3]that (2.) & (3.). We show that (1.) = (2.) = (4.) and (5.) = (1.). Assume
(1.). Then there exists an equivalential term &(p, q) for 5. Now put u(p,q) :=
8(p,T) — gq. Let A € AlgA and a € A. Then by Proposition 4.3.3] the set
F :={b : b > §%a, T)} is the open filter generated by a. So b € F iff u®*(a,b) = 1.
Hence u(p, q) defines principal open filters. Hence (2.) is proved. Now assume (2.).
Suppose that u(p, g) defines principal open filters in Alg A. We claim that u(p, ¢) sat-
isfies a deduction theorem for I-5. Namely, let A be a set of formulae, and let ¢ and
¥ be formulae. Let A be a A—algebra, F an open filter in 2. We can actually assume
that F = {1}. Then A Fury u(ep,y) iff for every valuation S such that B[A] C {1}
we have u(B(¢), B()) = 1 iff for all valuations B such that B[A] C {1}, B(¥) is in
the open filter generated by B(¢) iff for every valuation 8 such that B[A; ¢] C {1} we
also have B(zﬁ) = 1iff A;¢ Faury . Thus A; @ ko ¢ iff A 1o u(ep, ). This shows
(4.). Finally, assume (5.). Let A be weakly transitive with master modality B. Then
B(p < ¢) is an equivalential term for . O

DEerINiTION 4.3.7. Let W be an algebra. A ternary termfunction t(x,y, z) is called
a ternary discriminator term for U if the following holds

A _J ¢ ffa=>b
t(a,b,c) = { a otherwise

Let V be a variety. V is called a discriminator variety if there exists a class
X of algebras such that 'V is the least variety containing X and there exists a term
t(x,y,2) which is a discriminator term for all A € K.

We remark here that except in trivial cases a discriminator for an algebra A
cannot be a discriminator for A X A. This is why the definition of a discriminator
variety is somewhat roundabout.

ProposiTioN 4.3.8. Let U be an algebra, and t(x, y, 7) a ternary discriminator for
A. Then W is simple.

Proor. Let ® # A4 be a congruence. Then there exist a,b € A such that a # b
and a ® b. Then

a= tﬂ(a, b,c) ® tﬂ(a, a,c)=c

Hence ® = V,, and so A is simple. m]
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ProposiTioN 4.3.9. Let X be a class of algebras, and assume that t(x,y,z) is
a discriminator term for all algebras of X. Then it is a discriminator term for all
members of HSUp K.

Proor. Let #(x, y, z) be a discriminator term for U; then it is obviously a discrim-
inator term for every subalgebra of 2. It is also a discriminator term for every ho-
momorphic image of 2, for the only images up to isomorphism are U and the trivial
algebra. Finally, let B be an ultraproduct of U;, i € I, with ultrafilter U over I. Then
the congruence @y is defined as in Section We write ay instead of [a]®. Let
a,b,ce [Ticr Ai. Assume that the set D defined by D := {i : @; = b;} is in U. Then
Gy = by and moreover D C {i : t%(a;, b;,¢;) = c¢i}, whence 2@y, by, cy) = cu.
Now assume that D ¢ U. Then ay # EU, and D C {i : Y(a;, bi,c;) = a;}. Thus
3@y, by, cy) = ay. O

In the remaining part of this section we shall be concerned with the relation-
ship between three properties of a variety of modal algebras: being a discriminator
variety, being semisimple and being weakly transitive and cyclic. Semisimplicity is
defined as follows.

DeriniTioN 4.3.10. An algebra is called semisimple if it is a subdirect prod-
uct of simple algebras. A variety is called semisimple if it consists entirely of
semisimple algebras.

PropositioN 4.3.11. Let 'V be a congruence distributive variety. Then if V is a
discriminator variety, V is semisimple.

Proor. Suppose V is a discriminator variety. Then it is generated by a class X of
simple algebras. If B is subdirectly irreducible, it is by Jonsson’s Theorem contained

in HSUp XK. By Propositions and 4.3.8] B is simple. ]

It can be shown in general that a discriminator variety is congruence distributive, so
that the previous theorem actually holds without assuming the congruence distribu-
tivity of V. (See exercises below.) Varieties of modal algebras have however already
been shown to be congruence distributive, so we do not need to work harder here.

We shall now prove that a semisimple variety of modal algebras is weakly tran-
sitive on condition that it has only finitely many operators. Let V be a semisimple
variety of k—modal algebras, « finite. We assume that there is a modality O; such that
V e O;p « p. This makes life a little bit easier. Obviously, given this assumption V
is weakly transitive iff it satisfies the equation ®*x = ®**!x for some k € w. For a
simple A € V we put

Qq:={ceA:c#1land ®—c =0}.
We call ¢ dense in 2 if it is in Qy. For — ® —c is the closure of c¢. Denote by Vg the
class of simple algebras from V. Obviously, one of the following must hold for our
variety V:
(A)  (Ynew)@U e Vg)(dc € Qq)(®"c > 0and ®R" (¢ = Rc) £ ¢),
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B) (@Anecw)(YUAeVs)(Ve € Qy)(R"c > 0 implies K" (¢ — Rc) < ¢).

We will refer to 'V as being of type A or of type B depending on which of the above
holds. In case B obtains, we shall denote the least number such that B holds for V by
N.

DEerNtTION 4.3.12. Let A be a modal algebra, k < Ry. Call c € A deep in U if
for all m € w we have R<" ¢ < "¢,

Since ®c < ¢ by our assumptions, ¢ is deep if ®"*!c < ®™"c for all m. Obviously,
it is enough to require this to hold for almost all m. For if ®"*!'c = ®™c for some
m, then equality holds for almost all m. Now, using the ultraproduct construction we
can easily show the following:

Lemma 4.3.13. Suppose that 'V is not weakly transitive. Then there exists an
algebra in'V containing a deep element.

Lemma 4.3.14. For every ¢ € U such that ®*c = 0 there is a dense b > c.

Proor. To see this, let b := — X" —c, where m is maximal with the property
K" —¢>0.Then,® —b=&""'¢c=0,and c < —R" —c = b, as required. O

Lemma 4.3.15. Let k € w. If for all % € Vg and all ¢ € Qy we have ®Fc = 0,
then V satisfies &' x = ®x.

Proor. Let A € V. Then by the previous lemma, for any non—unit element ¢ of
A there is a dense b such that ¢ < b. It follows that 0 = x*» > =*c. Hence we have
®fc =0forall c € A — {1}. Thus, U £ ®"1x = =*x. o

Lemma 4.3.16. If U € Vg, and 'V is semisimple of type B. If c is deep in U then
BV (R"c - 8" ) - ’(E"c - ™)) < ¢

ProoF. Suppose that ¢ is deep. Then ®*c > ®**!¢ for all k. Now let m be given.
Then ®"c — ®"™*!c belongs to Qy, for ® — (R"c — ®"™!¢) = R"cNE - ®™ ¢ =
"N - 8" < ®"len — g™ ¢ = 0. Moreover, ®V(®" — ="™lc) >
=V ®™! ¢ > mV*"*2¢, since c is deep. Thus, since V is of type B,

BV (R"c - ®8"¢) - ’(®"c - ™) < c.

THeorREM 4.3.17 (Kowalski). If'V is semisimple, then 'V is weakly transitive.

Suppose for contradiction that V is semisimple and not weakly transitive. With-
out loss of generality we may assume that it does not satisfy ®"*'x = ®"x, for any
given n € w. Now, for any 1, we take a simple algebra 2, falsifying ®"*'x = ®"x.
Then, by Lemmad.3.15|there is a ¢, € A, such that "¢, > 0 and R — ¢, = 0, that is,
Cp € qun.



4.3. Weakly Transitive Logics II 177

Now, let U be a nonprincipal ultrafilter over w. Put A := [],,c,, Ay, and ¢ := (¢, :
n € wy/U. Then for all n € w we get ®X"c > K¢ > 0and ® — ¢ = 0. So, ¢ is both
deep an dense.

Obviously, U is a subdirect product of subdirectly irreducible algebras, which,
by our assumption, are also simple. We will derive a contradiction from this. More
precisely, we will derive a contradiction from the assumption that all subdirectly
irreducible members of H(2) are simple.

Consider the congruence ® = O(c, 1) on 2. By the choice of ¢, our ® is neither
the diagonal nor the full congruence. As @ is principal, there must be a congruence
IT covered by ®. With the choice of II, our reasoning splits into two cases, one for
either of the two types.

Type A. If V is of type A, then, in A we have R"(c — Rc) £ ¢ for all n € w;
hence ®(c — ®c, 1) is strictly below ®. We choose a II < ©® from the interval
I[®(c — ®c, 1),0]. Since the lattices of congruences are algebraic there always is
one.

Type B. If 'V is of type B, then we just choose any IT < ®. This case has one
feature that deserves to be spelled out as a separate fact.

Lemma 4.3.18. Let 'V be of type B, and m € w. If ® € Con() is a congruence
satisfying ®"c ® =" ¢ then ® > ©.

Proor. By the construction, ¢ is deep in 2. It follows from Lemma[4.3.16]that

m

2V (®"c » 8" ) » ’(E"c —» R ¢)) < c.

Now, if ® € Con() satisfies "¢ ® ="' ¢, then &V (8"c —» ®"*!¢) - R(®"c —
®"*1¢)) @ 1, which implies ¢ ® 1. So, ® > ©. ]

Now we return to the main argument. We shall develop it for both types together,
splitting the reasoning only when necessary. Take the set of congruences

F''={®eCon(A): D>Iland O ¥ O} .

Let ¥ := | |T'; by congruence distributivity, ¥ € I'. Then UA/¥ is subdirectly ir-
reducible. Observe that we cannot have I' = {Il}, for in such a case A/¥ = A/II,
and this would be subdirectly irreducible but non—simple, since ® # V. Thus, since
Y £ O, we obtain that ® LI ¥ is full (which by congruence permutability equals
® o V). For otherwise A/¥ would be a non—simple subdirectly irreducible algebra
in V. Now, as A/¥ = (A/I1)/¥, and since principal congruences remain principal in
homomorphic images, we can shift the whole argument to 2/I1.

Let B := A/I1. As ® and ¥ are above II in Con(A) we shall write ® and ¥ in
place of ®/I1 and ¥/II from Con(B). Thus, for instance, we will say that ® (and not
®/II) is an atom of Con(B). We shall also write ¢ instead of [c].

Now we have an algebra 3B; a principal congruence ® € Con(B) such that ® > 0;
further, there is a congruence ¥ — which is non—principal in general — which is the
largest congruence not containing ®, and ® o ¥ = 1. Hence, there is an element
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d € B— {1} with (d,1) € ® and (d,0) € ¥. The latter is equivalent to (-d, 1) € V.
It follows that d > ®™c¢ for some m € w. Moreover, as Qq/I1 C Qg, we obtain that
c(=[cln) € Qg. Thus, ¢ € Qg — {1}.

The statement (—d, 1) € ¥ can be further broken up as follows: first,

P =| [{PeCpA):0<D <Y},

where Cp() stands for the set of all compact congruences of U (which are also the
principal congruences of ). Thus, each ® above is of the form ® = @(b, 1) for some
b # 1. Let C C B be the set of all such b € B. Passing from congruences to open
filters we obtain: —d € [Jpec[R"D : 1 € w)).

Secondly, C is a downward directed set (in fact, a filter, but we do not need
that). For take by,...,b;_1 € C, and let b = by N ... N by_y. Then, O(b,1) =
BO(by,1) vV ...V O(br-1, 1), and all the congruences on the right-hand side of the
equation are below ¥ by definition. Thus, so is ®(b, 1); hence b € C, as needed.
Moreover, all b € C satisfy Vn € w : R"b £ a; otherwise some congruence below ¥
would contain ®, which is impossible.

Thirdly, we have: —d € [Upec[®"D : n € w)) iff —=d = dy N ... N dj_1, With
di € [®R"b; :n € w)(0<i<k-1). Since  distributes over meet, this gives

—de[IZI"(boﬁ...ﬂbk_l):new),

and by the previous argument by N --- N by_; € C.

Gathering all this together, we get —d € [R"b : n € w) for some b € B such
that Yn € w : ®"b £ c¢. On the other hand, d € [®"c : n € w). Therefore, d > "¢
for some m, and —d > ®*b, for some k. Thus, R"¢ < d < — & b; in particular,
R"c < — & b.

Consider g := — ®* b — ®"c = ®'b V ®"c. As g > R"c we have:

(g, 1) < O®"c,1)=0(c,1) = 0.

Since O is an atom, (g, 1) is either O or ©.

Let us first deal with the case ©(g,1) = ® = O(c, 1). We then have: X'g < c,
for some r. This yields: ¢ > ®R"(®b vV ®"¢) > ®**b. Thus, ¢ > &b, which is a
contradiction.

The remaining possibility is @(q, 1) = 0. Then we have g = 1, and that means
—-®*b < ®"c. Together with the inequality from the previous paragraph, this implies
- ®* b = ®"c. Two cases arise.

Type A. By the choice of IT we have that c — ®c I1 1 in 2, and so ¢ I ®c. Hence
¢ = ®c in B, and we get ®*b = —c. Further, since ¢ is dense, we have ® — ¢ = 0,
from which we get ®**!'h = 0. However, (b, 1) € ¥, and so 0 = &*'b ¥ 1. Hence ¥
is full. Contradiction.

Type B. If either & — ®"b = ®"*!¢c < ®R"c, or R — R"c = ®*'h < ®Fb, then the
congruences O(b, 1) and O(c, 1) have a non—trivial intersection; namely, both contain
the pair ®"* ¢ v ®¥*1p, 1). This pair is not in A. This cannot happen, for then
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® MY > 0, which contradicts the definition of ¥. So, we obtain that ®"*l¢ = ®"c
and R — ®"c = — ®" ¢ in B. Hence, ¢ I ®™ ¢ in A, and since V is of type B,
we can apply Lemma[4.3.18]to get that IT > @. This, however, cannot happen either,
since IT < @, by its definition. This completes the proof of Theorem#.3.17]

Recall from Section [2.5]that A is called cyclic if for every basic modal operator
0; there exists a compound modality 8 such that p — 0;¢p € A. If A is weakly
transitive with master modality & this is equivalent to the requirement that & satisfies
Ss.

Lemma 4.3.19. (k < Ny.) Let A be a modal logic. Then if A is weakly transitive
and cyclic, Alg A is a discriminator variety and semisimple.

Proor. Assume that A is weakly transitive with master modality B. First we
show that Alg A is semisimple. Let U be an algebra and let @ € A. Assume that a
is open, that is, a = Ba. We claim that —a is also open. Namely, from a < Ba we
conclude that — 8 —(—a) < —a. Therefore

—a<dB(-B8-(-a)<B-a<-a.

Hence @ — a = —a. Thus —a is open. Now assume that 2 is not simple. Then there
exists a proper open filter F' such that @ is not the monolith. It is easy to see that F’
can be assumed to be generated by a single element a. By weak transitivity, we can
also assume that a is open, and that F = {b : b > a}. Then G := {b : b > —a} is also
an open filter. Moreover, F N G = {1}. Hence ®g N ®r = A4. Hence U is directly
decomposable. Thus, Alg A is semisimple.

Now put #(x,y,z) := B(x & y)Az.V.mHB(x & y) Ax. We claim that #(x, y,z) is a
discriminator term. To that effect, take a subdirectly irreducible algebra. It is simple,
by since Alg A is semisimple. So, 0 is an opremum and Ba = O iff a # 1. Leta = b,
and ¢ be any element. Then *(a,b,c) = B(a < b)Nc.U.—@(a < b)Na = c. Let
nowa # b. Thena & b # 1 and 8(a & b) = 0. Thus *(a, b, ¢) = a. This shows
that Alg A is a discriminator variety. O

THEOREM 4.3.20 (Kowalski). (k < Ny.) Let A be a modal logic. Then the follow-
ing are equivalent:
(1) A cyclic and is weakly transitive.
(2) Alg A is semisimple.
(3) Alg A is a discriminator variety.

Proor. By Lemmaf4.3.79|(1) implies both (2) and (3), and by Propositiond.3.11]
(3) implies (2). It remains to be shown that (2) implies (1). So, suppose that Alg A is
semisimple. By Theorem [4.3.17] A is weakly transitive. What remains to be shown
is that if Alg A is semisimple, A must be cyclic. Since A is weakly transitive and «
finite, there is a maximal compound modality, 8. Suppose that A is not cyclic. Then
p — B- B8 -p ¢ A. Hence there exists a subdirectly irreducible algebra U such that
A g p — B~ B8 -p. So there exists ab € A suchthat bN — @\ — & —b # 0. Consider
the open filter F generated by —b. F = {c : ¢ > B — b}, by the assumption that & is a
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strongest compound modality. Suppose that 8—b = 0. Then —B8-8-b = -B8-0 =0,
a contradiction. So, F' # A. Suppose that@—b = 1. Then, since®—-b < -b, —b = 1.
It follows that b = 0, again a contradiction. So, F # {1}. We conclude that 2 is not
simple. This contradicts our assumption. So, A must be cyclic. O

Notes on this section. The complex of ideas surrounding the property of equa-
tionally definable principal congruences has been studied in the papers [28], [26]],
[30]] and [27] by WiMm BrLok, Don Picozzi and PETER KGHLER. In [26] it is proved that
if a congruence—permutable variety is semisimple it has EDPC iff it is a discrimina-
tor variety.

Exercise 142. Let U be a modal algebra. Denote by €p(2) the semilattice of com-
pact congruences. Show that if Th 2 is weakly transitive and cyclic then €p(2) is the
semilattice reduct of a boolean algebra.

Exercise 143. Show that a finite tense algebra is semisimple.

Exercise 144. An algebra U is called hereditarily simple if every subalgebra of A
is simple. Show that every simple modal algebra is hereditarily simple.

Exercise 145. Show that a discriminator variety is congruence distributive. Hint.
First show that it has permuting congruences. Then show that the variety is congru-
ence distributive.

4.4. Stone Representation and Duality

This section provides the rudiments of representation theory and duality theory.
For a proper understanding of the methods it is useful to learn a bit about category
theory. In this section, we provide the reader with the essentials. More can be found
in [143], [101]] or [80]. The basic notion is that of a category. A category is a struc-
ture C = (Ob, Mor, dom, cod, o, id) where Ob is a class, called the class of objects,
Mor another class, the class of morphisms, dom, cod : Mor — Ob two functions
assigning to each morphism a domain and a codomain, o : Mor X Mor — Mor
a partial function, assigning to suitable pairs of morphisms their composition, and
id : Ob — Mor a function assigning to each object a morphism, the identity on that

object. We write f : A - Bor A J, B to state that f is a morphism with domain
A and codomain B. We also say that f is an arrow from A to B. We require the
following.

(1.) For morphisms f, g the composition f o g is defined iff cod(g) = dom(f).
(2.) For every object A, dom(id(A)) = cod(id(A)) = A.

(3.) For every morphism f : A — B we have foid(A) = fand id(B)o f = f.
@)Iff:A-B,g:B—->Candh:C—- Dthenho(gof)=(hog)o f.

For example, take the class of sets with the functions defined as usual, this gives
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rise to a category called Set. To give another example, let £ be a language of sig-
nature Q and 7 an equational theory over Q, then the class Alg T of Q-algebras for
T form a category with the morphisms being the QQ—homomorphisms. An arrow
f A — Bis an isomorphism if there isa g : B — A such that g o f = id(A) and
fog=id(B). If f: A — Bis anisomorphism, A and B are said to be isomorphic.
A pair A = (O, M), where O is a class of objects and M a class of morphisms of
C such that for each p € M we have dom(p), cod(p) € O is called a diagram. A

. . h
diagram commutes if for any three arrows A i) B, B % Cand A 5 C of M we have

h=gof. 7

A B

h=gof 8
C

DeriniTioN 4.4.1. Let € be a category. Put Ob°? := Ob, Mor®” := Mor, id°? :=
id; moreover, put dom°” := cod and cod’” := dom, and finally f o g := go f.
Then C°P defined as C°P := (Ob°P, Mor°?, dom??, cod®?, o°?,id°") is called the dual
or opposite category.

The dual category arises by reversing the direction of the arrows. So if for example
f: A — Bisamap, then there is a dual map from B to A in C°?, which is usually also
called f. The notation is rather unfortunate here since it uses the same name for the
objects and for the arrows and only assigns a different direction to the arrow in the
opposite category. So, the arrow exists in the category as well as in the dual category
and which way it goes is determined by the context. To remove this ambiguity we

will write f°P : B — A to distinguish it from the corresponding arrow f : A — B of
C.

DeriniTioN 4.4.2. Let C and D be categories, F both a map from the objects of
C to the objects of D and from the morphisms of C to the morphisms of D. Then F is
called a covariant functor if

(1) F(dom(f)) = dom(F(f)), F(cod(f)) = cod(F(f)),
(2) F(go f)=F(g)o F(f)and
(3) F(id(A)) = id(F(A)).

F is called a contravariant functor if

(1) F(cod(f)) = dom(F(f)), F(dom(f)) = cod(F(f)),
(2) F(go f)=F(f)o F(g)and
(3) F(id(A)) = id(F(A)).

Thus, a covariant functor maps f : A — Binto F(f) : F(A) — F(B) while a
contravariant functor maps f into F(f) : F(B) — F(A). Therefore, as the direction



182 4. Universal Algebra and Duality Theory

of the arrows is reversed, the composition must also work in reverse order. Now, an
essential feature of modal duality theory is to find well-behaved functors between
the various categories that arise in modal logic. Typically, in the standard algebraic
tradition one would be content to define just representation theories for the objects of
that category (e. g. of finite boolean algebras as algebras of subsets of a set). How-
ever, from the categorial perspective the most natural representation is that which is
in addition also functorial. The advantage is for example that the characterization of
modally definable classes of algebras (namely varieties) is transferred to a character-
ization of modally definable classes of frames. For we do not only know something
about the objects, we also learn something about the maps between them. An instruc-
tive example is the representation theorem for modal algebras. There is a function
mapping the modal algebras to descriptive frames and functions between modal al-
gebras to p—morphisms; in other words we have a functor between the respective
categories. We will show that this functor is contravariant and has an inverse. So,
every p—morphism between frames is the image of a homomorphism between the
corresponding algebras under the functor. This has far reaching consequences. A
similar example is Theorem [4.4.10] of this section. If F is a functor from € to D and
G a functor from D to € then G o F is a functor from € to €. G o F is covariant if F
and G are both covariant or both contravariant; G o F is contravariant if exactly one
of F and G is contravariant.

The following construction will be a major tool in representation theory, both in
this section and in Section For the category C let home (A, B) denote the class
of arrows from A to B. A category C is called locally small if home(A, B) is a set
for all objects A, B. All categories considered in this book will be locally small. If
C is locally small then for every object A the map home(—, A) can be turned into a
contravariant functor H4 from C into the category Set of sets and functions. Namely,
for an object B we put Hy(B) := home(B, A) and for a function f : C — B we put
Ha(f) : HA(B) — H(C) : g — go f. This is well defined. It is a functor; for let
e:D—>C,f:C—->Bandg: B — A. Then Hy(foe): g go(foe)and
Hya(e) o Hao(f) : g = (g o f) o e. These two functions are the same, by definition of
a category. Furthermore, if f = id(B) then Ha(f) = id(Ha(B)), as is easily verified.
This shows that we have a contravariant functor.

ProprosiTioN 4.4.3. Let C be a locally small category and A an object in C. Define
H* by HA(B) := home(A, B) and HA(f) : H*(B) —» HA(C) : g — f o g, where
f B > Cisanarrow in C. Also, define Hy by putting Hy(B) := home (B, A) and
Hy(f) : Hy(C) = Ha(B) : g — g o f. Then HA is a covariant functor from C into
Set and Hy a contravariant functor from € into Set.

Usually, H*” is called the covariant hom—functor and H, the contravariant
hom—functor. Let us apply this to boolean algebras. By BA we denote the category
of boolean algebras with boolean homomorphisms. It is a locally small category as
is easily verified. By Proposition an ultrafilter U on an algebra U defines a
homomorphism fy : A - 2 by putting fy(a) = 1 iff a € U. Conversely, for every
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map f : A —» 2 the set £~!(1) is an ultrafilter on A. Finally, every map f : A — 2
is surjective, since f(1¥) = 1 and f(0") = 0. We will henceforth call maps A —» 2
points of the algebra A. The contravariant hom—functor H, will now be denoted by
(—).. To give the reader a feeling for the construction we will repeat it in this con-
crete case. We denote the set of points of a boolean algebra 2 by U,. Moreover, for
any algebra B and boolean homomorphism f : B — A the map f, : A, — B, is

defined by f.(g) :==go f.

f(@)=gof 8
2

Let us investigate this a bit closer. We will show that f is surjective iff f; is injective;
and that f is injective iff f. is surjective. Assume f is surjective. Let g and & be
two two different points of 2A. Then there is an a such that g(a) # h(a). Therefore,
there is an element b € f~!(a) with g o f(b) # h o f(b). Hence f. : A, > B,. Now
assume that f is not surjective. Then let im[ f] be the direct image of f in A. Since
this is not the whole algebra, there is an element a such that neither a nor —a is in
im[f]. Now take an ultrafilter U on 2. Let V := U N im[f] be the restriction of U
to im[B]. Then V is an ultrafilter on im[f] (can you see why this is so?). Now both
the set V U {a} and V U {—a} have the finite intersection property in 2, hence can
be extended to ultrafilters V! and V2. Then f~'[U] = f~'[V'] = f~'[V?], and so
[« is not injective since V| # V,. This concludes the case of surjectivity of f. Now
assume that f is injective. We will show that f; is surjective. So let g : B — 2. Put
F := f[g!(1)], the direct image of the ultrafilter defined by g. This generates a filter
in U and can be extended to an ultrafilter. Hence f, is surjective. Now let f be not
injective. Then there exist elements a and b such that a # b but f(a) = f(b). This
means f(a < b) =0,buta & b # 0. Then eithera N —b # 0 or b N —a # 0. Hence
there is an ultrafilter containing one but not the other. This ultrafilter is not of the
form f~'[U] for any ultrafilter on 2.

THEOREM 4.4.4. H, : W — W, is a contravariant functor from the category of
boolean algebras to the category of sets. Moreover, f. is injective iff f is injective,
and f. is surjective iff f is injective.

Now let us try to define an inverse functor from Set to BA. Take the set 2 = {0, 1}
and look at homgei(X, 2). It is not difficult to turn this into a boolean algebra. Namely,
observe that for a function f : X — 2 each fibre f~!(1) is a subset of X, and every
subset A C X defines a function y4 by ya(x) = 1 iff x € A. This function is known
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as the characteristic function of A. Now define

0 = Xo
1 = xx
XA = Xx-4
XANXB = XAnB
XaYxe = Xxaus

So, for X we let X* be the boolean algebra defined on the set homsgei(X, 2). And for
f:Y - Xlet f(g):=gof. f

X

[r@:=gof 8

THEOREM 4.4.5. The map X v X* is a contravariant functor from the category of
sets into the category of boolean algebras. Moreover, [* is injective iff f is surjective
and f* is surjective iff f is injective. f* is called the powerset functor.

The proof is left to the reader. Now, we have a contravariant functor from BA to
Set and a contravariant functor from Set to BA. Combining these functors we get a
covariant functor from BA to BA and from Set to Set. For example, starting with a
boolean algebra U we can form the set 2, and then turn this into a boolean algebra
(U,)*. (The latter operation we sometimes refer to as raising a set into a boolean
algebra.) Likewise, we can start with the set X, raise this to a boolean algebra X*
and form the point set (X*),. Unfortunately, in neither case we can expect to have
an isomorphism. This is analogous to the case of vector spaces and their biduals. In
the finite dimensional case there is an isomorphism between a vector space and its
bidual, but in the infinite dimensional case there is only an embedding of the former
into the latter. The same holds here. The map x — U, = {Y C X : x € Y} embeds X
into the point set of X*. Themapa —a = {f : A - 2: f(a) = 1} embeds A into the
powerset—algebra over the points of 2.

Thus the situation is not optimal. Nevertheless, let us proceed further along this
line. First of all, if intuitively boolean logic is the logic of sets, then in a way we have
succeeded, because we have shown that anything that satisfies the laws of boolean
algebras is in effect an algebra of sets. We cash out on this as follows. Let A be an
algebra, X a set. We call a boolean homomorphism f : U »» X* a realization of
A. A realization turns the elements of the algebra into subsets of X, and interprets
the operations on U as the natural ones on sets. (Actually, X* was construed via the
hom—functor, so we have on the right hand side the characteristic functions rather
than the sets, but this is inessential for the argument here, since the two algebras
are isomorphic.) What we have proved so far is that every boolean algebra can be
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realized. Now, in order to recover U in X* we do not need the operations — because
they are standard. All we need is the collection f[A] = {f(a) : a € A}. So, we
can represent U by the pair (X, f[A]). There is a structure in mathematics which is
almost of that form, namely a topological space. Recall that a topological space
is a pair X = (X, X) where X is a collection of subsets of X, called the set of open
sets, which contains @, X and which is closed under finite intersections and arbitrary
unions. Maps between topological spaces are the continuous functions, where a
function f : X — Y is a continuous function from (X, X) to (¥, Y) if for every A € Y,
f7'[A] € X. Alternatively, since the open sets of X form a locale Q(¥) := (X, n,J)
with finite meets and infinite joins, we can say that a function is continuous if the
function Q(f) : Q) — QX) defined by Q(f)(A) := f'[A] is a homomorphism
preserving finite meets and infinite joins. Let X = (X, X) be a topological space. A
set A C X is clopen in the space X = (X,X) if both A and X — A are open. X is
discrete if every subset is open. X is discrete iff for every x € X the singleton set {x}
is open. X is called compact if for every union | J; x; = X of open sets x; we have a
finite subset J C [ such that | J; x; = X. Finally, a subset B of X is called a basis of
the topology if every open set is the (possibly infinite) union of members of B.

DErINITION 4.4.6. A topological space is zero—dimensional if the clopen sets
are a basis for the topology.

Let A be a boolean algebra. Put X := pr(A). For a € A put
a:={peX:pa)=1)}.

Let A := {a : a € A}. A is closed under all boolean operations. Now let X be the set
of all unions of members of A. Alternatively, X is the smallest topology induced by
Aon X. Put¥, := (X, X). U, is a zero—dimensional topological space. Before we set
out to study the functorial properties of this map, let us turn to a fundamental problem
of this construction, namely how to recover the set A when given the topology X.
That we can succeed is not at all obvious. So far we have a set X and a collection
of clopen subsets forming a boolean algebra which is a basis for the topology. To
show that the clopen sets are not always reconstructible take X = w, B the collection
of finite and cofinite sets and C the collection of all subsets of X. Both B and C are
a basis of the same topology, namely the discrete topology. In this topology, every
subset is clopen.

ProposiTion 4.4.7. Let (X, X) be a compact topological space. Assume X, is a
basis for the topology and that Xy is closed under complements and finite unions.
Then for x € X we have x € Xy iff x is clopen.

Proor. If x is in X, then it is clearly clopen, since X — x € X, as well. Now
assume that x is clopen. Let x = | J;y;, X — x = |J; z; be two representations such
that y;,z; € Xp foralli e Jand j € J. Now X = xU X —x) = (U;y) U (Usz))-
Thus there is a finite K C I and a finite L C J such that X = (g y;) U (UL z;)- Then
x=xN((UgydVY(ULzp) = Ug(xnNy)UU(xNzy) = Ug xNyi = Ugyi € Xo. O
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As before, a map f : B — U induces a continuous function f, : A, — B, via
fo(g) := g o f. For first of all we have the set-map f. : A, — B, and we sim-
ply define f,(UU; x;) := U; fo(x;). (The reader is asked to verify that this defini-
tion is consistent. This is not entirely harmless.) This defines the first functor.
For the opposite direction, take a topological space X and define the set of points
by homop(X,2), where 2 is the discrete topological space with 2 elements. (So,
2 = ({0, 1}, {2, {0}, {1}, {0, 1}}).) Such functions are uniquely characterized by the set
on which they give the value 1. So they are of the form y, for a set x. x must be
open, being of the form £~!(1), and closed, being the complement of £~'(0). Thus,
we get as before a boolean algebra of functions y ., namely for all clopen elements.
We call this algebra X°.

Now, do we have A = (U,)? as well as (X?),? Let us begin with the first ques-
tion. We have defined 2, on the set of points, or — equivalently — on the set of
ultrafilters. We will show that this space is compact, allowing us to recover the origi-
nal boolean algebra as the algebra of clopen sets. Since this is the algebra we will get
when raising via ?, we do in fact have the desired isomorphism. A space is compact
if for any intersection (); x; of closed sets there is a finite J C I such that (; x; = @.
Alternatively, consider a family of sets (x; : i € I) such that any finite subfamily has
non—empty intersection. This is the finite intersection property defined in Proposi-
tion [I.7.T1} If a space is compact, such a family must have non—empty intersection.
Now consider a set {S; : i € I} of closed sets in 2, with the finite intersection prop-
erty. Each S; is an intersection of sets of the form a. Without loss of generality we
may therefore assume that we have a family (a; : j € J) of elements a; with the finite
intersection property. Then there is an ultrafilter U containing that family. There is
a function fy such that f~'(1) = U. Hence, fy € (), a; and so the intersection is
not empty. So, U, is a compact space. Thus, by Proposition A = (A,°. In
general, for a compact topological space X = (X°), does not hold. Thus, we must re-
strict the class of topological spaces under consideration. This leads to the following
definition.

DerintTiON 4.4.8. A topological space is called a Stone space if it is compact
and for two different points there is a clopen set containing one but not the other. The
category of Stone spaces and continuous maps between them is denoted by StoneSp.

Consider this in contrast to the separation axioms 7 and 7,. A topological
space is a Hausdorff space or T,—space if whenever x and y are distinct there are
disjoint open sets U and V such that x € U and y € V. A space is a To—space if for
every given pair x, y of points there exists an open set A such that #(A N {x,y}) = 1.
(More about Ty—spaces in Section ) These two conditions are not the same. For
example, the topological space over 0, 1 with the sets @, {0} and {0, 1} satisfies the
condition that there is an open set containing O but not 1; but there is no open set
containing 1 and not 0. So it is a Tp—space but not a Tr—space. (This space is known
as the Sierpinski—-space.) Now consider requirement in the above definition. It is
almost like the Th—axiom but requires not just an open set but a clopen set. This
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however means that it is the same as a Th,—axiom with respect to the clopen sets. For
if a contains x and not y and a is clopen, then X — a is clopen as well, and it contains
y but not x.

DerINITION 4.4.9. Two categories C and D are equivalent if there exist covari-
ant functors F : € — D and G : D — C such that for each A € Ob(C) we have
A = G(F(A)) and for each B € Ob(D) we have B = F(G(B)).

THEOREM 4.4.10 (Stone). The category BA of boolean algebras is equivalent to
the category StoneSp“?, the dual category of the category of the Stone—spaces.

Proor. We know that we have a contravariant functor (-), : BA — StoneSp
and a contravariant functor (—)° : StoneSp — BA. These can be made into covariant
functors by switching to the opposite category StoneSp°”. The remaining bit is to
show that X = (X°),. Now, for a point x € X put U, := {a € X : a clopen, x € a}.
This is an ultrafilter on the algebra of clopen sets. We show that the map u : x — U,
is a topological isomorphism. It is injective by the definition of a Stone space; for if
x # y then there is a clopen set a such that x € a but y ¢ a. The map is also surjective,
by construction. Finally, a clopen set of (X°), is a set of the forma := {U : a € U},
where U ranges over the ultrafilters of X, and a is clopen in X. Now let a be a clopen
subset of X. Then

ulal] ={Uy:x€a}l ={Uy:ac Uy
={U:a€eU} =a

(Here we use the fact that every ultrafilter is of the form U, for some x.) Hence, u
induces a bijection of the clopen sets. Therefore, it induces a bijection between the
open sets. Hence u is a topological isomorphism. O

Exercise 146. Show that the dual category C°7 of a category C is a category.
Show also that if F : € — D is a contravariant functor, then F°? : ¢ — D% is a
covariant functor, where F°P(A) := F(A) and F°P(f) := F(f)°P.

Exercise 147. Show Theorem [4.4.3]

Exercise 148. Show that a topological space is a Stone space iff it is compact and
zero—dimensional.

Exercise 149. Let J C R be a subset of R, and J the set of sets of the form O N J,
O open in R. Now let J be the topological space (J,J). Show that points in J are
nothing but Dedekind cuts.

Exercise 150. Show that intervals I = [x,y] C R endowed with the relative topology
of R have no points. Show that Q is not a Stone—space.

Exercise 151. Let the real numbers between 0 and 1 be presented as 3—adic numbers,
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that is, as sequences (a; : 0 < i € w) such that @ € {0,1,2}. Such a sequence
corresponds to the real number Y;_; a; - 37'. To make this correspondence one—to—
one, we require that there is no i such that a; = 2 for all j > ip. Now let C C [0, 1]
be the set of reals corresponding to sequences in which no a; is equal to 1. This set
is known as the Cantor—Set. Show that this set, endowed with the relative topology
of the real line, is a Stone—space.

“Exercise 152. Let X be countably infinite. Construct a compact Ty—space over X.
Moreover, show that no 7,—space over X can be compact.

4.5. Adjoint Functors and Natural Transformations

In this section we will prove a representation theorem for frames that makes use
of the topological representation developed by MARSHALL STONE.

DeriniTioN 4.5.1. Let C and D be categories and F,G : C — D functors. Let
n : Ob(C) — Mor(D) be a map such that for all C—objects A we have G(A) = n(F(A))
and that for all C—arrows f : A — B we have G(f) o n(A) = n(B) o F(f). Then n is
called a natural transformation from F to G.

The last condition can be presented in the form of a commutative diagram.

F(A) 1A G(A)

E(f) G(f)

F(B)

G(B)

It is important in category theory that everything is defined not only with respect to
objects but also with respect to morphisms. The latter requirement is often called
naturalness. Thus, a natural transformation is natural because it conforms with the
arrows in the way indicated by the picture. Another example of this naturalness
condition is in the definition of adjoint functors given below.

Let € and D be categories, and F,G,H : ¢ — D be functors, n a natural
transformation from F to G and 6 a natural transformation from G to H. Define a map
Oen : Ob(C) — Mor(D) by (fen)(A) := (A)on(A). This is a natural transformation.

For let A J B. Then n(B) o F(f) = G(f) o n(A) and 6(B) o G(f) = H(f) o 8(A) by
assumption that n7 and 6 are natural transformations. Then

(6 en)(B) o F(f) 6(B) o n(B) o F(f)
6(B) o G(f) o n(A)
H(f) 0 6(A) on(A)
= H(f)o(0en(A)



4.5. Adjoint Functors and Natural Transformations 189

ProposiTioN 4.5.2. Let C and D be categories. Then the functors from C to D
form the objects of a category with arrows being the natural transformations.

DerintTiON 4.5.3. Let C and D be categories, and F : C — D andletG : D — C
be functors. F is called left adjoined to G, in symbols F - G, if there exists for
every C—object A of C and every D—object B a bijection Bap : homp(F(A), B) —
home(A, G(B)). Moreover, Bap must be natural in both arguments, this means that
forarrows f : A — A’ and g : B — B’ we have

Bag o HOB(f) = HB(F(f))oBus
Bap o HA(G(g)) = Hra(g) oBas

The definition of naturalness is best understood if presented in the form of a
picture. Here is the picture corresponding to the first of these conditions.

homa(A’, GB) Bus home(FA’, B)
HEB(f) HE(F(f))
homo(A,GB) home(FA, B)
AB

Assume now that F is left adjoined to G. Then there exists a bijection 4 4 from
hom(FA, FA) to hom(A,GF(A)). In particular, S84 ra(id(A)) : A — GF(A). The
map 17 : A — Bara(id(A)) is a natural transformation from the identity functor
on C to the functor GF. Similarly, starting with a bijection between hom(GB, GB)
and hom(FG(B), B) we obtain a natural transformation from the functor FG to the
identity functor on D. These two transformations are called the unit (7 : 1¢ — GF)
and the counit (§ : FG — 1) of the adjunction. Moreover, the following so—called
triangular identities hold for all objects A of C and B of D:

A(FA) o F(n(A)) id(FA)
G(6(B)) o n(GB) id(GB)
It can be shown that the existence of a natural transformationn : 1¢ — GF (the unit)

and a natural transformation 6 : FG — 1o (the counit) is enough to ensure that two
functors are adjoint. Namely, consider the following schemata.

8 A — G(B) f F@A) —>B
F(g) F(A) — FG(B) G(f) GF(A) = G(B)
6(B)o F(g) F(A) — B G(f) o n(A) A —> G(B)

So, Bap : g — F(g) on(A) is bijective. It is not hard to show that if the triangular
identities hold then these bijections are natural in both arguments. The existence of
a unit and a counit satisfying the triangular identities is typically somewhat easier to
verify.

To understand this terminology, let us look at a particular case. Let V be a variety
of Q-algebras for a given signature Q. They form a category, which we also denote



190 4. Universal Algebra and Duality Theory

by V. F : V — Set: A — A the functor sending an algebra to its underlying set, and
a homomorphism between algebras to the corresponding set-map. F' is called the
forgetful functor. Consider the functor G : Set —» V : X — Fry(X), sending a set
X to the algebra freely generated by X in V. We call it the free functor. We claim
that G 4 F. For let f : X — F(A) be a map. Then, by definition of a free algebra
there exists an extension f : Fry(X) — U; the correspondence between f and fis
bijective. It is a matter of straightforward but tedious calculations to verify that this
bijection is natural. We conclude the following theorem.

THEOREM 4.5.4. Let 'V be a variety of Q—algebras. Then the forgetful functor has
a right adjoint, the free functor.

The next example appears also in many guises throughout this book. A poset
(P, <) can be regarded as a category as follows. Put Ob(C) := P, Mor(C) := <,
id(x) := {(x, x), and {x, y)o(y, z) := {x, z). The domain of (x, y) is x, and the codomain
is y. We call a category a poset category if for every pair A, B of objects there
exists at most one arrow from A to B. In a poset category it is unnecessary to name
arrows. So we simply write A — B to denote the unique arrow from A to B; and we
write A < B to state that there exists an arrow from A to B. Let now € and D be
poset categories. A functor F : € — D is uniquely determined by its action on the
objects. Forif f : A — Bthen F(f) : F(A) — F(B) is an arrow and so is uniquely
determined. The requirement that F is a functor is equivalent to the condition that
F be isotonic, that is, if A < B then F(A) < F(B). Suppose now that 8 and Q are
posetsand f : P — Q, g : QO — P be isotonic maps. We may think of the maps as
functors between the corresponding poset categories. We claim that f is left—adjoint
to g iff the following holds for all x € P and all y € Q:

X280
f <y

(This is read as follows. The situation above the line obtains iff the situation below
the line obtains.) The proof is straightforward. There exists a bijection between the
hom-sets, and this bijection is uniquely defined by the fact that the hom—sets contain
only one member. The naturalness is also immediately verified. Now let x € P,
y € Q. Then from g(y) < g(y) we get fg(y) <y, and from f(x) < f(x) we get
x < gf(x). Assume now that f : f —» Qand g : Q — P such that fg(y) < y for
all y € Q and x < gf(x) for all x € P. Then from y < f(x) we deduce g(y) < gf(x).
Since gf(x) < x we have g(y) < x. If g(y) < x then fg(y) < f(x). Together with
y < fg(y) we gety < f(x).

We will now extend the results of duality theory to modal algebras. This can
be done by pushing the topological duality further, as outlined in GrovaANNT SAMBIN
and VIRGINIA Vaccaro [186]]. We will sketch this approach, proving only part of
the results. Some technical details have to be adapted when lifting this approach to
polymodal algebras. This is the reason why we do not simplify the exposition to
monomodal algebras; otherwise it looks overly complicated. The key is to regard
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polymodal algebras as functors from a special diagram into the category of boolean
algebras with hemimorphisms as functions. Recall that a hemimorphism from a
boolean algebra A to a boolean algebra B isamap 7: A — B such that 7(1) = 1 and
T(anb) = v(a) N 7(b) for all a,b € A. We write 7 : W — B for the fact that 7 is a
hemimorphism. A co-hemimorphism is a map o : A — B such that 07(0) = 0 and
o(aVUb) = o(a) Vo) forall a,b € A. If T is a hemimorphism, o(a) := -7 — (a)
is a co-hemimorphism, and if o is a co-hemimorphism then 7(a) := —7 — (a) is a
hemimorphism. The category of boolean algebras as objects and hemimorphisms as
arrows is denoted by Bal. The dual of a boolean algebra is a Stone—space; the dual of
a hemimorphism turns out to be a relation between the points of the spaces. Namely,
if7:A—=Band f: A > 2, g: B — 2 are points, then put g < f if for all a € A,
g(t(a)) = 1 implies f(a) = 1.
Consider a relation <« € X X Y. GivenasetS € XandasetT C Y, write

oT = {xeX:(@yx<yandyeT)}
ol = {xeX:(Vy)ifx<ythenyeT)}
oS = {reY:(@x)(x<yandx e §)}
as = {yeY:MWx)(ifx<ythenxeS)}

Then ¢, 8 : p(X) - oY) and &, 3 : (Y) = 9(X). Moreover, the following laws
of adjunction hold.

ScnoT asSoT

oS CcT S 26T

These laws are reflected in the postulates p — @ p and p — o p of tense logic.
(In fact, the latter encode that @< and g ¢ are the unit and counit of this adjunction.)
Let X and ?) be topological spaces and f : X — Y be a function. f is called open if
for every open set S C X, f[S]is open in f. Likewise, f is called closed (clopen) if
the direct image of a closed (clopen) set is closed (clopen). In general a map that is
both open and closed is also clopen. The converse is generally false.

DEeriNtTION 4.5.5. Let X and ) be topological spaces, and <« C X X Y be a
relation. < is called a continuous relation from X to ) if & is a clopen map
from Y to X. The category of topological spaces and continuous relations as maps
is denoted by Spa. < is called closed if © is a closed map.

A relation is continuous iff 3 is clopen. The reader is warned that G H is not the
inverse image of H under <. The latter is ¢H. The two coincide just in case < is a
surjective function. Let X° denote the boolean algebra of clopen subsets of X.

X°:=({{H : H clopen in X}, 1,—,N)

Let <« € X X Y be a continuous relation. Then ¢ commutes with arbitrary unions. So
& 1 Y° — X°is a co-hemimorphism and & : 9° — X° is a hemimorphism. Now let
<« C Y X Z be a continuous relation from %) to 3. Then <o « C X X Z is a continuous
relation from X to Z.
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TueoreM 4.5.6. (—)° is a contravariant functor from Spa to Bal.

Now return to the case of a hemimorphism 7 : A — B. We define A° to be
simply the space of points endowed with the topology generated by the sets @ =
{U € pt(N) : a € U}. Its sets can be characterized as follows.

ProposiTiON 4.5.7. Let X be the Stone space of U. A set S is closed in X iff it is
of the form {U : U 2 F}, where F is a filter in . A set is clopen iff it is of the form
{U : U 2 F}, where F is a principal filter.

Proor. We prove the second claim first. Assume S is clopen. Then S =4 =
{U:aeU}forsomeaecA. Nowput F ={b:b>a}). ThenS ={U : U 2 F}.
F is principal. Conversely, if F is principal, say F = {b : b > a} for some q, then
S =T, hence S is clopen. Now assume that S is closed. Then S = (g R; for
some family of clopen sets R;. Let R, = {U : U 2 F;}, i € I, where each F; is a
principal filter. Let G be the filter generated by the F;. We have S = {U : U 2 G}.
Conversely, assume that there exists a filter G such that S = {U : U 2 G}. Then G
is generated by a family (F; : i € I) of principal filters. It follows that S = (;¢; R;,
where R; = {U : U 2 F;}. Each R; is clopen, and so S is closed. a

Now for U € pt(B) and V € pt(A) we put U 7, V iff for every a € U, ta € U implies
a € V. The latter is the same as: a € V implies o(a) € U, where o(a) := -t—a € U.
With < understood to be 7., <, ¢ etc. are properly defined. Therefore, by definition

Ur,V & Vcr[U]
Ur,V & UCcColV]

DEerNtTION 4.5.8. Let X and ) be topological spaces. A relation < C X X Y is
called point closed, if for every x € X, &{x} is closed in ).

ProposiTioN 4.5.9. Suppose T : A — B. Then 1, is a continuous, point closed
relation from B, to ..

Proor. It is not hard to see that 7, is point closed. For let U € p#(B). Then
U] is a filter of A; hence H := {T € pt(A) : T 2 v~'[U]} is closed. Moreover,
H = {T : Tt,U}. Now for the first claim. Let C be a clopen set, C = @. Then
S eoCiff St, T forsome T €aiff S 7, T for some T 3 aiff -7 —a € S. The latter
is a clopen set. Hence, ¢ maps clopen sets onto clopen sets. O

THeoREM 4.5.10. (=), is a contravariant functor from Bal into Spa.
Proor. Let7: A — Band v : B — €. We have to show that
(WoT)y =T,00U, .

Claim. Letr X and ) be Stone spaces. If < is a continuous and point closed relation
from X to ) then ¢ is closed. For a proof let D be a closed set of X. We show that if
y ¢ ©D then there exists a clopen C C Y such that & D € C buty ¢ C. This suffices
for a proof. Solety ¢ ¢D. For every x € D,y ¢ ¢&{x}, and since ¢ {x} is closed
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there exists a clopen set C, such that y ¢ C, but ¢{x} € C,. (This follows from the
fact that each closed set of 9 is the intersection of clopen sets.) Hence, x € BC,.
Therefore D C | J«p @C,. This is an open cover of D, and by compactness of X
there exists a finite set S such that D C | J,.g GC,. Then also ¢ D C | J,c5 C,. Put
C := Jyes Cx. C is clopen and does not contain y. This proves the claim.

From this fact we deduce that 7, o v, is point—closed. For, being the composition
of closed maps, it is closed, and a fortiori point—closed. We finally need to verify that
this map is based on the same continuous relation as (v o7),. The proof is essentially
the same as in Theorem if U(t o v),V then one has to find a point Z such
that U T, Z and Z v, V. Alternatively, two maps between Stone spaces are identical
iff they are identical on the clopen sets. We leave the verification of that fact to the
reader. ]

Finally, consider having k—-many modal operators. Let J(x) be the category con-
sisting of a single object, denoted here by @. The set of morphisms consists in finite
sequences from . If o and 7 are such sequences, then o (7(®)) = (0" 7)(@). The
identity on @ is the map €, where € is the empty sequence. (Moreover, dom(f) =
cod(f) = @ for every arrow f.) This defines the category J(«x). Consider a functor
F : J(k) — Bal. Then F(@) = U for some boolean algebra 2 and for each j < «,
F(j) : W — A. For each sequence o, F(o) : A — A is uniquely determined by the
F(j), j < k. Hence, the functor can be viewed as a k—modal algebra. Next, consider
another functor G : J(x) — Bal. Suppose that 7 is a natural transformation from F
to G. This means that (@) : A — B and that

(@) o F(j) = G()) o n(@)
A natural transformation 7 is boolean if n(®) is a boolean homomorphism. In that

case, the conditions on 7 being a natural transformation are equivalent to 7(®@) being
a homomorphism.

THEOREM 4.5.11 (Sambin & Vaccaro). The category of k—modal algebras is
equivalent to the category of functors from J(x) to Bal, with arrows being the boolean
natural transformations. This category is denoted by Mal,.

In a similar way we can introduce functors from J(«) to Spa. They correspond to
x—modal frames. In other words, a k—-modal frame is a topological space X endowed
with a family of continuous relations from X to X indexed by «x. For the moment,
however, frames are functors. Let ' and G be two such functors. A weak contrac-
tion from F to G is a continuous relation ¢ from X := F(®) to 9 := G(®) such that
(1.) For every clopen set H of 9, ¢"![H] is clopen in ¥, (2.) For every clopen set H
of 9, ¢c”'[H] = ¢ '[¢H]. A contraction is a function (!) and a weak contraction
that satisfies (2.) for all sets {x} (and so for all subsets of Y). Hence a contraction is a
weak contraction. It is tempting to conclude that the category of frames is the same
as the category of functors from J(x) into the category of topological spaces together
with weak contractions. This is not so, however. Rather, this result can be true only
if we take zero—dimensional topological spaces.
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THEOREM 4.5.12 (Sambin & Vaccaro). The functors from J(k) to the catego-
ry of zero—dimensional compact spaces with contractions as arrows form a cate-
gory denoted by Fra,. Fra, is equivalent to the category of k—modal frames and
p-morphisms.

The proof of this theorem is left as an exercise. The reader should convince
himself that this theorem is essentially a reformulation of the notion of a general
frame and a p—morphism between such frames into category theory. Now consider
the category of Stone spaces, denoted by StSpa,, and the category of functors from
J(x) with point closed contractions as arrows.

Tueorem 4.5.13. StSpa, is dual to the category Mal,.

Exercise 153. Show Theorem

Exercise 154. Show that if f : X — Y is a function, the map f : p(X) — oY) :
A — f[A] has both a left adjoint and a right adjoint (if viewed as a map between
posets).

4.6. Generalized Frames and Modal Duality Theory

We have seen that a boolean algebra can be realized as a set algebra i. e. as
a subalgebra of a powerset—algebra. Also, we have seen that boolean algebras can
be repesented by certain topological spaces. So, we can either choose a topological
representation or a representation of boolean algebras by so—called boolean spaces
(which are pairs (X, X) where X is closed under complement and union). In a sub-
sequent section we have developed the topological representation of modal algebras.
In a second step we restrict the topological space to the clopen sets. In this way we
get the standard representation of modal algebras as certain general frames.

DerFiNiTION 4.6.1. Let W be a k—-modal algebra. Then the generalized frame U*
is defined as follows. The worlds are the ultrafilters of U, and U <; V iff for all
b € V we have ¢;b € U. Furthermore, the internal sets are the sets of the form

b ={U : b € U)}. For a homomorphism h : U — B we let h* : B" — A" be defined
by h*(U) := h™'[U] = {b : h(b) € U}.

The converse direction is harmless as well.

DEeriNiTION 4.6.2. Let § = (f,F) be a generalized frame. Then the modal al-
gebra . is defined as follows. The elements are the internal sets, and the
operations are intersection, complement, and ¢j, j < k, defined by

¢ib:={w:Ax)(w <, x and x € b)}.

Ifp: & — G is a p-morphism, then p, : &, — §, is defined by p,(b) := p~'[b].
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TueoreM 4.6.3. (—)* is a contravariant functor from the category Mal of modal
algebras to the category Frm of general frames; (—)+ is a contravariant functor from
Frm to Mal. Moreover, for every modal algebra ", = .

We entrust the proof of the fact that (—)* and (—), are functors onto the reader.
Again we are faced with the problem of the converse, namely, to say when for a
general frame &, " = &. In order to state this condition, let us give another definition.

DeriNiTION 4.6.4. A frame is differentiated if for every pair x and y of different
worlds there is an internal set containing x but not y. A frame is tight if for every
pair x and y of worlds such that x #; y there is an internal set b such that x € W ;b but
vy & b. A frame is compact if every family of internal sets with the finite intersection
property has a nonempty intersection. A frame is refined if it is both differentiated
and tight, and it is descriptive if it is refined and compact. A frame is atomic if
for every world x the set {x} is internal and full, if every subset is internal.

We introduce also abbreviations for classes. Srp denotes the class of Kripke—
frames, ® the class of generalized frames, Df the class of differentiated frames, Ti the
class of tight frames, R the class of refined frames, €mp the class of compact frames,
D the class of descriptive frames and € the class of canonical frames. Atomic frames
will play only a marginal role, although atomicity is a rather desirable property of
frames, playing a fundamental role in the completeness proofs for fusions (see Chap-
ter[6). The definition of compactness is equivalent to the definition of compactness
of the space generated by the sets of the algebra. Moreover, the postulate of differen-
tiatedness is the separation postulate for Stone—spaces. We may say informally, that
a compact frame has enough worlds, a differentiated frame has enough internal sets
for identity and a refined frame has enough sets for the basic relations.

The properties of frames have a topological counterpart.

ProposiTiON 4.6.5. Let & be a k—modal frame. (i.) § is differentiated iff {x} is
closed for all x € f iff the corresponding topological space is Hausdorff. (ii.) &
is refined iff the space is Hausdorff and <; is point closed for all j < «. (iii.) § is
compact iff the corresponding topological space is compact.

We remark here that the property of tightness also is a topological separation
property. It says, namely, that for every x and j < « the set suc;(x) = {y : x <;y} can
be separated by a clopen neighbourhood from any point not contained in it.

TueOREM 4.6.6. For a descriptive frame, & = F.™.

Proor. Consider the map x — U, := {b : x € b}. This map is injective, since
the frame is differentiated. It is surjective, since the frame is compact. Now assume
that x <; y. Thenif b € Uy, ¢;b € U,. Hence U, <; U,, by definition of the relation
<. Now assume x #; y. Then, since the frame is tight, there is a b € U, such that
m-beU,,thatis, ¢b ¢ U,. Hence U, #; U,. a
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CoroLLARY 4.6.7 (Duality Theorem). The categories Mal, of (k—)modal algebras
and DFrm, of descriptive k—frames are dually equivalent. Moreover, a homomor-
phism of modal algebras is surjective iff its dual map is an embedding; it is injective
iff its dual map is a contraction.

The duality theorem distinguishes the descriptive frames from the other frames
and will be used quite effectively. From a theoretical point this is a very satisfactory
result, allowing us to transfer algebraic proofs into geometric proofs and conversely.
However, as it turns out, descriptive frames are hard to construct. We do not have
such a good intuition about them. Typically, it is much easier to construct refined
frames than to construct descriptive frames. So, we will quite often work with refined
frames instead. As a last point notice that there exists a modal algebra based on a
single element. This algebra is denoted by 1. Applying the representation theory we
obtain that 1% is the empty frame. It is this fact to allow frames to have no worlds at
all.

In addition to (general) frames we also have Kripke—frames and there is a rather
easy way to turn a frame into a Kripke—frame, namely by just forgetting the internal
sets. So, given a frame § = (f,F) we put & := f, and given a p-morphism 7 :
§ — G weputmy := . Thenmy : F — Gy This is a functor, as is easily
checked. This is a kind of forgetful functor. Conversely, given a Kripke frame f,
let fﬁ = (},27). In analogy, we dub this the recovery functor. Actually, the same
terminology can be applied to the previous case. To pass from a general frame to a
modal algebra is practically a forgetful operation, and to get a frame from the algebra
is arecovery process. There is a complete analogy here, because forgetting what has
been reconstructed results in the same structure; we have both A", = A and f”ﬁ = f.
But the converse need not hold; we are not sure to be able to reconstruct what we
have forgotten.

THEOREM 4.6.8. The map (-)y is a covariant functor from the category Frm of
frames into the category Krp of Kripke—frames. The map (=)* is a covariant functor
from Krp into Frm. Moreover, for a Kripke—frame Tﬁn >

Evidently, & is full iff § = i(;nﬂ. So, the category of full frames is equivalent to
the category of Kripke—frames. (This is not as difficult as it sounds.) A nice conse-
quence is the following construction, originally due to Biarnt Jonsson and ALFRED
Tarsk1. Take a k—-modal algebra . It is called complete if the lattice reduct is com-
plete. The completion of A, Em(A), is a modal algebra together with an embedding
c : W Em(A), which is complete and satisfies that for every complete B and ho-
momorphism £ : A — B there exists a k : Em(A) — B with ko ¢ = h. Itis easy to
see that a complete modal algebra is isomorphic to an algebra of the form Mia(f) for
some Kripke—frame f (where Mta(f) as defined earlier can now be redefined as fﬁ).
Simply take as elements of f the atoms of 2, and put b <; ¢ for atoms b and c, iff
b < ¢jc. Now if A is a modal algebra, then let Em(A) := (?I*n)ﬁJr. This means the
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following. We pass from U to the dual general frame. Next we pass to the corre-
sponding full frame by taking all sets of the frame as internal sets (this is the actual
completion). Finally, we take the algebra of sets of this full frame. The identity on
pt(A) is a p-morphism i : (‘21*);1ﬁ — At Tt is surjective, and so i : A — Em(A). We
show that ¢ := i* has the required property. To that end, let & : A — B be a homo-
morphism and B complete. Then A" : B* — A is a p-morphism of frames. Since
B* is complete, we can actually factor 4" through i and a function j : 8* — (‘lI+)ﬁ”,
by extending h* to all subsets of the frame. We have it = i o j. Now switch back
to the modal algebras. By duality, this gives h = j* o i* = j* o ¢. Put k := j*. This
concludes the proof.

THEOREM 4.6.9. For every modal algebra, the natural embedding map N
Cm) := (?l*#)ﬁ+ is a completion.

Now, what are the relationships between all these classes? First of all, a full
frame is both differentiated and refined. A full frame is compact iff it is finite. For
consider the family of sets f — {x} for x € f. If f is infinite, this family has the finite
intersection property. Yet the intersection of all these sets is empty. A differentiated
compact frame is also tight and hence descriptive. (See exercises; a proof using quite
different methods will be given in the next chapter.) There are tight, compact frames
which are not differentiated. For example, take a descriptive frame . Form a new
frame §° from § by taking twins w! and w? for each w € f. Put x’ <1; y* iff i = k and
x <; y; finally, the internal sets are the sets of the form adud={':xeaux?:
x € a}. This is a frame; it is tight, and compact. But it is not differentiated.

Now for the difference between tightness and differentiatedness. We have seen
already that there are tight frames which are not differentiated. For the converse
we have to work harder. A finite frame will not do here. Define a general frame
R :=(r,R), where 1 := (w, <) and R is the set of all finite unions of sets of the form

r(i,j)={k:k=j (mod i)}

where 0 < j < i. Since —r(i, j) = Uj4;r(i, j'), R is closed under complements. R
closed under intersection, too, by the Chinese Remainder Theorem. Finally, ¢a = w
iff a # 9, and ¢2 = @, so RN is a frame. It is differentiated. For leti # j, say j < i.
Thenier(i+1,-1)but j ¢ r(i + 1,—1). Now R is not tight. For i #4 jiff j < i. But
there is no set b such that i € mb but j ¢ b. For either b # 1 and then i ¢ mb(= @), or
b = w and then j € b.

This is actually an instructive frame and we will prove something more than
necessary right now.

THEOREM 4.6.10. Th(R) = S5. Moreover, every finite Kripke—frame for S5 is a
p-morphic image of R.

Proor. We prove the second claim first. Consider an S5—frame with 7 elements.
Then the map p : j — j (mod i) is a p-morphism. We take as < the direct image of <
under p. Now if k < i then for some r € w we have j < r-i+k, so that p(j)<ip(k). Thus
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< = i X i, and so we have a p—morphism of Kripke—frames. Next, take any subset
Jc{0,...,i—1}. Then p“[J] = Ujej r(i, j), which is internal. Finally, by the fact
that S5 has the finite model property we have Th(R) C S5. However, R £ p — O0p.
For if B(p) = @ then B(p) C B(T0p). And if B(p) # @ then B(O0p) = ml = 1. O

It seems at first sight that a frame which is not differentiated can be made into a
differentiated frame by taking the map defined by x +— U,. We call this the refine-
ment map. It maps two points x and x’ onto the same target point if Uy, = U,. If
U, = U,y we also write x ~ x’. Unfortunately, this generally is not a p—morphism.
We need an extra condition to ensure this. One possibility is to require tightness. For
then, if p(x) < p(y), thatis, U, < U, then for every x’ ~ x there is a y’ such that x" <y’
and y' ~ y. In the case of tightness we can even show something stronger, namely
that x" <'y. Namely, let y € b, thatis, b € U,. Then b € U, = Uy, thatis, x’ € b.
Hence, by tightness, x” <t y. However, tightness is stronger than necessary.

ProposiTiON 4.6.11. If § is tight, the refinement map p : x — U, is a p—
morphism. Moreover, if x 1y, x ~ x' andy ~ ¥ then x’ <y’

We will now turn to some important questions concerning the relationship be-
tween geometrical properties of a frame § and properties of the algebra of sets. In
particular, we will be concerned with the question of whether & is rooted corresponds
to &+ is subdirectly irreducible. The material presented here is based on [185]]. We
will give two examples, showing that in fact neither implication holds.

ExampLE. Consider the frame & = (Z, <, F) where x < yiff |[x—y| = 1 and Fis the
set of finite and cofinite subsets of Z. This is well-defined. The frame is connected
and the only open filters are the trivial filters. (Let F be an open filter. If F' # F, then
F does not contain a finite set. For if a is finite, there is an n € w such that m"a = @.
Now, assume that F' # {1}. Then forsome z, Y :=Z —{z} € F. Thenif |z —z| < n,
7 ¢ W'Y € F, whence Z — {7’} € F for all 7. Any cofinite set is an intersection of
such sets. Hence, F is the filter containing all cofinite sets.) Thus, Con(%,) = 3.
This shows that the algebra of & is subdirectly irreducible. Now consider the bidual
&+t A point of F.* is an ultrafilter of F,. If U is not principal then it contains
only infinite sets, hence only cofinite sets. Moreover, it must contain all cofinite sets.
So, there exists exactly one nonprincipal ultrafilter, which we denote by V. Also,
U, :={a€F:xea). Thenforall x,V 4 U,, since #{x} is finite and so not in V.
Likewise U, # V. Forletb := {y : |[x—y| > 1}. Then b € V but x ¢ #b. It is not
hard to verify that V < V. So, the bidual of ¥ has as its underlying frame the disjoint
union of (Z, <) and [o]. It is therefore not rooted, while its algebra is subdirectly
irreducible. This example is quite similar to the algebra of finite and cofinite subsets
of the infinite garland in Section[7.9]

ExampLE. Consider the frame Q := {w, >, 0), where O is the set of finite and
cofinite sets. Here, Q, is not subdirectly irreducible, but % is rooted. To verify
the first claim, notice that Q, has an infinite descending chain of congruences whose
intersection is the diagonal. These congruences correspond to the finite generated
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subframes of Q. Hence, Q, is not subdirectly irreducible. On the other hand, Q,*
has one more element than €, consisting of the ultrafilter V of cofinite sets. We show
that for all ultrafilters U, V < U. For let b € U. Then n € b for some natural number
n, and so ¢b 2 {y : y > n}, which is cofinite. Thus b € V, and therefore V < U, by
definition of <.

THEOREM 4.6.12 (Sambin). There exist descriptive frames & which are rooted
such that &, is not subdirectly irreducible. There exist algebras N which are subdi-
rectly irreducible such that W* is not rooted.

Let us stay a little bit with the theory of descriptive frames. JoHAN vAN BENTHEM
[12] has investigated the structure of some ultrafilter extensions of frames. We will
show that though the structure of ultrafilter extensions gives some evidence for the
structure of biduals, it is by no means complete. Before we give examples we will
develop some terminology. We will simplify the discussion by restricting ourselves
to a single operator, 0. Notice, however, that when we have a Kripke—frame (f, <),
then automatically we have two operators on the algebra of sets, namely # and ®.
We will use this notation throughout this section. Notice on the other hand that a
(general) frame for the monomodal language need not be a frame for the bimodal
language, since the algebra of internal sets need not be closed under # . Neverthe-
less, we will use M , keeping in mind that it may result in noninternal sets. Moreover,
we will reserve m for the operator on U, and use W and #® for the operations on A*.
Finally, in a frame ¥, a set is denoted by a lower case letter only if it is an internal
set. Upper case letters stand for sets which may also be external. A reminder on the
use of topology: internal sets are also clopen sets. We will switch freely between
these two characterizations.

DEerINiTION 4.6.13. An element of a modal algebra W is called essential if the
open filter generated by it is a minimal open filter of U distinct from {1}. Eq denotes
the set of essential elements of .

The reader may verify that an element is essential in 2 iff it is an opremum.

Lemma 4.6.14. Suppose that Ey is not empty. Then Ey U {1} is the smallest open
filter. So, Ey is nonempty iff W is subdirectly irreducible.

Now we start to investigate the nature of A*. Let us call a set X in a frame § a
transit if it is successor closed. Furthermore, X is closed if it is an intersection of
internal sets (iff it is a closed set of the topology induced by F on f). It is not hard to
see that the closed transits are closed under arbitrary intersection and union, and that
they form a locale.

THEOREM 4.6.15 (Sambin & Vaccaro). The locale of open filters of W is anti—
isomorphic to the dual locale of closed transits of A",

Proor. Consider the map C defined by
FHC(F)::{Uept(QI):FgU}:ﬂ{'?i:aeF}
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This map is a bijection between closed sets of A* and filters of the boolean reduct of
A. We need to show that F is open iff C(F) is a transit.

Ma)ace F >mackF)

& (Ya)(C(F)Ca= C(F)C ma) sinceae Fiff C(F)Ca

o (Va)C(F)Ca=C(F)C ®ma) sincela= Bqg

& (Ma)C(F)Ca= 4acCa by adjunction

< 4C(F)cCCF) since C(F) and 4 C(F) are closed
=3

C(F) is a transit

O

CoROLLARY 4.6.16. W is subdirectly irreducible iff W* has a greatest closed tran-
sit.

For frames, a similar terminology can be set up. Notice first of all the following.

ProposITION 4.6.17. Let § be a frame and C C f a set. Then the smallest transit
containing C is the set T(C) 1= Upe,, ¢ kC. Itis open if C is internal. The largest
transit contained in C is the set K(C) 1= (iew »“C. It is closed if C is internal.

DeFINITION 4.6.18. Let § be a frame. Let Iy denote the set of all points x such
that the transit of x is §. Furthermore, put Hy := f — I5.

Lemma 4.6.19. For every frame, Hy is a transit. Moreover, if § has a greatest
nontrivial transit C then C = Hg. Otherwise, f = Hg. So § is rooted iff it has a
greatest nontrivial transit.

Lemma 4.6.20. For every frame & and every set C, if Hy € C and C # f then
Hg = K(C).

Recall that in a topological space X, a set S is called dense if the closure in X is
the entire space. A set is of measure zero if it does not contain any open set iff its
open kernel is empty iff its complement is dense.

Lemma 4.6.21. For every frame, Hg is either dense or closed.

Proor. Suppose Hg is not dense. Then there exists a clopen set C such that Hg C
C C f. (For every closed set is the intersection of clopen subsets, and the closure of

Hy is not f.) Therefore, by Lemma[4.6.20, Hy = K(C). By Proposition[d.6.17, Hy
is closed. ]

ProposiTION 4.6.22. For every algebra 2, if Iy+ is not of measure zero, then U is
subdirectly irreducible.

Proor. Let Iy+ be not of measure zero. Then Hy+ is not dense. Therefore it is
closed, by Lemma By Corollary A is subdirectly irreducible. o
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It might be deemed unnecessary to invoke the topology when we want to speak
about Kripke—frames. For example, we know that for a Kripke—frame f, Ma(f) is
subdirectly irreducible iff f is rooted. But this is almost the only result that does not
make use of the topological methods. So, let us deal first with the question of open
filters in the algebra Ma(f) of a Kripke—frame. At first blush they seem to correspond
simply to the transits of f. As a particular corollary, if f is connected, Mta(f) should
be simple. But this is wrong. For let f be countably infinite. Then 9ta(f) has at least
2% elements. It is easy to show, however, that such an algebra cannot be simple. For
take any element b # 1. The least open filter containing b is countable. Hence it is
not {1} and not the entire algebra. Thus, the conjecture that Ma(f) is simple if every
world of { is a root is easily refuted. Nevertheless, it is instructive to see a concrete
counterexample.

ExampLE. Let 3 = (Z, <) be the frame with Z the set of integers and x < y iff
|x =yl = 1. Every world of Z is a root. So, H3 = @, which is a clopen set. So, the
algebra of sets is subdirectly irreducible (which also follows from the fact that Z is
rooted). Therefore, E3 is not empty. That is, we should have essential elements.

Lemma 4.6.23. E; consists exactly of the cofinite sets # Z.

Proor. Suppose that A is cofinite. Then there exists a k € w such that Z — A C
[—k,k]. Let B C w. Then for somem € Z, m ¢ B. So, [m —n,m + n] C m"B. Hence,
[—k, k] 2 m™*B, from which follows that A 2 m"™**B. So, A is essential. Now let
A not be cofinite and let B := w — {0}. Then for no k € w, m*B C A, since "B is
cofinite. |

We remark here that the converse of Proposition4.6.22]is false.

ExawmpLE. Let 3 := (3, 0) where O consists of all finite unions of sets of the form
olk,a) := {n-2¥+a : n € Z}, where k is a natural number and a an integer. The
algebra A := 3, is simple. For any set of O is of the form b = | J.,, o(k, a;) for some
p and k and some a;. Let {b; : j < g} be the set of numbers such that for every j < ¢
there exist 7,7’ < p such that b; = ¢; + 1 (mod 2%yand b = ay — 1 (mod 2%). Then
mb = J, 0k, b)). It follows that m¥b = @iff b # 1. By the criterion for subdirect
irreducibility, U is subdirectly irreducible with O an opremum. Hence U is simple.
We will show that the frame underlying A* is decomposable into a disjoint union of
at least two frames, from which follows that Io+ = @. To see that, take an ultrafilter
U in A. We define a sequence J(U) = {(j; : k € w) as follows. For each k € w let
Jr be the (unique) remainder (mod 2%y such that o(k, Jr) € U. J(U) is a sequence
satisfying

€3] Jirt = i OF jiwr = ji +2'k
for all k € w. Conversely, let S = (s; : k € w) be a sequence satisfying (). Let
U(S) be the ultrafilter containing o(k, s;). It is easy to see that this ultrafilter exists
(this collection has the finite intersection property, by (£)), and that U(S) is indeed
uniquely defined. Now, there are evidently 2™ many such sequences. Hence, A* has
uncountably many worlds.
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3 satisfies alt, and B and so A" satisfies alt, and B as well. Hence, the under-
lying frame has the property that (a) each point sees at most two points, (b) if x sees
y, y sees x. (This follows from the results of Chapter[5] but can also be established
directly.) It follows that a connected component is generated by any of its points, and
that it is countable. Since the frame is uncountable, it is has more than two connected
components. Consequently, Iy+ = @.

Exercise 155. Show that a finite differentiated frame is full.

Exercise 156. Any finite frame is compact. Hence a finite differentiated frame is
descriptive.

Exercise 157. Prove Proposition [4.6.5]

Exercise 158. (This example is due to FRank Worrer. It is very closely related to
the frame considered in Section [3.5]) Take the set w + 1 and puti < jiffi < j < w
or i = j = w. The internal sets are all sets which are finite and do not contain w or
else are cofinite and contain w. Show that this frame is compact, differentiated but
not tight.

Exercise 159. Let V be a variety, n € w and %; € V, i < n. A subalgebra
B = []i, U; is called skew—free if for every congruence ® on B there exist
¥; € Con(Y,) such that ® = (X, ¥) N B? (see Section for definitions). Show
that every subalgebra of a direct product of modal algebras is skew—free. Hint. Use
duality.

Exercise 160. Show that there exist simple modal algebras which do not generate
semisimple varieties.

4.7. Frame Constructions III

Our aim in this section is to translate Birkhoft’s Theorem on varieties into gen-
eral frames. This will allow us to say which classes of frames are classes of frames
for a logic. In the form that this theorem takes here, however, it is not very sur-
prising, but we will transform it later into stronger variants that allow deep insights
into the structure of such classes. Recall that Birkhoff’s Theorem says that a class is
equationally definable iff it is closed under products, subalgebras and homomorphic
images. In the context of modal algebras equational classes coincide with modally
definable classes, where a class K of algebras is called modally definable if there
is a set @ of modal formulae such that X contains exactly the algebras satisfying
@. Likewise, a class X of frames is modally definable if X is the class of frames
for some ®. This can be relativized to some class, e. g. the class of refined frames,
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descriptive, full frames etc. Of particular interest is the class of modally definable
Kripke—frames.

One immediate problem is that we have to translate the notions of product, sub-
algebra etc. into frames. Here, category theory is of good use since it provides
canonical definitions of these things. A good illustration is the notion of a product.

DeriniTioN 4.7.1. Let © be a category, and B;, i € I, an indexed collection of
C—objects. A pair (A, {p; : i € I}), where A is a C—object and p; : A — B; C—arrows,
is called a product of the B; if for each object C and arrows q; : C — B; there
is a unique morphism m : C — A such that q; = m o p; for all i € 1. The maps
pi are called projections. (A,{p; : i € I}) is called a coproduct of the B; if
(A (p)°P i € I}) is a product in the dual category, C°P.

B,
q %
!
cotsa
q1 X
B

Usually, only the object A in the pair (A, {p; : i € I}) is referred to as the product.
(This at least is common usage in algebra.) So, a product is an object for which
projections p; that make (A, {p; : i € I}) a product in the sense of the definition.
However, notice that the map denoted by ‘!’ in the picture above is not uniquely
defined by A and C alone but only given the pairs (A, {p1, p2}) and (C, {q1, g2}). We
can view a product as a solution to a special diagram (consisting of two objects and
identity arrows). This solution consists in an object and arrows from that object into
the objects of the diagram. What makes such a solution a product is a condition that
is usually referred to as the universal property. (See the exercises.) The reader is
advised to spell out the definition of a coproduct in detail. Before we proceed to
examples, let us note one important fact about products and coproducts.

THEOREM 4.7.2. Let C and D be products of the B;, i € I. Then C is isomorphic
to D. Moreover, if C is a product and isomorphic to D, then D also is a product of
the B;, i € I.

Proor. By assumption there are maps p; : C — B; and g; : D — B; such that for
any E withmapsr; : E — B;wehavem : E —» Candn : E — Dsuchthatr; = p,om
and r; = g; on for all i € I. We apply the universal property for C to D and get a map
f : D — C suchthat g; = p; o f for all i. We apply the universal property of D to C
and obtain likewise a map g : C — D such that p; = g; o g for all i. Then we have
gi = piof = (giog)of = gio(gof) as well as p; = giog = (piof)og = p;o(fog), again
for all i. Since C is a product, there is only one map i : C — C satisfying p; = p; o i.
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Since the identity id(C) on C has this property, we conclude that f o g = id(C). And
analogously we get that g o f = id(D). So C and D are isomorphic.

For the second claim let C be a product with projections p;,i € I. Leth: D — C
be an isomorphism with inverse k : C — D. Then we claim that D is a product with
projections g; := p; o h. For let E be given and r; : E — B;, i € I. Then there exists
aunique map f : E — C such thatr; = p;o fforalli € I. Let g := ko f. Then
ri=piof=qgioko f=gq;ogforallie l. Furthermore, g is unique. For if g’ also
satisfies r; = g; o g’ for all i, then r; = p; o h o g’ for all i, from whichho g’ =ho g.
This implieskoho g’ = ko ho g, which is the same as g = g’. ]

The product of two algebras, defined earlier, is a product in the categorial sense.
In general, let Q be a signature, T an equational theory in Q, and let Alg T be the
category of Q-algebras for 7. This category has products. ([],; Ui, p;), where p; is
the projection onto the ith component, is a product of the family {%; : i € I}. This
fact is used later. We perform the argument with 7 := {1, 2}. Let B, B, be given. Put
A := By x B,, and let the projections be p; : (b1, by) — by and p; : (b1,b2) — bs.
Take any € with homomorphisms ¢; : € — B;. Putm : € - B X By : ¢ —
{q1(¢), g2(c)). There is no other choice; for assuming m(c) = {x1, x,) we get

qi(c) =(prom)c) =pi{x,x)) =x
@2(c) =(prom)c) = pr({x1,x2)) =x2

So m is unique, and we only have to show that it is a homomorphism. We trust that
the reader can fill in the proof. From the previous theorem we get that products are
unique up to isomorphism. Let us cash out on this immediately. Say that a category
has products (has coproducts) if for any family of objects the product (coproduct)
of that family exists. The category of algebras in a variety has products.

THEOREM 4.7.3. Let A be a polymodal logic. The category of descriptive A—
frames has coproducts.

Proor. The proof is by duality of the category of descriptive frames and the
category of modal algebras. Suppose that §;, i € I, is a family of frames; put

[ 5= [@0

i€l i€l
We claim that this a coproduct. By the Duality Theorem it is enough to show that

(ier i)+ is a product. However, it is isomorphic to [];c;(&;)+. The latter is a
product of the (&;)+. |

There also is a notion of a coproduct of frames, called the disjoint union. Let
&i = (fi, F;) be frames. The disjoint union, @ie y &, 1s defined over the disjoint union
of the sets f; with relations being the disjoint union of the respective relations. The
sets are of the form b = | J,¢; b; where b; € F;. Since the f; are disjoint, so are then
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the b;, and it turns out that we get

EP s =] [

iel iel

The projections are p; : a — a N f;. The so defined sets form a modal algebra.
To see this, consider the map m : b — |J;; b;. This is readily checked to be a
homomorphism and bijective. The following theorem has been shown in the special
case I = {1,2} and Kripke—frames in Theorem 2.4.4]

THEOREM 4.7 .4. @ie[ & is a coproduct of the frames §; in Frm.

Proor. Put ® := @id &i. Let H be aframe and h; : & — 9. We define m :
@[E ; & = 9 by m(x) := hi(x) if x € f;. Since the f; are all disjoint, this definition
by cases is unambigous. m is a p-morphism, for if x <; y in ® and x € f; then also y
in f; and x <; y already in f;. Since A; is a p-morphism, m(x) = h;(x) <; hi(y) = m(y).
Now assume m(x) <; u. Let x € f;. Then also h;(x) <; u, and we getan y € f; such
that h;(y) = u and x <; y. But then m(y) = h;(y) = u, and this proves the second
condition. Finally, let b € H be a set. We have ¢; := hi’l[b] € F,. Putc := g ci-
is an internal set of ® and m[c] = b. |

Now we have two definitions of coproducts, one for descriptive frames and
one for arbitrary frames. Since the category DFrm is a subcategory of Frm in the
sense that it contains a subclass of the objects of Frm but all Frm-arrows between
them, it can be shown that for descriptive frames §;, i € I, there exists a map
@E[ & ™ Llies &i- As it turns out, the two coproducts are not always the same.
For example, take the full frame cbﬁ, ch,, := (n,>). These frames are descriptive. Put
D= [l,eo cbﬁ, and & := @new cbz. There exists an arrow & »—» D. Furthermore, the
algebras &, and D, are isomorphic, since they are (isomorphic to the) the product
of (cbﬁ)+. Nevertheless, there is no isomorphism between these frames. One way to
see this is as follows. The frame D contains a world which has no finite depth (or no
depth at all), while each point in & has a depth. Another argument is the following. &
has countably many worlds, the set of worlds being a countable union of finite sets.
But D has uncountably many points, as there are uncountably many ultrafilters in the
algebra of sets. (This is given as an exercise below.) It appears to be paradoxical that
we should end up with several versions of a coproduct, but this is due to the fact that
a coproduct is a notion that makes sense only within a category; it has no absolute
meaning. Since the category Frm has more objects, we end up with different coprod-
ucts. Finally, it is clear that we shall end up with copoducts of frames rather than
products, by duality, or simply the fact that arrows go the opposite way. The reader
may however also check that the categories of frames and descriptive frames have
no products. Namely, take $; to be the one point reflexive frame (k = 1), &, the one
point irreflexive frame. Then there is no product of these two in either category.



206 4. Universal Algebra and Duality Theory

Ficure 4.2.

Ficure 4.3.

Different problems arise with subalgebras and homomorphic images. It appears
at first sight that subalgebras translate into p—morphic images and homomorphic im-
ages into generated subframes. But the terminology on the frames is more subtle
here. We know that a subalgebra—map & : A »» B defines a unique A* : B* - A+
and conversely. But we write f : § - © for frames if f is surjective on the worlds
only. Now consider case of Figure We have § > &, and we have an iso-
morphism between the algebras of internal sets. We expect therefore that there is a
surjective p—morphism from § to ®. But there is none. The duality theory cannot be
used in this case. A similar counterexample can be constructed for generated sub-
frames. Consider namely the frame $. Although the algebras of sets is isomorphic
to that of ®, none is a generated subframe of the other.

Moreover, notice that there is a distinction between embeddings and subframe
embeddings. An embedding is just an injective p-morphism, while amapi: § — ®
is a subframe embedding if i”' : G — F is surjective. In the latter case & is required
to have no more sets than necessary to make i a p—morphism. Ife : § — © is
an embedding, take F, = {e'[b] : b € ®). Then the identity is an embedding:
id : (f,F,) » (f,F) and the image of (f,F,) under e is a generated subframe.

Now let us proceed to the promised characterization of modally definable classes
of frames. The easiest case is that of classes of descriptive frames. In descriptive
frames, the correspondence is as exact as possible.

THEOREM 4.7.5. A class of descriptive frames is modally definable iff it is closed
under coproducts, p—morphic images and generated subframes.

Proor. This follows from the Duality Theorem as follows. Suppose that X is
modally definable. Then X, is equationally definable, hence a variety. Therefore X
is closed under coproducts. For if §;, i € I, is a family of descriptive frames from
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X then (@iel T+ = [1ier(Fi)+. Since X, is closed under products the latter is in
X,, and thus is the former, by closure under isomorphisms. But since (¥,)* = X
we also have EBiE, & € X. Analogously it is shown that X is closed under gener-
ated subframes since X, is closed under homomorphic images, and that X is closed
under contractions since X, is closed under subalgebras. Conversely, if a class X of
descriptive frames is closed under coproducts, X, is closed under products. If X is
closed under generated subframes, X, is closed under homomorphic images, and if
X is closed under contractions, X, is closed under subalgebras. m]

We know that two frames § and ® whose algebras are isomorphic have the same
modal theory. Hence, if we want to see what classes of frames are modally definable,
we just have to close it under the operation B : & — (§,)* as well as Bl (F)F is
known as the bidual of {.

THEOREM 4.7.6. A class of frames is modally definable iff it is closed under dis-
Jjoint unions, p—morphic images, generated subframes, and if it and its complement
are closed under biduals.

Proor. Suppose that X is modally definable. Then it is closed under biduals,
and its complement is closed under biduals as well. By the previous theorem, X is
closed under p—morphic images and generated subframes. Furthermore, the bidual
of @ie ; §i is nothing but the coproduct in DFrm. Since X is closed under coproducts
and inverse biduals, X is closed under disjoint unions. Suppose then that X has all
the required closure properties. Then consider X, := X N D, the class of descriptive
frames contained in X. We have X = B™'[%,], by closure and inverse closure under
B. Therefore, the modal theory of X is the same as the modal theory of X, and X is
the class of frames satisfying the modal description of X;. So, we only need to show
that X, is modally definable. X, is closed under coproducts since the coproduct in
DFrm is the bidual of the disjoint union. X; is closed under p—morphic images and
generated subframes by assumption on X. Thus X, is modally definable. O

Exercise 161. Recall the notion of a net extension of Chapter [2.4] Prove that
given {, g and ), an embedding e : f > g and a contraction ¢ : f —» b, there exists a e
andmaps p:g —e,q: ) — esuchthat (i) poe =gocand(i)foralle’,p’ : g — ¢
and ¢’ : b — ¢ satisfying (i) there exists a unique i : ¢ > ¢’ such that p’ = io p, and
q’' =ioq. Prove also that p is a contraction and g an embedding.

Exercise 162. Generalize the setting of the previous exercise as follows. Let A, B
and C be objects and morphisms p, g as in the picture below to the left. This is a
special diagram. Say that D together with morphisms B — D, C — D is a pushout
of this diagram in a category C if for any other D’ with maps B — D’, C — D’ there
exists a unique map D — D’ making the entire diagram to the right commute. D
together with the maps into D is called a co—cone of the diagram to the left. The
dual notion is that of a pullback. It is based on the opposite or dual of the diagram
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to the left. Try to formulate the notion of a pullback. Show that any two pushouts of
a given diagram are isomorphic.

p
A B A B
q q
C C D

!\
DI

Exercise 163. Let A = (Ob, Mor) be a diagram in a category C. A cone for A is a
pair £ = (L,{pc : C € Ob)) where L is an object and pc : L — C such that for any

pair C,D € Ob and C L D € Mor we have pp = f o pc. A limit for A is a cone £
such that for any cone £’ for A we have a uniquely defined map i : L” — L such that
P¢ = pc o i. Now show that products and pullbacks are limits for special kinds of
diagrams. Dualize to define the notion co—cone and co-limit and see where you can
find instances of co-limits.

Exercise 164. Show that there exist 2% ultrafilters on p(w). (In fact, there are 2%
many.) Hint. Consider the sets I,, :={i : i = 0 (mod p,)}, where p, is the nth prime
number. For each M C w let Uy, be an ultrafilter containing I, iff n € M.

4.8. Free Algebras, Canonical Frames and Descriptive Frames

In this section we will discuss the difference between canonical frames and de-
scriptive frames. Before we do so, let us reflect on duality in connection with canon-
ical frames. We have shown in Section that in any given variety V, for any
cardinality a, V contains freely a—generated algebras. Furthermore, if v : @ > 8
then v : Fry(a) = Fry(B) and if w : @ - B then w : Fry(a) » Fry(B). Now let
V be the variety of ®-algebras. Then €ang(@) turns out to be the dual of Fry(a@).
Moreover, v° : Cang(8) - Cang(a) and also w' : Cang(B) »> Cang(a). The dif-
ference is that while the worlds of Cang(a) are maximally consistent sets the worlds
of the dual of Frg(@) are ultrafilters. The difference, however, is negligeable. Let us
elaborate on this a little bit. For given cardinal number « let V,, := {pg : B < a}. Now
let ¢ = y iff ¢ & y € ®. This is a congruence. Moreover, Fry(a) = Tm(V,)/ =.
The homomorphism corresponding to = is denoted by /- and the congruence class
of ¢ is denoted by [¢].

ProposiTioN 4.8.1. A set A is a maximally consistent set of V,—terms iff there
exists an ultrafilter U in Fry(a) such that A = hZ'[U].

Proor. Let A be maximally consistent. Then it is deductively closed, as is easily
seen. In particular, if ¢ € A and ¢ = y, then y € A. So we have A = hZ'[A=[A]].
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Furthermore, the image U of A under A= is deductively closed and so it is a filter,
by Proposition To show that U is an ultrafilter, take b ¢ U. Then b = [¢]
for some ¢ ¢ A. By maximal consistency of A, —¢ € A (Lemma[2.8.2). Moreover,
[-¢] = —[¢] = —b. Hence -b € U. If —-b € U, then b ¢ U, otherwise A is
inconsistent. So, U is an ultrafilter. Conversely, assume that U is an ultrafilter, and
put A := hZ'[U]. A is deductively closed. Forlet ¢ € Aand ¢ — y € A. Then
[¢] € U and [¢] — [x] = [¢ — x] € U. U is deductively closed, so [y] € U, from
which y € A. A is maximal. For given ¢, [¢] € U or [-¢] = —[¢] € U. Hence ¢ € A
or =y € A. But not both, since not both [¢] € U and —[¢] € U. O

PROPOSITION 4.8.2. The map hZ! is an isomorphism from Frg()* onto Cang(a).

The proof of this proposition is left as an exercise. Now letv : @ — S be a
function. Denote by v also the function p, = pyu, 4 < a. Then v : Frg(a) —
Jre(B). Furthermore, if v is injective iff v is, and v is surjective iff v is. Then v* :
Fre(B)* — Fre(@)*, by duality. Furthermore, vtis injective iff v is surjective, and
surjective iff ¥ is injective. Recall also how v* is defined; given an ultrafilter U of
FreB), v(U) = TI[U]. Now recall from Section the map X, : Im(Vp) —
Im(Vp), taking a f—term to its preimage under v. This map can be shown to map
maximally consistent sets onto maximally consistent sets. Namely, given A, put

Y, (A) := hZ' oV o ho[A]
Lemma 4.8.3. For a maximally consistent set A, Y,(A) = X,(A).

The proof is straightforward but rather unrevealing. The Theorem[2.8.T1]follows
in this way from the duality theory developed in this chapter. On the one hand duality
theory is more general, since there are descriptive frames which are not canonical
for any logic. On the other hand, we will show below that descriptive frames are

generated subframes of canonical frames. This result of duality theory therefore
follows already from Theorem [2.8.11]

DEeriNtTION 4.8.4. Let A be a modal logic and « a cardinal number. A frame §
is called a canonical frame for A if § is an a—canonical frame for some «; and
& is canonical simpliciter if it is a canonical frame for some logic.

Recall that the a—canonical frame for A is isomorphic to v, (@)*. It may appear
at first blush that canonical frames are the same as descriptive frames. This is not so
as we will show below. However, every descriptive frame is a generated subframe
of a canonical frame. Namely, fix any logic A and let D be a descriptive frame for
A. Then D, is a A—algebra. Every A—algebra is the image of a free A—algebra by
Theorem [1.3.5] Consequently, D > Frp(a) for some a. We will use this fact to
derive a useful characterization of canonicity of logics first shown in [186]]

DeriniTiON 4.8.5. A logic A is called d—persistent if for every descriptive
frame D for A the underlying Kripke—frame, Dy, is a A—frame as well.
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THEOREM 4.8.6 (Sambin & Vaccaro). A logic is canonical iff it is d—persistent.

Proor. Since every canonical frame is descriptive, d—persistence implies canon-
icity. So let us assume that A is canonical and D a descriptive frame such that D £ A.
Then D > € for some canonical € frame for A. Because € £ A, we have €4 £ A, by
the fact that A is canonical. But then Dy E A, since Dy > ¢y, O

We can cash out here a nice result concerning finite model property. A variety
is said to be locally finite if every finitely generated algebra is finite. Obviously, a
variety is locally finite if all finitely generated free algebras are finite. By duality,
they are isomorphic to the full algebra of sets over a finite Kripke—frame. Now say
that a logic is locally finite if its corresponding variety is. Say that a logic A has a
property ‘B essentially if every extension of A has ‘P.

THEOREM 4.8.7. If @ is locally finite then every extension of ® is weakly canoni-
cal and has the finite model property essentially.

Now let us return to the question whether descriptive frames are also canonical.
The question is whether modal algebras are free algebras in some variety. For ex-
ample, vector spaces are freely generated by their basis. However, not all boolean
algebras are free, for example the algebra 23. (A finite boolean algebra is freely
generated by n elements iff it has 2% elements.) Nevertheless, it is interesting to ap-
proach the question to see clearly what the relation between the two notions is. Let
D be a descriptive frame and put ® := Th(D). First, if © = Cany (@) for some a and
some A, then D = Cang(a). In other words, D is a—canonical in its own variety iff it
is a—canonical. For by duality, if an algebra U is freely a—generated in a variety V,
we have 2 € V and so the variety generated by 2 is included in V. However, U is then
freely a—generated in any smaller variety containing it, and so freely a—generated in
the least such variety.

ProposiTioN 4.8.8. Let § be a frame. § is a—canonical for some logic iff it is
a—canonical for Th §.

We will need the distinction between an algebra generating a variety and an
algebra free in that variety later on in the connection with splittings. It is necessary
for the understanding of the results proved there to have seen an explicit construction
of a—free algebras and we will provide such an example now. Consider the frame
of Figure [4.4] This frame is not O—generated; but it is 1—generated, for example, by
the set {y}. Therefore it is a canonical frame iff it is also freely 1—generated in its
own variety. Now, how does the 1-generated canonical frame look like? To that
effect recall that the freely n—generated algebra in a variety V is a subalgebra of the
direct product of the members of V, indexed by n—tuples of elements in the algebras.
In the present context, where K = {2}, this reduces to the direct product [],c, 2.
The freely one—generated algebra is computed as the subalgebra generated by the
function which picks b in the component indexed by a. (Recall that the product is
indexed over A, so that each factor takes an index b € A. In each factor, s takes a
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Ficure 4.4.

value, in this case s(b) = b.) The reason why this is so lies in the following. Let V be
generated by K. Let us call A a—free for X if there is a subset X C A of cardinality «
such that for every B € X and maps v : X — B there is a homomorphism v : A — B.
The difference with the concept of a freely generated algebra is that 2 € X is not
required; moreover, 2A need not be generated by X. But the following holds.

ProposiTiON 4.8.9. Let W be a—free for K. Then N is a—free for HSP(X).

Proor. Let A be a—free for K. We show that then 2 is a—free for the classes
H(X), S(X) and P(X). To simplify the argumentation, let us first remark that if 2
is a—free for XK, then it is a—free for I(X), the closure of K under taking isomorphic
copies.

(1.) Let € € H(X). Then there is a B € K and a homomorphism 4 : B - €. Now
take amap m : X — C. There exists amap n : X — B such that m = h o n. (Just
let n(x) := a for some a € h~'(m(x)).) By assumption there exists a homomorphism
n: A — Bextending n. Then hon : A — € is a homomorphism extending m.

(2.) Let € € S(X). Then there is a B € K such that € < B and so C C B. Let
i : C — B be the inclusion map. Letm : X — C be amap. Theniom : X - B
and by assumption there is an extension i o m : A — B. However, the image of this
map is contained in C, and so restricting the target algebra to € we get the desired
homomorphism m : A — €.

(3.) Let € € P(X). Then there are B;, i € I, such that € = [],;; B;. We may
assume € = [],g; B;. Now take m : X — C. Then for the projections p; we have
piom : X — B;, and by assumption there are homomorphisms p;om : A — B;.
By the fact that the algebraic product is a product in the categorial sense there is a
unique f : A — [];e; B;i such that p; o f = p; om. Then f extends m. O

The present algebra, the algebra of sets over the frame f, has eight elements. Thus,
the freely one—generated algebra is a subalgebra of A8. The eight choices are dia-
grammed in Figure [f.5] below; in each copy the set of elements which are values of
p are put into a box. All we have to do is to calculate the algebra generated in this
complicated frame. However, we are helped by a number of facts. First, f admits an
automorphism, namely x — x, y — z, z — y. By this automorphism, 1 is mapped
into 1v and v into vi. All other models are mapped onto themselves. This fact has as
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FiGure 4.5.
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a consequence that the algebra induced on mr and 1v jointly (on the underlying frame
f @ f) is isomorphic to the one nr induces on f (and isomorphic to the one induced
on 1v on its copy of f). Hence, we can drop n1 and v in the direct sum. Next, the
frames induced on 1, 11, vit and vin are not refined. 1 and 1 are actually isomorphic
to a one—element frame, vir and vim to a two—element chain. This gives a reduced
representation of the underlying frame as the direct sum of two one—element chains,
two two—element chains and two copies of f. The general frame is still not refined.
Its refinement is the frame shown in Figure (The frame is shown to the left. To
the right we repeat the frame, with worlds being numbered from 1 to 6.) It might be
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surprising that the frame just constructed should indeed be canonical, as it contains
more points. But notice that this frame is rather regular, having 8 automorphisms,
and that Aut(Cang (1)) = ZyXZyXxZ,, generated by the permutations (1 4)(2)(3)(5)(6),
(1)(2 3)(4)(5)(6) and (1)(2)(3)(4)(5 6). The orbits are {1,4}, {2,3} and {5, 6}. There
is up to automorphisms of the frame only one generating set, containing one world
from each orbit of the group.

Notes on this section. Canonical frames have been heavily used for obtaining
results, such as completeness results. Yet, their structure is not well-understood.
Some new results can be found in the thesis by TimorHy SURENDONK ([204]). It is not
known, for example, whether there exists a cardinal number a such that if a modal
logic is @—canonical it is also S—canonical for any .

Exercise 165. Prove Proposition[4.8.2]
Exercise 166. Show Theorem 4.8.7]

“Exercise 167. Let S be a set, and let ® be a group of permutations of S. We say that
® is transitive on S, if for every given pair of points (x,y) € S? there exists a g € G
such that g(x) = y. We say that ® is sharply transitive if at most such g exists given
(x,y). Now let Fra(2) be the algebra freely generated by A many elements. Call a
function f : k = Fra(d) an M-system if f[«] is a maximal independent subset of
Fra(d). (A set H C A is called independent in an algebra U if for all ¢ € H, a is
not contained in the subalgebra generated by H — {a} in 2A.) Show that Aut(Fra (1))
is sharply transitive on the set of M—systems of §ry (4).

Exercise 168. Let O be a consistent modal logic and 7 a natural number. Show that
Aut(Fre(n)) has a subgroup of size n! - 2".

4.9. Algebraic Characterizations of Interpolation

Categories of frames have coproducts since they are dual to the algebras. How-
ever, to have coproducts is a rather rare property. This accounts in a way for the fact
that properties such as interpolation and Halldén—completeness are rather rare. We
will prove in this section two standard results on interpolation, both shown by LAr-
1sA MAKSsIMOVA in a series of papers, and then derive some useful characterizations of
Halldén—completeness.

DerFiNiTiON 4.9.1. A variety V of polymodal algebras is said to have the amal-
gamation property if for any triple Wy, Wy and WA, of algebras in V and embed-
dings iy : Wy = Wy and i, : Wy » W, there exists an algebra 3 € V and maps
e - W > Wz, en 0 Wy »> Wz such that e; o iy = ey o ip. 'V is said to be have the
superamalgamation property if in addition the e; can be required to have the
property that whenever e((a;) < ex(ay) for a; € Ay, a, € A, there exists an ap € Ay
such that a; < i1(ay) and ir(ay) < as.
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THEOREM 4.9.2 (Maksimova). Let A be a polymodal logic. Then the following
are equivalent.

(1) A has local interpolation.
(2) The variety of A—algebras has the superamalgamation property.

Proor. Assume that A has local interpolation. Let %y, 2A; and A, be A—algebras
and i; : Ay »> A; (j € {1,2}) be embeddings. Without loss of generality we can
assume that Ag € A;jNA,. For each element a € A; UA, fix a variable x,. We assume
all these variables are distinct for distinct elements. Denote by §;, i € {0, 1,2}, the
A-—algebra freely generated by {x, : a € A;}. Denote by &3 the algebra generated
by {x, : a € A; U Ay}. There are natural embeddings &y > & — &3, i € {1,2}.
Also there are homomorphisms b; : §&; - U;, i € {1,2} defined by b, : x, — a and
by : xp — b. The maps assign the same value to each x, where a € Ag. Now let
Ty :={¢:bi(p)=1}and T, := {¢ : b(¢) = 1}. Put

T:={x:TiUT, IFp x}.
Now we show that the following holds for {i, j} = {1, 2}
Tikp o> U = IxeF)e—>xeTli&ky—->yeT).

From right to left is clear. Now assume that T -5 ¢ — . Then for some finite set
I't € Ty and some finite set [, € 7, we have I'1;I Ao ¢ — ¢ and so for some
compound modality & we get BI"}; 8l 5 ¢ — . Thus

FaeABLL. — .81 = .

There exists now a local interpolant y, that is, a formula using the common variables
of pand ¥ and 5 (B A @) — y as well as ko ¥ — (B, — ¢). With this y we
haveI'; kA ¢ = y and I kA ¥y — . Thus wehave ¢ —» y € Ty and y — ¢ € T>.
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Now define ¢ @y by T -5 ¢ < . This defines a congruence on g3, since it defines
an open filter. Now put Uz := §3/@. There is a homomorphism b3 : 3 — Us.
We will show that the filters defined by ® on the algebras & and &, are exactly T
and T,. (See picture above.) This means that ker(bs) | F; = ker(b;) (i € {1,2}).
Namely, for ¢ € F; we have ¢ ® 1 iff T -y T — ¢. This means that for some y in
the common variables we have T — y € T, and y — ¢ € Ty. Then y is constant
and since T € T} we also have T — y € T showing T — ¢ € Ty, thatis, ¢ € T}.
Likewise we show that ¢ ® 1 implies ¥ € T, for € F;. Denote by c; the restriction
of b3 to &;, i = 1,2. Soc; : & — Us. We have shown that ker(c;) = ker(b;).
There now exist maps ¢; : A; > Az (i € {1,2}) such that ¢; factors through ¢;, and
ejoby = cj aswell as e;0by = ¢;. Finally, let e;(a) < ey(b). Then ej(a) — ex(b) =1
and so x, — x, ® 1 which means that T -5 x, — x,. From this we geta y € Fj
such that x, —» y € Ty and y — x;, € T, and so a = bi(x,) < bi(y) as well as
by(x) < by(xp) = b. Moreover, by(y) = ba(y), since by and b, assign the same value
in Ag to y, which is a common subalgebra of both A; and A,. This shows that the
superamalgamation property holds for V.

Now assume that the variety of A—algebras has the superamalgamation property.
Let ¢ = ¢o(p, P) and ¥ = W (7, §) be formulae such that for no y based on the variables
7 we have ko ¢ — y;x — . Let &) be the algebra freely generated by 7, &
the algebra freely generated by j and 7, &, the algebra freely generated by ¢ and
7 and &3 the algebra freely generated by p, § and 7. Let U; be an ultrafilter on &3
containing ¢, and let V be the ultrafilter induced by U; on the subalgebra &y. Then
V U {=y} has the finite intersection property in 3 and so there exists an ultrafilter U,
containing it. We then have U, N Fy = U; N Fy. Let O, be the largest congruence
contained in Uy, and ®; be the largest congruence contained in U;. Put ® := 0,;L0,.
(The largest congruence induced by a filter F is the same as the congruence induced
by the largest open filter contained in F; and this is equal to the set of elements
a such that ma € F for all compound modalities B.) For elements of Fy, u®;v
iff for all compound modalities B(u < v) € U, iff for all compound modalities
B(u < v) € Viff for all compound modalities B(u < v) € U, iff u®,v. Put
By := ®N(Fy X Fp) and Ay := Fo/Op. Then we get an embedding i; : Ay > A4



216 4. Universal Algebra and Duality Theory

as well as ip : Ay »> A,. Assume now that we have an element y € F such that
¢ > x0O;1land y —» ¥ 0O, 1. Then y € U, since ¢ € Uy, and then also ¢ € U,.
But this contradicts our choice of U; and U,. Hence no such element exists. By
superamalgamation, however, we get an algebra B and maps ¢; : A; > B such that
ejoi; = e;oipand e;([¢]®)) £ ex([Y]®;). Now define amap b : F3 — B by
b(p) := e1([pil®1), b(g)) := ex([g;102) as well as b(ry) = e([1x]O1) = ex([1x]O2).
This is uniquely defined and we have b(¢) £ b(y) from which ¥ ¢ — . O

THEOREM 4.9.3 (Maksimova). Let A be a polymodal logic. Then the following
are equivalent.

(1) A has global interpolation.
(2) The variety of A—algebras has the amalgamation property.

Proor. The proof of amalgamation from global interpolation is actually anal-
ogous to the previous one. So let us prove that amalgamability implies global in-
terpolation. We assume that ¢ 5 i but no interpolant exists. Define $( to be
algebra freely generated by the common variables of ¢ and ¢, and §&3 the algebra
generated by all the variables of ¢ and . Let O; be the open filter generated by
¢, and O, an open filter containing — and O; N Fy. Such a filter exists. Then
01 NFy = O, N Fy. Let ©; be the congruence associated with O;. Now put
Ap = F3/0; and A, := F3/0O,. Then as before for elements of Fy, u® viff u®, v,
and hence ®; and ®, induce the same congruence on &y. Therefore, we have an
embedding i; : Wy > Ay and i : Ay »> A,. Thus, assuming the amalgamation
property, there is an algebra B and morphisms e;, i = 1,2, satisfying e; oi; = e; 0 i5.
Define v by v(p) := e1([p]0®)) if p € var(e) and v(p) := er([p]®y) if p € var(y).
This is noncontradictory. Since we have ¢ € O; we also have v(By) = 1 for all
compound modalities. Since =y € O, we have V(i) # 1, and so ¢ k¥ . O

The results on amalgamation property can be improved by showing that A3 en-
joys a so—called universal property. This means that given Uy, 2A; and A,, embed-
dings i; : Ap »> W; (j € {1,2}) there exists an A3 and maps e; : A; — A3 such that
ejoi) = epoip and for every algebra B together withmaps d; : Ay — B, dp : Wy — B
with d; oi; = d, o1y, then there exists a unique homomorphism 4 : A3 — B such that
d; = hoe) and d; = hoe,. Namely, consider the maps v; : x, — dj obi(x,) = d,(a),
Va2 @ X4 > dy o by(x,) = dy(a). Then v and v, agree on the elements in Ay, and so
v :=v; U, is well-defined. It extends to a unique homomorphism v : §3 — B. We
have that @ := ker(v) [ & = ker(d, o by) and ®, := ker(v) | & = ker(d, o by).
Put ® := ©; LU ©®,. As in the previous proof it is shown that ® [ F; = ®; and
® | F, = ©,. Moreover, O is the kernel of the map v and includes ker(bs). Thus
it can be factored uniquely through b3, yielding a homomorphism 4 : A3 — B with
the desired properties. In the sense of the definitions in the exercises of Chapter [4.7]
what we have shown is that a variety of modal algebras that has amalgamation also
has pushouts for those diagrams in which both arrows are injective.
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Now we turn to local and global Halldén—completeness. Recall that if a logic is
locally or globally Halldén—complete it has trivial constants; another way of saying
this is that the freely zero—generated algebra contains exactly two elements (if A is
consistent). Then for every pair of nontrivial algebras 2%; and U, we can find an
and injections iy : Ay > A; and i; : Ay > Ay. Simply take the zero—generated
subalgebra; if the algebras have more than one element, this algebra is isomorphic to

&rA(0).

DerINITION 4.9.4. A variety V has fusion if for every pair A, W, € V of non-
trivial algebras there exists an algebra B and embeddings e; : Wy > B and
ey : Wy > B. V has superfusion if for every pair Wy, W, € V of nontrivial al-
gebras there exists an algebra B and embeddings e; : N; > B such that for every
a € Ay — {0} and every b € A, — {1} the inequation i)(a) < i,(b) does not hold.

The following theorem can be found in a slightly different form in [153].

THEOREM 4.9.5 (Maksimova). Let A be a polymodal logic. Then the following
are equivalent

(1) Ais locally Halldén—complete.
(2) The variety of A—algebras has superfusion, and the zero—generated alge-
bra contains at most two elements.

The global version is as follows:

THEOREM 4.9.6 (Maksimova). Let A be a polymodal logic. Then the following
are equivalent

(1) A is globally Halldén—complete.
(2) The variety of A—algebras has fusion, and the zero—generated algebra con-
tains at most two elements.

For a proof, let A be (locally/globally) Halldén—complete. We may assume that
A is consistent; otherwise the equivalence is clearly valid. Take two algebras 2; and
Ay. We can embed Frp (0) into both of these algebras. Now follow the proofs of the
Theorems [4.9.2] and [.9.3] We obtain an algebra B and embeddings ¢; : A; »> B.
The superfusion condition is verified for the local case. For the converse, let the
variety of A—algebras have (super)fusions, and let the zero—generated algebra have
two elements. Then enter the second half of the proof of Theorem with ¢ and ¢
assuming that for no constant proposition both ¢ Fo y and y -5 . Buteither y = T
and then ¥ i, or y = L and then ¢ ¥4 L. Performing the same argument as in the
proof we get that ¢ ¥4 . As a consequence we get the following theorem of [15].

THEOREM 4.9.7 (van Benthem & Humberstone). Let A be a logic such that for
every pair (1, x1) and (¥, x2) of pointed frames there exists a pointed frame (©®, y)
and two contractions p1 : ® » § p2 1 ® > &, such that pi(x1) = p2(x2) = y.
Then A is locally Halldén—complete.
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DeriNiTION 4.9.8. A variety V has finite coproducts if for every pair Uy, A,
of algebras in V there exists a third algebra B and maps iy : A; —» B, i, : Ay > B
such that for every algebra € and every pair of maps ey : Wy — Cand ey : Ay — €
a unique h : B — € exists satisfying ey = ho i and ey = h o iy. We denote B by
Ay oAy

THEOREM 4.9.9. A logic is globally Halldén—complete iff it has trivial constants
and the corresponding variety has finite coproducts.

Exercise 169. Give a characterization of those logics whose variety has coproducts,
without any restriction on constant formulae.

Exercise 170. Let A;, i < w, be logics which have (local/global) interpolation.
Suppose that A; € A;if i < j. Show that | |,.,A; has (local/global) interpolation.
Exercise 171. Give an example of logics A; which have local interpolation, such that
A; > Ajfori < j, such that (), A; fails to have interpolation.



CHAPTER 5

Definability and Correspondence

5.1. Motivation

Correspondence theory developed from a number of insights about the possibil-
ity of defining certain elementary properties of frames via modal axioms. For ex-
ample, transitivity of Kripke—frames may either be characterized by the first—order
formula (Vxyz)(x <y < z. = .x < z) or by the modal axiom ¢¢p — ¢p. We therefore
say that the axiom 4 corresponds to transitivity on Kripke—frames. These insights
have sparked off the search for the exact limit of this correspondence. In particular,
the following two questions have been raised by Jonan van BEnTHEM in [10], who has
also done much to give complete answers to them.

* Which elementary properties of Kripke—frames can be characterized by
modal axioms?
* Which modal axioms determine an elementary property on Kripke—frames?

Both questions were known to have nontrivial answers. Irreflexivity cannot be char-
acterized modally, so not all first—order properties are modally characterizable. On
the other hand, some modal axioms like the G—axiom determine a non—elementary
property of frames. Many people have contributed to the area of correspondence
theory, which is perhaps the best worked out subtheory of modal logic, e. g. JoHaN
vaN BENTHEM [8], RoBeErT GorpsrAatT [77]], [79]. With HENDRIK SAHLQVIST’S classi-
cal paper [183] the theory reached a certain climax. There have been attempts to
strengthen this theorem, but without success. It still stands out as the result in corre-
spondence theory. Nevertheless, there has been a lot of improvement in understand-
ing it. The original proof was rather arcane and methods have been found to prove
it in a more systematical way (see van BEnTHEM [10], SaMBIN and Vaccaro [187] and
also Kracur [[121]] and [124]).

Meanwhile, the direction of the research has also changed somewhat. Corre-
spondence theory as defined above is just part of a general discipline which has
emerged lately, namely definability theory. Definability theory is the abstract study
of definability of sets and relations in general frames. There are a number of reasons
to shift to this more abstract investigation. First, as has been observed already in
SamBIN and Vaccaro [187], there is a real benefit in raising the above questions not
for Kripke—frames but for frames in general and suitable classes thereof. For suppose
that (as in SAHLQVIST’s original proof) correspondence of modal axioms of a certain

219
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form with first—order conditions is established not only for Kripke—frames but also
for descriptive frames. Then one can immediately derive that logics axiomatized by
such formulae must be complete. First—orderness on Kripke—frames is not enough
for that. Second, the success of canonical formulae of MiCHAEL ZAKHARYASCHEV for
logics containing K4 (see Chapter [8)) shows that there can be useful geometric char-
acterizations of axioms which are not first—order in general. Even though first—order
properties are well-understood and there is a powerful machinery for first—order
logic, there is nevertheless much to be said in favour of an attempt to characterize
in whatever terms possible the geometric condition imposed on frames by an axiom.
They cannot all be first—order as we know, but they may in many cases be simple,
as the notorious example of G shows. The third generalization concerns the use of
relations rather than properties. That is, we ask which relations are characterizable
modally in a given class of frames. This move has many advantages, although we
need to clarify what we mean by a modal characterization of relations since modal
formulae are invariably properties of worlds rather than sequences of worlds. Never-
theless, we will develop such a theory here and it will be possible to say for example
that a frame is differentiated iff equality is modally definable. In this way natural
classes of frames are motivated by the possibility to define certain relations.
Definability theory is thus the study of the following questions.
% Given a class X of frames, which relations between worlds are characteri-
zable modally in X?
* Given a class X of frames, what geometric properties of frames do modal
axioms impose on the frames of X?

From there many questions arise which have been treated in the literature with some-
times surprising answers. These questions are for example the following.

* Which classes of frames can be characterized by modal axioms?
* What is the relation between closure properties of classes and the syntactic
form of definable properties or relations?

5.2. The Languages of Description

Before we can enter the discussion on definability we will fix a suitable lan-
guage within which we derive formal results. Such a language is traditionally seen
to be monadic second—order logic. Here, however, we will use a notational variant,
namely two—sorted first—order predicate logic. The special language will be called
the external language and denoted by L°. It is two—sorted, that means, there are two
sorts of well-formed expressions, namely modal propositions (called i—formulae)
and formulae. Moreover, L°¢ has two sublanguages, L™, the modal language, for
talking about modal propositions and L/, the frame language, for talking about
worlds. L™ is in fact isomorphic to the basic modal language we are operating in.
Remember that there is not just a single modal language, but a whole family of
them with varying number of modal operators and varying number of variables and
constants. For the moment we assume that we have countably many propositional
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variables and no constants, though nothing depends on that. Of proposition variables
and constants there will otherwise be as many as needed. Similarly, depending on
the cardinality « of basic modal operators £ will have the following symbols

* proposition variables p-var = {p; : i € w},
% boolean connectives T, =, A,
* modal connectives O, j < k.

All symbols are standard, and their interpretation will be as well. Notice that ¢;
is not a primitive symbol. This is done to make the subsequent discussion simpler.
Nothing hinges essentially on that. Now the frame language £/ has

world—variables w-var := {w; : i € w},
equality =, and relations <; for i < «,
logical junctors t, =, A and —,
quantifiers ¥V and 3.

* K X ¥

(Here t is a constant, which receives the value true.) Finally, £L¢ has two more ingre-
dients, namely

* a membership predicate €,
* proposition—quantifiers V and 3.

For a rigorous definition of formulae we need two sorts, propositions and worlds,
over which the two sorts of quantifiers may range. Moreover, we define two sorts of
well-formed expressions, internal formulae (i-formulae) and external formulae
(e—fomulae). They are composed as follows

(1) pi,i < w, T, L are i—formulae.

(2) If ¢ and ¢ are i—-formulae, so are -, ¢ A, O (j < k).

(3) If ¢ is an i—formula and i < w then w; € ¢ is an e—formula.

(4) tis an e-formula.

(5) w; =wj and w; < w; are e-formulae for all i, j < w, k < k.

(6) If £ and n are e-formulae then so are =, A nand £ — 7.

(7) If £ is an e—formula and i < w then (Yw;){ and (dw;){ are e—formulae.
(8) If ¢ is an e—formula and i < w then (Vp;){ and (dp;){ are e-formulae.

An e-model is a triple (F,[,¢) with § a frame, and with 8 : p-var —» G and ¢ :
w-var — g. Given an e-model (®,5,¢) and an e—formula ¢, the relation (®,5,¢) E
{ is defined inductively as follows. (Here, given two functions f and g, f ~, g
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abbreviates the fact that f(x) # g(x) only if x = a.)

(6,8,0) Fwi € uwi) € B()

(6,8,0) Fw; =w; twy) = t(w))

(0,8,0) Ew; <¢ w; t(w;) < t(wy)

(0,8,00 F ¢ (0,8,00 ¢

(0,80 AR (0,8,0) F {and (6,8,0) F

from (®, B, ) £ { follows (®,5,1) En
forall ' ~,, ¢ (6,B,/)YEL
for some ' ~,, ¢ (6,B,/)YEL
(6,8,0) F (Vi) forall g’ ~,, B (0,8.0k¢
(®,8,0) E Api)¢ forsome ' ~, 8 (O,8,0)E

Further, ® £ ¢ iff for all 8 and all ¢ we have (®,8,t) £ {. Notice that we have
used B(¢) in the first clause. This is strictly speaking yet to be defined. However we
assume that B(¢) is computed as before by induction on ¢. Notice that in addition to
equality there is one symbol whose interpretation is rather special, namely e. It must
always be interpreted as membership. The following sentences are theorems of the
Le—logic of generalized frames. They show that the L—connectives are in principle
dispensable. (Here { = n abbreviates { — 1. A .n — {. Open formulae are as usual
treated as if all free variables were universally quantified.)

(0,0l —>n
<®aﬁ’ L) E (le)g
(6,8,0 F Awi){

(B N R R DR

Wi € —p = =(w; € ¢)

wiepAY = wiep N wiey

wiep =Y = W €p. = W €Y

w; € O = Yw)w; < wi. — Wi € @)

L¢ is not interesting for us because it defines a logic of structures, but because it is
a rather strong language within which we can express (almost) everything we wish
to say. For example, it contains both first—order properties for frames and properties
expressed by modal axioms. With respect to the latter only the notation has changed
somewhat. We can no longer write § £ ¢ but must instead write

& E (Ywo)(wg € ).

Also, the so—called standard translation of a modal formula is defined as follows.

ST(p, x) = X€p

ST(—, x) = =5T(p, x)

ST ANy, x) = ST(p,x) N ST, x)
ST(Ojp, x) = (M gjy. — ST(p,y)

(In the last clause, y must be a variable not already occurring in ST (¢, x). By con-
struction, x is always the unique free variable. Clearly, ST (¢, y) is then the same as
ST (¢, x)[y/x].) Obviously we have in all frames

(Vx)(x € ¢ = ST(¢, X)) .
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To conclude this part we will introduce the language R°. In this language the quan-
tifiers over worlds are replaced by so—called restricted quantifiers. They are defined
as follows.
Yw; > wi)
Aw; > wi)

The restricted quantifiers can be defined from the unrestricted quantifiers as shown,
but the converse does not hold in absence of weak transitivity. Syntactically, we
want to construe the restricted quantifier as follows. It takes an e—formula ¢ and two
variables w;, w; and returns an e-formula. Hence, for each i < « there is a distinct
restricted quantifier. Notice that this quantifier is said to bind only w;, and that w; is
called a restrictor. Let R¢ denote the language £¢ with restricted world quantifiers
instead of unrestricted ones. Likewise, R/ denotes the language obtained from L/ by
replacing the unrestricted quantifiers by restricted quantifiers. R¢ can be construed
as a sublanguage of £¢, and R/ as a sublanguage of £/. The restricted languages are
expressively weaker, but the difference turns out to be inessential in the connection
with modal logic. On the other hand, R¢ and its frame counterpart RS have several
advantages, as will be seen shortly. With the restricted quantifiers we will define the
following shorthand notation, corresponding to compound modalities. Let o range
over sequences of numbers < k, and s, ¢ over sets of such sequences. (If s = {0}, we
omit the brackets.)

Mwpw; e wj. = .0)
(3Wj)(Wi < wj. A 0)

Vx>w)l = w/x]

(Fx > w)l = (w/x]

Vx> 'w)l = (Vyp'w)(Vxp y)!
Vx> w)e = (VxS w)l A (Vx!w)l
@Ax>Tiw) = @yiw)@x > y)

Ax M w)e = @x S w)l v (Axsiw)

Here, it is assumed that y is not free in {. Similarly the shorthand notation x <® y is
defined. It corresponds to the compound modality O°. Sets of the form {x : w <* x}
are called cones. The restricted quantifiers range over cones. The last language
introduced is 8/. It has in addition to the symbols of R/ all <® as primitive sym-
bols, where s is a finite union of finite sequences over k. Also, it has the following
additional axioms

x</ Ty = (Tzr; 0z <7y)
x <¥ y = X=Yy

x<®y = =(x=x)
x<My = x<fy. v .xdy

Exercise 172. Show that no R¢ and R/ formula can be a sentence, i. e. have no free
w—variables.

Exercise 173. Show that R/ has nontrivial constant formulae, in contrast to L.
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Figure 5.1. & (left) and ® (right)
® Y1
CINERCAD
Yo
5.3. Frame Correspondence — An Example

Before we start with the general theory we will look at an instructive example.
Let there be just one operator, for simplicity. Consider the axiom alt; := ¢p A 0g. —
.O(pAg). Itis quite easy to show that a Kripke—frame satisfies this axiom iff the frame
is quasi—functional, that is, satisfies the first—order axiom (Yx)(Vyo > x)(Vy; > x)(yo =
y1). Namely, if the frame f = (f, <) is quasi—functional, and (f, 3, x) £ ¢p A Oq, then
there is a successor yg £ p and a successor y; F g. Butyg = y;, andsoyg E p A g
from which we get x £ ¢(p A g). On the other hand, if f is not quasi—functional there
isan x € f and x < yg, y; for distinct yg, y;. Put 8(p) := {yo} and B(q) := {y1}. Then
we have yy £ p; =g, y1 F g; —p and for all other points z we have z £ —p; =q. Whence
X EOp;0q; =0(p A q).

Now lets suppose we have a general frame § = (f,F). Does it still hold that
it satisfies alt; iff it is quasi—functional? Well, one direction is uncomplicated. If
the underlying Kripke—frame is quasi—functional then § F alt;. Just copy the proof
given above. However, in the converse direction we encounter problems. When x
has two different successors we took two special sets for S(p) and B(g) and there is
no guarantee that we may still be able to do so. In fact, the following frame shows
that the converse direction is false in general. Namely, let { be based on three points
x,y0,y1 With x < yo,y1. Define F := {@,{x}, {yo, y1},{x,y0,y1}}. Then § := (i, F)
is a frame since F is closed under boolean operations and under ¢, as is quickly
computed. (See Figure ) The valuation that we used to show that alt; can be
refuted is now no longer available. Moreover, the map p : x — u,yg — v,y; = vis
a p—morphism onto the quasi—functional frame g. Moreover, F is the p—preimage of
the powerset of {u, v}. Thus, we actually have ¥ F alt;.

We see that the correspondence between first—order properties and modal prop-
erties may break down if we pass to a larger class of frames. This is an important
point. In most of the literature on correspondence theory only the problem of corre-
spondence with respect to Kripke—frames is discussed. Although this is by itself a
legitimate problem, it is for reasons discussed earlier advisable to broaden the class
of frames to be looked at. We can also put the question on its head and ask how large
the class is for which the correspondence between alt; and quasi—functionality can
be shown. The way to approach that question is to look for sets which can serve as
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FiGure 5.2.

)
2

values for valuations falsifying a given formula once the corresponding first—order
condition is not met. For example, if we have a violation of quasi—functionality be-
cause x < yp,y; for yo # y; we want to be able to produce a valuation S such that
(&, B, x) £ alt;. Above we have chosen S(p) = {yo} and B(g) = {y1}, so we conclude
that in atomic frames the correspondence will still hold. But this is not such a good
result. Consider the frame $ = (), H) where & = {x} U {y; : i € w} and x < y;, but
no other relations hold. Finally, H is the boolean algebra generated by the sets of the
form r(i,k) :={y, : A€ € w)(n =i- £+ k)}, where k < i. Thus H consists of finite
unions of such sets possibly with {x}. H as defined is closed under complements and
unions, as an analogous frame constructed in Section[4.6] The point about this frame
is that it is not atomic but nevertheless the correspondence holds. For pick any y; and
y; with i # j. What we need is sets ag, a; such that y; € ap, y; € a, and y € ap N a;
for all k. Assume i < j. Then put a; := r(j,0) — r(j,i) and ag := r(j,i). We have
a) Nag = @ by construction and y; € ag, y; € a;. So, such sets exist for all choices
for offending triples x, yo, y;.

In general it is sufficient that ¥ be differentiated. For let us assume that x sees
two distinct points yy and y;. Then differentiatedness guarantees the existence of a
set a such that yg € a but y; ¢ a. Putting B(p) := a, f(g) := —a we get the desired
valuation proving § ¥ alt;.

ProvposiTion 5.3.1. A differentiated frame is a frame for K.alt, iff the underlying
Kripke—frame is quasi—functional.

Now consider the frame € in Figure[5.2] This frame is not quasi—functional, it is
not differentiated, but it also does not satisfy alt;. Thus, the result above is still not
optimal. The reason for this failure is easy to spot. On the one hand we have x<iy; and
X <y, and there is a set a such that y; € a but y, ¢ a. This alone suffices to establish
the equivalence between failing alt; and not being quasi—functional. However, on
the other hand we also have x < yy and x < y; and yy and y; are not separable by a
set. So, what we have shown in the cases above is that no matter what triple of points
x,y,z we choose such that x <y, z there always is a set a such that y € a but z ¢ a.
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The frame here does not have this property. To distinguish these two properties let
us say that quasi—functionality corresponds casewise to alt, if for every choice of
points x <y, z such that y # z there is a set a with y € a but z ¢ a. And let us say
that quasi—functionality corresponds simply if from the failure of quasi—functionality
somewhere we can deduce the existence of triple x <y, z and a set a such thaty € a
but z ¢ a. Simple correspondence is clearly weaker.

ProposiTioN 5.3.2. In the class of differentiated frames the property of being
quasi—functional corresponds casewise to the property of being a frame for K.alt,.

Casewise correspondence is not actually the same as local correspondence, the
notion we are ultimately interested in. Local correspondence is defined only with
reference to the root x. Namely, quasi—functionality locally corresponds to alt; in a
frame © if

6= M)[(Vyo > w)(Vyr>w)yo =y1) =  (Vp)Vu e Op Aog— (p Aq))]

The frame € above satisfies this correspondence as well, showing that the casewise
correspondence as just defined is really weaker. Nevertheless, it seems a rather ar-
tificial concept to begin with. The problem is, however, that the schema above can
be written down rather nicely. On the left hand side we have a first—order formula
satisfied at u#, and on the right hand side we have a modal formula satisfied at u. No-
tice that the k is ambigous here. On the left we would have to construe the statement
as being expressed in R/, the frame part of the external language, whereas on the
right hand side we have the ordinary F from the internal language modal logic, and
not from the modal fragment of the external language. It is now in principle pos-
sible to rephrase the left hand side to state that we have a concrete triple violating
functionality.
(T Ex<yg A x<dy1 A yo £
On the left hand side we have several such statements:

(&.8,1(0)) F P (&.8,()) F ¢, (&,B,1(x)) E~0(p A q)

Thus, we can define (strong) local correspondence by requiring that the violation
of quasi—functionality is equivalent to the simultaneous satisfaction of three inter-
nal formulae, one at each of the worlds which constitute the triple violating quasi—
functionality. It is this latter formulation of correspondence that we will take as the
key definition. If we use L¢ here, we can write this sequence of conditions as

(TB,)Fxe=0(PAG) NYoep N Y1 €q
Furthermore, we can abstract from the valuation 3:

(&0 E@Ap)AP(xe=0(pAg) A yoep A Y1 €q)

Exercise 174. Show that $ is a frame. In particular, show that the intersection of
two sets r(ig, ko), (i1, k1) 1s a finite union of sets of the form r(i, k).
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Exercise 175. Show that for tight frames & and points x, y, z such that (§,¢) F x <
y < z;x # z iff for some valuation x £ =¢p, y £ T and z £ p. Hence, transitivity
corresponds locally to .4 in the class of tight frames.

5.4. The Basic Calculus of Internal Descriptions

Informally, we will say that a (first-order) relation {(xy, ..., x,—1) can be inter-
nally described in a given class X of frames if we can find a sequence (¢, . . . , ¥s-1)
of modal formulae such that for every frame & € X we have

(&0 k(X0 Xpm1) for some S (F, B, ux0)) F o,
) <8"B’ L(xn—l» F Qn-1

We will rewrite the right-hand side into

(BB ) EX)EQ) Auei A Xy € Qi

We use overstrike arrows in the following way. Let ¥ and ¢ be n—long sequences.
Then
Xeg:= /\ X; € @i
<n

Notice that the number i does double duty in x; by both identifying x; and assigning to
it a modal formula ¢. This will be rather cuambersome. Thus, to make the association
of the variables with the modal formulae independent of the index i on the variables
x;, we use the following notational device. We write [%] to denote (a pair consisting
of) the formula £ and a sequence (x; : i < n) such that every free variable of { is
identical to some x;, i < n. (It is not required that x; is distinct from x; if i # j.)
The numbers i < n of an n—long sequence are also called slots. Given an n—long
sequence ¢ of modal formulae, the slots of /[X] are in one to one correspondence
with the slots of @. Notice that writing {[X] we may nevertheless have X ¢ fvar((), a
fact which we will make use of. We call £[X] a slotted formula. We emphasize that
this is just a piece of notation, nothing more. If the association between variables and
slots is clear (especially when there is just one variable), we may drop the sequence.
Occasionally we will also use subscripts 0, 1 etc. rather than the sequence of slots.

DEFINITION 5.4.1. Let X be a class of frames, {[xo, . . ., Xu—1 ] a slotted L' —formula
and @ = {@o, . . . , pn—1) a sequence of length n. We say that ¢ internally describes
CinXifforall§ € X and all 1, (§,1) £ LX) iff (§, 1) £ X € @ Symbolically, we write
([R] vy @, or simply {[X] «~ @. Given X and @ we say that ¢ is elementary in X
ifan ¢ € LS exists which is described by @ in X.

Notice first of all that internal describability of £ itself is L—definable. Namely,
(§,1) E X € @is just a shorthand for the conjunction of x; € ¢;. Now we have the
following equivalence

femx g © XE(VDUIX]. =.AP)(F e )
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Here j collects all variables of @. A particularly interesting example of an elementary
sequence are those of length 1. In that case it is of the form ¢y, i. e. an ordinary
proposition. ¢ is elementary in X iff there is an £(xy) € £/ such that

X E (Yx0)({(x0) = (AP)(x0 € ¢0)) -
Alternatively,
X F (Yx0)(=¢(x0) = .(YP)(x0 € =) -

If the latter holds we say that -, defines —{[xp] and is elementary, and that ¢
is modally definable. The same definition could be generalized to sequences, but
this is of little benefit. We say that a logic is X—elementary if all of its axioms are
elementary in X. In addition to this definition of elementarity, which for distinction
will be called local, there is also a global elementarity. Namely, we say that ¢ is
globally elementary in X if there exists an L/—sentence £ such that for all § € X we
have § F ¢ iff § £ {. Global elementarity is weaker as we have seen earlier, and it
will be of little importance henceforth. Nevertheless, the following theorems can be
stated for global rather than local elementarity.

ProposiTiON 5.4.2. Let X be closed under the map (§,F) — §. Then if a logic is
globally X—elementary, it is complete with respect to the Kripke—frames of X.

Examples of such classes are the class of differentiated frames, of refined frames,
the class of canonical frames together with the class of Kripke—frames. With respect
to a class X we say that a logic A is persistent if for all § € X we can infer &y £ A
from & £ A. This is the general scheme. Moreover, we have d—persistence, which is
persistence with respect to D, r—persistence, which is persistence with respect to R
etc.

ProposiTioN 5.4.3. If A is X—persistent and X—complete, A is Xy—complete.

Proor. Let ¢ ¢ A. Then since A is X—complete there is a frame & € X such that
& E Abut F ¥ ¢. Since A is X—persistent, §y £ A. But &y ¥ ¢ as well, showing A to
be Xy—complete. O

ProposiTioN 5.4.4. If A is globally X U Xy—elementary it is X—persistent.

Proor. Let A = K, ® A. Each ¢ € A is X U Xy—elementary, whence there is an
elementary sentence ¢, such that § £ ¢ iff § £ {, for all § € X U X;. Now assume
& £ A. Then § £ A. By X—elementarity of A, & £ £, for all ¢ € A, hence y k {,,
for all ¢ € A since each {, is an L/ —sentence. So &y £ A, by Xy—elementarity of A.
Consequently, §y E A. O

Let us now turn to the problem of determining which statements of the form
‘¢ emy @ are valid. In the sequel we will be concerned with five basic choices for
X, namely the class of all frames, the class of differentiated frames, tight frames,
refined frames and of descriptive frames. Of course if £ «»x @ and X 2 9 then also
{ «vy @ as well, so not all work has to be done separately. In this section we will
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introduce a calculus for deriving correspondence statements in a quasi—logical style,
with axioms and rules. This calculus, called Seq, will be correct for ® and hence for
all classes. As starting sequences one can in all cases take a constant formula. Recall
namely, that if ¢ is constant, so is the standard translation ST (¢, x). Consequently,
the standard translation is first—order. Now we always have

FEVPVx)(x € ¢. = .ST(p, x))

In this special case, the propositional quantifier is superfluous since there are no
variables to be bound. This shows that we always have

(axiom.) ST (¢, x0)[x0] ey @ if var(y) = @

Of course, this can be stated for sequences as well. So we do have some nontrivial
correspondences to start with. The next set of rules is rather obvious. We may add,
for example, an inessential variable. If {[xg - ... - x,-1] is a condition on the n—tuple
(X0, ..., X,—1), we can nevertheless view it as a condition on n + 1-tuples (x, . .., x,)
(which we abbreviate by ¥ - x,). There is then no condition on x,, and so on the
modal side this corresponds to adding T at the end of the sequence. Furthermore,
we can permute sequences. Given a permutation 7 : n — n, we can write 7(X) for

the sequence (Xx(), - - - , Xx(n—1))» and similarly for the modal side. Then the following
rules are valid.
LX) e @ LX) e @
(exp.) = = (per.)
X -xy] e @ T {[r(X)] e~ 71(P)

In both rules we used a double line separating the top row from the bottom row.
This means that the rules can be applied top—to—bottom or bottom—to—top, which in
the case of (exp.) amounts to killing an unnecessary variable. Next consider the
operation of renaming the variables in ¢ by a substitution o~. Obviously, if p* is
another variable and p — p? is injective, that is, no two variables are identified, then
this is just a harmless operation, with no bearing on the property described by the
sequence.

(ren.)

fev
—— o 1 p—var > p—var

e g

Similarly, consider swapping —p and p (denoted by ¢[-p = p]), or alternatively,
replacing p by —p and killing double negation. Again, this does not change the
elementary property described.

(¢
{ v @l-p = pl

(swap.)

Next consider the operation of replacing in {(¥) a variable, say x,-;, by another, say
Xn—2. This amounts on the modal part to replacing ¢,,—» by ¢,—> A@,—1. Also consider
iterating a condition on another variable.
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(X, DXy 2] ¢ @ 02 - Pni
Ly, Xy e» @0 Ay

(cnt.)

LEY[X-y] em G- x
LEY) NLEDX-y-2lem G- x-x

(iter.)

Suppose, namely, that {[¥-y - z] e» @G- @2 - ¢u—1. Then for all n—tuples w C f
of worlds in § € X, we have Z[w)] iff for some valuation B, w; € E((pi) for all i < n.
Now choose an n — 1-tuple w C f. By assumption, £[w - w,,_»] iff for some valuation
w; € ,E((pi) foralli <n-2and w,; € B(cpn_z) as well as w,,_, € E(tpn_l), so that
Wy € E(go,,_g A @u-1), and conversely. Thus the rule is correct. Notice that we
must reduce the number of arguments here. We cannot conclude, for example, that
{ A Xp—p = Xx,-1 is describable, for this would require simultaneous fixing of x,_,
and x,-; to the same value. The rule (iter.) is likewise straightforward. For the
statement of the following rule let @' and @* be two sequences of length n. Then
G NG =(p! NP i<n).

{'Few g Pl @
&' APNR e @ NG

For a proof assume (! A £?)[W]. By assumption we have a valuation 8' such that
w; € Bl (¢}) forall i < n, and a valuation 3 such that w; € Bz(gof) for all i < n. Define
B as follows. B(p) := B(p) if p € var(@), B(p) := B*(p) otherwise. This is well
defined by the assumption that ¢' and @ are disjoint in variables. Then w; € B(cpil)
as well as w; € B(¢?) for all i < n, and so w; € B(p! A ¢?), as required. Conversely, if
w; € E((p} A <pl.2) for all i < nthen w; € B(gail) as well as w; € B((piz) for all i < n and so
by assumption ¢'[W] as well as Z2[W)].

(A-L) if var(@") Nvar(@®) =

Ryl @y ClRylem @y
' VONR Y e G x Vi

(v-1.)

LEYIX-y] e @ x

(O_I) - - -
Fz > (E DX y] e G- Oix

To see the correctness of the first rule, assume the premisses hold, and that /' v Z2[]
for an n + 1-tuple W. Then either ¢! [W] or Z2[W]. Assume without loss of generality
the first. Then there is a valuation 3 such that w; € B(¢;) all i < n and w, € B(y).
Then also w, € B(X V ). Conversely, assume that w; € B((pi) for all i < n and
w, € By V). Then either w, € B(x) or w, € B(¥). Assume without loss of generality
the first. Then, by the left hand premiss of the rule ¢'[W], whence (¢! v ¢ 2)[w]. Next
the rule (0-L.). Assume ((3z >; y)¢)(¥,z). Then there is a sequence w - v such that
(Az >; y)Z[W - v], that is, there is a u such that v <; u and £[W - u]. By assumption, we
can find a valuation 8 such that w; € B(¢;) for all i and u € B(y). Then v € B(0;x),
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which had to be shown. Conversely, assume w; € B(g;) for all i and v € B(¢;x). Then
there is a u such that v <; u and u € B(x). Thus, by the premiss of the rule, £(¥ - u).
Then, however, ((Az >; v)Z (¥, 2))[W - v], as required.

Now let Seq, consist of the axioms (axiom.) and of all the rules (exp.), (per.),
(ren.), (swap.), (cnt.), (iter.), (A-L), (V-1.) and (¢-1.). We call Seq the base calcu-
lus. Let C be a calculus of internal descriptions, consisting of axioms and rules. A
statement ‘Z «~» @ is derivable in C if it can be produced from the axioms with the
help of the rules in finitely many steps. We say that ¢ is derivable in C if there exists
a ¢ € L7 and a sequence ¥ such that ‘/[¥] «» @ is derivable in Seq; and that /[X]
is derivable in C if there exists a sequence @ such that ‘/[¥] «~ @ is derivable in C.
A calculus C of correspondence statements is sound for a class X if ‘/[X] «» & is
derivable in € only if @ internally describes £[X] in X. C is called complete for X if
whenever ¢ internally describes £[X] in X, ‘/{[X] e @’ is derivable in C.

THEOREM 5.4.5. Seq is sound for all classes of frames.
An important consequence is the following.

THeOREM 5.4.6. Let X be any class of frames. If {(xy) is obtained from formulae
internally describable in X with the help of conjunction, disjunction or restricted
existential quantification, then {(xg) is internally describable in X.

Proor. From Lemma [5.4.7| we conclude that the set of internally describable
£(®) is closed under A. It is clearly also closed under restricted 3. Now let £(xp)
be composed from internally describable formulae with conjunction, disjunction and
restricted existential quantification. Then, by some straightforward manipulations,
{(xp) is equivalent in predicate logic to a disjunction of formulae 7;(xy), i < n, each
of which is made from describable formulae using only A and restricted 3. Then,
for all i < n, n;(xo) is describable in X, and by Lemma[5.4.8] £(xo) is describable in
X. O

Lemma 5.4.7. Let X be a class, and let {(%) and n(X) be describable in X. Then
(¢ An)(X) is describable in X.

Proor. By assumption, there exists sequence @ such that £(X) «~»x ¢ and a se-
quence zﬁ such that (X) vy ﬁ Now let ¥ result from renaming variables of ¢ in such
a way that they become disjoint to the variables of @. Then, by (ren.), n(¥) ¢ x J
Finally, by (A-L), @ A ¥ describes (£ A p)(X) in X. ]

LemmMa 5.4.8. Let X be a class, and let {(xo) and n(xg) be describable in X. Then
(& V n)(xp) is describable in X.

The proof of this theorem is similar. Notice that in proving the correctness of
the rules we have always shown how to construct a valuation for a given sequence of
worlds. Now we consider two rules.

(#1) Xo £ X| ¢» p-p (#-L) Xp #; X1 ¢~» O;p-—p
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THEOREM 5.4.9. Seq + (#—1) is sound for Df, the class of differentiated frames.
The proof is an exercise.
THeoreM 5.4.10. Seq + (4—1) is sound for Ti, the class of tight frames.

Again the proof is an exercise. We now give some examples of the calculus.
ExampLE 1. K.T is ti—persistent. For a proof consider the following derivation.

Xo A X; «» dp-—p

Xo A Xxo «~» Op A —p

The first line is true in Ti. Hence Op — p locally defines xy < xq in the class of tight
frames.
ExampLE 2. K 7 is ti—persistent.

X Ao X1 & Ogp - —p
(Ju >1 x0)(u 0 x1) ¢~ ¢10Ogp - P
(Ju 1 x0)(u 4o x0) ¢~ ¢100p A =p

Xo A1 Xy > O1p - —p
(Ju >g x0) (1 41 x1) ¢~ GoO1p - p
(Ju >g x0)(u A1 X0) ¢~ GoO1p A —p

These two derivations show that in the class of tight bimodal frames the formulae
¢oO01p — p and ¢ 00p — p locally correspond to (Vu > xp)(u <9 xp) and (Vu >
X0)(u <1 xp), respectively.

ExampiE 3. K.alt; is df—persistent. The following derivation is a proof of this
fact.

Xo # X| e» p-p
(Axo > u)(u # x1) v Op - —p
Ax; > v)Jur x0)(u #v) «» Op - O-p
Axo > v)Aur> xp)(1 # v) e Op A O—p

Notice that the axiom ¢p A ¢g. — .0(p A ¢q) is not derivable with the help of the
calculus for differentiated frames.

THEOREM 5.4.11. Let {(x0) € RS be universal, restricted and positive. Then
L(xp) is internally definable in R, the class of refined frames.

Proor. —{(xp) is negative, existential and restricted. Thus, it is composed from
formulae of the form x; # x;, x; #; x; with the help of conjunction, disjunction and
restricted existential quantification. Whence it is derivable in Seq + (# -L.) + (4
-L). |
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Let us end this section by considering the question of the completeness of the
basic calculus. We will show in Section [9.5] that for a modal formula ¢ it is unde-
cidable whether it axiomatizes the inconsistent logic. Hence the set of sequences
‘@ «w f” is undecidable. The idea behind setting up modal equivalence not as a mat-
ter of theorems of second—order logic but as a deductive calculus is that while the
former is undecidable, the latter may be decidable, however at the price of being in-
complete. On the other hand, we will see later (Theorem 5.8.6) that Seq is complete
in the following weaker sense. If ‘¢ ¢~ £(x)’ holds in ® then there exist i and r such
that K, ® ¢ = K, @ ¢ and (Vx){(x) = (Yx)n(x) (in predicate logic) and ‘¥ «» 1(x)’ is
derivable in Seq. It is not clear whether this generalizes to arbitrary sequences, but
that seems to be the case. So, rather than generating all facts we generate at least a
representative class of them. We could in principle add rules that would make the
calculus complete (by closing under equivalence), but that would make it undecid-
able and useless for practical purposes.

Exercise 176. Show that (iter.) is sound for all classes.

Exercise 177. Show that inequality is internally describable in X iff X is a class of
differentiated frames. This proves Theorem [5.4.9]

Exercise 178. Show that j-inaccessibility (i. e. #;) is internally describable in X for
all j < « iff X is a class of tight frames. This proves Theorem

Exercise 179. Show that the set of X—elementary logics is closed under finite joins
and finite meets in the lattice of all modal logics.

“Exercise 180. Show that o¢ooOp — ¢0O¢p is globally Krp—elementary and corre-
sponds to (Vx)(Iy)(x < y). However, this axiom is not locally elementary. (The first
half is not so difficult, only the failure of local elementarity. For those who want to
see a proof, it can be found in van BEnTHEM [10]], page 82.)

5.5. Sahlqvist’s Theorem

Two classes of modal formulae will play a fundamental role, monotone and A—
distributive formulae. A formula ¢(p, §) is monotone in p if + o(p A1, §) — ¢(p, §),
where F ¢ abbreviates ¢ € K,, and A-distributive in p if - o(p A 1, §). & .0(p,§) A
¢(r, q). ¢ is called monotone (A—distributive) if it is monotone (A—distributive) in
all occurring variables. The notions antitone and V—distributive are dual notions.
That is to say, ¢ is antitone (V—distributive) in p iff = is monotone (A—distributive)
in p. All of these notions can be characterized syntactically. We will give sufficient
criteria here. Call a formula ¢(p, §) positive in p if all occurrences of p are in the
scope of an even number of negations. Call a formula strongly positive in p if p
does not occur in the scope of — (or any ¢; for j < « if ¢; is a primitive symbol).
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¢ is positive (strongly positive) if it is positive (strongly positive) in all occurring
variables. A formula is negative (strongly negative) if it can be obtained from a
positive (strongly positive) formula by replacing each occurrence of a variable p by
—p. Notice that we can characterize a positive formula also as follows.

ProrosiTiON 5.5.1. ¢(p, §) is positive in p iff there exists a formula ¥ which is
built from the letter p and formulae not containing p with the help of A, V, O;, 0,
i <k, such that p(p) & ¥ € K,.

The proof is an exercise. Notice that the occurring constant subformulae can be
arbitrarily complex. The formula Oy((¢;(T A=OgL)V p) Adop) is positive. Likewise,
Oo(01 T V Ogp) is strongly positive.

ProposiTioN 5.5.2. The following holds.
(1) If o(p, §) is positive in p it is monotone in p.
(2) If o(p, §) is strongly positive in p it is A—distributive in p.

Proor. (1.) By induction on ¢(p, §). By Proposition we can assume that
¢ is built from the letter p and formulae not containing p with the help of A, v, O;
and ¢;, j < . The formula p is monotone in p; likewise a formula not containing p
is obviously monotone in p. Suppose ¢ = 1 A ¥,. By induction hypothesis, ¥ (p A
rq + ¢i(p, @) and Yo (p A r,G) + Yo(p, §). Hence o(p A 1. @) F Yi(p, §) A da(p, (=
o(p, §)). Similarly for ¢ = ¢; V ¢,. Now suppose that ¢ = O;/1. Then by induction
hypothesis ¥ (p A r,§) + ¥1(p,q). From this we get O (p A r,§) + O(p,q), as
required. Similarly for ¢ = ¢;¢/1. (2.) Again by induction. A formula not containing
p is A—distributive in p by the fact that - ¢ < ¥ A . Now let ¢ = 1 A Yo, ¥ and
Yy strongly positive. By induction hypothesis both are A—distributive in p. Then we
have + yi(p A 1, §) © Wi(p,§) A i(r, @) and so

e(p ArG) A yi(p A1, @) A(p AT, §)
A Y1 (p, @ A (@) Aa(p, @) A (1, §)
A o(p,q) A @(r. Q) .
Similarly for ¢ = O. O

A sequence ¢ of formulae is called a spone if each of its members is either
strongly positive in all variables or negative in all variables. (The name spone is an
acronym from strongly positive and negative.) We will usually write a spone in the
form 7 - ¥, where 7 is the subsequence of the strongly positive formulae and ¥ the
subsequence of the negative formulae. We will show that in the class Krp U D all
spones are elementary, and this will prove Sahlqvist’s Theorem. In the basic calculus
Seq not all spones can be derived. However, in the class RrpU™D another rule is valid.
The key to this rule is the following lemma. To state this lemma properly recall from
Section[2.9]the concept of an upward directed family of sets. Let a frame § be given.
Consider a set / of indices which is partially ordered by <, and for each pair i, j
there is a k such that i < k and j < k. A family over (/, <) is simply a collection
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of sets ¢;, i € I (or a function from / into F). This family is upward directed if
i < jimplies ¢; C ¢;. Given such a family D = (d; : i € I) we write O;D for the
family (0;d; : i € I). An upward directed family has a limit, lim D, which is just the
union | J;¢; d;. The notion of a downward directed family is dual, that is, we require
i < j = d; 2 d; instead. The following theorem is due to LEo Esakia in [58]].

LemmMma 5.5.3 (Esakia). Let § be a tight and compact frame and D = (d; 1 i € I)
be an upward directed family of sets in F. Then

m; lim D =1lim .[@.

Proor. D is upward directed, and so —D = (—d; : i € I) is downward directed.
It will be sufficient to show that for a downward directed family €, m;lim-& =
lim m; — &. This is the same as —m;lim —€ = —lim m; — € since lim commutes with
—. This is finally equivalent to

¢;lim € = lim ¢;&.

(For an upward directed family this is clear, but now € is downward directed.) (C.)
Let x € ¢;1limE. Then there isay € lim€& = () € such that x <; y. Thus for all
j€1, x e &djandsox € lime;E. (2.) Suppose x ¢ 4;limE. Pickay € lim¢&.
Then x +#; y. By tightness of § there is an internal set a, such that y € a,, but
X € m;—a,. Since the union of the a, contains lim &, there is a finite subset ¥ C lim &
such that lim & C U,ey a,. (This follows from the compactness of the frame.) Let
b := Uyey ay. Thenlim € C b and x € m; — b. Moreover, by compactness of § again,
there is an e € € such that e C b. Then # e C 4;b. Since x ¢ 4;b, x ¢ ¢ e. Therefore
X ¢ lim ’18 O

THEOREM 5.5.4. The rule (0—L1.) is sound for Krp U D.

(o-L) {[x_; J iM e — (0 a spone, u negative)
(Vzp; (X, 2)[X-y] e p-Oju

Proor. Assume that /[X- y] «~» g - u in the class Stp U D. Let ¥ be of length n.
Take a frame & from Krp U D and a valuation 8 such that w; € B(p,-) forall i < n and
Ve B(Dj,u). Then for all u such that v <; u we have u € B(u), and so by assumption
Z[W - u]. Hence ((Vy >; v){(X,y))[W - v], as required. For the converse direction
choose points wy, ..., w,_1,v such that for all u with v <t; u we have {[W - u]. Let
A = {u : v <; u}. By assumption, for each u € A there is a valuation g, such that
wi € B,(pi) and u € B, ().

Case 1. § is a Kripke—frame. Then put 8(p) := (Nuea Bu(p). Then w; € B(p;) for all
i. For either p; is negative (and the claim easily follows), or p; is strongly positive,
in which case B(p;) = (Nuea Bu(pi) and so w; € B(¢;). Furthermore, u € B(u) for all
u € A, since u is negative. Thus v € B(I:ij), and so everything is shown.

Case 2. § is a descriptive frame. Let I be the set of finite subsets of A. For S € [
let Bs(p) = (Nues Bu(p). It is not hard to verify that w; € Bs (0;) for all i < n. Our
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aim is to find an § € I such that v € [_35 (Oju). With respect to €, I is ordered
and (Bs(p) : S € I) is a downward directed family of sets. Now, u € Bs (w) if
u € S. Hence A C limBS(y) and so v € llim,[_i‘s(u). By Esakia’s Lemma v €
n; lim/_i’s (W) = lim .st W = limﬁs (Oju). By compactness of § there isan S € [
such that v € /_33 (O;u); this had to be shown. O

We define a new calculus Seq*, which is Seq enriched by (#-1.) and (O-1.)
and a new rule for conjunction, (A-I,.). To define it, let @' and @* be two n—long
sequences. Recall that @' A ¢ := (p! A ¢? 1 i < n).

Gi[X] e 7 - V) L[] e 7ty - ) L
(A1) for 7; - v; spones

41 A L[] e (7 A7) - (V1 A V)
It is left as an exercise to show the soundness of this rule. Moreover, this rule is sound
in all classes, so it can actually be added to Seq. It is only for ease of exposition that
we have chosen to ignore this rule previously.

THEOREM 5.5.5 (Sahlqvist). Let y be a modal formula of the form
By — ¥)
where B is a compound modality. Suppose that
(1) y is positive.
(2) ¢ is composed from strongly positive formulae using only A, V and ¢,
Jj <k
Then K, ® y is locally d—persistent and locally elementary in Krp U D.

Proor. It is enough if we can show that there is a { such that  «» —y. Now
—x = = B8 -(p A ). By repeated use of (¢-I.) and (v-1.) backwards this can be
reduced to showing that ¢ A =y is derivable. By (ent.) it is enough that ¢ - - is
derivable. -y is negative, and ¢ is composed from strongly positive formulae using
A, vV and ¢;. By appealing to the rules (ent.), (V-L.), (0-L) this can be reduced
to the problem of showing that sequences of the form 7 - v are derivable, where
7 is a sequence of strongly positive formulae and v negative. The theorem below
establishes this. O

LEmMA 5.5.6. All spones are derivable in Seq".

Proor. Let us concentrate on the modal formulae in Seq*. We proceed in several
steps.
Step 1. All spones 7 - ¥ are derivable where for some p, 7; = pand v; = =p, T or L.
Simply start with p - =p and use (iter.) and (per.).
Step 2. All spones are derivable in which the v; are constant or a negated variable.
Namely, by (swap.) it is enough to show that if all x; are variables or constants and
v; are strongly negative, the spone is derivable. So there are three possibilities, (i)
v is constant, (ii) v; = pg V o, (iii) v; = O;u. We deal with these cases in turn,



5.5. Sahlqvist’s Theorem 237

assuming without loss of generality that j = n — 1, the last entry of the list. So we
have the spone g - v,—;. Case (i). If g is derivable, so is - T. Moreover, v,_| is
derivable, and by (exp.) also T - v,_;, and so by (A-L) - v,_,. Case (ii). If 3 - u;
and g - u, are derivable, sois G-y V uz, by (V=L.). Case (iii). If - u is derivable, so
is - O;u, by (0-L).

Step 3. All spones are derivable. We may start from spones in which the strongly
positive part can be complex. The reduction is similar to that in Step 2, with two
more cases to be considered, namely (iv) v = uy A up, (v) v = O;u. Case (iv) is dealt
with by using the rule (A-I,.), and Case (v) is dealt with by using (O-L.). O

To master the syntactic description of the theorem requires some routine. We
note that for example the Geach formula ¢Op — DO¢p satisfies the conditions of the
theorem while the McKinsey formula 0¢p — ¢Op does not.

ExampLE 1. The Geach formula is elementary in {rp U D.

Xo # X1 & p-p
(Yu v xp)(u # x1) &> Op - —p

Vv x)Vur x0)(u £ v) «» Op - O-p
@’ > x0)(Vv > x))Vu> u')(u # v) e~ OOp - O-p
@' > x)@ > x0)(Vv > V)NVur u')(u # v) «» 6Op - OO-p
@' > x0) @A > x0)(Vv > V)NVu > u')(u # v) «~» 6Op A OO-p

ExampLE 2. The axiom ¢p A ¢g — O(p A q) defines a df—persistent logic. Never-
theless, we have seen that this cannot be shown inside the calculus for differentiated
frames. However, in the extended calculus it is derivable. The derivation is some-
what contrived. First, from xg # x, ¢» p-T-=-pandt ¢» T -T.q we get
Xo # Xy & p-q--p. Likewise, x| # xp v p - g - —q is derived. From this we get
XoE X2 VX1 #Fx e p-q--pV q. Now we get

My x)(xo ZyVxr £y) e p-g-0(=pV q)
Qu x)@Ave x)(Vy > x)u £y Vv #Y) ew» Op-0g-0(—p V q)
Fu > x0) @AV > x0)(Vy > x0)(v #FyVu £ y) «» Op AOg A =0(p A gq)

The formula (Ju > xp)(Av > x0)(Vy > xo)(u # y V v # y) is equivalent in predicate
logic to (Ju > xp)(Av > x9)(u # v). Hence O0p A Og — O(p A q) corresponds to
NMurv> xg)(Vv > xp)(u = v).

A formula satisfying the conditions of the theorem will be called a (modal)
Sahlqvist formula. A logic axiomatizable by Sahlqvist formulae is called a Sahlqvist
logic. We note that formulae of the form ¢ — , where both ¢ and ¢ are positive
and free of O, are all Sahlqvist formulae. There are some stronger versions of this
theorem. For example the following characterization due to Jonan van BEnTHEM [10]],
which uses the notions of positive and negative occurrences of a variable. These are
defined as follows. Let ¢ be a formula with n occurrences of p. For ease of reference,
we consider the different occurrences as being numbered from O to n — 1. Replace
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each occurrence by a distinct variable p;, and call the resulting formula ¢*. p occurs
positively at j in ¢ if ¢ is positive in p;. p occurs negatively at j if it does not
occur positively at j. For example, in ¢ = p A ¢—p, then the first occurrence of p
is positive and the second occurrence negative. We have ¢* = p; A ¢—p,, which is
positive in p; and negative in p;.

DEerNtTION 5.5.7. Call a formula ¢ a Sahlquist—van Benthem formula
if for all occurring variables p either (i) no positive occurrence of p in ¢ is in a
subformula of the form s A x or O if that subformula is in the scope of a Oy or (ii)
no negative occurrence of p in ¢ is in a subformula of the form s A x or O if that
subformula is in the scope of some ¢y.

Not every Sahlqvist formula is a Sahlqvist-van Bethem formula. For example
the formula ¢(p A O0—-p) — (¢Op V OO-p) is Sahlqvist—-van Benthem, but not
Sahlqvist. It was shown in [[10] that logics axiomatized by a Sahlqvist—-van Benthem
formula are canonical. In the next section we will establish that the class of logics
axiomatizable by Sahlqvist-van Benthem formulae is actually not larger than the
class of Sahlqgvist logics, so that this result actually immediately follows.

Here we will show a theorem to the effect that the class of Sahlqvist logics can be
axiomatized by simpler axioms than originally described by Sahlqvist. Namely, one
can dispense with the operator prefix. This is quite suitable for certain applications.
We should perhaps note that our definition of a Sahlqvist formula is not exactly
Sahlqvist’s own. In fact, he allows only an operator prefix of the form 0. (His proof
is only for monomodal logics, but is easily extended to polymodal logics.) We have
allowed ourselves to define a slightly larger class, which is also somewhat easier to
define in a polymodal setting. In view of the next theorem, these differences are
rather marginal. The class of Sahlqvist logics remains the same, no matter what
definition we choose.

THEOREM 5.5.8. Let O° be a compound modality. Let y = O°(¢ — ) be a
Sahlqgvist formula and q ¢ var(x). Put x° := 0°(q A @) — O°(q V ¥). x° is Sahlqvist
and K,y = K, ® x°.

Proor. It is clear that y° is Sahlqvist. Therefore, let us show the second claim.
¢ — ¥ is Sahlqvist. Let ¢ - = describe {(x,y)[x - y]. Then ¢ A =y describes
{(x, x), by (ent.), and 0°(¢p A =) describes (y >* x){(y,y). Hence the elementary
condition of y is (Vy >* x)={(y,y). Now, ¢ - =g describes (x # y)[x - y]. Hence, by
(A1), g A ¢ - =g A = describes the formula ({(x,y) A x # y)[x - y]. Therefore,
0*(g A @) - 0°(—g A —) describes

@Ax > )@y > ) Y) AX#EY)x-y]

0°(g A @) A O°(—g A =) describes (Ax" >° x)(FY' > x)(L(xX',y) A X" # '), by (ent.).
Hence x°, which is the negation, defines

(V' B ) (VY B =y — =X, Y))

This is the same as (Yx' > x)(={(x', x")). |



5.6. Elementary Sahlqvist Conditions 239

Exercise 181. Show Proposition[5.5.1]

Exercise 182. Name formulae which are monotone but not positive, and formulae
which are A—distributive without being strongly positive.

Exercise 183. Show the soundness of the rule (A-I5.).

Exercise 184. Suppose ¢ contains only positive or only negative occurrences of p.
Show that either K, @ ¢ = K, @ ¢[T/p] or K, ® ¢ = K, & ¢[L/p]. Thus, to be
essential a variable must occur at least once positively and once negatively.

Exercise 185. Show that if ¢ is Sahlqvist there exists a Sahlvist formula ¢ such that
K, ® ¢ = K, @ ¢, and every variable of y occurs exactly once positively and once
negatively.

Exercise 186. Generally, modal algebras are not closed under infinitary intersections
and unions. This can be remedied as follows. Given a modal algebra 2, the comple-
tion of A is defined by Em A := ((‘21+)ﬁﬁ)+. (See Section ) It consists of all sets
which can be generated as arbitrary intersections and unions of sets in 2. Show that
if ¢ is a Sahlqvist—formula then A k ¢ implies Em(A) k£ .

5.6. Elementary Sahlqvist Conditions

In this section we will characterize those elementary conditions which are de-
termined by axioms of the form considered in Sahlqvist’s Theorem. It is clear that
all derivable sequents ‘Z < @’ state a local correspondence and / € R/. We will for
simplicity always assume that the situation never arises that a world—variable v oc-
curs both free and bound in a subformula. Such a formula is called clean. Not clean
isx<;y A (y>p x)(y <4 x). Every unclean formula is equivalent to a clean formula
in the predicate calculus. In a clean formula £ a variable y is inherently existential
if () all occurrences of y are free or (ii) { has a subformula = (dy > x)6 which is
not in the scope of a universal quantifier. Likewise y is inherently universal if either
all occurrences of y are free in £ or £ contains a subformula n = (Vy >, x)0 which is
not in the scope of an existential quantifier.

Now recall the notation x<*y for sets s of sequences of indices < «. It means that
x can see y through one of the sequences in s. The formula x = y can be represented
by x <€ y. We will change our language for frames. Recall from Sectionthat the
language 8/ is obtained from R/ by adding x < y as primitive expressions. This is
only a technical move to simplify the terminology somewhat. The theorem we will
prove is the following.
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THEOREM 5.6.1. Suppose {(x) is a positive $'—formula such that every subfor-
mula x <* y contains at least one inherently universal variable. Then there exists a
Sahlqgvist formula ¢ which locally corresponds to {(x) in Ktp U D. Conversely, any
Sahlgvist formula corresponds in Krp U D to an elementary formula of this kind.

A first-order 8/—formula in L/ satisfying the conditions of the theorem will
henceforth be called an elementary or first—order Sahlqvist formula. General-
izing this somewhat, a formula £(%) of 8/ is called Sahlqvist if it is positive and
every atomic subformula contains at least one inherently universal variable. If /(%)
is Sahlqvist, =/(¥) will be called negative Sahlqvist. On the way to prove Theo-
rem[3.6.1] we will derive some useful facts.

Lemma 5.6.2. Let ((%,y) be a R/ —formula such that every atomic subfor-
mula contains at most one variable ¢ X. Then there exists a clean n(X,y) such that
YY)V (X, y) = n(R,y)) in predicate logic and every subformula of n has at most
one free variable outside of %.

Proor. By induction on {. We can assume that negation occurs only in front
of the atomic formulae. Moreover, we can assume that £ is clean and that a sub-
formula 7 is in the scope of a quantifier only if the quantifier binds a free variable
of 1. The claim holds by virtue of the assumptions for positive and negative atomic
subformulae. Now let (X, y) = n1(¥,y) A 12(X,y). By hypothesis, every atomic
subformula of £ has at most one free variable ¢ ¥. This holds also of the ;. By induc-
tion hypothesis there exist §;(¥, y) and §,(¥, y) such that (Yy)(V (71 (X, y) = 61(X,y))
and (YY)(VO)(72(X,y) = 62(%,y)) in predicate logic and every subformula of §; and
6, contains at most one free variable ¢ ¥. Then put 8(X,y) := §;(X,y) A 52(X,y).
This satisfies the claim. 6 is clean if §; and &, are. For a subformula & of 9 ei-
ther & = 6 or & is a subformula of 6; or &,. In the first case only y is a free
variable ¢ ¥. In the second case we know that every subformula of & contains
at most one free variable ¢ X. Similarly the case (X, y) = m(Xy) V ma(Xy) is
treated. Next assume (%, y) = (Yw > v)O(X,w,y). Thenv € X¥orv = y. As-
sume (X, w,y) = 61(Zw,y) A &(Zw,y). Then distribute the quantifier over
the conjunction. The formula (Yw >, v)(61(Z,w,y)) A (Yw g v)(52(X, w,)) is
equivalent to ¢ in predicate logic; it is clean and every atomic subformula con-
tains at most one variable ¢ ¥. Now back to the case of £ = ; A 1,. Assume
OX,w,y) = 61(Z,w,y) V 62(X, w,y). We may assume by induction hypothesis that
every subformula of &; and &, contains at most one free variable outside of ¥; this
variable is either w or y. Hence several cases may arise.

Case 1. w ¢ fvar(6;), w ¢ fvar(5,), where fvar({) denotes the set of variables occur-
ring free in £. Then put 77 := 6,(X,y) V 62(X, y); n fulfills the requirements.

Case 2. w € fvar(6,) and w € fvar(6,). Then consider an atomic subformula con-
taining the variable y. By assumption on ¢ it must be of the form x; <*y or y < x; for
some i and s. By assumption on ¢ this cannot happen.
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Case 3. w € fvar(6,) and w ¢ fvar(6,). Then
n(x,y) = (Yw e V)OI (E,w). V .62(X, ) .

Then since y = v or y € X, j fulfills the claim.
Case 4. w ¢ fvar(6) and w € fvar(6,). Then

n(Zy) := 61(2,y). V.(Yw >y v (X w) .

This fufills the requirements. Proceed dually in the case of an existential quantifier.
]

The previous theorem shows that if the atomic subformulae are of the form x<®y
with x € fvar({), then { can be written in an essentially ‘modal’ way. If we do not
require { to be clean we can actually arrange that £ contains very few variables by
reusing bound variables every time they are no longer needed. Two more variables
than occur free in ¢ are therefore needed; in particular, for { = (Vx)n(x) with no free
variables, then if { is of this form, it has exactly three variables. This follows from
the next theorem. It has been shown by Dov Gaesay ([72]) (see the exercises).

ProposiTioN 5.6.3 (Gabbay). Let (%) € R/ be Sahlqvist, % of length n. Then
{ = n for an n which contains at most n + 2 variables.

LemMa 5.6.4. Every ((%,y) € 8/ which is negative and in which every subfor-
mula has exactly one free variable outside of ¥ is derivable in Seq" and corresponds
to a spone 7 - v.

Proor. By induction on (¥, ), using the rules (A-I,.), (v=L.), (¢-L.) and (O-
L). The starting sequences are xg #4* yo e~ O°p - =p, which in turn are derivable in

Seq*. ]

The proof of Theorem [5.6.1]is now quite short. Suppose that (xo) is a negative
Sahlqvist formula. According to Theorem [5.4.6]it is enough to prove the claim for
negative Sahlqvist formulae of the form (¥y’ > x;)n(¥,y’). The latter formula results
from 6 := (¥y’' >, yo)n(%,y") by applying (ent.). Hence it is enough to show the claim
for the latter formula. By Lemma we can assume that every subformula of §
contains at most one variable ¢ ¥. Those subformulae with free variables completely
in ¥ can be moved outside the scope of any quantifier using laws of predicate logic.
So the problem is reduced to the case where every subformula of { contains exactly
one extra free variable. By Lemma[5.6.4] those are derivable in Seq*. The proof of
Theorem [5.6.1]is now complete.

Let us discuss the theorem to get a better insight into the classes of formulae
that are at issue here. Clearly, a somewhat more satisfying result would be one
in which we had only the restriction that / € R/ and that / is positive. Better
than that we can never do. (See the next sections.) The really hairy part is the
conditions on variables. Moreover, two questions arise. (1.) Why have we chosen
RS rather than L/ to begin with? (2.) Why use 8/ rather than R/ in Seq*? The
answer to both questions is: this is a matter of utility. For example, it is hard to state
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what we mean by positive in R/ inside L/ without actually talking about restricted
quantifiers in some hidden form. The second question is somewhat harder to answer,
but it will become clear by discussing some cases. Suppose first that { € R/ and
that £ contains no existential quantifiers; then the restriction on variables is vacuous.
By Theorem [5.4.T1] we know already that all elementary conditions are derivable.
Next consider the formulae of the form Y3 which are not V. These formulae have
existential quantifiers inside universal quantifiers, but not conversely. In this case the
condition says that in a subformula x <*y not both x and y may be existentially bound
variables. If we replace the clause x <*y by (dz>° x)(z = y), then both z and y may be
existentially bound so the condition on the variables cannot be stated in the same way.
Finally, consider the case where ¢ is of the form Y3V. Here, if we rewrite the clauses
x <*y the quantifier alternations increase; the resulting formula is of the form Y3v3.
Moreover, the newly introduced existentials are innermost, that is, closest to the
atomic subformulae. Let us now assume that we have eliminated the expressions x<*
y. Then both x and y may be existentially bound. But there is a difference between
variables that are introduced from rewriting the complex accessibility clauses and the
original variables. The former must be bound by an innermost existential which in
turn must have a restrictor which is inherently universal. No such restriction applies
to the other variables. Although the restriction can be restated in this way, it is clear
that this characterization is much less straightforward.
As an application, the following result will be proved.

THEOREM 5.6.5. Let ¢ be a Sahlgvist—van Benthem formula. Then the logic
K, ® ¢ is locally d—persistent and locally elementary in Stp U ©. Moreover, there
exists a Sahlgvist formula ¥ such that K, ® ¢ = K, & .

Proor. We shall show that = corresponds to an elementary negative Sahlqvist—
formula. First we rewrite - so that it contains only variables, negated variables,
¢, Oj, A and V. Recall the definition of a Sahlqvist-van Benthem formula. The
negation of such a formula satisfies the dual of that condition. This is the following
condition: for every variable p, either (i) no positive occurrence of p is a subformula
of the form ¢ Vv y or ¢y if that subformula is in the scope of a Oy or (ii) no positive
occurrence of p is a subformula of the form y Vv y or ¢ 3 if that subformula is in the
scope of a O0;. By substituting —p for p, we can arrange it that for every variable p
only (i) obtains. Call such a formula good. A formula is good if every subformula
Oy is either negative or strongly positive. Notice that the set of good formulae is
closed under subformulae. We will now show by induction on the constitution of the
formulae that each sequence ¥ = xo - x1 - ... - ¥n—1 of good formulae corresponds to
a negative Sahlqvist formula. To start, assume every y; is either positive or negative.
In that case, because the y; are good, the positive y; are actually strongly positive.
Hence ¥ is a spone, and it corresponds to a negative Sahlqvist—formula. If this does
not obtain, ¥’ contains a formula, say yo, which is neither positive nor negative. Then
one of the following cases obtains. Case 1. yo = ¢;7. Then7-y-...-y,_| corresponds
by induction hypothesis to an elementary negative Sahlqvist formula /(). Then y
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corresponds to ((Jy > x0){[y/xo])[¥], which is negative, elementary Sahlqvist. Case
2. xo = 71 V1,. By induction hypothesis and closure of elementary negative Sahlqvist
formulae under disjunction. Case 3. yo = 71 A 72. Then by induction hypothesis
T1T2X1"... Xn_1 COITesponds to some £(X), which is elementary negative Sahlqvist.
Then ¥ corresponds to £[x;/xp], which is also elementary negative Sahlqgvist. O

For future reference we will introduce the Sahlqvist Hierarchy to measure the
complexity of descriptions given by Sahlqvist formulae in R/. This will be measured
roughly by the number of quantifier alternations occurring in the formula. This can
be defined as follows. Let 77 be an occurrence of a subformula of . Then by replacing
t by x; = x; and by suitably renaming the occurrences of the variables in { we can
achieve it that each subformula occurs only once. Let T denote a formula resulting
from £ by this operation. /™ need not be unique. Under this condition, the following
is well-defined (and does not depend on a particular choice of 7).

sq-rank(ZT, ¢ = 0
sq-rank(ZT, —n) sq-rank(ZT, 1)
sq-rank({",m1 A 1) sq-rank(Z*,m)
sq-rank(ZT,my A 1) sq-rank({",12)
sq-rank({",n)

if sq-rank(¢", Ay > j0n) is odd
sq-rank(ZT,n) + 1

if sg-rank(¢*, (Jy >; x)n) is even
sq-rank({!,m)

if sq-rank({", (Vy > j X)) is even
sq-rank(CT,n) + 1

if sq-rank(Z", (¥y >; x)n) is odd

sq-rank(ZT, Ay >ix)n) =

sq-rank(", (Vy >; x)n)

Call a formula constant if all atomic subformulae are of the form f or x; = x;.
Finally,

sq-rank(¢) := max{sq-rank(Z", n) : 7 € sf("), n not constant}

Here, the maximum over an empty set is defined to be 0. This defines the rank of
an elementary formula. For example, a universal restricted formula comes out with
rank 0, while an existential formula has rank 1. This is desired even though the rank
counts quantifier alternations. Let us note, namely, that a R/ formula must contain
at least one free variable since all quantifiers are restricted and the free variables are
assumed to be quantified universally (though by an unrestricted quantifier). Thus, all
formulae invariably start with a universal quantifier, and this causes the asymmetry.
Notice further that the rank does not increase in case of a constant formula (even
though this has not been noted explicitly in the informal definition, but should be
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clear from the first clause). This is another deviation from classical quantifier com-
plexity. It is essential for many reasons that constant formulae have zero complexity.
If for some reason we want to count the constant formulae as well, we speak of the
pure rank. It is defined by

sq-rank(¢) := max{sq-rank({",n) : € sf(T))

We denote by Sq,, the class of Sahlqvist formulae of rank 7 and the logics axioma-
tizable by such formulae by Sq,. So, 0T € Sq, but it has pure rank 1. Likewise,
alt; € Sq,, .4 € Sq. Finally, it is helpful to distinguish the rank we obtain as above
from a rank in which x <; y is not a primitive formula, but equal to (Iz >; x)(z = ).
This we call the special rank. Notice that the special rank of ¢ is equal to the
Sahlqvist—rank of £ rank if the latter is odd or if the atomic formulae are of the form
x =y (i. e. not using <), and = sg-rank({) + 1 otherwise. This is so, because for the
special rank we only have to eliminate the formulae x <;y, introducing an existential
quantifier.

Notes on this section. Let FO* be the set of expressions of predicate logic in
which at most k distinct variables occur. It is known that FO? is generally unde-
cidable. However, M. MorTIMER has shown in [I58]] that FO? has the finite model
property and is therefore decidable. Given ¢, the size of model of a minimal model
for ¢ is exponential in the length of ¢. Hence polymodal K is decidable. This does
not extend to polymodal logics in general. For there exist finitely axiomatizable
Sahlqvist—logics without the finite model property; the first system of this kind is the
one of Davipb MakinsoN in [145]]. Makinson only shows that his logic is complete
but does not possess the finite model property. His paper predates that of SAHLQVIST
and does therefore not discuss the fact that this logic is Sahlqvist. See also [106] for
a discussion. Examples of Sahlqvist logics without the finite model property can be
found in this book in Section[9.4] These logics are elementary, but the corresponding
first—order property is in FO>. It cannot be in FO?, by MoRTIMER’s result.

Exercise 187. (Gassay [72]].) Show Proposition[5.6.3]

Exercise 188. Show that Gq, is closed under arbitrary unions and finite intersec-
tions.

Exercise 189. Show that a Sahlqvist logic can be axiomatized by formulae of the
form B(¢p — ) where both ¢ and i are positive and each occurring variable occurs
exactly once in ¢ and exactly once in y. Moreover, if that axiom corresponds to ¢,
the number of variables is at most the number of atomic subformulae in .

Exercise 190. A naive approach to correspondence is to take a formula and re-
gard the variables as referring to worlds rather than sets of worlds. For example, in
p — Opor p — O0p we can get the desired first—order correspondent by thinking of
p as denoting a single world. This is not in general a correct approach (for example,
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it fails with the Geach Axiom). Show however, that if ¢ — ¢ is Sahlqvist, and ¢
contains no box—modalities and each variable in the antecedent at most once, then
pretending p to denote single worlds yields a correct first—order correspondent. Hint.
Consider valuations of the form B(p) = {w} and show that they can detect a failure of
the axiom.

Exercise 191. Show that the Sahlqvist-van Benthem formulae are Seq*—derivable.

5.7. Preservation Classes

The next two sections will require some techniques from model theory, though
quite basic ones. In contrast to the previous sections, which characterized those state-
ments ‘¢ <~y ¢ which are valid, we will now derive facts about the correspondence
statements that are not valid for any . We will prove in this section that if a logic is
complete and closed under elementary equivalence it is canonical, which is the same
as being d—persistent, by Theorem4.8.6] Whether the converse holds is unknown and
has resisted any attempt to solve it. Moreover, in the next section we will elucidate
the connection between the syntactic form of elementary conditions and persistence
with respect to a class. Both questions receive only partial answers; for the most in-
teresting class, {rp U D, they are in effect still unsolved. The first result is that when
X contains all Kripke—frames and is L°—definable, any X—persistent logic is elemen-
tary. Furthermore, we will show that if X includes the class of Kripke—frames and
if £ is internally describable then ¢ is equivalent to a positive and restricted formula.
So all that is needed in order to show that Sahlqvist’s Theorem is optimal is to derive
the condition on variables occurring in atomic subformulas. No one has solved that
yet.

Recall now from model theory the construction of an ultraproduct. In connec-
tion with algebra this construction has been introduced in Sectiond.1] An ultraprod-
uct can be defined for Kripke—frames and for generalized frames as well. However,
these are two different constructions. One is the ultraproduct of Kripke—frames de-
fined in the usual way. The other is the ultraproduct of Kripke—frames viewed as
general frames, i. e. as full frames. Take an index set /, an ultrafilter U on / and a
family (f; : i € I) of Kripke—frames. The ultraproduct of the f; modulo U, denoted
by []yf; is defined as follows. The worlds are equivalence classes of sequences
w = (w; : i € I) modulo =, which is defined by ¥ ~ wiff {i : v; = w;} € U. We write
wy for {V : ¥ ~ w} and [] f; for the set {Vy : V € Xier fi}. (Mostly, we will write w
rather than Wy if no confusion arises.) We put ¥y <t; Wy iff {i : v; <; w;} € U. This
definition does not depend on the choice of representatives, as is easily checked. Fi-
nally, [Ty T := Iy fi. (< : j < «)). Now to the ultraproduct of generalized frames.
Let &, i € I, be a family of frames. The ultraproduct []; &; of the frames is de-
fined as follows. The underlying Kripke—frame of [ &; is the frame [], f;, where
fi 1= (&:)y. The internal sets are as equivalence classes of sequences d=A{a;: i€l

modulo ~, where @ ~ b iff {i : @; = b;} € U. We write @y (or mostly simply @) for
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the set {I; b~ d}. Furthermore, wy € dy iff {i : w; € a;} € U. It is straightforward
to verify that this definition does not depend on the choice of representatives of the
classes. This is the only nontrivial fact here. Notice that elementhood really has to be
defined, so we had actually better use a different symbol here. In the same way as in
model theory we can conclude that [, &; is a frame. Namely, by Proposition[5.7.1]
below the so defined set of internal sets is closed under the operations.

ProposiTiON 5.7.1. Let §;, i € 1, be a family of frames, and U an ultrafilter over
I. Let [1y &; be the ultraproduct of the §; with respect to U. Then (i) w € —a iff
Wea, (ii)weanbiff weadandw € b, (iii) W € ¢;@ iff there is a ¥ such that W <; ¥
and Vv € d.

The proof of this theorem is left as an exercise. Moreover, the identity map is an
isomorphism between ([ &;)+ and [[;(3:)+. This is not hard to see. A valuation on
an ultraproduct can be seen as the equivalence class of a sequence ¥ (2) of valuations
on the individual factors.

THEOREM 5.7.2. Let §; be a family of Kripke—frames and { € L. Then{1y &i, 7,0
Cifti: (S, yiu) e LFEU.

Proor. Analogous to the elementary case. For example, let { = (dp)n. Then
(Ty & 7.0 £ £ iff there is a valuation y/ = (y; : i € I) different from y at most in
p such that ([ Ty &, )7’ ,0) E n iff there is a valuation )77 different from y at most in p
such that {i : (&, v, u) En} € Uiff{i : (i, v, 1) £ Ap)ng} € U. ]

Lemma 5.7.3 (Goldblatt). The ultraproduct |1y 1; is a generated subframe of the
ultrapower HU(@H fi).

Proor. Take i : W+ {(i,w;) : i € I}. Then w<; Viff {i : w; <;v;} € U. However,
{i cwi<jv) = {i + (G, w) <5 (G, v}, and so W <; ¥ iff (W) <; A(¥). Similarly it
is shown that ¥ = w iff A(¥) = (W), so h is injective. And similarly for the other
properties. It is easy to see that the map defines a p-morphism, for if 2(W) <; ¥ then
for almost all 7, (i, w;) <;j (i, ;). In that case, define V' by (i,v!) := (i, v;) if w; < v;
and (i,Vv}) := (i, w;) otherwise. We have V' = ¥, so they are equal in the ultraproduct,
and for i = (v} : i € I) we have h(i) = V. O

CoRroOLLARY 5.7.4. Any class of Kripke—frames closed under generated subframes,
disjoint unions, isomorphic copies and ultrapowers is closed under ultraproducts.

A class of first—order structures is called elementary if it is characterized by a
single sentence, and A—elementary if it is characterized by a set of sentences. It is
called Z—elementary if it is a union of elementary classes, and XA—elementary if
it is a union of A—elementary classes. It can be shown that a class is closed under
elementary equivalence iff it is ZA—elementary. Moreover, Theorem 6.1.15 of [45]
states that two structures are elementarily equivalent iff some ultrapowers of the
structures are isomorphic. Hence a class is elementary iff it and its complement
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are closed under ultraproducts and isomorphisms. In the present case, the hierarchy
collapses.

THEOREM 5.7.5 (van Benthem). Let X be a LA—elementary class of Kripke—
frames closed under generated subframes and disjoint unions. Then X is A—elementary.
Under the same conditions X is elementary if it is X—elementary.

Proor. X is closed under elementary equivalence and hence under ultrapowers.
By Lemmal[5.7.3]it is also closed under ultraproducts. By a standard model theoretic
result X is A—elementary. (For example, see 4.1.12(i) in [45]]. There a class is called
elementary if it is A—elementary in our sense.) Now assume that X is X—elementary.
Then its complement is A—elementary hence closed under ultraproducts as well. So,
X is elementary. O

THEOREM 5.7.6. A modal formula globally corresponds in Ktp to an L/ —sentence
iff it is preserved in Stp under L' —elementary equivalence iff it is preserved under
ultrapowers of Kripke—frames.

Proor. If ¢ corresponds to £ € L/, £ a sentence, then it is closed under elemen-
tary equivalence. And if it is preserved under elementary equivalence then it must
be closed under ultrapowers. By the previous corollary we have that the class of
Kripke—frames for ¢, Krp(¢), in addition to being closed under isomorphic copies
and generated subframes is also closed under ultraproducts. Now, consider the com-
plement of Krp(p). It is definable by (Ax¢)(AP)(xp € ¢). By 4.1.14 in [45] we have
that the class of models of this formula is closed under ultraproducts, too. Both
classes are therefore closed under ultraproducts and isomorphic images. Therefore
Krp(p) is elementary. Hence ¢ corresponds to an L/—sentence. O

We can immediately boost this up. Let X be class of general frames which can
be defined by a set @ of L—sentences. Examples are the classes ®, Df, Ti, R. We
can define a modal logic A to be ®—persistent if for all frames & such that § £ @
we can infer f £ A from & E A.

THEOREM 5.7.7 (Goldblatt). Let ® a set of Le—sentences true in all Kripke—
frames. Then if a finitely axiomatizable logic A is ®—persistent, it is globally ele-
mentary in Krp.

Proor. We want to proceed as before and show that the class of frames for A
and its complement are closed under ultraproducts. For the complement there is no
problem, we appeal again to 4.1.14 of [45]. For the class itself notice that if we take
the ultraproduct of the Kripke—frames as full frames then we may from f? E A still
conclude [y ’ff £ A. The latter is not in general a Kripke—frame. But we can use the
fact that the underlying frame is in fact [ f;, the desired ultraproduct, and that it is
in the class defined by @, by assumption. Furthermore, we have ®—persistence, so
[Tofi e A O
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This shows that g—persistent, df—persistent and ti—persistent logics are A—elementary
and also the

CoroLLARY 5.7.8 (Fine). Let A be r—persistent. Then A is A—elementary.

We half—complete the circle by showing the following famous theorem of Kit
FiNE in [65] below. To prove it, let us recall some notions from model theory. Let
X;, i < n, be a set of variables, Mt a first—order structure for a first—order language L.
LetI' = {y;(®) : i € I} be a set of formulae in the variables x;, i < n. An n—tuple
il := (u; : i < n)realizes I if M £ y[id] for all y € . T is finitely realizable in It
if every finite subset of I is realized by some #i. M is n—saturated if every finitely
realizable set in n variables can be realized. 9 is No—saturated if it is n—saturated
for every n < K. It is a well-known fact of model theory that for every L—structure
I there exists an elementary extension ® which is Np—saturated.

DEerintTION 5.7.9. A frame § is called modally 1-saturated if for every set
U C F with the finite intersection property, (\U # @. § is called modally 2—
saturated if for every j < « and every set U C F such that x € #;U thereisay>;x
suchthaty € \U. & is modally saturated if it is modally 1- and 2—saturated.

Clearly, a frame is 1-saturated iff it is compact. Recall from Section 4.6 the no-
tion of the refinement map. We show that on modally saturated frames the refinement
map is a p—morphism, and the image is a descriptive frame.

Lemma 5.7.10. Let & be modally saturated. Put U, := {a € F : x € a}. Define
~C fxfbyx~yiff U = U,. Then ~ is anet on §, and §/~ is descriptive. The
algebra of sets of & is isomorphic to the algebra of sets of &/~.

Proor. Let v ~ v and v <; w. Then v € (" ¢;U,,. Then, by definition of ~,
V' € (1 ¢,;U,. By 2—saturation, there exists a w’ € () U,, such that v/ <; w’. Again
by definition of ~ and of U,,, w’ ~ w. The algebra of sets over &/~ is defined as the
set of sets [c] := {[x] : x € c¢}. Given two internal sets b, ¢ € F there exists an x such
that x € b, but x ¢ c. Then [x] € [b] but [x] ¢ [c]. Hence b — [b] is bijective. This
shows the last of the claims. In &/~ we have U, = U, iff x = y, and so it is refined.
Moreover, it is compact, since § is. Finally, let [v] # [w]. Then for no w' ~ w,
v < w'. By 2-saturatedness of &, therefore, v ¢ (1) ¢;U,,. So there existsa ¢ € U,,
such that v ¢ ¢;c. |

THEOREM 5.7.11 (Fine). If A is Ktp—complete and Krp-XA—elementary then A
is Ny—canonical.

Proor. If ¢ is A—consistent there is a A—-model (f,, By, x,) F ¢. Let f := @4} fo
and 8 = @w B,. Now let F consist of all the sets of the form B(y) for some .
Then (f,F) is a general frame, since F is closed under the usual operations. Also,
T+ = Fra(Np). For consider the map ¢ — B(¢); we show that it is an isomorphism.
If ra®o) E o = ythen A+ ¢ & Yandso F £ ¢ & ¢, thus B(e) = BW).
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Further, if Fra(No) ¥ ¢ ~ ¢ then A ¥ ¢ o y, then y := =(¢ < ) has a model
(fy>By> Xy). Hence the world (y, x,) € {is a member of,E()(), that is, (3, 8) ¥ -, or
equivalently, (&, ) ¥ ¢ < . Now adjoin for each ¢ € ¥ a unary predicate ¢ to L.
This defines the language L/(§). Expand f to an L/ (&)-structure f° by interpreting
c as the set c itself. (This allows to forget the set structure on § for a while.) There
exists an elementary extension of {° in the language L/ (%), denoted by ¢°, which
is No—saturated. Put [c] := {w € g : c¢(w)}. The [c] are closed under intersection,
complement and W;. In particular, we have —[c] = [=c], [¢] N [d] = [¢Nd] and
m;[c] = [mc]. For these are elementary statements which hold in §°, thus they hold
in g°. The_map k : ¢ — [c] is therefore an isomorphism of the algebras. Let g be
the L/-reduct of ¢°. Put G := {[c] : ¢ € F}. We have managed to get a structure
® = (g, G) such that ®, = Fr, (Vo) with g* Xp—saturated. We show that & is modally
saturated. Namely, if A € G has the finite intersection property, then (A # @. For
under the given assumption, {c(xop) : [c] € A} is finitely satisfiable; by saturatedness
of ¢° there exists a w such that c(w) for all [c] € G. Hence w € (N A. So, 6 is
I-saturated. Second, if A is a set such that for every finite subset Ay, v € 4;() Ao,
then there exists a w such that v <; w and w € ¢ for all ¢ € A. For by assumption on
A, theset{v<;y A c(y) : [c] € A} is finitely satisfiable. Hence by saturatedness there
exists a w such that v <; w and c¢(w) for all [c] € A. So, ® is modally 2—saturated.
By Lemma the refinement map is a p-morphism from ® onto a descriptive
frame whose set algebra is isomorphic to Frp(Np). Hence there is a p—morphism
® —» Fra(No). Now, for all ¢ we had f, £ A and so f £ A. g, being an elementary
extension, also satisfies A, by assumption that Krp A is closed under elementary
equivalence. Finally, §ra(Ro)g = A by closure under p-morphisms. O

The proof works analogously for any cardinal @ > Ny. Using this theorem we
can obtain a partial converse of Theorem Namely, if we have a logic which
is Nj—canonical and elementary, then we can get Fr (@) in a similar process from
finite models. Moreover, the following holds as well.

THeEOREM 5.7.12 (Fine). Suppose that A is Rxp—complete and Ktp—XA—elementary.
Then A is canonical.

The connection between canonicity and elementarity is a very delicate one as
FINE shows in [65]. Consider the logic ® := K& ¢ where

% :=00p = 00(p A q) VoO(p A ~q)

We claim the following: (a) ® is canonical, (b) Krp(®) is not ZA-elementary and
(c) ® is complete with respect to some elementary class of Kripke—frames. So,
canonicity does in general not imply elementarity. It is believed until today that it
does imply completeness with respect to some (A—)elementary class of frames. © is
a case in point. Let us prove the stated properties of ®. Consider the formula

e(x) =Ny x)dz> x)Vu,v>2)(u=vAy<z)
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Lemma 5.7.13. Let § be a frame. If § £ (Vx)e(x) then § E .

Proor. Assume § E (Vx)e(x) and let 8 and x be such that (¥, 5, x) £ ¢Op. Then
for some y > x we have (&, 8,y) £ Op. Now, by our assumptions, there is a z> x such
that z is either a dead end or has exactly one successor. If z is a dead end, O(p A q) is
true at z and so ¢0O(p Ag) is true at x. So, let us assume that z actually has a successor,
u. Then y < u. Since Op holds at y, p is true at u. Now either ¢ is true at u or not.
In the first case, (&,5,z) £ O(p A q) and so (&, B, x) E 6O(p A q). In the second case
(&, 8, x) E0O0(p A 1q), as required. m]

Lemma 5.7.14. Let § be a canonical O®—frame. Then § satisfies (Yx)e(x).

Proor. Since § is canonical, worlds are actually maximally consistent sets of
formulae. Let X be a point of &. In case that X has no successor or sees a dead end
(that is, in case OL € X or ¢O0L € X) € holds trivially of X. So, let us consider the
case where this is not so. Then pick a successor Y. We have to show that there is a Z
with exactly one successor, call it U, such that Y <U. Now choose an enumeration y,,
of the language. Inductively we define formulae «,, as follows. @g := T. @41 := @y A
Xnif 0O(, Axn) € X and O(a, A xy) € Y, and @41 := @, A~y if 00(a, A —x) € X
Finally, we let U be the MP—closure of the set {a, : n € w}. By force of the axiom
@, this is actually well-defined and if ¢Oa, € X then also ¢0Ow,,; € X. Moreover,
OOy € X, and so ¢Oq,, € X for all n € w. It follows that U is consistent. For if not,
for some n, a, is inconsistent, that is, @, + L. But since ¢O¢, € X, also ¢O0L € X,
which we have excluded. Furthermore, by construction, for every n either y, € U
or -y, € U. So, U is a maximally consistent set, and so a world of §. Also, for
every Oy € Y, y € U, again by construction. It follows that ¥ < U. Finally, put
A:={gy : xy € Uland D := {y : Oy € X}. We claim that A U D is consistent.
If not, there is 6 € D and Oa € A such that §;0a + L. (A and D are closed under
conjunction.) So, Oa + —¢ and hence ¢Oa + ¢—¢6. Since ¢Oa € X we also have
-6 € X, against the definition of D. So, A U D is consistent and is contained in a
maximally consistent set Z. Then if Oy € Z, y € U and so Z < U. Furthermore, if
Z<Vithen A C V, from which U C V. Since U is maximally consistent, U = V.
Finally, assume that Oy € X. Then y € D and so y € Z, by construction. This shows
that Z has the desired properties. O

CoroLLARY 5.7.15. @ is canonical and complete with respect to an elementary
class of frames.

Proor. Let & be some canonical frame for ®. Then by Lemma 3k

(Yx)e(x), whence also & £ (Vx)e(x). By Lemma [5.7.13] & = ¢. Hence O is
canonical. Clearly, this shows that ® is complete with respect to the class of Kripke—
frames satisfying (Yx)e(x). |

Lemma 5.7.16. Krp(®) is not TA—elementary.
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Proor. Let F be a nonprincipal ultrafilter on w. Let O be the union of w, F and
{F}. It is easy to see that this union is disjoint. Finally, put < := {{x,y) € 0*:yex)
and Q := (O, <). It is not hard to show that Q £ ¢. O is not countable. By the
downward Lowenheim—Skolem theorem, € has an elementary countable submodel
p = (P, <1p), where P C O and <ip = <N P%. We will show that p ¥ . This establishes
the claim. The following properties of p are easy to establish. (1) p contains the root
of Q. (2) PN F is infinite. (3) For any two M, M’ € PN F the set succ(M) N succ(M")
is infinite. Now let PN F = {M; : i € w} be an enumeration of PN F. We can assume
by (3) that there are sequences (a; : i € w) and (b; : i € w) of natural numbers which
are all distinct such that all a;,b; € My N P, and M, < a,, b,. Put B(py) := My N P
and B(p1) :={a; : i € w}. Then (p,B, F) £ oOpy since {(p, 8, My) E Opy. Now take
an M such that F' <« M. Then for some n, M = M,,. Then M, £ ¢(po A py) since
M, < a, and a, E po; p1. On the other hand b, £ po; —p1, and since M,, < b, we also
have M,, £ O(po A = p1). It follows that (p, 8, F) £ =00(po A p1); =60(po A —p1). So,
DE Q. O

Let us close with a characterization of classes of Kripke—frames which are both
modally definable and elementarily definable. Those classes must be closed under
the standard operations of generated subframes, disjoint unions and p—morphic im-
ages. However, notice that we also have in the case of generalized frames the closure
under biduals for both the class and its complement. The bidual of a Kripke—frame
is not necessarily a Kripke—frame; however, let us define for a Kripke—frame f the
ultrafilter extension ue(f) to be the Kripke—frame underlying the bidual of f, that is,
ue(f) = (Tﬁ+)+ﬁ. The following has been proved in [83].

THEOREM 5.7.17 (Goldblatt & Thomason). A class of Kripke—frames is both
modally and elementarily definable iff it is closed under generated subframes, dis-
Jjoint unions, p—morphic images and ultrafilter extensions, while its complement is
also closed under ultrafilter extensions.

If we analyse the proof of Theorem we see that it proves that the ultrafilter
extension of a frame is a p—morphic image of some ultrapower. This is a rather useful
fact.

THEOREM 5.7.18. The ultrafilter extension of a Kripke—frame g is a contractum
of an ultrapower of g.

Notes on this section. The theorem by Kit FINE was proved again by Biarnt
Jonsson in [[112] using methods from universal algebra. Later, YDE VENEMA has gen-
eralized the results as follows (see [222]). Call an elementary condition a a pseudo—
correspondent of y if a holds in the Kripke—frames underlying each canonical frame
for K @ y, and every frame satisfying « also satisfies y. Obviously, the formula
(Vx)e(x) above is a pseudo—correspondent of ¢. Now let 7(p) be a positive formula
in one variable. Then the formula n(p V q) & 7(p) V n(g) has a first—order pseudo—
correspondent. Hence it is canonical, complete with respect to an elementary class
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of Kripke—frame, but its class of Kripke—frames is in general not XA—elementary.
The formula of Kit FInE falls into this class of formulae, as is easily demonstrated.

Exercise 192. Show Proposition|5.7.1
Exercise 193. Show Theorem[3.7.17

5.8. Some Results from Model Theory

In this section we will use some techniques from model theory which enable
us to derive characterizations of modally definable elementary conditions. For an
extensive exposition the reader is referred to van BENTHEM [10] and also for a survey
to [11]. Here we will basically prove two of the results, which we consider to be the
most central.

DerINITION 5.8.1. A first—order formula a(X) on frames is preserved under gen-
erated subframes if for each model (g,t) £ a(?) and each | »> g such that (%) C f
also (§,t) £ a(X). a(X) is reflected under generated subframes if (~a)(X) is pre-
served under generated subframes. a(X) is invariant under generated subframes
if it is both preserved and reflected under generated subframes.

The following theorem is an analogue of a theorem by GoLpsLATT (modeled after
FererMAN [59)).

THEOREM 5.8.2. A first—order formula a(X) with at least one free variable is
invariant under generated subframes iff it is equivalent to a f(¥) € R,

Proor. Surely, if « is equivalent to a restricted 8 in the same variables, then a
is invariant under generated subframes. The converse needs to be established. Thus
assume that a(¥) is invariant under generated subframes, and let @ be consistent.
Moreover, a contains at least one free variable, say xo. Let R(a) := {B(X) : B €
RS and @ £ B). Thus if we can show that R(a) £ a we are done. Namely, by
compactness there is a finite set A € R(a) such that A £ @ and so, taking 5 to be
the conjunction of A, we have found our desired formula. Thus assume R(a) has a
model o = (fo,t). (From now on we will suppress the explicit mentioning of the
valuation; thus when we speak of a model §, we mean the frame endowed with a
valuation.) The language we are using is called L, for future reference. Now form
L by adjoining a constant ¢; for each variable x; occurring free in . Expand the
model Fo to a model §; by interpreting the constants ¢; by ¢(x;). We claim that the
set

T:={6€R:F kS U{a[d/X]}

is consistent. Otherwise there is a finite set — or indeed, a single formula &(%),
by closure of the set under conjunction — such that «[¢/X] £ (=6)[¢/X], whence
-0 € R(a). But this contradicts the definition of R(@), by consistency of a. So,
¥ C L, has amodel, ®;. Moreover, every restricted £;—sentence is true in & iff it is
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is true in ®;. (We say briefly that §; and ®, are r—equivalent.) For, if ¢ is restricted
and holds in &; then it is in X and holds in ®, too. And if ¢ fails in &, then =8
holds in &, so =4 holds in ®; as well. This is now the starting base. We have two
models &; and ®; over a common language L1, such that &, is a model for a[¢/¥]
and both are r—equivalent. We will now construct sequences L; of languages, and ;
and ®; such that

(1) &, ®; are L;—models.

2) ®, £ ald/R).

(3) The same L;—sentences hold in ®; and &;. (F; and ®; are r—equivalent.)

(4) -1 isan L;_j—elementary substructure of &; and ®;_; is an £,;_;—elementary
substructure of ®;.

We have started the construction with i = 1. Now let the construction proceed as
follows.

Case 1. i is odd. First we define L;,;. Assume that we have a constant ¢ in £; and
that ®; £ ¢ <; x for some x € ®;. Then adjoin a constant x for x. Do this for all
x of this kind. This defines L. ®;;; is defined as the expansion of ®; in which
x is interpreted as x. Then ®; is an L,—elementary substructure of ¢;,;, which we
abbreviate by ©; <; ®;,1. Now form the set

2= {6 € fRH_l : (5,'4_1 F 6}

This set is finitely satisfiable in &;. To show this it is enough to see that every formula
6 € X is satisfiable in §;. Let § € X be given. Now retract the new constants in L;,
as follows. Let x € L;;; — L; occur in 6. Then there is a ¢ such that ®; £ ¢ <; x.
Put 67 := (Ay >; ¢)d[y/x]. Continuing this process until there are no free variables
outside L; left, we get a formula §, € R;. Now since ®; £ §, and §; is r—equivalent
to ®;, we get &; F d.. Hence ¢ is consistent, 6, being the existential closure of J.
Therefore, X is consistent. So there is a model &;;; in the language L;,; such that
&i <i Gir1 and ®;4; and F;4 are r—equivalent in L.

Case 2. This step is dual. Now adjoin constants for worlds x such that &; F ¢ <; x,
¢ € L;. Interchange the roles of &; and ®; in the above construction.

F <1 T <2 ¥ <3 T - F+—-7F°

g

® <1 6O <2 B3 <3 Oy - G* ®

Ly Lo Ls Ly -0 Ly

Let £, := |J; £L;. Now consider the structure §* := |J; &;. Since §; is an L;—
elementary substructure and also contained in &1, we can invoke Tarski’s Lemma
on elementary chains to conclude that J; is £;—elementary in F*. Likewise for ®*.
Consider the substructures induced by the constants. That is, let ¥° be the subframe
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of §* based on all interpretations of constants ¢ € L, and likewise $° the subframe
of all interpretations for constants in ®*. We claim that §° »» §* and 6° — G*.
Namely, if x € * is the value of a constant ¢ in L, there is an i such that ¢ € £;, and
so c is interpreted in &;. Let x<;y for some y € f;. If i is even then thereisay € L
such that y is interpreted in &;,, and its interpretation is y by construction. If i is odd,
thenay will be introduced in L. Similarly for °. Now, defineamap f : §° — 6°
as follows. We put f(x) := yif there is a constant ¢ such that c is interpreted as x in F°
but as y in $°. We claim that this function is an isomorphism. (i.) It it is defined on
&°. (ii.) If c and d are two constants such that their interpretations coincide, then they
coincide in a §; for some i, and so ®; £ ¢ = d, from which follows that ®* £ ¢ = d.
So the definition of f is sound. (iii.) f is onto, by definition of ®°. (iv.) f is injective.
For if ¢ and d are interpreted by different worlds in F* then §* £ —(c = d), whence
&i E =(c = d), for all i such that c,d € L;. Then ®; £ —(c = d), by r—equivalence.
And (v.) F° Ec<;diff ©° E ¢ q;d, by the fact that the two are generated subframes
and the formula is restricted.

Thus, since ®; £ a[¢/X], we also have ®* £ «[¢/X] and therefore ®° £ a[C/¥],
since @ was assumed to be invariant under generated subframes. Now also ¥° k
a[@/ ), by the fact that the two models are isomorphic. Again by invariance under
generated subframes, we get §* £ «[¢/X] and finally §; k a[¢/X], which is to say
(fo,t) E a. This had to be shown. |

DEFINITION 5.8.3. A first—order condition a(%) is said to be preserved under
contractions if whenever (f,1) £ a(X) and p : T - gis a p-morphism then for /' (x;) :=
p(u(x;)) we have {g,t’) E a(X). a(X) is reflected under contractions if (—a)(%) is
preserved under contractions, and it is called invariant under contractions if it is
both preserved and reflected under contractions.

Below we will prove that a formula with at least one free variable is invariant
under generated subframes and preserved under p—morphisms iff it is equivalent to
a positive R/ —formula. The proof is taken from van Benthem [10]. This shows that
if @ defines a modal class in Rrp U D then it is equivalent to a restricted positive
formula. To show that Sahlqvist’s Theorem is the best possible result for local corre-
spondence, two things need to be established. (1.) Every locally D—persistent logic
is elementary, (2.) every restricted positive @ defining a modal class in {rp U D is
equivalent to a Sahlqvist formula. Both are still open questions. Notice that for (1.)
and (2.) the choice of the class seems essential. We have seen (Corollary [5.7.8) that
(1.) holds if the class R is chosen instead. If it holds for the class © we would have
the converse of Theorem [5.7.11] It is unknown whether or not this holds. Also, with
respect to (2.) it is also not known whether it holds. In the exercises we will ask
the reader to show that if @ € L/ is at most ¥3 and modally definable, then « is
equivalent to some restricted formula.
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THeOREM 5.8.4 (van Benthem). A first—order formula a(X) with at least one free
variable is invariant under generated subframes and preserved under contractions
iff it is equivalent to a positive restricted formula in the same free variables.

Proor. We proceed as in the previous proof. The construction is somewhat
more complicated, though. It is clear that a positive R/ —formula is invariant under
generated subframes and preserved under p—morphisms. The converse is the difficult
part of the proof. Let @ = (%) be a formula in x;, i < n, with n > 0. Put

RP(a) := {B(X) : B € R/, B positive and a £ B} .

If we can show that RP(@) k£ @ we are done. For then, by compactness of first—order
logic, there is a finite subset A of RP(«) such that A £ @. The conjunction ¢ of the
members of A is also in RP(«). It follows that @ £ 6 E «, as desired. Let & be a
model for RP(a). Let x; be interpreted by w;. The language L, is obtained from our
initial language by adjoining a constant w;, i < n. §; is the expansion of  in which
w; is interpreted by w;. Consider now the set

¥ = {a[W/X]} U {=B : B arestricted positive L-sentence, | E -8} .

Y is finitely satisfiable. For if not, there is a finite subset Xy := {a[W/X]} U {=6; :
i < p}such that Xy £ f. This however implies that a[W/X] ¥ \/,.,Bi. So, a F
(Vicp BOLE/W](=: B). (Here, bound variables of the form x; are suitably renamed.)
Thus 8 € RP(a). But then, by definition of &, & F B[W/X], in contradiction to
the definition of X, because & £ —8; for all i < n. Hence, X is consistent. So, X
is finitely consistent and therefore has a model, ®; (for example, an Nyp—saturated
extension). The following holds of ®;.

Q) 6 F afit/3)

(ii) Every positive restricted £—sentence which holds in ®; also holds in ;.
We will now construct a series of languages L;, i < n, such that £; C £, £; an
expansion of L, by constants, and two series of models, &; and ®;, such that for
i>1
i, ®; are L;—models.
®; £ a[w/X].
Every positive restricted £;—sentence which holds in ®; also holds in ;.
&i-1 1s an L;_j—elementary substructure of §; and ®,_ is an L;_;—elementary
substructure of ®;.

b

We repeat the picture from the previous proof in a modified form.

<t F <2 & <3 Ty oo F—F

|

G <1 6 <2 03 <3 6y -+ GFY——6"

L, Lo L Ly o Ly,
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Assume that we have L, and §,, ®, satisfying (0.) — (3.). We show how to produce
Li1s Ene1 and 6,4 satisfying (0.) — (3.). Let ¢ be a constant of £, and w € 6,
such that ®, F (c <; x)[w/x]. Then add a new constant w to L,,. L} shall denote the
language obtained by adding all such constants. ®, is expanded to an L}—structure
by interpreting w by w. Let

A :={B : B arestricted positive L,ll—sentence such that G’),ll EB}.

We show that each finite subset of A can be satisfied in a model which is an expansion
of &,. Let namely Ay := {B; : i < p} be such a set, and denote its conjunction by §.
Assume that w; J < k, are the constants of L,ll — L, occurring in 6. By construction

of L) there exist constants ¢, indices j(i) < k and variables x; for all i < k such that
G, E {(ci <o x)wi/x] 2 i < k) U {6[w/w]}

G, E (Txo > j0) co)Tx1 >y 1) - .. (Txeot B jk=1y cx=1)(S[X/W])

This formula is an £,—sentence. By (2.) it holds in §&,. Hence we find corresponding
values for the constants w ;, j < k. There exists an &! such that

(a) &!isan L,-structure.
(b) &, is an L,—elementary substructure of 8,11.
(c) Every positive restricted £ —sentence which holds in ! also holds in &!.

Now we turn to the dual step. For each constant ¢ of £} and each w in & such that
i},ll E (c<;x)[w/x] add a new constant y(c, j, w). Let L, be the language obtained by
adding all such constants. Expand 3,{ to an §,+—structure by interpreting y(c, j, w)
by w. Let

Ei= {—B : B a restricted positive L, sentence such that &, £ =8}
U fe < y(c, jow) 2 y(c, jyw) € Lpt = L)
We show that each finite subset of Z is satisfiable in an expansion of &}. For suppose
that & is a finite subset of E. It consists of a set of —8;, i < s, from the first set,
and a set C := {¢; <, ¥(c;, ji,x;) : i < t}. The conjunction of the —8; is denoted
by &. £ is also in E, so we may take & in place of the first subset of Ey. We may
additionally assume that C already contains all y(c, j,w) € L,,; — L) that appear in
£. Now suppose that C U {£} is not satisfiable in any expansion of (!. Then
Gy E (Vx0 >y co)(Vx1 B, €1) .. (Vxmy >, o) (~ELxi [y ci jiwi) 2 i < 1])
This is a positive restricted L}l—sentence, so it holds in 8,1,, by (c.). But
Fn E e <, xi 1 i <t Ewi/y(e jiwi) 1 i < 1]
This is a contradiction. Hence, every finite subset of Z is satisfiable in an expansion
of Cﬁ}l, and so there exists a ®,,,; such that

(a) ®,,; is an L, —structure.
(b) 03,11 L 1san L}l—elementary substructure of ®,,,.
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(c) Every positive restricted L,,,;—sentence which holds in ®,,; also holds in
3n+1 .

The claims (1.) — (4.) now easily follow for £, &1 and ©,,; using (a.), (b.)
and (c.). We have that §, is an L,—elementary substructure of §,;;. By induction
it follows that §, is an £,—elementary substructure of §,.,, for every m. Similarly
for ®,. Let L, := e, Li, and let §* be the union of the §;, ®* the union of the
®;. Then * and G* are L, —structures, of which &, and 6, are respective L,—
elementary substructures. Furthermore, let §° be the transit of the w; in F* and °
the transit of the interpretation of the w, in &*. By construction, the constants of
L« all take values in §° (6°), and every element of §° (6°) is the interpretation of
a constant from L. Define 7 : ®° — §° as follows. If x € $°, let ¢ be a constant
with interpretation x. Then m(x) := y, where y is the interpretation of ¢ in F°. (1.)
n is well-defined. Suppose that ¢ and d are interpreted by x. Then thereisan € w
such that c € £, and d € L,. Then 6, £ ¢ = d, and so 6* k ¢ = d, being an L,—
elementary superstructure. Hence §* F ¢ = d, and this shows that the interpretation
of ¢ is equal to the interpretation of d in §* (and it is in §°). (2.) 7 is onto. For since
every element of §° is in the interpretation of some c. Take x € ®° such that x is the
interpretation of ¢ in &°. Then m(x) = y. (3.) 7 is a p-morphism. (a) Suppose x <; y.
Let x be the interpretation of ¢ in ° and y the interpretation of d. Then * k ¢ <; d.
There is an n such that ¢ € £, and d € L,,. For this n, ®, £ c<;d. Hence &, F c<;d,
and so &* F ¢ <; d. Therefore m(x) <; n(y). (b) Let m(x) <; u. There exists a constant
¢ such that c is interpreted by 7(x) in F*. Then consider y(c, j, u). By construction,
6* £ ¢ € y(c, j,u). Let y be the interpretation of y(c, j, u) in ®*. The interpretation
of y(c, j,u) in F* is just u. Therefore, 7(y) = u, and x <; y, as required.

Finally, we know that ®; £ a[w/X]. Hence, ®* £ o[w/X]. Since « is invariant
under generated subframes, ®° £ a[Ww/X]. « is also preserved under contractions,
and so §° £ a[w/xX]. Again by invariance under generated subframes, §* £ a[w/X].
Finally, since &, is a L;—elementary substructure, &; £ a[w/X]. By construction,
this is the same as § £ a[w/X]. This is the desired conclusion. O

The proof in Marcus Kracar [124], supposed to be a construction of the equivalent
formula, is actually incorrect. There is a plethora of similar results concerning the
interplay between syntactic form (up to equivalence) and invariance properties with
respect to class operators. A particular theorem is the following.

TueoreM 5.8.5. Call a formula {(X) constant if no prime subformula contain-
ing a variable is in the scope of a quantifier. Let a(X) be a formula with at least one
free variable. Assume that « is invariant under generated subframes and contrac-
tions. Then « is equivalent to a constant formula y ().

Proor. The direction from right to left is easy. So, assume that « is invariant
under contractions and generated subframes. Let a(¥) be given. The initial language
is R/. Put

C(@) := {B(%) : B constant, @ F 5}
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Clearly, @ £ C(a). We show that C(@) k @. To do that, let § £ C(@), where x; is
mapped to w;. Adjoin new constants w,. This yields the language L. Make & into a
L—structure §; by interpreting w. by w;. Now let

E:={a[w/X]} U {6 : § a constant L;—sentence and & k &}

E is finitely satisfiable, and so there is a model ®,. Let &* be a No—saturated expan-
sion of §; and G* a Ny—saturated expansion of ®;. Further, let §° be the subframe
of F* generated by w;, i < n, and G° the subframe of ®* generated by the interpre-
tation of w,. Now, define a binary relation ~ on §° by u ~ u' iff u and u’ satisfy the
same constant R —formulae. It is not hard to show that this is a net. For if u ~ «’
and u <; v, let D(y) be the set of constant R/ —formulae in y satisfied by v. Then let
0;D@) = {(Fy>; x)0(y) : 6 € D(y)}. u satisfies ¢0;D(y). Hence u’ satisfies ¢;D(y).
By saturatedness, there is a successor v’ of u’ satisfying D(y). Similarly, define ~ on
° by u ~ u’ iff they satisfy the same constant R/ —sentences. Now, let #; interpret
w, in ;. Then ¢; satisfies the same constant formulae as does w;. Therefore, it can
be shown by induction on the depth that §°/~ is isomorphic to ®°/~. Now the con-
clusion is easily established. ®; k a[w/¥]. By elementary embedding, ®* £ a[w/x]
and so ©° F a[w/X], ®°/~ F a[w/X] by preservation under generated subframes and
contractions. Then §°/~ £ a[w/X], since it is isomorphic to the latter structure. It
follows that &, £ [w/¥], and finally & k a[w/x]. O

THEOREM 5.8.6 (van Benthem). A logic K @ y is g—persistent iff there exists a
constant formula y(xy) such that the class of frames for that logic is defined by y(xy).

These theorems establish the weak form of completeness of the calculus Seq for
® discussed at the end of Section[3.4

Exercise 194. (k < Ny.) Let a(x) € L/ be modally definable in &rp. We can
assume that « is in prenex normal form; furthermore, assume that @ contains only
V—quantifiers. Show that @ is equivalent to a formula 8 in which every universal
quantifier Yy is replaced by a restricted quantifier (Vy >* x) for some x and some
finite set s of finite sequences over k. Hint. Let 6;(x) be obtained by replacing
each quantifier Yy by (Vy >* x), where s, consists of all sequences of length < n.
Then 6,(x) F 6,+1(x) in predicate logic, and ¢,(x) + a(x). It remains to prove that
some n exists such that a(x) + J,(x). Suppose that no such n exists; then the set
{=6,(x) : n € w} U {a(x)} is consistent. It has a model (f,¢). Now use the fact that
a(x) is closed under generated subframes.

Exercise 195. As above, but for a of the complexity V3. (Assume x < Ny; see [128]]
for a proof.)

Exercise 196. The same as the previous exercise, but without the restriction x < Ny.



CHAPTER 6

Reducing Polymodal Logic to Monomodal Logic

6.1. Interpretations and Simulations

The main body of technical results in modal logic is within monomodal logic,
for example extensions of K4. The theory of one operator is comparatively speaking
well-understood. Many applications of modal logic, be they in philosophy, computer
science, linguistics or mathematics proper, require several operators, sometimes even
infinitely many. Moreover, in the theory of modal logic many counterexamples to
conjectures can be found easily if one uses logics with several operators. So there is
a real need for a theory of polymodal logic. On the other hand, if such a theory is
needed and we have developed a theory of a single operator, it is most desirable if
we could so to speak transfer the results from the one operator setting to several op-
erators. This, however, is not straightforward. It has often been deemed a plausible
thing to do but turned out to be notoriously difficult. Only fairly recently methods
have been developed that allow to transfer results of reasonable generality. They
go both ways. It is possible to interpret a monomodal logic as a polymodal logic,
which involves axioms for one of the operators only. Let us call these one—operator
logics. They were introduced by S. K. THomason [211] and systematically studied
in Kitr FINe and GerHARD ScHURzZ [67]] and also Marcus Kracut and FRANK WOLTER
[132]]. If we fix an operator, we have a natural embedding of monomodal logic into
polymodal logic. We can also study unions of one—operator logics, where the dis-
tinguished operators differ. Such logics are called independently axiomatizable. For
independently axiomatizable logics there exist a number of strong transfer results.
Basically, all common properties of the one operator logics transfer to the union.

This direction is unsurprising, perhaps. Moreover, polymodal logics contain
monomodal logics. The converse, however, is prima facie unplausible for it suggests
that we can model several operators with the help of a single one. Yet, exactly this is
the case. S. K. THoMasoN has proved a lot of negative results for monomodal logic by
reducing polymodal logic and other sorts of logics to monomodal logic. However,
it has gone unnoticed that not only negative properties of logics such as incomplete-
ness, undecidability and so on are transferred, but also positive ones. Once this is
noticed, we derive a plethora of strong results concerning monomodal logic. In this
way we can gain insight not only into polymodal logic but also into the theory of a
single operator.

259
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Before we enter the discussion of polymodal versus monomodal logic, we need
to make our ideas precise concerning reduction. We have mentioned two cases
of reduction, one from polymodal logic to monomodal logic, and another from
monomodal logic to polymodal logic. More precisely, these reductions consist of
a translation of one language into another. Moreover, this translation reduces a logic
in the first language to a logic in the second language if it is faithful with respect to
the deducibilities. This is made precise as follows. Let £ and L, be two propo-
sitional languages with variables drawn from var. An interpretation of £, in £,
is a map which assigns to the variables uniformly an expression of L, and to each
connective of L a possibly complex functional expression of L,. This means that
for I : L; — L, to be an interpretation it must satisfy

(F@0s - s e = (FP0s -« - =) [0h /P05 - - 0 [ Prt ]

for all connectives f in L, formulae ¢y, ..., pr; € L1, and variables p;, i < k; and

for all variables p, g

q" = p'lq/p]

In brief, an interpretation is fixed by the term it assigns to a simple expression; inter-
pretations are not to be confused with homomorphisms. First of all, an interpretation
is a map between languages with possibly different signatures. Moreover, even when
the signatures are not different, the concept itself may still differ. For example, the
duality map is an interpretation, though strictly speaking not a homomorphism, be-
cause conjunction and disjunction may not be interchanged by a homomorphism.
Furthermore, an interpretation is free to assign a complex term to a simple term.
For example, we might choose to interpret O as m¢ (for example, in interpreting
non—classical monomodal logics as bimodal logics, see [133]).

The definitions have some noteworthy consequences. First of all, a variable p
is translated into an expression p’ which contains at most the variable p, that is,
var(p!) C {p}. Forif ¢ # p we have p’ = ¢'[p/q], thus g & var(p’). Likewise, for
any expression ¢ we have var(¢') C var(p).

Now consider two logics (L, ;) and (L;,+,) and an interpretation /. Then ;
simulates +; with respectto [ if forall' C L) and ¢ € L,

| iff FII-Q(,D,.

Denote by 8,(+1) the set of all consequence relations + over L, which simulate +;
with respect to /. It is readily checked that $;(+;) contains a minimal element. The
following is a fundamental property of simulations.

ProposiTioN 6.1.1. Suppose that v, simulates v\ with respect to some interpre-
tation 1. Then if v, is decidable, so is .

For a proof just observe that by definition the problem I' +; ¢ is equivalent
to I" +, ¢/. A priori, a connective can be translated by an arbitary expression.
However, under mild conditions the interpretation of a boolean connective ® must
be an expression equivalent to ©. In the case of modal logics this means that under
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these conditions only the modal operators receive a nontrivial interpretation. Call
an interpretation / atomic if p/ = p for all propositional variables p. In this case

(@05 - ., pr—1) will be used instead of f(po, ..., px-1)'[@o/Po, - .- ¢x-1/pr-1]. The
following then holds, as has been oberserved in [133].

ProposiTioN 6.1.2 (Wolter). Write ¢ =, x for ¢ +» x and x +» ¢. Suppose
that A and — are both symbols of L1 and L, that the restrictions of vy and +; to
expressions containing — and A equals the propositional calculus over — and A.
And suppose that we have the replacement rule for v,; that is, if o1 =, ¢, then
Ule1/pl =2 ¥le2/pl. Finally, suppose that I is an atomic interpretation. Then if
simulates 1 with respect to I the following holds:

(1) prg= pA g
(2) =p=,-'p.

Proor. (1.) We have p A g o {p,q} Fo pAL g 2 {pg) Fo pAg. 2) Tt
is readily checked that ¢ is Fj—inconsistent iff ¢! is Fp—inconsistent. Hence, p;—'p
is Fp—inconsistent, since p; —p is Fj—inconsistent. Hence ! p +2 —p. It remains to
show that =—'p; =p is Fo—inconsistent. But this follows with ¢ F» (pAq)V (=pAg))’
and (i) by

—|—|1p /\ —|p
k2 (p A (=="p A =p) VI (="p AT (=~"p A =p))
k2 (p AT =p) VI (=Tp AT == p)
k2 ((pA=p)V (p A=p)

and the +,—inconsistency of this last formula. O

It is worthwile to reflect on the notion of a simulation. We will use it also to show
undecidability of certain logics. The rationale will be to use well-known undecidable
problems, in this case facts about word—problems in semigroups, and simulate these
problems in polymodal logics. Furthermore, as polymodal logics can themselves be
simulated by monomodal logics, this yields undecidable problems for monomodal
logic. We shall indicate here that the notion of simulation is quite similar to a notion
that is defined in Ryszarp Wéscickr [231]].

6.2. Some Preliminary Results

In the next sections we are dealing with the following standard situation. We
have a bimodal language L,, denoted here by L, and two monomodal fragments,
Ly and L4. Naturally arising objects such as formulae and consequence relations
are subject to the same notation, which we assume to be clear without explanation.
There are two possible interpretations of a single operator — denoted here by 8 — in
bimodal logic over 0O and m. We may read it as O or as m. Notice that these symbols
are used in place of O0,. Although from a technical viewpoint, if, say O = Oy and
m = O, then O and B are the same, we wish to make notation independent from an
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accidental choice of interpretation for O and m. Seen this way, we are now dealing
with three independent operators, B, O and M.
Define two translations, 75 and 74 in the following way.

Ta(p) = p Ta(p) = p

T5(T) = T 7a(T) = T

Ta(—-@) = —1a(p) Ta(—¢) = -1a(p)

Tale Ax) = Tale) Ataly) Ta(@AY) = Talp) ATaly)
T5(Be) = Ota(e) Ta(B¢) = mra(y)

We speak of the translation 74 as the dual of 7o, by which we want to imply that
the roles of m and O are interchanged. (So, 7y likewise is the dual of 74.) It is in
this sense that we want to be understood when we talk about duality in this chapter.
This will frequently arise in proofs, where we will perform the argument with one
operator, and omit the case of the other operator. Given two modal logics, A and G,
the fusion is defined as in Section [2.5| by

A®O =K, ®15[A] © 7a[0O]

This defines an operation — ® — : (EK;)?> — EK,. ® is a |_|-homomorphism in both
arguments. Moreover, it is easy to see that

KieX)oK,;9Y) =K, d15[X] & 1alY]

(Namely, observe that 75 and 74 translate valid derivations in K into valid deriva-
tions in K;. So, if A derivable from X by (mp.), (mn.) and substitution in K, all
formulae of 75[A] are derivable from 75[X] by means of (mp.), (mn.) and substitu-
tion in K;.) We call a bimodal logic Z independently axiomatizable if there exist
A and O such that Z = A ® ©. The following theorem will be made frequent use of.

Lemma 6.2.1. (g, <, 4, G)EA®Oif{g,<,G) E A and (g, 4,G) E O.

The easy proof is left to the reader. Moreover, it should be clear that if (g, <, <
,@G) is a bimodal frame, (g, <,G) and (g, «,G) are monomodal frames. Given a
bimodal logic A define

Ao = T15'[A]

Aw = T5'[A]
There are certain easy properties of these maps which are noteworthy. Fixing the
second argument we can study the map — ® ® : K, — EK,. Thisis a | |-

homomorphism. The map — : EK; — EK; : A — Ag will be shown to be
almost the inverse of — ® ©.

Lemma 6.2.2. (1.) Let A be a normal modal logic. Then (A ® @)y 2 A. (2.) Let
E be a normal bimodal logic E. Then Ep ® Egq C E. Moreover, E is independently
axiomatizable iff 2 = (Eq) @ (Eg).
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Proor. (g, <, «,G) F E implies (g, <,G) £ E and (g, «,G) £ Eg. This implies
in turn that (g, <, <, G) F E;®E,. Consequently, if = is independently axiomatizable
then (g, <, «, G) is a general Z—frame iff (g, <, G) is a general Eg—frame and (g, <, G)
is a general Eg—frame. m]

Given a monomodal frame ® := (g, <, G), put ©° := (g, <, «,G), where < := <,
and « := @, and put 6° := (g, <, €,G) where we have < := < and « := {(x,x) : x €
g}. Itis easy to check that both * and $° are bimodal frames. (To see that, one only
has to verify that for b € G also mb € G; but this is straightforward.) The following
was shown in [211]].

THEOREM 6.2.3 (Thomason). (A®®); = Aiff L ¢®or L € A.

Proor. (=) Suppose L € @ and L ¢ A. Then L € A®® and hence L € (AQO)g,
sohat A # (A ® O)p.

(<) Suppose L € A. Then L € A®® and so L € (A ® ®); from which
A = (A ® @);. Now suppose L ¢ A. Then L ¢ © and hence either [¢] £ @ or
E] FO. Let ® = (g,<,G) be a A—frame. Then put * := (g, <, «,G) as above
with < := @ and ° = (g, <, «,G) with « := {(x,x) : x € g}. If[e] £ © then 6*
is a A ® O@—frame and if [o] £ © then 6° is a A ® ©—frame. For ¢ € Ay we have
OGrpe 6°kp o 6°F @ Thus (A ®®); C A and therefore (A @ @)y = A. |

The theorem states thatif L € A or L ¢ ® then A ® @ is a conservative extension of
A. Thus given two logics A, ® we have both A = (A ® ®); and © = (A ® O)g iff
1L €A & 1 €. In all the theorems that will follow the case that L € Aor L € ©
will be excluded. These cases are trivial anyway, so nothing is lost. The way in
which Makinson’s theorem has been used to build a minimal extension of a mono—
modal frame to a bimodal frame is worth remembering. It will occur quite often
later on. Although Makinson’s theorem has no analogue for bimodal logics as there
are infinitely many maximal consistent bimodal logics, at least for independently
axiomatizable logics the following holds.

CoroLLARY 6.2.4. Suppose that A is a consistent, independently axiomatizable
bimodal logic. Then there is a A—frame based on one point.

THEOREM 6.2.5. Suppose that L ¢ A,0. Then A ® O is finitely axiomatizable
(recursively axiomatizable) iff both A and © are.

Proor. If A and @ are recursively axiomatizable, so is clearly their fusion. And
if the fusion is, then the theorems are recursively enumerable, and hence also (A ®
®)y and (A ® O)g. Thus A and © are recursively axiomatizable. Now for finite
axiomatizability. Only the direction from left to right is not straightforward. Assume
therefore that A ® © is finitely axiomatizable, say A ® ® = K,(Z). Let X and Y be
such that A = K;(X), ® = K;(Y). Then Z C Ky (75[X]UTa[Y]). By the Compactness
Theorem we have finite sets Xy C X, Yy C Y such that Z C Ky (15[ Xo] U a[Y0]). But
then A ® ® = Ky (1g[Xp] U tal[Yo]) = K{(Xo) ® K;(Yp) and hence A = K;(Xp) and
0 = K (Yp). O
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THEOREM 6.2.6. Suppose that L ¢ A,®. Then A ® O is r—persistent iff both A
and © are.

Proor. (&) Suppose that both A and ® are r—persistent. Further assume that
(g,<,4,G) E A®O. Then (g, <,G) £ A and (g, «,G) £ ®. By a