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About this Book

This book is intended as a course in modal logic for students who have had prior
contact with modal logic and wish to study it more deeply. It presupposes training
in mathematics or logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book. Knowledge of basic logic—propositional
logic, predicate logic—as well as basic mathematics will of course be very helpful.
The book treats modal logic as a theory, with several subtheories, such as complete-
ness theory, correspondence theory, duality theory and transfer theory. Thus, the
emphasis is on the inner structure of the theory and the connections between the
subdisciplines and not on coverage of results. Moreover, we do not proceed by dis-
cussing one logic after the other; rather, we shall be interested in general properties
of logics and calculi and how they interact. One will therefore not find sections de-
voted to special logics, such as G, K4 or S4. We have compensated for this by a
special index of logics, by which it should be possible to collect all major results on
a specific system. Heavy use is made of algebraic techniques; moreover, rather than
starting with the intuitively simpler Kripke–frames we begin with algebraic models.
The reason is that in this way the ideas can be developed in a more direct and co-
herent way. Furthermore, this book is about modal logics with any number of modal
operators. Although this may occasionally lead to cumbersome notation, it was felt
necessary not to specialize on monomodal logics. For in many applications one op-
erator is not enough, and so modal logic can only be really useful for other sciences
if it provides substantial results about polymodal logics.

No book can treat a subject area exhaustively, and therefore a certain selection
had to be made. The reader will probably miss a discussion of certain subjects such
as modal predicate logic, provability logic, proof theory of modal logic, admissibility
of rules, polyadic operators, intuitionistic logic, and arrow logic, to name the most
important ones. The choice of material included is guided by two principles: first, I
prefer to write about what I understand best; and second, about some subjects there
already exist good books (see [182], [43], [31], [157], [224]), and there is no need to
add another one (which might even not be as good as the existing ones).

I got acquainted with modal logic via Montague Semantics, but it was the book
[169] by W R that really hooked me onto this subject. It is a pity
that this book did not get much attention. Until very recently it was the only book
which treated modal logic from a mathematical point of view. (Meanwhile, however,
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vi About this book

the book [43] has appeared in print, which is heartily recommended.) However,
twenty years have passed from its publication and many strong and important results
have been found, and this was the reason for writing this book.

My intellectual credits go not only to WR but also to S
B— whose early death saddened me greatly — for teaching me alge-
bra, H S for his inspiring introduction to geometry and linear algebra,
and to W F for his introduction to logic and exact mathematics. Further-
more, I wish to thank K F for making an exception and taking me as his student
in Edinburgh. He too taught me logic in his rather distinct way. More than anyone
in the last years, F W has been an inspiration and collaborator. Without
him, this book would not have been written. Thanks to C G for his help
both with some of the pictures as well as modal logic, and thanks also to A
B̈ and M M. Thanks to M B, S D, K F,
C H, C I, T K and T S
for careful proofreading and R G́ and M Z for their ad-
vice in many matters. The final draft was carefully read by HM and B
N. Special thanks go to A E for his never ending moral support.

No endeavour can succeed if it is not blessed by love and understanding. I am
fortunate to have experienced both through my wife J D, my parents,
my brother and my sister. This book is dedicated to all those to whom it gives
pleasure. May it bring — in its own modest way — a deeper understanding of the
human spirit.

Berlin, March 1999
Marcus Kracht

Added. A number of errors in the printed version have been brought to my attention
by G B, L H, and T K.



Overview

The book is structured as follows. There are ten chapters, which are grouped
into three parts. The first part contains the Chapters 1 – 3, the second part the Chap-
ters 4 – 7 and the third part the Chapters 8 – 10. The first part contains roughly the
equivalent of a four hour one semester course in modal logic. Chapter 1 presents
the basics of algebra and general propositional logic inasmuch as they are essential
for understanding modal logic. This chapter introduces the theory of consequence
relations and matrix semantics. From it we deduce the basic completeness results
in modal logic. The generality of the approach is justified by two facts. The first is
that in modal logic there are several consequence relations that are associated with a
given logic, so that acquaintance with the general theory of consequence relations is
essential. Second, many results can be understood more readily in the abstract set-
ting. After the first chapter follow the Chapters 2 and 3, in which we outline the basic
terminology and techniques of modal logic, such as completeness, Kripke–frames,
general frames, correspondence, canonical models, filtration, decidability, tableaux,
normal forms and modal consequence relations. One of the main novelties is the
method of constructive reduction. It serves a dual purpose. First of all, it is a totally
constructive method, whence the name. It allows to give proofs of the finite model
property for a large variety of logics without using infinite models. It is a little bit
more complicated than the filtration method, but in order to understand proofs by
constructive reduction one does not have to understand canonical models, which are
rather abstract structures. Another advantage is that interpolation for the standard
systems can be deduced immediately. New is also the systematic use of the dis-
tinction between local and global consequence relations and the introduction of the
compound modalities, which allows for rather concise statements of the facts. The
latter has largely been necessitated by the fact that we allow the use of any number
of modal operators. Also, the fixed point theorem for G of D  J and G-
 S is proved. Here, we deduce it from the so–called Beth–property, which
in turn follows from interpolation. This proof is originally due to C S́
[200].

The second part consists of chapters on duality theory, correspondence theory,
transfer theory and lattice theory, which are an absolute necessity for understand-
ing higher modal logic. In Chapter 4 we develop duality theory rather extensively,
starting with universal algebra and Stone–representation. Birkhoff’s theorems are

vii
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proved in full generality. This will establish two important facts. One is that the
lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of
the variety of modal algebras. Secondly, the characterization of modally definable
classes of generalized frames in terms of closure properties is readily derived. After
that we give an overview of the topological and categorial methods of G S-
 and V V, developed in [186] and [187]. Furthermore, we study the
connection between properties of the underlying Kripke–frame and properties of the
underlying algebra in a descriptive frame. We will show, for example, that subdirect
irreducibility of an algebra and rootedness of dual descriptive frame are independent
properties. (This has first been shown in [185].) We conclude this chapter with a
discussion of the structure of canonical frames and some algebraic characterizations
of interpolation, summarizing the work of L M. An algebraic char-
acterization of Halldén–completeness using coproducts is derived, which is slightly
stronger than that of [153]. Chapter 5 develops the theme of first–order correspon-
dence using the theory of internal descriptions, which was introduced in M
K [121]. We will prove not only the theorem by H S [183] but
also give a characterization of the elementary formulae which are definable by means
of Sahlqvist formulae. This is done using a two–sided calculus by means of which
correspondence statements can be systematically derived. Although this calculus is
at the beginning somewhat cumbersome, it allows to compute elementary equivalents
of Sahlqvist formulae with ease. Moreover, we will show many new corollaries; in
particular, we show that there is a smaller class of modal formulae axiomatizing the
Sahlqvist formulae. On the other hand, we also show that the class of formulae de-
scribed by  B in [10] which is larger than the class described by Sahlqvist
does not axiomatize a larger class of logics. Next we turn to the classic result by
K F [65] that a logic which is complete and elementary is canonical, but also
the result that a modally definable first–order condition is equivalent to a positive
restricted formula. This has been the result of a chain of theorems developed by
S F, R G and mainly J  B, see [10]. In
Chapter 6 we discuss transfer theory, a relatively new topic, which has brought a lot
of insights into modal logic. Its aim is to study how complex logics with several
operators can be reduced to logics with less operators. The first method is that of a
fusion. Given two modal logics, their fusion is the least logic in the common lan-
guage which contains both logics as fragments. This construction has been studied
by F W in [233], by K F and G S [67], and by F
W and M K in [132]. For many properties P it is shown that a fu-
sion has P iff both fragments have P. In the last section a rather different theorem is
proved. It states that there is an isomorphism from the lattice of bimodal logics onto
an interval of the lattice of monomodal logics such that many properties are left in-
variant. This isomorphism is based on the simulations defined by S. K. T in
[208, 210]. Some use of simulations has been made in [127], but this theorem is new
in this strong form. Only the simulations of T have these strong properties.
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Extensive use of these results is made in subsequent chapters. Many problems in
modal logic can be solved by constructing polymodal examples and then appealing
to this simulation theorem. Chapter 7 discusses the global structure of the lattices
of modal logics. This investigation has been initiated by W B and W
R, whose splitting theorem [170] has been a great impulse in the research.
We state it here in the general form of FW [234], who built on [120]. The
latter generalized the splitting theorem of [170] to non–weakly transitive logics and
finitely presentable algebras. [234] has shown this use to be inessential; we show in
Section 7.5 that there exist splitting algebras which are not finitely presentable. In
the remaining part of this chapter we apply the duality theory of upper continuous
lattices, which are also called frames or locales (see [110]) to modal logic. One re-
sult is a characterization of those lattices of logics which admit an axiomatization
base. This question has been put and answered for K4 by A C and
M Z [42]. The argument used here is rather simple and straight-
forward. We prove a number of beautiful theorems by W B about the degree of
incompleteness of logics. The way these results are proved deserves attention. We
do not make use of ultraproducts, only of the splitting theorem. This is rather advan-
tageous, since the structure of ultraproducts of Kripke–frames is generally difficult
to come to terms with. Finally, the basic structure of the lattice of tense logics is
outlined. This is taken from [123].

The last part is a selection of issues from modal logic. Some topics are devel-
oped in great depth. Chapter 8 explores the lattice of transitive logics. It begins
with the results of K F concerning the structure of finitely generated transitive
frames and the selection procedure of M Z, leading to the cofi-
nal subframe logics and the canonical formulae. The characterization of elementary
subframe logics by K F is developed. After that we turn to the study of logics
of finite width. These logics are complete with respect to noetherian frames so that
the structure theory of K F [66] can be extended to the whole frame. This is the
starting point for a rich theory of transitive logics of finite width. We will present
some novel results such as the decidability of all finitely axiomatizable transitive log-
ics of finite width and finite tightness and the result that there exist 13 logics of finite
width which bound finite model property in the lattice of extensions of S4. The first
result is a substantial generalization of [247], in which the same is shown for exten-
sions of K4.3. In Chapter 9 we prove a series of undecidability results about modal
logics using two main ingredients. The first is the simulation theorem of Chapter 6.
And the other is the use of the logics K.altn. The latter have been studied by K
S [197] and F B [5] and their polymodal fusions by C
G [91]. The latter has shown among other that while the lattice of K.alt1 is
countable, the lattice of the fusion of this logic with itself has 2ℵ0 many coatoms.
Moreover, the polymodal fusions of K.alt1 can be used to code word problems as
decidability problems of logics. Using this method, a great variety of theorems on
the undecidability of properties is obtained. This method is different from the one
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used by L C [44], and A C and M Z
[41]. Their proofs establish undecidability for extensions of K4, but our proofs are
essentially simpler. The proofs that global finite model property (global decidability)
are undecidable even when the logic is known to have local finite model property (is
locally decidable), are new.

We conclude the third part with Chapter 10 on propositional dynamic logic
(PDL). This will be a good illustration of why it is useful to have a theory of arbitrar-
ily many modal operators. Namely, we shall develop dynamic logic as a special kind
of polymodal logic, one that has an additional component to specify modal operators.
This viewpoint allows us to throw in the whole machinery of polymodal logic and
deduce many interesting new and old results. In particular, we will show the finite
model property of PDL, in the version of R P and D K [118],
of PDL with converse, by D V [217], and of deterministic PDL by
M B–A, J I. H and A P, [7]. Again, constructive
reduction is used, and this gives an additional benefit with respect to interpolation.
We have not been able to determine whether PDL has interpolation, but some pre-
liminary results have been obtained. Moreover, for the logic of finite computations
we show that it fails to have interpolation and that it does not have a fixed point theo-
rem. Largely, we feel that an answer to the question whether PDL has interpolation
can be obtained by closely analysing the combinatorics of regular languages.
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Part 1

The Fundamentals





CHAPTER 1

Algebra, Logic and Deduction

1.1. Basic Facts and Structures

In this section we will briefly explain the notation as well as the basic facts and
structures which will more or less be presupposed throughout this book. We will
assume that the reader is familiar with them or is at least willing to grant their truth.

S, F. We write {x : ϕ(x)} for the set of all objects satisfying ϕ. Given
a set S , ℘(S ) denotes the powerset of S , ]S the cardinality of S . For functions we
write f : A → B to say that f is a function from A to B, and f : x 7→ y to say that
f maps (in particular) x to y. The image of x under f is denoted by f (x). We write
f : A � B if f is injective, that is, if f (x) = f (y) implies x = y for all x, y ∈ A;
and we write f : A � B if f is surjective, that is, if for every y ∈ B there is an
x ∈ A such that y = f (x). For a set S ⊆ A, f [S ] := { f (x) : x ∈ S }. We put
f −1(y) := {x : f (x) = y}. For a set T ⊆ B, f −1[T ] := {x : f (x) ∈ T }. If f : A → B
and g : B → C then g ◦ f : A → C is defined by (g ◦ f )(x) := g( f (x)). The image
of f : A→ B, denoted by im[ f ], is defined by im[ f ] := f [A]. MN denotes the set of
functions from N to M. If C ⊆ A then f � C denotes the restriction of f to the set C.

C  O N. Finite ordinal numbers are constructed as fol-
lows. We start with the empty set, which is denoted by 0. The number n is the set
{0, 1, . . . , n− 1}. ‘i < n’ is synonymous with ‘i ∈ n’. In general, an ordinal number is
the set of ordinal numbers smaller than that number. So, in constructing ordinals, the
next one is always the set of the previously constructed ordinals. There are two types
of ordinal numbers distinct from 0, successor ordinals and limit ordinals. An ordinal
λ is a successor ordinal if it is of the form κ∪ {κ}, and a limit ordinal if it is not 0 and
not a successor ordinal. Finite numbers are successor ordinals, with the exception of
0. Ordinal numbers are well–ordered by the inclusion relation ∈. A well–order < on
a set R is a linear ordering which is irreflexive and such that any nonempty subset
S ⊆ R has a least element with respect to <. Ordinal numbers can be characterized
as sets well–ordered with respect to ∈ such that every element of an ordinal κ is an
ordinal. Any well–ordered set is isomorphic to a pair 〈κ, ∈〉, κ an ordinal. ‘κ < λ’ is
synonymous with ‘κ ∈ λ’. The Axiom of Choice is equivalent to the statement that
every set can be well–ordered. Throughout this book we will be working with the
standard set–theory ZFC (Z–F set theory plus the Axiom of Choice).
(See [220] and [114, 115] for an introduction to set theory.)
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One can define the sum, product and exponentiation for ordinals. The sum and
product of ordinals is generally not commutative. 1 + ω = ω, but ω + 1 , ω. And
2 · ω = ω, but ω · 2 = ω + ω , ω. Cardinal numbers are special kinds of ordinals,
namely those ordinals λ for which no µ < λ can be mapped onto λ. Finite ordinals
are cardinals. ω also is a cardinal here always denoted by ℵ0. Cardinal arithmetic
is different from ordinal arithmetic, except for finite numbers. If α or β is infinite,
however, we have α + β = α · β = max{α, β}. A set M has cardinality α if there
is a bijection f : α → M. The set 2M of all functions from M to 2 has the same
cardinality as the powerset ℘(M). Therefore we will occasionally identify ℘(M)
with 2M .

If α is a cardinal, α+ denotes the least cardinal greater than α. This is always
defined. For α = n we have α+ = n + 1. For α = ℵκ, κ an ordinal, ℵ+κ := ℵκ+1.
We know that always α < 2α. The Generalized Continuum Hypothesis (GCH) is the
conjecture that α+ = 2α. For α = ℵ0, the cardinality of the set of natural numbers,
this is the Continuum Hypothesis (CH). CH (and also GCH) is actually independent
of ZFC. We will state our results so that they are independent of CH and GCH.

L  O. A partial order on a set S is a relation ≤ which is (1.)
reflexive, that is, x ≤ x for all x ∈ S , (2.) transitive, that is, x ≤ y and y ≤ z implies
x ≤ z for all x, y, z ∈ S , and (3.) antisymmetric, which means that for all x, y ∈ S if
x ≤ y and y ≤ x then x = y. A chain is a partial order in which for any two x, y we
have x ≤ y or y ≤ x. (If either x ≤ y or y ≤ x we say that x and y are comparable.)
Let X ⊆ S . Then

↓X := {y : (∃x ∈ X)(y ≤ x)}
↑X := {y : (∃x ∈ X)(y ≥ x)}

If X = {x} then we write ↓ x and ↑ x rather than ↓{x} and ↑{x}. A set of the form ↓X
(↑X) for some X is called a lower cone (upper cone).

A lattice is a triple L = 〈L,u,t〉 satisfying the following laws for all x, y, z ∈ L
x u (y u z) = (x u y) u z x t (y t z) = (x t y) t z
x u y = y u x x t y = y t x
x u x = x x t x = x
x u (y t x) = x x t (y u x) = x

These laws are referred to as the laws of associativity, commutativity, idempotence
and absorption. We call x u y the meet of x and y and x t y the join of x and y. In
a lattice we can define a partial ordering ≤ by setting x ≤ y iff x t y = y. It turns out
that x ≤ y iff x u y = x. From the laws above follows that ≤ is a partial order, and
x u y is the greatest lower bound (glb) of x and y, and x t y the least upper bound
(lub) of x and y. Conversely, if ≤ is a partial ordering on V such that the glb and the
lub for any pair of elements exists, then 〈V, glb, lub〉 is a lattice.

There is a principle of duality in lattices which states that any law valid in all
lattices is transformed into a valid law if u and t are exchanged. This is due to
the fact that the laws postulated for lattices come in pairs, one the dual of the other.
Let L = 〈L,u,t〉. We say that Lop = 〈L,t,u〉 is the dual lattice of L. The partial
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order obtained for Lop is simply the converse ordering. (Usually, since x ≤ y means
that in the graphical representation x is below y, Lop is obtained from L by putting
everything upside down.)

We say that ⊥ is a bottom element if ⊥ ≤ x for all x, and that > is a top element
if x ≤ > for all x. A structure 〈L,⊥,>,u,t〉 whose reduct to u and t is a lattice
with top element > and bottom element ⊥ is called a bounded lattice. An element
x is an atom if for no y, ⊥ < y < x, and a coatom if for no y, x < y < >. Two
lattices L = 〈L,u,t〉 and M = 〈M,u,t〉 are isomorphic iff the ordered sets 〈L,≤〉
and 〈M,≤〉 are isomorphic. If a lattice also has infinite meets and joins, that is, if the
glb as well as the lub of infinite sets exists, then L is called complete. These infinitary
operations are denoted by and . We write y∈Yy or simply Y for the meet
of Y . Similarly for the join. Notice that complete lattices always have a bottom and
a top element. It can be shown that a lattice has infinitary glb’s iff it has infinitary
lub’s. An element x of a lattice is join compact if from x ≤ Y we may conclude
that x ≤ Y0 for a finite Y0 ⊆ Y . A lattice is algebraic if every element is the least
upper bound of a set of join compact elements. A lattice is distributive if it satisfies
the identities

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

It can be shown that either of the two equations implies the other.
A filter is a nonempty set F ⊆ L such that F = ↑F and such that if x, y ∈ F then

also x u y ∈ F. A filter is principal if it is of the form ↑ x for some x ∈ L. A subset
I ⊆ L is an ideal if I = ↓ I and for x, y ∈ I also x t y ∈ I. An ideal I is principal if
I = ↓ x for some x ∈ L.

A boolean algebra is a structure B = 〈B, 0, 1,−,∩,∪〉 such that the restriction
B � {∩,∪, 0, 1} := 〈B, 0, 1,∩,∪〉 is a bounded distributive lattice, and − : B→ B is a
function satisfying for all x:

− − x = x
x ∩ −x = 0
x ∪ −x = 1

as well as the so–called de Morgan Laws

−(x ∪ y) = (−x) ∩ (−y) , −(x ∩ y) = (−x) ∪ (−y) .

We also use the notation
⋂

x∈X x or
⋂

X, and likewise for
⋃

, as for lattices. This is
in general only defined if X is finite. A general reference for the kind of concepts
introduced so far is [37], [52] and [90].

C O. Let S be a set. A map C : ℘(S ) → ℘(S ) is called a
closure operator if it satisfies the following properties, referred to as extensivity,
monotonicity and idempotence.

(ext) X ⊆ C(X)
(mon) X ⊆ Y implies C(X) ⊆ C(Y)
(ide) C(C(X)) = C(X)
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A set of the form C(X) is called a closed set. Obviously, C(X) is the smallest closed
set containing X. Given a closure operator C, any intersection of closed sets is closed
again. Thus, the closure C(X) can also be defined via

C(X) =
⋂
〈Y : Y ⊇ X,Y = C(Y)〉

The closed sets form a lattice, with u being standard set intersection, and X t Y =
C(X ∪ Y). A closure operator is called finitary if it satisfies

(fin) C(X) =
⋃
〈C(E) : E ⊆ X, E finite 〉

If a closure operator is finitary, the lattice of closed sets is algebraic, and conversely.
The join compact elements coincide with the sets C(E), E finite. For general refer-
ence see [52].

2–V L. We will assume familiarity with classical logic, and in some
sections predicate logic and some model theory is required as well. Nevertheless,
for reference, let us fix here what we mean by classical logic. First of all, to avoid a
terminological clash, we talk of 2–valued logic when we refer to classical logic in the
usual sense. In fact, 2–valued only refers to the fact that we allow exactly two truth
values, denoted by 0 and 1. Furthermore, in the languages of 2–valued logic we have
primitive sentence letters functioning as propositional variables, and various logical
symbols with fixed meaning throughout this book. These are the constants verum >,
and falsum ⊥, the negation ¬, the conjunction ∧, disjunction ∨, implication→ and
biimplication↔. We may identify the set of truth values with the set 2 (= {0, 1}, see
above). When we speak of boolean logic we mean 2–valued logic for the language
in which only >, ¬ and ∧ are basic, and all other symbols are defined in the usual
way. A valuation is a function from the variables into the set 2. The truth value of
a complex proposition is calculated using the truth tables of the symbols, which are
standard. We say ϕ comes out true under a valuation, if it receives the value 1. A
formula ϕ is a tautology if it is true under all valuations. Formally, boolean logic is
the logic of the boolean algebra 2, which is the algebra based on the set 2 with the
usual interpretation of the symbols. Again, using the set interpretation of numbers,
∧ will come out as intersection, ∨ as union and ¬ as relative complement. (Notice
namely, that 0 = ∅, 1 = {∅} and 2 = {∅, {∅}}.) A good reference for basic logical
concepts is [199] or [84].

B R. The binary relations over a set M form a boolean algebra
with respect to intersection, complement relative to M × M, bottom element ∅ and
top element ∇M := M × M. Another special constant is the diagonal, ∆M := {〈x, x〉 :
x ∈ M}. Moreover, the following operations can be defined. First, for two relations
R, S ⊆ M × M we can define the composition R ◦ S := {〈x, z〉 : (∃y ∈ M)(x R y S z)}.
From the composition we define the n–fold product Rn of a relation by R0 := ∆M and
Rn+1 := R ◦ Rn. The transitive closure R+ of R is the union

⋃
0<n<ω Rn. The reflexive

transitive closure R∗ of R is
⋃

n<ω Rn, or equivalently, R+ ∪ ∆M . Finally, for each
relation R there is the converse R` := {〈y, x〉 : x R y}. For the converse we have the
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following identities
(R ∪ S )` = R` ∪ S `

(R ◦ S )` = S ` ◦ R`

(R∗)` = (R`)∗

G  S. Given a set G and a binary operation · on G which
is associative, 〈G, ·〉 is called a semigroup. If 1 ∈ G is such that 1 · x = x · 1 = x
for all x ∈ G, then 1 is called a unit. Moreover, 〈G, 1, ·〉 is called a monoid. A
particular example is provided by strings. Let A be a set. Then A∗ denotes the set
of finite strings over A. (For many purposes one may define strings as functions
from a natural number to A; however, for us, strings are basic objects. They simply
are sequences of symbols.) Strings are denoted by vector arrow, e. g. ~x, ~y, if it is
necessary to distinguish them from simple symbols. Given ~x and ~y, ~xa~y or ~x · ~y
denotes the concatenation of strings of ~x and ~y. The empty string is denoted by ε.
〈A∗, ε,a 〉 is a monoid. A string ~x is a prefix of ~y if there is a ~u such that ~y = ~xa~u. ~x
is a postfix of ~y if there exists a ~u such that ~y = ~ua~x. ~x is a substring if there are ~u
and ~v such that ~y = ~ua~xa~v. Every string ~x has a length, denoted by |~x|. It is defined
inductively as follows:

|ε| := 0,
|~x| := 1, if ~x ∈ A,
|~xa~y| := |~x| + |~y| .

Suppose we have an additional operation −1 : G → G such that the following laws
hold for all x, y ∈ G:

x · x−1 = 1,
x−1 · x = 1 .

Then the structure 〈G, 1,−1 , ·〉 is called a group.

1.2. Propositional Languages

A propositional language L consists of three things: (1) a set var of (proposi-
tional) variables, (2) a set F of (propositional) function symbols and (3) a function
Ω : F → ω. Ω( f ) is the arity of f . Ω is called the signature of L. The cardinality of
var is a matter of choice. Unless otherwise stated we assume that ]var = ℵ0. Hence
we have countably and infinitely many variables. Sometimes we consider the case
of languages with finitely many variables; these are called weak languages. Since
the set var is usually fixed, L is uniquely identified by Ω alone.

To take an example, let us consider the language B, consisting of the function
symbols∧, ∨, ¬,⊥ and>, whereΩ(∧) = Ω(∨) = 2,Ω(¬) = 1 andΩ(>) = Ω(⊥) = 0.
So, ∧ and ∨ are binary function symbols, which is to say that their arity is 2; ¬ is
a unary function symbol, in other words a function symbol of arity 1 and — finally
— > and ⊥ are nullary function symbols: their arity is zero. The propositional lan-
guages are a family of languages which are syntactically impoverished. There is only
one type of well–formed expression, that of a proposition. The symbol f can also be
understood as a function takingΩ( f ) many propositions, returning a proposition (see
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below the definition of the term algebra). Predicate logic knows at least two types of
meaningful expressions: terms and formulas. x + y is a term, x + y = 2 is a formula.
Natural languages have even more categories to classify meaningful expressions, for
example noun phrases, verb phrases, adjectival phrases and so on. Thus, from this
point of view, propositional languages are the poorest kind of language, those with
a single type only. The freedom lies in the set of basic functions. There are quite
meaningful n–ary functions for every n, for example exactly one of A0, A1, . . . or
An−1. In boolean logic such functions are rarely studied because they can be pro-
duced by composing ∧ and ¬; however, in other logics — e.g. intuitionistic logic —
these definability results no longer hold.

Let X be a set. An X–string is a finite string consisting of symbols from X ∪ F.
For a string ~x we write ~x ⊆ S if all members from ~x are in S . The set of Ω–terms
over X, TmΩ(X), is defined to be the smallest set of strings satisfying

(1) For all x ∈ X, x ∈ TmΩ(X).
(2) For all f ∈ F and tk ∈ TmΩ(X), k < Ω( f ), also

f ata0 . . .
a tΩ( f )−1 ∈ TmΩ(X)

This way of writing a term will be called prefix notation otherwise also known as
Polish Notation. The more conventional notation with brackets and binary function
symbols in between their arguments will be referred to as infix notation. Typically,
we will write ~x for a sequence of elements otherwise denoted by x0, . . . , xk−1 for
some k. Moreover, for an n–ary function f we will write f (t0, . . . , tn−1) instead of
f ata0 ta1 . . .

a tn−1. If we do not want to highlight the arity of f we will write f (~t) for
f (t0, t1, . . . , tn−1). When the length of the sequence, n, is suppressed in the notation,
in the context f (~x), the sequence is assumed to be of the required length, namely
Ω( f ). Finally, if f is a binary termsymbol we also write t0 f t1 or (t0 f t1) (depending
on readability) rather than f at0at1. (This is the infix notation.) The set X is taken in
the context of propositional logic to be the set of variables, sometimes also denoted
by var. We write var(t) for the set of variables occurring in t and sf (t) for the set of
subterms or subformulae of t. We define them formally as follows. var(t) := sf (t)∩X,
and

sf (xi) := {xi}

sf ( f (t0, . . . , tΩ( f )−1)) := { f (t0, . . . , tΩ( f )−1)} ∪
⋃

i<Ω( f ) sf (ti)

Nullary functions are also referred to as constants. The cardinality of the set of
constants is usually considered independently of the cardinality of functions. The
cardinality of TmΩ(X) is infinite except in some trivial cases.

P 1.2.1. TmΩ(X) is finite exactly when (i) X is empty, there are no
constants and any number of n–ary functions for n > 0, or (ii) X is finite and there
exist finitely many constants and no n–ary functions for any n > 0. If the cardinality
of TmΩ(X) is infinite it is equal to the maximum of ℵ0 and the cardinalities of the set
of variables, the set of constants and the set of function symbols.
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P. Let C denote the set of constants and F the set of functions of arity > 0.
Let α := ]X + ]C, β := ]F and γ := ]TmΩ(X). Obviously, if α = 0, γ = 0 as well. If
β = 0 then γ = α. This is finite if α is. The theorem holds in all these cases. Now
assume that F , ∅ and X ∪C , ∅. Define the sets S i, i < ω, as follows.

S 0 := X ∪C
S i+1 := S i ∪ { f (~x) : ~x ⊆ S i, f ∈ F}

Then
TmΩ(X) =

⋃
i<ω

S i

If F , ∅ and S 0 , ∅, then S i , ∅ and also S i ( S i+1. Hence γ is at least
ℵ0. If S 0 and F are finite, so is S i for every i < ω. Hence the theorem holds in
these cases. Finally, let α be infinite. Then α = max{]X, ]C}. It can be shown that
]S i+1 = ]S i · β = max{]S i, β}. Hence for i > 0, ]S i = ]S 1. So, γ = ]S 1 = max{α, β},
showing the theorem. �

Typically, we think of the function symbols f as standing for functions, taking Ω( f )
many inputs and yielding a value. This is codified in the notion of an Ω–algebra.
(For basic concepts of universal algebra see [37] and [89].) An Ω–algebra is a pair
A = 〈A, I〉, where A is a set, and I a function assigning to each f ∈ F an Ω( f )–ary
function from A to A. This definition is somewhat cumbersome, and is replaced by
the following, less rigorous definition. An Ω–algebra (or simply an algebra) is a
pair A = 〈A, 〈 f A : f ∈ F〉〉, where A is a set, the underlying set of A, and for each
f ∈ F, f A is an Ω( f )–ary function on A, in symbols f A : AΩ( f ) → A. One very
important Ω–algebra is the algebra of Ω–terms over a given set X. Let us denote by
f not only the function symbol f , but also the function TmΩ(X)Ω( f ) → TmΩ(X) : 〈t j :
j < Ω( f )〉 7→ f (t0, t1, . . . , tΩ( f )−1). Now, since the set of Ω–terms is closed under
(application of) the functions f for every f ∈ F, the following is well–defined.

TmΩ(X) := 〈TmΩ(X), F〉.

This is called the algebra of Ω–terms over X or simply the termalgebra (over X).
In addition to the termalgebras we have the trivial algebra 1 := 〈{0}, 〈 f 1 : f ∈ F〉〉,
where f 1(0, . . . , 0) = 0. In addition to the primitive functions f A, f ∈ F, we can
form complex functions by composition of functions; in algebra, for example, + and
· are primitive functions, and x ·(y+z), x ·y+x ·z are complex functions (and the terms
are distinct even though they represent identical functions from R3 to R). A term–
function of A is now generally defined to be any primitive or complex function of
A. Given a set A a clone of term–functions is a set Cl of functions f : Am → A for
some m < ω satisfying

(1) For all n < ω the projections pn
i : An → A of an n–sequence to the i–

component are in Cl.
(2) For all n < ω if f : Ak → A is in Cl and gi : An → A are in Cl for i < k,

then the composition f [g0, . . . , gk−1] : An → A is also in Cl. It is defined
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by
f [g0, . . . , gk−1](~a) := f (g0(~a), . . . , gk−1(~a))

where ~a ∈ An.

Let A be an Ω–algebra. The clone generated by the functions f A is called the clone
of term functions of A, and is denoted by Clo(A). Clon(A) denotes the set of n–ary
term functions of A. A polynomial of the algebra A is a termfunction of the algebra
AA, where AA denotes the algebra A expanded by constants ca with value a for each
a ∈ A. We denote by Poln(A) the set of all n–ary polynomials of A, and by Pol(A)
the set of polynomials of A. The elements of Pol1(A) are called translations. The
reader may verify the following fact. Given a polynomial p(~x) ∈ Poln(A) there is
a term function f (~x, ~y) ∈ Clon+m(A) for some m ∈ ω and some ~b ∈ Am such that
p(~a) = f (~a, ~b) for all ~a ∈ An. This means that every polynomial results from a term
function by supplying constants for some of the arguments.

An Ω–homomorphism (or simply a homomorphism) from the algebra A =
〈A, 〈 f A : f ∈ F〉〉 to the algebra B = 〈B, 〈 fB : f ∈ F〉〉 is a map h : A → B such that
for all f ∈ F and all elements a j ∈ A, j < Ω( f ),

h( f A(a0, . . . , aΩ( f )−1)) = fB(h(a0), . . . , h(aΩ( f )−1)) .

In case h : A → B is a homomorphism we write h : A → B. To rephrase the for-
mal definition, homomorphisms are maps which preserve the structure of the source
algebra; the source elements compose in the same way in the source algebra as their
images do in the target algebra. A homomorphism h : A → A is called an endo-
morphism of A. A bijective endomorphism is called an automorphism of A. We
write End(A) for the set of endomorphisms of A and Aut(A) for the set of automor-
phisms of A. End(A) is closed under composition, and so the endomorphisms form
a semigroup with idA as unit. Moreover, if h : A → A is an automorphism, so is
h−1 : A→ A.

T 1.2.2. Let Ω be a signature and A an Ω–algebra. Put

End(A) := 〈End(A), idA, ◦〉 ,
Aut(A) := 〈Aut(A), idA,

−1 , ◦〉 .

Then End(A) is a semigroup and Aut(A) is a group.

A map h : A→ B induces an equivalence relation ker(h) on A via 〈x, y〉 ∈ ker(h)
iff h(x) = h(y). We call ker(h) the kernel of h. Given an equivalence relation Θ, the
sets [x]Θ := {y : x Θ y} are called the cosets of Θ. For a set D, we write [D]Θ :=⋃

x∈D[x]Θ. With Θ = ker(h) we call the cosets also fibres of h. If h : A → B is a
homomorphism, it induces a special equivalence relation on A, called a congruence.
A congruence (relation) on A is a set Θ ⊆ A × A which is an equivalence relation
and for all functions f and sequences ~x = 〈x0, . . . , xΩ( f )−1〉 and ~y = 〈y0, . . . , yΩ( f )−1〉

if x j Θ y j for all j < Ω( f ) then also f A(~x)Θ f A(~y). Each congruence relation on A
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defines a so–called factor algebra A/Θ whose elements are the cosets [x]Θ of the
equivalence relation, and the operations [ f A]Θ act blockwise in the following way.

[ f A]Θ([x0]Θ, . . . , [xΩ( f )−1]Θ) := [ f A(x0, . . . , xΩ( f )−1)]Θ.

It is the fact that Θ is a congruence relation that makes this definition independent of
the choice of the representatives. The reader may check this for known cases such as
groups, lattices etc. The map x 7→ [x]Θ is an Ω–homomorphism from A onto A/Θ.
We write A � A/Θ to highlight the fact that the map is surjective. The following is
now straightforwardly proved.

P 1.2.3. Let h : A � B be a surjective homomorphism. Then Θ :=
ker(h) is a congruence, and B � A/Θ. An isomorphism is given by the map ι :
h(x) 7→ [x]Θ.

Since h is surjective, ι is defined on all elements of B and is well–defined by
construction of [x]Θ.

Let E ⊆ A × A. The smallest congruence relation containing E is denoted by
Θ(E). The map E 7→ Θ(E) is a closure operator with closed sets being the con-
gruences. The congruences on an algebra form a complete lattice, being inter-
section and the smallest congruence containing the members of the union. We
denote this lattice by Con(A). The bottom element of this lattice is the diagonal
∆ = {〈a, a〉 : a ∈ A}, and the top element is ∇ = A × A. An algebra is simple if it has
only these congruences and they are distinct. The congruenceΘ(E) can be computed
explicitly. Let

Eτ := {〈t(a), t(b)〉 : 〈a, b〉 ∈ E, t ∈ Pol1(A)}.
This is the closure of E under translations. Then Θ(E) is the smallest equivalence
relation containing Eτ. The rationale behind this is the following characterization of
congruence relations.

P 1.2.4. Let A be an algebra. A binary relation on A is a congruence
on A iff it is an equivalence relation closed under translations.

P. Clearly, a congruence relation must be an equivalence relation. Con-
versely, let Θ be an equivalence relation and t a translation. Then t(x) = f (x, ~a) for a
term function f (x, ~y). Assume xΘ y. Then

t(x) = f (x, ~a)Θ f (y, ~a) = t(y) .

Hence Θ is closed under translations. Conversely, let Θ be translation closed and
~x = 〈xi : i < n〉, ~y = 〈yi : i < n〉 be n–long sequences such that xi Θ yi for all i < n.
Assume that f is a an n–ary term function. Then we have

f (x0, . . . , xn−1) Θ f (y0, x1, . . . , xn−1)
Θ f (y0, y1, x2, . . . , xn−1)
. . .

Θ f (y0, . . . , yn−1) .

By transitivity, f (~x)Θ f (~y). �
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P 1.2.5. LetΘi, i ∈ I, be congruences of a given algebraA. Then letΨ
be the transitive closure of the equivalence relation

⋃
i∈I Θi. Then Ψ is a congruence

on A and identical to i∈IΘi. Hence, 〈x, y〉 ∈ i∈IΘi iff there is a number n < ω,
elements zi, i < n + 1, and a sequence j(i), i < n, of elements in I such that

x = z0 Θ j(0) z1 Θ j(1) z2 . . . zn−1 Θ j(n−1) zn = y

P.
⋃

i∈I Θi is symmetric and reflexive; so is its transitive closure, Ψ. There-
fore, we only need to verify that Ψ is closed under translations. To see that, let
〈x, y〉 ∈ Ψ. Then there exist elements zi, i < n + 1, and a sequence j(i), i < n, of
elements of I such that

x = z0 Θ j(0) z1 Θ j(1) z2 . . . zn−1 Θ j(n−1) zn = y

Now let f ∈ Pol1(A) be a translation. Then

f (x) = f (z0)Θ j(0) f (z1)Θ j(1) f (z2) . . . f (zn−1)Θ j(n−1) f (zn) = f (y)

Hence 〈 f (x), f (y)〉 ∈ Ψ. �

We derive the following useful consequence. Let 〈a, b〉 ∈ 〈Θi : i ∈ I〉. Then
for some finite set I0 ⊆ I, 〈a, b〉 ∈ 〈Θi : i ∈ I0〉. Moreover, for a set E of equations,
Θ(E) =

⋃
〈Θ(E0) : E0 ⊆ E, ]E0 < ℵ0〉.

P 1.2.6. Let A be an Ω–algebra. Then Con(A) is algebraic. The
compact elements are of the form Θ(E), E a finite set of equations. Moreover,

Θ(E) =
⋃
〈Θ(E0) : E0 ⊆ E, ]E0 < ℵ0〉

Term algebras have the important property that for any function v : X →

A where A is the underlying set of A there is exactly one Ω–homomorphism v :
TmΩ(X)→ A such that v � X = v. v can be defined inductively as follows.

(1) For x ∈ X we have v(x) = v(x).
(2) For every f ∈ F and terms tk (k < Ω( f )):

v( f (t0, . . . , tΩ( f )−1)) = f A(v(t0), . . . , v(tΩ( f )−1)) .

We note the following useful fact. If h : A → B is a homomorphism then h ◦ v :
X → B, and h ◦ v = h ◦ v. Given v : X → A and a term t = t(x0, . . . , xn−1) then
v(t) ∈ A. Hence each term t defines a term–function tA : An → A on A such that
tA(a0, . . . , an−1) = v(t(x0, . . . , xn−1)) where v(xi) = ai, i < n. A map σ : X →
TmΩ(X) is called a substitution. A substitution defines a unique homomorphism
σ : TmΩ(X) → TmΩ(X); conversely, any homomorphism of this type is determined
by a substitution. So, substitutions are simply endomorphisms of the term algebra.
We usually write tσ for σ(t). It is also customary to write t[u/x] or t[x 7→ u] to
denote the result of applying to t the substitution σ : x 7→ u, y 7→ y (for all y , x).
Given a set V of variables we denote by t[ux/x : x ∈ V] the result of simultaneously
substituting ux for x for all x ∈ V .
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Exercise 1. Let A be a set, and E ⊆ A × A. Show that the least equivalence relation
over A containing E, e(E), can be computed in three steps. Let r(E) = E ∪ ∆A

denote the reflexive closure, s(E) = E ∪ E` the symmetric closure, and t(E) = E+

the transitive closure. Then e(E) = t(s(r(E))).

Exercise 2. (Continuing the previous exercise.) Show that if E is reflexive, that is,
E = r(E) then so is Eτ; and that if E is symmetric, then so is Eτ. Hence show that
Θ(E) can be computed in four steps as follows. (i) close E reflexively, (ii) close E
symmetrically, (iii) close under translations and (iv) close E transitively.

Exercise 3. Show Theorem 1.2.2.

1.3. Algebraic Constructions

We have already encountered the notion of a homomorphism of Ω–algebras and
congruences. Here we will state and prove some extremely useful theorems about
these constructions and also introduce some (more) notation. If h : A → B is
surjective we write h : A � B and call B a homomorphic image of A. If h is
injective we write h : A � B. Furthermore, if A ⊆ B and the natural inclusion
h : A → B : x 7→ x is a homomorphism we say that A is a subalgebra of B and
write A ≤ B. If h is both surjective and injective, it is called an isomorphism. A and
B are isomorphic if there exists an isomorphism h : A → B. We know that each
homomorphism from A to B induces a congruence on A and that each congruence
on an algebra is associated with a surjective homomorphism. There is a one–to–one–
connection between congruences and the natural factor algebras, where we compute
with blocks rather than elements. Moreover, the following holds.

P 1.3.1. (1.) Let A be an algebra and Θ1 ⊆ Θ2. Then Θ2 induces a
congruence on A/Θ1, denoted by Θ2/Θ1. Moreover,

(A/Θ1)/(Θ2/Θ1) � A/Θ2 .

(2.) Let h : A � B be surjective and let Θ be a congruence on B. Then there exists
a congruence Φ on A such that A/Φ � B/Θ. (3.) Let A ≤ B be a subalgebra and
ΘB be a congruence on B. Then ΘB � A := ΘB ∩ A × A is a congruence on A.

P. (1.) Θ2/Θ1 can be defined as follows. [[x]Θ1](Θ1/Θ2) := [x]Θ2. This
is independent of the choice of x as a representative of the class [x]Θ1, since Θ2
includes Θ1. The map [x]Θ1 7→ [x]Θ2 is a homomorphism with kernel Θ2/Θ1, as is
immediately verified. (2.) PutΦ := {〈a, b〉 : h(a)Θ h(b)}. Let h/Φ : [x]Φ 7→ [h(x)]Θ.
This is well defined because it does not depend on the choice of x as a representative
of its class. By definition, h/Φ is injective; it is also surjective. It is also not hard to
see that it is a homomorphism. (3.) Put ΘA := ΘB � A. ΘA is clearly an equivalence
relation. Now let t ∈ Pol1(B), a, b ∈ A. Then t(a), t(b) ∈ A, since A is a subalgebra.
Hence if 〈a, b〉 ∈ ΘA we have 〈t(a), t(b)〉 ∈ ΘA by the fact that ΘB is a congruence
and A is closed under translations. �
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T 1.3.2. The map Φ 7→ Φ/Θ is an isomorphism from the interval [Θ,∇]
in the lattice Con(A) onto the lattice Con(A/Θ).

P. By the previous proposition this map is bijective. It is easy to see that it
is an order isomorphism, thus it is a lattice isomorphism as well. �

Next we define the product of algebras. Let A j, j ∈ J, be a family of algebras. Then
the underlying set of the product is the cartesian product of the sets, X j∈J A j, which
is the set of functions s with domain J and value s( j) ∈ A j. Denote this set by P.
The operations are defined pointwise, that is, if f is an n–ary function symbol, and
s0, . . . , sn−1 ∈ P, then

fP(s0, . . . , sn−1)( j) := f A j (s0( j), . . . , sn−1( j)) .

Then the product of the A j is∏
j∈J

A j := 〈P, 〈 fP : f ∈ F〉〉

The projection maps pi : P → Ai : s 7→ s(i) are homomorphisms. If Θ j, j ∈ J,
are congruences on the A j then there is a natural congruence X j∈J Θ j on the product
defined by s (X j∈J Θ j) t iff for all j ∈ J we have s( j)Θ j t( j). For every family of maps
h j : A j → B j there exists a map∏

j∈I

h j :
∏
j∈I

A j →
∏
j∈I

B j .

If all h j are injective (surjective) then so is
∏

j∈I . The kernel of
∏

j∈I h j is exactly
X j∈Iker(h j). However, not every congruence on the product can be obtained in this
way. (The easiest example are sets, that is, algebras with no functions. There a
congruence is just an equivalence relation. An equivalence on a product set is not
necessarily decomposable.)

If K is a class of Ω–algebras for a fixed Ω, then by H(K) we denote the class
of all algebras B which are homomorphic images of algebras in K, we denote by
S(K) the class of subalgebras of algebras in K and by P(K) the class of algebras
isomorphic to products of algebras in K. A variety is a class closed under all three
operators H, S and P.

T 1.3.3. LetΩ be a signature and K a class ofΩ–algebras. The smallest
variety containing K is the class HSP(K).

P. All operators are individually closure operators. Namely, we have K ⊆

O(K) for all O ∈ {H,S,P}. For if A is in K, then since the identity 1A : A→ A is an
isomorphism, A ∈ S(K) as well as A ∈ H(K). Moreover, A is a product of A (take
a singleton index set). Secondly, if K ⊆ L then O(K) ⊆ O(L) for O ∈ {S,H,P},
as is immediate from the definition. We will leave it as an exercise to show that
HH(K) ⊆ H(K), SS(K) ⊆ S(K) and PP(K) ⊆ P(K). Furthermore, SH(K) ⊆
HS(K). For let C ≤ B and B � A/Θ for some congruence Θ. We may assume that
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B = A/Θ. Then C is a set of blocks of the form [x]Θ. Put D := {x : [x]Θ ∈ C}.
Then [D]Θ = C. Moreover, by the fact that C is closed under the operations [ f ]Θ
it follows that D is closed under all operations of A. Hence D ≤ A. Since we
have hΘ � D : D � C, it follows that D ∈ HS(K). Also, we have noted that
PH(K) ⊆ HP(K). Finally, PS(K) ⊆ SP(K) since the product of subalgebras is a
subalgebra of the product of theB j as we have noted above. With these commutation
laws we have H(HSP(K)) ⊆ HSP(K), S(HSP(K)) ⊆ HSSP(K) = HSP(K) and
P(HSP(K)) ⊆ HPSP(K) ⊆ HSPP(K) = HSP(K). This shows the theorem. �

Let λ be a cardinal number. An algebra A is λ–generable or λ–generated if
there exist elements aµ, µ < λ, such that the smallest subalgebra containing all these
elements is A itself. Likewise, since the smallest subalgebra containing these ele-
ments is the set of all elements obtainable by applying the functions to these ele-
ments, A is λ–generated iff there exists a surjective homomorphism TmΩ(X) � A,
where X is a set of cardinality λ. An algebra A is called freely λ–generated in a
class K if if there is a set X ⊆ A of cardinality λ such that for every map v : X → B
there is exactly one homomorphism h : A → B such that h � X = v. We write v for
h. We say also that A is freely generated by X. In the class of all Ω–algebras, the
term algebras TmΩ(X) are freely generated by X. (They are also called absolutely
free Ω–algebras.)

P 1.3.4. Let K be a class of algebras, and let A and B be freely λ–
generated in K. Then A � B.

P. Let X ⊆ A and Y ⊆ B be subsets of cardinality λ such that A is freely
generated by X and B freely generated by Y . By assumption, there exist maps p :
X → Y and q : Y → X such that q ◦ p = 1X and p ◦ q = 1Y . Then p : A → B and
q : B→ A are (uniquely) defined extensions of p and q. Moreoever, p ◦ q � Y = 1Y ,
and so p ◦ q = 1B, since there is exactly one homomorphism extending 1Y , and the
identity is a homomorphism. Likewise q ◦ p = 1A is proved. Hence A and B are
isomorphic. �

The previous theorem has established the uniqueness of free algebras. Their
existence is not generally guaranteed. To have free algebras for all cardinalities of
generating sets is a nontrivial property. A central theorem of universal algebra states
that all nontrivial varieties have free algebras. The proof looks difficult, but the
argument is simple. Take a cardinal λ and consider all pairs 〈 f ,A〉 where A ∈ K and
f : λ→ A. Let S be the set of such pairs. It is used as an index set in the product

Pλ :=
∏
〈 f ,A〉∈S

A

Let C be the subalgebra generated by the functions sµ, with µ ∈ λ, where sµ(〈 f ,A〉) =
f (µ). Let ι : C � Pλ be the inclusion map. We claim that C is freely generated by
the sµ. To that end, let v : sµ 7→ aµ be any map into an algebra A ∈ K. Then let g be
defined by g(µ) := v(sµ). The pair c = 〈g,A〉 is in S . Hence there is a projection pc :
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Pλ → A such that pc(sµ) = sµ(c) = aµ. The composition pc ◦ ι is a homomorphism
from C to A. By FrV(X) we denote the algebra freely generated by X in V; and for a
cardinal number λ we denote by FrV(λ) the freely λ–generated algebra in V. Given
a set X of generators, and a variety V, there may be several terms denoting the same
element in the free algebra FrV(X), since it is in general a homomorphic image of
the term algebra TmΩ(X). Nevertheless, we will not distinguish between a term t(~x)
and its equivalence class in FrV(X).

T 1.3.5. Let V be a variety of Ω–algebras for a given Ω. For every
cardinal γ there exists in V a freely γ–generated algebra. Every algebra of V is the
homomorphic image of a free algebra in V.

The reader may care to note that it may happen that the variety is trivial, contain-
ing up to isomorphism only the algebra 1. In that case even though we start off with
a set of larger cardinality, the free algebra will be isomorphic to 1, so the generators
turn out to be equal as elements of the algebra. If we insist on the generators as being
elements of the free algebra then the previous theorem is false just in case we have a
trivial variety. However, under a different reading the theorem makes sense, namely
if we take the following definition of a free algebra. An algebra A is free over X if
there is a map i : X → A such that for any map j : X → B there is a homomorphism
h : A→ B for which j(x) = h ◦ i(x) for all x ∈ X. In the case of the trivial variety, X
can have any cardinality, and yet A = {0}. In the sequel we always assume to work
with nontrivial varieties, whenever this should make a difference.

T 1.3.6. Let V be a variety, i : X � Y and p : Y � X. Then i :
FrV(X)� FrV(Y) and p : FrV(Y)� FrV(X).

P. If i : X � Y there exists a q such that q ◦ i = 1X . It follows that q ◦ i is
the identity on FrV(X). Since q ◦ i = q ◦ i, q is surjective and i is injective. Similarly
it is shown that p is surjective. �

P 1.3.7. Let V be a variety and A an algebra of V. Then there exists
a free algebra F and a homomorphism h : F� A.

For a proof note that there exists a surjection v : A � A. Hence we also have
that v : FrV(A)� A.

Exercise 4. Show that either a variety contains up to isomorphism only the trivial
algebra 1 or it contains infinite algebras.

Exercise 5. Let L be a language with signature Ω. Let γ be the cardinality of
TmΩ(∅). Then show that any variety of Ω–algebras which is nontrivial contains an
algebra of any infinite cardinality δ ≥ γ.

Exercise 6. Show with a specific example that the claim of the previous exercise
need not hold for finite δ.
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Exercise 7. Show that for any class of algebras, HH(K) ⊆ H(K) as well as SS(K) ⊆
S(K) and PP(K) ⊆ P(K). Hint. For the last claim take a collection 〈I j : j ∈ J〉 of
pairwise disjoint index sets, and assume that there is an algebra Ai j for every i j ∈ I j,
j ∈ J. Then each B j :=

∏
k∈I j
Ak is a product, and C :=

∏
j∈J B j is a general element

of PP(K). Now let K :=
⋃

j∈J I j and put D :=
∏

k∈K Ak. Show that C � D.

1.4. General Logic

In our view, logic is the study of truth and consequence. In logic we study
(among other things) whether a statement ϕ follows from some set ∆ of other state-
ments. We usually write ∆ ` ϕ if this is the case. We interpret this as follows: if all
χ ∈ ∆ are true then so is ϕ. Of course, we must specify what we mean by being true.
However, already on these assumptions there are some nontrivial things that can be
said about the relation `. To write them down, we will — in accordance with our
notation in connection with modal logic — use lower case Greek letters for terms
of propositional logic, since these terms are thought of as formulae. We also will
henceforth not distinguish between L as a set of function symbols and the terms of
L, namely the set TmΩ(var); given this convention ` ⊆ ℘(L) × L. Moreover, we
write Σ ` Γ if for all ϕ ∈ Γ, Σ ` ϕ. It is also customary to use Σ;∆ for Σ ∪ ∆ and
Σ;ϕ instead of Σ ∪ {ϕ}. This notation saves brackets and is almost exclusively used
instead of the proper set notation.

(ext.) If ϕ ∈ Σ then Σ ` ϕ.
(mon.) If Σ ⊆ ∆ then Σ ` ϕ implies ∆ ` ϕ.
(trs.) If Σ ` Γ and Γ ` ϕ then Σ ` ϕ.

(Observe that (mon.) is derivable from (ext.) and (trs.).) For suppose that ϕ ∈ Σ.
Then if all χ ∈ Σ are true, then ϕ is true as well. Thus (ext.) holds. Furthermore, if
Σ ` ϕ and Σ ⊆ ∆ and if all χ ∈ ∆ are true, then all terms of Σ are true and so ϕ is true
as well; this shows (mon.). The third rule is proved thus. If Σ ` Γ and ∆ ` ϕ and all
terms of Σ are true then all formulae of Γ are true by the first assumption and so ϕ is
true by the second.

In addition, there are two other postulates that do not follow directly from our
intuitions about truth–preservation.

(sub.) If Σ ` ϕ and σ is a substitution then Σσ ` ϕσ.
(cmp.) Σ ` ϕ iff there exists a finite Σ0 ⊆ Σ such that Σ0 ` ϕ.

The postulate (sub.) reflects our understanding of the notion of a variable. A variable
is seen here as a name of an arbitrary (concrete) proposition and thus we may plug in
all concrete things over which the variables range. Then the relation Σ ` ϕ says that
for any concrete instances of the occurring variables, the concretization of Σ ` ϕ is
valid. So, the rule p∧ q ` q∧ p — being valid — should remain valid under all con-
cretizations. For example, we should have Aristotle was a philosopher and Socrates
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was a carpenter ` Socrates was a carpenter and Aristotle was a philosopher. Sup-
pose now that we have a substitution σ. Then — contrary to what one might think —
ϕσ is not a concretization of ϕ; however, every concretization of ϕσ is a concretiza-
tion of ϕ. One may therefore think of σ as a sharpening, since given ϕ it returns a
more specific proposition ϕσ. Thus, Σσ ` ϕσ simply is a statement over a subset of
concretizations of Σ ` ϕ. Since it holds for all of them Σσ ` ϕσ holds as well. The
algebraic argument is simple. Namely, a concretization is, formally speaking, just a
homomorphism β : TmΩ(X) → A. A concretization of ϕσ is just the value β(σ(ϕ))
under a homomorphism. But β(ϕσ) = β ◦ σ(ϕ), and since β ◦ σ : TmΩ(X) → A, it
is a concretization as well. Hence any concretization of ϕσ is in fact a concretization
of ϕ.

The last postulate (cmp.) is called compactness, a term borrowed from topol-
ogy. Another term is finitary. (cmp.) is not at all justifiable from our notions of truth.
In fact, it fails e. g. in logics with infinitary operations. We have {ϕi : i ∈ ω} `

∧
〈ϕi :

i ∈ ω〉 even though no finite set Γ ⊆ {ϕi : i ∈ ω} exists such that Γ `
∧
〈ϕi : i ∈ ω〉.

One might expect that if we only have finitary operations, the truth of any term if
entailed by Σ will already be entailed by some finite subset of Σ. But this is known to
be false as well (see [232]). Indeed, the most plausible justification comes from the
interpretation via deduction. For suppose we read Σ ` ϕ as there is a proof of ϕ from
Σ. Then, since such a proof is a finite object, we can use only finitely many terms of
Σ in it.

D 1.4.1. Let L be a propositional language and `⊆ ℘(L) × L. ` is
called a finitary consequence relation over L if it satisfies (ext.), (mon.), (trs.),
(sub.) and (cmp.). A pair 〈L, `〉 where L is a propositional language and ` a finitary
consequence relation over L is called a (propositional) logic.

Notice the following. In contrast to the standard literature, we require both (sub.)
and (cmp.), since we want to deal almost exclusively with such logics. If (cmp.) is
not assumed, we explicitly say so. Hence, in sequel, by a consequence relation we
actually understand a finitary consequence relation. Moreover, when there is no risk
of confusion we will speak of the logic `; this is justified especially when it is clear
over which language ` is defined. A general reference for consequence relations is
[232]. A logic ` is called inconsistent if `= ℘(TmΩ(var))×TmΩ(var). Alternatively,
` is inconsistent if ` p for some p. It follows that in an inconsistent logic Γ ` ϕ for
all Γ and ϕ. Likewise, a set Γ (a formula ϕ) is consistent if there is a formula χ such
that Γ 0 χ (ϕ 0 χ). The terms ϕ satisfying ∅ ` ϕ are called the tautologies of the
logic. We denote the set of tautologies of ` by Taut(`).

A rule is a pair ρ = 〈Σ, ϕ〉 where Σ is a finite set. Σ is called the set of premises
of ρ and ϕ the conclusion. If ]Σ = n, ρ is called an n–ary rule. Furthermore, ρ is a
proper rule if n > 0, and an axiom otherwise. ρ is a derived rule of ` if ρ ∈ `.
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D 1.4.2. Let L be a language and R a set of rules over L. Then by `R

we denote the least consequence relation ` such that R ⊆ `. R is a rule base of `
if `= `R.

To characterize `R define an instance of ρ = 〈Σ, ϕ〉 to be any pair 〈∆, ψ〉 such that
there is a substitution σ with ϕσ = ψ and Σσ = ∆. Every rule justifies all instances
of itself, by (sub.). Suppose that a set of rules R is given. Then Σ `R ϕ iff there is a
proof tree deriving ϕ from Σ. A proof tree of ϕ from Σ is a tree 〈T, <〉 (where the
root is the largest element with respect to < and < is completely intransitive) labelled
with formulae from L in such a way that (i) the root has label ϕ, (ii) the leaves have
labels from Σ and (iii) if {yi : i < n} is the set of elements > x, yi has label ϕi and x
has label ψ, then 〈{ϕi : i < n}, ψ〉 is an instance of some ρ ∈ R.

An alternative characterization is via sequences. Given R we define now an R–
proof from Σ to ϕ to be any finite sequence 〈ϕi : i ≤ λ〉 such that ϕλ = ϕ and for
any κ ≤ λ either (i) ϕκ ∈ Σ or (ii) for some set ∆ such that ∆ ⊆ {ϕµ : µ < κ}, 〈∆, ϕκ〉
is an instance of a rule in R. Now set Σ `R ϕ iff there exists an R–proof from Σ to ϕ.
The reader may verify that if we have a proof tree, there exists an enumeration of the
nodes of a tree such that the corresponding labels, if written down according to that
enumeration, form an R–proof; and that if we have an R–proof of ϕ from Σ, we can
define a proof tree for ϕ from Σ. To see the correctness of this characterization of `R,
we prove the following theorem.

T 1.4.3. Let R be a set of rules and put Σ 
 ϕ iff there exists an R–proof
of ϕ from Σ. Then 
 = `R.

P. It is not hard to see that 
 ⊆ `R. To show that the two are equal it
suffices to establish that 
 as defined is a consequence relation. (ext.) If ϕ ∈ Σ then
the sequence consisting of ϕ alone is a R–proof of ϕ from Σ. (mon.) If ~α is a R–proof
of ϕ from Σ then it is also an R–proof of ϕ from any ∆ ⊇ Σ. (sub.) If ~α is an R–proof
of ϕ from Σ and σ is a substitution then ~ασ is an R–proof of ϕσ from Σσ. (cmp.) If
~α is an R–proof of ϕ from Σ then let Σ0 be the set of terms occurring both in Σ and
~α. Since ~α is finite, so is Σ0. Moreover, ~α is a R–proof of ϕ from Σ0. (trs.) Suppose
that Σ 
 Γ and that Γ 
 ϕ. By (cmp.) we can assume that Γ is finite, so without loss
of generality let Γ = {γi : i < n}. Let ~α be an R–proof of ϕ from Γ and ~βi an R–proof
of ψi from Σ, i < n. Now let

~ζ := ~β0
a~β1

a
. . . a~βn−1

a~α

It is straightforward to check that ~ζ is a proof of ϕ from Σ. �

Let R be a set of rules. We say that a rule ρ can be derived from R if ρ ∈ `R.
Alternatively, ρ = 〈∆, ϕ〉 then ρ ∈ `R if there exists an R–proof of ϕ from ∆. If ρ is
a rule, let `+ρ denote the least consequence relation containing both ` and ρ. For a
consistent ` put

E(`) := {n : there is an n–ary rule ρ < ` such that 0+ρ p}
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E(`) contains the arity of all rules ρ such that `+ρ is a proper, consistent extension of
`. We call E(`) the extender set of `. Obviously, a consequence relation is maximal
among the consistent consequences relations iff its extender set is empty.

Let Σ be a set of formulae. A rule 〈∆, ϕ〉 is called admissible for Σ if Σ is
closed under the application of ρ. That is, if for some substitution σ, σ[∆] ⊆ Σ,
then σ(ϕ) ∈ Σ. ρ is admissible for ` if ρ is admissible for Taut(`). Equivalently,
ρ is admissible for ` if for all substitutions σ, ϕσ is a tautology, that is, ∅ `R ϕσ,
whenever all members of ∆σ are tautologies. ` is called structurally complete if
every admissible rule of ` is derivable. ` is called Post–complete if 0 < E(`).

P 1.4.4 (Tokarz). (1) A consequence relation ` is structurally com-
plete iff E(`) ⊆ {0}. (2) A consequence relation is maximally consistent iff it is both
structurally complete and Post–complete.

P. (2) follows immediately from (1). So, we show only (1). Let ` be struc-
turally complete. Let ρ be a rule such that `+ρ is a proper and consistent extension
of `. Since ` is structurally complete, the tautologies are closed under ρ. It follows
that ρ must be a 0–ary rule. For the other direction assume that ` is structurally in-
complete. Then there exists some ρ which is admissible but not derivable. ρ is not
an axiom. Hence `+ρ properly extends `. Since ` is consistent, p is not a tautol-
ogy of `. Since ρ is admissible, p is not a tautology of `+ρ, and so the latter is also
consistent. �

It will be proved later that 2–valued logics with >, ¬ and ∧ is both structurally
complete and Post–complete. Now, given `, let

T (`) := {`′: Taut(`′) = Taut(`)}

Then T (`) is an interval with respect to set inclusion. Namely, the least element is
the least consequence containing all tautologies of `. The largest is the consequence
`+R, where R is the set of all rules admissible for `. As we will see in the context
of modal logic, the cardinality of T (`) can be very large (up to 2ℵ0 for countable
languages).

Another characterization of logics is via consequence operations or via theories.
This goes as follows. Let 〈L, `〉 be a logic. Write Σ` = {ϕ : Σ ` ϕ}. The map Σ 7→ Σ`

is an operation satisfying the following postulates.

(ext.) Σ ⊆ Σ`.
(mon.) Σ ⊆ ∆ implies Σ` ⊆ ∆`.
(trs.) Σ`` ⊆ Σ`.
(sub.) σ[Σ`] ⊆ (σ[Σ])` for every substitution σ.
(cmp.) Σ` =

⋃
〈Σ`0 : Σ0 ⊆ Σ,Σ0 finite〉.

Actually, given (cmp.), (mon.) can be derived. Thus the map Σ 7→ Σ` is a closure
operator which is compact and satisfies (sub.). This correspondence is exact. When-
ever an operation Cn : ℘(L) → ℘(L) on sets of L–terms satisfies these postulates,
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the relation Σ `Cn ϕ defined by Σ `Cn ϕ iff ϕ ∈ Cn(Σ) is a consequence relation, that
is to say, 〈L, `Cn〉 is a logic. Moreover, two distinct consequence operations deter-
mine distinct consequence relations and distinct consequence relations give rise to
distinct consequence operations.

Finally, call any set of the form Σ` a theory of `. By (trs.), theories are closed
under consequence, that is, Σ` not only contains all consequences of Σ but also all
of its own consequences as well. We may therefore say that the theories of ` co-
incide with the deductively closed sets. Given `, the following can be said about
`–theories.

(top.) L is a `–theory.
(int.) If Ti, i ∈ I, are `–theories, so is

⋂
〈Ti : i ∈ I〉.

(sub.) If T is a `–theory, σ a substitution then
σ−1[T ] = {ϕ : ϕσ ∈ T } is a `–theory.

(cmp.) If Ti, i ∈ I, is an ascending chain of `–theories then⋃
〈Ti : i ∈ I〉 is a `–theory.

Again, the correspondence is exact. Any collection T of subsets of L satisfying
(top.), (int.), (sub.) and (cmp.) defines a consequence operation Σ 7→ Σ` by Σ` =⋂
〈T : T ∈ T,T ⊇ Σ〉 which satisfies (ext.), (mon.), (trs.), (sub.) and (cmp.). The

correspondence is biunique. Different consequence operations yield different sets of
theories and different collections of theories yield different consequence operations.
The theories of a logic form a lattice. This lattice is algebraic if the consequence
relation is finitary. The converse does not hold; this has been shown by B
H and FW [103].

Exercise 8. Give a detailed proof of Theorem 1.4.3.

Exercise 9. Let R be a set of axioms or 1–ary rules. Show that ∆ `R ϕ iff there exists
a δ ∈ ∆ such that δ `R ϕ.

Exercise 10. Show that every consistent logic is contained in a Post–complete logic.
Hint. You need Zorn’s Lemma here. For readers unfamiliar with it, we will prove
later Tukey’s Lemma, which will give rise to a very short proof for finitary logics.

Exercise 11. Show that in 2–valued logic

ϕ1 ↔ ψ1;ϕ2 ↔ ψ2 ` ϕ1 ∧ ϕ2 ↔ ψ1 ∧ ψ2
ϕ1 ↔ ψ1;ϕ2 ↔ ψ2 ` ϕ1 ∨ ϕ2 ↔ ψ1 ∨ ψ2
ϕ↔ ψ ` ¬ϕ↔ ¬ψ

Thus if ϕ ≡ ψ is defined by ` ϕ ↔ ψ, then ≡ is a congruence relation. What is the
cardinality of a congruence class? Hint. We assume that we have ℵ0 many proposi-
tional variables. Show that all congruence classes must have equal cardinality.
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Exercise 12. Show that there is no term ϕ in >,∨,∧ such that ϕ ` ¬p ` ϕ in classical
logic. Hint. Show first that one can assume var(ϕ) = {p}.

Exercise 13. Show that if 〈L, `〉 is a logic, the map Σ 7→ Σ` is a finitary closure
operator.

Exercise 14. Show that if Σ 7→ Σ` is a finitary closure operator, the system of deduc-
tively closed sets satisfies (top.), (int.), (sub.) and (cmp.).

Exercise 15. Show that if the system of `–closed sets satisfies (top.), (int.), (sub.)
and (cmp.), then 〈L, `〉 is a logic.

1.5. Completeness of Matrix Semantics

Fundamental for the study of algebraic logic is the notion of a logical matrix.
While for algebraic purposes we need only an algebra in order to compute terms,
truth is extraneous to the notion of an algebra. Boolean algebras as such are neu-
tral with respect to the notion of truth, we must stipulate those elements which we
consider as true. The link between 1 and true is conventionally laid. One must be
aware, therefore, that this is just a convention. We might, for example, consider 0
rather than 1 as true, and it turns out, that the logic of the algebra 〈2,∧〉 where 0 is
considered true is the same as the logic of 〈2,∨〉 where 1 is considered true, if ∧ is
translated as ∨.

D 1.5.1. An Ω–matrix for a signature Ω is a pairM = 〈A,D〉 where
A is an Ω–algebra and D ⊆ A a subset. A is called the set of truth values and
D the set of designated truth values. An assignment or a valuation into
M is a map v from the set of variables into A. We say that v makes ϕ true in M if
v(ϕ) ∈ D; otherwise we say, it makes ϕ false.

With respect to a matrixM we can define a relation `M by

∆ `M ϕ ⇔ for all assignments v : If v[∆] ⊆ D then v(ϕ) ∈ D .

Given a class S of matrices (for the same signature) we define

`S :=
⋂
〈`M: M ∈ S 〉 .

T 1.5.2. Let Ω be a signature. For each class S of Ω–matrices, `S is a
(possibly nonfinitary) logic.

P. We show this for a single matrix. The full theorem follows from the fact
that the intersection of logics is a logic again. Let M ∈ S . (ext.) If ϕ ∈ Σ and
v[Σ] ⊆ D then v(ϕ) ∈ D, by assumption. (mon.) Let Σ ⊆ ∆ and Σ `M ϕ. Assume
v[∆] ⊆ D. Then v[Σ] ⊆ D as well, and so v(ϕ) ∈ D, by assumption. (trs.) Let Σ `M Γ
and Γ `M ϕ. Assume v[Σ] ⊆ D. Then we have v[Γ] ⊆ D and so v(ϕ) ∈ D. (sub.)
Assume Σ `M ϕ and let σ be a substitution. Then v ◦ σ is a homomorphism into
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the algebra underlying M and v ◦ σ[Σ] = v[Σσ]. Hence if v[Σσ] ⊆ D we also have
v(ϕσ) ∈ D, as required. �

T 1.5.3 (Wójcicki). For each logic 〈L, `〉 there exists a class S of matri-
ces such that ` = `S .

P. Given the language, let S consist of all 〈TmΩ(var),T 〉 where T is a the-
ory of `. First we show that for each such matrix M, ` ⊆ `M. To that end, assume
Σ ` ϕ and that v[Σ] ⊆ T . Now v is in fact a substitution, and T is deductively closed,
and so v(ϕ) ∈ T as well, as required. Now assume Σ 0 ϕ. We have to find a single
matrix M of this form such that Σ 0M ϕ. For example, M := 〈TmΩ(var),Σ`〉. Then
with v the identity map, v[Σ] = Σ ⊆ Σ`. However, v(ϕ) = ϕ < Σ` by definition of Σ`

and the fact that Σ 0 ϕ. �

We add the remark that if M is a matrix for `, then the set of truth values must
be closed under the rules. The previous theorem can be refined somewhat. Let
M = 〈A,D〉 be a logical matrix, and Θ a congruence on A. Θ is called a matrix
congruence if D is a union of Θ–blocks, that is, if x ∈ D then [x]Θ ⊆ D, and
likewise, if x < D then [x]Θ ∩ D = ∅. Then we can reduce the whole matrix by Θ
and defineM/Θ := 〈A/Θ,D/Θ〉.

L 1.5.4. Let M be a matrix and Θ be a matrix congruence of M. Then
`M = `M/Θ.

P. Let Σ `M ϕ. Let v : var → A/Θ be a valuation such that v[Σ] ⊆ [D]Θ.
Then let w : var→ A be defined by taking w(pi) ∈ v(pi). (Recall that v(pi) is a union
of Θ–blocks.) By assumption, [w[Σ]]Θ ⊆ [D]Θ, since [D]Θ is a union of blocks, and
Θ is a congruence. Hence w(ϕ) ∈ D, by which v(ϕ) = [w(ϕ)]Θ ∈ [D]Θ, as required.
Now assume Σ `M/Θ ϕ. Let w be a valuation such that w[Σ] ⊆ D. Then define v to be
the composition of w with the natural surjection x 7→ [x]Θ. Then v[Σ] ⊆ [D]Θ. By
assumption, v(ϕ) ∈ [D]Θ, so that v(ϕ) = [x]Θ for some x ∈ D. Consider w(ϕ). We
know that v(ϕ) = [w(ϕ)]Θ = [x]Θ. Thus w(ϕ) = y for some yΘ x. Since D consists
of entire Θ–blocks, y ∈ D, as required. �

Call a matrix reduced if the diagonal, that is the relation ∆ = {〈x, x〉 : x ∈ A}, is
the only matrix congruence. It follows that we can sharpen the Theorem 1.5.3 to the
following

T 1.5.5. For each logic 〈L, `〉 there exists a class S of reduced matrices
such that ` = `S .

Let S be a class of Ω–matrices. S is called a unital semantics for ` if ` = `S
and for all 〈A,D〉 ∈ S we have ]D ≤ 1. (See J C [49, 50]. A unital
semantics is often called algebraic. This, however, is different from the notion of
‘algebraic’ discussed in W B and D P [29].) The following is a useful
fact, which is not hard to verify.
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P 1.5.6. Let ` have a unital semantics. Then in ` the rules p; q;ϕ(p) `
ϕ(q) are valid for all formulae ϕ.

Notice that when a logic over a language L is given and an algebra A with ap-
propriate signature, the set of designated truth values must always be a deductively
closed set, otherwise the resulting matrix is not a matrix for the logic. A theory is
consistent if it is not the entire language, and maximally consistent if it is maximal
in the set of consistent theories. One can show that each consistent theory is con-
tained in a maximally consistent theory. A direct proof for modal logics will be given
below. It is interesting to note that for classical logics the construction in the proof of
Theorem 1.5.3 can be strengthened by taking as matrices in S those containing only
maximally consistent theories. For if Σ 0 ϕ then Σ;¬ϕ is consistent and so for some
maximally consistent ∆ containing Σ we have ¬ϕ ∈ ∆. Taking v to be the identity,
v[Σ] = Σ ⊆ ∆, but v(ϕ) < ∆, otherwise ∆ is not consistent. Furthermore, there is a
special matrix, Taut = 〈TmΩ(var),∅`〉. Recall that ∅` are simply the tautologies of
a logic.

T 1.5.7 (Wójcicki). ` is structurally complete iff ` = `Taut.

Notes on this section. The concepts of logical consequence and logical ma-
trix are said to date back to the work of J Ł and A T [141].
Many results of this section are claimed to have been folklore in the 1930ies. The-
orem 1.5.3 is due to R W́ [229]. The converse of the implication in
Proposition 1.5.6 also holds on condition that the logic has tautologies. This is
proved in [50], where it is attributed to unpublished work by R S. The
notion of structural completeness has been introduced by W. A. P [162]
who proved also that classical logic is structurally complete. For general reference
on consequence relations and algebraic semantics see RW́ [232].

Exercise 16. Prove Proposition 1.5.7.

Exercise 17. Characterize `M whereM = 〈A,D〉, where D = ∅ or D = A.

1.6. Properties of Logics

Logics can have a number of highly desirable properties which one should al-
ways establish first whenever possible. The first is decidability. A logic 〈L, `〉 is said
to be decidable if for all finite Σ and all terms ϕ we can decide whether or not Σ ` ϕ.
In other words, we must have a procedure or an algorithm that yields a (correct) an-
swer to the problem ‘Σ ` ϕ’. (To be exact, we should speak of the problem ‘Σ ` ϕ?’,
but the question mark generally will be omitted.) This comprises two things (i) the
algorithm terminates, that is, does not run forever and (ii) the answer given is correct.
Predicate logic is not decidable; the reason is that its expressive power is too strong.
Many propositional logics, on the other hand, are decidable. 2–valued logics are an
example. This follows from the next theorem, first shown by R. H in [100].
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T 1.6.1 (Harrop). Suppose that M = 〈A,D〉 is a finite logical matrix.
Then 〈L, `M〉 is decidable.

P. Basically, the decision algorithm is that of building ‘truth tables’. Given
a finite Σ and a term ϕ, there exist only finitely many valuations v : var(Σ)∪var(ϕ)→
T . It is a finite problem to compute all the values v(ψ) for ψ ∈ Σ to check whether
v[Σ] ⊆ D and then to see whether v(ϕ) ∈ D as well. �

This procedure is generally slower than tableaux–methods, however only mildly
so (see [51]). Tableaux–methods allow for a guided search for falsifying assignments
which in many cases (and certainly in many applications) reduces the search space
rather drastically. However, the truth–table method is in certain cases also rather
efficient. There is namely a certain tradeoff between the length of a formula and the
number of variables it contains. The length of a computation for a given formula ϕ
depends exponentially on the number of variables (so this is indeed expensive), but
only quadratically on the length of ϕ. (See Section 1.8.) For if ϕ has n variables, and
M has k elements, then kn assignments need to be checked. Given a particular as-
signment, the truth value of ϕ with respect to that assignment can be checked simply
by induction on the constitution of ϕ. If ϕ contains ` many symbols different from
variables, then ` many steps need to be performed. Each step takes time propotional
to the length of ϕ. In total we get a bound on the time of c · ` · |ϕ| · kn.

Secondly, we investigate the notion of implication. Of particular importance in
logic are the modus ponens and the deduction theorem. To explain them, assume
that we have a binary termfunction � (p, q), written p � q. The rule of modus
ponens for � — (mp�.) for short — is the rule 〈{p, p � q}, q〉. There are many
connectives which fulfill modus ponens, for example ∧ and→. We write (mp.) for
(mp→.). � is said to satisfy the deduction theorem with respect to ` if for all Σ, ϕ,
ψ

(†) Σ;ϕ ` ψ ⇔ Σ ` ϕ� ψ.

A logic 〈L, `〉 is said to admit a deduction theorem if there exists a term p � q
such that (†) holds. Given the deduction theorem it is possible to transform any
rule different from (mp.) into an axiom preserving the consequence relation. (To be
precise, we can also rewrite (mp.) into an axiom, but we are not allowed to replace it
by that axiom, while with any other rule this is possible in presence of the deduction
theorem and (mp.).) For example, the rule p; q ` p ∧ q can be transformed into
` p � (q � (p ∧ q)). Hence it is possible to replace the original rule calculus
by a calculus where modus ponens is the only rule which is not an axiom. In such
calculi, which are called mp–calculi or also Hilbert–style calculi for�, validity of
the deduction theorem is equivalent to the validity of certain rules.

T 1.6.2. An mp–calculus for�, 〈L, `〉, has a deduction theorem for�
iff� satisfies modus ponens and the following are axioms of `:
(wk.) p� (q� p) ,
(fd.) (p� (q� r))� ((p� q)� (p� r)) .
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Remark. (wk.) is the axiom of weakening and (fd.) is known as Freges Dreier-
schluß, named after G F. There is also a rather convenient notation of
formulae using dots; it is used to save brackets. We write ϕ. � .ψ for (ϕ) � (ψ).
For example, (fd.) can now be written as

(p.� .q� r)� (p� q.� .p� r).

Now we prove Theorem 1.6.2.

P. (⇒) Suppose both modus ponens and (†) hold for�. Now since ϕ ` ϕ,
also ϕ;ψ ` ϕ and (by (†)) also ϕ ` ψ � ϕ and (again by (†)) ` ϕ � (ψ � ϕ). For
(fd.) note that the following sequence

〈ϕ.� .ψ� χ, ϕ� ψ, ϕ, ψ� χ, ψ, χ〉

proves ψ. � .ψ � χ;ϕ � ψ;ϕ ` χ. Apply (†) three times and (fd.) is proved.
(⇐) By induction on the length of an R–proof ~α of ψ from Σ ∪ {ϕ} we show that
Σ ` ϕ � ψ. Suppose the length of ~α is 1. Then ψ ∈ Σ ∪ {ϕ}. There are two cases:
(1) ψ ∈ Σ. Then observe that 〈ψ� (ϕ� ψ), ψ, ϕ� ψ〉 is a proof of ϕ� ψ from Σ.
(2) ψ = ϕ. Then we have to show that Σ ` ϕ � ϕ. Now observe that the following
is an instance of (fd.): (ϕ. � .(ψ � ϕ) � ϕ) � (ϕ � (ψ � ϕ). � .ϕ � ϕ). But
ϕ. � .(ψ � ϕ) � ϕ and ϕ. � .ψ � ϕ are both instances of (wk.) and by applying
modus ponens two times we prove ϕ� ϕ. Now let ~α be of length > 1. Then we may
assume that ψ is obtained by an application of modus ponens from some formulae χ
and χ� ψ. Thus the proof looks as follows:

. . . , χ, . . . , χ� ψ, . . . , ψ, . . .

Now by induction hypothesis Σ ` ϕ � χ and Σ ` ϕ. � .(χ � ψ). Then, as
ϕ� (χ� ψ).� .(ϕ� χ.� .ϕ� ψ) is a theorem we get that Σ ` ϕ� ψ with two
applications of modus ponens. �

The significance of the deduction theorem lies among other in the fact that for a
given set Σ there exists at most one consequence relation ` with a deduction theorem
such that Σ is the set of tautologies of `. For assume ∆ ` ϕ for a set ∆ ⊆ L. Then by
compactness there exists a finite set ∆0 ⊆ ∆ such that ∆0 ` ϕ. Let ∆0 := {δi : i < n}.
Put

ded(∆0, ϕ) := δ0 � (δ1 � . . . (δn−1 � ϕ) . . .)
Then, by the deduction theorem for�

∆ ` ϕ ⇔ ∅ ` ded(∆, ϕ)

T 1.6.3. Let ` and `′ be consequence relations with Taut(`) = Taut(`′

). Suppose that there exists a binary termfunction � such that ` and `′ satisfy a
deduction theorem for�. Then ` = `′.

` has interpolation if whenever ϕ ` ψ there exists a formula χ with var(χ) ⊆
var(ϕ) ∩ var(ψ) such that both ϕ ` χ and χ ` ψ. Interpolation is a rather strong
property, and generally logics fail to have interpolation. There is a rather simple
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theorem which allows to prove interpolation for logics based on a finite matrix. Say
that ` has a conjunction if there is a term p∧ q such that the following are derivable
rules: 〈{p, q}, p ∧ q〉 and both 〈{p ∧ q}, p〉 and 〈{p ∧ q}, q〉. In addition, if ` = `M
for some logical matrix we say that ` has all constants if for each t ∈ T there exists
a nullary term–function t such that for all valuations v v(t) = t. (Note that since
var(t) = ∅ the value of t does not depend at all on v.) This rather complicated
definition allows that we do not need to have a constant for each truth–value; it
is enough if they are definable from the others. For example in classical logic we
may have only > = 1 as a primitive and then 0 = ¬>. Notice also the following.
Say that an algebra is functionally complete if every function An → A is a term–
function of A; and say that A is polynomially complete if every function An → A
is a polynomial function. Then any functionally complete algebra is polynomially
complete; the converse need not hold. However, if A has all constants, then it is
functionally complete iff it is polynomially complete.

T 1.6.4. Suppose that M is a finite logical matrix. Suppose that `M has
a conjunction ∧ and all constants; then `M has interpolation.

P. Suppose that ϕ(~p, ~q) ` ψ(~q,~r), where ~r = 〈ri : i < n〉. Clearly, var(ψ) *
var(ϕ), iff n > 0. We show that if n , 0 there exists a

ψ1 = ψ1(~q, r0, . . . rn−2)

such that ϕ ` ψ1 ` ψ. The claim is then proved by induction on n. We put

ψ1(~q, r0, . . . , rn−2) :=
∧
〈ψ(~q, r0, . . . , rn−2, t) : t ∈ T 〉

Now observe that ϕ ` ψ implies

ϕ(~p, ~q) ` ψ(~q, r0, . . . , rn−2, t)

for every t. Now we apply the rule for conjunction for each t ∈ T , and obtain

ϕ(~p, ~q) `
∧
〈ψ(~q, r0, . . . , rn−2, t) : t ∈ T 〉 (= ψ1) .

Furthermore, ψ1 ` ψ, that is,∧
〈ψ(~q, r0, . . . , rn−2, t)〉 ` ψ(~q, r0, . . . , rn−1) .

For if v(ψ1) is true then for any extension v+ with rn−1 ∈ dom(v+) we have v+(ψ) ∈
D. �

The following is an instructive example showing that we cannot have interpo-
lation without constants. Consider the logic of the 2–valued matrix in the language
C′ = {∧,¬}, with 1 the distinguished element. This logic fails to have interpolation.
For it holds that p ∧ ¬p ` q, but there is no interpolant if p , q. This is surprising
because the algebra 〈2,−,∩〉 is polynomially complete. Hence, polynomial com-
pleteness is not enough, we must have functional completeness. In other words, we
must have all constants. Let us also add that the theorem fails for intersections of
logics with all constants and conjunction.
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A property closely related to interpolation is Halldén–completeness. It is named
after S̈H́, who discussed it first in [93]. (See also [191].) A logic is called
Halldén–complete if for all formulae ϕ and ψ with var(ϕ) ∩ var(ψ) = ∅ we have
that if ϕ ` ψ and ϕ is consistent then ` ψ. 2–valued logics are Halldén–complete.
Namely, assume that ϕ is consistent. Let v : var(ψ)→ 2 be any valuation. Since ϕ is
consistent there exists a u : var(ϕ) → 2 such that u(ϕ) = 1. Put w := u ∪ v. Since u
and v have disjoint domains, this is well–defined. Then w(ϕ) = 1, and so w(ψ) = 1.
So, v(ψ) = 1. This shows that ` ψ. The following generalization is now evident.

T 1.6.5 (Łos & Suszko). LetM be a logical matrix. Then `M is Halldén–
complete.

Thus, failure of Halldén–completeness can only arise in logics which are not de-
termined by a single matrix. In classical logic, the property of Halldén–completeness
can be reformulated into a somewhat more familiar form. Namely, the property says
that for ϕ and ψ disjoint in variables, if ϕ ∨ ψ is a tautology then either ϕ or ψ is a
tautology.

Finally we turn to structural completeness. Recall that structural completeness
means that all admissible rules are derivable. The converse is always valid.

T 1.6.6. Suppose that M is a logical matrix and `M has all constants.
Then it is structurally complete and Post–complete.

P. Suppose that ρ = 〈{ϕ0, ϕ1, . . . , ϕn−1}, ψ〉. Assume n > 0. We show
that if ρ is not derivable it is not admissible. So, assume ρ < `M. Then there is
a v : var → T such that v(ϕ0), v(ϕ1), . . . , v(ϕn−1) ∈ D while v(ψ) < D. Consider
the substitution σ(p) := v(p), where v(p) is the constant with value v(p). Then ϕσ0 ,
ϕσ1 , . . . , ϕ

σ
n−1 are in D under all homomorphisms, so they are theorems. But ψσ is not

in D for any homomorphism. So ρ is not admissible in `M. If n = 0, the addition
of ψ as an axiom makes the logic inconsistent. For ψσ is constant, with value < D.
Hence, ψσ `M p. So, adding ψσ yields an inconsistent logic. Therefore, adding ψ
makes the logic inconsistent. �

Notes on this section. In [140] a consequence relation ` is called uniform if for
sets Γ and ∆ and a single formula ϕ such that var(∆) ∩ var(Γ;ϕ) = ∅ we have: if
Γ;∆ ` ϕ then Γ ` ϕ. Obviously a uniform consequence relation is Halldén–complete.
It is shown in that paper that a consequence relation is uniform iff it is of the form
`M for a single logical matrix. It was noted by RW́ [230] that for con-
sequence relations that need not be finitary this works only on the assumption that `
is regular. Finitary consequence relations are always regular.

Exercise 18. Let S be a finite set of finite matrices. Show that `S is decidable.

Exercise 19. Let M = 〈T,D〉 be a logical matrix. Show that a connective (=
termfunction) � satisfies the rule of modus ponens for `M if whenever a ∈ D and
a�T b ∈ D then also b ∈ D; in other words, this is the truth table for�T:
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� D D
D ? D
D ? ?

Read this as follows. D stands for any element of D, D for any element of T − D.
? stands for an arbitrary element. How many binary connectives of classical logic
satisfy (mp.)?

Exercise 20. LetM = 〈T,D〉 be a logical matrix. Show that� satisfies the deduction
theorem if it has the truth table below.

� D D
D D D
D D D

Thus the above truth table requires only that a�T b < D if a ∈ D but b < D.

Exercise 21. LetM = 〈T,D〉 be a logical matrix. Show that ∧ is a conjunction if it
has the following truth table.

∧ D D
D D D
D D D

1.7. Boolean Logic

The result of the previous sections will now be applied to the most fundamental
logic, namely boolean logic. This chapter may be skipped by all those readers who
are acquainted with the theory of boolean algebras. The main purpose is to repeat
whatever will be essential knowledge for the rest of this book. Before we begin,
let us agree that we will use the term boolean logic to denote what otherwise may
also be called classical logic. The reason for not using the latter is a clash in termi-
nology, because there are also classical modal logics. To distinguish them from the
traditional classical logic we call the latter boolean logic.

We distinguish between boolean logic and 2–valued logic, which is a logic
whose semantics consists of matrices with at most 2 elements. A set of term func-
tions is complete or a basis if the smallest clone of functions containing this set is
the clone of all term–functions. Examples of bases are {1,−,∩}, {→,⊥}, and {↓,⊥},
where p ↓ q := ¬(p ∩ q). Our set of primitive symbols is {1,−,∩}. This set is a
basis, as is well–known. Notice that if we need only a polynomially complete set of
basic functions, > is redundant. (However, notice that by the theorems and exercises
of the previous section, in the language of ¬ and ∧ 2–valued logic does not have
interpolation.)
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D 1.7.1. A boolean algebra is an algebra B = 〈B, 1,−,∩〉 of the
signature 〈0, 1, 2〉 such that ∩ is commutative, associative and idempotent, with neu-
tral element 1, and − is a map satisfying the following conditions with 0 := −1 and
x ∪ y := −(−x ∩ −y).

− − x = x
x ∩ −x = 0
(x ∩ y) ∪ (x ∩ −y) = x

Recall that in Section 1.1 we defined a boolean algebra as a bounded distributive
lattice with a negation satisfying the de Morgan laws and the identities above. We
need to verify that if we define 0, ∪ as above, then 〈B, 0, 1,∩,∪,−〉 satisfies the
description of Section 1.1. The most difficult part is the proof of the distributivity
law.

L 1.7.2. In a boolean algebra, ∪ is associative, commutative, idempotent,
and 0 ∪ x = x.

The proof of this fact is left as an exercise. Put x ≤ y iff x ∩ y = x. It follows
that x = y iff x ≤ y and y ≤ x. For if the latter holds then x = x∩ y = y∩ x = y. Then
x → y = −x ∪ y. Moreover, x ↔ y := (x → y) ∩ (y → x). For the proof of the next
theorem observe that

x ∩ 0 = 0
For x ∩ 0 = x ∩ (x ∩ −x) = (x ∩ x) ∩ −x = x ∩ −x = 0.

L 1.7.3. In a boolean algebra, the following holds.
(1) x ≤ y iff x ∩ −y = 0.
(2) x ≤ y iff x→ y = 1.
(3) x = y iff x↔ y = 1.
(4) x ≤ y iff −y ≤ −x.

P. (1.) If x ≤ y then x ∩ −y = (x ∩ y) ∩ (−y) = x ∩ (y ∩ −y) = x ∩ 0= 0. If
on the other hand x∩−y = 0 then x = (x∩ y)∪ (x∩−y) = (x∩ y)∪ 0 = x∩ y, by the
previous theorem. Hence x ≤ y. (2.) x ∩ −y = −(x → y), so x ≤ y iff x ∩ −y = 0 iff
x→ y = 1. (3.) x = y iff x ≤ y and y ≤ x iff x→ y = 1 and y→ x = 1 iff x↔ y = 1.
(4.) x ≤ y iff x ∩ −y = 0 (by (1.)) iff −y ∩ − − x = 0 iff −y ≤ −x (again by (1.)). �

L 1.7.4. In a boolean algebra, the following holds.
(1) x→ (y→ z) = (x ∩ y)→ z.
(2) x ∩ y ≤ z ⇔ x ≤ y→ z

The law (2.) is known as the law of residuation.

P. (1.) This is also easily proved from the other laws. For x → (y → z) =
−(x ∩ −(−(y ∩ −z))) = −(x ∩ (y ∩ −z)) = −((x ∩ y) ∩ −z) = (x ∩ y) → z. (2.)
x ∩ y ≤ z iff (x ∩ y) → z = 1 iff x → (y → z) = 1 (by (1.)) iff x ≤ y → z by (2.) of
Lemma 1.7.3. �
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L 1.7.5. In a boolean algebra, x ∩ (x→ y) ≤ y.

P. From −y ∩ x ≤ x ∩ −y we deduce −y ≤ x → (x ∩ −y), by residuation.
So, −(x→ −(x→ y)) ≤ y, which is x ∩ (x→ y) ≤ y. �

P 1.7.6. In a boolean algebra, x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

P. We have x ∩ y ≤ x since x ∩ y ∩ x = x ∩ y, and likewise x ∩ z ≤ x.
Furthermore, x∩ y ≤ y ≤ y∪ z. Hence x∩ y ≤ y∪ z, and likewise x∩ z ≤ y∪ z. This
shows one inequality. For the other, observe that

x ∩ (y ∪ z) ∩ −(x ∩ y) ∩ −(x ∩ z) = x ∩ (−y→ z) ∩ (x→ −y)
∩(x→ −z)

≤ (−y→ z) ∩ −y ∩ −z
≤ z ∩ −z
= 0

So, by (1.) of Lemma 1.7.3, x ∩ (y ∪ z) ≤ (x ∩ y) ∪ (x ∩ z). �

An alternative characterization of a boolean algebra is the following. 〈B, 0, 1,−,∩,∪〉
is a boolean algebra iff its reduct to {0, 1,∩,∪} is a bounded distributive lattice,
and − a function assigning to each x ∈ A its complement. Here, an element y
is a complement of x if y ∩ x = 0 and y ∪ x = 1. In a distributive lattice, y
is uniquely defined if it exists. For let y1 and y2 be complements of x. Then
y1 = (x ∪ y2) ∩ y1 = (x ∩ y1) ∪ (y2 ∩ y1) = y2 ∩ y1, and so y1 ≤ y2. By the
same argument, y2 ≤ y1, and so y1 = y2. In addition, if y is the complement of x, x is
the complement of y. The second definition is easily seen to be equivalent (modulo
the basic operations) to the one of Section 1.1. Call y a complement of x relative to
z if x∩ y = 0 and x∪ y = z. The law (x∩ y)∪ (x∩−y) = x is (in presence of the other
laws) equivalent to the requirement that x∩−y is the complement of x∩ y relative to
x. Namely, (x ∩ y) ∩ (x ∩ −y) = x ∩ (y ∩ −y) = 0.

Given boolean logic, what are the deductively closed sets in B? To answer this
note that we have x = y iff x ≤ y and y ≤ x iff x ↔ y = 1. Now if S is deductively
closed, it must contain all tautologies and be closed under the rule (mp.). So if x ∈ S
and x→ y ∈ S then y ∈ S . We deduce first of all that S is not empty; namely, 1 ∈ S .
(Recall that 1 is assumed to be the value of >, which is in the language; if it is not,
then at least we have x ∪ −x ∈ S for an arbitrary x if S is not empty.) Furthermore,
if x ∈ S and x ≤ y then x → y = 1 ∈ S and so y ∈ S . Finally, if x, y ∈ S then also
x ∩ y ∈ S since x→ (y→ x ∩ y) = 1 and by applying the previous rule twice we get
the desired result. The following definition summarizes this.

D 1.7.7. A filter in a boolean algebra A is a subset F of A satisfying
the following.

(fi1.) 1 ∈ F.
(fi≤.) If x ∈ F and x ≤ y then y ∈ F.
(fi∩.) If x, y ∈ F then x ∩ y ∈ F.
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A filter is trivial or improper if it is the entire carrier set. A maximal proper filter
is called an ultrafilter.

P 1.7.8. A subset of a boolean algebra is deductively closed iff it is a
filter.

P. The direction from left to right has been shown already. Now let F be a
filter. Consider x ∈ F and x → y ∈ F. Then x ∩ (x → y) ∈ F. But x ∩ (x → y) =
x ∩ (−x ∪ y) = 0. ∪ .x ∩ y = x ∩ y. So, x ∩ y ∈ F. Now x ∩ y ≤ y and so y ∈ F as
well. �

We have characterized the deductively closed sets; these turn out to be also the sets
which are congruence classes of the top element. Furthermore, if F is a filter, then
the relation x ∼F y defined by x↔ y ∈ F is a congruence. First of all, it is reflexive,
since x ↔ x = 1 ∈ F. Second, it is symmetric since x ↔ y = y ↔ x. And it is
transitive, for if x ∼F y and y ∼F z then x↔ y ∈ F and y↔ z ∈ F and

(x↔ y) ∩ (y↔ z) = (x ∩ y. ∪ . − x ∩ −y) ∩ (y ∩ z. ∪ . − y ∩ −z)
= (x ∩ y ∩ z. ∪ . − x ∩ −y ∩ −z)
≤ (x ∩ z. ∪ . − x ∩ −z)
= x↔ z

and so x↔ z ∈ F by (fi∩.) and (fi≤.). Finally, it has to be checked that it respects the
operations. Now, if x ↔ y ∈ F, we have −x ↔ −y = x ↔ y ∈ F as well. Secondly,
if x ↔ y ∈ F and z ↔ u ∈ F, then also (x ∩ z) ↔ (y ∩ u) ≤ (x ↔ z) ∩ (y ↔ u) ∈ F,
as one can check. So, if we have a filter F, we also have a congruence, denoted
by ΘF . Moreover, F = [1]ΘF . The homomorphism with kernel ΘF is denoted by
hF . Clearly, if F and G are filters and F ⊆ G then ΘF ⊆ ΘG, and conversely. We
conclude the following.

P 1.7.9. Let A be a boolean algebra. The map f : Θ 7→ FΘ := {x :
xΘ 1} is an isomorphism from the lattice of congruences of A onto the lattice of
filters of A. Furthermore, if F is a filter, then ΘF defined by xΘF y iff x ↔ y ∈ F is
the inverse of F under f .

The following are equivalent definitions of an ultrafilter.

P 1.7.10. Let B be a boolean algebra not isomorphic to 1. A filter U
is an ultrafilter iff either of (1.), (2.), (3.).
(1.) For all x: −x ∈ U iff x < U.
(2.) U is proper and for all x, y: if x ∪ y ∈ U then x ∈ U or y ∈ U.
(3.) The algebra B/U is isomorphic to 2.

P. First we show that U is an ultrafilter iff U satisfies (3.). Namely, U is
maximal iff ΘU is maximal in Con(A) iff the interval [ΘU ,∇] � 2 iff A/U is simple
(by Proposition 1.3.2). A boolean algebra is simple iff it is isomorphic to 2. For if
there exists an element x , 0, 1 then the filter F = {y : y ≥ x} is distinct from the
trivial filters. Now we show that U is an ultrafilter iff U satifies (1.). Suppose that U
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is an ultrafilter. Then, by (3.), A/U � 2. So for every x ∈ A, [x]ΘU = 0 or [x]ΘU = 1.
Thus either [x]ΘU = 1, which means x ∈ U, or [−x]ΘU = 1, which means −x ∈ U.
Both cannot hold simultaneously. Next suppose that (1.) holds. Then if U ( V , there
exists an x ∈ V − U. By (1.), however, −x ∈ U and so −x ∈ V . Hence 0 ∈ V , and
V is not proper. So, U is an ultrafilter. Thirdly, we show that U satisfies (2.) iff U
satisfies (1.). Suppose U satisfies (1.). Then U is proper. For 0 < U, since 1 ∈ U (by
(1.)). Now suppose that x < U and y < U. Then −x,−y ∈ U and so (−x ∩ −y) ∈ U.
Therefore, by (1.), x ∪ y < U. Hence U satisfies (2.). Conversely, assume that U
satisfies (2.). Then since (1 =) x ∪ −x ∈ U we conclude that x ∈ U or −x ∈ U. Not
both can hold simultaneously, since U is proper. Hence x < U iff −x ∈ U. So, U
satisfies (1.). �

We know that boolean logic is complete with respect to matrices 〈B, F〉, where B
is a boolean algebra and F a deductively closed set. This is so because in the term
algebra the relation ≡:= {〈x, y〉 : x ↔ y = 1} is a matrix congruence. (See exercises
of Section 1.4.) The deductively closed sets of a boolean algebra are the filters. The
congruence associated with F, ΘF , is a matrix congruence and so we may factor
again by the congruence ΘF . Hence boolean logic has a unital semantics. Now,
suppose we can show that every nontrivial filter is contained in an ultrafilter. Then
we may further deduce that boolean logic is complete with respect to matricesM =
〈B, F〉 where F is an ultrafilter. By the previous theorem, M/ΘF = 〈2, {1}〉. So
the matrix consisting of the algebra 2 with the distinguished element 1 characterizes
boolean logic completely. This is less spectacular if we look at the fact that boolean
logic is actually defined this way; rather it tells us that the set of equations that we
have chosen to spell out boolean logic is complete — for it reduces an adequate set
of matrices to just the algebra 2 with D = {1}, exactly as desired.

The next result is of extreme importance in general logic. It deals with the
existence of filters and ultrafilters — or, as is equivalent by Proposition 1.7.10, —
with the existence of homomorphic images of boolean algebras. Let us take a subset
E ⊆ A and ask when it is possible to extend E to a proper filter on A.

P 1.7.11. The least filter containing an arbitrary subset E is the set
〈E〉 defined by

〈E〉 = {x : x ≥
⋂

X, X a finite subset of E}

〈E〉 is proper iff every finite subset of E has a nonzero intersection. In this case we
say that E has the finite intersection property.

P. First of all, E ⊆ 〈E〉. For x ≥
⋂
{x}. 〈E〉 is also a filter. For if X = ∅,

then
⋂

X = 1, so (fi1.) is satisfied. Next let x ∈ 〈E〉 and x ≤ y. We know that there
is a finite X such that x ≥

⋂
X. Then also y ≥

⋂
X and so y ∈ 〈E〉. This shows

(fi≤.). Finally, if x, y ∈ 〈E〉 then x ≥
⋂

X, y ≥
⋂

Y for some finite X,Y ⊆ E. Then
x ∩ y ≥

⋂
(X ∪ Y); and X ∪ Y is finite. To see that 〈E〉 is the least filter, observe that

for every finite subset X we must put
⋂

X ∈ 〈E〉. For either X = ∅ and so
⋂

X must
be added to satisfy (fi1.), or X = {x} for some x, and then

⋂
X = x must be added to
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satisfy E ⊆ 〈E〉. Or ]X > 1 and then
⋂

X must be added to satisfy (fi∩.). Finally, to
satisfy (fi≤.) all elements of 〈E〉 must be taken as well. So no smaller set suffices. It
is then clear that if for no finite set X we have

⋂
X = 0, 〈E〉 is not the full algebra,

since 0 < 〈E〉. But if
⋂

X = 0 for some finite X then by (fi≤.), y ∈ 〈E〉 for all y. �

Now we show that every proper filter is contained in an ultrafilter. Equivalently,
every set with the finite intersection property can be embedded in an ultrafilter. The
proof will be of quite general character, by appealing to what is known as Tukey’s
Lemma. (See [215]. This lemma is actually the same as O T̈’s
Principle D, 3rd Version from [205].) To state the lemma, consider a set S and a
property P of subsets. P is said to be of finite character if P holds of a set X ⊆ S
iff it holds of all finite subsets of X. If P is of finite character, then if T has P and
S ⊆ T then also S has P. For every finite subset of S is a finite subset of T , and so if
S fails to have P, this is because some finite subset S 0 fails to have P, which implies
that T fails to have P, since S 0 ⊆ T .

T 1.7.12 (Tukey’s Lemma). Suppose P is a property of subsets of S and
that P is of finite character. Then every set X ⊆ S having P is contained in a set X∗

which is maximal for P.

P. By the axiom of choice, S can be well–ordered by an ordinal λ; thus
S = {sα : α < λ}. By induction over λ we define Xα for α ≤ λ. We put X0 := X. If Xα

is defined, and α+ 1 , λ then put Xα+1 := Xα ∪ {sα} if this set has P, and Xα+1 := Xα

otherwise. For a limit ordinal α we put Xα :=
⋃
κ<α Xκ. Now let X∗ := Xλ. We

claim that X∗ has the desired properties. X∗ contains X. It has P; for X0 has P by
assumption. In the successor step this remains true by construction and in the limit
step by the finite character. For either the sequence 〈Xκ : κ < α〉 is stationary from
a certain ordinal β. Then Xα = Xβ, in which case Xα has P by induction hypothesis.
Or the sequence is strictly ascending. Then any finite subset of Xα is contained in
a Xβ for some β < α; and then Xα has P by the finite character of P. Finally, we
must verify that X∗ is maximal. Suppose that X∗ ⊆ Y and Y has P. Take an element
y ∈ Y . y = sγ for some γ < λ. Consider the definition of Xγ+1. We know that
Xγ+1 ⊆ X∗ ⊆ Y . Since Y has P, X∗ ∪ {sγ} has P as well, since P is closed under
subsets. Therefore Xγ+1 = Xγ ∪ {sγ}, showing y ∈ X∗. Since y was arbitary, X∗ = Y .
Hence the set X∗ is maximal. �

C 1.7.13. Every set with the finite intersection property is contained in
an ultrafilter. In particular, every proper filter is contained in an ultrafilter.

P. By Tukey’s Lemma. The property P is taken to be generates a proper
filter. It is of finite character. For X generates a proper filter iff X has the finite
intersection property iff every finite subset of X has the finite intersection property
iff every finite subset generates a proper filter. �
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T 1.7.14. Boolean logic in the language >, ¬ and ∧ is the logic of the
matrix 2 := 〈{0, 1}, 1,−,∩, {1}〉. Boolean logic is structurally complete and Post–
complete. It has interpolation and is Halldén–complete.

For a proof note that we have established that boolean logic is the logic of the
matrix 2. Furthermore, it has all constants, since > has value 1 and ⊥ has value
0. It follows that it has interpolation by Theorem 1.6.4 (since the matrix is finite,
the logic has conjunction and all constants), and that it is structurally complete and
Post–complete by Theorem 1.6.6. It is Halldén–complete by Theorem 1.6.5.

Exercise 22. Show that {−,∩} is polynomially complete and that {1,−,∩} is func-
tionally complete.

Exercise 23. Let − be an operation satisfying − − x = x. Let ∩ be a binary oer-
ation, and put x ∪ y := −(−x ∩ −y). Show that ∩ is associative (commutative,
idempotent) iff ∪ is associative (commutative, idempotent). Hint. Show first that
x ∩ y = −(−x ∪ −y), so that only one direction needs to be established in each case.
(This shows Lemma 1.7.2.)

Exercise 24. Show that each proper subspace of a vector space is contained in a
hyperplane, i. e. a maximal proper subspace.

1.8. Some Notes on Computation and Complexity

In this section we will briefly explain the basic notions of computability and
complexity. Although we shall prove only very few results on complexity of modal
logics we shall nevertheless mention a fair number of them. This section provides
the terminology and basic results so that the reader can at least understand the results
and read the relevant literature. The reader is referred to M R. G and
D S. J [73] for an introduction into complexity theory. For our purposes
it is best to define computations by means of string handling devices. The most
natural one is of course the Turing machine, but its definition is rather cumbersome.
We shall therefore work with a slightly easier model, which is a mixture between a
Turing machine and a so–called Semi–Thue Process. Let us now fix an alphabet A.
Members of A shall be written in small caps to distinguish them from symbols that
merely abbreviate or denote symbols or strings from A.

D 1.8.1. Let A be a finite set and ∇ < A. A string handling ma-
chine over A is a finite set T of pairs 〈~x, ~y〉 such that ~x and ~y are strings over A∪{∇}
in which ∇ occurs exactly once. We call members of T instructions.

The symbol ∇ is used to denote the position of the read and write head of the
Turing machine.

D 1.8.2. Let T be a string handling machine over A and ~x and ~y strings
over A∪{∇}. Then ~x⇒T ~y if there is a pair 〈~u,~v〉 ∈ T and strings ~w1 and ~w2 such that
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~x = ~w1
a~ua~w2 and ~y = ~w1

a~va~w2. In that case we say that ~y is 1–step computable
from ~x. ~y is n+1–step computable from ~x, in symbols ~x ⇒n+1

T ~y, if there is a
~z such that ~x ⇒n

T ~z ⇒T ~y. ~y is computable from ~x if ~x ⇒n
T ~y for some n ∈ ω. We

write ~x⇒∗T ~y.

We also call a sequence 〈~xi : i < n〉 a T–computation if for every j < n − 1
we have ~x j ⇒T ~x j+1. ~y is called a halting string for T if there is no string that is
computable from ~y. A halting computation is a computation whose last member is
a halting string.

D 1.8.3. Let f : A∗ → A∗ be a function and T a string handling ma-
chine over some alphabet C = A ∪ B, where B is disjoint from A. We say that T
computes f with respect to , , # ∈ B if for every ~x ∈ A∗ the following holds:

(1) ∇aa f (~x)a# is computable from ∇aa~xa#.
(2) ∇aa f (~x)a# is a halting string for T .
(3) There is no halting string for T different from ∇aa f (~x)a# which is com-

putable from ∇aa~xa#
f is called nondeterministically computable if there exists a string handling
machine that computes f (with respect to some elements).

The elements  and  are used to mark the begin and the end of the computation
and # to mark the end of the input string. Notice that it is not possible to define a
string handling machine that computes f (~x) from ~x simpliciter. For we would have
no means to distinguish whether we just started the computation or whether we just
ended it; nor could we tell where the input ended. Notice that the symbol  also
marks the begin of the input string, whence a separate marker is not needed for that
purpose. In the definition above we shall say that T computes f (~x) from ~x in n steps
if

∇aa~xa#⇒n
T ∇

aa f (~x)a#
Note that it is not required that all computations terminate; but if a computation halts,
it must halt in the just specified string. If f is only a partial function we require that
if f is undefined on ~x then there is no halting computation starting with ∇aa~xa#.
This allows us to define the notion of a computable function from A∗ to B∗, which is
namely also a partial function from (A ∪ B)∗ to (A ∪ B)∗. We shall present a simple
example. Let A = {, } and let f : ~x 7→ ~xa. Here is a string handling machine that
computes this function:

T1 := {〈∇#,∇#〉,
〈∇, ∇〉, 〈∇, ∇〉,
〈∇, ∇〉, 〈∇, ∇〉,
〈∇#,∇#〉,
〈∇,∇〉, 〈∇,∇〉,
〈∇,∇〉}

The verification that this machine indeed computes f is left to the reader.



1.8. Some Notes on Computation and Complexity 37

The above definition of computability is technical. Yet, A C ad-
vanced the conjecture — also known as Church’s Thesis — that any function that
is computable in the intuitive sense is also computable in the technical sense. (See
S C. K [116] for details.) The converse is of course clear. Notice that
if A consists of a single letter, say , then the set of natural numbers can be iden-
tified simply with the set of nonempty sequences over , where n is represented by
the sequence consisting of n consecutive s. (A T used n + 1 s to code
n, but this is unnecessary given the present setting.) It can be shown that under this
coding any recursive function on the natural numbers is computable, and that any
computable function is recursive. There are other codings of the natural numbers
that work equally well (and are less space consuming), for example p–adic represen-
tations.

The above definitions can be generalized by admitting computation not on one
string alone but on several strings at the same time. This model is more general but it
can be shown that it does not generate a larger class of computable functions (mod-
ulo some coding). The benefit is that it is much easier to see that a certain function
is computable. A string handling machine with k–strings is a finite set of k–tuples
of pairs of strings over A ∪ {∇} in which ∇ occurs exactly once. Computations now
run over k–tuples of strings. The definitions are exactly parallel. A replacement is
done on all strings at once, unlike a multihead Turing machine, which is generally
allowed to operate on a single tape only at each step. We can now define the no-
tion of a computable k–ary function from A∗ to A∗ in much the same way. Notice
that for T to compute f we shall simply require that the initial configuration is the
sequence 〈∇aa~xi

a# : i < k〉, and that the the halting configuration is the sequence
〈∇aa f (~x)a#, 〈∇aa# : i < k − 1〉〉. The fact that the starting state and the end state
appear on each tape is harmless. Given f : (A∗)k → A∗, we shall define a unary func-
tion f ♥ : (A ∪ {})∗ → A∗, where  < A, as follows. If ~x = ~y0

aa~y1
aa . . . a~yk−1

aa#,
then

f ♥(~x) := f (〈~yi : i < n〉)

Otherwise, f ♥(~x) := . The following now holds.

T 1.8.4. f is computable on a string handling machine with k strings iff
f ♥ is computable on a string handling machine with one string.

The proof of this theorem is not hard but rather long winded.
With these definitions we can already introduce the basic measures of complex-

ity. Let f : A∗ → A∗ and h : ω → ω be functions. We say that T computes f in
h–time if for all ~x, T computes f (~x) from ~x in at most h(|~x|) steps. We say that T
computes f in h–space if there is a computation of ∇aa f (~x)a# from ∇aa~xa# in
which every member has length ≤ |~x|. Typically, one is not interested in the exact
size of the complexity functions, so one introduces more rough measures. We say
that T computes f in O(h)–time if there is a constant c such that T computes f is
c · h–time for almost all ~x. Analogously with space. Now, before we can introduce
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the major classes of complexity, we shall have to define the notion of a deterministic
machine.

D 1.8.5. Let T be a string handling machine. T is called determinis-
tic if for every string ~x there exists at most one string ~y which is 1–step computable
from ~x. A function f : A∗ → A∗ is deterministically computable if there is
a deterministic string handling machine that computes f with respect to some ele-
ments.

It is easy to see that the machine T1 defined above is deterministic. Namely, a
string handling machine T is deterministic if for any pair 〈~x, ~y〉 ∈ T there exists no
other pair 〈~u,~v〉 ∈ T such that ~u is a substring of ~x. This is obviously satisfied. The
following theorem shall be stated without proof.

T 1.8.6. A function f : A∗ → A∗ is nondeterministically computable iff
it is deterministically computable.

D 1.8.7. P denotes the class of functions deterministically computable
in polynomial time, NP the class of functions nondeterministically computable in
polynomial time. Similarly, EXPTIME (NEXPTIME) denotes the class of
function deterministically (nondeterministically) computable in exponential time. PSPACE
denotes the class of functions deterministically computable in polynomial space.

The reason why there is no class NPSPACE is the following result from [189].

T 1.8.8 (Savitch). If a function is computable by a nondeterministic ma-
chine using polynomial space then it is also computable by a deterministic machine
using polynomial space.

We have

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

Most inclusions are by now obvious. Notice that if a deterministic machine runs
in h–time it can write strings of length at most O(h). When using a machine with
several strings the complexity does not change. It can be shown, namely, that if T
is a string handling machine with k strings computing f in O(h) time, then there is
a string handling machine T♥ computing f ♥ in O(h2) time. Moreover, T♥ can be
chosen deterministic if T is. It is therefore clear that the above complexity classes
do not depend on the number of strings on which we do the computation, a fact that
is very useful.

Talk about computability often takes the form of problem solving. A problem
can be viewed as a subset S of A∗. To be exact, the problem that is associated with
S is the question to decide, given a string ~x ∈ A∗, whether or not ~x ∈ S .

D 1.8.9. A problem is a function f : A∗ → {0, 1}. f is trivial if f is
constant. We say that a problem f is C if f ∈ C, we say that it is C–hard if for any
g ∈ C there exists a p ∈ PSPACE such that g = f ◦ p. Finally, f is C–complete if it
is both in C and C–hard.
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A problem that is C–complete is in a sense the hardest problem in C. For any
other problem is reducible to it. Given a set S , we shall denote by ‘x ∈ S ?’ the
problem of deciding membership in S , which is simply defined as the function that
gives 1 if the answer is ‘yes’ and 0 if the answer is ‘no’. (This is also the characteristic
function of S .) For amusement the reader may show that any nontrivial problem that
is in P is also P–complete. In connection with these definitions we have

D 1.8.10. A subset of A∗ is decidable if its characteristic function is
computable.

We shall spend the rest of this section illustrating these concepts with some
examples from logic. We have introduced languages in Section 1.2. To adapt the
definitions of that section to the present context we need to make the alphabet finite.
This is not entirely straightforward, since we have infinitely many variables. There-
fore, let F be the set of function symbols, and X := {pi : i ∈ ω} our set of variables.
Let us first assume that F is finite. Take symbols , 0 and 1 not occurring in F or X.
So, we shall replace the variable pi by the sequence a~x, where ~x ∈ {0, 1)∗ is a binary
string representing the number i in the usual way. That is to say, we put µ(0) := 0
and µ(1) := 1, and if ~x = x0

ax1
a . . . xn−1 then i = µ(~x), where

µ(~x) :=
∑
j<n

2n−1− jµ(x j)

In the same way we can obviously also code a countable F by means of a single
symbol  followed by a binary string. In this way, the entire logical language can be
written using just the symbols , , 0 and 1. We will however refrain from using this
coding whenever possible. We shall note here that the typical measure of length of
a formula is the number of symbols occurring in it. We call this the symbol count
of the formula. However, the actual string that we write to denote a formula can be
longer. Since a variable counts as one symbol, the coding is not length preserving.
Rather, a formula with n symbols is represented by a string of length at most n log2 n
if we allow renaming of variables. Given ϕ, |ϕ| counts the length of a minimal rep-
resenting string. This additional factor by which |ϕ| is longer than the symbol count
is usually (but not always!) negligeable. If the set of function symbols is infinite,
there is no a priori upper bound on the length of the string in comparison to the sym-
bol count! It is for these reasons that complexity is always measured in terms of the
length of the string representing the formula. There is another way to represent a for-
mula, which we refer to as the packed representation. It is described in the exercises
below since it will only be relevant in Section 3.6.

We shall now go into the details of certain basic string properties and manipu-
lations. First of all, let Ω : F → ω be a signature and X = {pi : i ∈ ω}. We shall
provide a procedure to decide whether or not a given string is a term. Define the
weight ρΩ of a symbol as follows.
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ρΩ(pi) := −1
ρΩ( f ) := Ω( f ) − 1

For a string ~x = x0
ax1

a . . . axn−1 we put

ρΩ(~x) :=
∑
i<n

ρΩ(xi)

It is useful to observe the following

L 1.8.11. Let ~x be a string such that ρΩ(~x) < 0. Then there exists a prefix
~y of ~x such that ρΩ(~y) = ρΩ(~x) − 1.

This lemma is proved by induction on the length of ~x. For the sake of precision
define an occurrence of a string ~x in ~y to be a pair 〈~u, ~x〉 such that ~ua~x is a prefix of
~y. Two string occurrences 〈~u, ~x〉 and 〈~v,~z〉 overlap if either (a) ~u is a prefix of ~v and
~y is a proper prefix of ~ua~x or (b) ~v is a prefix of ~u and ~x is a proper prefix of ~va~y.

P 1.8.12. A string ~x is an Ω–term iff it has the property (P).

(P). ρΩ(~x) = −1 and for every prefix ~y of ~x: ρΩ(~y) ≥ 0.

In particular, no proper prefix of a term is a term, and no two distinct occurrences of
subterms overlap.

P. We begin by showing how the other claims follow from the first. If ~x
is a term and ~y a proper substring, then ρΩ(~y) > −1, and so ~y is not a term. Next,
let ~x = ~u0

a~u1
a~u2

a~u3
a~u4, and assume that ~u1

a~u2 as well as ~u2
a~u3 are terms and both

~u1 , ε and ~u3 , ε. Then we have ρΩ(~u2
a~u3) = ρΩ(~u2)+ρΩ(~u3). Now, since ~u2

a~u3 has
Property (P), ρΩ(~u2) ≥ 0. Now, likewise −1 = ρΩ(~u1) + ρΩ(~u2), whence ρΩ(~u1) < 0.
So, ~u1

a~u2 does not have (P), and hence is not a term, contrary to our assumption.
We now show the first claim. This is done by induction on the length of ~x.

Clearly, for strings of length 0 and 1 the claim is true. (Notice that ρΩ(ε) = 0.) So,
let |~x| > 1. Assume that the claim is true for all strings of length < |~x|. Assume first
that ~x is a term. Since ~x has length at least 2, the first symbol of ~x is some f ∈ F of
arity at least 1. So,

~x = f a~x0
a~x1

a . . . axΩ( f )−1

By inductive hypothesis, ρΩ(~xi) = −1 for all i < Ω( f ). Hence we have ρΩ(~x) =
Ω( f ) − 1 − Ω( f ) = −1. Now it is easy to see that for no prefix ~u of ~x ρΩ(~u) ≥ 0.
Hence ~x has Property (P). Conversely, assume that ~x has Property (P). Take the first
symbol of ~x. It is some f ∈ F of arity at least 1. Let ~y be such that ~x = f a~y. Then
ρΩ(~y) ≥ −1. If the arity of f is 1, then ~x is a term iff ~y is. Then ~y has (P) and so
is a term, by inductive hypothesis. Therefore ~x is a term as well. Now suppose that
Ω( f ) > 1. Then ρΩ(~y) = −Ω( f ). Using Lemma 1.8.11 it can be shown that ~y is the
product of strings ~ui, i < Ω( f ), which all have (P). By inductive hypothesis the ~ui are
terms. So is therefore ~x. �
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We shall note here the following corollary. If F is infinite, we code it as de-
scribed above by strings of the form a~x. Ω is defined on these strings. We shall
recode the signature as a function from binary strings to binary strings. Namely, we
let

Ω′(~x) := µ−1(Ω(a~x))

We shall say that Ω is computable if Ω′ is.

P 1.8.13. Assume that L is a language with a computable signature.
Then the set of terms over F is decidable.

The proof is not difficult.
It is possible to convert a term in prefix notation into a string in the typical

bracket notation and conversely. To that end, we assume that the signature consists of
symbols of arity ≤ 2. The procedure is as follows. Take a string ~x in prefix notation.
Start from the left end. Assume ~x = ~ya f a~z and n := |~y|. Then let ~u be the smallest
prefix of ~z such that f a~u is a term and let ~z = ~ua~v. Then let ~xn := ~ya(a f a~ua)a~v.
We call this the insertion of brackets at the place n. The procedure is now simply
the following. Start at the left end of ~x and add brackets whenever the described
situation occurs. Continue as long as possible. Call the resulting string b(~x). Now let
b(~x) be given. Pick a symbol f of arity 2 following a symbol (. Then it is contained
in a sequence of the form (a f a~u0

a~u1
a) where ~u0 and ~u1 are terms. (This needs to

be defined for sequences which contain brackets but is straightforward.) Replace
this sequence by (a~u0

a f a~u1
a). Continue whenever possible. Finally, some brackets

are dropped (the outermost brackets, brackets enclosing variables). The resulting
sequence is a term in usual bracket notation.

To close, let us describe a procedure that evaluates a term in a finite algebra
given a particular valuation. It is commonly assumed that this can be done in time
proportional to the length of the string. The procedure is as follows: identify a min-
imal subterm and evaluate it. Repeat this as often as necessary. This procedure if
spelled out in detail is quadratic in the length of the string since identifying a min-
imal subterms also takes time linear in the length of a string. As this procedure is
repeated as often as there are subterms, we get in total an algorithm quadratic in
the length. We shall now describe the algorithm in detail. So, let A be a finite Ω–
algebra. For each element a of the algebra we assume to have a primitive symbol,
which we denote by a. Let the term be given as a string, and the valuation as a se-
quence of pairs 〈a~x, β(a~x)〉. It is not necessary to have all values, just all values for
variables occurring in ~x. We shall describe a procedure that rewrites ~x successively,
until a particular value is determined. We start by inserting β(a~x) in place of a~x.
We treat the elements as variables, assigning them the weight −1. Let 〈~u, ~y〉 be an
occurrence of a substring, where ~y has length > 1. We call ρΩ(~u) its embedding
number. An occurrence of a substring is with maximal embedding number is of the
form f aa0

aa1
a . . . aaΩ( f )−1, where all ~ai are (symbols denoting) elements of A. The

procdure is therefore as follows. Look for an occurrence of a nontrivial substring
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with maximal embedding number and compute its value. Replace that string by its
value. Continue as long as possible. The procedure ends when ~x is a single symbol.

Now let a formula ϕ of boolean logic be given. We can solve the problem
whether ϕ is a theorem nondeterministically by guessing a valuation of the variables
of ϕ and then evaluating ϕ. A valuation is linear in the length of ϕ. Hence, the
problem whether a formula is a theorem of boolean logic is in NP. Alternatively,
the problem whether a boolean formula is satisfiable is also in NP. Moreover, the
following holds:

T 1.8.14 (Cook). Satisfiability of a boolean expression is NP–complete.

This result may appear paradoxical since we have just proved that satisfiability is
computable nondeterministically in O(n2) time. So, how come it is the hardest prob-
lem in NP? The answer is the following. If a problem S is in NP it is polynomially
reducible to the satsifiability problem; the reduction function is itself a polynomial p
and this polynomial can have any degree. Hence the harder S the higher the degree
of p.

It has been shown by L. J. S and A. R. M [203] that the problem
of satisfiability of quantified boolean formulae is PSPACE–complete. (Here, quanti-
fiers range over propositional variables.)

Exercise 25. We can represent the natural number n either as the sequence µ−1(n)
over {0, 1} or as a sequence of n 1s. Show that the mappings converting one repre-
sentation to the other are computable.

Exercise 26. Show that if f , g : A∗ → A∗ are computable then so is g ◦ f . Show that
if f and g are in C for any of the above complexity classes, then so is g ◦ f .

Exercise 27. Let A be a fixed alphabet, and let  (for comma) 〈 and 〉 be new symbols.
With the help of these symbols we can code a string handling machine T by a string
T †. (This is not unique.) Now let C be the enriched alphabet. Let f : C∗ ×C∗ → C∗

be defined as follows. If ~x ∈ A∗ and ~y = T † for some string handling machine using
the alphabet A then f (~x, ~y) is the result that T computes on ~x if it halts, and other-
wise f is undefined. Show that f is computable. (This is analogous to the Universal
Turing Machine.)

Exercise 28. Prove Lemma 1.8.11.

Exercise 29. Here is another way to represent a formula. Let ϕ be a formula, say
∧p0 ∨ p1¬p0, which in infix notation is just (p0 ∧ (p1 ∨¬p0)). The string associated
with it is ∧0 ∨ 1¬0. Now enumerate the subformulae of this formula. We shall
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use for the nth subformula the code a~x, where ~x is the binary representation of n:

0 : 0
1 : 1
10 : ¬0
11 : ∨1¬0
100 : ∧0 ∨ 1¬0

Now replace to the right of this list the immediate subformulae by their respective
code, starting with the smallest subformulae that are not variables. (For example, the
least line becomes 100 ∧ 011.) Finally, write these lines in one continuous string:

001110¬011 ∨ 110100 ∧ 011

Denote the resulting string by ϕ♠. Give upper and lower bounds for |ϕ♠| in compari-
son with |ϕ|. Show that given a sequence ~x one can compute in linear time a formula
ϕ such that ~x = ϕ♠. This representation can be used to code a set ∆ of formulae as
follows. Each subformula ϕ of some member of ∆ that is itself in ∆ is denoted not
by ϕ♠ but simply by its code a~x. How is |∆♠| related to card(sf [∆])?





CHAPTER 2

Fundamentals of Modal Logic I

2.1. Syntax of Modal Logics

The languages of propositional modal logic used in this book contain a set var =
{pi : i ∈ γ} of variables, a set cns of propositional constants, the boolean connectives
>,¬,∧ and a set {�i : i ∈ κ} of modal operators. �iϕ is read box i phi. > is in
cns. With each operator �i we also have its so–called dual operator ♦i defined by
♦iϕ := ¬�i¬ϕ. In what is to follow, we will assume that there are no basic constants
except >; and that there are countably many propositional variables. So, γ = ℵ0
unless stated otherwise. The number of operators, denoted by κ throughout, is free to
be any cardinal number except 0; usually, κ is finite or countably infinite, though little
hinges on this. Theorems which require that κ has specific values will be explicitly
marked. By Pκ we denote the language of κ–modal logic, with no constants and
ℵ0 many propositional variables. Also, Pκ denotes the set of terms also called well–
formed formulae of that language. If κ = 1 we speak of (the language of) monomodal
logic, if κ = 2 of (the language of) bimodal logic. Finally, ¬ and � j are assumed to
bind stronger than all other operators, ∧ stronger than ∨, ∨ stronger than→ and↔.
So, � j p ∧ q→ p is the same as ((� j p) ∧ q)→ p.

Pκ is the set of terms or formulae or propositions as defined earlier. Metavari-
ables for propositional variables are lower case Roman letters, such as p, q, r, metavari-
ables for formulae are lower case Greek letters such as ϕ, χ, ψ. In addition, rather
than using indices to distinguish modal operators we will use symbols such as �,
�, � , � , � , � , and similar abbreviations for their duals. We denote by ||Pκ|| the
cardinality of the set of terms over Pκ. With the cardinality of the set of variables, of
the set of constants and the set of operators the cardinality of Pκ is fixed. Namely, by
Proposition 1.2.1 we have

||Pκ|| = max{ℵ0, ]var, ]cns, κ} .

Since we standardly assume to have at most ℵ0 variables and constants, the latter
reduces generally to ||Pκ|| = max{ℵ0, κ}.

45
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The modal depth or (modal) degree of a formula is the maximum number of
nestings of modal operators. Formally, it is defined as follows.

dp(p) := 0 p ∈ var ∪ cns
dp(¬ϕ) := dp(ϕ)
dp(ϕ ∧ ψ) := max{dp(ϕ), dp(ψ)}
dp(� jϕ) := 1 + dp(ϕ)

The boolean connectives will behave classically. As for the modal operators,
the interest in modal logic lies in the infinitely many possibilities of defining their
behaviour. First of all, according to the theory outlined in Chapter 1, a modal logic
must be a relation ` ⊆ ℘(Pκ) × Pκ satisfying (ext.), (mon.), (cut.), (sub.) and (cmp.).
Moreover, we generally assume that the boolean connectives behave as in boolean
logic. There is a special set of consequence relations — by no means the only ones
— which have a deduction theorem for→. Such consequence relations are fully de-
termined by their sets of tautologies. Indeed, it is standard practice to identify modal
logics with their set of tautologies. We will stick to that tradition; however, we will
see in Section 3.1 that for a given set of tautologies there exist other consequence re-
lations with useful properties. Thus we call a set Λ ⊆ Pκ a modal logic if Λ contains
all tautologies of boolean logic, is closed under substitution and modus ponens, that
is, if ϕ ∈ Λ then ϕσ ∈ Λ for a substitution σ, and if ϕ ∈ Λ and ϕ → ψ ∈ Λ then
ψ ∈ Λ. The relation `Λ is then defined via

(cmp.) ∆ `Λ ϕ iff there is a finite set ∆0 ⊆ ∆ such that ded(∆0, ϕ) ∈ Λ .

Let a logic Λ be given. Fix an operator � of the language for Λ. � is called clas-
sical in Λ if the rule (cl�.) is admissible; if (mo�.) is admissible in Λ, � is called
monotone in Λ. Finally, if (mn.) is admissible, and if Λ contains the axiom of box
distribution, which is denoted by (bd→.) � is called normal in Λ.

(cl�.) ` ϕ↔ ψ

` �ϕ.↔ .�ψ
(mo�.) ` ϕ→ ψ

` �ϕ.→ .�ψ
(mn.) ` ϕ

` �ϕ

(bd→.) ` �(ϕ→ ψ).→ .�ϕ→ �ψ

A normal operator � of Λ is monotone in Λ; a monotone operator of Λ is classical in
Λ. A logic is classical (monotone, normal) if all its operators are classical (mono-
tone, normal). Two formulae ϕ, ψ are said to be deductively or (locally) equivalent
in a logic Λ if ϕ ↔ ψ ∈ Λ. Classical logics have the property that ψ1 and ψ2 are
deductively equivalent in Λ, if ψ2 results from ψ1 by replacing in ψ1 an occurrence
of a subformula by a deductively equivalent formula.

P 2.1.1. LetΛ be a classical modal logic and ϕ1 ↔ ϕ2 ∈ Λ. Let ψ1 be
any formula and let ψ2 result from replacing an occurrence of ϕ1 in ψ1 by ϕ2. Then
ψ1 ↔ ψ2 ∈ Λ.

P. Notice that the following rules are admissible in addition to (cl�.), by
the axioms and rules of boolean logic.
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(cl ∧ .) ` α1 ↔ α2 ` β1 ↔ β2
` α1 ∧ β1 ↔ α2 ∧ β2

(cl¬.) ` α1 ↔ α2

` ¬α1 ↔ ¬α2

By induction on the constitution of ψ1 it is shown that ψ1 ↔ ψ2 ∈ Λ, starting with
the fact that ϕ1 ↔ ϕ2 ∈ Λ and p↔ p ∈ Λ the claim follows. �

P 2.1.2. Let Λ be a classical modal logic. Then for any formula ϕ
there exists a formula ψ which is deductively equivalent to ϕ and is composed from
variables and negated variables, ⊥ and > using only ∧, ∨, � j and ♦ j, j < κ.

For this theorem it makes no difference whether the symbols ⊥, ∨ and ♦ j, j <
κ, are new symbols or merely abbreviations. The dual of a formula is defined as
follows.

pd := p
(>)d := ⊥

(⊥)d := >

(ϕ ∧ ψ)d := ϕd ∨ ψd

(ϕ ∨ ψ)d := ϕd ∧ ψd

(� jϕ)d := ♦ jϕ
d

(♦ jϕ)d := � jϕ
d

The dual is closely related to negation. Recall, namely, that in boolean algebra nega-
tion is an isomorphism between the algebras 〈A,−,∩,∪〉 and 〈A,−,∪,∩〉. The fol-
lowing theorem — whose proof is an exercise — states that for axioms there typically
are two forms, one dual to the other.

P 2.1.3. Let Λ be a classical modal logic. Then ϕ → ψ ∈ Λ iff
ψd → ϕd ∈ Λ.

In monotone logics we can prove that an alternative version of the (bd→.) pos-
tulate, (bd∧.), is equivalent.

(bd∧.) ` �(ϕ ∧ ψ).↔ .�ϕ ∧ �ψ

P 2.1.4. Let Λ be a classical modal logic, and � be a modal operator
of the language of Λ. (1.) (mn.) is admissible for an operator � in Λ if �> ∈ Λ. (2.)
If Λ contains (bd→.) and �> then � is normal in Λ. (3.) If � is monotone in Λ, the
postulates (bd∧.) and (bd→.) are interderivable in Λ.

P. (1.) By assumption, �> ∈ Λ and therefore ` �> ↔ >. Now assume
` ϕ. Then ` ϕ ↔ > and so, by (cl�.), ` �ϕ ↔ �>. Using this equivalence we
get ` �ϕ ↔ >, that is, ` �ϕ, as required. (2.) By (1.), (mn.) is admissible. (3.)
Assume (bd→.) is in Λ. Then, since ` ϕ ∧ ψ. → .ϕ and ` ϕ ∧ ψ. → .ψ we have,
by (mo�.), ` �(ϕ ∧ ψ) → �ϕ and ` �(ϕ ∧ ψ) → �ψ. Now by boolean logic we get
` �(ϕ∧ψ).→ .�ϕ∧�ψ. Next, since it holds that ` ϕ.→ .ψ→ (ϕ∧ψ), with (mo�.)
we get ` �ϕ. → .�(ψ → (ϕ ∧ ψ)). Using (bd→.) and some boolean equivalences
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we get ` �ϕ. → .�ψ → �(ϕ ∧ ψ), from which the remaining implication of (bd∧.)
follows. Now assume (bd∧.) is in Λ. Then ` �(ϕ → ψ) ∧ �ϕ. → .�(ϕ → ψ. ∧ .ϕ).
Furthermore, we get ` �(ϕ→ ψ.∧.ϕ)→ �ψ, by (mo�.). Hence ` �(ϕ→ ψ)∧�ϕ.→
.�ψ, which is equivalent to (bd→.). �

The smallest classical modal logic will be denoted by Eκ, the smallest monotone
logic by Mκ and the smallest normal modal logic by Kκ (after S K). The in-
dex κ is dropped when κ = 1, or whenever no confusion arises. Notice that since
these logics are determined by their theorems, it is enough to axiomatize their theo-
rems. This is different from an axiomatization of the proper rules (see Section 3.9).
Notice, namely, that when our interest is only in axiomatizing the theorems, we can
do this using the admissible rules for deriving theorems. A classical logic (mono-
tone logic) can be identified with its set Λ of theorems, which is a set containing all
boolean tautologies and which is closed under modus ponens, substitution and (cl�.)
or, for monotone logics, (mo�.). A quasi–normal logic is a modal logic containing
Kκ. A quasi–normal logic is normal iff it is closed under (mn.). Notice that in a nor-
mal logic, the rule (mo�.) is in fact derivable. The smallest normal κ–modal logic
containing a set X of formulae is denoted by Kκ(X), Kκ.X or Kκ⊕X, depending on the
taste of authors and the circumstances. The smallest quasi–normal logic containing
a set X is denoted by Kκ + X. Similarly, if Λ is a (quasi–)normal logic then the result
of adding the axioms X (quasi–)normally is denoted by Λ⊕ X (Λ+ X). In particular,
there is a list of formulae that have acquired a name in the past, and modal logics are
denoted by a system whereby the axioms are listed by their names, separated mostly
by a dot. For example, there are the formulae D = ♦>, 4 = ♦♦p → ♦p. The logic
K(♦>) is denoted by KD or also K.D, the logic K(♦♦p→ ♦p) is denoted by K4, and
so forth. We will return to special systems in Section 2.5.

Let us now turn to the calculi for deriving theorems in modal logic. Let a logic
be axiomatized over the system Kκ by the set of formulae X, that is, consider the logic
now denoted by Kκ⊕X. For deducing theorems we have the following calculus. (We
write ` ϕ for the fact ϕ ∈ Kκ ⊕ X. Also, `BC ϕ means that ϕ is a substitution instance
of a formula derivable in the calculus of boolean logic.)

(bc.) ` ϕ if `BC ϕ (bd→.) ` �i(ϕ→ ψ).→ .�iϕ→ �iψ

(i < κ)

(ax.) ` ϕ for all ϕ ∈ X (mp.) ` ϕ→ ψ ` ϕ
` ψ

(sb.) ` ϕ

` ϕσ
(mn.) ` ϕ

` �iϕ
(i < κ)

Thus, there are axioms (bc.), (ax.), (bd→.) and the rules (mp.), (sb.) and (mn.)
(for all operators). Notice that the way in which we have stated the rules they are
actually so called rule schemata. The difference is that while in an ordinary rule
one uses propositional variables, here we use metavariables for formulae. Thus, with
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an ordinary rule the use of a rule schema like ` ϕ/ ` �iϕ is justified from the rule
` p0/ ` �i p0 by uniform substitution of ϕ for p0. In view of the fact proved below
that any proof can be rearranged in such a way that the substitutions are placed at the
beginning, we can eliminate the substitutions since we have rule schemata.

Although the ordering of the application of the deductive rules (mp.), (sb.) and
(mn.) is quite arbitrary it is actually the case that any proof can be reorganized in
quite a regular way by rearranging the rules. Consider an application of (mn.) after
(mp.) as in the left hand side below. There is an alternative proof of ` �ψ in which
the order is reversed. This proof is shown to the right.

` ϕ ` ϕ→ ψ
` ψ

` �ψ

` ϕ→ ψ
` ϕ ` �(ϕ→ ψ) ` �(ϕ→ ψ).→ .�ϕ→ �ψ
` �ϕ ` �ϕ→ �ψ

` �ψ

This shows that (mn.) can be moved above (mp.). However, this does not yet show
that all applications of (mn.) can be moved from below applications of (mp.). A
correct proof of this fact requires more than showing that the derivations can be
permuted. One also needs to show that the procedure of swapping rule applications
will eventually terminate after finitely many steps. In this case this is not hard to
prove. Observe that the depth in the proof tree of the particular application of (mn.)
decreases. Namely, if the depth of ` ϕ is i and the depth of ` ϕ → ψ is j then the
depth of ` ψ is max{i, j} + 1 and so the depth of ` �ψ is max{i, j} + 2. In the second
tree, the sequent ` �ϕ has depth i + 1 and the sequent ` �(ϕ → ψ) is j + 1. Both
are smaller than max{i, j} + 2. Let the deepest applications of (mn.) be of depth δ.
By starting with applications of depth δ we produce applications of depth < δ, so
the instances of (mn.) of depth δ can all be eliminated in favour of (twice as many)
applications of depth < δ. Now it is clear that the reduction will terminate.

Next we look at substitution. The place of (sb.) in the derivation can be changed
quite arbitrarily. This is due to the fact that our rules are schematic, they are oper-
ative not only on the special formulae for which they are written down but for all
substitution instances thereof. So, if we apply a certain rule, deriving a formula ϕ
and apply (sb.) with the substitution σ, then in fact we could have derived ϕσ directly
by applying (sb.) on all premises of the rule and then using the rule.

` ϕ ` ϕ→ ψ
` ψ

` ψσ

` ϕ ` ϕ→ ψ
` ϕσ ` (ϕ→ ψ)σ

` ψσ

Notice that (ϕ → ψ)σ is the same as ` ϕσ → ψσ. Finally, note that (mn.) can be
permuted with (sb.), that is, the two derivations below are equivalent.
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` ϕ

` ϕσ

` � jϕ
σ

` ϕ

` � jϕ

` (� jϕ)σ

Notice that (�ϕ)σ = �(ϕσ), so the second derivation is legitimate. We have now
established that (sb.) can always be moved at the beginning of the proof. Hence
it can be eliminated altogether, as we have remarked earlier. The proof that this
commutation terminates is here simpler than in the first case.

We can now prove an important theorem about the relation between quasi–
normal closure and normal closure. To state it properly, we introduce the following
important bit of notation. Given a set ∆ of formulae, put

�0∆ := ∆

�∆ := {�iδ : i < κ, δ ∈ ∆}
�k+1∆ := �(�k∆)
�≤k∆ :=

⋃
j≤k �

j∆

�ω∆ :=
⋃

k∈ω �
k∆

The notation �(k)∆ is also used for �≤k∆. In all these definitions, ∆ may also be
replaced by a single formula. If, for example, κ = 2 then

�1ϕ = {�0ϕ,�1ϕ}
�2ϕ = {�0�0ϕ,�0�1ϕ,�1�0ϕ,�1�1ϕ}

�ω∆ is effectively the closure of ∆ under all rules (mn.) for each operator.

T 2.1.5. Let Λ be a normal logic. Then Λ ⊕ ∆ = Λ + �ω∆. Moreover,
ψ ∈ Λ ⊕ ∆ iff ψ can be derived from Λ ∪ �ω∆s by using modus ponens alone, where
∆s is the closure of ∆ under substitution.

P. We can arrange it that a derivation uses (mn.) only at the beginning of
the proof. (mn.) is a unary rule, so it can under these circumstances only have been
applied iteratively to an axiom. Likewise, the use of substitution can be limited to
the beginning of the proof. �

In case �k∆ is finite, we also write �k∆ in place of
∧
�k∆ and �≤k∆ in place of∧

�≤k∆. Here, for a finite set Γ of formulae,
∧
Γ simply denotes the formula

∧
〈γ :

γ ∈ Γ〉. However, notice that the latter definition is not unambigous. First, we need
to fix an enumeration of Γ, say, Γ = {γi : i < n}. Next, we let

∧
Γ :=

∧
i<n γi. The

latter is defined inductively by∧
i<0 γi := >∧
i<1 γi := γ0∧
i<2 γi := γ0 ∧ γ1∧
i<n+1 γi := (

∧
i<n γi) ∧ γn

In the last line, n ≥ 2. Technically speaking,
∧
Γ depends on the enumeration of Γ.

This will not matter as long as we deal with formulae up to deductive equivalence.
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However, in syntactic manipulations (for example, normal forms) the differences
need to be dealt with. Here we fix beforehand a well–order on the set of formulae.
This well–order defines a unique order on Γ.

Finally, we introduce the notion of a compound modality. Suppose that ϕ is a
formula such that ]var(ϕ) = 1 (that is, ϕ contains occurrences of a single sentence
letter) and which is built using ∧ and � j, j < κ. Then ϕ is called a compound
modality. For example, �0�1 p ∧ �1�0 p is a compound modality, and so is �0(p ∧
�1 p). We say that ϕ is normal in Λ if from ψ ∈ Λ we may infer ϕ(ψ) ∈ Λ, and if
ϕ(ψ1 → ψ2). → .ϕ(ψ1) → ϕ(ψ2) ∈ Λ. So, a normal compound modality satisfies
the same axioms and rules as a normal operator, except that it is not necessarily a
primitive symbol of the language.

P 2.1.6. Let ϕ(p) be a compound modality. If all operators occurring
in ϕ are normal, so is ϕ.

P. We show by induction that the compound modalities admit (mn.) and
satisfy (bd∧.). We leave it to the reader to verify that the operators are classical. Let
ϕ(p) = ψ1(p) ∧ ψ2(p). Assume that ψ1 and ψ2 are normal. Then

ϕ(p ∧ q) ` ψ1(p ∧ q) ∧ ψ2(p ∧ q)
` ψ1(p) ∧ ψ1(q) ∧ ψ2(p) ∧ ψ2(q)
` ψ1(p) ∧ ψ2(p). ∧ .ψ1(q) ∧ ψ2(q)
` ϕ(p) ∧ ϕ(q)

and conversely. Thus ϕ satisfies (bd∧.). Now assume ` χ. Then ` ψ1(χ) and ` ψ2(χ),
by assumption. Thus ` ψ1(χ) ∧ ψ2(χ), that is, ` ϕ(χ), as required. Now let ϕ = � jψ.
Then we have

ϕ(p ∧ q) ` � jψ(p ∧ q)` � j(ψ(p) ∧ ψ(q))` � jψ(p) ∧ � jψ(q) ,

and conversely. Furthermore, from ` χ we may conclude ` ψ(χ), by normality of ψ,
and ` � jψ(χ), by normality of � j. �

It follows that a compound modality can be rewritten into the form
∧

i<n ψi(p),
where each ψi(p) consists just of a string of modal operators prefixed to the variable.
We will use the following notation for such operators. If σ is a finite sequence in κ
write �σ for the operator prefix obtained in the following way.

� j := � j � jaσ := � j�
σ

Moreover, for the empty sequence ε, �ε will be the empty prefix. So, �εϕ = ϕ (the
two are syntactically equal). Modulo deductive equivalence in Kκ any compound
modality is of the form

∧
i<k �

σi p. Let s be a finite set of finite sequences in κ. Then

�s p :=
∧
τ∈s

�τp

The following theorem is easily proved.
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P 2.1.7. Any compound modality is deductively equivalent to a com-
pound modality of the form �s p, where s a finite set of finite sequences of indices.

To make life easy, we use � as a variable for an arbitrary compound modality.
With Y a set we write �Y for {�δ : δ ∈ Y}.

P 2.1.8. Let Λ be a normal modal logic, X a set. Then ψ ∈ Λ ⊕ X iff
there is a compound modality � and a finite set Y ⊆ Xs, Xs the closure of X under
substitution, such that �Y `Λ ψ.

P. Clearly, we know that if ψ ∈ Λ ⊕ X then ψ can be derived from Λ and
a finite subset Y ⊆ Xs using modus ponens and (mn.). Then ψ can be derived from
Λ and a finite set Z of formulae of the form �iχi, i < m, χi ∈ Y , using only (mp.).
Put �p :=

∧
i<m �i p. Then �χi `Kκ

�iχi. Thus the compound modality � and the set
{χi : i < m} fulfill the requirements. �

Let �1 and �2 be two compound modalities. We write �1 ≤Λ �2 if �2 p→ �1 p ∈
Λ. It is not hard to see that this ordering is transitive and reflexive. Put �1 ∼Λ �2 if
both �1 ≤Λ �2 and �2 ≤Λ �1. We define

(�1 ∪ �2)(p) := �1 p ∧ �2 p
(�1 ◦ �2)(p) := �1(�2 p)

P 2.1.9. The compound modalities, factored by the equivalence ∼Λ,
form a semilattice with respect to∪ and a monoid with respect to ◦ and �ε . Moreover,
the following distribution law holds.

�1 ◦ (�2 ∪ �3) ∼Λ (�1 ◦ �2) ∪ (�1 ◦ �3)

The proof of this theorem is straightforward.

Exercise 30. Show that in classical logic, the formula ded(Ψ, ϕ) defined in Sec-
tion 1.6 is equivalent to

∧
ψ∈Ψ ψ.→ .ϕ.

Exercise 31. Show that negation is a classical modal operator but not monotone.
Show also that �iϕ↔ ¬♦i¬ϕ is a theorem in Eκ.

Exercise 32. Show that in a classical logic, (mo�.) is interderivable with the rule
(mo♦.).

(mo♦.) ` ϕ→ ψ

` ♦ϕ→ ♦ψ

Exercise 33. Prove Propositions 2.1.2 and 2.1.3.

Exercise 34. The least modal logic is the logic which is just the closure of the tau-
tologies of boolean logic under substitution and modus ponens. Show that in the
minimal modal logic ϕ is a theorem iff there exists a substitution σ such that ϕ = ψσ
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for some non–modal, boolean tautology ψ. Show further that X ` ϕ iff there exists a
substitution σ such that X = Yσ and ϕ = ψσ for some non–modal Y and ψ such that
Y ` ψ. Thus the minimal modal logic is decidable. Hint. Show that in each proof
subformulae of the form � jϕ can be replaced by a variable pi for some i.

Exercise 35. Show that all compound modalities are classical if the basic operators
are classical.

2.2. Modal Algebras

From the general completeness theorems for logics we conclude that for modal
logics of any sort there is a semantics based on term algebras and deductively closed
sets. Moreover, consequence relations for modal logics of any kind are determined
by matrices of the form 〈Tm(var),∆〉, where ∆ is deductively closed, or, to be more
general, by matrices 〈A,D〉 where A = 〈A, 1,−,∩, 〈�i : i ∈ κ〉〉 is an algebra of an
appropriate signature and D a deductively closed set. We focus here on algebras
whose reduct to the boolean operations is a boolean algebra. Call an expanded
boolean algebra an algebra 〈A, 1,−,∩, F〉, where 〈A, 1,−,∩〉 is a boolean algebra
and F a set of functions. We are interested in the question when a modal logic is
complete with respect to matrices over expanded boolean algebras.

T 2.2.1. Let Λ be a classical modal logic. Then Λ is determined by a
class of reduced matrices over expanded boolean algebras.

P. Let Tm(var) be the algebra of terms. Define an equivalence relation Θ
on the set of formulae by ϕ Θ ψ iff ϕ ↔ ψ ∈ Λ. By Proposition 2.1.1, Θ is a
congruence relation on Tm(var). Moreover, if δ is a formula and ∆ a deductively
closed set then either [δ]Θ ∩ ∆ = ∅ or [δ]Θ ⊆ ∆. Hence Θ is admissible in any
matrix M := 〈Tm(var),∆〉, where ∆ is a deductively closed set with respect to `Λ.
M/Θ is an expanded boolean algebra. Now, by the results of Section 1.5, `Λ is the
intersection of all `M, where M = 〈Tm(var),∆〉, ∆ deductively closed in `Λ. Hence
it is the intersection of `M/Θ. �

The converse of this implication is not generally valid. This theorem explains the
fundamental importance of classical logics in the general theory of modal logic.
We can now proceed to stronger logics and translate the conditions that this logic
imposes into the language of expanded boolean algebras. For example, the postulate
of monotonicity is reflected in the following condition.

(mna.) If a ≤ b then �ia ≤ �ib

In the general theory it has been customary to reserve the term modal algebra for
expanded boolean algebras which correspond to normal modal logics.

D 2.2.2. A (poly–) modal algebra is an algebra

A = 〈A, 1,−,∩, 〈�i : i < κ〉〉
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where the following holds.
(1) 〈A, 1,−,∩〉 is a boolean algebra.
(2) �i1 = 1 and �i(x ∩ y) = �ix. ∩ .�iy for all i < κ and x, y ∈ A.

With κ given, A is called κ–modal.

Let A and B be two boolean algebras. A map h : A → B with h(1) = 1 and
h(x ∩ y) = h(x) ∩ h(y) is called a hemimorphism. The name derives from Greek
hemi- (half ) and morphē (shape), just like homomorphism is from Greek homo-
(same) and morphē. So, the name says that a hemimorphism preserves only half the
shape. By definition, then, a modal algebra is a boolean algebra expanded by a set
of endo–hemimorphisms. We will expand on this theme in Section 4.5.

The abstract machinery of general logic can provide us now with the canonical
definition of a model. A model consists of a matrix and a valuation. A matrix is
a pair consisting of an algebra and a deductively closed set. In classical logics we
have seen that the algebras can be reduced to expanded boolean algebras and that we
can choose maximally consistent sets, that is, ultrafilters. The general completeness
theorem says that if in a logic Λ we have X 0Λ ϕ then there is a model for Λ such
that X holds in the model but ϕ does not.

D 2.2.3. An algebraic model is a tripleM = 〈A, β,U〉 where A is a
modal algebra, β a map from the set of variables into A and U an ultrafilter in A. We
say that ϕ holds inM, in symbolsM � ϕ, if β(ϕ) ∈ U. We write 〈A,U〉 � ϕ if for all
β, 〈A, β,U〉 � ϕ and we write A � ϕ if for all ultrafilters U and all valuations β we
have 〈A, β,U〉 � ϕ.

P 2.2.4. Let A be a modal algebra. Then A � ϕ iff for every β, β(ϕ) =
1.

P. Suppose that A � ϕ. Then 〈A, β,U〉 � ϕ for all valuations β and ultrafil-
ters U. Hence, given β, β(ϕ) ∈ U for every ultrafilter. So, β(ϕ) = 1 for all β. Now
assume A 2 ϕ. Then there exists a valuation β and an ultrafilter U such that β(ϕ) < U.
Hence for this β, β(ϕ) , 1. �

P 2.2.5. LetM = 〈A, β,U〉 be an algebraic model. Then
(i.) M � ¬ϕ iff M 2 ϕ.
(ii.) M � ϕ ∧ ψ iff M � ϕ andM � ψ.

This notion of algebraic model was chosen to contrast it with the geometric
models based on Kripke–models. However, recall from Chapter 1.5 the notion of
a unital semantics. A class of matrices based on modal algebras is called a unital
semantics in the sense of that definition if it has at most one designated element.
Since the set of designated elements is deductively closed, and so is a filter, in an
algebra of the class of modal algebras there is always a designated element and it is
the unit element, 1. By the Proposition 1.5.6, for a modal logic which has a unital
semantics we must have p; q;ϕ(p) ` ϕ(q). Putting > for p we get q;ϕ(>) ` ϕ(q). In
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particular, for ϕ(q) := � jq we deduce that q ` � jq. Although this is not a rule of
the standard consequence relation, we will show in Chapter 3.1 that for each logic
there exists a consequence relation, denoted by 
Λ, with the same tautologies, in
which the rules 〈{p},� j p〉, j < κ, are derived rules. Since we are mostly interested in
tautologies only, it is justified to say that there is a unital semantics for modal logic.

For an algebra A we write ThA = {ϕ : A � ϕ} and for a class K of algebras
we put Th K :=

⋂
〈ThA : A ∈ K〉. Furthermore, for a set ∆ of formulae we write

Alg(∆) to denote the class of algebras such that A � ∆. The operators Th and Alg are
antitonic. That means, if K ⊆ L then Th L ⊇ Th K, and if ∆ ⊆ Σ then Alg∆ ⊇ AlgΣ.

P 2.2.6. Let ∆ be a set of κ–modal formulae, and K a class of κ–modal
algebras. Then the following holds.

(1) ∆ ⊆ Th K iff Alg∆ ⊇ K.
(2) ∆ ⊆ Th Alg∆.
(3) K ⊆ Alg Th K.
(4) Alg∆ = Alg Th Alg∆.
(5) Th K = Th Alg Th K.

P. (1.) ∆ ⊆ Th K iff for all A ∈ K we have A � ∆ iff for all A ∈ K we
have A ∈ Alg∆ iff K ⊆ Alg∆. (2.) From Alg∆ ⊆ Alg∆ we deduce with (1.) that
∆ ⊆ Th Alg∆. (3.) From Th K ⊆ Th K and (1.), K ⊆ Alg Th K. (4.) By (3.),
Alg∆ ⊆ Alg Th Alg∆. By (2.), ∆ ⊆ Th Alg∆, and so Alg∆ ⊇ Alg Th Alg∆. The two
together yield the claim. (5.) Analogous to (4.). �

Hence, the maps K 7→ Alg Th K and ∆ 7→ Th Alg∆ are closure operators. The
closed elements are of the form Alg∆ and Th K, respectively. The next theorem
asserts that the closed elements are varieties and normal modal logics, as expected.

P 2.2.7. For all ∆, Alg∆ is a variety of κ–modal algebras. For all K,
Th K is a normal κ–modal logic.

P. For the first claim it will suffice to show that Alg {ϕ} is a variety. For in
general, Alg∆ =

⋂
ϕ∈∆ Alg {ϕ}. It is left as an exercise to verify that the intersection

of varieties is a variety. So, let ϕ be given. We have to show that Alg {ϕ} is closed
under products, subalgebras and homomorphic images. First, if ThAi ⊇ Φ then also
Th

∏
i∈I Ai ⊇ Φ. For let B :=

∏
i∈I Ai and qi : B � Ai be the projection onto the ith

component. Let γ be a valuation on B. Then βi := qi ◦ γ is a valuation on Ai, and
we have βi(ϕ) = 1. However, βi(ϕ) = qi ◦ γ(ϕ). Hence, for all i ∈ I, qi ◦ γ(ϕ) = 1.
Thus γ(ϕ) = 1. So, B � ϕ. This shows closure of AlgΦ under products. Next let
i : B� A and A � ϕ. Suppose γ is a valuation into B. Then β := i ◦ γ is a valuation
into A. By assumption, β(ϕ) = 1. However, β(ϕ) = i ◦ γ(ϕ) = 1; hence γ(ϕ) = 1,
since i is injective. Thus Alg {ϕ} is closed under subalgebras. Finally, we show that
if h : A � B then ThB ⊇ ThA. Now suppose that γ is a valuation on B. Take a
valuation β such that h(β(p)) = γ(p). Then 1 = β(ϕ) implies 1 = h(β(ϕ)) = γ(ϕ).
Thus, Alg {ϕ} is also closed under homomorphic images; and so it is shown to be a
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variety. Now, take a class K of modal algebras. We want to show that its theory is a
modal logic. We leave it to the reader to verify that the intersection of modal logics
is again a modal logic. Hence we may specialize on the case K = {A}. Clearly, since
A is an expanded boolean algebra, ThA contains all boolean tautologies. Moreover,
by definition, it is a classical logic, contains � j> and satisfies (bd∧.). Hence we have
a monotonic logic by the first fact, and we have (bd→.) by the equivalence of the
latter with (bd∧.) in monotonic logics. �

Let us now note that we have shown that each set of formulae gives rise to a variety
of algebras. They can be obtained rather directly by appeal to Theorem 1.5.5. It says
that a logic is determined by its reduced matrices. Now define an equivalence ≡Λ by
ϕ ≡Λ ψ iff ϕ↔ ψ ∈ Λ. If Λ is classical, this is a congruence. Hence put

FrΛ(var) := Tm(var)/ ≡Λ

The boolean reduct of FrΛ(var) is a boolean algebra. So, the algebra is an expanded
boolean algebra.

L 2.2.8. Let Λ be classical. Then ThFrΛ(var) = Λ.

P. Suppose ψ < Λ. Then ψ .Λ > and so because for the natural map
ν : ψ 7→ ψ/≡Λ we have ν(ϕ) , 1. Therefore we also have 〈FrΛ(var), {1}〉 2 ϕ. Hence
there is an ultrafilter U not containing ϕ, and for that ultrafilter 〈FrΛ(var), ν,U〉 2 ϕ,
as required. On the other hand, if ϕ ∈ Λ and h : TmP(var) → FrΛ(var) is a
homomorphism, then let σ be a substitution defined by σ(p) = ψp for some ψp

such that h(p) = ν(ψp). Then h(p) = ν ◦ σ(p) and so h = ν ◦ σ. In particular
h(ϕ) = ν ◦ σ(ϕ). Since ϕ ∈ Λ we also have σ(ϕ) ∈ Λ by closure under substitutions.
Thus ν(σ(ϕ)) = 1, by definition. Consequently, h(ϕ) = 1 for all h, showing that
FrΛ(var) � ϕ. �

This last theorem is extremely important. It tells us not only that each logic has an
adequate set of algebras, it also tells us the following.

T 2.2.9. The map Alg is a one–to–one map from normal κ–modal logics
into the class of varieties of κ–modal algebras.

P. Clearly, we have shown that each set of formulae defines a variety of
κ–modal algebras, and each class of κ–modal algebras defines a normal κ–modal
logic. Furthermore, for two logics Λ , Θ the varieties must be distinct, because
either Λ + Θ or Θ + Λ. In the first case FrΛ(var) < AlgΘ and in the second case
FrΘ(var) < AlgΛ. �

This shows that algebraic semantics provides enough classes to distinguish logics.
We will see in Section 4.2 that distinct varieties give rise to distinct logics, so that
the correspondence is actually exact. Notice also the following. The cardinality of
the free algebra is at most ||Pκ||. Moreover, for a countermodel of ϕ we only need to
consider finitely generated subalgebras of that algebra.
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T 2.2.10. Let Λ be a κ–modal logic with at most countably many vari-
ables, κ > 0. If ϕ < Λ then there exists an algebra A of cardinality ≤ max{ℵ0, κ} such
that A 2 ϕ. In particular, if κ is at most countable, so is A.

Exercise 36. Prove Proposition 2.2.5.

Exercise 37. Let B �
∏

i∈I Ai. Show that ThB =
⋂

i∈I ThAi.

Exercise 38. Show that the (possibly infinite) intersection of varieties is a variety
again. Likewise, show that the (possibly infinite) intersection of normal modal logics
is a normal modal logic again. Hint. Use closure operators.

2.3. Kripke–Frames and Frames

The most intuitive semantics for normal (and also quasi–normal) logics is based
on relational structures, so–called frames. A frame is defined in two stages. First,
a Kripke–frame for Pκ is a pair f = 〈 f , 〈Ci : i < κ〉〉 where f is a set, called the
set of worlds, and each Ci, i < κ, is a binary relation. Ci is called an accessibility
relation. More precisely, Ci is the accessibility relation associated with �i. It is not
required that the set of worlds be nonempty. Frames can be pictured in much the
same way as directed graphs. In fact, with only one accessibility relation, the two
are one and the same thing. The worlds are denoted by some symbol, say •, and
the relation is just a collection of arrows pointing from a node x to a node y just in
case xC y. Some authors do not use arrows; instead they have an implicit convention
that the arrows point from left to right or from bottom to top. (This is similar to
the conventions for drawing lattices.) Especially when there is only one relation,
several shorthand notations are used. First, ◦ standardly denotes a reflexive or self–
accessible point, while • denotes an irreflexive point. Figure 2.1 illustrates this.
There are four points, one is irreflexive. Another convention is to use • for reflexive
and x for irreflexive points. In the case of more than one relation, Kripke–frames are
the same as edge–coloured directed multigraphs. Technically, colours are realized as
indices decorating the arrows. Notice that the shorthands for reflexive and irreflexive
points are now insufficient, so it is generally better to use a subscripted turning arrow
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instead (�1 for example). In that case we will use • for worlds throughout. A
substitute policy for a polymodal Kripke–frame f = 〈 f , 〈Ci : i < κ〉〉 is to present
it as a set {fi : i < κ}, fi = 〈 f ,Ci〉, of monomodal frames. This makes drawing of
the frames simpler, although imagining such a frame is more difficult as compared
to the coloured graphs. Each particular pair 〈x, y〉 such that x C j y is also called a

j–transition or simply transition of the frame. We also write x
j
→ y for the fact that

there is a j–transition from x to y. This notation is generalized to sets of sequences s
in the following way. Given a set of sequences s the symbols x Cs y and x

s
→ y are

synonymous. For a sequence τ, x Cτ y is defined by induction on the length. If τ = ε
(the empty string), x Cτ y iff x = y; if τ = τa1 j, j < κ, then x Cτ y iff there exists a z
such that x Cτ1 z and z C j y. Finally, for s = {τi : i < n}, where each τi is a sequence,
x Cs y iff x Cτi y for some i < n.

Typically, the idea of these pictures is grasped rather quickly once the reader has
played with them for a while. Readers who wish to have more examples of Kripke–
frames might take a map of the bus connections of some area. The points are the
bus stops, and each bus line defines its particular accessibility relation between these
stops. A pointed Kripke–frame is a pair 〈f, x〉 where x ∈ f . A model based on
f consists of two more things, a valuation and a specification of a special reference
world. A valuation is a function β : var → 2 f . A Kripke–model is a triple M :=
〈f, β, x〉, where x ∈ f and β is a valuation on f. For every proposition in Pκ we can
now say whether it is accepted or rejected by the model. This is defined formally as
follows.

(md0.) 〈f, β, x〉 � p iff x ∈ β(p)
(md¬.) 〈f, β, x〉 � ¬ϕ iff 〈f, β, x〉 2 ϕ
(md∧.) 〈f, β, x〉 � ϕ ∧ ψ iff 〈f, β, x〉 � ϕ and 〈f, β, x〉 � ψ
(md�i.) 〈f, β, x〉 � �iϕ iff for all y with x Ci y 〈f, β, y〉 � ϕ

Notice that when defining the model condition for a formula ϕ it is not necessary to
assume that β is defined on all variables; all that is needed is that it is defined on all
variables of ϕ. From a theoretical point of view it is mostly preferrable to assume
β to be a total function. However, for practical computation and decidability proofs
(see Section 2.6) we will prefer β to be a partial function, defined at least on the
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relevant variables. If β is a partial function we also say that it is a partial valuation.

Given a valuation β, we can extend β to a map β which assigns to each formula
the set of worlds in which it is accepted.

(hex.) β(ϕ) = {x : 〈f, β, x〉 � ϕ}.

It is not hard to see that β(¬ϕ) = f −β(ϕ) and that β(ϕ∧ψ) = β(ϕ)∩β(ψ). Therefore,
β is a boolean homomorphism from the boolean algebra of modal propositions into
the powerset algebra of f . Moreover,

β(�iϕ) = {x : (∀y)(x Ci y.⇒ .〈f, β, y〉 � ϕ)}.

Thus define the following operation on subsets of f

(alg�.) �ia := {x : (∀y)(x Ci y.⇒ .y ∈ a)}.

Then β(� jϕ) = � jβ(ϕ).

D 2.3.1. A (polymodal) frame is a pair F = 〈f,F〉 where f = 〈 f , 〈Ci :
i < κ〉〉 is a Kripke–frame and F a set of subsets of f such that 〈F, f ,−,∩, 〈�i : i < κ〉〉
is a polymodal algebra. Alternatively, F is a set of subsets closed under boolean
operations and the operations �i defined via (alg�.) on the basis of the relations Ci

underlying f. A pointed frame is a pair 〈F, x〉 where F is a frame, and x ∈ f a
world.

Standardly, frames in our sense are called generalized frames. For the purpose
of this book, however, we want to drop the qualifying phrase generalized. This has
several reasons. First, the nongeneralized counterparts are called Kripke–frames,
and so there will never be a risk of confusion. Second, from the standpoint of Du-
ality Theory it is generalized frames and not Kripke–frames that we should expect
as natural structures. (See Chapter 4.) And third, given that there exist numerous
incomplete logics it is not a luxury but simply a necessity to use generalized frames
in place of Kripke–frames.

In a frame 〈f,F〉, a set a ⊆ f is called internal or a situation if a ∈ F. If
a < F, a is external. So, a frame combines two things in one structure: a Kripke–
frame and an algebra. Due to the presence of the underlying relational structure,
it is unnecessary to specify the operations of that algebra and so it shows up in an
impoverished form only as a set of sets. From an ideological standpoint we may call
frames also realizations of algebras. More on that in Section 4.6. A valuation into
a frame is a valuation into the underlying Kripke frame which assigns only internal
sets as values. Since the set F is closed under all relevant operations, the following
is proved by induction on the structure of the formula.

P 2.3.2. Let 〈f,F〉 be a frame and β : var → 2 f be a valuation on f.
If β(p) is internal for all p ∈ var then β(ϕ) is internal for all ϕ. Moreover, β is a
homomorphism from TmPκ

(var) to 〈F, 1,−,∩, 〈� j : j < κ〉〉.
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A (geometric) model based on the frame F is a triple 〈F, β, x〉, where β is a
valuation and x a world. Notice that models based on frames as well as Kripke–
frames are called geometric because they use a world to evaluate propositions. Recall
that in the algebraic model we had ultrafilters; an algebraic model is a triple 〈A, β,U〉,
where U is an ultrafilter on A. We will see in Chapter 4 that every modal algebra is
isomorphic to an algebra of internal sets over some Kripke–frame. Thus the principal
difference between the algebraic and the geometric approach is the use of ultrafilters
as opposed to worlds. In that respect an algebraic model is still more flexible. For if
we have a world x, we also have a corresponding ultrafilter, Ux := {a : x ∈ a}. But
not every ultrafilter is of this form. There exist, however, classes of frames where
every model based on an ultrafilter has an equivalent model based on a world. These
frames are called descriptive. More on that in Section 4.6.

Now we come to the interaction between models and logics. Consider a model
M = 〈F, β, x〉. Define Th(M) := {ϕ : M � ϕ}. Then Th(M) is closed under modus
ponens. Moreover, for each ϕ we have either ϕ ∈ Th(M) or ¬ϕ ∈ Th(M) but not
both, by (md¬.). So, the set Th(M) is a theory (by mp–closure) and a maximally
consistent theory. Now, suppose we abstract away from the valuation; that is, we
take the pointed frame 〈F, x〉 and define

(tpf.) 〈F, x〉 � ϕ ⇔ for all valuations β we have 〈F, β, x〉 � ϕ

Then the theory of the pointed frame Th 〈F, x〉 = {ϕ : 〈F, x〉 � ϕ} is still closed under
modus ponens; however, we no longer have either ϕ ∈ Th 〈F, x〉 or ¬ϕ ∈ Th 〈F, x〉,
even though ϕ∨¬ϕ ∈ Th 〈F, x〉. Simply take ϕ := p, where p is a variable. However,
Th 〈F, x〉 is closed under substitution. Hence, it is a quasi–normal logic, since it
contains all booelan tautologies and (bd→.). In a last step we abstract from the
worlds and consider the theory of the frame alone.

(tfr.) F � ϕ ⇔ for all worlds x and all valuations β 〈F, β, x〉 � ϕ

ThF := {ϕ : F � ϕ} is called the theory of F. This time we not only have closure
under (mp.) and (sb.) but also under (mn.). Suppose, namely, that ϕ ∈ ThF. Then
for all points and all valuations 〈F, β, y〉 � ϕ. Take a valuation β and a point x. Since
for all y such that x Ci y we already have 〈F, β, y〉 � ϕ, we now have 〈F, β, x〉 � �iϕ.
Hence, since both x and β have been chosen arbitrarily, �iϕ ∈ ThF.

T 2.3.3. Let 〈F, x〉 be a pointed frame. Then Th 〈F, x〉 is a quasi–normal
logic. For all frames ThF is a normal logic.

Now, given a quasi–normal logicΛ and a pointed frame 〈F, x〉, we say that 〈F, x〉
is a pointed frame forΛ if Th 〈F, x〉 ⊇ Λ; likewise, F is a frame forΛ or aΛ–frame
if ThF ⊇ Λ. For a given logic Λ we denote the class of Λ–frames by Frm(Λ) and the
class of Λ–Kripke–frames by Krp(Λ). We conclude this section with an important
theorem concerning the generated substructures. Consider a generalized frame 〈f,F〉
and an internal set g ∈ F. g is called open if for all x ∈ g and all y such that x C j y
for some j then also y ∈ g. So, g contains all successors of points contained in g.
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We put Cg
j := C j ∩ (g × g) and g := 〈g, 〈Cg

j : j < κ〉〉. g is a Kripke–frame. Finally,
G := {a∩ g : a ∈ F} = {b ⊆ g : b ∈ F}. G is closed under relative complements; for if
b ∈ G then g− b = g∩ ( f − b) ∈ F; G is also closed under intersection. Furthermore,
if b ∈ G, then

�g
jb = {x ∈ g : (∀y)(x Cg

j y⇒ y ∈ b)}
= {x ∈ g : (∀y)(x C j y⇒ y ∈ b)}
= g ∩ � jb ,

since g is successor closed. So the map b 7→ g ∩ b is in fact a homomorphism of the
modal algebras. Thus G := 〈g,G〉 is a frame; we say, it is a generated subframe
of F. We denote this by G ≤ F. In the picture below the box encloses a generated
subframe.

T 2.3.4. LetG be a generated subframe of F and x ∈ g. Then Th 〈G, x〉 =
Th 〈F, x〉. Moreover, ThG ⊇ ThF.

Notes on this section. The idea of a Kripke–frame is generally credited to S
K ([134]), though it can already be found in works of R C ([38])
and S K. Also, B J́ and A T in [113] presented a fully
fledged algebraic theory of algebras for modal logic. In it they also show that certain
logics have the property that the algebraic structures of that logic are closed under
completion (see Section 4.6), which they use to show that these logics are complete
with respect to Kripke–frames with certain properties. The notion of a general frame
first appeared with S. K. T in [206]. Before that it was customary to use the
notion of a model, which was just a Kripke–frame together with a valuation. In the
language of generalized frames, a model was equivalent to a generalized frame in
which the internal sets were exactly the definable sets.

Exercise 39. Prove Theorem 2.3.4.

Exercise 40. Let ϕ(p) be a compound modality. We say that ϕ(p) is based on C, if
for all models: 〈F, β, x〉 � ϕ(p) iff for all y B x we have 〈F, β, y〉 � p. For example,
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� j is based on C j. Show that if ϕ is a compound modality based on C and ψ is a
compound modality based on J then ϕ ∧ ψ is based on C∪ J, and ϕ[ψ/p] is based
on C ◦ J.

Exercise 41. (Continuing the previous exercise.) Show that [p?] defined by [p?]q :=
p ∧ q is a normal modal operator. On which relation is this operator based?

2.4. Frame Constructions I

In this section we will introduce a number of ways of creating frames from
frames; in particular, these are the subframes, p–morphic images and disjoint unions
or direct sums. These notions will first be introduced on Kripke–frames and then
lifted to (general) frames. The most important notion is that of a p–morphism. Let
π : f → g be a map. π is a p–morphism from f to g, in symbols π : f → g, if the
following holds.

(pm1.) For x, y ∈ f : if x C j y then π(x) C j π(y).
(pm2.) For x ∈ f and u ∈ g: if π(x) C j u then there is a y ∈ f such that

u = π(y) and x C j y.

We refer to (pm1.) as the first condition and to (pm2.) as the second condition on
p–morphisms. If π is injective, we write π : f � g. If in addition π is the identity
on g, g is a generated subframe of f. If π is surjective we call π a contraction and
say that g is a p–morphic image or contractum (plural: contracta) of f. We write
π : f � g. Figure 2.4 provides an example. The Kripke–frame on the right is a
contractum of the Kripke–frame on the left. Another example is 〈ω, <〉. The
one–element Kripke–frame consisting of a reflexive point is a contractum of 〈ω, <〉.
Each contraction π : f � g induces an equivalence relation ∼π on f by x ∼π y iff
π(x) = π(y). The equivalence relations induced by p–morphisms can be characterized
intrinsically as follows. A net on f is an equivalence relation ∼ such that if x ∼ x′

and x C j y then there exists a y′ ∼ y such that x′ C j y′. This latter condition is called
the net condition. Given a net ∼, define [x] := {x′ : x ∼ x′}, and put [x] C j [y] iff
there exist x′ ∈ [x] and y′ ∈ [y] such that x′C j y′. We denote by f/∼ the Kripke–frame
with worlds [x], x ∈ f , and relations as just defined. We leave it to the reader to
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verify that the map x 7→ [x] : f → f/∼ is a contraction if ∼ is a net, and that if π is
a contraction, then the equivalence ∼π induced by π is a net. Nets are just a suitable
way to picture contractions.

P 2.4.1 (Net Extension I). Suppose that f� g and that ∼ is a net on
f. Define ≈⊆ g × g by x ≈ y iff (i.) {x, y} ⊆ f and x ∼ y or (ii.) {x, y} * f and x = y.
Then ≈ is a net on g.

The proof is easy and omitted. This theorem is of extreme practical importance;
it says that if c is a contractum of a generated subframe f of g, then it is a generated
subframe of a suitably defined contraction image d of g, see picture below. The maps
denoted by dashed arrows are in some sense unique (we will come to that later), this
is why we put an exclamation mark.

f - g

c

??

------! d

??
!

If β is a valuation, and π a p–morphism, π is called admissible for β if for
every x ∈ g and every set β(p) either π−1(x) ⊆ β(p) or π−1(x) ⊆ −β(p). In other
words, the partition that π induces on f must be finer than the partition induced by
the sets β(ϕ). In that case we can say that β induces a valuation γ on g by taking
γ(p) := {π(x) : x ∈ β(p)}. We say that γ is the image of β under π. Moreover, we
will also write β for the valuation γ if no confusion arises. It should be clear that
every valuation on g can be seen as the image of a valuation on f under a contraction.
Now take an arbitrary p–morphism π : f→ g. Then the following important theorem
holds.

P 2.4.2. Let π : f → g and let π be admissible for β. Then for every
x ∈ f

〈f, β, x〉 � ϕ ⇔ 〈g, β, π(x)〉 � ϕ

P. For variables this is true by construction; the steps for ¬ and ∧ are easy.
Now let ϕ = ♦ jψ. Assume 〈f, β, x〉 � ♦ jψ. Then there is a y such that x C j y and
〈f, β, y〉 � ψ. By (pm1.), π(x) C j π(y), and by induction hypothesis 〈g, β, π(y)〉 � ψ.
This gives 〈g, β, π(x)〉 � ♦ jψ. Now assume that the latter holds. Then for some u
with π(x) C j u we have 〈g, β, u〉 � ψ. By (pm2.) there exists a ŷ such that x C j ŷ and
π(̂y) = u. By induction hypothesis, 〈f, β, ŷ〉 � ψ and so 〈f, β, x〉 � ♦ jψ, as required. �

A remark on the proof. As is often the case, the induction is easier to perform
using ♦ j rather than � j. Although the latter is a primitive symbol of the language,
we allow ourselves for the purpose of proofs to take either as primitive and the other
as composite, whichever is best suited for the inductive step.

Now let π : f → g be a p–morphism. Let im[π] ⊆ g be the set of points π(x)
for x ∈ f . This is the so–called image of π. It is a subframe of g. Moreover, the
following geometric analogue of the first Noether Isomorphism Theorem holds.
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P 2.4.3. Let π : f→ g be a p–morphism. Then there are maps ρ : f�
im[π] and ζ : im[π]� g such that π = ζ ◦ ρ.

P. Put ρ(x) := π(x) and ζ(u) := u. First, we show that im[π] is a generated
subframe. This shows that ζ is a p–morphism. To that end let u := π(x) and u Ci v.
Then by (pm2.) there is a y such that x Ci y and π(y) = v. Hence, ζ : im[π] � g.
Now, consider the map ρ. Take x, y with xCi y. Then, by (pm1.) π(x)Ci π(y), whence
ρ(x) Ci ρ(y). Finally, let ρ(x) Ci u. Then, by definition, π(x) Ci u and by (pm2.) there
is a y such that x Ci y and ρ(y) = π(y) = u. This shows ρ : f → im[π]. That ρ is
surjective follows immediately from the definition. �

Take now Kripke–frames, fi = 〈 fi, 〈Ci
j : j < κ〉〉, i ∈ I. Let⊕

i∈I

fi :=
⋃
i∈I

{i} × fi

be the disjoint union of the sets fi. (For simplicity, we standardly assume that the
sets fi are pairwise disjoint and then we put

⊕
i∈I fi :=

⋃
i∈I fi. In general, this is not

without complications, however.) Based on this set we can define the frame
⊕

i∈I fi,
called the direct sum or disjoint union, via

C⊕j := {〈〈i, x〉, 〈i, y〉〉 : i ∈ I; x, y ∈ fi; x Ci
j y}⊕

i∈I fi := 〈
⊕

i∈I fi, 〈C⊕j : j < κ〉〉

Intuitively, the direct sum consists of several components, and two points are j–
related iff they are from the same component and are j–related in that component.
The components are just placed next to each other, with no interaction. The direct
sum has the following property.

T 2.4.4. Let fi, i ∈ I, be Kripke–frames. Then there exist embeddings
εi : fi �

⊕
i∈I fi. Moreover, for every Kripke–frame h with p–morphisms κi : fi → h,

i ∈ I, there exists a unique π :
⊕

i∈I fi → h, which is a p–morphism such that
π ◦ εi = κi for all i ∈ I.

P. It is easy to check that the identity embeddings εi : fi →
⊕

i∈I fi are
injective p–morphisms. Now assume that h is given and κi : fi → h, i ∈ I. We have to
define π. Take an element z ∈

⊕
i∈I fi. There is an i ∈ I such that z = 〈i, x〉 for some

x ∈ fi. Put π(z) := κi(x). π as defined is a p–morphism. For if z Ci z′ for some z and
z′, then there is an i and x, x′ ∈ fi such that z = 〈i, x〉 and z′ = 〈i, x′〉. By construction,
x C j x′. Then π(z) = κi(x) C j κi(x′) = π(z′), by the fact that κi satisfies (pm1.). Now
assume π(z) Ci u, z = 〈i, x〉. Then π(z) = κi(x) and by the fact that κi satisfies (pm2.)
we have a x′ such that x C j x′ and κi(x′) = u. Then π(〈i, x′〉) = κi(x′) = u. So,
π is a p–morphism; moreover, by definition we get (π ◦ εi)(x) = π(〈i, x〉) = κi(x)
for x ∈ fi. Finally, let us see why π is unique. So let ζ be another map satisfying
all requirements. Let x ∈ fi. Then ζ(〈i, x〉) = (ζ ◦ εi)(x) = κi(x) = (π ◦ εi)(x) =
π(〈i, x〉). �
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A valuation δ on
⊕

i∈I fi uniquely determines a valuation βi on fi by {i}×βi(p) =
δ(p) ∩ ({i} × fi). Conversely, given a family βi, i ∈ I, of valuations into fi there is a
unique valuation

⊕
i∈I βi on

⊕
i∈I fi defined by

(
⊕

i∈I

βi)(p) :=
⋃
i∈I

{i} × βi(p)

The following theorems are left as exercises.

P 2.4.5. Let g, f, fi, i ∈ I, be Kripke–frames.
(1) If g� f then Th(f) ⊆ Th(g).
(2) If g� f then Th(g) ⊆ Th(f).
(3) Th(

⊕
i∈I fi) =

⋂
i∈I Th(fi).

T 2.4.6. Let Λ be a normal polymodal logic. Then if f is a Kripke–frame
for Λ, so is any generated subframe and any p–morphic image. Moreover, any direct
sum of Kripke–frames for Λ is again a Kripke–frame for Λ.

To generalize these notions to frames we need to consider what happens to the
internal sets. First, consider a subframe f � g, and let F = 〈f,F〉 as well as G =
〈g,G〉. For simplicity we assume that f ⊆ g. The map a 7→ a ∩ f is a boolean
homomorphism from 〈G, g,−,∩〉 to 〈2 f , f ,−,∩〉. Consider now the fact that any
valuation β on g defines a valuation γ on f, namely, γ(p) := β(p) ∩ f . In order
for theorems like Proposition 2.4.5 to hold we need that for every valuation β the
corresponding valuation γ is a valuation on F. Hence, we must require that a 7→ a∩ f
is a homomorphism from 〈G, g,−,∩〉 onto 〈F, f ,−,∩〉.

D 2.4.7. A map π : f → g is an embedding of the frame F = 〈f,F〉
in the frame G = 〈g,G〉 if (0.) π is injective, (1.) π( f ) ∈ G, (2.) π : f → g is a p–
morphism and (3.) the map π−1 : a 7→ {x : π(x) ∈ a} is a surjective homomorphism
from 〈G, g,−,∩, 〈�i : i ∈ κ〉〉 to the algebra 〈F, f ,−,∩, 〈�i : i ∈ κ〉〉. If all that is the
case we write p : F� G. If in addition f ⊆ g, and π the natural inclusion map we
call F a generated subframe of G and write π : F ≤ G or simply F ≤ G.

The surjectivity of the map π−1 for embeddings is actually quite important for
generalizing the factorization theorem, Proposition 2.4.3. It would fail otherwise.
Several remarks are in order. First, notice that while the map on the frames goes from
f to g, the corresponding map π−1 on the algebras goes from 〈G, g,−,∩, 〈�i : i ∈ κ〉〉
to 〈F, f ,−,∩, 〈�i : i ∈ κ〉〉. Moreover, for generated subframes, rather than requiring
that the map is a well–defined homomorphism we require that the map is onto, that
is, all sets of F are restrictions of sets in G. A last point is the requirement that the
image of f under π is internal. This is added for theory internal reasons, since if
this definition is generalized to subframes, this clause is needed. However, it can be
shown to be unnecessary for generated subframes.

Next we turn to contractions. Again, we study the map a 7→ π−1[a]. This is
a boolean homomorphism from 2g to 2 f , and we need to make sure that it is also
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a homomorphism of the modal algebras on the frames. Hence, consider the set
c := π−1[� ja]. It contains all y such that for all u with π(y) C j u we have u ∈ a. On
the other hand, the set d := � j(π−1[a]) is the set of all y such that for all z such that
y C j z we have π(z) ∈ a. If y ∈ c and y C j z then π(y) ∈ � ja. By (pm1.) π(y) C j π(z),
hence π(z) ∈ a, and so z ∈ π−1[a]. Thus y ∈ d. Now let y ∈ d. To see that y ∈ c, we
have to show that π(y) ∈ � ja. So, assume π(y) C j u. By (pm2.) there is a z such that
π(z) = u and y C j z. Then z ∈ π−1[a], by assumption on y, and so u ∈ a, as required.
So, the map a 7→ π−1[a] is indeed a homomorphism of modal algebras.

D 2.4.8. Let F and G be frames and π : f → g a map. π is a contrac-
tion from F to G if (0.) π is surjective, (1.) π is a p–morphism and (2.) π−1 is an
injective homomorphism from 〈G, g,−,∩, 〈� j : j ∈ κ〉〉 into 〈F, f ,−,∩, 〈� j : j ∈ κ〉〉.
If all that is the case, we write π : F� G.

A nontrivial example is Ω := 〈ω, <,O〉 with O the set of finite and cofinite
subsets of ω. Take the Kripke–frame fn = 〈{0, . . . , n − 1},C〉 where i C j iff i < j or
i = j = n − 1. Next, let gn := 〈{0, 1, . . . , n − 1},J〉, where J = n × n. It turns out
that fn is a contractum of Ω, while gn is a contractum only for n = 1. However, gn is
a contractum of 〈ω, <〉, the underlying Kripke–frame of Ω. (It follows that also all
fn are contracta of 〈ω, <〉.) We can, finally, define the notion of a p–morphism for
frames.

D 2.4.9. Let F and G be frames and π : f → g a map. π is a p–
morphism from F to G, in symbols π : F → G, if (1.) π : f → g is a p–morphism
of the underlying Kripke–frames and (2.) π−1 is a homomorphism from the modal
algebra 〈G, g,−,∩, 〈� j : j ∈ κ〉〉 to 〈F, f ,−,∩, 〈� j : j ∈ κ〉〉.

In fact, given (1.) it is not necessary to require π−1 to be a homomorphism.
Rather, it is enough to require

(pm3.) If a ∈ G then π−1[a] ∈ F.

P 2.4.10. A map h : f → g is a p–morphism from F toG iff it satisfies
(pm1.), (pm2.) and (pm3.).

We refer to (pm3.) as the third p–morphism condition. Notice that with the defi-
nitions given an embedding is an injective p–morphism and a contraction a surjective
p–morphism. A generalized frame is contractible to a Kripke–frame if the algebra of
sets is finite. This is the content of the next theorem.

T 2.4.11. Let F = 〈f,F〉 be a generalized frame and F finite. Define an
equivalence relation x ∼ y on points by

x ∼ y⇔ (∀a ∈ F)(x ∈ a.↔ .y ∈ a) .
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Put [x] := {y : x ∼ y}, [ f ] := {[x] : x ∈ f } and [x] C j [y] iff there exist x̂ ∈ [x]
and ŷ ∈ [y] such that x̂ C j ŷ. Then x 7→ [x] is a p–morphism from F onto the frame
〈[ f ], 〈C j : j < κ〉, 2[ f ]〉.

P. We have to check the second clause of the p–morphism condition. (The
first is satisfied by definition of C j on [ f ].) Let [x] C j u. Then there is a y such that
u = [y]. We have to show that there is a ŷ such that x C j ŷ and ŷ ∼ y. To see this,
let ay be the intersection of all elements in F containing y (equivalently, let ay be the
unique atom containing y). Since F is finite, ay ∈ F. Then ŷ ∼ y iff ŷ ∈ ay iff ây = ay.
It is checked that x C j y iff ax ≤ � jay. Now since [x] C j [y] there are x̂ ∈ [x] and
ŷ ∈ [y] such that x̂ C j ŷ. It follows that ax̂ ≤ ây. Since ax̂ = ax and ây = ay we
conclude ax ≤ � jay, from which x ∈ � jay. And so there is a y′ ∼ y such that x C j y′.
So, the map is a p–morphism. We have seen that the classes p−1([x]) are internal sets
of the form ax defined earlier. Hence, each set has a preimage. �

D 2.4.12. Let Fi, i ∈ I, be frames. The disjoint union of the Fi,
denoted by

⊕
i∈I Fi, is defined as follows. Then underlying Kripke–frame is

⊕
i∈I fi.

A set is internal if it is a union
⋃

i∈I{i} × ai, where ai ∈ Fi for each i ∈ I.

P 2.4.13. Let Fi, i ∈ I, be frames. There exist embeddings ei : Fi �⊕
i∈I Fi such that for all G and embeddings di : Fi � G there exists a p–morphism

π :
⊕

i∈I Fi → G such that di = π ◦ ei for all i ∈ I.

P. Follow the proof of Theorem 2.4.4. The construction is completely anal-
ogous. We only have to check that the map π satisfies the third condition on p–
morphisms. To this end consider an internal set a of G. Let ai := d−1

i [a]. By the fact
that di is a p–morphism, this is an internal set of Fi. Now, π−1[a] =

⋃
i∈I{i} × d−1

i [a].
By definition of

⊕
i∈I Fi, this is an internal set. �

A net on a generalized frame F is a net ∼ on f such that for each a ∈ F the set
[a]∼ := {y : (∃x ∈ a)(x ∼ y)} is a member of F. We write F/∼ for the quotient, which
is defined by

F/∼ := 〈f/∼, 〈{[x] : x ∈ a} : a ∈ F〉〉

P 2.4.14 (Net Extension II). Let F be a frame, and G ≤ F. Let ∼ be a
net on G. Let x ≈ y iff (i.) x, y ∈ g and x ∼ y or (ii.) x, y ∈ f − g and x = y. Then ≈
is a net on F.

P. In view of Proposition 2.4.1 we only have to check that for each a ∈ F
we have [a]≈ ∈ F. To see this, let b := a ∩ g and c := a ∩ ( f − g). Since g ∈ F we
have b, c ∈ F. Then [a]≈ = [b]∼ ∪ c. By assumption on ∼, [b]∼ ∈ F. Hence the claim
is proved. �

Exercise 42. Let G be a frame and f ⊆ g. Show that the map a 7→ a ∩ f is a
boolean homomorphism from 2g to 2 f . Hence, the condition (2.) of Definition 2.4.7
is necessary only to ensure that this map is a homomorphism of the modal algebras,
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that is, that it commutes with the modal operators. Show that it is sufficient.

Exercise 43. Show that if in Definition 2.4.7 we did not require π−1 to be surjective,
then there were injective p–morphisms which are not embeddings.

Exercise 44. Let π : F � G be a p–morphism and x ∈ g. Show that if there
is no chain of length k x = x0 C j x1 C j x2 . . . C j xk then the same holds for π(x)
as well. Show that if π(x) 6 j π(x) then π−1(π(x)) is a j–antichain, that is, for all
y, z ∈ π−1(π(x)) y 6 j z.

Exercise 45. Prove Proposition 2.4.5 and Theorem 2.4.6.

Exercise 46. Formulate and prove Proposition 2.4.5 and Theorem 2.4.6 for (gener-
alized) frames instead of Kripke–frames.

Exercise 47. Let f = 〈 f , 〈C j : j < κ〉〉 be a Kripke–frame and G a subgroup of the
group Aut(f) of automorphisms of f. Put

[x] := {y : there exists g ∈ G : g(x) = y} .

Also, put [x] C j [y] if there exist x̂ ∈ [x] and ŷ ∈ [y] such that x̂ C j ŷ. Show that
x 7→ [x] is a p–morphism. (An automorphism of f is a bijective p–morphism from f
to f. The automorphisms of a structure generally form a group.)

2.5. Some Important Modal Logics

Among the infinitely many logics that can be considered there are a number of
logics that are of fundamental importance. Their importance is not only historical
but has as we will see also intrinsic reasons. We begin with logics of a single oper-
ator. Here is a list of axioms together with their standard names. (In some cases we
have given alternate forms of the axioms. The first is the one standardly known, the
second a somewhat more user friendly variant.)



2.5. Some Important Modal Logics 69

Inc ⊥

4 ♦♦p→ ♦p
D ♦>
B p→ �♦p
T p→ ♦p
5 ♦p→ �♦p
alt1 ♦p→ �p

♦p ∧ ♦q.→ .♦(p ∧ q)
1 �♦p→ ♦�p
2 ♦�p→ �♦p
3 ♦p ∧ ♦q.→ .♦(p ∧ ♦q) ∨ ♦(q ∧ ♦p) ∨ ♦(p ∧ q)
G �(�p→ p)→ �p

♦p→ ♦(p ∧ ¬♦p)
Grz �(�(p→ �p)→ p)→ p

p→ ♦(p ∧ �(¬p→ �¬p))

In addition, there are also logics with special names. For example, S4 is K4.T, S5 is
K4.BT or, equivalently, S4.B. (The dot has no meaning; it is inserted for readability.
Occasionally, several dots will be inserted.) The letter S stems from a classification
by C. I. L, who originally introduced modal logic as a tool to analyse condition-
als. He considered five systems, called S1 to S5, among which only the last two —
namely S4 and S5 — were based on normal modal logics. D originally comes from
deontic, since this postulate was most prominent in deontic logic, the logic of obliga-
tions. Nowadays, D is associated with definal, lit. meaning without end, because in
frames satisfying this postulate every world must see at least one world. G is named
after K G̈, because this axiom is related to the logic derived by interpreting
� as provable in Peano Arithmetic (= PA); the logic K4.G is called the provability
logic. Often G is also called GL, where L stands for M. H. L̈, who contributed
the actual axiomatization. In [201], R S showed that if � is read as it
is provable in PA that then the logic of this modal operator is exactly K4.G. For
the history of this logic see the entertaining survey by G B and G
S, [32]. Finally, the axiom Grz is named after the Polish logician G-
. Usually, the logic S4.Grz is called Gs logic. Some authors use G
for K4.G and Grz for S4.Grz. The reason will be provided in the exercises; namely,
it turns out that K.G as well as K.Grz contain the axiom 4. We will use the same
convention here, if no confusion arises. 1 is known as MK’s axiom, therefore
also denoted by M. 2 is called the G axiom.

For theoretical purposes, the following two infinite series of axioms are impor-
tant.

altn
∧

i<n+1 ♦pi.→ .
∨

i< j<n+1 ♦(pi ∧ p j)
trsm ♦≤m p.→ .♦≤m+1 p

The first holds in a Kripke–frame iff any point has at most n successors, the second
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holds in a Kripke–frame iff any point that can be reached at all can be reached in
m steps. There are not so many polymodal logics which have acquired fame. How-
ever, the most useful logics occur as extensions of a logic with several operators in
which the logic of a single operator on its own belongs to one of the systems above,
and the axioms specifying the interaction of these operators are of a rather simple
type. Therefore, the polymodal logics in which there are no axioms mixing the op-
erators, are an important basic case. The following notation is used here. Given
two monomodal logics, Λ1 and Λ2, the symbol Λ1 ⊗Λ2 denotes the smallest normal
bimodal logic in which the first operator satisfies the axioms of Λ1 and the second
operator the axioms of Λ2. Λ1 ⊗ Λ2 is called the fusion or independent join of
the two logics. Similarly, the notation

⊗
i<µ Λi denotes the fusion of µ many modal

logics; in general each Λi can be polymodal as well. In this logic the operator �i
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satisfies exactly the postulates of Λi. Given a logic Λ, the operator � is called m–
transitive if �≤m p → �≤m+1 p ∈ Λ. � is weakly transitive if it is m–transitive for
some m. A polymodal logic Λ is called weakly transitive if there is a compound
modality � such that for every compound modality �′, �p→ �′p ∈ Λ. If κ is finite,
we call Λ m–transitive if it contains the axiom trsm below and weakly transitive if
it is m–transitive for some m. This notion of weak transitivity coincides with the one
defined earlier for arbitrary κ, as can easily be demonstrated.

trsm �≤m p.→ . �≤m+1 p

(Recall the definition of � from Section 2.1.) If each basic operator is weakly transi-
tive, Λ is said to be weakly operator transitive. K4 ⊗K4 is operator transitive, but
not transitive (as can be shown). A logic is of bounded operator alternativity if for
each operator there is a d such that that operator satisfies altd. Λ is of bounded al-
ternativity if it has finitely many operators and is of bounded operator alternativity.
A logic Λ is called cyclic if for every compound modality � there exists a compound
modality � such that p→ �♦ p ∈ Λ.

Furthermore, the postulates ♦i p → ♦ j p are considered. On Kripke–frames they
force the relation Ci to be included in C j. Also, the postulates ♦i♦ j p↔ ♦ j♦i p say that
any point reachable following first Ci and then C j is reachable following C j and then
Ci — and vice versa. This is a kind of Church–Rosser Property with respect to i and
j. Sometimes, only one implication is considered. Quite interesting is the following
construction. Consider a (polymodal) logic Λ with operators �i, i < κ. Add a new
operator � = �κ. Then call � a master modality if it satisfies the postulates of K4
and the interaction postulates ♦i p → �p. If � satisfies S5 it is called a universal
modality.

Important bimodal logics are tense logics. A tense logic is a normal extension
of

K.t := K2 ⊕ {p→ �^p, p→ �^p}

Here, we have used � for �0 and � for �1. IfΛ is a monomodal logic, thenΛ.t is ob-
tained by interpreting � as � . There is also the possibility to interpret � as � . Tense
logical axioms can be derived from monomodal axioms by choosing either interpre-
tation for the operator. Thus, if ϕ is an axiom and we want to interpret the operator
as � , we write ϕ+, and if we want to interpret the operator as � then we write ϕ−.
So, we have logics like S4.t, S5.t and K4.t.D+.D−. The latter is actually the same as
K4D.t.D−. A logic Λ with 2k operators is called connected if there exists a permuta-
tion π : 2k → 2k such that π2 = id and for each i < 2k, p→ �i♦π(i), p→ �π(i)♦i ∈ Λ.
A connected logic is cyclic.

Exercise 48. Recall from Proposition 2.1.3 that K ⊕ ϕ → ψ = K ⊕ ψd → ϕd. Write
down the axioms you obtain for the axioms presented in this section if you apply this
operation.
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Exercise 49. Show that K.G ⊇ K4. Proceed as follows. Suppose we have an in-
transitive Kripke–frame f and we want to show that it is also not a Kripke–frame for
K.G. Then there must be points x C y C z such that x 6 z. Now put as a valuation
β(p) := {y, z}. Then x � ♦p;¬♦(p ∧ ¬♦p). But this trick works only for Kripke–
frames. Nevertheless, it gives a clue to a solution which is completely syntactical,
and therefore completely general. Assume that {♦♦p,¬♦p} is consistent in K.G.
Then put ϕ := p∨♦p. Now {♦♦p,¬♦p} `K.G ♦ϕ. Show that this leads to a contradic-
tion. The relation with the Kripke–frame is the following. A violation of transitivity
can be documented by taking γ(p) := {z}. Now we have γ(ϕ) = {y, z} = β(p), the
desired set documenting the failure of G. (The proof that transitivity is deducible in
K.G is attributed to D  J and G S in [9].)

Exercise 50. Show as in the previous exercise that K.Grz ⊇ K4. Hence, 4 is dis-
pensable in the axiomatization.

Exercise 51. Show that S4.Grz = K ⊕ p→ ♦(p ∧ �(¬p→ �¬p)). (See [14].)

Exercise 52. Show that K4 ⊗ K4 is operator transitive but not weakly transitive.
Hint. Consider the frame Z = 〈ω,C,J〉 with x C y iff y = x + 1 and x is even, x J y
iff y = x + 1 and x is odd.

2.6. Decidability and Finite Model Property

Recall that a logic Λ is called decidable if one can decide for every finite set ∆
and a formula ϕ whether or not ∆ `Λ ϕ. It follows from the deduction theorem that
a logic is decidable iff for every formula ϕ we can decide whether or not ϕ ∈ Λ. In
other words, Λ is decidable iff the problem ‘ϕ ∈ Λ?’ is computable iff the set Λ is
decidable. We shall also say that a modal logic Λ is C–computable or in C, where C

is a complexity class, if ‘ϕ ∈ Λ?’ is in C. Likewise, C–hardness and C–completeness
of Λ are defined. Now let A be a finite set. A set M ⊆ A∗ is called recursively
enumerable if it is either empty or there exists a computable function f : ω → A∗

such that the set range f = f [ω] = M. (So, M , ∅ is recursively enumerable if we
can, so to speak, make an infinite list of M.) A set is co–recursively enumerable or
co–r. e. if its complement is recursively enumerable. M is called recursive if it is
recursively and co–recursively enumerable.

P 2.6.1 (Post). Let A be finite and M ⊆ A∗. The problem ‘x ∈ M?’ is
decidable iff M is both recursively enumerable and co–recursively enumerable.

First, let h : ω → A∗ be a computable bijection. For a proof note that if
‘x ∈ M?’ is decidable, define f as follows. If M is not empty, pick ~x ∈ M. Then
put f (n) := h(n) if h(n) ∈ M, otherwise f (n) := ~x. This function enumerates M.
So, M is recursively enumerable. Likewise we show that it is co–recursively enu-
merable. Now assume that M is both recursively and co–recursively enumerable,
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∅ , M and A∗ , M, and let f and g enumerate M and A∗ − M. Define h as follows.
h(~x) := 1 if there is an n ∈ ω such that f (n) = ~x; h(~x) := 0 if there is an n ∈ ω such
that g(n) = ~x. It is easy to see that this is a computable function. It follows from
Proposition 1.8.13 that if κ ≤ ω then the set of well–formed formulae is decidable.
A particular consequence of Proposition 2.6.1 is that a logic Λ is decidable iff Λ is
recursive. Unfortunately, this does not apply to the particular axiomatizations. There
are recursively axiomatized (even finitely axiomatized) logics which are undecid-
able. However, if Λ is recursive then it is recursively axiomatizable. Moreover we
have the following.

P 2.6.2. (κ < ℵ1.) Let ∆ be a recursively enumerable set of modal
formulae. Then Kκ ⊕ ∆ is recursively enumerable.

P. We show how to make an infinite list of the tautologies. Classical logic
is decidable, hence the tautologies of PC are recursively enumerable. The primitive
instances of (bd→.), which are of the form

� j(p0 → p1).→ .� j p0 → � j p1

are enumerable, since κ is. Fix an enumeration g of ∆, an enumeration h of all
classical tautologies and an enumeration ` of the instances of (bd→.). Put f (3i) :=
g(i), f (3i+1) := h(i), and f (3i+2) := `(i). This gives an enumeration of the axioms.
We show how to enumerate the theorems of Kκ ⊕ ∆. The problem is that we have
to calculate the consequences of ∆ with respect to the rules, namely, modus ponens,
the necessitation rule and the substitution rule. The reader is asked to think about
the fact that it is enough to use finitary substitutions rather than substitutions. A
substitution σ is called finitary if σ(p) , p only for finitely many p. The finitary
substitutions can be enumerated. We leave this to the reader. (Basically, it amounts
to showing that the finite sequences of natural numbers are enumerable. In effect,
this is what we will be showing here as well, though in disguise.) Thus, assume
that the substitutions are somehow enumerated. Now begin the enumeration of the
theorems simply as a list. The list is produced in cycles. The nth cycle consists
of f (n) and all one–step consequences of theorems of the previous cycles, but with
substitution restricted to the first n substitutions and (mn.) restricted to the first n
boxes according to the enumeration. If the list has k entries up to the nth cycle, then
there are k × n consequences with respect to (mn.), at most k × k consequences with
respect to (mp.) and k×n consequences with respect to (sb.). So in each cycle the list
is finite. Let us show that this list contains all theorems. The proof is by induction
on the length of the derivation of ϕ from ∆. Case 1. ϕ is a classical tautology or a
member of ∆. Then for some i ϕ = f (i), and so ϕ is in the ith cycle. Case 2. ϕ = � jψ.
By inductive hypothesis, ψ occurs in the list, say in the kth cycle. Let � j be the jth
modality according to the enumeration `. Then ϕ occurs in the cycle max{k, j} + 1.
Case 3. ϕ is the result of applying modus ponens to ψ → ϕ and ψ. By induction
hypothesis, the latter are in the list. Then ϕ is the next cycle. Case 4. ϕ = σk(ψ). Let
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ψ be in the mth cycle and ` := max{k,m}. Then ϕ occurs in the ` + 1st cycle. This
concludes the proof. �

The last proof applies as well to all other logics, classical, monotone etc. Typi-
cally, since logics are mostly given in such a way that one can deduce that they are
enumerable, it is mostly the enumerability of the nontheorems which is problematic.
Only very recently, V G in [85], has given some proof procedures for
enumerating the nontheorems directly. (The proof of their correctness has interest-
ingly been given by means of semantic arguments.) Let us now say that a logic Λ
is recursively axiomatizable (finitely axiomatizable) if there exists a recursively
enumerable (finite) set ∆ such that Λ = Kκ ⊕∆. And let us say that Λ is strongly re-
cursively axiomatizable if a recursive set axiomatizing Λ can be given. It is a priori
possible that all modal logics are finitely axiomatizable; it may, namely, very well
be that although a logic can be axiomatized by an infinite set of formulae, a finite set
would have been enough. We will show below that this is false. The following is a
consequence of the compactness theorem.

P 2.6.3. Let Λ be finitely axiomatizable and Λ = Kκ ⊕ ∆. Then there
exists a finite ∆0 ⊆ ∆ such that Λ = Kκ ⊕ ∆0.

P. Let Λ = Kκ ⊕ ∆. Since Λ is finitely axiomatizable, there is a finite set
Γ such that Λ = Kκ ⊕ Γ. Then there exists a proof of

∧
Γ from ∆ and the classical

tautologies. This proof is finite, so it uses only a finite number of formulas in ∆.
Let them be collected in ∆0. Then we have Λ ⊇ Kκ ⊕ ∆0 ⊇ Kκ ⊕ Γ = Λ, and so
Λ = Kκ ⊕ ∆0. �

So if ∆ is a set of axioms for Λ such that no finite subset axiomatizes Λ, then Λ
cannot be finitely axiomatized. Decidability is usually brought into correspondence
with the finite model property defined below (see next section). However, rather than
with finite model property it is primarily connected with constructibility of models,
at least if the language is countable, which we will now assume. Recall that we
have shown that any logic Λ is complete with respect to some class of algebras; in
particular Λ is the theory of the algebra FrΛ(var). This being so it is nevertheless
not at all clear that we can always produce these algebras. In particular, if Λ is
undecidable, then even though we can enumerate all formulae, we are not able to
construct FrΛ(var) from the definition, since we have

FrΛ(var) = Tm(var)/≡Λ
where ϕ ≡Λ ψ iff ϕ ↔ ψ ∈ Λ. The problem is simply that we cannot even decide
whether or not a formula ϕ is in the class of >. On the other hand, suppose that
Λ is decidable. Then choose an enumeration for of the formulae; for simplicity
for(0) := >. Furthermore, we assume to have an inverse pϕq, yielding for each
formula ϕ a k ∈ ω such that for(k) = ϕ. We are going to produce an enumeration
γ of the equivalence classes as follows. We start with γ(0) := for(0) = >. Then
γ(i + 1) := for(k) where k is the smallest number such that for no k′ < k, for(k′) ≡Λ
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for(k). In other words, we choose a subsequence si of ω such that for(si+1) is the first
formula in the enumeration that does not belong to one of the already established
equivalence classes. Then γ(i) := for(si). Since the logic is decidable, this is indeed
an (algorithmic) enumeration of the equivalence classes. Furthermore, for each ϕ
we can decide whether or not it belongs to a given class, and we can compute the
number µ(ϕ) of the class of ϕ. Namely, take k := pϕq, and enumerate all for(k′)
for all k′ < k. Then calculate the γ(i) up to (at most) k and see which is the first i
such that γ(i) ↔ ϕ ∈ Λ. Now, the algebra FrΛ(var)/ ≡Λ formed by calculating with
numbers instead of formulae. For example, let m and n be given. The conjunction
is a function conj : ω × ω → ω defined by conj(i, j) := µ(γ(i) ∧ γ( j)). Likewise,
all other functions of FrΛ(var) can be reproduced as functions over ω. Instead, we
could also use the representatives γ(i) as the underlying set of the algebra.

D 2.6.4. (κ < ℵ1.) A modal algebra is called effective if its underlying
set is ω, and the functions 1, −, ∩, and � j, j < κ, are computable. In general, an
algebra is called effective if its underlying set is ω and all basic term–functions
are computable.

D 2.6.5. Let V be a variety of κ–modal algebras. V is said to have
constructible free algebras if for any finite set of generators the congruence
≡Λ, defined by ϕ ≡Λ ψ iff ϕ ↔ ψ ∈ Λ, is a decidable subset of the set of pairs of
terms.

What we have shown is that if Λ is decidable, its variety has constructible free
algebras, which are also effective algebras.

P 2.6.6. Suppose that A is an effective algebra. Then ThA is co–
recursively enumerable.

P. Enumerate all partial valuations into A, and enumerate the formulae.
Given a partial valuation and a formula with variables in the domain of that valuation
we can compute the value of the formula under the given valuation, since the algebra
is effective. It is therefore possible to enumerate all pairs 〈ϕ, a〉 where ϕ is a formula
and a a value of ϕ under some valuation. Consequently, choosing among this set
only the pairs for which a , 1 we obtain an enumeration of the nontheorems. �

This proof needs some explanations. If an algebra based on the set ω is not effective,
there is a formula ϕ and a valuation β such that β(ϕ) cannot be determined even
when β(p) is known for all relevant variables. For by definition of effectiveness the
primitive functions are not all computable. So, let fi be a primitive function of A
which is not computable. Then ϕ(~p) := fi(~p) is a formula such that β(ϕ) cannot be
computed for any given β.

C 2.6.7. A logic Λ over a countable language is decidable iff Λ is
recursively axiomatizable and Λ is the logic of an effective algebra.
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F 2.6.
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(It is enough to have completeness with respect to a recursively enumerable class
of effective algebras in addition to recursive axiomatizability. This has been pointed
out to me by M Z.) Above we have seen that it is actually enough
to have the free algebra be effective, with no assumptions on axiomatizability. Why
is it then that the constructibility of FrΛ(var) is enough to guarantee the decidability,
while otherwise effectiveness is apparently not enough? The reason for that is that
the theory of the free algebra is the theory of 〈FrΛ(var), ν〉, where ν is the natural
valuation. If we have completeness with respect to such a pair then theoremhood is
easy to decide. In fact, then the assumption that the underlying algebra is effective is
sufficient.

D 2.6.8. A logic Λ has the finite model property (fmp) if for all
ϕ < Λ there exists a finite frame F such that F 2 ϕ. Λ is tabular if there is a finite
Kripke–frame f such that Λ = Th f.

By Theorem 2.4.11 we know that Λ has the finite model property iff for each
non–theorem ϕ there exists a finite Kripke–frame f for Λ with f 2 ϕ.

T 2.6.9 (Harrop). (κ < ℵ0.) Suppose thatΛ has the finite model property.
If Λ is finitely axiomatizable, Λ is decidable.

P. Suppose that Λ = Kκ ⊕ ∆ for a finite ∆. Then Λ is recursively enumer-
able; we need to show that it is co–recursively enumerable. Let us first show that it
is possible to enumerate the frames for the logic Λ. To see that, observe that in order
to decide for F whether or not F � Λ we just have to check whether or not F � ∆.
Since ∆ is finite, this can be decided in finite time. Hence, since we can enumerate
all frames, we can also enumerate the Λ–frames. Furthermore, we can enumerate all
models 〈F, β, x〉 where β assigns values only for finitely many variables. For each
model we can enumerate easily all formulas which are false. Hence we have an enu-
meration n : ω × ω → wff which returns for a pair 〈i, j〉 the jth formula refuted by
model number i. Since ω × ω can be enumerated, say by p : ω → ω × ω, we can
finally enumerate all nontheorems by n ◦ p. �

The use of the finite axiomatizability is essential. For recursive axiomatizability this
theorem is actually false, see A U [216] and also [122].

Finally we give the proof that there are uncountably many logics. We work here
in monomodal logic, that is, there is just one operator. Let us take the following
frames. cn := 〈{0, 1, 2, . . . , n},C〉 with i C j iff (a) j = i − 1 or (b) i = j = n. Consider
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the following formulae

κn := ♦n+1> ∧ ♦(�n⊥ ∧ ¬�n−1⊥)

L 2.6.10. cn � ¬κm iff n , m. 〈cn, j〉 � κn iff j = n.

P. Consider 〈cm, j〉 � κn. If j > n then ♦�n⊥ is not satisfied; if j < n then
♦n+1> is not satisfied unless j is reflexive; but if it is, the formula ♦(�n⊥ ∧ ¬�n−1⊥)
is not satisfied. So we must have j = n. Now assume m > n. Then ♦�n⊥ is not
satisfied at j = n. If, however, m < n then ♦(�n⊥ ∧ ¬�n−1>) is false at j = m. Thus
m = n = j, as required. �

This innocent example has a number of consequences. Take any subset M ⊆ ω
and let ι(M) = K⊕{¬κn : n ∈ M}. Then ι : 2ω → E(K) is injective. For if M , N then
there is a m ∈ M but m < N (or the other way around). Then all axioms of ι(N) are
satisfied on cm, but not all axioms of ι(M). We conclude that Frm(ι(M)) , Frm(ι(N)).
Thus the two logics are different.

T 2.6.11. There are 2ℵ0 κ–modal logics, for all κ > 0. Moreover, there
exist 2ℵ0 many non–recursively axiomatizable logics and there exist recursively ax-
iomatizable, undecidable logics.

P. We have seen that the map ι is injective, so there are at least 2ℵ0 log-
ics. However, our language has countably many formulae, and a logic is a set of
formulae, so there are at most 2ℵ0 . Since there can be only countably many algo-
rithms, there are 2ℵ0 non–recursively enumerable subsets of ω and so there are 2ℵ0

many non–recursively axiomatizable logics. Finally, take a recursively enumerable,
but non–recursive set M (such sets exist). The logic ι(M) is recursively enumerable,
by definition. But it cannot be decidable, since that would mean that we can decide
‘¬κ j ∈ ι(M)’, or, equivalently, ‘ j ∈ M’. �

There exist also finitely axiomatizable undecidable logics. The first was es-
tablished by S I [107], basically through coding the action of a ma-
chine in modal logic. Subsequently, many alternative ideas have been used, for
example undecidable problems of group theory by V S ([198]), the
tiling problem in E S [202] and Thue–problems (see among others M
K [127]). We will return to this subject in Section 9.4.

Exercise 53. Show the following variant of Proposition 2.6.3. Let Θ be a logic and
Λ be finitely axiomatizable over Θ. Suppose Θ = Λ⊕∆. Then there exists a finite set
∆0 ⊆ ∆ such that Λ = Θ ⊕ ∆0.

Exercise 54. Give an example of a logic Θ which is finitely axiomatizable as a nor-
mal extension of K1 but not as a quasi–normal extension.

Exercise 55. Let K be a recursively enumerable set of effective κ–modal algebras.
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Show that Th K is co–recursively enumerable.

Exercise 56. Show that Theorem 2.6.9 holds also for infinite κ. Hint. A finite axiom
system uses only finitely many basic operators.

Exercise 57. Let T be a theory of classical predicate logic, in any given signature.
Show that T is recursively axiomatizable iff it is strongly recursively axiomatizable.

2.7. Normal Forms

This chapter introduces a very basic method for proving that the logic Kκ is de-
cidable, using the fact that it has the finite model property. This proof was first given
by K F [64]. The finite model property is among the best–studied properties of
logics. We will show a fair number of strong results on the finite model property
later but shall be content in this section to show only a single result, namely the finite
model property of the base logic Kκ. There are many proofs of this fact but only very
few proofs are constructive and do not presuppose heavy theory. For example, the
proof by filtration — which we will present later — presupposes that we can show
the existence of at least one model, from which we then obtain a finite model. The
basic method here is syntactic in nature. We will start by proving that formulae can
be rewritten into a somewhat more user–friendly form.

D 2.7.1. A formula ϕ is called strictly simple of degree 0 if it is
of modal degree 0 and of the form > or

∧
j<n q j, n > 0, where each q j is either a

variable or a negated variable; moreover, no conjunct may occur twice. ϕ is called
simple of degree 0 if it is⊥ or a nonempty disjunction of pairwise distinct strictly
simple formulae of degree 0. ϕ is called strictly simple of degree d+1 if it is
of modal degree d + 1 and of the form

µ ∧
∧
j<p

�s( j)χ j ∧
∧
j<q

♦t( j)ω j ,

where µ is strictly simple of degree 0, no conjunct of ϕ occurs twice, s : p → κ,
t : q → κ are functions, χ j are simple of degree ≤ d and all ω j are strictly simple
of degree ≤ d. ϕ is simple of degree d+1 if it is of modal degree d + 1 and a
disjunction of pairwise distinct strictly simple formulae of degree ≤ d+1. Moreover,
a modal formula of degree 0 is called standard of degree 0 if it is simple of
degree 0; a modal formula of degree d+1 is called standard of degree d+1 if it
is a disjunction of strictly simple formulae in which the functions s are injective and
in which for a subformula of the form ♦ jψ ψ is standard of degree dp(ψ).

It is important to get used to simple formulae, so the reader is asked to prove
some easy properties of them.

L 2.7.2. (i) Any subformula of a simple formula is simple. (ii) If a formula
is simple of degree d+1 it is composed from variables (constants) and their negations,
and formulae � jψ, where ψ is simple of degree d, using only ∧, ∨ and ♦ j.
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P 2.7.3. Every formula ϕ can effectively be tranformed into a simple
formula deductively equivalent to ϕ in Kκ.

P. We prove in a rather detailed way how to obtain a form that contains
negation only directly in front of variables. The method to convert ϕ into full simple
form is similar. Take a formula ϕ and apply the following reductions from left to
right as often as possible.

¬(ψ ∧ χ) { ¬ψ ∨ ¬χ
¬(ψ ∨ χ) { ¬ψ ∧ ¬χ
¬♦ jψ { � j¬ψ
¬� jψ { ♦ j¬ψ
¬¬ψ { ψ

It is clear that some reduction will apply as long as some operator is in the scope
of ¬. Moreover, each step is an equivalence. (This follows from Proposition 2.1.1.)
Thus all we have to show is that there is a terminating reduction series. To see this,
we have to monitor two parameters, namely `, the length of a longest subformula
of the form ¬ψ, and k, the number of the subformulae of length ` of the form ¬ψ.
As long as there is a subformula ¬ψ of length `, we apply the reduction algorithm
to that subformula. The result is always a formula in which k is decreased by 1. If
k = 1, then in the next step ` decreases. Proceeding this way, we will eventually
reach ` ≤ 2, which means that the subformulae are of the form ¬pi, pi a variable,
or ¬ci, ci a constant. This shows how to throw negation in front of variables and
constants. To obtain simple form use the following reductions

ϕ ∧ (ψ ∨ χ) { (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
♦ j(ψ ∨ χ) { ♦ jψ ∨ ♦ jχ
ϕ ∧ ϕ { ϕ
ϕ ∨ ϕ { ϕ

It is proved analogously that these reduction terminate and that after their termination
the formula is in the desired form. �

P 2.7.4. Every formula ϕ can be effectively transformed into a deduc-
tively equivalent standard formula.

P. First, transform ϕ into simple form. Let χ be a strictly simple subformula
of minimal degree that is not standard. Then it contains two conjuncts of the form
� jσ1, � jσ2. ϕ1 is defined by eliminating that occurrence of � jσ2 and replacing the
occurrence of � jσ1 by � j(σ1 ∧ σ2). ϕ1 is deductively equivalent to ϕ. Iterate this as
often as possible. Now repeat this construction for other nonstandard subformulae of
minimal degree. Each time the construction is performed it either reduces the number
of nonstandard subformulae of least degree, or it increases the minimal degree of a
nonstandard subformula. The procedure terminates and yields a standard formula.

�
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The next definition is crucial for the definition of the finite model. In order to
understand it, we explain first the notion of in conjunction with. First, say that an
occurrence of ψ in χ is a conjunct of χ if this occurrence of ψ in χ is only in the scope
of ∧. An occurrence of ψ1 is in conjunction with an occurrence of ψ2 in the formula
ϕ if ψ1 and ψ2 are conjuncts of some subformula containing both occurrences of ψ1
and ψ2.

D 2.7.5. Let ϕ be a standard formula. ϕ is called explicit if for every
strictly simple subformula µ∧

∧
i<p �s(i)χi ∧

∧
j<q ♦t( j)ω j and every j < q there exists

an i such that t( j) = s(i) and a disjunct α of χi, such that every conjunct of α is a
conjunct of ω j.

T 2.7.6. For each ϕ there exists a standard and explicit ψ such that ϕ↔
ψ ∈ Kκ.

P. First, turn ϕ into standard form. Call a subformula � j(
∨

i ψi) unleashed
if for every ♦ jχ it occurs in conjunction with, one ψi is such that all conjuncts of
ψi are conjuncts of χ. Let δ be the largest number such that there is a subformula
� j(

∨
i ψi) of degree δ which is not unleashed. Now take the subformulae which are

of degree δ and not unleashed. Let � j(
∨

i ψi) be one of them. Suppose it occurs in
conjunction with a subformula ♦ jτ. Then add

∨
i ψi as a conjunct to τ; perform this

for formulae of degree δ which are not unleashed. Now distribute ∧ over ∨, and then
♦ j over ∨. We will then end up with formulae of the form ♦ j(ψi ∧ τ) in place of
♦ jτ. ψi is not of the form χ1 ∨ χ2, and standard. Thus the resulting subformulae are
simple. Finally, to convert the formula into standard form we only have to drive ∨
outside, and so all subformulae � j(

∨
i ψi) of degree δ are now unleashed. Thus, we

may proceed to smaller subformulae. Since we never change the modal degree of
the modal formulae involved, this procedure ends. �

We work through a particular example to give the reader a feeling for these
definitions. Take the language κ = 2, the operators being � and � . Then let ϕ be the
formula

p. ∧ .�¬(^^p ∧ ^�¬p). ∧ .^(¬p ∨ ^p)

We can push negation inside in the second conjunct, distribute ^ over ∨ in the third,
and kill double negation.

p. ∧ .�(��¬p ∨ �^p). ∧ .(^¬p) ∨ (^^p)

Next, we can distribute ∨ and get

[p. ∧ .�(��¬p ∨ �^p). ∧ .^¬p]
∨ [p. ∧ .�(��¬p ∨ �^p). ∧ .^^p]

Now the formula is in standard form. However, it is not explicit. Namely, in both
disjuncts, the second conjunct is of the form �ψ while it is in conjunction with a
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formula of the form ^χ. Thus, we must add ψ as a conjunct to χ. Subsequently, we
can distribute ^ and ∨.

[p. ∧ .�(��¬p ∨ �^p) ∧ ^(��¬p ∧ ¬p)]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(�^p ∧ ¬p)]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(��¬p ∧ ^p)]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(�^p ∧ ^p)]

We have unleashed formulae of degree 3, but there have appeared new formulae of
lower depth with must also be unleashed. After distribution etc. the formula is in
standard and explicit form.

[p. ∧ .�(��¬p ∨ �^p) ∧ ^(��¬p ∧ ¬p)]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(�^p ∧ ¬p)]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(��¬p ∧ ^(p ∧ �¬p))]
∨ [p. ∧ .�(��¬p ∨ �^p) ∧ ^(�^p ∧ ^(p ∧ ^p))]

Call ϕ clash–free if there do not exist occurrences of subformulae of the form pi and
¬pi, for some i, in conjunction with each other.

L 2.7.7. Let ϕ be standard and explicit and not of the form χ1∨χ2. Suppose
that it contains an occurrence of a formula of the form pi ∧ ¬pi ∧ ω which is not in
the scope of a box. Then ϕ is inconsistent in Kκ.

P. By assumption, pi and ¬pi are not in the scope of ∨ and � j, for any
j < κ. Clearly, from the assumptions, ϕ is composed from pi ∧ ¬pi ∧ ω and other
formulae using only ∧ and ♦ j. Then ϕ is inconsistent. �

There is an algorithm which converts a formula into a clash–free formula. More-
over, there is an algorithm which in addition preserves simplicity, explicitness and
being standard. Namely, suppose that pi and ¬pi are in conjunction with each other.
Then remove from ϕ all subformula occurrences in conjunction with these occur-
rences, and replace pi and ¬pi together by ⊥. If necessary, remove ⊥ in disjunction
with some formula. This converts ϕ into clash–free and standard form. It is some-
what cumbersome but not difficult to verify that the resulting formula is also explicit
if ϕ has been explicit.

Given a standard, explicit and clash–free formula ϕ we build a set of models as
follows. Let us assume ϕ =

∨
i<n ϕi, ϕi strictly simple. Then for each ϕi we build a

separate model; the collection of the models is the model–set of ϕ. We will see that
ϕ is consistent iff the model set is non–empty iff n > 0. Thus assume n = 1, that is, ϕ
is now strictly simple. Take a node xϕ as the root, and for each subformula ♦ jχ not in
the scope of a box take a point xχ. Then, as it is directly verified, χ is strictly simple,
standard, explicit and clash–free. For two subformulae ♦pψ and ♦qχ put xψ C j xχ iff
♦ jχ is a conjunct of ψ. (In that case, j = q.) A valuation is defined as follows. Let
xχ be a point constructed for the formula χ. If pi is a conjunct of χ then xχ ∈ β(pi),
and if ¬pi is a conjunct of χ then xχ < β(pi). In case where neither pi nor ¬pi is a
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conjunct β(pi) can be fixed arbitrarily. Since χ is clash–free, a model can always be
defined. A model for ϕ thus obtained is called a direct model.

L 2.7.8. Let ϕ be strictly simple, standard, explicit, and clash–free. Let
〈f, β, xϕ〉 be a direct model of ϕ. Let ♦ jχ not occur in the scope of a box. Then if ψ is
a conjunct of χ, xχ ∈ β(ψ).

P. By induction on the constitution of ψ (and χ). For ψ a variable, this is
true by construction. Also, the definition is sound, by assumption. Now assume
ψ = ω1∧ω2. Then if ψ is a conjunct of χ so are ω1 and ω2. By induction hypothesis,
xχ ∈ β(ω1) and xχ ∈ β(ω2). Then xχ ∈ β(ω1∧ω2), as required. The case ψ = ψ1∨ψ2
does not arise. Next assume ψ = ♦ jω. Then there exists a j–successor xω of xχ. By
induction hypothesis xω ∈ β(ω), and so xχ ∈ β(ψ). Finally, let ψ = � jω. Let y be
a j–successor of xχ. Then y = xτ for some τ such that ♦ jτ is a conjunct of χ. By
explicitness, some disjunct ωi of ω (or χ itself) is a conjunct of τ. By hypothesis,
xτ ∈ β(ωi). Hence xχ ∈ β(ψ). �

T 2.7.9. Kκ has the finite model property.

P. Start with ϕ and convert it into standard and explicit form. Let ϕ be a
disjunction of ϕi, i < n. If ϕi contains a clash we have ϕi ` ⊥ by Lemma 2.7.7. If
ϕi does not contain a clash then by Lemma 2.7.8 there exists a finite model for ϕi.
Hence, either all ϕi contain a clash, in which case ϕ ` ⊥, or there is a model for some
ϕi and hence for ϕ. �

Related to standard formulae are the normal forms which are also in use in
boolean logic. The difference with standard formulae is that normal forms give rise
to unambiguous direct models on a given set of variables. One can define normal
forms with respect to standard formulae by the following fact. In addition to being
standard (i) a normal form is consistent, (ii) a normal form is always reduced; it
contains no occurrences of ϕ in conjunction with a different occurrence of ϕ and no
occurrence of ϕ in disjunction with another occurrence of ϕ, and (iii) a normal form
is complete for given modal depth δ; if ϕ is in normal form, χ of depth less than δ
and ϕ ∧ χ is consistent, then ϕ ` χ. (i) is easy to achieve. We can start from a simple
formula and just throw away all disjuncts containing a clash. (ii) is likewise easy to
get. Simply drop multiple ocurrences of the same formula. (iii) is possible only on
one condition, namely that we work over a finite vocabulary. By finite vocabulary
we mean both that there are finitely many modal operators and that there only finitely
many propositional variables and constants. Thus, let us assume that we have a finite
set J ⊆ κ and a finite set P = {pi : i < n}. Then the normal forms of degree k over
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J and P are defined inductively as follows.

χ0
C :=

∧
i∈C pi ∧

∧
i<C ¬pi C ⊆ n

nf (J, P, 0) := {χ0
C : C ⊆ n}

χk+1
D( j) :=

∧
i∈D( j) ♦ jχ

k
i ∧

∧
i<D( j) ¬♦ jχ

k
i D( j) ⊆ nf (J, P, k)

χk+1
C,D

:= χ0
C ∧

∧
j∈J χ

k+1
D( j) C ⊆ n,D( j) ⊆ nf (J, P, k)

nf (J, P, k + 1) := {χk+1
C,D

: C ⊆ n,D : J → ℘(nf (J, P, k))}

P 2.7.10. Let ϕ be a modal formula of depth k based on the variables
of P and the operators of J. Then there is a set Ψ ⊆ nf (J, P, k) such that

ϕ↔
∨
Ψ ∈ K

P. By induction on k. For k = 0 this is the familiar disjunctive normal form
for boolean logic. Now let k > 0. Then ϕ is a boolean combination of variables
and formulae ♦ jψ with dp(ψ) < k. By inductive hypothesis each ψ is equivalent to
a disjunction of a set Nψ of normal forms of degree k − 1. If Nψ = ∅, then ♦ jψ is
equivalent to ♦ j⊥, hence to ⊥. If Nψ , ∅ then ♦ jψ ≡ ♦ j

∨
Nψ ≡

∨
〈♦ jχ : χ ∈ Nψ〉.

After this rewriting, bring ϕ into disjunctive normal form. Each conjunct of ϕ is now
of the form

µ = ν ∧
∧
C∈G

♦ jχ
k−1
C ∧

∧
C∈H

¬♦ jχ
k−1
C

where ν is nonmodal and G∩H = ∅, G and H sequences of subsets of nf (J, P, k−1).
This is not necessarily in normal form, since we may have G ∪ H ( nf (J, P, k − 1).
But if there is a ♦ jχ which has not yet been included in G ∪ H we expand µ by the
disjunction ♦ jχ ∨ ¬♦ jχ, and we get

µ ≡ µ ∧ ♦ jχ. ∨ .µ ∧ ¬♦ jχ

In this way we can expand µ so as to include all ♦ jχ, χ ∈ nf (J, P, k−1). The same with
ν. Repeat this procedure as often as necessary. Finally, we reach normal form. �

L 2.7.11. Any two distinct normal forms of nf (J, P, k) are jointly inconsis-
tent.

P. By induction on k. If k = 0, then let C,C′ ⊆ n two distinct subsets.
Without loss of generality we may assume C − C′ , ∅. Then χ0

C ∧ χ
0
C′ ≡ ⊥. For

there is an i ∈ C such that i < C′. Then χ0
C ` pi but χ0

C′ ` ¬pi. Now let k > 0. If
χ and χ′ are distinct forms, then either they have distinct nonmodal components, or
there is a j ∈ J such that D( j) , D′( j). In the first case we already have seen that
there arises a contradiction. In the second case, assume without loss of generality,
ω ∈ D( j) − D′( j). Then χ ` ♦ jω but χ′ ` ¬♦ jω, a contradiction. �

P 2.7.12. The formulae of degree k with variables from the set P =
{pi : i < n} and modal operators from J form a boolean algebra. The number of
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atoms is bounded by the number b( j, n, k) defined by

b( j, n, 0) := 2n

b( j, n, k + 1) := b( j, n, 0) · 2 j·b( j,n,k)

P. We have seen that each formula is equivalent to a disjunction of normal
forms, so there are at most 2b( j,n,k+1) formulae, where b( j, n, k + 1) is the cardinality
of nf (J, P, k + 1). Moreover, since the normal forms are mutually inconsistent, they
form the atoms of this algebra. The number of atoms is obtained by multiplying the
choices for a normal form of degree 0 with the choices of j–long sequences of sets
of normal forms of degree k. The latter is nothing but 2b( j,n,k) j

= 2 j·b( j,n,k). �

Thus, each set of normal forms individually presents a representative for a class of
equivalent propositions. With a normal form we can associate a direct model as
before. However, this time there are no clashes, and the valuation β is uniquely
defined. For if xϕ is given, then ϕ is equivalent to ϕ∧ pi ∨ ϕ∧¬pi, so that it must be
equivalent to either of them, showing that pi or ¬pi must be a conjunct of ϕ.

Notice that there are nontrivial propositions with no variables as we have seen
earlier. Their number is bounded by the modal degree and the set of occurring opera-
tors. In many logics, however, there are up to equivalence only two distinct constant
propositions, ⊥ and >. We say that such logics have trivial constants.

T 2.7.13. A modal logic Λ has trivial constants iff for every operator � j

either � j⊥ ∈ Λ or ♦ j> ∈ Λ.

The proof is simple and is omitted. Notice that the postulate � j⊥ says that no
world has a j–successor, while ♦ j> says that every world has a j–successor.

Normal forms are closely connected with a technique called unravelling intro-
duced in Section 3.3. The method of unravelling can be used to show that Kκ is com-
plete with respect to completely intransitive trees, by first showing that it is complete
and then using unravelling to get a totally intransitive tree from a model. This is
somewhat better than the proof via normal forms, which established completeness
with respect to acyclic frames only. Furthermore, we can show now the following
rather important fact. (Recall the definition of � from Section 2.1.)

T 2.7.14. Let κ be finite and A an n–generated κ–modal algebra. If
A � �k⊥, k > 0, then A is finite with at most 2b(κ,n,k−1) elements.

P. Let a0, . . . , an−1 be the generators of A. An arbitrary element of A is
of the form ϕ[a0, . . . , an−1], where ϕ is a formula in the variables p0, . . . , pn−1. We
will show that for any formula ϕ there exists a formula [ϕ]k of degree ≤ k such that
�k⊥ ∧ ϕ is deductively equivalent to �k⊥ ∧ [ϕ]k in Kκ. Since the number of such
formulae is at most 2b(κ,n,k−1), we are done. So, let ϕ be of depth > k. We assume that
negation is in front of variables, double negations killed. Let [ϕ]k denote the formula
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obtained as follows.

[p]0 := ⊥ [¬p]0 := ⊥

[p]k+1 := p [¬p]k+1 := ¬p
[ϕ ∧ ψ]k := [ϕ]k ∧ [ψ]k [ϕ ∨ ψ]k := [ϕ]k ∨ [ψ]k

[♦ jϕ]k+1 := ♦ j[ϕ]k [� jϕ]k+1 := � j[ϕ]k

Roughly speaking, [ϕ]k is the result of replacing all occurrences of subformulas
embedded exactly k times by modal operators by ⊥. Then ϕ is the result of re-
placing some occurrences of ⊥ by some formulae χ we have [ϕ]k ` ϕ. (Notice,
namely, that the occurrences are not embedded in any negation.) It remains to be
shown that �k⊥;ϕ ` [ϕ]k. This is done by induction on k and ϕ. The case k = 0
is straightforward. Now let k > 0. Let ϕ = ψ ∧ ω. By inductive hypothesis,
[ϕ]k = [ψ]k ∧ [ω]k. By inductive hypothesis �k⊥;ψ ` [ψ]k and �k⊥;ω ` [ω]k.
Hence �k⊥;ψ ∧ ω ` [ψ]k ∧ [ω]k. Analogously the case ϕ = ψ ∨ ω is treated.
Now assume ϕ = � jψ and k > 0. Then �k−1⊥;ψ ` [ψ]k−1. From this we obtain
�k⊥;� jψ ` � j[ψ]k−1. Since [� jψ]k = � j[ψ]k−1 we obtain the claim. Analogously for
ϕ = ♦ jψ. �

Exercise 58. Prove Lemma 2.7.2.

Exercise 59. Let 〈f, β, x〉 be a model. Show that there exists exactly one normal form
χ of degree n for given J and P such that 〈f, β, x〉 � χ. This form will be denoted by
χn(x).

Exercise 60. With notation as in the previous exercise, let w ∼n x if χn(w) = χn(x).
Let w ≈ x if w ∼n x for all n. Show that the map x 7→ x/ ≈ is a p–morphism, and
compatible with the valuation.

Exercise 61. Call 〈f, β〉 condensed if ≈ is the identity. Let 〈f, β,w0〉 be condensed
and f generated by w0. Show that there exists a `–localic map from χ`(w0) into f.
(See Section 3.3 for a definition.)

Exercise 62. Let χ and χ+ be normal forms. Call χ+ an elaboration if it is of depth
at least that of χ, and if χ+ ` χ. Characterize this notion syntactically.

Exercise 63. Show that in K.alt1 every formula is equivalent to a formula of the
following alt1–form. For degree 0, a formula is in alt1–form iff it is in disjunctive
normal form. A formula of degree d + 1 is in alt1–normal form iff it is of the form
either µ∧�⊥ and d = 1 or µ∧♦ϕ where µ is a alt1–form degree 0 and ϕ an alt1–form
of degree d.
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2.8. The Lindenbaum–Tarski Construction

An important question from the model theoretic point of view is the problem
whether for a given logic Λ there is a frame F such that Λ = Th(F). Notice that
in Section 2.2 we have shown that there exist algebras of this sort. We will now
show that there are also frames with this property. The solution is due to L
and A T. The basic idea is that a world is a maximally consistent set
of formulae. Given a logic Λ this is a set W ⊆ wff such that W is consistent but
no proper superset is. The intuition behind this terminology is that a world is an
existing thing and everything we say about it should therefore be either true or false.
Clearly, one is more inclined to say that there can be only one world, the world we
are living in, so speaking of collections of worlds can then only be metaphorical.
There are ways to get around this apparent problem. For now we are interested in
the connection between our logic and the worlds that might exist. The basic result
of this section is that if we define a certain natural frame from Λ over a given set of
propositional variables then the theory of that frame will be exactly Λ. This shows
that every modal logic is the theory of a single frame and so frame semantics is
as good as algebraic semantics. In Chapter 4 we will see that this is no accident.
The construction is a specialization of a general technique to form geometric models
from algebraic models. We proceed as follows. First, we show that there are enough
maximally consistent sets (or worlds). This proof is completely analogous to that of
Corollary 1.7.13. Second, we establish the frame based on these worlds. And thirdly
we show that the logic of this frame is Λ.

Let us begin with the question of the existence of worlds. With respect to a logic
Λ a world is a maximally Λ–consistent set of formulas. The next lemma asserts that
for any consistent collection of facts there is a world in which it is realized.

L 2.8.1. Every Λ–consistent set is contained in a maximally Λ–consistent
set.

The proof is immediate from Tukey’s Lemma. A maximally consistent set is
also deductively closed, as can easily be shown. We note the following properties,
of which we will make tacit use later on. These are easy to prove (cf. Section 1.7).

L 2.8.2. Let W be a deductively closed set of formulae.
(1) W is consistent iff for no ϕ: ϕ ∈ W and ¬ϕ ∈ W.
(2) ϕ ∧ χ ∈ W iff ϕ ∈ W and χ ∈ W.
(3) If ϕ ∈ W or χ ∈ W then ϕ ∨ χ ∈ W.
(4) W is maximally consistent iff it is consistent and ϕ ∨ χ ∈ W implies ϕ ∈ W

or χ ∈ W, for all ϕ and χ.
(5) W is maximally consistent iff for all ϕ: ¬ϕ ∈ W exactly if ϕ < W.

We now need to specify the relations in which these worlds stand to each other.
For that we have a plausible definition. Given a modal operator � j (and its dual
♦ j) and two worlds W and X we want to say that X is j–possible at W if the total
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collection of facts in X is j–possible at W, that is, we would like to say that

W C j X ⇔ ♦ j

∧
X ∈ W

However, X is infinite, so we cannot define things in this way. We have no infinite
conjunction, only a finitary one. So our best approximation is

W C j X ⇔ for all finite subsets X0 of X: ♦ j

∧
X0 ∈ W

This is actually how we define the accessibility relation. However, this definition can
be phrased more elegantly. Notice, namely, that if X0 is a finite set then

∧
X0 ∈ X.

For from
∧

X0 < X follows
∨
〈¬ϕ : ϕ ∈ X0〉 ∈ X, so for one ϕ ∈ X0 also ¬ϕ ∈ X,

which cannot be.
To introduce the definition in its final form let us agree on the abbreviation

♦ jS := {♦ jϕ : ϕ ∈ S }. Then we define

(acc.) W C j X ⇔ ♦ jX ⊆ W

There is an alternative characterization as follows.

L 2.8.3. Let W and X be worlds. Then the following are equivalent.
(1) For all ϕ ∈ X: ♦ jϕ ∈ W.
(2) For all � jϕ ∈ W: ϕ ∈ X.

P. Suppose that the first holds and assume ϕ < X. Then ¬ϕ ∈ X and so
♦ j¬ϕ ∈ W. Since `K ♦ j¬ϕ. ↔ .¬� jϕ we also have ¬� jϕ ∈ W. Thus � jϕ < W,
by consistency of W. So, the second holds. Now suppose that the second holds and
assume ♦ jϕ < W. Then we have ¬♦ jϕ ∈ W, thus � j¬ϕ ∈ W, which by assumption
implies ¬ϕ ∈ X. Hence ϕ < X. So, the first holds. �

The construction also yields enough worlds in the following sense. If ♦ jϕ ∈ W then
there is an X such that W C j X and ϕ ∈ X. For consider the set S := {ϕ} ∪ {χ :
� jχ ∈ W}. If it is consistent, there is a world X ⊇ S and we must have W C j X by
construction. So we have to show that S is consistent. Suppose it is not. Then there
is a finite set S 0 ⊆ S which is inconsistent. Without loss of generality S 0 = {ϕ} ∪ T0.
Now T0 `Λ ¬ϕ, and so � jT0 `Λ � j¬ϕ. Since � jT0 ⊆ W we must have � j¬ϕ ∈ W,
which is to say ¬♦ jϕ ∈ W, and so by consistency of W, ♦ jϕ < W. This is contrary to
our assumptions, however. Thus, S is consistent and successor worlds containing ϕ
exist.

P 2.8.4. Whenever W is a world and ♦ jϕ ∈ W there exists a world X
such that W C j X and ϕ ∈ X.

Finally, the internal sets must be specified. This is most straightforward. Internal
sets are those which are specifiable by a proposition. Define ϕ̂ by

ϕ̂ := {X : ϕ ∈ X}

We call ν : p 7→ p̂ the natural valuation.
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L 2.8.5. Let ϕ̂ := {X : ϕ ∈ X} and ν : p 7→ p̂. Then for all ϕ, ν(ϕ) = ϕ̂.

P. By induction on ϕ. Suppose ϕ = ¬χ. Then ¬̂χ = {W : ¬χ ∈ W} and
by induction hypothesis ν(χ) = χ̂ = {W : χ ∈ W}. Since the worlds are maximally
consistent, χ ∈ W is the same as ¬χ < W, so ¬̂χ = −χ̂ = −ν(χ), from which the
claim follows. Now assume ϕ = χ1 ∧ χ2. We have ̂χ1 ∧ χ2 = χ̂1 ∩ χ̂2, as is easily
checked. Therefore ν(χ1 ∧ χ2) = ν(χ1)∩ ν(χ2) = χ̂1 ∩ χ̂2 = ̂χ1 ∧ χ2. Finally, assume
that ϕ = ♦ jχ. We have W ∈ ♦̂ jχ iff ♦ jχ ∈ W iff there is a j–successor X such that
χ ∈ X (by Proposition 2.8.4) iff there is a j–successor X such that X ∈ χ̂ iffW ∈ � jχ̂.
Hence ν(ϕ) = ν(♦ jχ) = � jν(χ) = � jχ̂ = ♦̂ jχ = ϕ̂, as required. �

Under the supposition that the valuation is the natural valuation the internal sets
are exactly those which are values of the formulae of our modal language.

D 2.8.6. Let Λ be a normal logic. Denote the set of worlds by WΛ and
letWΛ = {ϕ̂ : ϕ ∈ wff }. Define C j by XC j Y iff for all � jϕ ∈ X, ϕ ∈ Y (= (acc.)). Then
the canonical frame for Λ is the frame CanΛ(var) = 〈WΛ, 〈C j : j < κ〉,WΛ〉. The
underlying Kripke–frame is denoted by canΛ(var). The global canonical model
for Λ is the pair 〈CanΛ(var), ν〉 where ν(p) = p̂ = {W : p ∈ W}. A local canonical
model is a triple 〈CanΛ(var), ν, X〉, where X is a world.

What we know now is that if a formula ϕ is not in Λ, then there exists a W such
that ¬ϕ ∈ W, since ¬ϕ is consistent with Λ. Then 〈CanΛ, ν,W〉 � ¬ϕ. But can we be
sure that Λ is the logic of the frame? Is it possible that there are countermodels for
axioms of Λ? We will show that this is not the case. The reason is the choice of the
internal sets. Notice that the internal sets can be ‘named’ in the canonical model by
a formula. Namely, for every a ∈ WΛ there exists a ϕ such that a = ϕ̂ = ν(ϕ). So,
let β be an arbitrary valuation. Then for each p there exists a formula ϕp such that
β(p) = ν(ϕp). Then for an arbitrary formula ψ,

β(ψ) = ν(ψ[ϕp/p : p ∈ var(ψ)])

Thus, if a model exists for ψ based on the valuation β, then for some substitution σ, a
model for ψσ exists based on the valuation ν. Another way of seeing this is using the
Theorem 2.8.8 below. Suppose namely that an axiom ϕ of Λ is violated. Then, by
our arguments, a substitution instance ϕσ (which is also an axiom) is violated on the
canonical model. This means, however, that there is a world W such that ¬ϕσ ∈ W.
Now, since ¬ϕσ is inconsistent with Λ this simply cannot be. Hence we have shown
that no axiom can be refuted on any model based on the canonical frame.

T 2.8.7 (Canonical Frames). Let Λ be a normal polymodal logic. Then
Λ = ThCanΛ(var).

In writing CanΛ(var) we have indicated that the canonical frame also depends
on the set of variables that we have available. In fact, the structure of the canonical
frame is up to isomorphism determined only by the cardinality of the set of variables.
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(We will see that even the logic really depends on the latter.) We have assumed that
this set has countably many elements. Thus we also write CanΛ(ℵ0).

A different proof of Theorem 2.8.7 consists in showing that the algebra of in-
ternal sets is isomorphic to FrΛ(var). This follows from the fact that the algebra of
sets is the direct image of the map ϕ 7→ ϕ̂. We have verified above that this map is a
homomorphism and that ϕ̂ = ψ̂ iff `Λ ϕ↔ ψ.

T 2.8.8. The algebra of internal sets of CanΛ(var) is isomorphic toFrΛ(var).
An isomorphism is given by the map ϕ 7→ ϕ̂.

Analogous techniques can be used for quasi–normal logics. Suppose that Ψ is a
quasi–normal logic extending Λ. Then any Ψ–consistent set is contained in a max-
imally Ψ–consistent set. For this set there is a model of the form 〈CanΛ(var), ν,W〉.
Again, since a quasi–normal logic is closed under substitution, we get that 〈CanΛ(var),W〉 �
Ψ.

T 2.8.9 (Canonical Frames for Quasi–Normal Logics). Any quasi–nor-
mal logic Ψ ⊇ Λ can be obtained by

Ψ =
⋂
W∈S

Th 〈CanΛ(var),W〉

for a set S ⊆ WΛ.

In a normal logic we have S = WΛ by closure under (mn.).
As we have noted earlier in connection with free algebras, the structure of

CanΛ(var) only depends on the cardinality of the set var. Let it be α. Then we
also write CanΛ(α) and call it the α–canonical frame for Λ. As it will turn out,
the structure of a canonical frame depends nontrivially on the cardinality of the set
of variables. The question is whether the canonical frames for Λ for different car-
dinalities of the variables are related by certain p–morphisms. We will show that
a function between two cardinal numbers induces a p–morphism of the associated
canonical frames. So, take two cardinals α and β and a function f : α → β. f
induces a homomorphism h f : Tm(α) → Tm(β) defined by h f (pi) := p f (i). h f

is uniquely determined by f . Moreover, the Theorem 2.8.11 below mirrors The-
orem 1.3.6, showing that the maps between the algebras have a correlate for the
canonical frames.

L 2.8.10. Let X be a world in the language over {pi : i < β} and f : α→ β.
Then h−1

f [X] is a world in the language with variables {pi : i < α}.

P. (1.) h−1
f [X] is deductively closed. For let ϕ;ϕ → ψ ∈ h−1

f [X]. Then
h f (ϕ) ∈ X and h f (ϕ) → h f (ψ) ∈ X. Since X is deductively closed, h f (ψ) ∈ X.
So, ψ ∈ h−1

f [X]. (2.) h−1
f [X] is consistent. For if ϕ;¬ϕ ∈ h−1

f [X] then h f (ϕ) ∈ X
and ¬h f (ϕ) ∈ X. But X is consistent. So, either h f (ϕ) < X or ¬h f (ϕ) < X. Hence
either ϕ < h−1

f (X) or ¬ϕ < h−1
f [X]. (3.) h−1

f [X] is maximally consistent. For let
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ϕ ∨ ψ ∈ h−1
f [X]. Then h f (ϕ) ∨ h f (ψ) ∈ X. By maximality of X, h f (ϕ) ∈ X or

h f (ψ) ∈ X. Thus we have ϕ ∈ h−1
f [X] or ψ ∈ h−1

f [X]. �

T 2.8.11. Let α and β be cardinal numbers and f : α → β a map. Let
X f denote the map X 7→ h−1

f [X]. Then X f : CanΛ(β) → CanΛ(α). Moreover, if f is
injective, X f is surjective and if f is surjective then X f is injective.

P. By the previous lemma, X f is a map between the sets of worlds. Now
assume that Y and Z are worlds over {pi : i < β} and Y C j Z. We claim that X f (Y) C j

X f (Z). For let � jϕ ∈ X f (Y) = h−1
f [Y]. Then � jh f (ϕ) ∈ Y . Hence h f (ϕ) ∈ Z, since

Y C j Z. This shows ϕ ∈ h−1
f [Z] = X f (Z). The first condition for p–morphisms

is proved. Now assume that Y is a world over {pi : i < β} and U a world over
{pi : i < α}; and let X f (Y) C j U. Then for every � jϕ such that � jh f (ϕ) ∈ Y we
have ϕ ∈ U. Let Y� := {ϕ : � jϕ ∈ Y}. The set h f [U] ∪ Y� is consistent. For
take finite sets ∆0 ⊆ h f [U] and ∆1 ⊆ Y�. We have h−1

f [∆0] ⊆ U and h−1
f [� j∆1] ⊆

h−1
f [Y]. By assumption on Y and U, h−1

f [∆1] ⊆ U. Therefore, the set h−1
f [∆0;∆1]

is Λ–consistent. Then ∆0;∆1 is Λ–consistent as well. So, every finite subset of
h f [U] ∪ Y� is Λ–consistent. This set is therefore Λ–consistent and has a maximally
consistent extension. Call it V . Then for every � jϕ ∈ Y we have ϕ ∈ V , and so
Y C j V . Furthermore, h−1

f [V] ⊇ h−1
f [h f [U]] ⊇ U. Since h−1

f [V] is consistent and
U maximally consistent, h−1

f [V] = U, and that had to be shown. This proves the
second p–morphism condition. Finally, let ϕ̂ be an internal set of CanΛ(α). Then
X−1

f [ϕ̂] = {X f (Y) : ϕ ∈ Y} = {Z : h f (ϕ) ∈ Z} = ĥ f (ϕ). Therefore, X−1
f [ϕ̂] is an

internal set of CanΛ(β) showing that X f is indeed a p–morphism.
Now assume that f : α → β is injective and let U be a world over the set

{pi : i < α}. Then h f [U] is a world over {p f (i) : i < α}. Hence it is a consistent set
over {pi : i < β}. Let V ⊇ h f [U] be a world. Then h−1

f [V] ⊇ h−1
f [h f [U]]. Hence,

X f (V) = h−1
f [V] = U. So X f is onto. Now assume that f is surjective and let Y and

Z be two different worlds over {pi : i < β}. Then there exists a formula ϕ such that
ϕ ∈ Y but ϕ < Z. There exists a formula ψ over {pi : i < α} such that h f (ψ) = ϕ.
(Simply choose a function g : β → α such that g ◦ f (i) = i, for all i < α. Then put
ψ = hg(ϕ).) It follows that ψ ∈ X f (Y) but ψ < X f (Z). �

An application of these theorems can be found in so–called weak canonical
frames. Suppose we restrict ourselves to a finite subset, say {p0, . . . , pn−1}. Lan-
guages and logics based on finitely many variables are called weak in [66]. If Λ is a
logic then Λ � n denotes the set of theorems of Λ in the variables {pi : i < n}. It is
clear that Λ =

⋃
n∈ω Λ � n. So a logic is determined already by its weak fragments.

As it turns out, CanΛ�n(n) = CanΛ(n). (This is straightforward to verify.) We call a
frame of the form CanΛ(n), n ∈ ω, a weak canonical frame. It follows from The-
orem 2.8.11 that if n < m, CanΛ(n) � CanΛ(m) and so ThCanΛ(n) ⊇ ThCanΛ(m).
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The situation is therefore as follows.

Λ = ThCanΛ(ℵ0) ⊆ . . . ⊆ ThCanΛ(2) ⊆ ThCanΛ(1) ⊆ ThCanΛ(0)

Equality need not hold. Furthermore, the following is easy to establish.

T 2.8.12 (Weak Canonical Frames). Let Λ be a normal logic. Then
Λ =

⋂
n∈ω ThCanΛ(n).

The question arises what happens if a logic is equal to the theory of one of its
weak frames.

D 2.8.13. Let Λ be a modal logic. We call Λ n–characterized if

Λ = ThCanΛ(n) .

Θ is n–axiomatizable over Λ if Θ = Λ ⊕ ∆ for some set ∆ with var[∆] ⊆
{pi : i < n}. Θ is n–axiomatizable if Θ is n–axiomatizable over Kκ. If Θ is n–
axiomatizable over Λ it need not be n–axiomatizable simpliciter, for Λ itself may not
be n–axiomatizable. Clearly, if Θ is finitely axiomatizable, it is also n–axiomatizable
for some n, but the converse need not hold. Furthermore, for every n one can find a
logic which is n + 1–axiomatizable, but not n–axiomatizable.

Exercise 64. LetM = 〈F, β, x〉 be a local model. Show that ThM, the theory of the
point x in the model, is a maximally consistent set.

Exercise 65. Show that two worlds X,Y in the canonical frame are different iff there
is a formula ϕ such that ϕ ∈ X and ϕ < Y . Show that X 6 j Y iff there is a formula
ϕ such that � jϕ ∈ X but ϕ < Y . Show that for every ultrafilter U inWΛ,

⋂
U , ∅.

(The first property is called differentiatedness, the second tightness and the third
compactness. See Section 4.6.)

Exercise 66. Let Λ1,Λ2 be two normal logics. Show that Λ1 ⊆ Λ2 iff CanΛ2 (ℵ0)
is a generated subframe of CanΛ1 (ℵ0). Hint. Every Λ2–consistent set is also Λ1–
consistent.

Exercise 67. Show that CanK(ℵ0) contains 2ℵ0 many worlds, and 2ℵ0 worlds without
successor. Show that if Λ is a normal logic and T,U worlds such that T Ci U then
there are 2ℵ0 i–predecessors of U. What about the weak canonical frames?

Exercise 68. Let Λ be a logic and g a finite Kripke–frame for Λ. Show that 〈g, 2g〉 is
a generated subframe of CanΛ(ℵ0).

Exercise 69. Show that Th 〈n, >〉 is 0–axiomatizable. Hint. The axiom �n⊥ is
obviously not sufficient, but a good start. Now choose additional constant axioms
carefully so that only the intended frames remain as frames for the logic.
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2.9. The Lattices of Normal and Quasi–Normal Logics

Recall that a lattice is complete if any set S has a least upper bound, denoted by
x∈S x or simply by S , and a greatest lower bound, denoted by x∈S x or simply

by S . A lattice has greatest lower bounds iff it has least upper bounds. Hence,
a lattice is complete iff it has least upper bounds. We can rephrase completeness
by using limits of directed systems. Let I = 〈I,≤〉 be a partially ordered set. This
set is directed if for i, j ∈ I there exists a k ∈ I such that i, j ≤ k. An indexed
family 〈x(i) : i ∈ I〉 is called an upward directed system over I if x(i) ≤ x( j)
whenever i ≤ j. For example, let S be a subset of L. Take I := S <ℵ0 , the set of
all finite subsets of S , ordered by inclusion. For a d ∈ I put x(d) := d. Let
S + := 〈x(d) : d ∈ S <ℵ0〉. S + is an upward directed system. For an upward directed
system X = {xi : i ∈ I} we write limI X to denote the least upper bound. It is clear
that we have limI S + = S . (With S given, the set I is uniquely defined, and may be
dropped.) Analogously a downward directed system is defined. For a downward
directed system we write limI S for the intersection. If S is upward (downward)
directed, so is x t S = {x t y : y ∈ S } and x u S = {x u y : y ∈ S }. A lattice
is called upper continuous if intersection commutes with upward limits, that is, if
xu lim S = lim (xuS ) for all upward directed sets S . It is called lower continuous if
join commutes with downward limits, that is, if x t lim S = lim (x t S ). A complete
lattice is continuous if it is both upper and lower continuous.

T 2.9.1. A complete, distributive lattice is upper continuous iff it satisfies
the law (jdi.) and lower continuous iff it satisfies the law (mdi.).

( jdi.) a u B = (a u B)
(mdi.) a t B = (a t B)

P. We show only the first claim, the second is dual. Let B be a set and B+

be the family of finite joins of elements of B. This is an upward directed system.
Then, by distributivity, the family a u B+ defined by a u B+ := 〈a u d : d ∈ B<ℵ0〉

is identical to the family

(a u B)+ := 〈 x∈da u x : d ∈ B<ℵ0〉 .

Thus we have the following identities.

a u B = a u lim B+

= lim a u B+

= lim (a u B)+

= (a u B)

�

D 2.9.2. A locale is a complete, distributive and upper continuous
lattice. A homomorphism from a locale L to a locale M is a map h : L → M
commuting with finite intersections and arbitrary joins.
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We need to comment on this definition. Locales are also called frames in the
literature and what we have called a homomorphism of locales is actually a ho-
momorphism of frames (see [110]); a homomorphism between locales goes in the
opposite direction. (The open sets of a topological space form a locale; the maps
between them are continuous maps. More about this in Chapter 7.) However, due to
a clash in terminology we have departed from this convention.

Logics in general are ordered by set inclusion. Moreover, they form a lattice with
respect to this ordering. Normal modal logics are identified with their tautologies,
so Λ1 ≤ Λ2 is equivalent with the fact that all tautologies of Λ1 are tautologies of
Λ2. It is possible to spell out exactly how to compute the join and meet of two
logics if their axiomatization is known. Moreover, we will show that the lattice of
normal logics is distributive and upper–continuous. First of all, however, note that
if Λi, i ∈ I, is an indexed family of normal logics, then the intersection

⋂
i∈I Λi is

a normal modal logic as well. The reason is simply that if each Λi is individually
contains the classical tautologies and the (bd→.) postulates and is closed under the
rules (sub.), (mp.) and (mn.), so is the intersection. (The reader might also recall that
logics are defined as closed sets of a closure operator; an intersection of any number
of closed sets is always closed.) The union, however, is generally not closed under
these operations. On the other hand, if the logics Λi are axiomatized as Kκ ⊕ Xi,
then the least logic containing all Λi must be Kκ ⊕

⋃
i∈I Xi. So, an axiomatization

of the union is quite easily obtained. We are interested in an axiomatization of the
meet as well. To this end, let us concentrate on the case of a finite intersection, say
of Kκ ⊕ X1 and Kκ ⊕ X2. The next theorem tells us how the intersection can be
axiomatized. The notation ϕ

.
∨ ψ is used to denote the disjunction of ϕσ and ψ for

some suitable renaming σ of variables such that var(ϕσ) ∩ var(ψ) = ∅.

T 2.9.3. (i) Let Λ1 = Kκ+X1 and Λ2 = Kκ+X2 be quasi–normal logics.
Then Λ1 ∩ Λ2 = Kκ + Y where

Y = {ϕ
.
∨ ψ : ϕ ∈ X1, ψ ∈ X2} .

(ii) Let Λ1 = K⊕ X1 and Λ2 = K⊕ X2 be two normal modal logics. Then Λ1 ∩Λ2 =

K ⊕ Y where

Y = {�ϕ
.
∨ �ψ : ϕ ∈ X1, ψ ∈ X2,� a compound modality} .

Remark. The logic Λ1 ∩Λ2 defined above does not depend on the choice of the
renaming σ of variables in ϕ

.
∨ ψ.

P. The second claim follows from the first as follows. Assume that If Λ1 =

Kκ ⊕ X1. Then Λ1 = Kκ + {�ϕ : ϕ ∈ X1,� compound}, and similarly for Λ2. Then
by (i), Λ1 ∩ Λ2 = Kκ + Z for the set

Z := {�1ϕ
.
∨ �2ψ : ϕ ∈ X1, ψ ∈ X2,�1,�2 compound}
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However, the set Y as given in (ii) is actually sufficient. For notice that if �(p) :=
�1(p) ∧ �2(p) then in Kκ we have �α ∨ �β ` �1α ∨ �2β; and so every member of
Z can be deduced from a member of Y . Since the intersection is a normal logic, we
actually have Λ1 ∩Λ2 = Kκ ⊕Y . So let us prove the first claim. Let ϕ

.
∨ ψ ∈ Y . Then

Λ1 ` ϕ
.
∨ ψ and Λ2 ` ϕ

.
∨ ψ so that Kκ + Y ⊆ Kκ + X1 as well as Kκ + Y ⊆ Kκ + X2.

For the converse implication let χ ∈ K ⊕ X1 as well as χ ∈ K ⊕ X2. Then χ can
be derived from substitution instances ϕτ of some ϕ ∈ X1 using modus ponens, and
from instances ψυ of some ψ ∈ X2 using modus ponens. Now, in boolean logic, a
formula χ follows both from a set V of formulae and from a set W iff it follows from
{α ∨ β : α ∈ V, β ∈ W}. (Namely, we have

∧
V → χ as well as

∧
W → χ and

so
∧

V ∨
∧

W. → .χ, from which the claim follows by the distributivity laws.) So
we can deduce χ from formulae of the form ϕτ ∨ ψυ with ϕ ∈ X1, ψ ∈ X2 for some
substitutions τ, υ. Generally, it is not possible to find a single substitution ρ such
that ϕτ ∨ ψυ = (ϕ ∨ ψ)ρ, since τ and υ might disagree on a common variable. This is
why we take instead of ϕ the formula ϕσ, which is disjoint in variables from ϕ. Then
there is a substitution ρ such that ϕτ ∨ ψυ = (ϕσ ∨ ψ)ρ. �

We remark here that the infinite meet of logics cannot be given a canonical axiom-
atization in this way. This should be at least plausible from the construction of the
set Y above. This construction breaks down in the infinite case. This is the reason
why lattices of modal logics are not continuous, that is, do not satisfy all infinite
distributive laws. At the moment it is not proven that the construction does not work.
We will provide an explicit counterexample in the exercises.

T 2.9.4. The set of quasi–normal κ–modal logics operators is a locale.

P. Let Θ = Kκ + X, Λi = Kκ + Yi. Then

Θ u i∈IΛi = (Kκ + X) u (Kκ +
⋃

i∈I Yi)
= Kκ + {ϕ

.
∨ ψ : ϕ ∈ X, ψ ∈

⋃
i∈I Yi}

= Kκ +
⋃

i∈I{ϕ
.
∨ ψ : ϕ ∈ X, ψ ∈ Yi}

= i∈I Kκ + {ϕ
.
∨ ψ : ϕ ∈ X, ψ ∈ Yi}

= i∈I (Kκ + X) u (K + Yi)
= i∈I Θ u Λi

Moreover,

Θ t (Λ1 u Λ2) = Kκ + X ∪ {ϕ
.
∨ ψ : ϕ ∈ Y1, ψ ∈ Y2}

= Kκ + {ϕ
.
∨ ψ : ϕ ∈ X ∪ Y1, ψ ∈ X ∪ Y2}

= (Θ t Λ1) u (Θ t Λ2)

The step from the first to the second line needs justification. Put ∆ := X ∪ {ϕ
.
∨ ψ :

ϕ ∈ Y1, ψ ∈ Y2}, and Σ := {ϕ
.
∨ ψ : ϕ ∈ X ∪ Y1, ψ ∈ X ∪ Y2}. Assume ϕ ∈ ∆. Then

either ϕ ∈ X or ϕ is of the form ψ
.
∨ χ where ψ ∈ Y1 and χ ∈ Y2. Assume the first.

Observe that ϕ
.
∨ ϕ ∈ Σ. Clearly, ϕ ∈ Kκ + ϕ

.
∨ ϕ, and hence ϕ ∈ Kκ + Σ. Now

assume ϕ < X. Then it is of the form ψ
.
∨ χ, with ψ ∈ Y1 and χ ∈ Y2. Then also
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ϕ ∈ Σ. This shows Kκ + ∆ ⊆ Kκ + Σ. For the converse inclusion, assume ϕ ∈ Σ.
Then ϕ = ψ

.
∨ χ where ψ ∈ X ∪ Y1 and χ ∈ X ∪ Y2. If either ψ ∈ X or χ ∈ X, then

ϕ ∈ Kκ + X and so ϕ ∈ Kκ + ∆. However, if ψ ∈ Y1 and χ ∈ Y2, then ϕ ∈ Kκ + ∆,
since it is in ∆ modulo renaming of some variables. �

T 2.9.5. The set of normal κ–modal logics forms a locale. Moreover, the
natural embedding into the locale of quasi–normal logics is continuous, that is, it is
a homomorphism with respect to the infinitary operations.

P. Clearly, since the infinite intersection of normal logics is a normal logic,
the embedding is faithful to arbitrary intersections. What we have to show is that
the quasi–normal join of normal logics is also normal. To see this, let Θi, i ∈ I, be
logics and let ϕ be deducible via (mp.) from X ⊆

⋃
i∈I Θi. Then we know that � jϕ is

deducible from � jX. By normality of the Θi, � jX ⊆
⋃

i∈I Θi. �

D 2.9.6. Let Λ be a normal modal logic and Θ a quasi–normal logic.
The locale of normal extensions of Λ is denoted by EΛ; the locale of quasi–normal
extensions of Θ is denoted by QΘ. We usually speak of the lattice of (normal)
extensions, rather than of the locale of (normal) extensions.

Some authors use NExtΛ instead of EΛ and ExtΛ for QΛ. In algebraic terms,
the underlying set of EΘ forms a principal filter in E Kκ. As before, the lattice
of normal extensions is a complete sublattice of QΘ, the lattice of quasi–normal
extensions. Notice that when Θ is not normal then Θ < EΘ. Nevertheless, EΘ is a
principal filter in QΘ induced by the normal closure of Θ, which is unique. We will
rarely study lattices of quasi–normal extensions and be concerned only with lattices
of normal extensions. The whole lattice E Kκ is extremely complex even for κ = 1 as
we shall see. However, for some strong logics the extension lattices are completely
known, such as the logics K.alt1, S5 and even S4.3. A large part of the study in
modal logic has been centered around classifying extensions of certain strong logics
in order to gain insight into the structure of the whole lattice E K1.

Let I = 〈I,≤〉 be a linearly ordered set. A chain over I is an indexed family
over I, that is, an order preserving map j : I → E Kκ. The chain j is properly
ascending if for x, y ∈ I such that x < y we have j(x) ( j(y). The following is easy
to establish.

P 2.9.7. Let j : I → EK be a properly ascending chain. Then if
κ ≤ ℵ0, I is at most countable. And if κ > ℵ0, I has cardinality ≤ κ.

Observe namely that a logic can be identified with its set of tautologies. That set
is either countably infinite (in case κ ≤ ℵ0) or of size κ. The same holds for properly
descending chains.

Recall from Section 1.1 that an element x is join compact if for every family yi,
i ∈ I, such that x ≤ i∈Iyi there exists a finite J ⊆ I such that x ≤ i∈Jyi. A logic is
join compact in the lattice of extensions of E Kκ only if it is finitely axiomatizable.
For let Λ = Kκ ⊕ X, and X = {ϕi : i ∈ I}. Then Λ ≤ i∈IKκ ⊕ ϕi. Hence by join



96 2. Fundamentals of Modal Logic I

compactness there is a finite J ⊆ I such that Λ ≤ i∈JKκ ⊕ ϕi. So Λ = Kκ ⊕ {ϕi :
i ∈ J}. Hence Λ is finitely axiomatizable. Now let Λ = Kκ ⊕ {ϕi : i < n}. Assume
Λ ≤ i∈IΘi. So, for each i < n, ϕi ∈ i∈IΘi. A proof of ϕi is finite and hence
uses only finitely many axioms. Consequently, there is a finite set J(i) ⊆ I such that
ϕi ∈ j∈J(i)Θi. Put J :=

⋃
i<n J(i). Then Λ ≤ j∈JΘi. So Λ is join compact.

T 2.9.8. A logic is join compact in the lattice EKκ iff it is finitely ax-
iomatizable. Every element in EKκ is the join of compact elements; in other words,
EKκ is algebraic.

Let us close with an important concept from lattice theory, that of a dimension.
In distributive lattices (in fact in modular lattices already) one can show that if x is
an element such that there exists a finite chain y := y0 < y1 < y2 < . . . < yn = x of
length n such that there is no u such that yi < u < yi+1, then any other such chain
is finite as well and has length n. n is called the dimension of x over y and the
codimension of y relative to x. If the lattice has a bottom element ⊥, the dimension
of x is defined to be the dimension of x over ⊥. If the lattice has a top element, the
codimension of x is the codimension of x relative to >. The following theorem is
of great theoretical importance and well worth remembering. It has been shown in
DM [146].

T 2.9.9 (Makinson). There exist exactly two logics of codimension 1 in
the lattice EK1, namely, the logic of the one–point reflexive frame and the logic of
the one–point irreflexive frame.

P. Let us first see that the logics Λ• = Th • and Λ◦ = Th ◦ are of
codimension 1. To see that, we show in turn thatΛ• = K⊕�⊥ andΛ◦ = K⊕p↔ �p.
Note first that these axioms are surely contained in the theory of the corresponding
frames, so the axiomatization yields a logic which is possibly weaker, in each of the
two cases. For the inclusions ‘⊆’ observe the following. In K⊕�⊥we have �ϕ↔ >,
so any formula is equivalent to a nonmodal formula, and in K ⊕ p ↔ �p we have
�ϕ ↔ ϕ, so again any modal formula is equivalent to a nonmodal formula, by a
simple induction. Thus any axiom extending either logic can be written into a form
ϕ, ϕ nonmodal. But if ϕ does not hold in either logic, it does not hold in classical
logic as well. But there is no strengthening of classical logic which is consistent, by
Theorem 1.7.14. So, K ⊕ �⊥ is maximally consistent, and contained in Λ•, so the
two must be equal. Likewise, K ⊕ p↔ �p = Λ◦.

Let Θ * Λ• = K ⊕ �⊥, the logic of the one–point irreflexive frame. Then
ΘtK⊕�⊥ is inconsistent. Thus �⊥ is inconsistent with Θ and so we have ♦> ∈ Θ,
that is, Λ ⊇ K.D. Then any consistent formula without variables is equivalent to
either ⊥ or >. Thus the modal algebra 2◦ on two elements 0, 1 such that �0 = 0 and
�1 = 1 is a Θ–algebra. But 2◦ � �p ↔ p, and so Th 2◦ = Λ◦, so that Θ ⊆ Λ◦, as
required. �

Notes on this section. The locales of modal logics are in general very complex.
Chapter 7 is devoted to the study of these locales. The results of W B and
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W R have been groundbreaking in this area. Lately, K [131]
has investigated the automorphisms of some locales of modal logics. These group
measure the homogeneity of the locales. Even though some results have been ob-
tained (concerning, for example, the locale of extensions of S4.3), for the standard
systems even the size of the groups is still unknown.

Exercise 70. Let K.trsm be the logic defined by the axiom

trsm := �≤m p→ �m+1 p .

Show that
K = m∈ωK.trsm .

This provides an example of an infinite intersection of logics which cannot be given
a canonical axiomatization in terms of the axioms of the individual logics.

Exercise 71. Show that if Λi, i ∈ I, all have the finite model property, then so does
i∈IΛi. Similarly for completeness.

Exercise 72. Call a logic Λ canonical if canΛ � Λ. (See Section 3.2.) Show that
if Λi, i ∈ I, are canonical, so is i∈IΛi. Moreover, if Λ1,Λ2 are canonical, so is
Λ1 u Λ2. So, the canonical logics form a sublocale of the locale of normal logics.

Exercise 73. Show that the recursively axiomatizable logics form a sublattice with
u and t. Show that they do not form a sublattice with .

Exercise 74. Show that there is no order preserving injective map from the ordered
set of the real numbers into E K1.

Exercise 75. Show that the finitely axiomatizable logics are closed under finite
unions. Moreover, if Θ is weakly transitive, the finitely axiomatizable logics in EΘ

are also closed under finite intersections.

Exercise 76. Show that a logic is Halldén–complete iff it is not the intersection of
two quasi–normal logics properly containing it.

∗Exercise 77. Show that the infinite intersection of decidable logics need not be
decidable.





CHAPTER 3

Fundamentals of Modal Logic II

3.1. Local and Global Consequence Relations

With a modal logic Λ typically only the relation `Λ is considered as an associate
consequence relation. However, in many applications it is useful to take a stronger
one, which we will call the global consequence relation. It is denoted by 
Λ and
defined as follows.

D 3.1.1. Let Λ be a modal logic. Then ∆ 
Λ ϕ iff ϕ can be derived from
∆ and Λ using the rules (mp.) and (mn.): 〈{p},� j p〉 ( j < κ). We say that ϕ follows
globally from ∆ inΛ if ∆ 
Λ ϕ. 
Λ is called the global consequence relation
of Λ.

In the light of the definitions of Section 1.4, 〈Pκ, `Λ〉 and 〈Pκ,
Λ〉 are actually
two different logics with identical sets of tautologies. However, since it is customary
to identify modal logics with their set of tautologies, we will differentiate `Λ and 
Λ
by using the qualifying adjectives local and global, respectively. In `Λ the rule (mn.)
is only admissible, whereas in 
Λ it is derivable.

The geometric intuition behind the notions of global versus local consequence
is as follows. Take a geometrical model M := 〈F, β, x〉 and a formula ϕ. We say
that ϕ holds locally in M if 〈F, β, x〉 � ϕ and that ϕ holds globally if 〈F, β〉 � ϕ.
Alternatively, we may distinguish between local and global models. A local model
is a triple 〈F, β, x〉with F a frame, β a valuation into F and x a world. A global model
is a pair N := 〈F, β〉. A local extension of N by x is the triple Nx := 〈F, β, x〉. We
say that a local modelM is a local Λ–model for ϕ ifM is a model based on a frame
for Λ and ϕ holds locally in it; and we say that a pair N is a global Λ–model for ϕ
if every local expansion of N is a local Λ–model for ϕ. By the deduction theorem
for `Λ and Theorem 2.8.7 we have the following completeness result. ∆ `Λ ϕ iff for
every Λ–frame and every local modelM based on it, ϕ is true inM if ∆ is true inM.
It will be shown below that an analogous completeness result holds with respect to

Λ. Fundamental for the completeness is the following fact. (Recall that �ω∆ was
defined to be the closure of ∆ under (mn.).)

P 3.1.2 (Local–Global). For any given logic Λ, ∆ 
Λ ψ iff �ω∆ `Λ ψ
iff �∆0 `Λ ψ for some compound modality � and a finite set ∆0 ⊆ ∆.

99
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P. In Section 2.1 it was proved that any derivation of a formula ψ can be
transformed into a derivation of ψ in which all applications of (mn.) are done before
(mp.). Hence, if ∆ 
Λ ϕ then ϕ is derivable from the closure of ∆ under (mn.)
by means of (mp.) only. This shows the first equivalence. The second holds by
compactness and the fact that for any pair �, �′ of compound modalities there exists
a compound modality �′′ such that �′′p `Λ �p;�′p. �

P 3.1.3. Let Λ be a modal logic. Then ∆ 
Λ ϕ iff for every global
model N = 〈F, β〉 such that F � Λ, we have N � ϕ if N � ∆.

P. Assume ∆ 
Λ ϕ. Then �ω∆ `Λ ϕ. Now let N = 〈F, β〉 be a global Λ–
model and assume N � ∆. Take a local expansion Nx := 〈F, β, x〉. Then Nx � �

ω∆.
Hence Nx � ϕ. Since this does not depend on the choice of x, N � ϕ. Now assume
that ∆ 1Λ ϕ. Then �ω∆ 0Λ ϕ. Thus the set �ω∆ ∪ {¬ϕ} is consistent and is therefore
contained in a maximally consistent set W. Let F be the subframe of CanΛ(var)
generated by W, and let κ be the natural valuation, defined in Section 2.8. Then
〈F, κ〉 � ∆, but 〈F, κ〉 2 ϕ, as required. �

The previous theorem established the correctness of the notion of global conse-
quence. From now on the relation `Λ will also be called the local consequence
relation if that qualification is necessary. Many notions that we have defined so far
now split into two counterparts, a local and a global one. However, some care is
needed due to the fact that many definitions take advantage of the fact that `Λ admits
a deduction theorem whereas 
Λ generally does not (see below). For example, by
the definitions of Section 1.6 a logic is called globally complete if for every finite
set ∆ of formulae and each formula ϕ if ∆ 1Λ ϕ then there exists a Kripke–frame f
for Λ and a valuation β such that 〈f, β〉 � ∆ but 〈f, β〉 2 ϕ. (Instead of a finite set ∆
we may just take a single formula δ, e. g.

∧
∆.) If the frame can always be chosen

finite then we say that Λ has the global finite model property. Likewise, Λ is glob-
ally decidable if for finite ∆ the problem ‘∆ 
Λ ϕ’ is decidable, that is, we have an
algorithm which for any given finite set ∆ and formula ϕ decides (correctly) whether
or not ∆ 
Λ ϕ. Similarly, for a given complexity class C we say that Λ is globally
C–computable (globally C–hard, globally C–complete) if the problem ‘∆ 
Λ ϕ?’
is in C (is C–hard, is C–complete). Λ is locally decidable (locally complete etc.) if
it is decidable (complete etc.) simpliciter.

We have seen earlier that the semantics for the local consequence relation leads
to pairs 〈A, F〉 where A is a modal algebra and F a filter. Since the set of designated
elements must be closed under all rules, for 
Λ we must now also require the set of
designated elements to be closed under the algebraic counterpart of the rule (mn.).

D 3.1.4. Let A be a modal algebra, and F ⊆ A a filter. F is called
open if it satisfies (fi�.): If a ∈ F and j < κ then also � ja ∈ F.

L 3.1.5. Let A be an algebra and F be an open filter. Define ΘF by aΘF b
iff a↔ b ∈ F. Then ΘF is a congruence.
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P. In Section 1.7 we have shown thatΘF is a congruence with respect to the
boolean reduct. Hence, we only need to verify that if a ΘF b then also � ja ΘF � jb.
So, suppose that a ΘF b. Then, by definition, a ↔ b ∈ F. Thus, a → b ∈ F, from
which � j(a → b) ∈ F, since F is open. Hence, by (mp.) closure, � ja → � jb ∈ F.
Similarly, � jb → � ja ∈ F is shown, which together with � ja → � jb gives � ja ↔
� jb ∈ F. And that had to be demonstrated. �

Usually, we write A/F instead of A/ΘF .

T 3.1.6. Let Λ be a modal logic. The global consequence relation of Λ
has a unital semantics.

P. Let S be the set of all pairs 〈A, F〉 where (i.) A is a modal algebra, (ii.)
F an open filter in A, (iii.) `〈A,F〉 ⊇ 
Λ and (iv.) 〈A, F〉 is reduced. By the results of
Section 1.5,


Λ =
⋂
〈A,F〉∈S

`〈A,F〉

By Lemma 3.1.5 〈A, F〉 is reduced only when F = {1}. Thus, 
Λ has a unital seman-
tics. �

As a useful consequence we note the following theorem.

L 3.1.7. Let Λ be a modal logic, ϕ1, ϕ2 and ψ be modal formulae. Then

ϕ1 ↔ ϕ2 
Λ ψ(ϕ1)↔ ψ(ϕ2) .

The characterization of 
Λ in terms of matrices fits into the geometrical picture
as follows. If A is a Λ–algebra and 〈A, {1}〉 a reduced matrix, then a valuation β into
that matrix makes ϕ true just in case β(ϕ) = 1. If A is the algebra of internal sets of
a frame F, then 1 is simply the full underlying set, namely f . So, the corresponding
geometrical model is nothing but the global model 〈F, β〉.

Now we turn to the interconnection between local and global properties of a
logic.

P 3.1.8. If Λ is globally decidable (has the global finite model prop-
erty, is globally complete) then Λ is locally decidable (has the local finite model
property, is locally complete).

We will now prove that Kκ has the global finite model property. The proof is an
interesting reduction to the local property. Notice that Kκ has the local finite model
property, by Theorem 2.7.9.

L 3.1.9. Let k := ](sf (ϕ) ∪ sf (ψ)). Then we have

ϕ 
Kκ
ψ iff �≤2k

ϕ `Kκ
ψ .

P. Surely, if �≤2k
ϕ `Kκ

ψ, then also ϕ 
Kκ
ψ. So, assume �≤2k

ϕ 0Kκ
ψ.

Then there exists a finite model 〈f, β,w0〉 � �
≤2k
ϕ;¬ψ rooted at w0. Moreover, the
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construction for Theorem 2.7.9 shows that we may assume that f is cycle–free, and
that between any pair of points there exists at most one path. Let ∆ := sf (ϕ) ∪ sf (ψ)
and put S (y) = {χ ∈ ∆ : 〈f, β, y〉 � χ}. Let g be the set of all y in f such that along
any path from w0 to y there are no two distinct points v and w such that S (v) = S (w).
Then any path from w0 to y ∈ g has length ≤ 2k, because there are at most 2k subsets
of ∆. Now define J j on g as follows. y J j z iff (1.) y C j z or (2.) for some u < g we
have y C j u and S (z) = S (u). Put γ(p) := β(p) ∩ g. We will now show that for every
y ∈ g and χ ∈ ∆

〈g, γ, y〉 � χ ⇔ 〈f, β, y〉 � χ .

This is true for variables by construction. The steps for negation and conjunction
are clear. Now let χ = ♦ jδ. If 〈f, β, y〉 � ♦ jδ then for some z such that y C j z
we have 〈f, β, z〉 � δ. There are two cases. Case 1. z ∈ g. Then by induction
hypothesis, 〈g, γ, z〉 � δ. From this we conclude 〈g, γ, y〉 � ♦ jδ, since y J j z. Case 2.
z < g. Then there is a u ∈ g such that S (u) = S (z). Therefore, by construction of g,
y J j u. Furthermore, 〈f, β, u〉 � δ by definition of S (−). So, 〈g, γ, u〉 � δ by induction
hypothesis. From this follows 〈g, γ, y〉 � ♦ jδ, since y J j u. This exhausts the two
cases. Now suppose 〈g, γ, y〉 � ♦ jδ. Then 〈g, γ, z〉 � δ for some z such that y J j z.
By induction hypothesis, 〈f, β, z〉 � δ. If y C j z, then also 〈f, β, y〉 � ♦ jδ. If, however,
y 6 j z, then there is a u such that y C j u and S (u) = S (z). By definition of S (−),
〈f, β, u〉 � δ, from which 〈f, β, y〉 � ♦ jδ as well. Now since from w0 there is always
a path of length ≤ 2k to any point y ∈ g, we have 〈f, β, y〉 � ϕ for all y ∈ g, and so
〈g, γ, y〉 � ϕ for all y. Consequently, 〈g, γ,w0〉 � �

ωϕ;¬ψ, as required. �

T 3.1.10. Kκ has the global finite model property.

Notice that even if f was originally cycle–free, we might have inserted cycles
into g. This is in some cases unavoidable. For example, there is no finite cycle–free
model against ♦> 
K p, but there are infinite cycle–free models as well as finite
models with cycles. The bound for k in the proof can be improved somewhat (see
exercises). This theorem has a great number of strong applications as we will see in
the next section.

V G and S P have shown in [87] that the global prop-
erties of a logic Λ correspond to the local properties of a logic Λ� which arises from
Λ by adding a so–called universal modality. (See Section 2.5.) Recall that Λ� is
defined by

Λ� := Λ ⊗ S5({♦ j p→ ♦κp : j < κ})
Abbreviate �κ by �. It is not hard to show that the canonical frames for Λ� satisfy
two properties. (1.) The relation J (:= Cκ) is an equivalence relation on the set of
points, (2.) For all j < κ, C j ⊆ J. (It also follows from the results of Section 3.2.)
By completeness with respect to canonical frames, Λ� is complete with respect to
frames satisfying (1.) and (2.). Moreover, a rooted generated subframe of a frame F
satisfying (1.) and (2.) actually satisfies (1′.) J = f × f . Thus, Λ� is complete with
respect to frames satisfying (1′.) and (2.). It is easy to construct such frames when
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given a frame F for Λ. Namely, put J := f × f (=: Cκ), f� := 〈 f , 〈C j : j < κ + 1〉〉
and F� := 〈f�,F〉. Since �κa = ∅ iff a , f , and �κ f = f , F is closed under �.
Consequently, F� is well–defined. Moreover, if F is a frame for Λ, F� is a frame for
Λ� — and conversely.

Recall the definition of Pκ from Section 2.1. Continuing our present notation
we write Pκ(�) for the language obtained from Pκ by adding �κ. Let us agree to call
a formula plain if it does not contain any universal modality. So, ϕ ∈ Pκ(�) is plain
iff ϕ ∈ Pκ. A degree 1 combination of plain formulae is a formula ϕ ∈ Pκ(�) such
that no � occurs in the scope of another occurrence of �.

P 3.1.11. Let Λ be a modal logic, ∆ a set of plain formulae, and ϕ a
plain formula. Then ∆ 
Λ ϕ iff �∆ `Λ� ϕ. In particular,

`Λ ϕ iff `Λ� ϕ .

P. Suppose that ∆ 
Λ ϕ. Then �ω∆ `Λ ϕ and so �ω∆ `Λ� ϕ. Now �∆ `Λ�
�ω∆, as can be shown easily. Hence �∆ `Λ� ϕ. Now assume that ∆ 1Λ ϕ. Then
there exists a global model N := 〈F, β〉 such that N � ∆ and N 2 ϕ. Thus for some
local extension Nx, Nx 2 ϕ. Then M := 〈F�, β, x〉 is a local Λ�–model such that
M � �∆;¬ϕ, as required. �

A sharper theorem can be established. Before we can prove it, however, we need the
following auxiliary theorem concerning simplifications of formulae.

L 3.1.12. Let Λ be a polymodal logic and Λ� be the extension by a uni-
versal modality. Then any formula in Pκ(�) is deductively equivalent to a degree 1
combination of plain formulae.

P. Let ϕ be given. We can assume ϕ to be in normal form. The following
equivalences are theorems of K�κ for � = � j, j < κ, or � = �.

��p ↔ �⊥ ∨ �p
��p ↔ �⊥ ∨ �p
�(q ∨ �p) ↔ �q ∨ �p
�(q ∨ �p) ↔ �q ∨ �p
�(q ∧ �p) ↔ �q ∧ ��p
�(q ∧ �p) ↔ �⊥ ∨ (�q ∧ �p)

Analogous equivalences can be derived for the dual operator from these upper six
equivalences. The lemma now follows by induction on the degree of ϕ. �

T 3.1.13 (Goranko & Passy). For the following properties P, Λ has P
globally iff Λ� hasP locally: decidability, finite model property, complete-
ness.

P. One direction follows from Proposition 3.1.11; namely, if Λ� has P
locally, Λ has P globally. So we have to prove the converse direction. The idea to
the proof is to reduce a statement of the form ‘`Λ� ψ’ to a boolean combinations of
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problems of the form ‘χ 
Λ ϕ’. (Moreover, this reduction will be effective, so it is
enough for the proof of decidability of ‘`Λ� ψ’ if we show the problems ‘χ 
Λ ϕ’
to be decidable.) Now start with ‘`Λ� ψ’. Transform ψ into conjunctive normal
form. This does not affect theoremhood of ψ. So, without loss of generality ψ can
be asumed to be already in conjunctive normal form. Moreover, we have seen in
Lemma 3.1.12 that ψ is deductively equivalent to a degree 1 combination of plain
formulae. So, we may as well assume that it is already of this form. If ψ is of
the form ψ1 ∧ ψ2 the problem ‘`Λ� ψ’ is equivalent to the conjunction of ‘`Λ� ψ1’
and ‘`Λ� ψ2’. Hence, assume now that ψ is not of that form. Then ψ is of the form∨

i<n �ρi∨�σ∨τ, where all ρi, σ and τ are plain. We claim that `Λ�
∨

i<n �ρi∨�σ∨τ
iff either for some i < n ¬σ 
Λ ρi, or ¬σ 
Λ τ. To see this, assume that the left
hand side fails. Then there exists a local Λ�–model 〈F, β, x〉 �

∧
i<n ¬�ρi;�¬σ;¬τ.

We may assume that F = G� for some Λ–frame G. Then M := 〈G, β〉 is a global
Λ–model and M � ¬σ as well as M 2 ρi for all i < n and M 2 τ, as required. Now
assume that the right hand side fails. Then there exist global Λ–modelsMi = 〈Fi, βi〉

such that Mi � ¬σ, Mi 2 ρi for all i < n and a global Λ–model N = 〈G, γ〉 such
that N � σ and N 2 τ. In particular, Nx � ¬τ for some local extension Nx of N. Put
H :=

⊕
i<n Fi⊕G. Let δ :=

⊕
i<n βi⊕γ. Then 〈H�, δ, x〉 �

∧
i<n ¬�ρi;�¬σ;¬τ. This

concludes the proof in the case of decidability. For completeness and finite model
property, notice that in the previous construction if Fi and G are (finite) Kripke–
frames, so is H�. �

Notes on this section. The universal modality has enjoyed great popularity in modal
logic. It was observed in [86] that the universal modality has in conjunction with
nominals the same expressive power as the difference operator, explored by M
 R in [177]. It was proved subsequently that Λ� shares few properties with Λ
(apart from those which they must share by virtue of the results of this section).
In passing from Λ to Λ� finite model property can get lost (F W [235]),
decidability (E S [202]) and even completeness, see Section 9.6. The num-
ber k in Lemma 3.1.9 cannot be significantly reduced. In M K [130] it is
shown that asymptotically k must be at least as large as 2c

√
n, where n is the size of ϕ.

Moreover, E S [202] has shown that K.alt1 is globally PSPACE–complete
and that Kκ is globally EXPTIME–complete. So, adding the universal modality can
raise the complexity to any higher degree.

Exercise 78. Prove Proposition 3.1.8.

Exercise 79. Show the following improved bounds for global to local reduction.
Define ∆ := sf (ϕ) ∪ var(ψ). Further, let µ := max{dp(ψ), 2]∆}. Show that

ϕ 
Kκ
ψ ⇔ �≤µϕ `Kκ

ψ
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Exercise 80. Let Λ be a logic. Let r(ϕ, ψ) be such that ϕ 
Λ ψ iff �≤r(ϕ,ψ)ϕ `Λ ψ.
Now let Λ be a logic which is locally decidable, but not globally decidable. (Such
logics exist, see Section 9.4.) Show that r(ϕ, ψ) is not computable.

Exercise 81. (R. E. L [137].) LetΛ ⊆ S5 be consistent. Show that satisfiability
of a formula is NP–complete. Hint. Clearly, the problem is NP–hard. To show that
it is in NP, show that any formula can be reduced to a formula of depth 1.

Exercise 82. Show that a modal logic is locally tabular iff it is globally tabular.

3.2. Completeness, Correspondence and Persistence

Clearly, Kripke–models are easier to handle than canonical frames. Mostly, it is
easier to reason in a Kripke–structure than to reason syntactically by shuffling for-
mulae. Moreover, canonical models are very difficult structures. All the knowledge
of a logic is coded in the canonical frame, so there is little hope that we can use
the canonical frame in any effective way. However, the abstract existence of such a
frame alone can provide us with many important results. Consider the basic logic
Kκ. We know that Kripke frames satisfy all postulates of Kκ. Now, if ϕ is not a
theorem of Kκ, then we can base a countermodel for ϕ on the canonical frame, that
is we have a world X such that

〈CanKκ
(var), ν, X〉 � ¬ϕ

where ν(p) := {X : p ∈ X}. However, as the Kripke structure underlying that frame
satisfies Kκ, we can actually forget the internal sets. Then, using the same valuation
we have

〈canKκ
(var), ν, X〉 � ¬ϕ

We have established now that Kκ is complete by using the canonical frame and ‘for-
getting’ the internal sets. If this is possible, a logic is said to be canonical or c–
persistent.

D 3.2.1. A logic Λ is called α–canonical if for every β < α, Λ ⊆
Th canΛ(β). A logic Λ is canonical or c–persistent if it is α–canonical for every
α, and it is called weakly canonical if it is ℵ0–canonical.

The following is an easy consequence of the definition.

P 3.2.2. Let α, β be cardinal numbers and α ≤ β. Let Λ be β–
canonical. Then Λ is also α–canonical.

P. By assumption, there exists an embedding f : α � β. By Theo-
rem 2.8.11 this induces a contraction X f : CanΛ(β) � CanΛ(α). By assumption,
canΛ(β) � Λ. Then also canΛ(α) � Λ. �
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D 3.2.3. A logic Λ is called complete if it is the logic of its Kripke–
structures. Λ is called α–compact if every consistent set based on < α many vari-
ables has a model based on a Kripke–frame for Λ. Λ is called strongly compact
or simply compact ifΛ is α–compact for every α andΛ is called weakly compact
if it is ℵ0–compact.

Obviously, if a logic is compact, it is also weakly compact, and if it is weakly
compact it is complete. Neither of the converses hold; there are complete logics
which are not weakly compact and there are logics which are weakly compact but not
strongly compact. (This has been shown first in [66], who also defined the notions
of weak and strong compactness.) The reader may verify that logics axiomatized
by constant axioms are 1–compact. Compactness is rather closely connected with a
different property of logics, called complexity (see [82]).

D 3.2.4. A logic Λ is α–complex if every β–generable algebra, where
β < α, is isomorphic to a subalgebra of the algebra of all subsets of a Kripke–frame
for Λ.

α–complexity is not directly equivalent with α–compactness if α is finite. Rather,
the right notion to choose here is global α–compactness. A logic Λ is globally α–
compact if for every pair consisting of a set Φ and a formula ϕ, based together on
β–many variables, β < α, if Φ 1Λ ϕ then there exists a Kripke–frame f � Λ, and a
valuation β such that 〈f, β〉 � Φ but 〈f, β〉 2 ϕ. If a logic is locally α+ 1–compact then
it is also globally α–compact.

T 3.2.5 (Wolter). Let Λ be a κ–modal logic. Λ is globally α–compact iff
it is α–complex. Moreover, if Λ is globally α + 1–compact, it is locally α–compact.

P. Suppose Λ is α–complex and take a set Φ and a formula ϕ such that
Φ 1Λ ϕ. Assume that Φ and ϕ are based on β many variables, β < α. Then there
exists a model 〈A, γ〉 � Φ such that 〈A, γ〉 2 ϕ. By assumption, there exists a Kripke–
frame f such that A is a subalgebra of the algebra B of subsets of f. Let ι : A � B
be an embedding. Then δ := ι ◦ γ is a valuation on f. Now, for every ψ ∈ Φ we
have γ(ψ) = 1, and so δ(ψ) = 1 as well. Thus 〈f, δ〉 � Φ. However, since γ(ϕ) , 1,
also 〈f, δ〉 2 ϕ. For the converse assume that Λ is globally α–compact. Let A be a
β–generable algebra, where β < α. Then choose a generating set X such that ]X = β.
For each a ∈ X take a variable pa and let γ be the valuation defined by γ(pa) := a.
γ is surjective by choice of X. Let U(A) be the collection of ultrafilters of A. For
every U ∈ U(A), γ−1[U] := {ϕ : γ(ϕ) ∈ U} is a maximally Λ–consistent set in the
variables pi, i < β. Now Λ is α–compact and therefore for any γ−1[U] there is a
Λ–Kripke–model 〈gU , δU , xU〉 � γ

−1[U]. We assume that the gU are disjoint and take
g :=

⊕
gU and δ(p) :=

⊕
U δU(p). It then follows that g � Λ and that the algebra

B generated by the γ(pa), a ∈ A, is a subalgebra of A. We show that in fact B � A.
Namely, this holds if

{ϕ : γ(ϕ) = g} = {ϕ : δ(ϕ) = 1} .
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In fact,
γ(ϕ) = 1 ⇔ (∀�)γ(�ϕ) = 1

⇔ (∀�)(∀U ∈ U(A))γ(�ϕ) ∈ U
⇔ (∀�)(∀U ∈ U(A)) � ϕ ∈ γ−1[U]
⇔ (∀�)(∀U ∈ U(A))〈gU , δU , xU〉 � �ϕ
⇔ 〈g, δ〉 � ϕ

⇔ δ(ϕ) = g
Now for the second claim. Assume that Φ is a locally consistent set, based on β
many variables, β < α. Then let Ψ := {pα → ϕ : ϕ ∈ Φ}. �ωΨ; pα is based on
< α + 1 variables and is also consistent. For take a finite subset S ; S is without loss
of generality of the form �(pα → Φ0); pα, � a compound modality and Φ0 a finite
subset of Φ. By assumption, Φ0 has a Kripke–model 〈f, β, x〉, since Φ0 is locally
consistent. (If a logic is globally α + 1–compact, it is also complete for formulas
with ≤ α many variables.) Now put β+(pα) := {x}. Then

〈f, β+, x〉 � �(pα → Φ0); pα .

Hence S is consistent. Since S was arbitrarily chosen, �ωΨ; pα is consistent. Con-
sequently, �ωΨ 0Λ ¬pα, from which Ψ 1Λ ¬pα. By α+ 1–compactness, there exists
a Kripke–model 〈g, γ〉 � Ψ such that 〈g, γ, y〉 � pα for some y. Then 〈g, γ, y〉 � Φ, by
construction of Ψ. �

C 3.2.6 (Wolter). Let α be infinite, Λ a normal modal logic. Then Λ is
α–complex iff it is globally α–compact iff it is locally α–compact.

If α ≤ β and Λ is α–canonical then Λ is not necessarily β–canonical. It is an open
problem, for example, whether ℵ1–canonicity implies ℵ2–canonicity. It is possible
to show that we cannot give any finite bound n0 such that a logic is canonical if
it is n0–compact. A simple but instructive example is the case of logics extending
K.D. The 1–canonical frame consists of a single reflexive point (since there are only
trivial constant propositions) and so every extension is 1–canonical. But they are not
all ℵ1–canonical. For example, take the logic Grz.3. By a theorem of K F in
[63] Grz.3 is weakly compact. (An exercise with hints how to prove this theorem
is provided in Section 6.5.) We show that it is not ℵ1–compact, from which follows
(with the next theorem) that it is not ℵ1–canonical.

Y := {p0} ∪ {�(pi → ♦pi+1) : i ∈ ω} ∪ {�(p j → �¬pi) : i < j < ω}

Each finite subset is satisfiable, taking a suitably large chain 〈n,≤〉. For take a finite
subset X. Without loss of generality we assume that X is the subset containing the
formulas in which all and only the variables up to number n0 occur. If i < n0, then
if pi is true at a point x, it must have a successor y at which pi+1 holds. Moreover,
y 6 x. So let us take f(n0) := 〈{0, 1, . . . , n0},≤〉. This is a Grz.3–frame. (For let
〈f(n0), β, k〉 � ♦p. Let ` be the largest number such that ` ∈ β(p). Then 〈f(n0), β, `〉 �
p;�(¬p → �¬p), since for any successor j ≥ ` if j � ¬p then j > ` and j � �¬p,
by choice of `. Hence 〈f(n0), β, k〉 � ♦(p ∧ �(¬p → �¬p)), and that had to be
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shown.) If we put β(pi) := {i}, then 〈f(n0), β, 0〉 � X. Now let f be a Grz.3–frame
and 〈f, β, x〉 � Y . Then pick xi ∈ β(pi). Then for all i, xi C xi+1 (by linearity of the
frame) and x j 6 xi for all j > i. Thus we have a strictly ascending chain of points.
Put γ(p) := {x2k : k ∈ ω}. We have

〈f, γ, x0〉 � ♦p;¬♦(p ∧ �(¬p→ ♦¬p)) .

Thus, f is not a frame for Grz. Contradiction.
In the exercise we have put a proof that G is not 2–compact. This has been

shown by W G (see [32]) and also in [66]. However, G is 1–compact.

P 3.2.7. Let Λ be a logic. If Λ is α–canonical, it is α–compact. In
particular, if Λ is (weakly) canonical it is (weakly) compact.

The proof is easy, once we know that logics are generally complete with respect
to their canonical frame. The converse of this statement is false. FW [240]
shows that the tense logic of the reals is compact but not canonical. So, which logics
are canonical? This question has been answered for all standard systems. Gener-
ally, failure of canonicity is hard to demonstrate, whereas the contrary is normally
straightforward. K.D, K4, K5, K.alt1, S4.3, S5 are all canonical, G and Grz are not.

E. We show that S4 is canonical. The proof for canonicity is in two stages.
First we show so called correspondence of the axioms with properties of Kripke
frames. Let f = 〈 f ,C〉 be a Kripke frame. Then the following holds.

(cot.) f � p→ ♦p iff f is reflexive
(co4.) f � ♦♦p→ ♦p iff f is transitive

First (cot.). Suppose that f is reflexive, β is a valuation and x a world. Then 〈f, β, x〉 �
p implies 〈f, β, x〉 � ♦p. Suppose now that f is not reflexive, say x 6 x. Then let
β(p) := {x}. Then we have 〈f, β, x〉 � p;¬♦p. Now (co4.). Suppose f is transitive,
then it satisfies 4. For let 〈f, β, x〉 � ♦♦p. Then there are y and z such that x C y C z
〈f, β, z〉 � p. By transitivity, xC z and so 〈f, β, x〉 � ♦p. Now assume f is not transitive.
Then there are points x C y C z such that x 6 z. Choose β(p) := {z}. Then 〈f, β, x〉 �
♦♦p;¬♦p.

So, if we can show that the Kripke structure underlying the canonical frame is
reflexive and transitive, we have proved that S4 is canonical. Assume then that the
canonical stucture is not reflexive. Then for some set X, X 6 X; by definition, there
must be a formula ϕ such that ϕ ∈ X but ♦ϕ < X. Hence ϕ ∧ ¬♦ϕ ∈ X, and so
the canonical frame does not satisfy the axiom p → ♦p. Contradiction. Hence the
structure is reflexive. Now assume it is not transitive, that is, there are sets X C Y C Z
such that X 6 Z. Then there is a formula ϕ such that ϕ ∈ Z but ♦ϕ < X. However,
again by definition, ♦ϕ ∈ Y and so ♦♦ϕ ∈ X, showing that ¬♦ϕ ∧ ♦♦ϕ ∈ X, in
contradiction to the assumption that our frame satisfies the axiom (4.).
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L 3.2.8. Let s be a finite set of finite sequences over κ. Let X and Y be
worlds such that for all ϕ we have �sϕ ∈ X only if ϕ ∈ Y. Then X Cs Y in the
canonical frame for Kκ.

P. First we show the claim for sequences. This in turn is shown by induc-
tion on the length of the sequence. If σ has length 0 the claim is immediate. So let σ
be a sequence and σ = jaτ for some sequence τ and j < κ. Let A0 := {ψ : � jψ ∈ X},
A1 := {♦τψ : ψ ∈ Y} and A := A0 ∪ A1. Then � jA0 ⊆ X and ♦ jA1 ⊆ X. We claim
that A is consistent. To that end, let ∆0 ⊆ A0 and ∆1 ⊆ A1 be finite sets. There exists
a δ ∈ A1 such that δ `Λ δ′ for all δ′ ∈ ∆1, as is easily shown. Now assume that
∆0;∆1 is Λ–inconsistent. Then ∆0; δ `Λ ⊥. From this it follows that � j∆0 `Λ � j¬δ
and so � j∆0; ♦ jδ is inconsistent in Λ. However, � j∆; ♦ jδ ⊆ X and X is Λ–consistent.
Contradiction. Therefore, A is consistent and there exists a world Z containing A.
Then X C j Z by definition of the canonical frame, and Z Cτ Y by induction hypothe-
sis. Hence X Cσ Y . Now let s := {σi : i < n} be a set of finite sequences over κ and
assume that X 6s Y . Then for every i < n there exists a ϕi such that �σiϕ ∈ X but
ϕ < Y . Put ϕ :=

∨
i<n ϕi. Then �sϕ ∈ X but ϕ < Y . �

T 3.2.9. Let s and t be finite sets of finite sequences over κ. Then Kκ ⊕

�s p→ �t p is canonical. Moreover, the canonical frame satisfies Ct ⊆ Cs.

P. We prove the second claim first. Let X and Y be worlds such that XCt Y .
Assume that �sϕ ∈ X. Then also �tϕ ∈ X. Since XCt Y we have ϕ ∈ Y . Hence by the
previous lemma X Cs Y . So, Ct ⊆ Cs. To show that Kκ ⊕ �

s p → �t p is canonical it
is enough to show that if f is a Kripke–frame such that Ct ⊆ Cs then f � �s p → �t p.
But this is straightforward. �

As an example, let f = 〈 f ,C,J〉 be a bimodal Kripke–structure. f satisfies ♦p→
�p iff C ⊆J. f satisfies ♦�p→ �♦p iff C◦ J ⊆ J ◦C. Also, f satisfies ♦�p↔ �♦p iff
C and J commute.

D 3.2.10. Let ϕ a modal formula and α be a first–order formula in the
language of predicate logic with Ci and equality. ϕ corresponds to α iff a Kripke
structure f satisfies ϕ exactly if it satisfies α.

In light of this definition the following correspondences are valid.
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A F–O P D
♦> (∀x)(∃y)(x C y) definality
p→ ♦p (∀x)(x C x) reflexivity
p→ �♦p (∀xy)(x C y→ y C x) symmetry
♦♦p→ ♦p (∀xyz)(x C y ∧ y C z.→ .x C z) transitivity
♦�p→ �♦p (∀xyz)(∃w)(x C y ∧ x C z.→ . convergence

y C w ∧ z C w)
♦p→ �p (∀xyz)(x C y ∧ x C z.→ .y = z) partial functionality
♦p→ �♦p (∀xyz)(x C y ∧ x C z.→ .y C z) euclideanness
.3 (∀xyz)(x C y ∧ x C z.→ . local connectedness

y C z ∨ y = z ∨ z C y)

For polymodal logics similar correspondences can be established. Important are
the tense postulates p → �0♦1 p and p → �1♦0 p. A frame satisfies the first iff the
relation C0 is contained in the converse of C1, that is, if x C0 y implies y C1 x. For a
proof assume that x C0 y 61 x. Then put β(p) := {x}. Then 〈f, β, y〉 � �1¬p and so
〈f, β, x〉 � p; ♦0�1¬p. So the axiom is violated. Assume then that the frame satisfies
the first order property. Pick a valuation β and a point x. Assume 〈f, β, x〉 � p. Take
a y such that x C0 y. Then y C1 x and so 〈f, β, y〉 � ♦1 p. Thus, as y was arbitrary,
〈f, β, x〉 � �0♦1 p, which had to be shown.

T 3.2.11. A bimodal Kripke structure satisfies K.t iff C0 is the converse
of C1.

We conclude with a general theorem on logics of bounded alternative.

T 3.2.12 (Bellissima). Every logic of bounded alternative is canonical
and hence compact and complete.

P. Let Λ be of alternative α and ϕ an axiom of Λ. We want to show that
canΛ(ℵ0) � ϕ. To see that, assume that there is a point x and a valuation β such
that 〈canΛ(ℵ0), β, x〉 � ¬ϕ. Let d be the modal depth of ϕ. Then there are at most
1 + α + α2 + . . . + αd = αd+1−1

α−1 points reachable in at most d steps from x. Let the
set of these points be X. We claim now that for any set T ⊆ X there is an internal
set T ◦ in CanΛ(ℵ0) such that T ◦ coincides with T on the d–transit of x. Thus if we
put γ(p) := β(p)◦ then we have 〈canΛ(ℵ0), γ, x〉 � ¬ϕ, and since the γ(p) are internal,
we now have 〈CanΛ(ℵ0), γ, x〉 2 ϕ, which had to be shown. Now for the existence of
these sets. Let X = {x0, . . . , xn−1}. For each pair i, j we have a set S (i, j) containing
xi but not x j. (For if xi and x j are different, they represent different ultrafilters, and so
there is a formula ϕ such that ϕ ∈ xi but ϕ < x j. Now let S (i, j) := ϕ̂ = {X : ϕ ∈ X} in
the canonical frame.) Then let S (i) =

⋂
j,i S (i, j). S (i) contains xi but none of the j.

Thus, for any subset Y ⊆ X put Y0 =
⋃
{S (i) : i ∈ Y}. Y0 is internal. This concludes

the proof. �

Exercise 83. Prove the remaining correspondence properties.
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Exercise 84. Show that a frame G satisfies D iff the underlying Kripke structure
satisfies (∀x)(∃y)(x C y). Show that K.D is canonical.

Exercise 85. Show that S5 is canonical. Hint. Show that the axiom B is valid in a
Kripke structure iff that structure is symmetric. Proceed as with S4.

Exercise 86. Show that the tense logic K.t is canonical and complete.

Exercise 87. Show that a finite Kripke–frame satisfies G iff it is transitive and ir-
reflexive.

Exercise 88. Show that a finite Kripke–frame satisfies Grz iff it is reflexive, transi-
tive and antisymmetric, that is, if x C y and y C x then x = y.

Exercise 89. Show that if K ⊕ ϕ is canonical for all ϕ ∈ X, then K ⊕ X is canonical
as well.

Exercise 90. Let Λ be complete. Define the Kripke–consequence `k
Λ

for Λ as fol-
lows. Φ `k

Λ
ϕ iff for every Λ–Kripke–frame f if 〈f, β, x〉 � Φ then also 〈f, β, x〉 � ϕ.

Show that `Λ ⊆ `k
Λ

and that equality holds iff Λ is compact iff `k
Λ

is finitary (or com-
pact).

∗Exercise 91. Show that if Λ is not complete, then it may well be that `k
Λ

is finitary.
In that case, however, `k

Λ
must be strictly stronger than `Λ.

∗Exercise 92. Show that G is 1–compact but not 2–compact. Hint. To show the first
claim show that one can only define boolean combinations of statements of the form
�n⊥ ∧ ¬�n−1⊥, stating that there exists no upgoing chain of points of length n + 1.
Show then that any infinite set of such formulae if jointly consistent has a model
based on a Kripke–frame. For the second claim, consider the following formulae.
Put

ϕi := ¬♦(p ∧ �i⊥) ∧ ♦(p ∧ �i+1⊥) .

Show that the following set is consistent, but has no model based on a Kripke–frame

{♦ϕ0} ∪ {�(ϕi → ♦ϕi+1) : i ∈ ω} .

(This is the solution of W G as given in [32].)

∗Exercise 93. Let us consider a fixed set {pi : i < n} of sentence letters and define for
a set S ⊆ n the formulae χS :=

∧
i∈S pi ∧

∧
i<S ¬pi. Consider the following formulae

ϕn :=
∧
S⊆n

♦(χS ∧ �⊥).→ .�(�pn → pn)→ �pn .

Show that the logic K1 ⊕ ϕn is n − 1–canonical but not n–compact.
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3.3. Frame Constructions II

This chapter is devoted to the question of making models as small as possible
or to produce models that satisfy certain properties. Before we enter this discussion,
we introduce some very important terminology. First, let f = 〈 f , 〈Ci : i < κ〉〉 be a
Kripke–frame and g ⊆ f . Let g = 〈g, 〈Cgi : i < κ〉〉 with Cgi = Ci ∩ g × g. Then we
call g a subframe of f, in symbols g v f. For a general frame F, G is a subframe if
g ∈ F, g v f, and G = {a∩ g : a ∈ F}. In general, for any subset p ⊆ f , {p∩ a : a ∈ F}
is called the trace algebra of F in G. The trace algebra is actually closed under
complement and union, as is verified. Moreover,

�g
j b = {x ∈ g : (∀y Bg

j x)(y ∈ b)}
= {x ∈ g : (∀y B f

j x)(y ∈ g.⇒ .y ∈ b)}
= g ∩ � f

j (g→ b)

Hence, the subframe based on an internal set is always well–defined. A valuation β
on f defines a valuation γ on g in the natural way, by γ(p) := β(p) ∩ g; this valuation
is often also denoted by β. Let us be given a Kripke–frame f and a subset S . We put
suc j(S ) = {y : (∃x ∈ S )(x C j y)}. The m–wave Wavem

f
(S ) and the m–transit Trm

f
(S )

of S in f are defined as follows.

Wave0
f
(S ) := S

Wave1
f
(S ) :=

⋃
j<κ suc j(S )

Wavem+1
f

(S ) := Wave1
f
(Wavem

f
(S ))

Trm
f

(S ) :=
⋃

i<m Wavei
f
(S )

Trf(S ) :=
⋃

i∈ω Tri
f
(S )

Trf(S ) is called the transit of S in f. All these definitions just define subsets of
frames; but if f = 〈 f , 〈C j : j < κ〉〉 is a polyframe and h ⊆ f then we can regard h
naturally as a subframe h = 〈h, 〈Chj : j < κ〉〉 where Chj := C j ∩ h × h. Similarly,
we write Trm

f
(S ) for the subframe based on the m–transit of S . If there exists an

element w such that f = Trf({w}) (which we will also denote by Trf(w)) then f is
called rooted and w the root of f. Rooted frames are sometimes also called one–
generated. However, we will avoid this terminology. All definitions apply equally
to generalized frames, where the waves and transits are computed with reference to
the underlying Kripke–frames. Put x 4 y if y ∈ Trf(x) and x ≺ y if Trf(y) ( Trf(x).
Put Cy(x) = {y : x 4 y 4 x} and call it the cycle of x. A set M is a cycle if it is of the
form Cy(x) for some x. A frame is cyclic if its underlying set is a cycle. The depth
of a point in a frame F is defined as follows.

dp(x) := {dp(y) : x ≺ y}

This is generally not a good definition, e. g. in the frame 〈ω,≤〉. Hence, we require
that the definition is applied only to points for which there is no infinite chain 〈xi :
i ∈ ω〉 such that x0 = x and xi ≺ xi+1. In this case the depth is well–defined and
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yields an ordinal number. (This number is not necessarily finite.) In all other cases,
x is said to have no depth.

D 3.3.1. Let f be a Kripke–frame. A precluster is a maximal set P of
points such that for all x, y ∈ P and all j < κ we have suc j(x) = suc j(y). A cluster
is a maximal connected set C of points such that for all x, y ∈ C and all j < κ we
have suc j(x) = suc j(y).

A cluster is a cycle in a precluster, but not conversely. Given a frame f and
a precluster P the map collapsing P into a single point can be turned into a p–
morphism. This can be derived from a more general theorem which we will now
present. Let F be a frame and G v F be a subframe. Assume that for all x, y ∈ g
and all j < κ we have suc j(x) ∩ ( f − g) = suc j(y) ∩ ( f − g). Then we call G a local
subframe of F.

P 3.3.2 (Net Extension III). Let F be a frame and G v F be a local
subframe. Let ∼ be a net on G. Put x ≈ y if (i.) x, y ∈ g and x ∼ y or (ii.) x, y ∈ f − g
and x = y. Then ≈ is a net on F.

P. Let x C j y and x ≈ x′. If x < g then x = x′ and then trivially x′ C j y. So,
suppose that x ∈ g. Then x′ ∈ g and x ∼ x′. Assume y < g. By assumption on g,
suc j(x) ∩ ( f − g) = suc j(x′) ∩ ( f − g), so that x′ C j y. Assume now y ∈ g. Since ∼
is a net there exists a y′ such that y ∼ y′ and x′ C j y′. This shows that ≈ is a net on
g. Next, let a ∈ F. Then a = b ∪ c where b := a ∩ g and c := a ∩ ( f − g). Now
[a]≈ = [b]≈ ∪ [c]≈ = [b]∼ ∪ c ∈ F, since [b]∼ ∈ F by the fact that ∼ is a net on F. �

This theorem allows several generalizations, but in this form it is most useful (and
simple). There is another very useful operation that allows to replace a subframe by
a larger subframe. In this construction we say that K is obtained by blowing up F
by a p–morphism.

T 3.3.3 (Blowing Up). Let G v F and c : H � G. Assume that h is
disjoint with f (and so also with g). Define a new frame K as follows.

k := ( f − g) ∪ h
Ck

j := C f
j ∩ ( f − g)2 ∪ Ch

j

∪{〈x, y〉 : x ∈ f , y ∈ h, x C f
j c(y)}

∪{〈x, y〉 : x ∈ h, y ∈ f , c(x) C f
j y}

K := {a ∪ b : a ∈ F, b ∈ H, a ∩ g = ∅}

If G = {c[a] : a ∈ H} then K is a frame. The map d defined by d(x) := x if x < h and
d(x) := c(x) otherwise is a p–morphism of K onto F.

P. First we verify that d is a contraction of the Kripke–frames. To see that,
assume x Ck

j y. If {x, y} ⊆ k − h then x C f
j y and d(x) = x as well as y = d(y). If

{x, y} ⊆ h then x Ch
j y. Then d(x) = c(x) and d(y) = c(y) and so by assumption on
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c, c(x) Cg
j c(x). Hence d(x) C f

j d(y). Next, let x ∈ k − h and y ∈ h. Then x Ck
j y

iff x C f
j c(y). Since x = d(x) and c(y) = d(y), the claim follows. Likewise for the

last case, that x ∈ h and y ∈ k − h. This shows the first p–morphism condition.
Next, let x ∈ k, u ∈ f and assume d(x) C f

j u. Let {x, u} ⊆ f − g. Then x = d(x)
and u = d(u) and x Ck

j u, as required. Next assume {x, u} ⊆ g. Then, since c
is a p–morphism, there exists a y ∈ h such that x Ch

j y and c(y) = u. Then also
d(y) = u and x Ck

j y. Third, assume x ∈ g and u ∈ f − g. Then d(u) = u and
xCk

j u by construction. The remaining case is also straightforward. To see that K is a
frame, we must show that K is closed under boolean operations and �k

j. The boolean
operations are straightforward. To show closure under �k

j, we take a set a ∈ K. It
is of the form a1 ∪ a2 where a1 ∈ F and a1 ⊆ f − g and a2 ∈ H. By assumption,
b2 := c[a2] ∈ G and so also b2 ∈ F. (1.) �k

ja1 = ((k − h) ∩ �k
ja1) ∪ (h ∩ �k

ja1).

(k − h) ∩ �k
ja1 = ( f − g) ∩ � f

j a1 ∈ F. h ∩ �k
ja1 = c−1[g ∩ � f

j a1] ∈ H. So this case is

settled. (2.) �k
ja2 = ((k−h)∩�k

ja2)∪(h∩�k
ja2). (k−h)∩�k

ja2 = c−1[( f −g)∩� f
j b2] ∈ F.

h ∩ �k
ja2 = c−1[g ∩ � f

j b2]. This concludes the proof that K is a frame. Finally,
c−1 : F→ K is clearly injective. This concludes the proof of the theorem. �

C 3.3.4 (Multiplication). Let F be a frame, and G v F. There exists a
natural p–morphism c :

⊕
i∈I G� G : 〈x, i〉 7→ x. The result K of blowing up F by c

is a frame. We say that F has been obtained from F by multiplying G (]I times).

The depth of a modal formula corresponds quite directly to the bounded transits.

P 3.3.5. Let 〈f, β, x〉 � ϕ and k = dp(ϕ). Then

〈Trk
f
(x), β, x〉 � ϕ .

P. By induction on k = dp(ϕ). If k = 0, then it is easy to check that
〈{x}, β, x〉 � ϕ as well, by the fact that the evaluation clauses are only (md¬.), (md∧ .)
and so do not change the world at which we evaluate. Now suppose that ϕ = � jψ,
dp(ψ) = k. Then

〈f, β, x〉 � � jψ ⇔ for all y B j x 〈f, β, y〉 � ψ
⇔ for all y B j x 〈Trk

f
(y), β, y〉 � ψ

⇔ for all y B j x 〈Trk+1
f

(x), β, y〉 � ψ
⇔ 〈Trk+1

f
(x), β, x〉 � � jψ .

�

Having established that a consistent formula has a finite model we can also give
some bounds for the size of such a model. We can actually use the bounds obtainable
from the proof directly, but we seize the opportunity to introduce the method of
filtration. By itself it is a rather crude method for proving finite model property, and
many people have found ingenious ways of refining it so that it allows to give proofs
for many standard systems. Here we only present the most basic variant. Suppose
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that we have a model 〈F, β, x〉 � ϕ. Assume β to be defined only for the variables
of ϕ. Now let X := sf (ϕ). Let v ∼X w iff they satisfy the same formulae of X, that
is, for all ψ ∈ X 〈F, β, v〉 � ψ ⇔ 〈F, β,w〉 � ψ. This is an equivalence relation. Let
[v] := {w : v ∼X w} and [ f ] = {[v] : v ∈ f }. There are at most 2]X distinct classes, so
][ f ] ≤ 2]X . Now put [v]C j[w] iff there exists v̂ ∈ [v] and ŵ ∈ [w] such that v̂ C j ŵ.
Next define γ by γ(p) := {[v] : 〈F, β, v〉 � p}. This is well–defined by the fact that
if v � p then p ∈ var(ϕ) and if v ∼X w then also w � p. This model is said to be
obtained by filtrating the original model. Then

〈〈[ f ], 〈C j : j < κ〉〉, γ, [x]〉 � ϕ

Namely, by induction on ψ ∈ X we show that [v] � ψ iff v � ψ. This is straightforward
for variables, and the only critical step is ψ = ♦ jχ. Here, assume [v] � ♦ jχ. Then
[w] � χ for some w such that [v]C j[w]. Then there exist v̂ and ŵ such that v̂ ∼X v,
ŵ ∼X w and v̂ C j ŵ. Thus ŵ � χ by construction and induction hypothesis and so
v̂ � ♦ jχ, showing v � ♦ jχ by v ∼X v̂. Conversely, if v � ♦ jχ then for some j–successor
w we have w � χ and so [w] � χ by induction hypothesis. By construction, [v]C j[w]
and so [v] � ♦ jχ, as required.

T 3.3.6. Let ϕ be consistent in Kκ. Then there exists a model with at
most 2k points, where k = ]sf (ϕ).

Normal forms are closely connected with a technique called unravelling. There
are more or less cautious variants of unravelling. The most basic method is the
following. Suppose we have a pointed Kripke–frame 〈f,w0〉. A path of length r in
〈f,w0〉 is a function π : r + 1 → f such that π(0) = w0 and for all i < r + 1 we
have π(i) C j π(i + 1) for some j < κ. We say that π(0) is the begin point and π(r)
the end point of π, denoted by ep(π). The length of π is denoted by `(π). We say
that π+ : m → f extends π : n → f if n ≤ m and for all i ≤ n, π(i) = π+(i). The
unravelling of degree r of 〈f,w0〉 is denoted by ur(f,w0), and defined as follows. It is
a frame based on the set of paths of length ≤ r. The relation C j is defined by π C j π

+

iff (i.) `(π+) = `(π)+ 1, (ii.) π+ extends π and (iii.) ep(π)C j ep(π+). So, πC j π
+ if π+

is the path that goes just one step further than π and to a point which is j–accessible
from the end point of π. ur thus defined has a unique generating point, namely the
path π0 : 1 → f , sending 0 to w0; we denote it by 〈w0〉. The map ep(−) : π → ep(π)
sending each path to its end point is not quite a p–morphism. However, with respect
to points of restricted depth, it is as good as a p–morphism. We formalize this as
follows. Say that h : f → g is n–localic with respect to S ⊆ f if the following holds.

(gmf.) If x, y ∈ Trn(S ) and x C j y then h(x) C j h(y)
(gmb.) If x ∈ Trn−1(S ) and h(x) C j u then

x C j y for some y such that h(y) = u

It is easy to verify that the map ep : ur(f,w0) → f is r–localic with respect to 〈w0〉.
The next theorem then says that whenever we can satisfy a formula ϕ of depth ≤ r at
w0 then it can be satisfied in ur(f,w0) at the path π0.
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P 3.3.7. Let f and g be Kripke–frames. Suppose that h : f → g
is n–localic with respect to S and that w ∈ S . Let β, γ be valuations such that
γ(p) = h[β(p)]. Then for all formulae ϕ of degree ≤ n

〈f, β,w〉 � ϕ ⇔ 〈g, γ, h(w)〉 � ϕ

The proof is an easy induction on ϕ and is left to the reader. The frame um is a
subframe of un if m ≤ n. It consists of the m–transit of π0 in un. The total unravelling
uω is the union of all un, n ∈ ω. This is well–defined.

T 3.3.8. Let 〈f,w0〉 be a pointed Kripke–frame. The map ep, sending
each path beginning at w0 to its end point, is a p–morphism from 〈uω, 〈w0〉〉 onto
〈f,w0〉.

P. The map is onto by definition of the transit. Now take π, π+ such that
π C j π

+. Then ep(π) C j ep(π+), by construction. Next assume ep(π) C j u. Then the
path π+ defined by extending π by just one more point, namely u, is a well–defined
path and we have π C j π

+ by construction. �

The method of unravelling can be used to show that Kκ is complete with respect to
completely intransitive trees, by first showing that it is complete and then using un-
ravelling to get a totally intransitive tree from a model. This is somewhat better than
the proof via normal forms, which established completeness with respect to acyclic
frames only. Finally, let us note that if F = 〈f,F〉 is a frame and q : uω(f,w0) � f a
total unravelling, then we can define a system U of sets by U := {q−1[a] : a ∈ F}. By
the fact that we have a p-morphism, Uω(F,w0) := 〈uω(f,w0),U〉 has the same modal
theory as F. This fact is of some importance.

We remark here that there is a more extreme variant of unravelling, which is as
follows. Define a κ–path to be a sequence π = 〈w0, λ0,w1, λ1,w2, . . . ,wn〉 such that
wi Cλi wi+1 for every i < n. We say that π starts in w0 and ends in wn. Put π C j π

′

if π′ = 〈w0, λ0,w1, λ1, . . . ,wn, λn,wn+1 for some λn < κ and some wn+1 ∈ f . Then
we can form the frame xω(f,w0) of all κ–paths in f starting at w0. (The definition
of xn(f,w0) is analogous. It is the subframe of κ–paths of length ≤ n.) The map ζ
sending π to the sequence 〈wi : i < n + 1〉 is a p–morphism onto uω(f,w0). It follows
that there is a p–morphism from xω(f,w0) onto the transit of w0 in f, namely the map
sending each κ–path to ints end point. In xω(f,w0) for any pair x and y of points there
is at most one relation C j such that x C j y. This is not so in uω(f,w0). For practical
purposes the difference between these constructions is only marginal.

Exercise 94. Show by means of filtration that Kκ has the global finite model property.

Exercise 95. Generalize the method of unravelling to unravellings generated by sets
rather than points. That is, form the frame consisting of paths starting in a given set
S .
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Exercise 96. A forest is a disjoint union of trees. Show that every Kripke–frame is
the p–morphic image of a forest of intransitive, irreflexive trees.

3.4. Weakly Transitive Logics I

The notion of a weakly transitive logic plays a pivotal role in modal logic. Many
theorems hold only for weakly transitive logics. In this section we will collect some
elementary facts about them. In Section 4.3 we will return to that subject matter
again. First recall that a logic is weakly transitive iff there exists a maximal modal-
ity with respect to ≤Λ, where ≤Λ is defined by � ≤Λ �′ iff �′p → �p ∈ Λ (see
Section 2.1). Moreover, we have seen in Theorem 3.2.9 that logics axiomatized by
axioms of the form �p→ �′p are canonical and that the frame property determined
by them is elementary.

P 3.4.1. Let Λ be a weakly transitive logic with master modality �.
Then � = �s for some finite set of paths s and Λ is complete with respect to frames
satisfying

y ∈ Tr(x) ⇔ x Cs y.

P. The first claim has been shown in Section 2.1. For the second claim we
show that the canonical frame for Λ satisfies the property. Suppose that Y ∈ Tr(X) in
CanΛ(var). Then there exists a sequence σ of numbers < κ such that X Cσ Y . Now
�s p → �σp ∈ Λ. Thus, by Theorem 3.2.9, Cσ ⊆ Cs, which means that X Cs Y , as
desired. �

P 3.4.2. The weakly transitive κ–modal logics form a filter in the lat-
tice EKκ. This filter is not principal. For a given compound modality � there exists
a least logic such that � is maximal with respect to ≤Λ.

P. The first claim is straightforward. To see that there is no least weakly
transitive logic observe that Kκ has the finite model property. So, if ϕ < Kκ there
exists a finite f such that f 2 ϕ. For some n, f is n–transitive. Hence, ϕ < Kκ.trsn.
This shows that

Kκ =
⋂
n∈ω

Kκ.trsn

However, Kκ is not weakly transitive since we standardly assume κ > 0. Finally, let
� be given. Then put

Λ := Kκ ⊕ {�p→ �′p : �′ compound}

This is the smallest logic in which � is maximal with respect to ≤Λ. �

P 3.4.3. Let Λ be a logic. Λ is weakly transitive iff for every Λ–
algebra and every principal open filter F of A, F is principal as a boolean filter.
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P. Suppose that Λ is weakly transitive with master modality �. Let F be a
principal open filter, generated by the element a. We claim that �a is the smallest
element of F. To see this, observe that the least open filter containing a set E is
the least boolean filter containing the set E� := {�′e : e ∈ E,�′ compound}. This
is the algebraic analogue of Proposition 3.1.2. Since � is the master modality, we
have �e ≤ �′e for all �′. Hence, the open filter generated by E is the boolean filter
generated by �E := {�e : e ∈ E}. In particular, if E = {a} this shows that the open
filter is principal as a boolean filter. Now assume that Λ is not weakly transitive.
Then let A := FΛ({p}). The open filter generated by (the equivalence class of) p in A
is not principal as a boolean filter; otherwise it has a smallest element. This element
is of the form �p for some compound modality �. Then, for any compound modality
�′, �p ≤ �′p, which is the same as �p → �′p ∈ Λ. Hence Λ is weakly transitive,
contrary to our assumption. �

The following is proved in [30] using algebraic methods.

T 3.4.4 (Blok & Pigozzi). LetΛ be a modal logic. 
Λ admits a deduction
theorem iff Λ is weakly transitive.

P. Suppose 
Λ admits a deduction theorem. Then there exists a term p� q
such that for all sets of formulae ∆ and formulae ϕ and ψ

(‡) ∆;ϕ 
Λ ψ ⇔ ∆ 
Λ ϕ� ψ

Now since p � q 
Λ p � q we deduce that p � q; p 
Λ q. By Theorem 3.1.2
there exists a compound modality � such that �(p� q);�p `Λ q. By the Deduction
Theorem for the local consequence of Λ, �(p � q) `Λ �p → q. Now let �′

be an arbitrary compound modality. Replacing q by �′p we get �(p � �′p) `Λ
�p → �′p. Notice now that �(p � �′p) is a theorem of Λ; for since p 
Λ �′p
we immediately get 
Λ p � �′p, using (‡). And so �(p � �′p) is a theorem as
well. Hence we have `Λ �p → �′p. This shows that Λ is weakly transitive. For the
converse, assume Λ is weakly transitive. Then there exists a compound modality �
such that �p → �′p ∈ Λ for all compound modalities �′. Put p � q := �p → q.
We claim that (‡) holds with respect to�. For assume ∆;ϕ 
Λ ψ. By Theorem 3.1.2
there exists a �′ such that �′∆;�′ϕ `Λ ψ. Since �ϕ `Λ �′ϕ, we also have �′∆;�ϕ `Λ
ψ and so �′∆ `Λ �ϕ → ψ. Hence ∆ 
Λ �ϕ → ψ, as desired. The other direction of
(‡) is straightforward. �

We close with the following useful observation. Given that Λ is m–transitive and
that we have finitely many operators, then �p := �≤m p for some m is a master
modality (though clearly not the only one). Hence if κ < ℵ0 a weakly transitive logic
is m–transitive for some m. There is an analogue of the next theorem without the
assumption κ < ℵ0, but we leave the generalization to the reader.

T 3.4.5. (κ < ℵ0.) If a modal logic is m–transitive then every extension
of Λ can be axiomatized by formulae of modal depth ≤ m + 1.
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P. Suppose that Λ is m–transitive and let ϕ be a formula. Take a fresh
variable qψ for each subformula and define ω as follows.

ω := 〈qp ↔ p : p ∈ var(ϕ)〉
∧

∧
〈q¬ψ ↔ ¬qψ : ¬ψ ∈ sf (ϕ)〉

∧
∧
〈qψ∧χ ↔ qψ ∧ qχ : ψ ∧ χ ∈ sf (ϕ)〉

∧
∧
〈q� jψ ↔ � jqψ : � jψ ∈ sf (ϕ)〉

(Obviously, the variables qψ must be pairwise distinct and distinct from the variables
of ϕ.) Consider a model 〈F, β,w0〉 � �

≤mω ∧ ¬qϕ. Let F be rooted at w0. Then
it follows that 〈F, β〉 � ω, since Λ is m–transitive. By induction on ψ it is shown
using Lemma 3.1.7 that 〈F, β〉 � qψ ↔ ψ. Hence 〈F, β,w0〉 � ¬ϕ. Conversely,
assume 〈F, γ, x〉 � ¬ϕ. Put γ(qψ) := β(ψ). Then 〈F, γ, x〉 � �≤mω ∧ qψ. Thus
Λ ⊕ ϕ = Λ ⊕ �≤mω→ qϕ, and we have dp(�≤mω→ qϕ) = m + 1. �

Exercise 97. Show that a weakly transitive logic is globally decidable iff it is
locally decidable. Likewise for globally complete and global finite model property.

Exercise 98. Formulate and prove a version of Theorem 3.4.5 that does not restrict
κ to be finite.

3.5. Subframe Logics

In [66], K F introduced the notion of a subframe logic for logics extending
K4 and proved that all subframe logics have the finite model property. This will be
shown again in Chapter 8.3. In W [244] this concept was extended to general
logics and it was shown that there exist subframe logics without the finite model
property. Nevertheless, subframe logics have been established as an important tool
in modal logic. The notion of a subframe logic is based on the concept of a subframe
as defined previously. The algebraic concept corresponding to it is the notion of a
relativization.

D 3.5.1. Let A = 〈A, 1,−,∩, 〈� j : j < κ〉〉 and b ∈ A. Put Ab := {c :
c ≤ b} and Ab := 〈Ab, b,−,∩, 〈�b

j : j < κ〉〉 where − is the relative complement and
�b

jc := b ∩ � j(b → c). An algebra B is called a relativization of A if B = Ab for
some b ∈ A.

D 3.5.2. A logic is called a subframe logic if its class of frames is
closed under taking subframes. Alternatively, a logic is a subframe logic if its class
of algebras is closed under relativizations.

T 3.5.3 (Wolter). (κ < ℵ0.) Every subframe logic of bounded operator
alternative has the finite model property.

P. Every logic of bounded alternative is complete by Theorem 3.2.12. Hence
if ϕ < Λ then there is a Kripke–frame f such that 〈f, x〉 2 ϕ for some x and f � Λ. Let
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d be the modal depth of ϕ. Then Trd
f
(x) � ϕ. Trd

f
(x) is finite, and by the fact that Λ is

a subframe logic it is also a frame for Λ. �

In Chapter 8.3 we will show the subframe theorem of [66]. The proof is some-
what long and tedious. However, there are some restricted variants which can be
proved with less effort. We present one here. It is illustrative in the sense that it
demonstrates that the subframe property is not straightforward in case we fail to
know about completeness.

T 3.5.4 (Fine). Every subframe logic extending G has the finite model
property.

P. Observe that the G–axiom states that for every set a and x ∈ a there is a
maximal successor, that is, a point y such that x C y ∈ a but no successor of y is in a.
Furthermore, by transitivity, if u has a successor in a then it has a maximal successor
in a as well. The maximal points of a can be defined by a ∩ � − a. Let ϕ < Λ. Then
for n := ]var(ϕ) we have 〈CanΛ(n), β,w0〉 � ¬ϕ for some β and x. Now let M be the
set of points x such that x � ψ for some ♦ψ ∈ X ∪ {♦ϕ} but x � �¬ψ. M is an internal
set and so defines a subframe M. There exists a w∗ ∈ M such that w∗ � ϕ. For if
w0 < M then w0 � ♦ϕ and so w0 � ♦(ϕ ∧ �¬ϕ). Hence there exists a w∗ such that
w0 C w∗ and w∗ � ϕ;�¬ϕ. From this follows w∗ ∈ M. Let γ be the restriction of β to
M. Then 〈M, γ,w∗〉 � ϕ. This is proved by showing that for all χ ∈ X and x ∈ M

〈M, γ, x〉 � χ ⇔ 〈CanΛ(n), β, x〉 � χ .

This holds for χ = p by definition of γ. The steps for ∧ and ¬ are straightforward.
Now let χ = ♦ψ. From left to right is immediate. Now assume that 〈CanΛ(n), β, x〉 �
♦ψ. Then there exists a y such that xC y and 〈CanΛ(n), β, y〉 � ψ;�¬ψ. It follows that
y ∈ M; by induction hypothesis, 〈M, γ, y〉 � ψ. By assumption on Λ, M � Λ. M is
not necessarily finite. However, M � �m⊥ for some m. For let x ∈ M; put P(x) :=
{♦χ ∈ X : 〈M, γ, x〉 � ♦χ}. If x C y then P(y) ( P(x). Let m := ]{♦χ : ♦χ ∈ X}. Then
M � �m⊥. By Theorem 2.7.14, the set of internal sets is finite. By Theorem 2.4.11
the refinement map is a p–morphism. It has a finite image. Hence Λ has the finite
model property. �

Now we show that the satisfiability of a formula ϕ on a subframe of F can be
translated into the satisfiability of another formula, which can be derived syntacti-
cally from ϕ.

q ↓ χ := q ∧ χ
(¬ϕ) ↓ χ := χ ∧ ¬(ϕ ↓ χ)
(ϕ ∧ ψ) ↓ χ := (ϕ ↓ χ) ∧ (ψ ↓ χ)
(� jϕ) ↓ χ := χ ∧ � j(χ→ (ϕ ↓ χ))

We call ϕ ↓ χ the localization of ϕ to χ.

L 3.5.5. Let F be a frame, G = Fg. Let β : var→ f and γ : var→ g such
that β(p) = g and γ(q) = β(q ∧ p) for all q , p. Then β(ϕ ↓ p) = γ(ϕ).
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P. For a variable q, x ∈ β(q ↓ p) iff x ∈ β(q∧ p) iff x ∈ β(q)∩ β(p) iff x ∈ g
and x ∈ γ(q). Further, x ∈ β((¬ϕ) ↓ p) iff x ∈ β(p ∧ ¬(ϕ ↓ p)) iff x ∈ g and x < γ(ϕ)
iff x ∈ g and x ∈ γ(¬ϕ). The step for conjunction is straightforward. Now we turn to
� j.

x ∈ β((� jϕ) ↓ p)
iff x ∈ β(p ∧ � j(p→ (ϕ ↓ p)))
iff x ∈ g and x ∈ � jβ(p→ (ϕ ↓ p))
iff x ∈ g and for every y ∈ g such that y B j x : y ∈ β(ϕ ↓ p)
iff x ∈ g and for every y ∈ g such that y B j x : y ∈ γ(ϕ)
iff x ∈ γ(� jϕ)

This ends the proof. �

Consequently, p → (ϕ ↓ p) holds in F iff ϕ holds in all subframes of F. Now define
ϕs f := p → (ϕ ↓ p), where p is a variable not occurring in ϕ. (For our purposes it
will not matter which variable gets chosen.)

T 3.5.6. Let Λ = Kκ ⊕ ∆ be a logic. The smallest subframe logic con-
taining Λ, Λs f is axiomatizable by Kκ ⊕ ∆

s f . The largest subframe logic contained
in Λ is equal to Λs f = Kκ ⊕ {ϕ

s f : ϕs f ∈ Λ}.

If follows immediately that a logic Λ is a subframe logic iff for every ϕ ∈ Λ also
ϕs f ∈ Λ.

C 3.5.7 (Wolter). Let S F Kκ denote the set of κ–modal subframe log-
ics. This set forms a complete lattice with the operations of EKκ. The natural
embedding of SF Kκ into EKκ commutes with infinite meets and joins.

P. Let Λi, i ∈ I, be a set of subframe logics. Let F be a frame and G a
subframe of F. Then if F � IΛi, then F � Λi for all i ∈ I. By assumption, G � Λi

for all i ∈ I, and so G � IΛi. This shows that the infinite join is a subframe logic.
Next assume that ϕ ∈ IΛi. Then for all i ∈ I, ϕ ∈ Λi. By assumption on the Λi,
ϕs f ∈ Λi for all i ∈ I. Hence ϕs f ∈ IΛi. Hence, the infinite meet is a subframe
logic. �

In W [234] an infinite series of incomplete subframe logic has been con-
structed. The simplest is the following logic, which is actually one of the earliest
examples of an incomplete logic, taken from  B [9]. Moreover, in C-
 [48] it is shown that this logic is decidable, thus showing that there exist decid-
able, but incomplete logics. C uses R’s Theorem, but the result follows
easily from Corollary 2.6.7. Take the frame Ωω+1 to be 〈ω + 2,C,O〉 with

α C β iff
{
β < α and β, α < ω + 2
β ≤ α and β < α = ω

For the algebra O of sets we take the smallest algebra of sets on that frame. This
is an infinite algebra. We will approach its structure in stages. First of all, take the
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generated subframe of finite numbers and let F be the trace algebra on that set. We
claim that F is nothing but the algebra of finite and cofinite sets. To show this, two
things are required. We have to show that it is closed under all operations, and that
each set is definable by a constant formula. The first is not so hard. The finite and
cofinite sets are closed under intersection and complement. Furthermore, if a ⊆ ω is
an arbitrary subset, let n be the largest number such that [0, n] ⊆ a; n exists iff a , ω.
Then �a = [0, n + 1], as is readily checked. Thus, �a is finite whenever a , ω.
Moreover, �ω = ω, which is cofinite. This shows the closure under the operations.
Now, let us define the following constant formulae.

f(0) := �⊥
f(n + 1) := ♦f(n). ∧ .�¬♦f(n)

It is straightforward to verify that f(n) can only be true at n, so that all singleton
sets are 0–definable, that is, definable by means of a constant formula. The smallest
boolean algebra containing them is the algebra of finite and confinite sets. Lets go
one step further and take the subframe generated by ω. Here it turns out that the
trace of O contains all finite sets which do not contain ω, and all infinite sets which
do contain ω. For the extension of the formulae f(n) is still {n}, n < ω. The set
of these sets is closed under the operations, as is easily verified. Finally, we let us
consider O. Observe that the extension of the formula f(ω + 1) is exactly {ω + 1}
where

f(ω + 1) := ¬♦�⊥ .
This means that the full algebra consists of all sets whose trace relative to the frame
generated by ω is either finite and does not contain ω, or is infinite and contains ω.

We claim that ThΩω+1 is a subframe logic. To that end take an internal set g in
that frame. If it is finite, it does not contain the point ω and the trace algebra is the
powerset algebra. Therefore, the frame is isomorphic to a generated subframe. If g
is infinite, however, it contains ω, and the subframe is isomorphic to either Ωω+1 or
the subframe generated by ω. We conclude that ThΩω+1 is a subframe logic.

T 3.5.8 (Wolter). ThΩω+1 is an incomplete subframe logic.

P. To begin, G.3 is a subframe logic; it has the finite model property and is
therefore complete. Now, take the logic Λ with the following axioms.

�(♦p→ ♦(p ∧ ¬♦p)), ♦p ∧ ♦q.→ .♦(p ∧ ♦q) ∨ ♦(q ∧ ♦p) ∨ ♦(p ∧ q) .

Take a frame F for Λ, and a point x. Then — by choice of the axioms — for every
successor y of x the subframe generated by y satisfies G.3. Ωω+1 satisfies the axioms
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of Λ, since the subframe generated by ω satisfies G.3. Now consider the logic Λ⊕ ϕ
with

ϕ := ♦q ∧ ¬♦(q ∧ �¬q) ∧ ♦p.→ .♦♦p .
This formula implies in conjunction with the other axioms that when we have a
violation of the G–axiom at a point x then x must have a reflexive successor. (This
successor can of course be x.) ϕ ∈ ThΩω+1. Now, any Kripke–frame for Λ ⊕ ϕ must
be a frame for G.3. For if we have a Kripke–frame f for Λ and x a point then either
the transit of x is a G.3–frame or only the transit without x is. In the latter case x has
a reflexive successor; let it be y. Then since 〈f, x〉 � �(♦p → ♦(p ∧ ¬♦p)) and x C y
we have 〈f, y〉 � ♦p → ♦(p ∧ ¬♦p). This enforces that the transit of y in f is a frame
for G. But this cannot be, since then we must have y 6 y. Contradiction. The proof
is now almost complete. First, we have

Λ ⊕ ϕ ⊆ ThΩω+1 ⊆ G.3.

Equality of the last two cannot hold, because the formula ♦p ∧ ¬♦(p ∧ ¬♦p)) is
satisfiable in Ωω+1. All logics in between Λ ⊕ ϕ and G.3 have the same Kripke–
frames. Hence, any such logic if not equal to G.3 is incomplete. ThΩω+1 is such a
logic. �

Now, even if subframe logics may be incomplete, in case of their completeness
we can show that they are complete with respect to frames of size ℵ0 if κ < ℵ1 and κ
if ℵ1 ≤ κ. This may not seem such an improvement. However, it is a priori not clear
that complete logics are complete with respect to countable models even in the case
κ = 1. Secondly, the proof method itself is well–worth remembering. It will be used
in many variations throughout this book. For extensions of K4 this theorem has first
been proved in K F [66].

T 3.5.9. (κ < ℵ0.) Let Λ be a subframe logic and suppose that Λ is
complete with respect to Kripke–frames. Then Λ is complete with respect to Kripke–
frames of cardinality ≤ ℵ0.

P. Let ¬ϕ < Λ. Then there exists a Λ–model 〈f, β,w0〉 � ϕ, f a Kripke–
frame. Put S 0 := {w0}; let s0 be the subframe of f based on S 0, and let γ0(p) :=
β(p) ∩ S 0. Inductively we define sets S n; given S n, sn is the subframe based on S n

and γn(p) := β(p) ∩ S n. The construction of the S n is as follows. Suppose that there
exists a � jψ ∈ sf (ϕ) and a x ∈ S n such that 〈f, β, x〉 � ¬� jψ but 〈sn, γn, x〉 � � jψ.
Then let y := y(x,� jψ) ∈ f be a point such that x C j y and 〈f, β, y〉 � ¬ψ. Then let

S n+1 := S n ∪ {y(x,� jψ) : x ∈ S n,� jψ ∈ sf (ϕ), 〈sn, γn, x〉 � � jψ} .

Finally, we put g :=
⋃

i∈ω S i, δ(p) := β(p) ∩ g. g is finite if S n+1 = S n for some n,
else g is countably infinite. We claim that for every x ∈ g and every ψ ∈ sf (ϕ)

〈g, δ, x〉 � ψ ⇔ 〈f, β, x〉 � ψ

The proof is by induction on ψ. For variables this is immediate; for ψ = ψ1 ∧ ψ2
and ψ = ¬ψ1 this is also immediate. Now assume finally that ψ = � jτ. Suppose
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that 〈g, δ, x〉 2 � jτ. Let n be the smallest number such that x ∈ S n. Then, by
construction, there exists a point y ∈ S n+1 such that x C j y and 〈f, β, y〉 � ¬τ. By
induction hypothesis, 〈g, δ, y〉 � ¬τ. Since y ∈ g we have 〈g, δ, x〉 � ¬� jτ. The
converse direction is straightforward. �

We give an example to show that completeness is necessary for the proof method
to work properly. Take the logic ThΩω+1 defined above. Let β(p) be a set containing
the point ω. Then 〈Ωω+1, β, ω〉 � p. It is clear that S 1 = S 0 in the construction.
However, the frame based on a single reflexive point is not a frame for the logic.
This shows that in the incomplete case we cannot get rid of the restriction that the
subframe is based on an internal set. Since internal sets need not be countable, the
proof methods fails in this case as it stands.

Let us define the Kuznetsov–index, Kz(Λ), of a complete logic Λ to be the
supremum of the cardinalities of minimal frames refuting nontheorems of Λ.

Kz(Λ) := supϕ<Λinf {] f : f 2 ϕ}

The Kuznetsov–index is finite if Λ is tabular, and ≥ ℵ0 otherwise. We have shown
that if Λ is a complete subframe logic, the Kuznetsov–index does not exceed ℵ0.
In general, following C and Z the complexity of a logic is a
function fΛ such that fΛ(n) is the supremum of the cardinalities of minimal models
refuting nontheorems of length n. If Λ has the finite model property and κ is finite
then fΛ(n) is finite for every n. Clearly, the Kuznetsov–index is the supremum of
all fΛ(n). It is shown in C and Z [43] that there exists a logic
with Kuznetsov–Index iω, where i is the so–called beth–function; roughly, iλ is the
λ–fold iteration of the exponentiation function. In K [129], for each countable
ordinal λ a logic with Kuznetsov–Index iλ is constructed. Furthermore, it is shown
that there exists a logic whose Kuznetsov–Index is the least strongly inaccessible
cardinal.

Exercise 99. Show that S5 is a subframe logic.

Exercise 100. Show that G.3 is a subframe logic.

Exercise 101. Show that Λ⊕ϕ = ThΩω+1 and that they are immediately below G.3,
i. e. there is no logic Θ with Λ ⊕ ϕ ( Θ ( G.3.

∗Exercise 102. Show that there is a descending chain of ℵ0 many incomplete sub-
frame logics. Hint. Extend the construction of Ωω+1 above to frames Ωα based on
ordinal numbers α ≤ ω × ω. You have to put β C γ iff β = ω × k + m and (a.)
γ = ω×k+n and m < n or (b.) γ = ω× (k+1). Let the algebra of sets be the minimal
algebra. Now show that all the logics of Ωα are different.

Exercise 103. Let κ ≥ ℵ0. Show that if a subframe logic is complete with respect to
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Kripke–frames, it is complete with respect to Kripke–frames of cardinality ≤ κ.

Exercise 104. Assume that κ < ℵ1. Show that a subframe logic is globally complete
with respect to Kripke–frames if it is globally complete with respect to Kripke–
frames which are finite or countably infinite. Show the same for ℵ1–compactness.

Exercise 105. Let F be a frame, and S = TrF(S ). Show that a 7→ a ∩ S is a homo-
morphism of 〈F, 1,−,∩, 〈� j : j < κ〉〉 onto the trace algebra over S . Remark. This
shows that in contrast to arbitrary subframes, the generated subframes need not be
based on internal sets.

Exercise 106. Let κ be countable and Λ a canonical κ–modal logic. Show that the
Kuznetsov–index of Λ is ≤ 2ℵ0 .

3.6. Constructive Reduction

In Section 3.1 we have proved the global finite model property for the basic
logic Kκ. We will now use this proof to obtain a number of other results on (global)
finite model property using a technique which we call constructive reduction. This
technique is syntactic. The standard situation is that certain properties have been
established for a logic Λ, for example K, and that we consider an extension Λ⊕A for
some set of axioms A. It would be rather unfortunate not to be able to use knowledge
about Λ for Λ ⊕ A. However, in the overwhelming number of cases nothing can
be inferred for Λ ⊕ A from Λ. On the other hand, many standard systems are an
exception to this. Before we investigate the formal background of this method, let us
see some nontrivial applications.

T 3.6.1. Let Λ have the global finite model property and let χ be a con-
stant formula. Then Λ ⊕ χ has the global finite model property as well.

P. We show that

ϕ 
Λ⊕χ ψ ⇔ ϕ; χ 
Λ ψ .

From right to left is trivial. From left to right, take a proof of ψ from ϕ in Λ ⊕ χ.
We know that we can move substitutions at the beginning of the proof. Now χ is
constant, so we cannot derive anything but χ from χ using substitutions. Hence
the proof is a proof in Λ of ψ from ϕ together with χ using (mn.) and (mp.), as
required. �

T 3.6.2. K4 has the global finite model property.

P. Let ∆ be a set of formulae. Put

X4(∆) := {�χ→ ��χ : �χ ∈ sf [∆]}.

We show that
ϕ 
K4 ψ ⇔ ϕ; X4({ϕ, ψ}) 
K ψ
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From right to left is straightforward. For the direction from left to right, assume
ϕ; X4({ϕ, ψ}) 
K ψ is not the case. Then there exists a finite model 〈f, β, x〉 such that
〈f, β〉 � ϕ; X4({ϕ, ψ}) but 〈f, β, x〉 2 ψ. f = 〈 f ,C〉. Let J be the transitive closure of C.
We show that for all subformulae χ of ϕ or ψ and all worlds y

(†) 〈 f ,J, β, y〉 � χ ⇔ 〈 f ,C, β, y〉 � χ

This then establishes 〈 f ,J, β〉 � ϕ and 〈 f ,J, β, x〉 � ¬ψ. 〈 f ,J〉 is transitive; therefore
〈 f ,J〉 � K4. We show (†) by induction on χ. For variables there is nothing to show.
The steps for ¬ and ∧ are straightforward. Now let χ = �χ′. Assume 〈 f ,J, β, y〉 2
�χ′. Then there is a z such that y J z and 〈 f ,J, β, z〉 � ¬χ′. By induction hypothesis,
〈 f ,C, β, z〉 � ¬χ′. By definition of J there is a chain y = y0 C y1 C . . . C yn = z.
Now 〈 f ,C, β, yn−1〉 � ¬�χ

′. If n − 1 > 0 then 〈 f ,C, β, yn−2〉 � ¬��χ
′. Since �χ′ →

��χ′ ∈ X4({ϕ, ψ}) and 〈 f ,C, β, yn−2〉 � X4({ϕ, ψ}) we must have 〈 f ,C, β, yn−2〉 �
¬�χ′. Iterating this argument we get 〈 f ,C, β, y〉 � ¬�χ′. So, 〈 f ,C, β, y〉 2 �χ′.
Clearly, if 〈 f ,C, β, y〉 2 �χ′ then 〈 f ,J, β, y〉 2 �χ′, since C ⊆J. �

A note on the reduction sets. Since ♦ is not a primitive symbol, some care
is needed in the formulation of the reduction sets. The following definition of a
reduction set for K4 will not do.

Y4(∆) := {♦♦χ→ ♦χ : ♦χ ∈ sf [∆]}

(Here, ♦ abbreviates ¬�¬.) Take for example the set ∆ = {¬��p,�p}. It is K4–
consistent. Yet, there is no subformula of a formula of ∆ that matches ♦χ for some χ.
Hence, Y4(∆) = ∅. But ∆ is clearly K–consistent. So, this definition of the reduction
sets does not work. The reader may pause to reflect on why the chosen reduction
sets actually avoid this problem.

T 3.6.3. The basic tense logic K.t has the global finite model property.

P. Let
Xt(∆) := {¬χ→ �0¬�1χ : �1χ ∈ sf [∆]}

∪ {¬χ→ �1¬�0χ : �0χ ∈ sf [∆]} .

We show that

(‡) ϕ 
K.t ψ ⇔ ϕ; Xt({ϕ, ψ}) 
K ψ

Proceed as in the previous proof. Let M = 〈f, β,w0〉 be a local model where f =
〈 f ,C0,C1〉 is a finite K2–Kripke–frame such that 〈f, β〉 � ϕ; Xt({ϕ, ψ}) and 〈f, β,w0〉 �
¬ψ. Let J0 := C0 ∪ C

`
1 and J1 := C1 ∪ C

`
0 . Then the frame 〈 f ,J0,J1〉 is a tense

frame, for J`0 = (C0 ∪ C
`
1 )` = C`0 ∪ C1 =J1. For all χ ∈ sf (ϕ) ∪ sf (ψ) we have

(†) 〈 f ,J0,J1, β, y〉 � χ ⇔ 〈 f ,C0,C1, β, y〉 � χ .

This is clear for variables; the steps for ¬ and ∧ are straightforward. Now let χ =
�0τ. From left to right is clear. Now the direction from right to left. Assume that
〈 f ,J0,J1, β, y〉 2 �0τ. Then there is a w such that y J0 w and 〈 f ,J0,J1, β,w〉 � ¬τ.
By induction hypothesis, 〈 f ,C0,C1, β,w〉 � ¬τ. If y C0 w, we are done; for then
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〈 f ,C0,C1, β, y〉 2 �0τ (= χ). Otherwise wC1y. Now, 〈 f ,C0,C1, β,w〉 � �1¬�0τ, since
〈 f ,C0,C1, β,w〉 � Xt({ϕ, ψ}). Thus 〈 f ,C0,C1, y〉 � ¬�0τ. So, 〈 f ,C0,C1, β, y〉 2 �0τ.
The step χ = �1τ is analogous. �

Informally, we say that a property P pushes up or can be pushed up from Λ to
Λ ⊕ A if we can prove that Λ ⊕ A has P on the condition that Λ has P. Properties
that can be dealt with in this way are among other decidability, finite model prop-
erty, completeness and interpolation. The fundamental property in this connection is
decidability. Notice that given Λ, A, ∆ and ϕ, there is a set Y ⊆ �ωAs such that

∆ `Λ⊕A ϕ ⇔ Y;∆ `Λ ϕ

(Recall that As denotes the closure of A under substitution.) We call Y a local re-
duction set for ∆ and ϕ. Moreover, if ∆ is finite then Y can be chosen finite. A local
reduction function for Λ ⊕ A with respect to Λ is a function X : ℘(Pκ) → ℘(Pκ)
such that (i) X(∆ ∪ {ϕ}) is a local reduction set for ∆ and ϕ and (ii) X(∆) is finite
whenever ∆ is finite. We will write X(ϕ) rather than X({ϕ}). Note that there are two
cases. (a.) ϕ < Λ ⊕ A. Then Y = ∅ is a reduction set, (b.) ϕ ∈ Λ ⊕ A. Then there is
a proof of ϕ from Λ in �ωAs using only modus ponens. Obviously, this proof uses
only a finite subset of �ωAs, and we take Y to be this subset. Similarly, there is a
finite set Y ⊆ As such that

∆ 
Λ⊕A ϕ ⇔ ∆; Y 
Λ ϕ

Such a Y is called a global reduction set for ∆ and ϕ. A global reduction function
for Λ⊕A with respect to Λ is a function X : ℘(Pκ)→ ℘(Pκ) such that (i) X(∆∪ {ϕ})
is a global reduction set for ∆ and ϕ and (ii) X(∆) is finite whenever ∆ is finite. We
note the following properties of reduction sets. The proof is left as an exercise.

P 3.6.4. (1.) There exists a reduction function X forΛ⊕A with respect
to Λ such that (a.) var[X(∆)] ⊆ var[∆], (b.) X(∆) =

⋃
〈X(∆0) : ∆0 ⊆ ∆,∆0 finite〉

(2.) Let X,Y : ℘(Pκ)→ ℘(Pκ) be functions mapping finite sets to finite sets such that
X(∆) ⊆ Y(∆) for all ∆. Then if X is a (global/local) reduction function for Λ⊕A with
respect to Λ then so is Y.

As (1b.) shows, we may always assume that the reduction function is determined
by its values on finite sets. This means that we may actually restrict our attention to
functions from finite subsets of Pκ to finite subsets of Pκ. If Λ ⊕ A is decidable and
A enumerable, a local reduction set can always be constructed. For suppose that
ψ is given. Then start enumerating the proofs of Λ ⊕ A in which (sub.) is applied
before (mn.) and (mn.) before (mp.); in parallel, enumerate the nontheorems of
Λ ⊕ A. If ϕ is a theorem, it will occur at end of a proof Π. The reduction set will
then consist in all formulae to which only (mp.) is applied in Π. (This is more than
necessary, but certainly a sufficient set.) If ϕ is a nontheorem, then the empty set is a
reduction set for ϕ. Similarly, ifΛ⊕A is globally decidable, it allows the construction
of global reduction sets. Conversely, suppose we are able to produce for each ϕ a
local reduction set. Then decidability can be pushed up. To see the first, assume
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Λ is decidable and let ϕ be given. Construct X({ϕ}). Since Λ is decidable, we can
decide X({ϕ}) `Λ ϕ, which by definition of the reduction sets is nothing but `Λ⊕A ϕ.
Similarly for global decidability. For the purpose of the next theorem, a computable
function from ℘(Pκ) to ℘(Pκ) is a function f such that (i.) f (∆) =

⋃
〈 f (∆0) : ∆0 ⊆

∆,∆0 finite〉 and (ii.) there exists an algorithm computing f (∆) for any given finite
∆.

D 3.6.5. A logic Λ ⊕ A is said to be locally constructively re-
ducible to Λ if there is a computable local reduction function for Λ ⊕ A and Λ.
Λ ⊕ A is said to be globally constructively reducible to Λ if there is a com-
putable global reduction function.

T 3.6.6. Suppose Λ ⊕ A is globally (locally) constructively reducible to
Λ. Then Λ ⊕ A is globally (locally) decidable if Λ is.

In many cases, it is possible to show that other properties can be pushed up as
well. For example, for transitivity we have established that X4 : ∆ 7→ {�χ → ��χ :
�χ ∈ sf [∆]} is a global reduction function, and that furthermore any frame satisfying
both ϕ locally and X4({ϕ}) globally satisfies ϕ also when the relation C is replaced
by the transitive closure. It then is a K4–frame and a finite transitive model for ϕ.
So if Λ is a monomodal logic whose frames are closed under passing from C to its
transitive closure then we can push up the global finite model property from Λ to
Λ.4. We will show here that many of the standard systems mentioned in Section 2.5
have global finite model property. The following are global reduction functions.

X4(∆) := {�χ→ ��χ : �χ ∈ sf [∆]}
XT (∆) := {�χ→ χ : �χ ∈ sf [∆]}
XB(∆) := {¬χ→ �¬�χ : �χ ∈ sf [∆]}
XG(∆) := {¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf [∆]}
XGrz(∆) := {¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf [∆]}
Xalt1(∆) := {¬�χ→ �¬χ : �χ ∈ sf [∆]}

The reader may check that the formulae are indeed axioms. The reduction of Λ.4
to Λ has been proved for those logics whose class of frames is closed under passing
from C to the transitive closure. Now, for reflexivity we claim that if the class of
frames for Λ is closed under passing from C to its reflexive closure, denoted by C•,
then the above function achieves global reduction. Namely, suppose that we have a
Λ–frame f and 〈f, β〉 � XT ({ψ;ϕ}). Let f• be obtained by changing C to its reflexive
closure. By definition, f• � Λ and so f• � Λ.T. By induction on the set sf (ϕ) we
show that for all w in the transit of x

〈f•, β,w〉 � χ ⇔ 〈f, β,w〉 � χ

The only critical step is χ = �τ. From left to right this follows from the fact that if
x C y then also x C• y. For the other direction, assume we have 〈f•, β,w〉 2 �τ. Then
there is a v such that w C• v and 〈f•, β, v〉 � ¬τ. If v , w, we are done for then also
w C v. So assume the only choice for v is v = w and that w 6 w. Then we have
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〈f, β,w〉 � �τ. But 〈f, β,w〉 � �τ → τ, by choice of the reduction function. Hence
〈f, β,w〉 � τ, and so 〈f•, β,w〉 � τ, a contradiction. So there always is a successor
v , w, and it is safe to close C reflexively.

The proof for B is the same as for tense logic, so we will omit it here. We can
use this technique iteratively to show that a logic defined by a mixture of reflexiv-
ity, transitivity or symmetry axioms has the finite model property. However, since
each particular pushing up has its preconditions, some care is called for. The idea is
always the following. Assume Λ has the global finite model property; then construc-
tively reduce Λ ⊕ ϕ to Λ. This works if we can be sure that the procedure that turns
a frame f for Kκ into a frame fϕ for Kκ ⊕ ϕ also turns a frame for Λ into a frame for
Λ ⊕ ϕ. The proof of the following theorem illustrates this.

T 3.6.7. Let Λ be a finitely axiomatizable polymodal logic based on pos-
tulates of reflexivity, transitivity and symmetry for its operators, in any combination.
Then Λ has the global finite model property.

P. Let Λ = Kκ ⊕ R ⊕ S ⊕ T , where R is a set of reflexivity postulates, S a
set of symmetry postulates and T a set of transitivity postulates. First of all Kκ has
the global finite model property, so we need to consider finite Kripke–frames only.
We will start with Kκ and add the postulates one by one. First, we add all ϕ ∈ R.
The map f 7→ fϕ is defined by taking the reflexive closure of the relation C j for some
j. Since each of the reflexivity postulates concerns a different operator, it does not
matter in which order we add the axioms. In the end we obtain a frame G satisfying
all ϕ ∈ R. Next we turn to S . The map f 7→ fϕ, ϕ ∈ S , is now the map which turns
Ci into its symmetric closure. Since the symmetric closure of a reflexive relation is
again reflexive, fϕ satisfies all postulates of R. Moreover, the symmetric closure of
one relation does not interfere with any other relation, so fϕ satisfies all symmetry
postulates that f satisfies. Thus we can construct a frame for R ∪ S . Now we turn to
T ; the transitive closure of a reflexive relation is reflexive, and the transitive closure
of a symmetric relation is again symmetric. �

There remain the sets for G, Grz and alt1. Now, both G and Grz are transitive
logics. (This is the content of some exercises in Section 2.5.) We will now show that
the functions above establish a reduction from G to K4 and a reduction from Grz to
S4. The first of these has been shown by P B and A H in
[3].

T 3.6.8. G has the global finite model property.

P. We establish that the reduction function is a reduction function from the
logic to K4, which has global finite model property by Theorem 3.6.2. Moreover, K4
is transitive, so we only need to consider reductions where the antecedent is identical
to >. Thus let f be a finite transitive frame and

〈f, β,w0〉 � ϕ;�≤1{¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf (ϕ)} .
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Now, pick points from the frame as follows. Put S 0 := {w0}. The sets S n are now
defined inductively. Let x ∈ S n and �χ ∈ sf (ϕ) such that 〈f, β, x〉 2 �χ, and no
successor of x in S n−{w0} exists such that 〈f, β, y〉 � ¬χ. Then, by assumption on the
reduction function, 〈f, β, x〉 � ♦(¬χ∧�χ). Hence there exists a x̂ such that x̂ � ¬χ;�χ.
(Moreover, if x = w0, then x̂ , w0. For x̂ is irreflexive, and so w0C x̂ implies w0 , x̂.)
It follows that x̂ is irreflexive. Put S n+1 := S n ∪ {x̂}. The selection ends after some
steps, since f is finite. Call the resulting set g. Let Cg := C∩(g×g)−{〈w0,w0〉}. Then
put g := 〈g,Cg〉. (Alternatively, we might simply take g to be the subframe consisting
of w0 and all irreflexive points from f, with the transition w0 → w0 being removed.)
g is transitive and irreflexive, hence it is a frame for G. Put γ(p) := β(p) ∩ g. We
now show that for every subformula ψ of ϕ and every point y ∈ g, 〈g, γ, y〉 � ψ
iff 〈f, β, y〉 � ψ. This holds for variables by construction, and the steps ¬, ∧ are
straightforward. Now let 〈g, γ, y〉 2 �χ. Then also 〈f, β, y〉 2 �χ. Conversely, suppose
that 〈f, β, y〉 2 �χ, for some �χ ∈ sf (ϕ). Then also 〈g, β, y〉 2 �χ, since a successor z
for y has been chosen such that 〈f, β, z〉 � χ;�¬χ. By induction hypothesis, 〈g, γ, z〉 �
χ. Moreover, y Cg z. For if y , w0 this holds by definition of Cg. For y = w0 observe
that either w0 C

f w0, and then z , w0, since z 6 z. From this follows w0 C
g z. Or else,

w0 6
f w0, in which case w0 C

g z anyway. And so 〈g, γ, y〉 2 �χ, as required. �

T 3.6.9. Grz has the global finite model property.

P. As in the previous proof, this time reducing to S4. By Theorem 3.6.7,
S4 has the (global) finite model property. Let 〈f, β,w0〉 a finite S4–model such that

〈f, β,w0〉 � ϕ;�≤1{¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf (ϕ)} .

We select a subset g of f in the following way. We start with S 0 := {w0}. S n+1 is de-
fined inductively as follows. If x ∈ S n and 〈f, β, x〉 � ¬�χ, but no y exists in S n such
that x C y and 〈f, β, y〉 � ¬χ, then we choose a successor ŷ of x as follows. By choice
of the reduction function there is a successor y of x such that y � ¬χ;�(χ → �χ).
Therefore (i) the entire cluster C(y) satisfies ¬χ, (ii) no point in a cluster succeeding
C(y) and different from C(y) satisfies χ. Then S n+1 := S n ∪ {y}. This procedure
comes to a halt after finitely many steps. The resulting set is called g, and the sub-
frame based on it g. It is directly verified that g contains at most one point from
each cluster. (Moreover, the selection procedure produces a model whose depth is
bounded by the number of formulae in sf (ϕ) of the form �χ as can easily be seen.)
So all clusters have size 1. g is reflexive and transitive, being a subframe of f. So, g
is a Grz–frame. Let γ(p) := β(p) ∩ g. It is shown as in the previous proof that for
every subformula χ of ϕ and every x ∈ g, 〈g, γ, x〉 � χ exactly when 〈f, β, x〉 � χ. In
particular, 〈g, γ,w0〉 � ϕ. This concludes the proof. �

Obviously, to have local reduction functions is much stronger than to have global
reduction functions. Yet, for practical purposes it is enough to compute global re-
duction functions, since most standard systems are globally decidable. Thus, the
additional gain in establishing a local reduction, which is possible in many cases, is
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rather marginal. Moreover, as we will see, many properties can be pushed up even
when we have global reduction functions and no local functions. We shall end the
section by a few remarks of complexity. We shall state here without proof that the
size of the reduction sets of this section is quadratic in the size of the initial set (if the
size is simply the sum of the lengths of the formulae contained in it). This is actually
easy to verify. However, if we change to the packed representation (see the exercises
of Section 1.8) then the increase is only linear. To verify this is left as an exercise. It
follows that the logics discussed in this section are globally EXPTIME, since K is.
One has to take note here that the typical complexity measures are established with
respect to the length of the set, not with respect to the length of the packed represen-
tation, which can in extreme cases be exponentially smaller. Yet, they can typically
be redone with respect to the length of the packed representation. To verify that K
is globally EXPTIME even with respect to the packed representation, tableaux can
be used. Moreover, using tableaux one can show that K4 is globally PSPACE from
which the same follows for the systems extending K4. Unfortunately, reduction sets
do not allow to show that K4 is in PSPACE.

Exercise 107. Show Proposition 3.6.4.

Exercise 108. Show that the symmetric closure of a transitive relation does not need
not be transitive again.

Exercise 109. In the next three exercises we will show a rather general theorem on
reduction of Λ.G and Λ.Grz to Λ for logics containing K4. Let Λ ⊇ K4 have finite
model property. Say that a Λ is a cofinal subframe logic if it is closed under taking
away from a finite frame any set of points which is not final. Here a point x is final if
for all y x C y implies y C x. Now let 〈f, β〉 and ϕ be given, and f be finite. Say that x
is ϕ–maximal if for some subformula χ, χ is satisfied at x and whenever y satisfies χ
and x C y, then also y C x. Show now that if 〈f, β, x〉 � ϕ, and if we take the subframe
g of all ϕ–maximal points, then 〈g, β, y〉 � ϕ for some y. Show that every final point
of f is in g. Thus, if Λ is a cofinal subframe logic, and f is a finite frame for Λ, so is
g. Give the global reduction sets!

Exercise 110. (Continuing the previous exercise.) Now show that the reduction
function given above for G establishes that if Λ is a cofinal subframe logic, then
there exists a global reduction function for Λ.G to Λ.

Exercise 111. (Continuing the previous exercise.) Show that the reduction function
for Grz establishes that there is a reduction function any Λ.Grz to Λ, provided that
Λ is a subframe logic.

Exercise 112. Using the Lemma 3.1.9, produce local reduction sets for the logics
for which global reduction sets have been given.
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Exercise 113. Let X be any of the reduction functions of this section. Show that
there is a constant cX such that for every set ∆: |X(∆)♠| ≤ c|∆♠|, where ∆♠ is the
packed representation of ∆.

3.7. Interpolation and Beth Theorems

Recall from Section 1.6 the definition of interpolation. Interpolation is defined
with respect to the consequence relation. Since a modal logic admits several conse-
quence relations, we have several notions of interpolation, in particular global and
local interpolation.

D 3.7.1. A modal logic Λ has local interpolation if for every pair ϕ
and ψ of formulae with ϕ `Λ ψ there is a χ such that var(χ) ⊆ var(ϕ) ∩ var(ψ) and
ϕ `Λ χ as well as χ `Λ ψ. Λ has global interpolation if for every pair ϕ, ψ of
formulae with ϕ 
Λ ψ there is a χ such that var(χ) ⊆ var(ϕ) ∩ var(ψ) and ϕ 
Λ χ as
well as χ 
Λ ψ.

These definitions are taken from [151], though the terminology used here is
more systematic. Since we have a deduction theorem for local deducibility, we can
reformulate local interpolation in such a way that it depends only on the set of theo-
rems. Λ has the Craig Interpolation Property if whenever ϕ → ψ ∈ Λ there exists
a χwhich is based on the common variables of ϕ and ψ such that ϕ→ χ; χ→ ψ ∈ Λ.
A logic has the Craig Interpolation Property iff it has local interpolation.

P 3.7.2. If Λ has local interpolation it also has global interpolation.

P. Suppose that Λ has local interpolation. Let ϕ 
Λ ψ. Then for some
compound modality � we have �ϕ `Λ ψ. Whence by local interpolation there is a χ
with var(χ) ⊆ var(ϕ) ∩ var(ψ) such that �ϕ `Λ χ and χ `Λ ψ. Hence ϕ 
Λ χ as well
as χ 
Λ ψ. �

The converse implication does not hold, as has been shown in [151]. Interpolation is
closely connected with the so–called Beth property. It says, in intuitive terms, that if
we have defined p implicitly, then there also is an explicit definition of p. An explicit
definition is a statement of the form χ ↔ p where p < var(χ). An implicit definition
is a formula ψ(p, ~q), such that the value of p in a model is uniquely defined by the
values of the variables ~q. The latter can be reformulated syntactically. In a logic `,
ϕ(p, ~q) implicitly defines p if ϕ(p, ~q);ϕ(r, ~q) ` p ↔ r. Given Λ, we may choose
` to be either `Λ or 
Λ. This gives rise to the notions of local and global implicit
definitions.

D 3.7.3. Λ is said to have the local Beth Property if the following
holds. Suppose ϕ(p, ~q) is a formula and

ϕ(p, ~q);ϕ(r, ~q) `Λ p↔ r.

Then there exists a formula χ(~q) not containing p as a variable such that

ϕ(p, ~q) `Λ p↔ χ(~q) .
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Analogously, the global Beth property is defined by replacing `Λ by 
Λ.

The notion of definability was introduced by B in [16] under the name Padoa’s
Method. The lack of the deduction theorem for the global consequence makes the
global Beth property somewhat more difficult to handle than the local equivalent.
For the local Beth property we can actually prove that it is equivalent to the Craig
Interpolation Property.

T 3.7.4 (Maksimova). Let Λ be a classical modal logic. Then Λ has
local interpolation iff it has the local Beth property.

P. Suppose first that Λ has local interpolation. Assume that ϕ defines q
implicitly, that is,

(†) ϕ(p, ~q);ϕ(r, ~q) `Λ p↔ r.
Then we also have ϕ(p, ~q); p `Λ ϕ(r, ~q)→ r and thus by interpolation there is a χ(~q)
such that

(‡) ϕ(p, ~q); p `Λ χ(~q) `Λ ϕ(r, ~q)→ r
We claim that χ(~q) is the desired explicit definition, that is, that the following holds.

ϕ(p, ~q) `Λ p↔ χ(~q).

One implication holds by definition of the interpolant; for ϕ(p, ~q); p `Λ χ(~q). For
the other direction, observe that we have χ(~q) `Λ ϕ(r, ~q) → r. Using the deduction
theorem we can derive ϕ(p, ~q) `Λ χ(~q) → r. Now replace r by p, and the de-
sired conclusion follows. Now for the converse, assume that Λ has the local Beth
Property. We will show that if ϕ(p, ~q) `Λ ψ(r, ~q) then there is a χ(~q) such that
ϕ(p, ~q) `Λ χ(~q) `Λ ψ(r, ~q). Let us call this the 1–interpolation property, since we
can get rid of a single variable in ϕ and a single variable in ψ. The n–interpolation
property is formulated similarly, but with the difference that we can eliminate up
to n variables in the premiss and up to n in the conclusion. One can easily show
that 1–interpolation property implies n–interpolation for every n, and hence the lo-
cal interpolation property. We leave this to the reader. The hard part is to show
1–interpolation. Thus, assume ϕ(p, ~q) `Λ ψ(r, ~q). Define

δ1(p, ~q) := (p→ ϕ(p, ~q)) ∧ (ψ(p, ~q)→ p).

Since we have δ1(p, ~q); δ1(r, ~q) `Λ p↔ r, we get a formula χ1(~q) such that

δ1(p, ~q) `Λ p↔ χ1(~q).

We then have

ϕ(p, ~q); p `Λ χ1(~q) χ1(~q) `Λ p ∨ ψ(p, ~q).

Now define
δ2(p, ~q) := (¬p→ ϕ(p, ~q)) ∧ (ψ(p, ~q)→ ¬p).

Again, it is checked that δ2 is an implicit definition and so we can use Beth’s property
again to get a χ2(~q) with ϕ(p, ~q) `Λ p↔ χ2(~q). After some boolean rewriting

ϕ(p, ~q);¬p `Λ ¬χ2(~q) , ¬χ2(~q) `Λ ¬p ∨ ψ(p, ~q) .
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Next we define the following formula

δ3(p, ~q) := (p→ ϕ(¬p, ~q)) ∧ (ψ(p, ~q)→ p).

We have ϕ(¬p, ~q) `Λ ψ(r, ~q) and so it is checked that δ3(p, ~q) also provides an implicit
definition of p. And so we get a third formula χ3(~q), such that δ3(p, ~q) `Λ p↔ χ3(~q).
From this we get

ϕ(¬p, ~q); p `Λ χ3(~q) , χ3(~q) `Λ p ∨ ψ(p, ~q).

Substituting ¬p for p in the first statement we get

ϕ(p, ~q);¬p `Λ χ3(~q).

Finally, define

δ4(p, ~q) := (¬p→ ϕ(¬p, ~q)) ∧ (ψ(p, ~q)→ ¬p).

This defines p implicitly, and so we have a χ4(~q) with δ4(p, ~q) `Λ p ↔ χ4(~q). We
get after rewriting

ϕ(¬p, ~q);¬p `Λ ¬χ4(~q) ¬χ4(~q) `Λ ¬p ∨ ψ(p, ~q).

Substituting ¬p for p in the first statement we get

ϕ(p, ~q); p `Λ ¬χ4(~q).

The desired interpolant is

χ(~q) := (χ1(~q) ∧ ¬χ4(~q)) ∨ (¬χ2(~q) ∧ χ3(~q)).

Namely, ϕ(p, ~q); p `Λ χ1(~q) ∧ ¬χ4(~q) and so ϕ(p, ~q);¬p `Λ ¬χ2(~q) ∧ χ4(~q), so that
ϕ(p, ~q) `Λ χ(~q). Furthermore, χ1(~q) ∧ ¬χ4(~q) `Λ ψ(p, ~q) and in addition ¬χ2(~q) ∧
χ3(~q) `Λ ψ(p, ~q), from which χ(~q) `Λ ψ(p, ~q), as required. �

T 3.7.5. A classical modal logic with local interpolation also has the
global Beth–property.

P. Assume that ϕ(p, ~q);ϕ(r, ~q) 
Λ p↔ r. Then for some compound modal-
ity � we have

�ϕ(p, ~q);�ϕ(r, ~q) `Λ p↔ r.

This can now be rearranged to

�ϕ(p, ~q); p `Λ �ϕ(r, ~q)→ r.

We get an interpolant χ(~q) and so we have�ϕ(p, ~q); p `Λ χ(~q), from which�ϕ(p, ~q) `Λ
p → χ(~q). So ϕ(p, ~q) `Λ p → χ(~q). And we moreover have χ(~q) `Λ �ϕ(r, ~q) → r,
from which we get �ϕ(r, ~q) `Λ χ(~q) → r, and so ϕ(r, ~q) `Λ χ(~q) → r. Replacing r
by p we get the desired result. �

The picture obtained thus far is the following.
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local interpolation

local Beth Property

global interpolation

global Beth Property

-

-

6

?

It can be shown that there exist logics without global interpolation while having the
global Beth Property and that there exist logics with global interpolation without the
global Beth Property. An example of the first kind is the logic G.3. See [150].

Recall from Section 1.6 the notion of Halldén–completeness of a logic. As
with interpolation the notion of Halldén–completeness of Λ splits into (at least) two
different concepts.

D 3.7.6. Let Λ be a modal logic. Λ is locally Halldén–complete if
whenever ϕ `Λ ψ and var(ϕ) ∩ var(ψ) = ∅ we have ϕ `Λ ⊥ or `Λ ψ. Λ is globally
Halldén–complete if whenever ϕ 
Λ ψ and var(ϕ)∩ var(ψ) = ∅ we have ϕ 
Λ ⊥
or 
Λ ψ.

Global Halldén–completeness is called the Pseudo Relevance Property in [153].
In the literature, a logic Λ is called Halldén–complete if for ϕ and ψ disjoint in vari-
ables, if ϕ ∨ ψ ∈ Λ then ϕ ∈ Λ or ψ ∈ Λ. Clearly, this latter notion of Halldén–
completeness coincides with local Halldén–completeness. This follows from the
deduction theorem, since ϕ `Λ ψ is equivalent to `Λ ¬ϕ∨ψ. Local (global) Halldén–
completeness nearly follows from the corresponding interpolation property. Namely,
if we have `Λ ϕ∨ψ then ¬ϕ `Λ ψ. We then get a constant formula χ such that ¬ϕ `Λ χ
and χ `Λ ψ. On the condition that we can choose χ to be either > or ⊥ we get our
desired conclusion. For χ = > yields `Λ ψ and χ = ⊥ yields `Λ ϕ. Thus, if Λ has
trivial constants (see Section 2.6) then interpolation implies Halldén–completeness.
But this is exactly the condition we need anyway to have Halldén–completeness. For
notice that always `Λ ¬� j⊥∨� j⊥. So if Λ is Halldén–complete then we have either
`Λ ¬� j⊥ or `Λ � j⊥. These are exactly the conditions under which Λ has trivial
constants.

P 3.7.7. A logic Λ is (locally/globally) Halldén–complete only if it
has trivial constants. If Λ has trivial constants and has (local/global) interpolation
then it is (locally/globally) Halldén–complete.

Finally, we will establish some criteria for interpolation. Assume that we have
a logic Λ ⊕ A and global reduction sets for Λ ⊕ A with respect to Λ. Let us say that
the reduction sets split if there exists a reduction function X such that (i.) for all sets
∆, var[X(∆)] ⊆ var[∆] and (ii.) X(ϕ→ ψ) = X(ϕ) ∪ X(ψ).

T 3.7.8. Suppose that Λ ⊕ A can be globally reduced to Λ with splitting
reduction sets. Then Λ ⊕ A has local (global) interpolation if Λ has local (global)
interpolation. Moreover, Λ ⊕ A is locally (globally) Halldén–complete if Λ is.
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P. Assume ϕ `Λ⊕A ψ. Then `Λ⊕A ϕ → ψ and a fortiori 
Λ⊕A ϕ → ψ. By
global reduction we get X(ϕ → ψ) 
Λ ϕ → ψ and so for some compound modality
�

�X(ϕ→ ψ) `Λ ϕ→ ψ.

This is the same as
�X(ϕ);�X(ψ) `Λ ϕ→ ψ,

by the fact that the reduction sets split. We can rearrange this into

�X(ϕ);ϕ `Λ �X(ψ)→ ψ.

By assumption on X, var[X(ϕ)] ⊆ var(ϕ) and var[X(ψ)] ⊆ var(ψ). By local interpo-
lation for Λ we obtain a χ in the common variables of ϕ and ψ such that

ϕ;�X(ϕ) `Λ χ `Λ �X(ψ)→ ψ.

From this follows that ϕ `Λ⊕A χ `Λ⊕A ψ, by the fact that the reduction sets only
contain instances of theorems. Pushing up global interpolation works essentially in
the same way. Now for Halldén–completeness, assume that ϕ `Λ⊕A ψ for ϕ and ψ
disjoint in variables. Then

ϕ;�X(ϕ) `Λ �X(ψ)→ ψ.

The left hand side is disjoint in variables from the right hand side, and so either
the left hand side is inconsistent or the right hand side a theorem. In the first case,
ϕ `Λ⊕A ⊥. In the second case `Λ⊕A ψ, as required. The proof for global Halldén–
completeness is analogous. �

In the next section we will prove that K has local interpolation. We conclude from
that the following theorem.

C 3.7.9. The logics K.alt1, K4, K.B, K.T, K.BT, S4, S5, G and
Grz have local interpolation.

This can be generalized to polymodal logics as well, namely to those which
have no interaction postulates for the operators, and whose logical fragments for the
individual operators is one of the above logics. This, however, will be a consequence
of a far more general result on so–called independent fusions to be developed in
Chapter 6. As an application we will prove a rather famous theorem, the so–called
Fixed Point–Theorem of S and  J (see [184]; for the history see also
[32]). It is a theorem about the provability logic G. We say that a formula ψ(~q) is a
fixed point of ϕ(p, ~q) with respect to p in a logic Λ if

`Λ ψ(~q)↔ ϕ(ψ(~q), ~q).

.

T 3.7.10 (Sambin, de Jongh). Let ϕ(p, ~q) be a formula such that every
occurrence of p is modalized. Then ϕ(p, ~q) has a fixed point for p in G.
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P. Consider a formula ϕ(p, ~q) in which the sentence letter p occurs only
modalized, that is, in the scope of an �. We show that for every finite Kripke–frame
and valuation β on ~q there exists one and only one extension β+ such that 〈f, β+〉 �
p ↔ ϕ(p, ~q). To see this take a finite Kripke–frame f. The accessibility relation is
transitive and cycle–free, that is, irreflexive. β+ will be defined by induction on the
depth of a point, that is, the length of a maximal ascending chain starting at that point.
To start, consider a point x without successors. Then, since p occurs only modalized,
ϕ(p, ~q) holds at x iff ϕ(⊥, ~q) holds at x; so the value of p at x is well–defined and does
not depend on p. Put x ∈ β+(p) iff x ∈ β+(ϕ(⊥, ~q)). Now assume that the claim has
been established for points of depth d. Let x be of depth d + 1. We have to show that
x ∈ β+(p) iff x ∈ β+(ϕ(p, ~q)). We can regard ϕ as a boolean combination of formulae
not containing p and formulae of the form �χ. Since the value of p is already fixed
on points of lesser depth, we know whether or not x ∈ β+(�χ); also, the value of
formulae not containing p is fixed at x. Hence there is a unique way to assign p at x.
This completes the proof of the existence and uniqueness of β+.

The first consequence is that because the extension is unique on finite frames,
we have

p↔ ϕ(p, ~q); r ↔ ϕ(r, ~q) 
G p↔ r .

Taking ϕ1(p, ~q) := p↔ ϕ(p, ~q) we now have a global implicit definition of p. Since
G has local interpolation it has the global Beth–property and so there exists an ex-
plicit definition, that is, a ψ(~q) such that

p↔ ϕ(p, ~q) 
G p↔ ψ(~q) .

From this we deduce that

p↔ ϕ(p, ~q) 
G ψ(~q)↔ ϕ(ψ(~q), ~q) .

(Simply replace p by ψ(~q).) We claim now that in fact

`G ψ(~q)↔ ϕ(ψ(~q), ~q) .

To see this, take a finite frame f for G and a valuation of ~q. Then there exists an
extension β+ of β giving a value to p such that 〈f, β+〉 � p ↔ ϕ(p, ~q). In this model
we have 〈f, β+〉 � ψ(~q) ↔ ϕ(ψ(~q), ~q). But then also 〈f, β〉 � ψ(~q) ↔ ϕ(ψ(~q), ~q), as
required. �

The proof via the Beth–property has first been given by S́ [200]. It
is worthwile to note that many direct proofs of this theorem have been given in the
past, e. g. S [184], [188], R–O [175] and G and G [76].
The difficulty of these proofs varies. This proof via the Beth–property reduces the
problem to that of the interpolation of G modulo the Theorem 3.7.5. The difficulty
that most proofs face is that the construction of the interpolant is not disentangled
from the actual fixed point property. For notice that the special property of G is
that for formulae ϕ(p, ~q) in which p occurs only modalized, the fixed point equation
p ↔ ϕ(p, ~q) can be globally satisfied in one and only one way for given ~q. This is
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proved semantically. The uniqueness of the solution then gives rise to an explicit
definition because of the Beth–property. That means that the solution is effable. The
existence of a solution then allows to deduce that this explicit definition is a fixed
point of ϕ. Note that the previous proof did not depend on G, only on some critical
features of G. It trivially also holds for all extensions of G. It has been observed by
M that this can be used to show that all extensions of G have the global
Beth–property (see [149]). To show this, two auxiliary facts must be established,
which we shall give as exercises. Call a formula ϕ ~q–boxed if every occurrence of a
variable from ~q is in the scope of some modal operator.

L 3.7.11. Let Λ be a logic containing G. Let qi, i < n, be distinct variables
and p a variable not contained in ~q. For a set S ⊆ n define χS by χS :=

∧
i∈S qi ∧∧

i∈n−S ¬qi. If ϕ(p, ~q) is ~q–boxed and

Λ ` χS → ϕ(p, ~q)

then already Λ ` ϕ(p, ~q).

L 3.7.12. Let ϕ(p, ~q) be a formula. Then there exist ~q–boxed formulae
ψ1(p, ~q), ψ2(p, ~q), χ1(p, ~q) and χ2(p, ~q) such that

G ` ϕ(p, ~q)↔ ((p ∨ ψ1(p, ~q)) ∧ (¬p ∨ ψ2(p, ~q)))
G ` ϕ(p, ~q)↔ ((p ∧ χ1(p, ~q)) ∨ (¬p ∧ χ2(p, ~q)))

T 3.7.13 (Maksimova). Let Λ be a logic containing G. Then Λ has the
global Beth property.

P. Suppose that ϕ(p, ~q) is a global implicit definition of p in Λ. Then
ϕ(p, ~q);ϕ(r, ~q) 
Λ p ↔ r. Using Lemma 3.7.12 we get ~q–boxed formulae χ1(p, ~q)
and χ2(p, ~q) such that

(†) Λ ` ϕ(p, ~q)↔ ((p ∧ χ1(p, ~q)) ∨ (¬p ∧ χ2(p, ~q)))

Since we also have

Λ ` �≤1ϕ(p, ~q) ∧ �≤1ϕ(r, ~q)→ (p↔ r)

we now get

Λ ` (�ϕ(p, ~q) ∧ �ϕ(r, ~q) ∧ p ∧ χ1(p, ~q) ∧ ¬r ∧ χ2(r, ~q))→ (p→ r)

This formula has the form (µ ∧ p ∧ ¬r) → (p → r), where µ is ~q–boxed. This is
equivalent to ¬µ ∨ ¬p ∨ r, or (¬r ∧ p) → ¬µ. By use of Lemma 3.7.11 we deduce
that Λ ` µ, that is,

Λ ` �ϕ(p, ~q) ∧ �ϕ(r, ~q)→ (χ1(p, ~q)→ ¬χ2(r, ~q)) .

We substitute p for r and obtain

Λ ` �ϕ(p, ~q)→ (χ1(p, ~q)→ ¬χ2(p, ~q)) .

Now from this and (†) it follows after some boolean manipulations

Λ ` �≤1ϕ(p, ~q)→ �≤1(p↔ χ1(p, ~q))
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By the fixed point theorem for G there is a ψ(~q) such that

G ` �≤1(p↔ χ1(p, ~q))→ (p↔ ψ(~q)) .

So we obtain
Λ ` �≤1ϕ(p, ~q)→ (p↔ ψ(~q)) ,

which is nothing but
ϕ(p, ~q) 
Λ p↔ ψ(~q) .

�

Exercise 114. Show that if a logic has 1–interpolation then it has n–interpolation
for every n ∈ ω.

Exercise 115. (R [171].) Let Λ have local interpolation and let A be a set
of constant formulae. Then Λ ⊕ A has local interpolation.

Exercise 116. As in the previous exercise, but with global interpolation.

Exercise 117. Show that the logic of the following frame is not Halldén–complete
but has interpolation.

◦

•

◦

HHHHj

��
��*

Exercise 118. Show that any quasi–normal logic determined by a single rooted
frame 〈F, x〉 is Halldén–complete.

Exercise 119. Show that if a logic has the local Beth–property it also has the global
Beth–property.

Exercise 120. (M [149].) Show Lemma 3.7.11.

Exercise 121. (M [149].) Show Lemma 3.7.12. Hint. You may assume that
ϕ(p, ~p) is is normal form. Now reduce the case where it is a disjunction to the case
where it is not.

3.8. Tableau Calculi and Interpolation

In this chapter we will introduce the notion of a tableau (plural tableaux), a
popular method for showing the decidability of logics. Since we have already estab-
lished the decidability via the finite model property, we do not need tableaux for this
purpose. However, there are additional reasons for studying tableau methods. One is
the connection between tableau calculi and interpolation. This connection has been
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explored by W R in [171]. However, we will show at the end that
a proof via normal forms is also possible. Tableaux are also an efficient technique for
checking the satisfiability of a formula in a logic. They will allow to give bounds on
the complexity of the satisfiability problem. Tableaux can be described as a method
of deriving a contradiction as fast and efficiently as possible. A tableau can be seen
as computing along branches in a model to see at which point we reach an inconsis-
tency. To help in understanding these remarks, let us describe a tableau calculus for
Kκ, which we denote here by CK. To keep the calculus short, we assume to have only
the symbols ¬, ∧ and � j. The other symbols are treated as abbreviations. The cal-
culus operates on sets of formulae. As usual, X;ϕ denotes X ∪ {ϕ} and X; Y denotes
X ∪ Y . Thus X;ϕ;ϕ is the same as X;ϕ. The rules are as follows.

(¬E)
X;¬¬ϕ

X;ϕ
(∧E)

X;ϕ ∧ ψ
X;ϕ;ψ

(∨E)
X;¬(ϕ ∧ ψ)
X;¬ϕ|X;¬ψ

(� jE)
� jX;¬� jϕ

X;¬ϕ

(w)
X; Y

X

The last rules is known as weakening. We abbreviate by (�E) the set of rules
{(� jE) : j < κ}. A CK–tableau for X is a rooted labelled tree, the labels being
sets of formulae, such that (i) the root has label X, (ii) if a node x has label Y and
a single daughter y then the label of y arises from the label of x by applying one of
(¬E), (∧E), (�E) or (w), (iii) if x has two daughters y and z then the label of x is
Y;¬(ϕ ∧ ψ) and the labels of y and z are Y;¬ϕ and Y;¬ψ, respectively. There are
possibly several tableaux for a given X. (∨E) introduces a branching into the tableau,
and it is the only rule that does so. A branch of a tableau closes if it ends with p;¬p
for some variable p. The tableau closes if all branches close.

P 3.8.1. If X has a CK–tableau which closes then X is inconsistent in
Kκ.

P. By induction on the length of the tableau. Clearly, at the leaves we have
sets of the form p;¬p, and they are all inconsistent. So, we have to prove for each
rule that if the lower sets are inconsistent, so is the upper set. This is called the
correctness of the rules. For example, if X is inconsistent, then X; Y is inconsistent,
so (w) is correct. The boolean rules are straightforward. For (�E), assume that
X;¬ϕ is inconsistent, that is, X `Kκ

ϕ. Then � jX `Kκ
� jϕ, that is, � jX;¬� jϕ is

inconsistent. �

The calculus is also complete; that means, if no tableau closes, then X is con-
sistent. We prove this by showing that whenever there is no closing tableau there is
a model for X. Before we proceed, let us remark that one can remove weakening
from the tableau calculus. However, this is possible only if (� jE) is replaced by the
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following rule.

(� jE′)
X;¬� jϕ

X�;¬ϕ
X� := {χ : � jχ ∈ X}

Removing weakening is desirable from a computational point of view, because the
rule of weakening introduces too many options in a search space. Given a set X
we can apply 2]X − 2 nontrivial weakenings but very few of them turn out to be
sensible. Instead, if one intends to speed up the proof search one has to implement a
different calculus. Moreover, one can try to close a branch as early as possible, e. g.
when hitting a set containing ϕ and ¬ϕ, where ϕ can be any formula. One can also
introduce priorities on the rules, such as to prefer applying (¬E) and (∨E) before
any other rule, and to delay (∨E) (or (�E′)). To show that the tableau calculus is
complete we shall have to show that if no tableau for a set X closes then there is a
model for X, which will be enough to show that X is consistent. To understand how
such a model can be found we imagine the tableau as computing possible valuations
at worlds in a model. We start somewhere and see whether we can fulfill X. The
rules (¬E), (∧E) and (∨E) are local rules. They allow us to derive something about
what has to be true at the given world. By using the rule (�E′), however, we go into
another world and investigate the valuation there. Thus, (�E′) is not local; we call
it the step rule. Once we have made a step there is no returning back. This is why
one should always apply local rules first. In fact, we can also prove that any closing
tableau gives rise to another closing tableau where (�E′) has been applied only when
nothing else was possible. Call a set downward saturated if it is closed under (¬E),
(∨E) and (∧E). Alternatively, X is downward saturated if (i) for every ¬¬ϕ ∈ X also
ϕ ∈ X, (ii) for every ϕ∧ψ ∈ X both ϕ ∈ X and ψ ∈ X, and (iii) for every ¬(ϕ∧ψ) ∈ X
either ¬ϕ ∈ X or ¬ψ ∈ X.

L 3.8.2. Suppose there is a closing tableau for X. Then there is a closing
tableau for X where (�E′) is applied only to downward saturated sets.

P. Consider an application of (�E′) where an application of (∧E) has been
possible instead:

X;ϕ ∧ ψ;� jY;¬� jχ

Y;¬χ

Replace this derivation by

X;ϕ ∧ ψ;� jY;¬� jχ

X;ϕ;ψ;� jY;¬� jχ

Y;¬χ
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By assumption, there is a closing tableau for Y; χ, so the latter tableau can be brought
to close as well. Similarly for (¬E). With (∨E) we get

X;ϕ ∨ ψ;� jY;¬� jχ

Y;¬χ

which we replace by

X;ϕ ∨ ψ;� jY;¬� jχ

X;ϕ;� jY;¬� jχ X;ψ;� jY;¬� jχ

Y; χ Y;¬χ

Again, Y; χ has a closing tableau by assumption, so the latter derivation has a clos-
ing tableau. This process of swapping derivations yields less and less offending
instances, so it terminates in a derivation where (�E′) is applied only when all for-
mulae are either variables, negated variables or of the form ¬� jχ, � jχ. �

Call a CK–tableau good if the rule (�E′) is applied to downward saturated sets. Now
we use good tableau–derivations to find our model. Assume that no closing tableau
for X exists, hence also no closing good tableau. The frame will be based on worlds
wZ for downward saturated Z. Let S X be the set of all sets in any tableau for X which
is on a branch that does not close. By assumption, X ∈ S X . Within S X let SatX be
the subcollection of downward saturated sets in S X . By assumption, for each Z ∈ S X

there exists a saturated Z? ∈ SatX containing X. Let Z,Y ∈ SatX . Then put Y C j Z iff
Z is a saturation of a set U obtained by applying (� jE′) to Y . This defines the frame
SatX := 〈SatX , 〈C j : j < κ〉〉. Furthermore, let Y ∈ β(p) iff p ∈ Y . By assumption,
for no p we have both p ∈ Y and ¬p ∈ Y and so the definition is not contradictory.
We will now show that if ϕ ∈ Y then 〈SatX , β,Y〉 � ϕ. By definition of SatX we never
have both ϕ ∈ Y and ¬ϕ ∈ Y . Now, let ϕ = ψ1 ∧ ψ2. If ψ1 ∧ ψ2 ∈ Y then both
ψ1, ψ2 ∈ Y and so by induction hypothesis the claim follows. Next, let ϕ = ¬¬ψ.
If ϕ ∈ Y , then also ψ ∈ Y and applying the induction hypothesis, the claim follows
again. Finally, if ¬(ψ1 ∧ ψ2) ∈ Y then either ¬ψ1 ∈ Y or ¬ψ2 ∈ Y . In either case we
conclude 〈SatX , β,Y〉 � ϕ, using the induction hypothesis. Now assume ϕ = ¬� jψ
for some ψ. By construction there is a downward saturated Z such that Y C j Z and
¬ψ ∈ Z. By induction hypothesis, 〈SatX , β,Z〉 � ¬ψ, showing that 〈SatX , β,Y〉 � ϕ.
Now let ϕ = � jψ and take a j–successor Z of Y . This successor is of the form U?

where U? is the saturation of U, which in turn results from Y by applying (�E′).
Thus 〈SatX , β,U?〉 � ψ, by induction hypothesis. Hence 〈SatX , β,Y〉 � ϕ.

T 3.8.3. A set X of modal formulae is Kκ–consistent iff no Kκ–tableau
for X closes. Kκ–satisfiability is in PSPACE.

P. Only the last claim needs proof. It is enough to see that we can do the
tableau algorithm keeping track only of a single branch, backtracking to a branching
point whenever necessary. (This is not entirely straightforward but can be achieved
with a certain amount of bookkeeping.) So, we need to show that a branch consumes
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only polynomial space. We see however that each branch of the tableau is of depth
≤ dp(ϕ) and that each node is of length ≤ |ϕ|2. �

We note that by a result L [137], satisfiability is also PSPACE–complete.
(In fact, L proves in that paper that all logics in the interval [K,S4] are PSPACE–
hard.) With each tableau calculus we can associate a dual tableau calculus. Notice
that for formulae a dual has been defined by reversing the roles of ∧ and ∨ as well
as � j and ♦ j. In particular, if ϕ is a formula, ¬ϕ is the same as ϕd[¬p/p]. The dual
tableau calculus consists in reversing the roles of ∧ and ∨, � j and ♦ j. Here a set X
is read disjunctively, and we attempt to show that X is a theorem. For example, the
following is a rule of the dual calculus

(♦D)
♦ jX;¬♦ jϕ

X;¬ϕ

For suppose `K
∨

X ∨ ¬ϕ. Then ϕ `K
∨

X is valid, and so is ♦ jϕ `K ♦ j
∨

X. Hence
¬♦ jϕ ∨

∨
♦ jX is a theorem. It is the same to show that X has a closing tableau as it

is to show that ¬X has a closing dual tableau. Notice that the dual of (∨E) is (∧E)
and has no branching, while the dual of (∧E) is (∨E) and does have branching. The
dual of (w) is (w), and the dual of (¬E) is (¬E) as is easily checked.

T 3.8.4. ϕ ∈ Kκ iff there is a closed dual tableau for {ϕ}.

Let us now see in what ways a tableau calculus helps in finding interpolants.
Consider ϕ `K ψ, that is, ϕ;¬ψ is K–inconsistent. Then we need to find a χ in the
common variables of ϕ and ψ such that ϕ;¬χ is inconsistent and χ;¬ψ is inconsis-
tent as well. The idea is now to start from a closing tableau for ϕ;¬ψ and define χ
by induction on the tableau, starting with the leaves. To that end, let us introduce a
marking or signing of the occurring formulae in a tableau. In the tableau we intro-
duce the marks a and c, where a stands for antecedent and c for consequent. Each
formula is thus signed, whereby we signal whether it is a part of ϕ or a part of ψ in
the tableau. We start with the initial set ϕa; (¬ψ)c. The rules are then as follows. The
tableau operates on sets of the X;ϕ, where X remains unchanged when passing from
above the line to below (except for (�E)). In the marked rule, each formula in the
set X inherits its previous mark, while the newly occurring formulae after applying
the rule inherit their mark from ϕ, the formula on which the rule operates. (There is
a slight twist here. A set may contain a formula ϕ that is marked ϕa as well as ϕc. In
that case we will treat these two as distinct formulae. Alternatively, we may allow a
formula to carry a double mark, i. e. in this case ϕac.) For example, the marked rule
(∨E) looks as follows.

Xa; Yc;¬(ϕ ∧ ψ)c

Xa; Yc; (¬ϕ)c|Xa; Yc; (¬ψ)c

In (�E), a formula � jψ of � jX has the same mark as the corresponding ψ in X below.
This concludes the marking procedure.
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Now suppose that we have a closing tableau. We will now define two tableaux,
one with formulae marked a and i and the other with formulae marked as i and c.
The first will be a tableau for ϕ;¬χ and the second a dual tableau for χ;¬ψ. Again,
the same rules for marking apply. i stands here for interpolant. The construction
will be by unzipping the original tableau as follows. Each time we have a set X in
the tableau, we show that it is of the form X = Ya; Zc and that there is a formula χi

such that Ya; (¬χ)i has a closing tableau and ¬Zc; (¬χ)i has a closing dual tableau.
This will yield the desired conclusion; for if ϕ;¬χ closes, we get ϕ ` χ, and if ψ;¬χ
dual closes, we get ` ¬χ ∨ ψ, that is, χ ` ψ. In the actual proof we will construct ¬χ
instead of χ, which makes the proof easier to read. So, we will construct a χ such
that ϕ; χ has a closing tableau, and ¬ψ; χ a closing dual tableau.

A dual tableau for ¬X is isomorphic to a tableau for Xd, the dual of X. So there
is an inherent duality in the construction, which we will use extensively. The proof
will be by induction. We begin with the leaves. There are four possibilities how a
branch can close, either as (aa) pa; (¬p)a or as (ac) pa; (¬p)c or as (ca) pc; (¬p)a or
as (cc) pc; (¬p)c. In case (aa) we choose χ := >, in case (ac) we chose χ := ¬p, in
case (ca) we choose χ := p, and in case (cc) we put χ := ⊥. In each case the claim is
directly verified. Now suppose that (w) has been applied.

(w)
Xa

1 ; Xc
2; Ya

1 ; Yc
2

Xa
1 ; Xc

2

By induction hypothesis, there is an interpolant χ for Xa
1 ; Xc

2. It is easy to verify that
χ also is an interpolant for Xa

1 ; Xc
2; Ya

1 ; Yc
2 . Next, suppose (�E) has been applied, say

on the antecedent formula ¬� jϕ.

(�E)
� jXa;� jYc; (¬� jϕ)a

Xa; Yc; (¬ϕ)a

By induction hypothesis we have a closing tableau for Xa;¬ϕa; χi and a dual closing
tableau for χi; (¬Y)c. Now consider the following rule applications.

� jXa; (¬� jϕ)a; (� jχ)i

Xa; (¬ϕ)a; χi

♦ j¬Yc; (¬♦ j¬χ)i

¬Yc; (¬¬χ)i

¬Yc; χi

By assumption, the lower line has a closing tableau; hence the upper line has a clos-
ing tableau as well. This shows that (� jχ) is an interpolant for the premiss of (�E).
Now suppose that the rule has operated on a consequent formula, (¬� jψ)c. Then we
have to put as the new interpolating formula the dual formula, ♦ jχ = ¬� j¬χ. The
argumentation now is completely dual. We have

� jXa; (¬� j¬χ)i

Xa;¬¬χi

Xa; χi

♦ j¬Xc; (¬� jψ)c; (♦ jχ)i

¬Xc;¬ψc; χi
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The lower lines have a closing tableau, and so do therefore the premisses. In the case
where (¬E) and (∧E) have applied, we choose for the new interpolant the old one.
It is easy to check that this satisfies the requirements. In the first case, if (¬E) has
operated on an a–formula we get

Xa; (¬¬ϕ)a; χi

Xa;ϕa; χi

So, since Xa;ϕa; χi has a closing tableau, so has Xa; (¬¬ϕ)a; χi. On the dual side,
Xc has remained unchanged, so nothing is to be proved. Dually if the rule (¬E) has
applied to a c–formula. In case of (∧E) and an a–formula we get

Xa; (ϕ ∧ ψ)a; χi

Xa;ϕa;ψa; χi

By induction hypothesis, the lower set has a closing tableau; thus there is one for
the upper set. Since Xc did not change, there is nothing to prove for Xc. If (∧E) has
applied to a c–formula (ϕ ∧ ψ), the case is exactly dual to an application of (∨E) to
an a–formula. Now, finally, the rule (∨E). Since we introduce a split, there are now
two interpolation formulae, χ1 and χ2, one for each branch. Suppose first that an
antecedent formula has been reduced. Then we put χ := χ1 ∧ χ2.

Xa; (¬(ϕ ∧ ψ))a; (χ1 ∧ χ)i

Xa; (¬ϕ)a; (χ1 ∧ χ2)i

Xa; (¬ϕ)a; χi
1; χi

2

Xa; (¬ϕ)a; χi
1

Xa; (¬ψ)a; (χ1 ∧ χ2)i

Xa; (¬ψ)a; χi
1; χi

2

Xa; (¬ψ)a; χi
2

¬Xc; (χ1 ∧ χ2)i

¬Xc; χi
1|¬Xc; χi

2

Both tableaux can be brought to close. The first by the fact that we have chosen
χi appropriately. The second by the fact that both χi

1;¬Xc and χi
2;¬Xc close by

induction hypothesis. This concludes the inspection of all rules.

T 3.8.5. Kκ has local interpolation. Moreover, an interpolant for ϕ and
ψ can be constructed from a closing tableau for ϕ;¬ψ.

For special logics extending K1 there exist tableau calculi which allow to con-
struct interpolants. We will display the relevant rules below.

(4.)
�X;¬�ϕ
X;�X;¬ϕ

(t.)
X;�ϕ
X;ϕ

(g.)
�X;¬�ϕ

X;�X;¬ϕ;�ϕ
(grz.)

�X;¬�ϕ
X;�X;¬ϕ;�(ϕ→ �ϕ)

(alt1.)
�X;¬�Y;¬�ϕ

X; Y;ϕ

It is an easy matter to verify that these rules are sound. Their completeness is harder
to verify directly, but follows easily with the help of the reduction sets.



146 3. Fundamentals of Modal Logic II

Now, finally, for the promised proof of interpolation for Kκ that does not make
use of tableaux. In fact, it will show not only interpolation but a stronger property of
Kκ called uniform interpolation.

D 3.8.6. Let Λ be a modal logic. Λ has local uniform interpola-
tion if (i.) given ϕ and variables ~q, there exists a formula χ such that var(χ) ⊆ ~q
and for all formulae ψ such that var(ϕ) ∩ var(ψ) = ~q we have ϕ `Λ χ `Λ ψ, and (ii.)
given ψ and variables ~q, there exists a formula χ such that var(χ) ⊆ ~q and for all
formulae ϕ such that var(ϕ) ∩ var(ψ) = ~q we have ϕ `Λ χ `Λ ψ.

The property (i.) alone is called uniform preinterpolation and the property (ii.)
alone uniform postinterpolation. By definition, if a logic has uniform preinterpo-
lation the interpolant does not depend on the actual shape of ψ but only on the set
of shared variables. Since ϕ `Λ ψ iff ¬ψ `Λ ¬ϕ either of (i.) and (ii.) is sufficient
for showing uniform interpolation. We will now show that Kκ has uniform preinter-
polation. For simplicity we take the case of a single operator, that is, we prove the
statement for K1. But the generalization is easy enough to make. The central idea
is that when we have ϕ ` ψ, and we have a variable p that occurs in ϕ but not in ψ
we want to simply erase the variable p in ϕ and define a formula ϕ>(p) (or simply
ϕ>) such that ϕ>(p) ` ψ. Define ϕ>(p) as follows. An occurrence of the variable p is
replaced by > if it is embedded in an even number negations, and by ⊥ otherwise.
Given this definition it is easily shown that ϕ ` ϕ>. This is one half of what we
need; the other half is ϕ> ` ψ. Now here things can go wrong. Take, for example,
ϕ := p ∧ ¬p and ψ := ⊥. Clearly, ϕ ` ψ. Given the current definition, ϕ> = > ∧ ¬⊥.
This formula is equivalent to >. Hence ϕ> 0 ⊥. To surround this problem, put ϕ
into standard and explicit form. We will show in the next lemma that any model for
ϕ> based on an intransitive tree is the p–morphic image of a model for ϕ. Here, an
intransitive tree is a frame 〈 f ,C〉 such that it contains no cycles with respect to C and
in which x C z and y C z implies x = y.

L 3.8.7. Suppose that ϕ is standard, explicit and clash free. Then for any fi-
nite model 〈f, β, x〉 for ϕ>(p) based on an intransitive tree there exists a model 〈g, γ, x′〉
for ϕ such that

i 〈g,C〉 is an intransitive tree and there exists a contraction c : g� f,
ii for all q , p, β(q) = c[γ(q)]

iii x = c(x′).

P. By induction on the modal depth of ϕ. Assume that the depth is 0. Then
ϕ =

∨
i<m νi, each νi a conjunction of sentence letters or their negations. Then ϕ> =∨

i<m ν
>
i . Suppose that 〈f, β,w0〉 � ϕ

>. We assume that β is defined only on the
variables of ϕ>. Then there exists an i < m such that 〈f, β, x〉 � ν>i . Now put γ(q) :=
β(p) if q , p and γ(p) := {w0} if p is a conjunct of νi and γ(p) := ∅, else. Since ϕ
is clash free, this is well–defined. Then 〈f, γ,w0〉 � νi, and so 〈f, γ,w0〉 � ϕ. Now let



3.8. Tableau Calculi and Interpolation 147

dp(ϕ) > 0. Then ϕ is a disjunction of formulae ϕi of the form

ϕi = µ ∧
∧
j<n

♦ψ j ∧ �χ.

Assume further that 〈f, β,w0〉 � ϕ
>. β is defined only on the variables of ϕ>. Then

for some i we have 〈f, β,w0〉 � ϕi. Furthermore,

ϕ>i = µ
> ∧

∧
j<n

♦ψ>j ∧ �χ
> .

Put f0 := f, γ0(p) := {w0} if p is a conjunct of µ, and γ0(p) := ∅ otherwise. For q , p
put γ0(q) := β(q). Then 〈f0, γ0,w0〉 � µ. Let the set of successsors of w0 be suc(w0) =
{xα : α < λ}. λ is finite. Inductively, for each α < λ we perform the following
operation. Case 1. 〈fα, γα, xα〉 � ψ>j for some j. Then put J := {k : ψk ↔ ψ j ∈

Kκ}. Let g be the transit of xα in fα. By induction hypothesis, there exists a model
〈hk, δk, yk〉 � ψk for each k ∈ J and a p–morphism ek : hk � g satisfying (ii) and (iii).
Form fα+1 by blowing up the frame g to

⊕
k∈J hk. (See Theorem 3.3.3.) There exists

a p–morphism dα+1 : fα+1 � fα, obtained by extending
⊕

k∈J ek to f α+1. Moreover,
γα+1(p) := γα(p) ∪

⋃
k∈J(dα+1)−1[δk(p)], and for q , p, γα+1(q) := (dα+1)−1[γα(q)].

Case 2. 〈fα, γα, xα〉 2 ψ>j for all j. Then at least 〈fα, γα, xα〉 � χ>, and we proceed as
follows. We know that χ is a disjunction of simple standard, explicit and clash–free
formulae τi. For some i we have 〈fα, γα, xα〉 � (τi)>. Let g be the transit of xα in
f. By induction hypothesis there exists a h and a p–morphism e : h � g, a δ0 and
y satisfying (ii) and (iii) such that 〈h, δ0, y〉 � τi, and so 〈h, δ0, y〉 � χ. Now blow
up g to h in f. This defines fα+1. There exists a p–morphism dα+1 : fα+1 � fα. Put
γα+1(p) := γα(p) ∪ (dα+1)−1[γα(p)], and let γα+1(q) := (dα+1)−1[γα(q)] for q , p.

It is clear that 〈fα, γα, xβ〉 � ψ j iff 〈fα+1, γα+1, xβ〉 � ψ j for all β < α, and
〈fα, γα, xβ〉 � (ψ j)> iff 〈fα+1, γα+1, xβ〉 � (ψ j)> for β > α. Furthermore, 〈fα+1, γα+1,w0〉 �
µ. Put g := fλ. Then the composition c := d1 ◦ d2 ◦ . . . ◦ dλ : g � f. For q , p,
γ(q) := γλ(q), is the result of blowing up β by c. Moreover, c(w0) = w0, and

〈g, γ,w0〉 � ϕi ,

which had to be shown. �

T 3.8.8. Kκ has uniform local interpolation.

P. Suppose that ϕ(~p, ~q) 0 ψ(~q,~r). Let ϕ0(~p, ~q) be a standard, explicit and
clash–free formula deductively equivalent to ϕ. Let ~p consist of the variables pi,
i < n. Now for i < n, let ϕi+1(~p, ~q) := ϕi(~p, ~q)>(pi). χ := ϕn. Then the variables
pi do not occur in χ. Moreover, ϕ ` χ. Now assume that χ 0 ψ. Then there exists
a finite intransitive tree f0, a valuation β0 and a w0 such that 〈f0, β0,w0〉 � χ;¬ψ.
By the previous lemma, if 〈fi, βi,w0〉 � ϕn−i;¬ψ and fi is an intransitive tree then
there exists a model 〈fi+1, βi+1,w0〉 � ϕn−i−1;¬ψ such that fi+1 is an intransitive tree.
Hence, by induction, we have 〈fn, βn,w0〉 � ϕ0;¬ψ. This means that ϕ 0 ψ, since ϕ0
is deductively equivalent with ϕ. This contradicts the fact that ϕ ` ψ. �
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It should be noted that the assumption that Kκ is complete with respect to finite
intransitive trees is rather essential for the proof method. The method of reduction
sets cannot be applied to show uniform interpolation for the standard systems. The
notion of uniform interpolation has been introduced by A P [161]. It has
been shown subsequently by S G and M. Z [74] and A
V [223] that K, Grz and G have uniform interpolation, but that S4 lacks uniform
interpolation. Furthermore, F W [243] proves that uniform interpolation
is preserved under fusion. From the latter follows already that polymodal K has
uniform interpolation if only K has uniform interpolation.

Notes on this section. The notion of a downward saturated set first appeared
in H [104], who gave a tableau calculus for K4 and other systems. Tableau
calculi have attracted much interest in machine based theorem proving. The litera-
ture is too large to be adequately summarized here. Suffice to mention here the work
by M F [70], R G́ [88] and M A [1]. Further-
more, [224] contains an overview of proof theory in modal logic. Tableau calculi are
closely connected to Gentzen–calculi. A Gentzen calculus operates on pairs of sets
of formulae, 〈Γ,∆〉, written Γ ` ∆. It is possible to reformulate a Gentzen calculus
as a tableau calculus. The method for proving interpolation employed above is quite
similar to the one introduced by S. M in [144].

Exercise 122. Show that the rule (4.) is sound and complete for K4. Hint. Use the
reduction sets for K4.

Exercise 123. Show that the rule (t.) is sound and complete for K.T, and that the
rules (t.) and (4.) together are sound and complete for S4.

Exercise 124. Show that (g.) is sound and complete for G, and that (grz.) is sound
and complete for Grz. Hint. You have to use two reductions in succession here, first
one to K4 and then one to K.

Exercise 125. Show that (alt1.) is sound and complete for K.alt1.

Exercise 126. Show that ϕ `K ϕ>(p).

Exercise 127. (W [243].) Show that if AlgΛ is a locally finite variety and Λ
has interpolation, then Λ has uniform interpolation. It follows, for example, that S5
has uniform interpolation. Hint. The notion of a locally finite variety is defined in
Section 4.8. You may work with the following characterization: AlgΛ is locally fi-
nite iff CanΛ(n) is finite for every n ∈ ω.

Exercise 128. Show that G and Grz are in PSPACE. Hint. Show that the length of a
branch for in a tableau for ϕ is bounded by the number of subformulae of ϕ.
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Exercise 129. Here is a tableau calculus for determining whether or not ∆ 
Kκ
ϕ.

Introduce a formula diacritic ♠. Now replace the rule (� jE) by

¬� jϕ;� jX; Y♠

¬ϕ; X; Y♠

Furthermore, add the rule
X; Y♠

X; Y♠; Y
Show that ∆ 
Kκ

ϕ iff ∆♠;ϕ has a closing tableau. Show then that the problem
‘ψ 
Kκ

ϕ?’ is in EXPTIME.

3.9. Modal Consequence Relations

In this section we will study the lattice of all consequence relations. Thereby
we will also elucidate the role of the consequence relations `Λ and 
Λ. We start
by defining the notion of a modal consequence relation and give some alternative
characterizations.

D 3.9.1. A modal consequence relation is a consequence rela-
tion over Pκ which contains at least the rule (mp.) and whose set of tautologies is
a modal logic. If ` is a modal consequence relation and Λ := Taut(`) then ` is a
modal consequence relation for Λ. ` is normal (quasi–normal, classi-
cal, monotone) if Λ is.

In sequel we will deal exclusively with normal consequence relations. Notice
that if ` ⊆ ℘(Pκ) × Pκ is a consequence relation, then we may define `λ := `
∩ (℘(Pλ) × Pλ) if λ ≤ κ, and if λ > κ let `λ denote the least consequence relation
over Pλ containing `. A special case is λ = 0.

P 3.9.2. Let ` be a consistent modal consequence relation. Then its
reduct to the language >, ¬ and ∧ is the consequence relation of boolean logic.

P. Taut(`0) contains all boolean tautologies. For we have

Taut(`0) = Taut(`) ∩ P0 .

The rule of modus ponens is contained in `0. Therefore, `0 contains the consequence
relation `2. If ` is consistent, we have p 0 q, so p 00 q, and so `0 is consistent too.
However, `2 is maximal, and so equal to `0. �

If ` is a normal consequence relation, we denote by Q(`) the lattice of extensions
of ` and by E(`) the lattice of normal extensions. We will show below that this is a
complete and algebraic lattice. Now let Λ be a modal logic. Then define

CRel(Λ) := {` : Taut(`) = Λ}

As we have seen in Section 1.4 of Chapter 1, CRel(`) is an interval with respect
to inclusion. The smallest member is in fact `Λ, as follows immediately from the
definition. The largest member will be denoted by `m

Λ
; it is structurally complete. As
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is clear, for a given set of tautologies there exists exactly one structurally complete
logic with the given tautologies, and at most one logic with a deduction theorem for
→. `m

Λ
is the structurally complete logic with respect to Λ and `Λ is the logic with a

deduction theorem for→.

P 3.9.3. Let Λ be a modal logic. Then

CRel(Λ) = {` : `Λ ⊆ ` ⊆ `m
Λ}

Moreover, `Λ is the unique member of CRel(Λ) having a deduction theorem for →
and `m

Λ
the unique member which is structurally complete.

To see some more examples, consider the rule 〈{�p}, p〉. It is admissible in K.
For assume that ϕ := pσ is not a theorem. Then there exists a model 〈f, β, x〉 � ¬ϕ.
Consider the frame g based on f ∪ {z}, where x < f , and the relation J:= C∪ {〈z, y〉 :
y ∈ f }. Take γ(p) := β(p). Then 〈g, γ, z〉 � ¬�ϕ. We warn the reader here that even
though for any modal consequence relation, �p ` p is equivalent to p ` ♦p, the rule
〈{p}, ♦p〉 is not admissible in K despite the admissibility of 〈{�p}, p〉. Take p := >.
♦> is not a theorem of K. Similarly, the so–called MacIntosh rule 〈{p→ �p}, ♦p→
p〉 is not admissible for K. Namely, put p := �⊥. �⊥ → ��⊥ is a theorem but
♦�⊥ → �⊥ is not. Notice also that if a rule ρ is admissible in a logic Θ we may
not conclude that ρ is admissible in every extension of Θ. A case in point is the rule
〈{�p}, p〉, which is not admissible in K ⊕ �⊥.

Recall the notation `R. This denotes the consequence relation generated by the
rules R. At present we may tacitly assume that R contains (mp.). Equivalently, `R

is the least modal consequence relation containing R. Notice that for every modal
consequence relation ` there exists an R with ` = `R (for example the set of all
finitary rules of ` itself).

P 3.9.4. The set of modal consequence relations over Pκ forms an
algebraic lattice. The compact elements are exactly the finitely axiomatizable conse-
quence relations. The lattice of quasi–normal consequence relations is the sublattice
of consequence relations containing `Kκ

.

P. Clearly, the operation is set intersection, and `1 t `2 is the smallest
consequence relation containing both `1 and `2. If `1 = `

R1 and `2 = `
R2 then

`1 t `2 = `
R1∪R2 . With this latter characterization it is easy to define the infinite

union. Namely, if `i = `Ri for i ∈ I, put I `i := `S , where S :=
⋃

I Ri. All
rules are finitary by definition. Therefore, if a rule is derivable in `S , then it is
derivable already from a finite union of the `i. It follows that a finitely axiomatizable
consequence relation is compact, and that a compact consequence relation is finitely
axiomatizable. Moreover, the lattice is algebraic, since `R = ρ∈R `

ρ. The last claim
is a consequence of the fact that `′ is quasi–normal iff Taut(`′) is quasi–normal iff
Taut(`′) contains Kκ. �
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P 3.9.5. For each quasi–normal logic Λ and each quasi–normal con-
sequence relation `′,

`Λ ⊆ `
′ ⇔ Λ ⊆ Taut(`′)

Taut(−) commutes with infinite intersections, `Λ with infinite intersections and joins.

P 3.9.6. E (`Kκ
) is a complete sublattice of Q (`Kκ

).

P 3.9.7. In monomodal logic, `Λ is maximal iff Λ is a coatom.

P. Clearly, if `Λ is maximal in E(`K), Λ must be a coatom. To show the
converse, we need to show is that for a maximal consistent normal logic Λ, `Λ is
structurally complete. (It will follow that CRel(Λ) has exactly one element.) Now,
Λ is Post–complete iff it contains either the formula �> or the formula p ↔ �p.
Assume that `Λ can be expanded by a rule ρ = 〈∆, ϕ〉. Then, by using the axioms
ρ can be transformed into a rule ρ′ = 〈∆′, ϕ′〉 in which the formulae are nonmodal.
(Namely, any formula in a rule may be exchanged by a deductively equivalent for-
mula. Either �> ∈ Λ and any subformula �χ may be replaced by >, or p↔ �p ∈ Λ
and then �χ may be replaced by χ.) A nonmodal rule not derivable in `Λ is also
not derivable in its boolean fragment, `0

Λ
. By the maximality of the latter, adding ρ′

yields the inconsistent logic. �

In polymodal logics matters are a bit more complicated. We will see that there
exist in fact 2ℵ0 logics which are coatoms in E K2 without their consequence rela-
tion being maximal. Moreover, we will see that even in monomodal logics there
exist 2ℵ0 maximal consequence relations, which are therefore not of the form `Λ (ex-
cept for the two abovementioned consequence relations). Notice that even though
a consequence is maximal iff it is structurally complete and Post–complete, Post–
completeness is relative to the derivable rules. Therefore, this does not mean that
the tautologies are a maximally consistent modal logic. We define the T–spectrum
of Λ, TSp(Λ), to be the cardinality of the set of consequence relations whose set of
tautologies is Λ.

TSp(Λ) := card CRel(Λ)
To characterize the choices for the T–spectrum we will first deal with a seemingly
different question.

P 3.9.8. Let Λ be a normal logic. Then the following are equivalent.
(1) `Λ = 
Λ.
(2) 
Λ admits a deduction theorem for→.
(3) Λ ⊇ Kκ ⊕ {p→ � j p : j < κ}.
(4) Λ is the logic of some set of Kripke–frames containing only one world.

P. Clearly, if (1.) holds, then (2.) holds as well. Now let (2.) be the case.
Then since p 
Λ � j p, by the deduction theorem, 
Λ p → � j p, which gives (3.).
From (3.) we deduce (1.) as follows. Since p; p → � j p `Λ � j p, and p → � j p ∈ Λ,
we get p `Λ � j p. Therefore, 
Λ=`Λ. Finally we establish the equivalence of (3.) and
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(4.). Assume (4.). Then clearly the formulae p → � j p are axioms, since they hold
on any one–point frame. Now assume that (4.) fails. Consider a rooted generated
subframe F of CanΛ(var) consisting of more than one point. Such a frame must exist,
by assumption. Let X be the root and Y a j–successor. Then there exists a set ϕ̂ such
that X ∈ ϕ̂ but Y < ϕ̂. Now put β(p) := ϕ̂. It follows that 〈F, β, X〉 � p;¬� j p. Hence
(3.) fails as well. �

Now let us return to the question of T–spectra. Clearly, if `Λ , 
Λ then the
T–spectrum of Λ cannot be 1. We will show now that the converse almost holds.

P 3.9.9. Let Λ be a modal logic. Then the following are equivalent.

(1) The T–spectrum of Λ is 1.
(2) `Λ is structurally complete.
(3) Λ is the logic of a single Kripke–frame containing a single world.
(4) Λ is a fusion of monomodal logics of the frames • or ◦ .

P. The equivalence between (1.) and (2.) is immediate. The equivalence
of (3.) and (4.) is also not hard to show. If Λ is a fusion of logics for one–point
frames it contains for each operator either the axiom � j> or p ↔ � j p. It means
that the relation C j is on all frames empty or on all frames the diagonal. Hence the
generated subframes of the canonical frame are one–point frames and they are all
isomorphic. Finally, we show (2.) ⇔ (3.). Assume (3.). Then by the fact that the
`Λ is the logic of a single algebra based on two elements, and has all constants, it is
structurally complete. Now let (3.) fail. There are basically two cases. If Λ is not
the logic of one–point frames, then `Λ is anyway not structurally complete by the
previous theorem. Otherwise, it is the intersection of logics determined by matrices
of the form 〈A,D〉, D an open filter, A the free algebra in ℵ0 generators. (In fact, the
freely 0–generated algebra is enough.) A contains a constant c such that 0 < c < 1.
Namely, take two different one point frames. Then, say, �0 is the diagonal on one
frame and empty on the other. Then c := �01 is a constant of the required form. The
rule 〈{♦0>}, p〉 is admissible but not derivable. �

The method of the last proof can be used in many different ways.

L 3.9.10. Let Λ be a logic and χ a constant formula such that neither χ
not ¬χ are inconsistent. Then the rule ρ[χ] := 〈{χ},⊥〉 is admissible for Λ but not
derivable in `Λ.

P. Since χ < Λ and var(χ) = ∅, for no substitution σ, χσ ∈ Λ. Hence the
rule ρ[χ] is admissible. If it is derivable in `Λ then `Λ χ → ⊥, by the deduction
theorem. So ¬χ ∈ Λ, which is not the case. So, ρ[χ] is not derivable. �

T 3.9.11. Let Λ be a logic such that FrΛ(0) has infinitely many elements.
Then TSp(Λ) = 2ℵ0 .
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P. Let A ⊆ FrΛ(0). Call A a block if 0, 1 < A and for every a, b ∈ A, if
a , b then a ∩ b = 0. For each a ∈ A there exists a constant formula χa whose value
in FrΛ(0) is a. So, for a subset S ⊆ A, put

`S
Λ := `Λ t a∈S `

ρ[χa]

We claim that (1) `S
Λ
∈ T(`Λ), (2) if S , T then `S

Λ
= `T

Λ
, and (3) FrΛ(0) contains a

block of size ℵ0. Ad (1). By the previous lemma, all the rules ρ[χa] are admissible,
by the requirement that a ∈ A and A is a block. Ad (2). Suppose that a ∈ S − T .
Then let U be the closure under (mp.) of χa in Λ. We claim that U is a theory of
`T
Λ

but not of `S
Λ

. To be a theory of `R
Λ

for some set R no more is required than it be
closed under (mp.) and consistent if it is does not contain any χa, a ∈ R, or else be
inconsistent (and contain all formulae). Now since a < T and χa is consistent, the
(mp.) closure does not contain any χb, b ∈ T , since a ∩ b = 0 (which means that
χa `Λ ¬χb). Since a ∈ S , χa `

S
Λ
⊥. Ad (3). We distinguish three cases. Case A.

FrΛ(0) has infinitely many atoms. Then the atoms form a block of size at least ℵ0.
Case B. FrΛ(0) has no atoms. Then there exists a sequence 〈ci : i ∈ ω〉 such that
0 < ci+1 < ci < 1 for all i < ω. Put ai := ci − ci+1. Then 0 < ai since ci > ci+1 and
ai < 1 since ci < 1. Furthermore, let i < j. Then ai∩a j = (ci∩−ci+1)∩ (c j∩−c j+1) =
c j ∩ −ci+1 ≤ ci+1 ∩ −ci+1 = 0. So there exists an infinite block. Case C. There exist
finitely many atoms. Then let C be the boolean algebra underlying FrΛ(0). We claim
that C � A×B, where A is finite andB is atomless. (This is left as an exercise.) Now
B contains an infinite block, 〈bi : i ∈ ω〉. Put ai := 〈1, bi〉. The set A := {ai : i ∈ ω}
is a block in A ×B. �

C 3.9.12. Let Λ be a monomodal logic and Λ ⊆ G.3. Then TSp(Λ) =
2ℵ0 .

P. G.3 has infinitely many distinct constants, namely �n⊥, n ∈ ω. This
applies as well to Λ. �

Let us remain with G.3 a little bit. Consider the consequence `m
G.3. We claim that it

is maximal. To see this we need to show that it is Post–complete. This follows from
a general fact that we will establish here.

T 3.9.13. Let Λ be 0–characterized. Then `m
Λ

is maximal.

P. Let 
 ) `m
Λ

. Then Taut(
) ) Λ. Since Λ is 0–characterized, there is a
constant χ such that Λ ( Λ ⊕ χ ⊆ Taut(
). Therefore, χ < Λ. Two cases arise. Case
1. ¬χ < Λ. Then the rule ρ[χ] is admissible in Λ and so derivable in `m

Λ
. Therefore

ρ[χ] ∈ 
, and so since 
 χ, also 
 ⊥. So, 
 is inconsistent. Case 2. ¬χ ∈ Λ. Then
Taut(
) is inconsistent. So 
 is inconsistent as well. �

This theorem makes the search for maximal consequence relations quite easy.
Let us note in passing that there are consequences relations `1 and `2 such that

Taut(`1 t `2) , Taut(`1) t Taut(`2) .
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F 3.2. TM , M = {1, 3, 4, . . .}

. . . •
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Namely, let `1:= `m
G.3 and `2:= `K⊕�⊥. Then Taut(`1 t `2) = K ⊕ ⊥, but G.3 tK ⊕

�⊥ = K ⊕ �⊥.
We will now investigate the cardinality of the set of coatoms in E (`K). We

will show that there are exactly 2ℵ0 . Of course, showing that there are at least that
many is enough; there cannot be more. In the light of the previous theorem, we are
done if we can find 2ℵ0 distinct logics which are 0–characterized. Let M ⊆ ω. Put
TM := {n• : n ∈ ω} ∪ {n◦ : n ∈ M}. Put

x C y ⇔


(1.) x = m•, y = n• and m > n

or (2.) x = m◦, y = n• and m ≥ n
or (3.) x = m◦, y = n◦ and m = n

Let TM be the algebra of 0–definable sets. Put TM := 〈TM ,C,TM〉. We will show
now that if M , N then ThTM , ThTN . To see this, we show that every one–
element set {n◦} in TM is definable by a formula χ(n) that depends only on n, not on
M. First, take the formula

δ(n) := �n+1⊥ ∧ ¬�n⊥

δ(n) defines the set {n•}. Now put

χ(n) := ♦δ(n) ∧ ¬δ(n + 1) ∧ ¬♦δ(n + 1)

It is easily checked that χ(n) defines {n◦}. Hence, if n < M, ¬χ(n) ∈ ThTM . So,
¬χ(n) ∈ ThTM iff n < M. This establishes that if M , N, ThTM , ThTN .

T 3.9.14. The lattice of normal monomodal consequence relations con-
tains 2ℵ0 many coatoms.

Notes on this section. In contrast to the theory of modal logics, the theory of
modal consequence relations is not very well developed. Nevertheless, there has
been significant progress in the understanding of consequence relations, notably
through the work of V R. In a series of papers (see [178], [179],
[180], [181] as well as the book [182] and references therein) he has investigated
the question of axiomatizing `m

Θ
by means of a rule basis. A major result was the

solution of a problem by H F to axiomatize the calculus of admissible
rules for intuitionistic logic. In the more philosophically oriented literature, certain
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special rules have been in the focus of attention. Typically, the notion of a rule is
somewhat more general. It is a pair 〈∆,Γ〉, where ∆ and Γ are sets of formulae. It
is admissible for a logic Λ, if for every substitution σ such that ∆σ ⊆ Λ we have
Γσ ∩ Λ , ∅. Examples are the rule of margins

〈{p→ �p}, {p,¬p}〉

the MacIntosh rule (which is of course also a rule in our sense), the (strong) rules of
disjunction

〈{
∨
i<n

�pi}, {pi : i < n}〉

and the weak rules of disjunction

〈{
∨
i<n

�pi : � compound }, {pi : i < n}〉

The latter are nonfinitary rules. See for example work by B C and K
S [46] and TW [227], [226] and [228].

Exercise 130. Show Proposition 3.9.5.

Exercise 131. Let Λ ⊇ Kκ ⊕ {p → � j p : j < κ}. Show that Λ is the logic of its 0–
generated algebra. It follows that it has all constants. However, `Λ is not necessarily
structurally complete. Can you explain why?

Exercise 132. Let A be a boolean algebra with finitely many atoms. Show that
A � B × C, where B is finite and C is atomless.

Exercise 133. Show that the rule(s) of disjunction are admissible for K. Hint. Start
with models refuting ϕi := pσi . Now build a model refuting

∨
i<n �ϕi.
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The General Theory of Modal Logic





CHAPTER 4

Universal Algebra and Duality Theory

4.1. More on Products

In this chapter we will develop the algebraic theory of modal algebras, taking
advantage of some strong theorems of universal algebra. First, we know from a
theorem by G B that equational classes correspond one–to–one to va-
rieties, and that the lattice of modal logics is dual to the lattice of varieties. Second,
by using the representation theory of boolean algebras by M H. S we
can derive many useful results about general frames, in particular deriving a theorem
about modally definable classes of Kripke–frames. Fuller expositions on universal
algebra can be found in [37], [89].

We have to begin by talking more about products. A generalization of the (di-
rect) product of algebras is the so–called subdirect product. We call A a subdirect
product of the Bi, i ∈ I, if A is a subalgebra of the direct product

∏
i∈I Bi such that

for each projection πi :
∏

i∈I Bi � Bi we have πi[A] = Bi. In other words, if A is
projected onto any factor of the product, we get the full factor rather than a proper
subalgebra. Moreover, also every algebra isomorphic to A will be called a subdirect
product of the Bi. An alternative characterization of this latter, broader notion is the
following. C is a subdirect product of the Bi, i ∈ I, if there exists an embedding
j : C �

∏
i∈I Bi such that for every i ∈ I, πi ◦ j : C � Bi. To see a nontrivial

example of a subdirect product, take the algebra A of the frame F in Figure 4.1. It is
a subdirect product of the algebra B of the frame G; simply take the direct product
B × B, which is isomorphic to the algebra over G ⊕ G. Now take the subalgebra C
generated by the encircled sets. It is isomorphic to the algebra A. (The sets define
the frame H.) An algebra is called subdirectly irreducible (s.i.) if for every sub-
direct product h : A �

∏
i∈I Bi we have that πi ◦ h : A � Bi is an isomorphism

for some i ∈ I. There are some useful theorems on subdirect products and subdirect
irreducibility. Recall that there is a smallest congruence on A, ∆A = {〈a, a〉 : a ∈ A},
also denoted by ∆, and a largest congruence ∇A = A × A, denoted by ∇ when no
confusion arises. The congruences of an algebra form an algebraic lattice.

P 4.1.1. Let A be a subdirect product of the algebras Bi, i ∈ I. Let
πi :

∏
i∈I Bi → Bi be the projections. Then we have⋂

i∈I

ker(πi � A) = ∆A .

159
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F 4.1. A subdirect product
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Conversely, if ∆A =
⋂

i∈I Θi then A is a subdirect product of the algebras A/Θi, i ∈ I.
The embedding of A into

∏
i∈I A/Θi is defined by the map

h(a) := 〈[a]Θi : i ∈ I〉 .

P. An element of the direct product is a sequence a = 〈a(i) : i ∈ I〉. For
two such elements we deduce from 〈a, b〉 ∈

⋂
i∈I ker(πi � A) that 〈a, b〉 ∈ ker(πi � A)

for all i ∈ I, that is, a(i) = b(i) for all i. Hence a = b. This proves the first
claim. For the second observe first that h is a homomorphism. Now h(a) = h(b)
implies [a]Θi = [b]Θi for all i ∈ I, that is 〈a, b〉 ∈ Θi for all i. Hence a = b, since⋂

i∈I Θi = ∆A. Now πi ◦ h[A] = A/Θi, because if [a]Θi is given, then πi ◦ h(a) =
πi(〈[a]Θi : i ∈ I〉) = [a]Θi. �

T 4.1.2. A is subdirectly irreducible iff there exists a congruence Θ such
that every congruence , ∆ contains Θ. Equivalently, A is subdirectly irreducible iff
∆ is

⋂
–irreducible in the lattice of congruences of A.

P. We show the second claim first. Let
⋂

i∈I Θi = ∆ for some Θi which are
all different from ∆. Then consider the subdirect representation h : A�

∏
i∈I(A/Θi).

Then none of the maps πi ◦ h is injective since their kernel is exactly Θi. So, A is
subdirectly irreducible. Let on the other hand

⋂
i∈I Θi , ∆ for all Θi , ∆. Then

in a subdirect representation h : A �
∏

i∈I Bi we have
⋂

i∈I ker(πi ◦ h) = ∆ and
thus Θi = ∆ for some i ∈ I, showing A to be subdirectly irreducible. Now for the
first claim. Let A be subdirectly irreducible. Then let Θ :=

⋂
Φ,∆Φ. Since ∆ is⋂

–irreducible, Θ , ∆. Conversely, if there exists a congruence Θ , ∆ such that
every congruence , ∆ contains Θ, then Θ =

⋂
Φ,∆Φ, so ∆ is

⋂
–irreducible. �

In case that A is subdirectly irreducible, the smallest congruence above ∆ is
called the monolith of A. Now recall the notation Θ(E) for the smallest congruence
containing E. We say E generates Θ(E). A congruence is called principal if there
is a one–membered E generating it. If E = {〈a, b〉} we write Θ(a, b) for Θ(E). It is
easy to see that the monolith of a subdirectly irreducible algebra is principal. The
following is due to [17].

T 4.1.3 (Birkhoff). Every algebra is the subdirect product of subdirectly
irreducible algebras.
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P. For each pair a, b ∈ A of elements consider the set E(a, b) of congruences
such that 〈a, b〉 < E(a, b). Suppose we can show that each E(a, b) has a maximal
element Ψ(a, b) if a , b. Then let Θ(a, b) be the least congruence containing 〈a, b〉.
Θ(a, b) < E(a, b), by definition. Consider now any congruence Θ′ ) Ψ(a, b). By the
fact thatΨ(a, b) is maximal for not being aboveΘ(a, b), we must haveΘ′ ⊇ Ψ(a, b)t
Θ(a, b). Thus, A/Ψ(a, b) is subdirectly irreducible by Theorem 4.1.2. Moreover, we
have ∆ =

⋂
a,bΨ(a, b), hence A is a subdirect product of the A/Ψ(a, b).

But now for the promised proof of the existence of Ψ(a, b). We consider the
following property P of subsets of A × A. S has P iff Θ(S ) does not contain 〈a, b〉.
All we have to show is that P is of finite character. For then by Tukey’s Lemma,
maximal sets exist. By Proposition 1.2.6,

Θ(S ) =
⋃
〈Θ(S 0) : S 0 ⊆ S , S 0 finite 〉 ,

and so the claim is obvious. �

We will close this discussion of decomposition by a criterion of decomposability
into a direct product.

D 4.1.4. Let A be an algebra. A is called directly reducible if there
exist algebras B and C such that ]B , 1 and ]C , 1 and A � B × C. If A is not
directly reducible it is called directly irreducible.

Let A be an algebra and Θ,Ψ ∈ Con(A). Θ and Ψ are said to permute if Θ◦Ψ =
Ψ ◦ Θ. In this case, Θ t Ψ = Θ ◦ Ψ.

T 4.1.5. An algebra A is directly reducible iff there exist congruences Θ
and Ψ, both different from ∇A and ∆A, such that (i.) Θ t Ψ = ∇A, (ii.) Θ u Ψ = ∆A,
(iii.) Θ and Ψ permute.

P. Suppose A is directly reducible. Then there exist algebras B and C,
such that ]B > 1 and ]C > 1, and an isomorphism h : A → B × C. We may
actually assume that A = B × C. Let p1 and p2 be the canonical projections from
B × C onto B and C. These are surjective homomorphisms. Let Θ := ker(p1) and
Ψ := ker(p2). Then Θ , ∇A since B is not isomorphic to 1. Also, Θ , ∆A since C
is not isomorphic to 1. Likewise it holds that Ψ is different from ∇A and ∆A. Now
〈x0, x1〉Θ 〈y0, y1〉 iff x0 = y0 and 〈x0, x1〉Ψ 〈y0, y1〉 iff x1 = y1. It is easy to see that
Θ ◦ Ψ = Ψ ◦ Θ = ∇A, showing (i.) and (iii.), and that Θ ∩ Ψ = ∆A, showing (ii.).
Now assume conversely that Θ and Ψ are nontrivial congruences of A satisfying (i.),
(ii.) and (iii.). Let hΘ : A � A/Θ and hΨ : A � A/Ψ be the natural maps with
kernel Θ and Ψ, and let h := 〈hΘ, hΨ〉 : A → A/Θ × A/Ψ be the map defined by
h(a) := 〈[a]Θ, [a]Ψ〉. This map is a well–defined homomorphism. We have to show
that h is bijective. (1.) h is injective. Let h(a) = h(b). Then [a]Θ = [b]Θ and
[a]Ψ = [b]Ψ, hence [a](Θ ∩ Ψ) = [b](Θ ∩ Ψ). By (ii.), a = b. (2.) h is surjective.
Let 〈[a]Θ, [b]Ψ〉 ∈ A/Θ × A/Ψ. Since Θ ◦ Ψ = ∇A, by (i.) and (iii.), there exists a c
such that aΘ cΨ b. Then [c]Θ = [a]Θ and [c]Ψ = [b]Ψ and so h(c) = 〈[a]Θ, [b]Ψ〉,
as required. �
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An algebra has permuting congruences if all nontrivial congruences permute
pairwise. A class of algebras is congruence permutable if all its members have
permuting congruences. The following is due to A. I. M [155].

T 4.1.6 (Malcev). Let V be a variety of algebras. V is congruence per-
mutable iff there exists a term p(x, y, z) such that for all A ∈ V and all a, b ∈ A

pA(a, a, b) = b, pA(a, b, b) = a .

P. Assume that there exists a term p(x, y, z) with the properties given above.
Then let a and b be elements such that aΘ ◦ Ψ b. Then there exists a c such that
aΘ cΨ b. Hence

a = pA(a, b, b)Ψ pA(a, c, b)Θ pA(c, c, b) = b .

So aΨ ◦ Θ b. Now assume that all members of V have permuting congruences.
Then in particular the algebra A := FrV({x, y, z}) freely generated by x, y and z
has permuting congruences. Let Θ := Θ(〈x, y〉) and Ψ := Θ(〈y, z〉). Then 〈x, z〉 ∈
Θ ◦ Ψ, and so 〈x, z〉 ∈ Ψ ◦ Θ. Hence there exists an element u such that xΨ uΘ z.
This element is of the form pA(x, y, z) for some ternary termfunction p. We claim
that x = pA(x, y, y) and y = pA(x, x, y). This is enough to show the theorem.
To that end, consider the canonical homomorphism hΨ. Modulo an isomorphism,
hΨ : FrV({x, y, z}) � FrV({x, y}) : x 7→ x, y 7→ y, z 7→ y. Put B := FV({x, y)}.
hΨ(pA(x, y, z)) = pB(x, y, y) = hΨ(x) = x, since hΨ(u) = hΨ(x). So, pB(x, y, y) = x
holds in the algebra freely generated by x and y. To see that the equation holds
in any algebra, let D be any algebra in V, and let a, b ∈ D be elements. Let
j : B → D be the unique homomorphism satisfying j(x) = a and j(y) = b. Then
pD(a, b, b) = j(pB(x, y, y)) = j(x) = a. Hence the first equation holds in all algebras.
Analogously for the second equation, using the congruence Θ instead. �

An algebra is said to be congruence distributive if the lattice of congruences is
distributive.

T 4.1.7. An algebra is congruence distributive if there is a ternary termfunc-
tion m(x, y, z) such that for all a, b ∈ A:

m(a, a, b) = m(a, b, a) = m(b, a, a) = a.

P. First of all, from lattice theory we get ΘuΦ ⊆ Θu (ΦtΨ) and ΘuΨ ⊆
Θ u (Φ t Ψ), so that (Θ u Φ) t (Θ u Ψ) ⊆ Θ u (Φ t Ψ). For the converse inclusion
assume 〈a, b〉 ∈ Θ u (Φ t Ψ). Then aΘ b and there is a sequence ci, i < n + 1, such
that

a = c0Φ c1Ψ c2Φ c3 . . .Φ cn−1Ψ cn = b

We then have m(a, ci, b)Θm(a, ci, a) = a and m(a, ci, b)Θm(b, ci, b) = b for all i so
that

m(a, ci, b)Θ aΘ bΘm(a, ci+1, b)
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and m(a, ci, b)Φm(a, ci+1, b) for even i. Similarly for odd i it is shown that m(a, ci, b)Ψm(a, ci+1, b).
Therefore m(a, ci, b) (ΘuΦ) m(a, ci+1, b) for even i and m(a, ci, b) (ΘuΨ) m(a, ci+1, b)
for odd i. Thus 〈a, b〉 ∈ (Θ u Φ) t (Θ u Ψ). �

For example, let A be an algebra in which there are termfunctions u, t such that
〈A,u,t〉 is a lattice. Then A is congruence distributive. Namely, take

m(x, y, z) := (x t y) u (y t z) u (z t x).

This termfunction satisfies the above criterion. If in addition there is a termfunction
′ such that 〈A,u,t,′ 〉 is a boolean algebra, then A has permuting congruences. For
take

p(x, y, z) := (x u z) t (x u y′ u z′) t (x′ u y′ u z) .
If y = z, this reduces to p(x, y, y) = (xuy)t(xuy′)t(x′uy′uy) = (xuy)t(xuy′) = x;
if x = y this gives p(x, x, z) = (xu z)t (xu x′u z′)t (x′u x′u z) = (xu z)t (x′u z) =
z. It also follows that subalgebras, homomorphic images and products of similar
congruence distributive algebras are again congruence distributive, if the same term
can be chosen in all algebras. This is the case with modal algebras.

C 4.1.8. The variety of modal algebras has permuting congruences
and is congruence distributive.

Congruence distributivity is important in connection with reduced products. Let
I be an index set,

∏
i∈I Bi be a product. Let F be a filter on 2I and let ΘF be the set

of all pairs 〈a, b〉 such that {i : a(i) = b(i)} ∈ F. ΘF is a congruence. This is left as
an exercise. Congruences of this form are called filtral. We define the F–reduced
product of the Bi by ∏

F

Bi := (
∏
i∈I

Bi)/ΘF .

If F is an ultrafilter, we speak of an ultraproduct. Given a class K of algebras,
Up(K) denotes the closure of K under ultraproducts. Let us note that if F ⊆ G then
there is a surjective homomorphism

∏
F Bi �

∏
G Bi. The following theorem is due

to B J́ [111], also known as Jónsson’s Lemma.

T 4.1.9 (Jónsson). Let K be a class of algebras and V = HSP(K) be
a congruence distributive variety. If A ∈ V is subdirectly irreducible then A ∈
HSUp(K).

P. Let h : B � A for B �
∏

i∈I Ci. (This is not necessarily a subdirect
product.) Then putΦ := h−1[∆A]; this is a congruence. Moreover, Φ is u–irreducible
in B. For if Θ1 u Θ2 = Φ we have

(Θ1 u Θ2)/Φ = Θ1/Φ u Θ2/Φ = ∆A

in Con(A). This implies Θ1/Φ = ∆A or Θ2/Φ = ∆A, which is nothing but Θ1 = Φ or
Θ2 = Φ.

For subsets S of I let ΘS denote the congruence induced on
∏

i∈I Ci by the prin-
cipal filter ↑S = {T : S ⊆ T ⊆ I}. Furthermore, let D be the set of all S ⊆ I such that
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ΘS � B ⊆ Φ, that is, Φ = Φ t (ΘS � B). Choose U to be a maximal filter contained
in D. Then ΘU =

⋃
〈ΘS : S ∈ U〉, and so ΘU � B ⊆ Φ. All there is to be done is

to show that U is an ultrafilter over I. For then the map B →
∏

U Ci has the kernel
ΘU � B. So this induces an embedding B/(ΘU � B)�

∏
U Ci. Since ΘU � B ⊆ Φ,

there is a homomorphism B/(ΘU � B)� A.
Now observe that if S ,T ⊆ I then

ΘS∪T � B = (ΘS � B) u (ΘT � B).

Therefore we have for S ,T ∈ D

Φ = Φ t (ΘS∪T � B) = (Φ t (ΘS � B)) u (Φ t (ΘT � B)).

Since Φ is u–irreducible in Con(B) we have either Φ = Φ t (ΘS � B) or Φ =
Φ t (ΘT � B). And so we conclude that

If S ∪ T ∈ D then S ∈ D or T ∈ D.

Furthermore
If S ∈ D and S ⊆ T then T ∈ D.

From these properties we can derive that U is an ultrafilter. For if not, there is
a set S such that neither S ∈ U nor I − S ∈ U. Thus there are sets K, L ∈ U
such that S ∩ K < D and (I − S ) ∩ L < D. We show the existence of K; the
existence of L is proved analogously. Suppose that ∅ ∈ D. Then D = 2I and U
is an ultrafilter by construction. Now assume ∅ < D. Consider the system of sets
V := {T : T ⊇ S ∩ K,K ∈ U}. If all S ∩ K ∈ D, we have a system of sets which is a
filter containing U and fully contained in D. In particular, S ∈ V , contradicting the
maximality of U. So there is a K ∈ U such that S ∩ K < D. Likewise, we have an
L ∈ U such that (I − S ) ∩ L < D. Put M := K ∩ L. U is a filter, so M ∈ U. Thus
also M ∈ D. Now M = (S ∩ M) ∪ ((I − S ) ∩ M) but neither set is in D. This is a
contradiction. �

By the fact that modal algebras are congruence distributive we can now infer
that a subdirectly irreducible algebra in the variety generated by some class of modal
algebras K is an image of a subalgebra of an ultraproduct from K. Let us return,
however, to the criterion of subdirect irreducibility. First of all, a congruence Θ on
a boolean algebra A defines a homomorphism hΘ : A � A/Θ with kernel Θ. Put
FΘ := h−1

Θ
(1). This is a filter, as is easily checked. And we have a ∈ F iff aΘ 1.

Moreover, suppose that aΘ b. Then hΘ(a) = hΘ(b) and so hΘ(a ↔ b) = 1, whence
a↔ b ∈ F. In other words, filters are the congruence classes of the top elements and
they are in one–to–one correspondence with congruences on the algebra. Let A be a
boolean algebra. We have seen in Section 1.7 that the map f : Θ 7→ FΘ = {a : aΘ 1}
is a one–to–one map from the lattice of congruences of A onto the lattice of filters
on A. Furthermore, if F is a filter, then ΘF defined by aΘF b iff a ↔ b ∈ F is the
inverse under f . In modal algebras, we have to take open filters rather than filters.
Recall from Section 3.1 that a filter is open if it is closed under
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(fi�.) If a ∈ F then � ja ∈ F

We have shown in Lemma 3.1.5 that open filters indeed correspond to homomor-
phisms. Any intersection of open filters is again an open filter, so the open filters
form a complete lattice, with the join F tG defined as the smallest open filter con-
taining both F and G.

T 4.1.10. The map f : Θ 7→ FΘ := {a : aΘ 1} is an isomorphism from
the lattice Con(A) of a modal algebra A onto the lattice of open filters on A, with
inverse F 7→ ΘF := {〈a, b〉 : a↔ b ∈ F}.

In particular, if C ⊆ A then the smallest open filter containing C, denoted by
〈C〉, can be obtained as follows.

〈C〉 = {d : (∃�)(∃C0 ⊆ f in C)(d ≥ �
⋂

C0)}.

If C is finite, then put c :=
⋂

C. The above condition then reduces to the condition
that d ≥ �c for some compound modality �.

We now wish to characterize subdirectly irreducible modal algebras. We know
that A is subdirectly irreducible iff it has a monolith Θ. Θ is principal, say Θ =
Θ(a, b). Now, in terms of filters this means that there exists a unique minimal open
filter in the set of open filters , {1} and this filter is generated by a single element o
(for example o = a ↔ b). To say that the filter generated by o is minimal is to say
that every other filter generated by an element a , 1 must contain o, which in turn
means that there must be a compound modality � such that o ≥ �a. Thus we obtain
the following criterion of [170].

T 4.1.11 (Rautenberg). A modal algebra is subdirectly irreducible iff
there exists an element o , 1 such that for every a ∈ A − {1} there is a compound
modality � such that o ≥ �a. Such an o is called an opremum of A.

For a Kripke–frame f the question of subdirect irreducibility of the algebraMa(f)
of all subsets of f has a rather straightforward answer. We warn the reader that this
theorem fails in general. This is discussed in Section 4.8.

T 4.1.12. For a Kripke–frame f the algebra Ma(f) of all subsets of f is
subdirectly irreducible iff f is rooted.

P. Suppose that f is rooted at x. Then take o := f − {x}. We claim that o is
an opremum. So take a set a ⊆ f such that a , f . Then there exists a y ∈ f such
that y < a. By assumption, there is a k ∈ ω such that a finite path exists from x to
y. Then x < �a for some compound modality �. Thus �a ⊆ o. By Theorem 4.1.11,
Ma(f) is subdirectly irreducible. Now assume that there is no single point x which
can generate f. Then there exist two nonempty sets S and T such that for X := Tr(S )
and Y := Tr(T ), f = X ∪ Y , but X , f and Y , f . Suppose there exists an opremum,
o. Since �X ⊇ X, we must have o ⊇ X. Similarly o ⊇ Y , and so o ⊇ X ∪ Y = f , a
contradiction. �
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Exercise 134. Show that the filtral congruence ΘF defined above is indeed a
congruence.

Exercise 135. Show that a boolean algebra is subdirectly irreducible iff it is isomor-
phic to 2. Hence BA = HSP(2).

Exercise 136. Suppose that G = 〈G, 1,−1 , ·〉 is a group and Θ a congruence on G.
Show that the congruence class of the unit 1 must be a normal subgroup. Further-
more, suppose that [a]Θ is given. Then [1]Θ = a−1 · [a]Θ = {a−1 · b : b ∈ [a]Θ}.
Thus, show that there is a one–to–one correspondence between congruences on G
and normal subgroups.

Exercise 137. Let Z2 be the additive group of integers modulo 2. That is, we have

· 0 1
0 0 1
1 1 0

−1

0 0
1 1

Show that the lattice of congruences of the group Z2 × Z2 is not distributive. Hint.
Use the previous exercise.

Exercise 138. A vector spaceV over a field F can be made into an algebra by adding
a unary function θr for each r ∈ F. Its action is defined by θr(v) = r · v, where r · v
is the usual scalar multiplication. (Why is this complicated definition necessary?)
Again, a congruence defines a normal subgroup. Moreover, this subgroup must be
closed under all θr. Show that there is a one–to–one correspondence between con-
gruences on V and subspaces.

Exercise 139. Continuing the previous exercise, show that a vector space is subdi-
rectly irreducible iff it is one–dimensional.

4.2. Varieties, Logics and Equationally Definable Classes

Two of the most fundamental theorems of universal algebra are due to B
of which the first states that a class of algebras is definable by means of equations
iff it is a variety, that is, closed under H, S and P. The second gives an explicit
characterization of all equations that hold in a variety which is defined by some
given set of equations. We will prove both theorems in their full generality and
derive some important consequences for modal logics. To start, let Ω be a signature,
L a language for Ω and t(~x), s(~x) two terms based on the variables xi, i < n. An
Ω–algebra A satisfies the equation s(~x) ≈ t(~x), written A � s(~x) ≈ t(~x), if for all
~a ⊆ A, sA(~a) = tA(~a). Furthermore, V � s(~x) ≈ t(~x) if for all A ∈ V, A � s(~x) ≈ t(~x).
Often we write s ≈ t, dropping the variables.
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P 4.2.1. The class of all algebras which satisfy an equation s ≈ t is
closed under taking products, subalgebras and homomorphic images.

The proof of this theorem is routine and left as an exercise. We will prove here
that the converse is true as well. Let V be a variety, and and X a set of variables.
Then put

EqX(V) := {〈s(~x), t(~x)〉 : V � s(~x) ≈ t(~x), ~x ⊆ X}

In case that X = {xi : i ∈ ω} put Eq(V) := EqX(V). Let E be a set of equations over X.
Define Alg(E) to be the class of algebras satisfying E. By Proposition 4.2.1, Alg(E) is
a variety. Moreover, for any class K of Ω–algebras we always have K ⊆ Alg Eq(K).
What we have to show is that for a given variety V we have V = Alg Eq(V). There
is a way to restate this using free algebras. Recall from Section 1.3 that an algebra
FrV(Y) is said to be a freely Y–generated algebra if for every algebra A ∈ V and
every map v : Y → A there is a homomorphism v̂ : FrV(Y) → A such that v̂ �
Y = h. We have seen in Theorem 1.3.5 that a variety has free algebras for all sets Y .
Moreover, Alg Eq(V) has free algebras because they can be obtained from the term
algebras. Namely, if TmΩ(Y) is the algebra of Y–terms over the language L with
signature Ω, define a congruence Θ by s(~x)Θ t(~x) iff for all A ∈ V and all ~a ⊆ A
we have sA(~a) = tA(~a). Then TmΩ(Y)/Θ is freely generated by Y in Alg Eq(V). For
let v : Y → A be a map, A an algebra over A. Then there is a unique extension
v : TmΩ(Y) → A. Let s(~x)Θ t(~x). Then v(s(~x)) = sA(v(~x)) = tA(v(~x)) = v(t(~x)), by
definition of Θ. Hence there exists a unique homomorphism v̂ : TmΩ(Y)/Θ→ A.

P 4.2.2. For any variety V, FrV(X) is a subdirect product of the
FrV(E), E a finite subset of X.

P. Let E be a finite subset of X. We let A(E) be the subalgebra of FrV(X)
generated by the terms xi, xi ∈ E. It is easy to see that A(E) is isomorphic to FrV(E).
Let κE be a map κE : X → E such that κE � E = idE . This map can be extended
to a homomorphism κE : FrV(X) � FrV(E). (That this map is onto follows from
Theorem 1.3.6.) Let F be the collection of all finite subsets of X. We have⋂

E∈F

ker(κE) = ∆ .

For if FrV(X) 2 s(~x) ≈ t(~x), then let E consist of the variables in ~x. Now FrV(E) 2
s(~x) ≈ t(~x) and thus κE(s(~x)) = s(~x) 0 t(~x) = κE(t(~x)). (Here we write s(~x) also
for the equivalence class of the term s(~x) in the free algebras.) By Proposition 4.1.1,
FrV(X) is a subdirect product of the FrV(E). �

C 4.2.3. For every variety V, V = HSP(FrV(ℵ0)).

Now, if we are able to show that TmΩ(X)/Θ is also the freely X–generated
algebra of V, we are obviously done. For then the classes V and Alg Eq(V) contain
the same countably generated free algebras. Now recall the construction of a free
algebra from the algebras of V from Section 1.2.
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P 4.2.4. For a class K, and a set X

TmΩ(X)/EqX(K) ∈ SP(K) .

P. Let Q := {〈s(~x), t(~x)〉 : ~x ⊆ X,K 2 s ≈ t}. For each ε ∈ Q we pick a
witness algebra Aε . This means that there is a sequence ~a in Aε such that sAε (~a) ,
tAε (~a). Thus we have a map vε : X → A such that vε : xi 7→ ai, i < n. This
extends to a homomorphism vε : TmΩ(X) → Aε . Now let h : TmΩ(X) →

∏
ε∈Q Aε

be the canonical homomorphism defined by all the vε . We show now that ker(h) is
exactly EqX(K). For if ε = s(~x) ≈ t(~x) holds in all algebras, it holds in their product
as well, and so ε ∈ ker(h). However, if it does not hold in all algebras of K, then
h(s(~x)) , h(t(~x)), for vε(s(~x)) = sAε (~a) , tAε (~a) = vε(t(~x)), as had to be shown. �

T 4.2.5 (Birkhoff). A class of Ω–algebras is definable by means of equa-
tions over a language L of signature Ω exactly if it is a variety.

In addition, an equational theory Eq(K) can actually be identified with a partic-
ular kind of congruence on TmΩ(X), the so–called fully invariant congruence.

D 4.2.6. A congruenceΘ on an algebra A is called fully invariant if
it is compatible with all endomorphisms of A. That is,Θ is fully invariant if whenever
h : A→ A is an endomorphism and aΘ b then also h(a)Θ h(b).

Our aim is to show that all modal logics are theories of certain classes of alge-
bras. In order to do this, we need to be explicit about what equations can be derived
from other equations. The following axiomatization is due to B. Unlike in
propositional calculi, we derive equations from sets of equations and not terms from
sets of terms. We write Γ `V t ≈ s if t ≈ s can be derived in finitely many steps by
applying one of the following rules in addition to (ext.), (mon.) and (trs.) of Sec-
tion 1.3.

(V1) `V s ≈ s
(V2) s ≈ t `V t ≈ s
(V3) s ≈ t; t ≈ u `V s ≈ u
(V4) s0 ≈ t0; . . . ; sn−1 ≈ tn−1 `V f (s0, . . . , sn−1) ≈ f (t0, . . . , tn−1)
(V5) s(x0, . . . , xn−1) ≈ t(x0, . . . , xn−1) `V

s(u0, . . . , un−1) ≈ t(u0, . . . , un−1)

(V1), (V2) and (V3) are axioms of pure equality. (V4) is known as the replacement
rule, (V5) as the substitution rule. Notice that this calculus also satisfies (sub.) and
(cmp.), the latter by the fact that it is a calculus defined by finitary rules, so it is
finitary by the nature of a proof. In (V4), f is any n–ary term function. However, it
can be shown that it is enough to require the validity of (V4) only for the basic func-
tions, fi, i ∈ I. Now take a set Γ of equations. Consider the congruence on TmΩ(X)
induced by Γ. The condition of reflexivity of Θ corresponds to (V1), the symmetry
to (V2) and the transitivity to (V3). Finally, (V4) corresponds to the compatibility
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with all functions. Hence, the calculus without substitution defines the smallest con-
gruence induced by Γ. Now a substitution is nothing but an endomorphism of the
term algebra so (V5) enshrines the requirement that the congruence derivable from
Γ is fully invariant.

T 4.2.7. Let Γ be a set of equations over L of signature Ω. The smallest
fully invariant congruence on TmΩ(X) containing Γ is the set of all s ≈ t such that
Γ `V s ≈ t.

Let us call a set of the form Eq(K) an equational theory. Then we have

C 4.2.8 (Birkhoff). A set of equations is an equational theory iff it is
closed under the rules of `V .

P. First of all, the rules (V1) – (V5) are correct. That is, given an alge-
bra A and given a rule, if A satisfies every premiss of a rule then A also satisfies
the conclusion. (V1). For all v : X → A we have v(s) = v(s) for any term s.
(V2). Assume that for all v : X → A, v(s) = v(t). Then for all v : X → A
also v(t) = v(s), showing A � t ≈ s. (V3). Assume that A � s ≈ t; t ≈ u.
Take a map v : X → A. Then v(s) = v(t) as well as v(t) = v(u), from which
v(s) = v(u). Thus A � s ≈ u. (V4). Assume that A � si ≈ ti for all i < n. Take v :
X → A. Then v( f (s0, . . . , sn−1)) = f A(v(s0), . . . , v(sn−1)) = f A(v(t0), . . . , v(tn−1)) =
v( f (t0, . . . , tn−1)). Hence A � f (s0, . . . , sn−1) ≈ f (t0, . . . , fn−1). (V5). Assume
A � s ≈ t. Define a substitution σ by σ : xi 7→ ui, i < n, σ : xi 7→ xi for
i ≥ n. Then v ◦ σ : X → A, and the homomorphism extending the map is just
v ◦ σ, since it coincides on X with v ◦ σ. Now let v : X → A be given. Then
v(s(u0, . . . , un−1)) = v(σ(s)) = v ◦ σ(s) = v ◦ σ(t) = v(t(u0, . . . , un−1)). Thus
A � s(u0, . . . , un−1) ≈ t(u0, . . . , un−1).

Now let Γ be any set of equations and Θ its closure under (V1) to (V5). Let
A := TmΩ(X)/Γ. Then if s ≈ t < Γ we have A 2 s ≈ t. For just take the canonical
homomorphism hΘ : TmΩ(X) → A with kernel Θ. Since Θ is a congruence, this
is well–defined and we have hΘ(s) , hΘ(t), as required. Next we have to show
that A � Γ. To see that take any equation s ≈ t ∈ Γ and v : X → A. Since A
is generated by terms over X modulo Θ, we can define a substitution σ such that
v = hΘ ◦ σ. Namely, put σ(x) := t(~y), where t(~y) ∈ h−1

Θ
(h(x)) is freely chosen. Then

hΘ(σ(x)) = v(x), as required. Now σ(s)Θσ(t), by closure under substitution, so that
v(s) = hΘ(σ(s)) = hΘ(σ(t)) = v(t). Thus A � Γ. �

T 4.2.9. There is a one–to–one correspondence between varieties of Ω–
algebras and fully invariant congruences on the freely countably generated algebra.
Moreover, V1 ⊆ V2 iff for the corresponding congruences Θ1 ⊇ Θ2.

One half of this theorem is actually Theorem 2.2.9. The converse direction was
actually much harder to prove but makes the result all the more useful.

Consider now what this means for modal logic. (We will henceforth write again
p and q for variables instead of x and y, as well as ϕ and ψ for formulae instead of
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s and t.) We have seen earlier for propositional formulae ϕ and ψ that A � ϕ ≈ ψ iff
A � ϕ↔ ψ ≈ >. The latter is nothing but A � ϕ↔ ψ, now read in the standard sense.
Thus the equational theory of a class K of modal algebras can be interpreted as the
logical theory of a class. We will show that if we have a class of modal algebras,
then the set of equations ϕ ≈ > in that class is a modal logic, and conversely. So
the two alternative ways to specify classes of algebras — namely via equations and
via logical axioms — coincide. The equational theory of polymodal algebras is as
follows. The primitive function symbols are here taken to be >, ⊥, ¬, ∧, ∨ and the
modal operators � j. The following equations must hold.

p ∧ p ≈ p p ∨ p ≈ p
p ∧ q ≈ q ∧ p p ∨ q ≈ q ∨ p
p ∧ (q ∧ r) ≈ (p ∧ q) ∧ r p ∨ (q ∨ r) ≈ (p ∨ q) ∨ r
p ∧ (q ∨ p) ≈ p p ∨ (q ∧ p) ≈ p
p ∧ (q ∨ r) ≈ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≈ (p ∨ q) ∧ (p ∨ r)
p ∧ > ≈ p p ∨ ⊥ ≈ p
¬(p ∧ q) ≈ (¬p) ∨ (¬q) ¬(p ∨ q) ≈ (¬p) ∧ (¬q)
p ∧ (¬p) ≈ ⊥ p ∨ (¬p) ≈ >

¬(¬p) ≈ p ¬> ≈ ⊥

� j(p ∧ q) ≈ (� j p) ∧ (� jq) � j> ≈ >

We call this set of equations Mal. The first five rows specify that the algebras are
distributive lattices; then follow laws to the effect that there is a top and a bottom
element, and that there is a negation. Finally, there are two laws concerning the box
operators. We define ϕ→ χ by (¬ϕ) ∨ χ, ϕ↔ χ by (ϕ ∧ χ) ∨ ((¬ϕ) ∧ (¬χ)) and ♦ jϕ
by ¬� j¬ϕ.

P 4.2.10. (i) Mal;ϕ ≈ χ `V ϕ ↔ χ ≈ >. (ii) Mal;ϕ ↔ χ ≈ > `V ϕ ≈
χ.

P. The proof will be a somewhat reduced sketch. A full proof would con-
sume too much space and is not revealing. The reader is asked to fill in the ex-
act details. We perform the proof only to show how the calculus works in prac-
tice. (i) Mal;ϕ ≈ χ `V ϕ ∨ (¬χ) ≈ χ ∨ (¬χ);ϕ ∨ (¬ϕ) ≈ χ ∨ (¬ϕ), by applying
(V4). Furthermore, Mal `V ϕ ∨ (¬ϕ) ≈ >; χ ∨ (¬χ) ≈ >. Applying (V2) and
(V3) we get Mal;ϕ ≈ χ `V ϕ ∨ (¬χ) ≈ >; χ ∨ (¬ϕ) ≈ >. So, Mal;ϕ ≈ χ `V

(ϕ∨ (¬χ))∧ (χ∨ (¬ϕ)) ≈ >∧>, by (V4). Now by (V5) we have Mal `V >∧> ≈ >;
thus Mal;ϕ ≈ χ `V (ϕ ∨ (¬χ)) ∧ (χ ∨ (¬ϕ)) ≈ >. Applying the distributivity law
twice we arrive at

Mal;ϕ ≈ χ `V (ϕ ∧ χ) ∨ (ϕ ∧ (¬ϕ)) ∨ ((¬χ) ∧ χ) ∨ ((¬χ) ∧ (¬ϕ)) ≈ >

We can replace ϕ∧¬ϕ as well as (¬χ)∧χ by ⊥ and drop both occurrences of ⊥ from
the disjunction. Commutativity of ∧ yields Mal;ϕ ≈ χ `V (ϕ∧χ)∨((¬ϕ)∧(¬χ)) ≈ >,
the desired result, i. e. ϕ↔ χ ≈ >. (ii) (We will now write ϕ ≈ χ rather than Mal `V

ϕ ≈ χ.) Assume (ϕ∧χ)∨((¬ϕ)∧(¬χ)) ≈ >. Then ϕ∧((ϕ∧χ)∨((¬ϕ)∧(¬χ))) ≈ ϕ∧>.
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Now ϕ ∧ > ≈ ϕ and so we have ϕ ∧ ((ϕ ∧ χ) ∨ ((¬ϕ) ∧ (¬χ))) ≈ ϕ. Distributing
ϕ we get (ϕ ∧ (ϕ ∧ χ)) ∨ (ϕ ∧ ((¬ϕ) ∧ (¬χ))) ≈ ϕ. From there with associativity
((ϕ∧ ϕ)∧ χ)∨ ((ϕ∧ (¬ϕ))∧ (¬χ)) ≈ ϕ which results in (ϕ∧ χ)∨ (⊥∧ (¬χ)) ≈ χ, by
(V4) with ϕ ∧ ϕ ≈ ϕ and ϕ ∧ (¬ϕ) ≈ ⊥. This gets reduced to ϕ ∧ χ ≈ ϕ. Similarly,
one can derive ϕ ∧ χ ≈ χ. So, Mal;ϕ↔ ψ ≈ > `V ϕ ≈ χ. �

Let Γ be a set of equations. We put Th(Γ) := {ϕ : Γ `V ϕ ≈ >}. Now let Λ be a
modal logic. Then we define Eq(Λ) := {ϕ ≈ ψ : ϕ ↔ ψ ∈ Λ}. The proof of the next
theorem is left as an exercise.

T 4.2.11. Let Γ be a set of equations, ∆ be a set of formulae. Then the
following holds.

(1) Th(Γ) is a normal modal logic.
(2) Eq(∆) is an equational theory of modal algebras.
(3) Th Eq Th(Γ) = Th(Γ).
(4) Eq Th Eq(Λ) = Eq(Λ).

C 4.2.12. There is a dual isomorphism between the lattice of normal κ–
modal logics and the lattice of varieties of normal modal algebras with κ operators.

This is a considerable strengthening of Proposition 2.2.7, Lemma 2.2.8 and The-
orem 2.2.9. For now we do not only know that different logics have different varieties
associated with them, we also know that different varieties have different varieties
associated with them. The relation between equational calculi and deductive calculi
has been a topic of great interest in the study of general logical calculi, see [29].
W B and D P have tried to isolate the conditions under which a mutual
translation is possible between these two deductive formulations of a logic. It would
take us too far afield to discuss these developments, however.

Notes on this section. In a series of papers W R partly to-
gether with B H have studied the possibility to export an axioma-
tization of a variety in the Birkhoff–calculus to a Hilbert–style proof system for the
logic determined by some unital semantics over that variety, see [102], [174] and
[173]. The equational rules present no problem, likewise the rule of substitution.
However, the rule of replacement is not straightforward; it may lead to an infinite
axiomatization. (See next section on that theme.) Therefore, the so–called finite re-
placement property was defined. It guarantees that adding a finite set of instances
of the rule of replacement will be sufficient for validity of all rule instances. It is
a theorem by R C. L [142] that the equational theory of any 2–element
algebra is finitely axiomatizable. In [102] it has been shown that all varieties of 2–
element algebras have the finite replacement property. It follows that the logic of any
2–element matrix is finitely axiomatizable. For 3–element algebras both theorems
are false.

Exercise 140. Prove Proposition 4.2.1
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Exercise 141. Prove Theorem 4.2.9

4.3. Weakly Transitive Logics II

In this section we will prove some connections between purely algebraic notions
and properties of logics. Again, weakly transitive logics play a fundamental role.
The following definition is due to T. P and A. W́ [166].

D 4.3.1. Let ` be a consequence relation. A set ∆(p, q) := {δi(p, q) : i ∈
I} is called a set of equivalential terms for ` if the following holds

(eq1) ` ∆(p, p)
(eq2) ∆(p, q) ` ∆(q, p)
(eq3) ∆(p, q);∆(q, r) ` ∆(p, r)
(eq4)

⋃
i<Ω( f ) ∆(pi, qi) ` ∆( f (~p), f (~q))

(eq5) p;∆(p, q) ` q

` is called equivalential if it has a set of equivalential terms, and finitely equiv-
alential if it has a finite set of equivalential terms. If ∆(p, q) = {δ(p, q)} is a set of
equivalential terms for ` then δ(p, q) is called an equivalential term for `.

Let us investigate the notion of an equivalential logic for modal logics. Clearly,
for any modal logic Λ, `Λ is always equivalential; a set of equivalential terms is the
following.

∆(p, q) := {�(p↔ q) : � a compound modality} .

Moreover, 
Λ is always finitely equivalential; p↔ q is an equivalential term for 
Λ.
Thus, the only remaining question is whether `Λ is finitely equivalential. Note that if
`Λ is finitely equivalential it also has an equivalential term. For if ∆(p, q) = {δi(p, q) :
i < n} is a finite set of equivalential terms for `Λ then δ(p, q) :=

∧
i<n δi(p, q) is an

equivalential term.

P 4.3.2. Let Λ be a modal logic and ∆(p, q) a set of equivalential
terms for Λ. Then the following holds.

(1) ∆(p, q) `Λ p↔ q
(2) p↔ q 
Λ ∆(p, q)
(3) ∆(p, q) 
Λ ∆(p↔ q,>)
(4) ∆(p↔ q,>) 
Λ ∆(p, q)

P. (1.) follows from (eq5) and (eq2) with the deduction theorem. For (2.)
note that p ↔ q 
Λ ∆(p, p) ↔ ∆(p, q) (by Proposition 3.1.7). By (eq1) we get
p ↔ q 
Λ ∆(p, q), as desired. To prove (3.) observe that p ↔ q 
Λ ∆(p ↔ q,>),
again by Proposition 3.1.7. Since we have established that ∆(p, q) 
Λ p ↔ q, the
third claim follows. For (4.) observe that, by (1.), ∆(p ↔ q,>) 
Λ p ↔ q and that
p↔ q 
Λ ∆(p, q) (by (2.)). �
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Now let Λ be a modal logic and Σ a set of formulae. Let Σ` := {ψ : Σ `Λ ψ} and
Σ
 := {ψ : Σ 
Λ ψ}. Consider the set ∆(Σ,>)` where

∆(Σ,>) := {δ(ϕ,>) : δ ∈ ∆, ϕ ∈ Σ} .

This set is closed under (mp.). We show that it is closed under (mn.). Consider
first ψ ∈ Σ. We clearly have ∆(Σ,>) `Λ ∆(ψ,>) and so by (eq4) also ∆(Σ,>) `Λ
∆(�ψ,�>) for all compound modalities. Since �> is a theorem, it can be substituted
by >. By (eq5), ∆(�ψ,>) ` �ψ. So, ∆(Σ,>) ` �ψ for all � and ψ ∈ Σ. This shows
that ∆(Σ,>) `Λ �ωΣ. From this we get ∆(Σ,>) 
Λ Σ. Hence, ∆(Σ,>) `Λ �ω∆(Σ,>),
by (2) of the previous theorem, since Σ 
Λ ∆(Σ,>). Now let ∆(Σ,>) `Λ ϕ for some
ϕ. Then � j∆(Σ,>) `Λ � jϕ. Since ∆(Σ,>) `Λ � j∆(Σ,>), we have succeeded to show
that � jϕ ∈ ∆(Σ,>)`. Hence ∆(Σ,>)` ⊇ Σ
. The converse inclusion is a consequence
of (2) of Proposition 4.3.2.

P 4.3.3. Let Λ be a modal logic and ∆(p, q) a set of equivalential
terms. Then for any set Σ

∆(Σ,>)` = Σ
 .

D 4.3.4. A variety V has equationally definable principal con-
gruences (EDPC) if there exists a number n ∈ ω and terms si(w, x, y, z), ti(w, x, y, z),
i < n, such that for every A ∈ V and a, b, c, d ∈ A

〈c, d〉 ∈ Θ(a, b) iff sAi (a, b, c, d) = tAi (a, b, c, d) for all i < n .

P 4.3.5. A variety V of modal algebras has EDPC iff there exists a
term u(x, y) such that for all A ∈ V and elements a, b ∈ A, b is in the open filter
generated by a iff uA(a, b) = 1.

P. Suppose that V has EDPC, and let si(w, x, y, z) and ti(w, x, y, z), i < n, be
terms defining principal congruences in V. Then put

u(x, y) :=
∧
i<n

si(x,>, y,>)↔ ti(x,>, y,>) .

Then uA(a, b) = 1 iff for all i < n we have sAi (a,>, b,>) = tAi (a,>, b,>) iff 〈b,>〉 ∈
Θ(a,>) iff b is in the open filter generated by a. Conversely, let u(x, y) be a term such
that for all algebras A ∈ V b is in the open filter generated by a iff uA(a, b) = 1. Then
let n = 1, s0(w, x, y, z) := u(w ↔ x, y ↔ z) and t0(w, x, y, z) := >. Let a, b, c, d ∈ A,
A ∈ V. Then sA0 (a, b, c, d) = tA0 (a, b, c, d) iff uA(a↔ b, c↔ d) = 1 iff c↔ d is in the
filter generated by a↔ b iff 〈c, d〉 ∈ Θ(a, b). �

We say that u(x, y) defines principal open filters in V if for allA ∈ V and a, b ∈ A we
have uA(a, b) = 1 iff b is in the open filter generated by a. V has definable principal
open filters (DPOF) iff there exists a u(x, y) defining open filters. By the previous
theorem, a variety of modal algebras has EDPC iff it has definable open filters. The
following theorem has been obtained in [26].
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T 4.3.6 (Blok & Pigozzi & Köhler). For any normal modal logic Λ the
following are equivalent:

(1) `Λ is finitely equivalential.
(2) AlgΛ has DPOF.
(3) AlgΛ has EDPC.
(4) 
Λ admits a deduction theorem.
(5) Λ is weakly transitive.

P. We have shown earlier that (4.) ⇔ (5.) and we have shown in Proposi-
tion 4.3.5 that (2.)⇔ (3.). We show that (1.)⇒ (2.)⇒ (4.) and (5.)⇒ (1.). Assume
(1.). Then there exists an equivalential term δ(p, q) for `Λ. Now put u(p, q) :=
δ(p,>) → q. Let A ∈ AlgΛ and a ∈ A. Then by Proposition 4.3.3 the set
F := {b : b ≥ δA(a,>)} is the open filter generated by a. So b ∈ F iff uA(a, b) = 1.
Hence u(p, q) defines principal open filters. Hence (2.) is proved. Now assume (2.).
Suppose that u(p, q) defines principal open filters in AlgΛ. We claim that u(p, q) sat-
isfies a deduction theorem for 
Λ. Namely, let ∆ be a set of formulae, and let ϕ and
ψ be formulae. Let A be a Λ–algebra, F an open filter in A. We can actually assume
that F = {1}. Then ∆ `〈A,F〉 u(ϕ, ψ) iff for every valuation β such that β[∆] ⊆ {1}
we have uA(β(ϕ), β(ψ)) = 1 iff for all valuations β such that β[∆] ⊆ {1}, β(ψ) is in
the open filter generated by β(ϕ) iff for every valuation β such that β[∆;ϕ] ⊆ {1} we
also have β(ψ) = 1 iff ∆;ϕ `〈A,F〉 ψ. Thus ∆;ϕ 
Λ ψ iff ∆ 
Λ u(ϕ, ψ). This shows
(4.). Finally, assume (5.). Let Λ be weakly transitive with master modality �. Then
�(p↔ q) is an equivalential term for `Λ. �

D 4.3.7. Let A be an algebra. A ternary termfunction t(x, y, z) is called
a ternary discriminator term for A if the following holds

tA(a, b, c) =
{

c if a = b
a otherwise

Let V be a variety. V is called a discriminator variety if there exists a class
K of algebras such that V is the least variety containing K and there exists a term
t(x, y, z) which is a discriminator term for all A ∈ K.

We remark here that except in trivial cases a discriminator for an algebra A
cannot be a discriminator for A × A. This is why the definition of a discriminator
variety is somewhat roundabout.

P 4.3.8. Let A be an algebra, and t(x, y, z) a ternary discriminator for
A. Then A is simple.

P. Let Θ , ∆A be a congruence. Then there exist a, b ∈ A such that a , b
and aΘ b. Then

a = tA(a, b, c) Θ tA(a, a, c) = c

Hence Θ = ∇A, and so A is simple. �
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P 4.3.9. Let K be a class of algebras, and assume that t(x, y, z) is
a discriminator term for all algebras of K. Then it is a discriminator term for all
members of HSUp K.

P. Let t(x, y, z) be a discriminator term for A; then it is obviously a discrim-
inator term for every subalgebra of A. It is also a discriminator term for every ho-
momorphic image of A, for the only images up to isomorphism are A and the trivial
algebra. Finally, let B be an ultraproduct of Ai, i ∈ I, with ultrafilter U over I. Then
the congruence ΘU is defined as in Section 4.1. We write aU instead of [a]ΘU . Let
a, b, c ∈

∏
i∈I Ai. Assume that the set D defined by D := {i : ai = bi} is in U. Then

aU = bU and moreover D ⊆ {i : tAi (ai, bi, ci) = ci}, whence tB(aU , bU , cU) = cU .
Now assume that D < U. Then aU , bU , and D ⊆ {i : tAi (ai, bi, ci) = ai}. Thus
tB(aU , bU , cU) = aU . �

In the remaining part of this section we shall be concerned with the relation-
ship between three properties of a variety of modal algebras: being a discriminator
variety, being semisimple and being weakly transitive and cyclic. Semisimplicity is
defined as follows.

D 4.3.10. An algebra is called semisimple if it is a subdirect prod-
uct of simple algebras. A variety is called semisimple if it consists entirely of
semisimple algebras.

P 4.3.11. Let V be a congruence distributive variety. Then if V is a
discriminator variety, V is semisimple.

P. Suppose V is a discriminator variety. Then it is generated by a class K of
simple algebras. IfB is subdirectly irreducible, it is by Jónsson’s Theorem contained
in HSUp K. By Propositions 4.3.9 and 4.3.8, B is simple. �

It can be shown in general that a discriminator variety is congruence distributive, so
that the previous theorem actually holds without assuming the congruence distribu-
tivity of V. (See exercises below.) Varieties of modal algebras have however already
been shown to be congruence distributive, so we do not need to work harder here.

We shall now prove that a semisimple variety of modal algebras is weakly tran-
sitive on condition that it has only finitely many operators. Let V be a semisimple
variety of κ–modal algebras, κ finite. We assume that there is a modality �i such that
V � �i p ↔ p. This makes life a little bit easier. Obviously, given this assumption V

is weakly transitive iff it satisfies the equation �k x = �k+1x for some k ∈ ω. For a
simple A ∈ V we put

ΩA := {c ∈ A : c , 1 and � −c = 0} .

We call c dense in A if it is in ΩA. For − � −c is the closure of c. Denote by VS the
class of simple algebras from V. Obviously, one of the following must hold for our
variety V:

(A) (∀n ∈ ω)(∃A ∈ VS )(∃c ∈ ΩA)(�nc > 0 and �n (c→ �c) � c),
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(B) (∃n ∈ ω)(∀A ∈ VS )(∀c ∈ ΩA)(�nc > 0 implies �n (c→ �c) ≤ c).

We will refer to V as being of type A or of type B depending on which of the above
holds. In case B obtains, we shall denote the least number such that B holds for V by
N.

D 4.3.12. Let A be a modal algebra, κ < ℵ0. Call c ∈ A deep in A if
for all m ∈ ω we have �≤m+1c < �≤mc.

Since �c ≤ c by our assumptions, c is deep if �m+1c < �mc for all m. Obviously,
it is enough to require this to hold for almost all m. For if �m+1c = �mc for some
m, then equality holds for almost all m. Now, using the ultraproduct construction we
can easily show the following:

L 4.3.13. Suppose that V is not weakly transitive. Then there exists an
algebra in V containing a deep element.

L 4.3.14. For every c ∈ A such that �kc = 0 there is a dense b ≥ c.

P. To see this, let b := − �m −c, where m is maximal with the property
�m − c > 0. Then, � − b = �m+1c = 0, and c ≤ − �m −c = b, as required. �

L 4.3.15. Let k ∈ ω. If for all A ∈ VS and all c ∈ ΩA we have �kc = 0,
then V satisfies �k+1x = �k x.

P. Let A ∈ VS . Then by the previous lemma, for any non–unit element c of
A there is a dense b such that c ≤ b. It follows that 0 = �kb ≥ �kc. Hence we have
�kc = 0 for all c ∈ A − {1}. Thus, A � �k+1x = �k x. �

L 4.3.16. If A ∈ VS , and V is semisimple of type B. If c is deep in A then

�N((�mc→ �m+1c)→ �(�mc→ �m+1c)) ≤ c

P. Suppose that c is deep. Then �kc > �k+1c for all k. Now let m be given.
Then �mc → �m+1c belongs to ΩA, for � − (�mc → �m+1c) = �mc ∩ � − �m+1c =
�m+1c ∩ � − �m+1c ≤ �m+1c ∩ − �m+1 c = 0. Moreover, �N(�m → �m+1c) ≥
�N �m+1 c > �N+m+2c, since c is deep. Thus, since V is of type B,

�N((�mc→ �m+1c)→ �(�mc→ �m+1c)) ≤ c .

�

T 4.3.17 (Kowalski). If V is semisimple, then V is weakly transitive.

Suppose for contradiction that V is semisimple and not weakly transitive. With-
out loss of generality we may assume that it does not satisfy �n+1x = �nx, for any
given n ∈ ω. Now, for any n, we take a simple algebra An falsifying �n+1x = �nx.
Then, by Lemma 4.3.15 there is a cn ∈ An such that �ncn > 0 and � − cn = 0, that is,
cn ∈ ΩAn .
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Now, let U be a nonprincipal ultrafilter over ω. Put A :=
∏

n∈ω An, and c := 〈cn :
n ∈ ω〉/U. Then for all n ∈ ω we get �nc > �n+1c > 0 and � − c = 0. So, c is both
deep an dense.

Obviously, A is a subdirect product of subdirectly irreducible algebras, which,
by our assumption, are also simple. We will derive a contradiction from this. More
precisely, we will derive a contradiction from the assumption that all subdirectly
irreducible members of H(A) are simple.

Consider the congruence Θ = Θ(c, 1) on A. By the choice of c, our Θ is neither
the diagonal nor the full congruence. As Θ is principal, there must be a congruence
Π covered by Θ. With the choice of Π, our reasoning splits into two cases, one for
either of the two types.

Type A. If V is of type A, then, in A we have �n(c → �c) � c for all n ∈ ω;
hence Θ(c → �c, 1) is strictly below Θ. We choose a Π ≺ Θ from the interval
I[Θ(c → �c, 1),Θ]. Since the lattices of congruences are algebraic there always is
one.

Type B. If V is of type B, then we just choose any Π ≺ Θ. This case has one
feature that deserves to be spelled out as a separate fact.

L 4.3.18. Let V be of type B, and m ∈ ω. If Φ ∈ Con(A) is a congruence
satisfying �mc Φ �m+1 c then Φ ≥ Θ.

P. By the construction, c is deep in A. It follows from Lemma 4.3.16 that

�N((�mc→ �m+1c)→ �(�mc→ �m+1c)) ≤ c .

Now, if Φ ∈ Con(A) satisfies �mc Φ �m+1 c, then �N((�mc → �m+1c) → �(�mc →
�m+1c)) Φ 1, which implies c Φ 1. So, Φ ≥ Θ. �

Now we return to the main argument. We shall develop it for both types together,
splitting the reasoning only when necessary. Take the set of congruences

Γ := {Φ ∈ Con(A) : Φ ≥ Π and Φ � Θ} .

Let Ψ := Γ; by congruence distributivity, Ψ ∈ Γ. Then A/Ψ is subdirectly ir-
reducible. Observe that we cannot have Γ = {Π}, for in such a case A/Ψ = A/Π,
and this would be subdirectly irreducible but non–simple, since Θ , ∇. Thus, since
Ψ � Θ, we obtain that Θ t Ψ is full (which by congruence permutability equals
Θ ◦ Ψ). For otherwise A/Ψ would be a non–simple subdirectly irreducible algebra
in V. Now, as A/Ψ = (A/Π)/Ψ, and since principal congruences remain principal in
homomorphic images, we can shift the whole argument to A/Π.

Let B := A/Π. As Θ and Ψ are above Π in Con(A) we shall write Θ and Ψ in
place of Θ/Π and Ψ/Π from Con(B). Thus, for instance, we will say that Θ (and not
Θ/Π) is an atom of Con(B). We shall also write c instead of [c]Π.

Now we have an algebraB; a principal congruenceΘ ∈ Con(B) such thatΘ � 0;
further, there is a congruence Ψ— which is non–principal in general — which is the
largest congruence not containing Θ, and Θ ◦ Ψ = 1. Hence, there is an element
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d ∈ B − {1} with (d, 1) ∈ Θ and (d, 0) ∈ Ψ. The latter is equivalent to (−d, 1) ∈ Ψ.
It follows that d ≥ �mc for some m ∈ ω. Moreover, as ΩA/Π ⊆ ΩB, we obtain that
c(= [c]Π) ∈ ΩB. Thus, c ∈ ΩB − {1}.

The statement (−d, 1) ∈ Ψ can be further broken up as follows: first,

Ψ = {Φ ∈ Cp(A) : 0 < Φ ≤ Ψ} ,

where Cp(A) stands for the set of all compact congruences of A (which are also the
principal congruences of A). Thus, eachΦ above is of the formΦ = Θ(b, 1) for some
b , 1. Let C ⊂ B be the set of all such b ∈ B. Passing from congruences to open
filters we obtain: −d ∈

[⋃
b∈C[�nb : n ∈ ω)

)
.

Secondly, C is a downward directed set (in fact, a filter, but we do not need
that). For take b0, . . . , bk−1 ∈ C, and let b = b0 ∩ . . . ∩ bk−1. Then, Θ(b, 1) =
Θ(b0, 1) ∨ . . . ∨ Θ(bk−1, 1), and all the congruences on the right–hand side of the
equation are below Ψ by definition. Thus, so is Θ(b, 1); hence b ∈ C, as needed.
Moreover, all b ∈ C satisfy ∀n ∈ ω : �nb � a; otherwise some congruence below Ψ
would contain Θ, which is impossible.

Thirdly, we have: −d ∈
[⋃

b∈C[�nb : n ∈ ω)
)

iff −d ≥ d0 ∩ . . . ∩ dk−1, with
di ∈ [�nbi : n ∈ ω) (0 ≤ i ≤ k − 1). Since � distributes over meet, this gives

−d ∈
[
�n(b0 ∩ . . . ∩ bk−1) : n ∈ ω

)
,

and by the previous argument b0 ∩ · · · ∩ bk−1 ∈ C.
Gathering all this together, we get −d ∈ [�nb : n ∈ ω) for some b ∈ B such

that ∀n ∈ ω : �nb � c. On the other hand, d ∈ [�nc : n ∈ ω). Therefore, d ≥ �mc
for some m, and −d ≥ �kb, for some k. Thus, �mc ≤ d ≤ − �k b; in particular,
�mc ≤ − �k b.

Consider q := − �k b→ �mc = �kb ∨ �mc. As q ≥ �mc we have:

Θ(q, 1) ≤ Θ(�mc, 1) = Θ(c, 1) = Θ .

Since Θ is an atom, Θ(q, 1) is either 0 or Θ.
Let us first deal with the case Θ(q, 1) = Θ = Θ(c, 1). We then have: �rq ≤ c,

for some r. This yields: c ≥ �r(�kb ∨ �mc) ≥ �r+kb. Thus, c ≥ �r+kb, which is a
contradiction.

The remaining possibility is Θ(q, 1) = 0. Then we have q = 1, and that means
−�k b ≤ �mc. Together with the inequality from the previous paragraph, this implies
− �k b = �mc. Two cases arise.

Type A. By the choice ofΠwe have that c→ �c Π 1 in A, and so c Π �c. Hence
c = �c in B, and we get �kb = −c. Further, since c is dense, we have � − c = 0,
from which we get �k+1b = 0. However, (b, 1) ∈ Ψ, and so 0 = �k+1b Ψ 1. Hence Ψ
is full. Contradiction.

Type B. If either � − �kb = �m+1c < �mc, or � − �mc = �k+1b < �kb, then the
congruencesΘ(b, 1) andΘ(c, 1) have a non–trivial intersection; namely, both contain
the pair (�m+1c ∨ �k+1b, 1). This pair is not in ∆. This cannot happen, for then
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Θ u Ψ > 0, which contradicts the definition of Ψ. So, we obtain that �m+1c = �mc
and � − �mc = − �m c in B. Hence, �m+1c Π �m c in A, and since V is of type B,
we can apply Lemma 4.3.18 to get that Π ≥ Θ. This, however, cannot happen either,
since Π ≺ Θ, by its definition. This completes the proof of Theorem 4.3.17.

Recall from Section 2.5 that Λ is called cyclic if for every basic modal operator
�i there exists a compound modality � such that p → �i ♦ p ∈ Λ. If Λ is weakly
transitive with master modality � this is equivalent to the requirement that � satisfies
S5.

L 4.3.19. (κ < ℵ0.) Let Λ be a modal logic. Then if Λ is weakly transitive
and cyclic, AlgΛ is a discriminator variety and semisimple.

P. Assume that Λ is weakly transitive with master modality �. First we
show that AlgΛ is semisimple. Let A be an algebra and let a ∈ A. Assume that a
is open, that is, a = �a. We claim that −a is also open. Namely, from a ≤ �a we
conclude that − � −(−a) ≤ −a. Therefore

−a ≤ �(− � −(−a)) ≤ � − a ≤ −a .

Hence � − a = −a. Thus −a is open. Now assume that A is not simple. Then there
exists a proper open filter F such that ΘF is not the monolith. It is easy to see that F
can be assumed to be generated by a single element a. By weak transitivity, we can
also assume that a is open, and that F = {b : b ≥ a}. Then G := {b : b ≥ −a} is also
an open filter. Moreover, F ∩ G = {1}. Hence ΘG ∩ ΘF = ∆A. Hence A is directly
decomposable. Thus, AlgΛ is semisimple.

Now put t(x, y, z) := �(x↔ y)∧ z.∨ .¬� (x↔ y)∧ x. We claim that t(x, y, z) is a
discriminator term. To that effect, take a subdirectly irreducible algebra. It is simple,
by since AlgΛ is semisimple. So, 0 is an opremum and �a = 0 iff a , 1. Let a = b,
and c be any element. Then tA(a, b, c) = �(a ↔ b) ∩ c. ∪ . − �(a ↔ b) ∩ a = c. Let
now a , b. Then a ↔ b , 1 and �(a ↔ b) = 0. Thus tA(a, b, c) = a. This shows
that AlgΛ is a discriminator variety. �

T 4.3.20 (Kowalski). (κ < ℵ0.) Let Λ be a modal logic. Then the follow-
ing are equivalent:

(1) Λ cyclic and is weakly transitive.
(2) AlgΛ is semisimple.
(3) AlgΛ is a discriminator variety.

P. By Lemma 4.3.19 (1) implies both (2) and (3), and by Proposition 4.3.11
(3) implies (2). It remains to be shown that (2) implies (1). So, suppose that AlgΛ is
semisimple. By Theorem 4.3.17 Λ is weakly transitive. What remains to be shown
is that if AlgΛ is semisimple, Λ must be cyclic. Since Λ is weakly transitive and κ
finite, there is a maximal compound modality, �. Suppose that Λ is not cyclic. Then
p → �¬ � ¬p < Λ. Hence there exists a subdirectly irreducible algebra A such that
A 2 p → �¬ � ¬p. So there exists a b ∈ A such that b ∩ − � − � −b , 0. Consider
the open filter F generated by −b. F = {c : c ≥ � − b}, by the assumption that � is a
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strongest compound modality. Suppose that �−b = 0. Then −�−�−b = −�−0 = 0,
a contradiction. So, F , A. Suppose that �−b = 1. Then, since �−b ≤ −b, −b = 1.
It follows that b = 0, again a contradiction. So, F , {1}. We conclude that A is not
simple. This contradicts our assumption. So, Λ must be cyclic. �

Notes on this section. The complex of ideas surrounding the property of equa-
tionally definable principal congruences has been studied in the papers [28], [26],
[30] and [27] by W B, D P and P K̈. In [26] it is proved that
if a congruence–permutable variety is semisimple it has EDPC iff it is a discrimina-
tor variety.

Exercise 142. Let A be a modal algebra. Denote by Cp(A) the semilattice of com-
pact congruences. Show that if ThA is weakly transitive and cyclic then Cp(A) is the
semilattice reduct of a boolean algebra.

Exercise 143. Show that a finite tense algebra is semisimple.

Exercise 144. An algebra A is called hereditarily simple if every subalgebra of A
is simple. Show that every simple modal algebra is hereditarily simple.

Exercise 145. Show that a discriminator variety is congruence distributive. Hint.
First show that it has permuting congruences. Then show that the variety is congru-
ence distributive.

4.4. Stone Representation and Duality

This section provides the rudiments of representation theory and duality theory.
For a proper understanding of the methods it is useful to learn a bit about category
theory. In this section, we provide the reader with the essentials. More can be found
in [143], [101] or [80]. The basic notion is that of a category. A category is a struc-
ture C = 〈Ob,Mor, dom, cod, ◦, id〉 where Ob is a class, called the class of objects,
Mor another class, the class of morphisms, dom, cod : Mor → Ob two functions
assigning to each morphism a domain and a codomain, ◦ : Mor × Mor → Mor
a partial function, assigning to suitable pairs of morphisms their composition, and
id : Ob → Mor a function assigning to each object a morphism, the identity on that

object. We write f : A → B or A
f
→ B to state that f is a morphism with domain

A and codomain B. We also say that f is an arrow from A to B. We require the
following.

(1.) For morphisms f , g the composition f ◦ g is defined iff cod(g) = dom( f ).
(2.) For every object A, dom(id(A)) = cod(id(A)) = A.
(3.) For every morphism f : A→ B we have f ◦ id(A) = f and id(B) ◦ f = f .
(4.) If f : A→ B, g : B→ C and h : C → D then h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

For example, take the class of sets with the functions defined as usual, this gives
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rise to a category called Set. To give another example, let L be a language of sig-
nature Ω and T an equational theory over Ω, then the class Alg T of Ω–algebras for
T form a category with the morphisms being the Ω–homomorphisms. An arrow
f : A → B is an isomorphism if there is a g : B → A such that g ◦ f = id(A) and
f ◦ g = id(B). If f : A → B is an isomorphism, A and B are said to be isomorphic.
A pair ∆ = 〈O,M〉, where O is a class of objects and M a class of morphisms of
C such that for each p ∈ M we have dom(p), cod(p) ∈ O is called a diagram. A

diagram commutes if for any three arrows A
f
→ B, B

g
→ C and A

h
→ C of M we have

h = g ◦ f .

A B-
f

C

A
A
A
A
AU

h = g ◦ f

�
�
�
�
��

g

D 4.4.1. Let C be a category. Put Obop := Ob, Morop := Mor, idop :=
id; moreover, put domop := cod and codop := dom, and finally f ◦op g := g ◦ f .
Then Cop defined as Cop := 〈Obop,Morop, domop, codop, ◦op, idop〉 is called the dual
or opposite category.

The dual category arises by reversing the direction of the arrows. So if for example
f : A→ B is a map, then there is a dual map from B to A in Cop, which is usually also
called f . The notation is rather unfortunate here since it uses the same name for the
objects and for the arrows and only assigns a different direction to the arrow in the
opposite category. So, the arrow exists in the category as well as in the dual category
and which way it goes is determined by the context. To remove this ambiguity we
will write f op : B→ A to distinguish it from the corresponding arrow f : A → B of
C.

D 4.4.2. Let C and D be categories, F both a map from the objects of
C to the objects of D and from the morphisms of C to the morphisms of D. Then F is
called a covariant functor if

(1) F(dom( f )) = dom(F( f )), F(cod( f )) = cod(F( f )),
(2) F(g ◦ f ) = F(g) ◦ F( f ) and
(3) F(id(A)) = id(F(A)).

F is called a contravariant functor if
(1) F(cod( f )) = dom(F( f )), F(dom( f )) = cod(F( f )),
(2) F(g ◦ f ) = F( f ) ◦ F(g) and
(3) F(id(A)) = id(F(A)).

Thus, a covariant functor maps f : A → B into F( f ) : F(A) → F(B) while a
contravariant functor maps f into F( f ) : F(B) → F(A). Therefore, as the direction
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of the arrows is reversed, the composition must also work in reverse order. Now, an
essential feature of modal duality theory is to find well–behaved functors between
the various categories that arise in modal logic. Typically, in the standard algebraic
tradition one would be content to define just representation theories for the objects of
that category (e. g. of finite boolean algebras as algebras of subsets of a set). How-
ever, from the categorial perspective the most natural representation is that which is
in addition also functorial. The advantage is for example that the characterization of
modally definable classes of algebras (namely varieties) is transferred to a character-
ization of modally definable classes of frames. For we do not only know something
about the objects, we also learn something about the maps between them. An instruc-
tive example is the representation theorem for modal algebras. There is a function
mapping the modal algebras to descriptive frames and functions between modal al-
gebras to p–morphisms; in other words we have a functor between the respective
categories. We will show that this functor is contravariant and has an inverse. So,
every p–morphism between frames is the image of a homomorphism between the
corresponding algebras under the functor. This has far reaching consequences. A
similar example is Theorem 4.4.10 of this section. If F is a functor from C to D and
G a functor from D to E then G ◦ F is a functor from C to E. G ◦ F is covariant if F
and G are both covariant or both contravariant; G ◦ F is contravariant if exactly one
of F and G is contravariant.

The following construction will be a major tool in representation theory, both in
this section and in Section 7.4. For the category C let homC(A, B) denote the class
of arrows from A to B. A category C is called locally small if homC(A, B) is a set
for all objects A, B. All categories considered in this book will be locally small. If
C is locally small then for every object A the map homC(−, A) can be turned into a
contravariant functor HA from C into the category Set of sets and functions. Namely,
for an object B we put HA(B) := homC(B, A) and for a function f : C → B we put
HA( f ) : HA(B) → HA(C) : g 7→ g ◦ f . This is well defined. It is a functor; for let
e : D → C, f : C → B and g : B → A. Then HA( f ◦ e) : g 7→ g ◦ ( f ◦ e) and
HA(e) ◦ HA( f ) : g 7→ (g ◦ f ) ◦ e. These two functions are the same, by definition of
a category. Furthermore, if f = id(B) then HA( f ) = id(HA(B)), as is easily verified.
This shows that we have a contravariant functor.

P 4.4.3. Let C be a locally small category and A an object in C. Define
HA by HA(B) := homC(A, B) and HA( f ) : HA(B) → HA(C) : g 7→ f ◦ g, where
f : B → C is an arrow in C. Also, define HA by putting HA(B) := homC(B, A) and
HA( f ) : HA(C) → HA(B) : g 7→ g ◦ f . Then HA is a covariant functor from C into
Set and HA a contravariant functor from C into Set.

Usually, HA is called the covariant hom–functor and HA the contravariant
hom–functor. Let us apply this to boolean algebras. By BA we denote the category
of boolean algebras with boolean homomorphisms. It is a locally small category as
is easily verified. By Proposition 1.7.10 an ultrafilter U on an algebra A defines a
homomorphism fU : A � 2 by putting fU(a) = 1 iff a ∈ U. Conversely, for every
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map f : A � 2 the set f −1(1) is an ultrafilter on A. Finally, every map f : A → 2
is surjective, since f (1A) = 1 and f (0A) = 0. We will henceforth call maps A � 2
points of the algebra A. The contravariant hom–functor H2 will now be denoted by
(−)∗. To give the reader a feeling for the construction we will repeat it in this con-
crete case. We denote the set of points of a boolean algebra A by A∗. Moreover, for
any algebra B and boolean homomorphism f : B → A the map f∗ : A∗ → B∗ is
defined by f∗(g) := g ◦ f .

B A-
f

2

A
A
A
A
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f∗(g) := g ◦ f

�
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�
��
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Let us investigate this a bit closer. We will show that f is surjective iff f∗ is injective;
and that f is injective iff f∗ is surjective. Assume f is surjective. Let g and h be
two two different points of A. Then there is an a such that g(a) , h(a). Therefore,
there is an element b ∈ f −1(a) with g ◦ f (b) , h ◦ f (b). Hence f∗ : A∗ � B∗. Now
assume that f is not surjective. Then let im[ f ] be the direct image of f in A. Since
this is not the whole algebra, there is an element a such that neither a nor −a is in
im[ f ]. Now take an ultrafilter U on A. Let V := U ∩ im[ f ] be the restriction of U
to im[B]. Then V is an ultrafilter on im[ f ] (can you see why this is so?). Now both
the set V ∪ {a} and V ∪ {−a} have the finite intersection property in A, hence can
be extended to ultrafilters V1 and V2. Then f −1[U] = f −1[V1] = f −1[V2], and so
f∗ is not injective since V1 , V2. This concludes the case of surjectivity of f . Now
assume that f is injective. We will show that f∗ is surjective. So let g : B → 2. Put
F := f [g−1(1)], the direct image of the ultrafilter defined by g. This generates a filter
in A and can be extended to an ultrafilter. Hence f∗ is surjective. Now let f be not
injective. Then there exist elements a and b such that a , b but f (a) = f (b). This
means f (a ↔ b) = 0, but a ↔ b , 0. Then either a ∩ −b , 0 or b ∩ −a , 0. Hence
there is an ultrafilter containing one but not the other. This ultrafilter is not of the
form f −1[U] for any ultrafilter on A.

T 4.4.4. H2 : A 7→ A∗ is a contravariant functor from the category of
boolean algebras to the category of sets. Moreover, f∗ is injective iff f is injective,
and f∗ is surjective iff f is injective.

Now let us try to define an inverse functor from Set to BA. Take the set 2 = {0, 1}
and look at homSet(X, 2). It is not difficult to turn this into a boolean algebra. Namely,
observe that for a function f : X → 2 each fibre f −1(1) is a subset of X, and every
subset A ⊆ X defines a function χA by χA(x) = 1 iff x ∈ A. This function is known
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as the characteristic function of A. Now define
0 := χ∅
1 := χX

−χA := χX−A

χA ∩ χB := χA∩B

χA ∪ χB := χA∪B

So, for X we let X∗ be the boolean algebra defined on the set homSet(X, 2). And for
f : Y → X let f ∗(g) := g ◦ f .

Y X-
f

2

A
A
A
A
AU

f ∗(g) := g ◦ f
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T 4.4.5. The map X 7→ X∗ is a contravariant functor from the category of
sets into the category of boolean algebras. Moreover, f ∗ is injective iff f is surjective
and f ∗ is surjective iff f is injective. f ∗ is called the powerset functor.

The proof is left to the reader. Now, we have a contravariant functor from BA to
Set and a contravariant functor from Set to BA. Combining these functors we get a
covariant functor from BA to BA and from Set to Set. For example, starting with a
boolean algebra A we can form the set A∗ and then turn this into a boolean algebra
(A∗)∗. (The latter operation we sometimes refer to as raising a set into a boolean
algebra.) Likewise, we can start with the set X, raise this to a boolean algebra X∗

and form the point set (X∗)∗. Unfortunately, in neither case we can expect to have
an isomorphism. This is analogous to the case of vector spaces and their biduals. In
the finite dimensional case there is an isomorphism between a vector space and its
bidual, but in the infinite dimensional case there is only an embedding of the former
into the latter. The same holds here. The map x 7→ Ux = {Y ⊆ X : x ∈ Y} embeds X
into the point set of X∗. The map a 7→ â = { f : A→ 2 : f (a) = 1} embeds A into the
powerset–algebra over the points of A.

Thus the situation is not optimal. Nevertheless, let us proceed further along this
line. First of all, if intuitively boolean logic is the logic of sets, then in a way we have
succeeded, because we have shown that anything that satisfies the laws of boolean
algebras is in effect an algebra of sets. We cash out on this as follows. Let A be an
algebra, X a set. We call a boolean homomorphism f : A � X∗ a realization of
A. A realization turns the elements of the algebra into subsets of X, and interprets
the operations on A as the natural ones on sets. (Actually, X∗ was construed via the
hom–functor, so we have on the right hand side the characteristic functions rather
than the sets, but this is inessential for the argument here, since the two algebras
are isomorphic.) What we have proved so far is that every boolean algebra can be
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realized. Now, in order to recover A in X∗ we do not need the operations — because
they are standard. All we need is the collection f [A] = { f (a) : a ∈ A}. So, we
can represent A by the pair 〈X, f [A]〉. There is a structure in mathematics which is
almost of that form, namely a topological space. Recall that a topological space
is a pair X = 〈X,X〉 where X is a collection of subsets of X, called the set of open
sets, which contains ∅, X and which is closed under finite intersections and arbitrary
unions. Maps between topological spaces are the continuous functions, where a
function f : X → Y is a continuous function from 〈X,X〉 to 〈Y,Y〉 if for every A ∈ Y,
f −1[A] ∈ X. Alternatively, since the open sets of X form a locale Ω(X) := 〈X,∩,

⋃
〉

with finite meets and infinite joins, we can say that a function is continuous if the
function Ω( f ) : Ω(Y) → Ω(X) defined by Ω( f )(A) := f −1[A] is a homomorphism
preserving finite meets and infinite joins. Let X = 〈X,X〉 be a topological space. A
set A ⊆ X is clopen in the space X = 〈X,X〉 if both A and X − A are open. X is
discrete if every subset is open. X is discrete iff for every x ∈ X the singleton set {x}
is open. X is called compact if for every union

⋃
I xi = X of open sets xi we have a

finite subset J ⊆ I such that
⋃

J xi = X. Finally, a subset B of X is called a basis of
the topology if every open set is the (possibly infinite) union of members of B.

D 4.4.6. A topological space is zero–dimensional if the clopen sets
are a basis for the topology.

Let A be a boolean algebra. Put X := pt(A). For a ∈ A put

â := {p ∈ X : p(a) = 1} .

Let A := {̂a : a ∈ A}. A is closed under all boolean operations. Now let X be the set
of all unions of members of A. Alternatively, X is the smallest topology induced by
A on X. Put Ao := 〈X,X〉. Ao is a zero–dimensional topological space. Before we set
out to study the functorial properties of this map, let us turn to a fundamental problem
of this construction, namely how to recover the set A when given the topology X.
That we can succeed is not at all obvious. So far we have a set X and a collection
of clopen subsets forming a boolean algebra which is a basis for the topology. To
show that the clopen sets are not always reconstructible take X = ω, B the collection
of finite and cofinite sets and C the collection of all subsets of X. Both B and C are
a basis of the same topology, namely the discrete topology. In this topology, every
subset is clopen.

P 4.4.7. Let 〈X,X〉 be a compact topological space. Assume X0 is a
basis for the topology and that X0 is closed under complements and finite unions.
Then for x ∈ X we have x ∈ X0 iff x is clopen.

P. If x is in X0 then it is clearly clopen, since X − x ∈ X0 as well. Now
assume that x is clopen. Let x =

⋃
I yi, X − x =

⋃
J z j be two representations such

that yi, z j ∈ X0 for all i ∈ I and j ∈ J. Now X = x ∪ (X − x) = (
⋃

I yi) ∪ (
⋃

J z j).
Thus there is a finite K ⊆ I and a finite L ⊆ J such that X = (

⋃
K yi) ∪ (

⋃
L z j). Then

x = x∩ ((
⋃

K yi)∪ (
⋃

L z j)) =
⋃

K(x∩ yi)∪
⋃

L(x∩ z j) =
⋃

K x∩ yi =
⋃

K yi ∈ X0. �
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As before, a map f : B → A induces a continuous function fo : Ao → Bo via
fo(g) := g ◦ f . For first of all we have the set–map f∗ : A∗ → B∗ and we sim-
ply define fo(

⋃
I xi) :=

⋃
I fo(xi). (The reader is asked to verify that this defini-

tion is consistent. This is not entirely harmless.) This defines the first functor.
For the opposite direction, take a topological space X and define the set of points
by homTop(X, 2), where 2 is the discrete topological space with 2 elements. (So,
2 = 〈{0, 1}, {∅, {0}, {1}, {0, 1}}〉.) Such functions are uniquely characterized by the set
on which they give the value 1. So they are of the form χx for a set x. x must be
open, being of the form f −1(1), and closed, being the complement of f −1(0). Thus,
we get as before a boolean algebra of functions χx, namely for all clopen elements.
We call this algebra Xo.

Now, do we have A � (Ao)o as well as (Xo)o? Let us begin with the first ques-
tion. We have defined Ao on the set of points, or — equivalently — on the set of
ultrafilters. We will show that this space is compact, allowing us to recover the origi-
nal boolean algebra as the algebra of clopen sets. Since this is the algebra we will get
when raising via o, we do in fact have the desired isomorphism. A space is compact
if for any intersection

⋂
I xi of closed sets there is a finite J ⊆ I such that

⋂
J xi = ∅.

Alternatively, consider a family of sets 〈xi : i ∈ I〉 such that any finite subfamily has
non–empty intersection. This is the finite intersection property defined in Proposi-
tion 1.7.11. If a space is compact, such a family must have non–empty intersection.
Now consider a set {S i : i ∈ I} of closed sets in Ao with the finite intersection prop-
erty. Each S i is an intersection of sets of the form â. Without loss of generality we
may therefore assume that we have a family 〈̂a j : j ∈ J〉 of elements â j with the finite
intersection property. Then there is an ultrafilter U containing that family. There is
a function fU such that f −1(1) = U. Hence, fU ∈

⋂
J â j and so the intersection is

not empty. So, Ao is a compact space. Thus, by Proposition 4.4.7, A � (Ao)o. In
general, for a compact topological space X � (Xo)o does not hold. Thus, we must re-
strict the class of topological spaces under consideration. This leads to the following
definition.

D 4.4.8. A topological space is called a Stone space if it is compact
and for two different points there is a clopen set containing one but not the other. The
category of Stone spaces and continuous maps between them is denoted by StoneSp.

Consider this in contrast to the separation axioms T0 and T2. A topological
space is a Hausdorff space or T2–space if whenever x and y are distinct there are
disjoint open sets U and V such that x ∈ U and y ∈ V . A space is a T0–space if for
every given pair x, y of points there exists an open set A such that ](A ∩ {x, y}) = 1.
(More about T0–spaces in Section 7.4.) These two conditions are not the same. For
example, the topological space over 0, 1 with the sets ∅, {0} and {0, 1} satisfies the
condition that there is an open set containing 0 but not 1; but there is no open set
containing 1 and not 0. So it is a T0–space but not a T2–space. (This space is known
as the Sierpiński–space.) Now consider requirement in the above definition. It is
almost like the T0–axiom but requires not just an open set but a clopen set. This
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however means that it is the same as a T2–axiom with respect to the clopen sets. For
if a contains x and not y and a is clopen, then X − a is clopen as well, and it contains
y but not x.

D 4.4.9. Two categories C and D are equivalent if there exist covari-
ant functors F : C → D and G : D → C such that for each A ∈ Ob(C) we have
A � G(F(A)) and for each B ∈ Ob(D) we have B � F(G(B)).

T 4.4.10 (Stone). The category BA of boolean algebras is equivalent to
the category StoneSpop, the dual category of the category of the Stone–spaces.

P. We know that we have a contravariant functor (−)o : BA → StoneSp
and a contravariant functor (−)o : StoneSp→ BA. These can be made into covariant
functors by switching to the opposite category StoneSpop. The remaining bit is to
show that X � (Xo)o. Now, for a point x ∈ X put Ux := {a ∈ X : a clopen, x ∈ a}.
This is an ultrafilter on the algebra of clopen sets. We show that the map u : x 7→ Ux

is a topological isomorphism. It is injective by the definition of a Stone space; for if
x , y then there is a clopen set a such that x ∈ a but y < a. The map is also surjective,
by construction. Finally, a clopen set of (Xo)o is a set of the form â := {U : a ∈ U},
where U ranges over the ultrafilters of Xo and a is clopen in X. Now let a be a clopen
subset of X. Then

u[a] = {Ux : x ∈ a} = {Ux : a ∈ Ux}

= {U : a ∈ U} = â

(Here we use the fact that every ultrafilter is of the form Ux for some x.) Hence, u
induces a bijection of the clopen sets. Therefore, it induces a bijection between the
open sets. Hence u is a topological isomorphism. �

Exercise 146. Show that the dual category Cop of a category C is a category.
Show also that if F : C → D is a contravariant functor, then Fop : C → Dop is a
covariant functor, where Fop(A) := F(A) and Fop( f ) := F( f )op.

Exercise 147. Show Theorem 4.4.5.

Exercise 148. Show that a topological space is a Stone space iff it is compact and
zero–dimensional.

Exercise 149. Let J ⊆ R be a subset of R, and J the set of sets of the form O ∩ J,
O open in R. Now let J be the topological space 〈J, J〉. Show that points in J are
nothing but Dedekind cuts.

Exercise 150. Show that intervals I = [x, y] ⊂ R endowed with the relative topology
of R have no points. Show that Q is not a Stone–space.

Exercise 151. Let the real numbers between 0 and 1 be presented as 3–adic numbers,
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that is, as sequences 〈ai : 0 < i ∈ ω〉 such that a ∈ {0, 1, 2}. Such a sequence
corresponds to the real number

∑
i=1 ai · 3−i. To make this correspondence one–to–

one, we require that there is no i0 such that a j = 2 for all j ≥ i0. Now let C ⊂ [0, 1]
be the set of reals corresponding to sequences in which no ai is equal to 1. This set
is known as the Cantor–Set. Show that this set, endowed with the relative topology
of the real line, is a Stone–space.

∗Exercise 152. Let X be countably infinite. Construct a compact T0–space over X.
Moreover, show that no T2–space over X can be compact.

4.5. Adjoint Functors and Natural Transformations

In this section we will prove a representation theorem for frames that makes use
of the topological representation developed by M S.

D 4.5.1. Let C and D be categories and F,G : C → D functors. Let
η : Ob(C)→ Mor(D) be a map such that for all C–objects A we have G(A) = η(F(A))
and that for all C–arrows f : A → B we have G( f ) ◦ η(A) = η(B) ◦ F( f ). Then η is
called a natural transformation from F to G.

The last condition can be presented in the form of a commutative diagram.

F(B) -
η(B)

?

F( f )

F(A) -η(A)

G(B)

G(A)

?

G( f )

It is important in category theory that everything is defined not only with respect to
objects but also with respect to morphisms. The latter requirement is often called
naturalness. Thus, a natural transformation is natural because it conforms with the
arrows in the way indicated by the picture. Another example of this naturalness
condition is in the definition of adjoint functors given below.

Let C and D be categories, and F,G,H : C → D be functors, η a natural
transformation from F to G and θ a natural transformation from G to H. Define a map
θ•η : Ob(C)→ Mor(D) by (θ•η)(A) := θ(A)◦η(A). This is a natural transformation.

For let A
f
→ B. Then η(B) ◦ F( f ) = G( f ) ◦ η(A) and θ(B) ◦ G( f ) = H( f ) ◦ θ(A) by

assumption that η and θ are natural transformations. Then

(θ • η)(B) ◦ F( f ) = θ(B) ◦ η(B) ◦ F( f )
= θ(B) ◦G( f ) ◦ η(A)
= H( f ) ◦ θ(A) ◦ η(A)
= H( f ) ◦ (θ • η)(A)
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P 4.5.2. Let C and D be categories. Then the functors from C to D

form the objects of a category with arrows being the natural transformations.

D 4.5.3. Let C and D be categories, and F : C→ D and let G : D→ C

be functors. F is called left adjoined to G, in symbols F a G, if there exists for
every C–object A of C and every D–object B a bijection βAB : homD(F(A), B) →
homC(A,G(B)). Moreover, βAB must be natural in both arguments; this means that
for arrows f : A→ A′ and g : B→ B′ we have

βAB ◦ HGB( f ) = HB(F( f )) ◦ βA′B

βAB′ ◦ HA(G(g)) = HFA(g) ◦ βAB

The definition of naturalness is best understood if presented in the form of a
picture. Here is the picture corresponding to the first of these conditions.

homD(A,GB) -
βAB

?

HGB( f )

homD(A′,GB) -βA′B

homC(FA, B)

homC(FA′, B)

?

HB(F( f ))

Assume now that F is left adjoined to G. Then there exists a bijection βA,FA from
hom(FA, FA) to hom(A,GF(A)). In particular, βA,FA(id(A)) : A → GF(A). The
map η : A 7→ βA,FA(id(A)) is a natural transformation from the identity functor
on C to the functor GF. Similarly, starting with a bijection between hom(GB,GB)
and hom(FG(B), B) we obtain a natural transformation from the functor FG to the
identity functor on D. These two transformations are called the unit (η : 1C → GF)
and the counit (θ : FG → 1D) of the adjunction. Moreover, the following so–called
triangular identities hold for all objects A of C and B of D:

θ(FA) ◦ F(η(A)) = id(FA)
G(θ(B)) ◦ η(GB) = id(GB)

It can be shown that the existence of a natural transformation η : 1C → GF (the unit)
and a natural transformation θ : FG → 1D (the counit) is enough to ensure that two
functors are adjoint. Namely, consider the following schemata.

g A→ G(B)
F(g) F(A)→ FG(B)

θ(B) ◦ F(g) F(A)→ B

f F(A)→ B
G( f ) GF(A)→ G(B)

G( f ) ◦ η(A) A→ G(B)

So, βAB : g 7→ F(g) ◦ η(A) is bijective. It is not hard to show that if the triangular
identities hold then these bijections are natural in both arguments. The existence of
a unit and a counit satisfying the triangular identities is typically somewhat easier to
verify.

To understand this terminology, let us look at a particular case. Let V be a variety
of Ω–algebras for a given signature Ω. They form a category, which we also denote
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by V. F : V→ Set : A 7→ A the functor sending an algebra to its underlying set, and
a homomorphism between algebras to the corresponding set–map. F is called the
forgetful functor. Consider the functor G : Set → V : X 7→ FrV(X), sending a set
X to the algebra freely generated by X in V. We call it the free functor. We claim
that G a F. For let f : X → F(A) be a map. Then, by definition of a free algebra
there exists an extension f : FrV(X) → A; the correspondence between f and f is
bijective. It is a matter of straightforward but tedious calculations to verify that this
bijection is natural. We conclude the following theorem.

T 4.5.4. Let V be a variety ofΩ–algebras. Then the forgetful functor has
a right adjoint, the free functor.

The next example appears also in many guises throughout this book. A poset
〈P,≤〉 can be regarded as a category as follows. Put Ob(C) := P, Mor(C) := ≤,
id(x) := 〈x, x〉, and 〈x, y〉◦〈y, z〉 := 〈x, z〉. The domain of 〈x, y〉 is x, and the codomain
is y. We call a category a poset category if for every pair A, B of objects there
exists at most one arrow from A to B. In a poset category it is unnecessary to name
arrows. So we simply write A → B to denote the unique arrow from A to B; and we
write A ≤ B to state that there exists an arrow from A to B. Let now C and D be
poset categories. A functor F : C → D is uniquely determined by its action on the
objects. For if f : A → B then F( f ) : F(A) → F(B) is an arrow and so is uniquely
determined. The requirement that F is a functor is equivalent to the condition that
F be isotonic, that is, if A ≤ B then F(A) ≤ F(B). Suppose now that P and Q are
posets and f : P → Q, g : Q → P be isotonic maps. We may think of the maps as
functors between the corresponding poset categories. We claim that f is left–adjoint
to g iff the following holds for all x ∈ P and all y ∈ Q:

x ≤ g(y)
f (x) ≤ y

(This is read as follows. The situation above the line obtains iff the situation below
the line obtains.) The proof is straightforward. There exists a bijection between the
hom–sets, and this bijection is uniquely defined by the fact that the hom–sets contain
only one member. The naturalness is also immediately verified. Now let x ∈ P,
y ∈ Q. Then from g(y) ≤ g(y) we get f g(y) ≤ y, and from f (x) ≤ f (x) we get
x ≤ g f (x). Assume now that f : P → Q and g : Q → P such that f g(y) ≤ y for
all y ∈ Q and x ≤ g f (x) for all x ∈ P. Then from y ≤ f (x) we deduce g(y) ≤ g f (x).
Since g f (x) ≤ x we have g(y) ≤ x. If g(y) ≤ x then f g(y) ≤ f (x). Together with
y ≤ f g(y) we get y ≤ f (x).

We will now extend the results of duality theory to modal algebras. This can
be done by pushing the topological duality further, as outlined in G S
and V V [186]. We will sketch this approach, proving only part of
the results. Some technical details have to be adapted when lifting this approach to
polymodal algebras. This is the reason why we do not simplify the exposition to
monomodal algebras; otherwise it looks overly complicated. The key is to regard
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polymodal algebras as functors from a special diagram into the category of boolean
algebras with hemimorphisms as functions. Recall that a hemimorphism from a
boolean algebra A to a boolean algebra B is a map τ : A→ B such that τ(1) = 1 and
τ(a ∩ b) = τ(a) ∩ τ(b) for all a, b ∈ A. We write τ : A ⇀ B for the fact that τ is a
hemimorphism. A co–hemimorphism is a map σ : A → B such that σ(0) = 0 and
σ(a ∪ b) = σ(a) ∪ σ(b) for all a, b ∈ A. If τ is a hemimorphism, σ(a) := −τ − (a)
is a co–hemimorphism, and if σ is a co–hemimorphism then τ(a) := −τ − (a) is a
hemimorphism. The category of boolean algebras as objects and hemimorphisms as
arrows is denoted by Bal. The dual of a boolean algebra is a Stone–space; the dual of
a hemimorphism turns out to be a relation between the points of the spaces. Namely,
if τ : A ⇀ B and f : A → 2, g : B → 2 are points, then put g C f if for all a ∈ A,
g(τ(a)) = 1 implies f (a) = 1.

Consider a relation C ⊆ X × Y . Given a set S ⊆ X and a set T ⊆ Y , write

^T := {x ∈ X : (∃y)(x C y and y ∈ T )}
�T := {x ∈ X : (∀y)(if x C y then y ∈ T )}
^S := {y ∈ Y : (∃x)(x C y and x ∈ S )}
�S := {y ∈ Y : (∀x)(if x C y then x ∈ S )}

Then ^, � : ℘(X) → ℘(Y) and ^, � : ℘(Y) → ℘(X). Moreover, the following laws
of adjunction hold.

S ⊆ �T

^S ⊆ T
�S ⊇ T
S ⊇ ^T

These laws are reflected in the postulates p → �^p and p → �^p of tense logic.
(In fact, the latter encode that �^ and �^ are the unit and counit of this adjunction.)
Let X and Y be topological spaces and f : X → Y be a function. f is called open if
for every open set S ⊆ X, f [S ] is open in f . Likewise, f is called closed (clopen) if
the direct image of a closed (clopen) set is closed (clopen). In general a map that is
both open and closed is also clopen. The converse is generally false.

D 4.5.5. Let X and Y be topological spaces, and C ⊆ X × Y be a
relation. C is called a continuous relation from X to Y if ^ is a clopen map
from Y to X. The category of topological spaces and continuous relations as maps
is denoted by Spa. C is called closed if ^ is a closed map.

A relation is continuous iff � is clopen. The reader is warned that �H is not the
inverse image of H under C. The latter is ^H. The two coincide just in case C is a
surjective function. Let X� denote the boolean algebra of clopen subsets of X.

X
� := 〈{H : H clopen in X}, 1,−,∩〉

Let C ⊆ X ×Y be a continuous relation. Then ^ commutes with arbitrary unions. So
^ : Y� → X� is a co–hemimorphism and � : Y� → X� is a hemimorphism. Now let
J ⊆ Y × Z be a continuous relation from Y to Z. Then C ◦ J ⊆ X × Z is a continuous
relation from X to Z.
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T 4.5.6. (−)� is a contravariant functor from Spa to Bal.

Now return to the case of a hemimorphism τ : A ⇀ B. We define A� to be
simply the space of points endowed with the topology generated by the sets â =
{U ∈ pt(A) : a ∈ U}. Its sets can be characterized as follows.

P 4.5.7. Let X be the Stone space of A. A set S is closed in X iff it is
of the form {U : U ⊇ F}, where F is a filter in A. A set is clopen iff it is of the form
{U : U ⊇ F}, where F is a principal filter.

P. We prove the second claim first. Assume S is clopen. Then S = â =
{U : a ∈ U} for some a ∈ A. Now put F = {b : b ≥ a}. Then S = {U : U ⊇ F}.
F is principal. Conversely, if F is principal, say F = {b : b ≥ a} for some a, then
S = â, hence S is clopen. Now assume that S is closed. Then S =

⋂
i∈I Ri for

some family of clopen sets Ri. Let Ri = {U : U ⊇ Fi}, i ∈ I, where each Fi is a
principal filter. Let G be the filter generated by the Fi. We have S = {U : U ⊇ G}.
Conversely, assume that there exists a filter G such that S = {U : U ⊇ G}. Then G
is generated by a family 〈Fi : i ∈ I〉 of principal filters. It follows that S =

⋂
i∈I Ri,

where Ri = {U : U ⊇ Fi}. Each Ri is clopen, and so S is closed. �

Now for U ∈ pt(B) and V ∈ pt(A) we put U τ� V iff for every a ∈ U, τa ∈ U implies
a ∈ V . The latter is the same as: a ∈ V implies σ(a) ∈ U, where σ(a) := −τ− a ∈ U.
With C understood to be τ�, ^, ^ etc. are properly defined. Therefore, by definition

Uτ�V ⇔ V ⊆ τ[U]
Uτ�V ⇔ U ⊆ σ[V]

D 4.5.8. Let X and Y be topological spaces. A relation C ⊆ X × Y is
called point closed, if for every x ∈ X, ^{x} is closed in Y.

P 4.5.9. Suppose τ : A ⇀ B. Then τ� is a continuous, point closed
relation from B� to A�.

P. It is not hard to see that τ� is point closed. For let U ∈ pt(B). Then
τ−1[U] is a filter of A; hence H := {T ∈ pt(A) : T ⊇ τ−1[U]} is closed. Moreover,
H = {T : Tτ�U}. Now for the first claim. Let C be a clopen set, C = â. Then
S ∈ ^C iff S τ� T for some T ∈ â iff S τ� T for some T 3 a iff −τ− a ∈ S . The latter
is a clopen set. Hence, ^ maps clopen sets onto clopen sets. �

T 4.5.10. (−)� is a contravariant functor from Bal into Spa.

P. Let τ : A⇀ B and υ : B⇀ C. We have to show that

(υ ◦ τ)� = τ� ◦ υ� .

Claim. Let X and Y be Stone spaces. If C is a continuous and point closed relation
from X to Y then ^ is closed. For a proof let D be a closed set of X. We show that if
y < ^D then there exists a clopen C ⊆ Y such that ^D ⊆ C but y < C. This suffices
for a proof. So let y < ^D. For every x ∈ D, y < ^{x}, and since ^{x} is closed
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there exists a clopen set Cx such that y < Cx but ^{x} ⊆ Cx. (This follows from the
fact that each closed set of Y is the intersection of clopen sets.) Hence, x ∈ �Cx.
Therefore D ⊆

⋃
x∈D �Cx. This is an open cover of D, and by compactness of X

there exists a finite set S such that D ⊆
⋃

x∈S �Cx. Then also ^D ⊆
⋃

x∈S Cx. Put
C :=

⋃
x∈S Cx. C is clopen and does not contain y. This proves the claim.

From this fact we deduce that τ�◦υ� is point–closed. For, being the composition
of closed maps, it is closed, and a fortiori point–closed. We finally need to verify that
this map is based on the same continuous relation as (υ◦τ)�. The proof is essentially
the same as in Theorem 3.2.8; if U(τ ◦ υ)�V then one has to find a point Z such
that U τ� Z and Z υ� V . Alternatively, two maps between Stone spaces are identical
iff they are identical on the clopen sets. We leave the verification of that fact to the
reader. �

Finally, consider having κ–many modal operators. Let J(κ) be the category con-
sisting of a single object, denoted here by �. The set of morphisms consists in finite
sequences from κ. If σ and τ are such sequences, then σ(τ(�)) = (σaτ)(�). The
identity on � is the map ε, where ε is the empty sequence. (Moreover, dom( f ) =
cod( f ) = � for every arrow f .) This defines the category J(κ). Consider a functor
F : J(κ) → Bal. Then F(�) = A for some boolean algebra A and for each j < κ,
F( j) : A ⇀ A. For each sequence σ, F(σ) : A ⇀ A is uniquely determined by the
F( j), j < κ. Hence, the functor can be viewed as a κ–modal algebra. Next, consider
another functor G : J(κ) → Bal. Suppose that η is a natural transformation from F
to G. This means that η(�) : A⇀ B and that

η(�) ◦ F( j) = G( j) ◦ η(�)

A natural transformation η is boolean if η(�) is a boolean homomorphism. In that
case, the conditions on η being a natural transformation are equivalent to η(�) being
a homomorphism.

T 4.5.11 (Sambin & Vaccaro). The category of κ–modal algebras is
equivalent to the category of functors from J(κ) to Bal, with arrows being the boolean
natural transformations. This category is denoted by Malκ.

In a similar way we can introduce functors from J(κ) to Spa. They correspond to
κ–modal frames. In other words, a κ–modal frame is a topological space X endowed
with a family of continuous relations from X to X indexed by κ. For the moment,
however, frames are functors. Let F and G be two such functors. A weak contrac-
tion from F to G is a continuous relation c from X := F(�) to Y := G(�) such that
(1.) For every clopen set H of Y, c−1[H] is clopen in X, (2.) For every clopen set H
of Y, ^c−1[H] = c−1[^H]. A contraction is a function (!) and a weak contraction
that satisfies (2.) for all sets {x} (and so for all subsets of Y). Hence a contraction is a
weak contraction. It is tempting to conclude that the category of frames is the same
as the category of functors from J(κ) into the category of topological spaces together
with weak contractions. This is not so, however. Rather, this result can be true only
if we take zero–dimensional topological spaces.
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T 4.5.12 (Sambin & Vaccaro). The functors from J(κ) to the catego-
ry of zero–dimensional compact spaces with contractions as arrows form a cate-
gory denoted by Fraκ. Fraκ is equivalent to the category of κ–modal frames and
p–morphisms.

The proof of this theorem is left as an exercise. The reader should convince
himself that this theorem is essentially a reformulation of the notion of a general
frame and a p–morphism between such frames into category theory. Now consider
the category of Stone spaces, denoted by StSpaκ, and the category of functors from
J(κ) with point closed contractions as arrows.

T 4.5.13. StSpaκ is dual to the category Malκ.

Exercise 153. Show Theorem 4.5.12.

Exercise 154. Show that if f : X → Y is a function, the map f : ℘(X) → ℘(Y) :
A 7→ f [A] has both a left adjoint and a right adjoint (if viewed as a map between
posets).

4.6. Generalized Frames and Modal Duality Theory

We have seen that a boolean algebra can be realized as a set algebra i. e. as
a subalgebra of a powerset–algebra. Also, we have seen that boolean algebras can
be repesented by certain topological spaces. So, we can either choose a topological
representation or a representation of boolean algebras by so–called boolean spaces
(which are pairs 〈X,X〉 where X is closed under complement and union). In a sub-
sequent section we have developed the topological representation of modal algebras.
In a second step we restrict the topological space to the clopen sets. In this way we
get the standard representation of modal algebras as certain general frames.

D 4.6.1. Let A be a κ–modal algebra. Then the generalized frame A+

is defined as follows. The worlds are the ultrafilters of A, and U C j V iff for all
b ∈ V we have � jb ∈ U. Furthermore, the internal sets are the sets of the form
b̂ = {U : b ∈ U}. For a homomorphism h : A → B we let h+ : B+ → A+ be defined
by h+(U) := h−1[U] = {b : h(b) ∈ U}.

The converse direction is harmless as well.

D 4.6.2. Let F = 〈f,F〉 be a generalized frame. Then the modal al-
gebra F+ is defined as follows. The elements are the internal sets, and the
operations are intersection, complement, and � j, j < κ, defined by

� jb := {w : (∃x)(w C j x and x ∈ b)}.

If p : F→ G is a p–morphism, then p+ : G+ → F+ is defined by p+(b) := p−1[b].
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T 4.6.3. (−)+ is a contravariant functor from the category Mal of modal
algebras to the category Frm of general frames; (−)+ is a contravariant functor from
Frm to Mal. Moreover, for every modal algebra A++ � A.

We entrust the proof of the fact that (−)+ and (−)+ are functors onto the reader.
Again we are faced with the problem of the converse, namely, to say when for a
general frame F++ � F. In order to state this condition, let us give another definition.

D 4.6.4. A frame is differentiated if for every pair x and y of different
worlds there is an internal set containing x but not y. A frame is tight if for every
pair x and y of worlds such that x 6 j y there is an internal set b such that x ∈ � jb but
y < b. A frame is compact if every family of internal sets with the finite intersection
property has a nonempty intersection. A frame is refined if it is both differentiated
and tight, and it is descriptive if it is refined and compact. A frame is atomic if
for every world x the set {x} is internal and full, if every subset is internal.

We introduce also abbreviations for classes. Krp denotes the class of Kripke–
frames,G the class of generalized frames,Df the class of differentiated frames, Ti the
class of tight frames, R the class of refined frames, Cmp the class of compact frames,
D the class of descriptive frames and C the class of canonical frames. Atomic frames
will play only a marginal role, although atomicity is a rather desirable property of
frames, playing a fundamental role in the completeness proofs for fusions (see Chap-
ter 6). The definition of compactness is equivalent to the definition of compactness
of the space generated by the sets of the algebra. Moreover, the postulate of differen-
tiatedness is the separation postulate for Stone–spaces. We may say informally, that
a compact frame has enough worlds, a differentiated frame has enough internal sets
for identity and a refined frame has enough sets for the basic relations.

The properties of frames have a topological counterpart.

P 4.6.5. Let F be a κ–modal frame. (i.) F is differentiated iff {x} is
closed for all x ∈ f iff the corresponding topological space is Hausdorff. (ii.) F
is refined iff the space is Hausdorff and C j is point closed for all j < κ. (iii.) F is
compact iff the corresponding topological space is compact.

We remark here that the property of tightness also is a topological separation
property. It says, namely, that for every x and j < κ the set suc j(x) = {y : x C j y} can
be separated by a clopen neighbourhood from any point not contained in it.

T 4.6.6. For a descriptive frame, F � F++.

P. Consider the map x 7→ Ux := {b : x ∈ b}. This map is injective, since
the frame is differentiated. It is surjective, since the frame is compact. Now assume
that x C j y. Then if b ∈ Uy, � jb ∈ Ux. Hence Ux C j Uy, by definition of the relation
C j. Now assume x 6 j y. Then, since the frame is tight, there is a b ∈ Uy such that
� − b ∈ Ux, that is, �b < Ux. Hence Ux 6 j Uy. �
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C 4.6.7 (Duality Theorem). The categories Malκ of (κ–)modal algebras
and DFrmκ of descriptive κ–frames are dually equivalent. Moreover, a homomor-
phism of modal algebras is surjective iff its dual map is an embedding; it is injective
iff its dual map is a contraction.

The duality theorem distinguishes the descriptive frames from the other frames
and will be used quite effectively. From a theoretical point this is a very satisfactory
result, allowing us to transfer algebraic proofs into geometric proofs and conversely.
However, as it turns out, descriptive frames are hard to construct. We do not have
such a good intuition about them. Typically, it is much easier to construct refined
frames than to construct descriptive frames. So, we will quite often work with refined
frames instead. As a last point notice that there exists a modal algebra based on a
single element. This algebra is denoted by 1. Applying the representation theory we
obtain that 1+ is the empty frame. It is this fact to allow frames to have no worlds at
all.

In addition to (general) frames we also have Kripke–frames and there is a rather
easy way to turn a frame into a Kripke–frame, namely by just forgetting the internal
sets. So, given a frame F = 〈f,F〉 we put F] := f, and given a p–morphism π :
F → G we put π] := π. Then π] : F] → G]. This is a functor, as is easily
checked. This is a kind of forgetful functor. Conversely, given a Kripke frame f,
let f] := 〈f, 2 f 〉. In analogy, we dub this the recovery functor. Actually, the same
terminology can be applied to the previous case. To pass from a general frame to a
modal algebra is practically a forgetful operation, and to get a frame from the algebra
is a recovery process. There is a complete analogy here, because forgetting what has
been reconstructed results in the same structure; we have both A++ � A and f]] � f.
But the converse need not hold; we are not sure to be able to reconstruct what we
have forgotten.

T 4.6.8. The map (−)] is a covariant functor from the category Frm of
frames into the category Krp of Kripke–frames. The map (−)] is a covariant functor
from Krp into Frm. Moreover, for a Kripke–frame f]] � f.

Evidently, F is full iff F = F]]. So, the category of full frames is equivalent to
the category of Kripke–frames. (This is not as difficult as it sounds.) A nice conse-
quence is the following construction, originally due to B J́ and A
T. Take a κ–modal algebra A. It is called complete if the lattice reduct is com-
plete. The completion of A, Em(A), is a modal algebra together with an embedding
c : A � Em(A), which is complete and satisfies that for every complete B and ho-
momorphism h : A → B there exists a k : Em(A) → B with k ◦ c = h. It is easy to
see that a complete modal algebra is isomorphic to an algebra of the formMa(f) for
some Kripke–frame f (where Ma(f) as defined earlier can now be redefined as f]+).
Simply take as elements of f the atoms of A, and put b C j c for atoms b and c, iff
b ≤ � jc. Now if A is a modal algebra, then let Em(A) := (A+])]+. This means the
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following. We pass from A to the dual general frame. Next we pass to the corre-
sponding full frame by taking all sets of the frame as internal sets (this is the actual
completion). Finally, we take the algebra of sets of this full frame. The identity on
pt(A) is a p–morphism i : (A+)]

]� A+. It is surjective, and so i+ : A� Em(A). We
show that c := i+ has the required property. To that end, let h : A → B be a homo-
morphism and B complete. Then h+ : B+ → A+ is a p–morphism of frames. Since
B+ is complete, we can actually factor h+ through i and a function j : B+ → (A+)]

],
by extending h+ to all subsets of the frame. We have h+ = i ◦ j. Now switch back
to the modal algebras. By duality, this gives h = j+ ◦ i+ = j+ ◦ c. Put k := j+. This
concludes the proof.

T 4.6.9. For every modal algebra, the natural embedding map A �
Em(A) := (A+])]+ is a completion.

Now, what are the relationships between all these classes? First of all, a full
frame is both differentiated and refined. A full frame is compact iff it is finite. For
consider the family of sets f − {x} for x ∈ f . If f is infinite, this family has the finite
intersection property. Yet the intersection of all these sets is empty. A differentiated
compact frame is also tight and hence descriptive. (See exercises; a proof using quite
different methods will be given in the next chapter.) There are tight, compact frames
which are not differentiated. For example, take a descriptive frame F. Form a new
frame Fδ from F by taking twins w1 and w2 for each w ∈ f . Put xi C j yk iff i = k and
x C j y; finally, the internal sets are the sets of the form a1 ∪ a2 = {x1 : x ∈ a} ∪ {x2 :
x ∈ a}. This is a frame; it is tight, and compact. But it is not differentiated.

Now for the difference between tightness and differentiatedness. We have seen
already that there are tight frames which are not differentiated. For the converse
we have to work harder. A finite frame will not do here. Define a general frame
R := 〈r,R〉, where r := 〈ω,≤〉 and R is the set of all finite unions of sets of the form

r(i, j) = {k : k ≡ j (mod i)}

where 0 ≤ j < i. Since −r(i, j) =
⋃

j′, j r(i, j′), R is closed under complements. R
closed under intersection, too, by the Chinese Remainder Theorem. Finally, �a = ω
iff a , ∅, and �∅ = ∅, so R is a frame. It is differentiated. For let i , j, say j < i.
Then i ∈ r(i + 1,−1) but j < r(i + 1,−1). Now R is not tight. For i 6 j iff j < i. But
there is no set b such that i ∈ �b but j < b. For either b , 1 and then i < �b(= ∅), or
b = ω and then j ∈ b.

This is actually an instructive frame and we will prove something more than
necessary right now.

T 4.6.10. Th(R) = S5. Moreover, every finite Kripke–frame for S5 is a
p–morphic image of R.

P. We prove the second claim first. Consider an S5–frame with i elements.
Then the map p : j 7→ j (mod i) is a p–morphism. We take as C the direct image of ≤
under p. Now if k < i then for some r ∈ ωwe have j ≤ r·i+k, so that p( j)Cp(k). Thus
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C = i × i, and so we have a p–morphism of Kripke–frames. Next, take any subset
J ⊆ {0, . . . , i − 1}. Then p−1[J] =

⋃
j∈J r(i, j), which is internal. Finally, by the fact

that S5 has the finite model property we have Th(R) ⊆ S5. However, R � p→ �♦p.
For if β(p) = ∅ then β(p) ⊆ β(�♦p). And if β(p) , ∅ then β(�♦p) = �1 = 1. �

It seems at first sight that a frame which is not differentiated can be made into a
differentiated frame by taking the map defined by x 7→ Ux. We call this the refine-
ment map. It maps two points x and x′ onto the same target point if Ux = Ux′ . If
Ux = Ux′ we also write x ∼ x′. Unfortunately, this generally is not a p–morphism.
We need an extra condition to ensure this. One possibility is to require tightness. For
then, if p(x)C p(y), that is, Ux CUy then for every x′ ∼ x there is a y′ such that x′C y′

and y′ ∼ y. In the case of tightness we can even show something stronger, namely
that x′ C y. Namely, let y ∈ b, that is, b ∈ Uy. Then �b ∈ Ux = Ux′ , that is, x′ ∈ �b.
Hence, by tightness, x′ C y. However, tightness is stronger than necessary.

P 4.6.11. If F is tight, the refinement map p : x 7→ Ux is a p–
morphism. Moreover, if x C y, x ∼ x′ and y ∼ y′ then x′ C y′.

We will now turn to some important questions concerning the relationship be-
tween geometrical properties of a frame F and properties of the algebra of sets. In
particular, we will be concerned with the question of whetherF is rooted corresponds
to F+ is subdirectly irreducible. The material presented here is based on [185]. We
will give two examples, showing that in fact neither implication holds.

E. Consider the frame F = 〈Z,≺,F〉where x ≺ y iff |x−y| = 1 and F is the
set of finite and cofinite subsets of Z. This is well–defined. The frame is connected
and the only open filters are the trivial filters. (Let F be an open filter. If F , F, then
F does not contain a finite set. For if a is finite, there is an n ∈ ω such that �na = ∅.
Now, assume that F , {1}. Then for some z, Y := Z − {z} ∈ F. Then if |z′ − z| ≤ n,
z′ < �nY ∈ F, whence Z − {z′} ∈ F for all z′. Any cofinite set is an intersection of
such sets. Hence, F is the filter containing all cofinite sets.) Thus, Con(F+) � 3.
This shows that the algebra of F is subdirectly irreducible. Now consider the bidual
F+
+. A point of F++ is an ultrafilter of F+. If U is not principal then it contains

only infinite sets, hence only cofinite sets. Moreover, it must contain all cofinite sets.
So, there exists exactly one nonprincipal ultrafilter, which we denote by V . Also,
Ux := {a ∈ F : x ∈ a}. Then for all x, V 6 Ux, since �{x} is finite and so not in V .
Likewise Ux 6 V . For let b := {y : |x − y| > 1}. Then b ∈ V but x < �b. It is not
hard to verify that V C V . So, the bidual of F has as its underlying frame the disjoint
union of 〈Z,≺〉 and ◦ . It is therefore not rooted, while its algebra is subdirectly
irreducible. This example is quite similar to the algebra of finite and cofinite subsets
of the infinite garland in Section 7.9.

E. Consider the frame Ω := 〈ω, >,O〉, where O is the set of finite and
cofinite sets. Here, Ω+ is not subdirectly irreducible, but Ω++ is rooted. To verify
the first claim, notice that Ω+ has an infinite descending chain of congruences whose
intersection is the diagonal. These congruences correspond to the finite generated
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subframes of Ω. Hence, Ω+ is not subdirectly irreducible. On the other hand, Ω++

has one more element thanΩ, consisting of the ultrafilter V of cofinite sets. We show
that for all ultrafilters U, V C U. For let b ∈ U. Then n ∈ b for some natural number
n, and so �b ⊇ {y : y > n}, which is cofinite. Thus �b ∈ V , and therefore V C U, by
definition of C.

T 4.6.12 (Sambin). There exist descriptive frames F which are rooted
such that F+ is not subdirectly irreducible. There exist algebras A which are subdi-
rectly irreducible such that A+ is not rooted.

Let us stay a little bit with the theory of descriptive frames. J  B
[12] has investigated the structure of some ultrafilter extensions of frames. We will
show that though the structure of ultrafilter extensions gives some evidence for the
structure of biduals, it is by no means complete. Before we give examples we will
develop some terminology. We will simplify the discussion by restricting ourselves
to a single operator, �. Notice, however, that when we have a Kripke–frame 〈 f ,C〉,
then automatically we have two operators on the algebra of sets, namely � and � .
We will use this notation throughout this section. Notice on the other hand that a
(general) frame for the monomodal language need not be a frame for the bimodal
language, since the algebra of internal sets need not be closed under � . Neverthe-
less, we will use � , keeping in mind that it may result in noninternal sets. Moreover,
we will reserve � for the operator on A, and use � and � for the operations on A+.
Finally, in a frame F, a set is denoted by a lower case letter only if it is an internal
set. Upper case letters stand for sets which may also be external. A reminder on the
use of topology: internal sets are also clopen sets. We will switch freely between
these two characterizations.

D 4.6.13. An element of a modal algebra A is called essential if the
open filter generated by it is a minimal open filter of A distinct from {1}. EA denotes
the set of essential elements of A.

The reader may verify that an element is essential in A iff it is an opremum.

L 4.6.14. Suppose that EA is not empty. Then EA∪{1} is the smallest open
filter. So, EA is nonempty iff A is subdirectly irreducible.

Now we start to investigate the nature of A+. Let us call a set X in a frame F a
transit if it is successor closed. Furthermore, X is closed if it is an intersection of
internal sets (iff it is a closed set of the topology induced by F on f ). It is not hard to
see that the closed transits are closed under arbitrary intersection and union, and that
they form a locale.

T 4.6.15 (Sambin & Vaccaro). The locale of open filters of A is anti–
isomorphic to the dual locale of closed transits of A+.

P. Consider the map C defined by

F 7→ C(F) := {U ∈ pt(A) : F ⊆ U} =
⋂
{̂a : a ∈ F}
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This map is a bijection between closed sets of A+ and filters of the boolean reduct of
A. We need to show that F is open iff C(F) is a transit.

(∀a)(a ∈ F ⇒ �a ∈ F)
⇔ (∀a)(C(F) ⊆ â⇒ C(F) ⊆ �̂a) since a ∈ F iff C(F) ⊆ â
⇔ (∀a)(C(F) ⊆ â⇒ C(F) ⊆ � â) since �̂a = � â
⇔ (∀a)(C(F) ⊆ â⇒ � â ⊆ â) by adjunction
⇔ � C(F) ⊆ C(F) since C(F) and � C(F) are closed
⇔ C(F) is a transit

�

C 4.6.16. A is subdirectly irreducible iff A+ has a greatest closed tran-
sit.

For frames, a similar terminology can be set up. Notice first of all the following.

P 4.6.17. Let F be a frame and C ⊆ f a set. Then the smallest transit
containing C is the set T (C) :=

⋃
k∈ω �

kC. It is open if C is internal. The largest
transit contained in C is the set K(C) :=

⋂
k∈ω �

k
C. It is closed if C is internal.

D 4.6.18. Let F be a frame. Let IF denote the set of all points x such
that the transit of x is F. Furthermore, put HF := f − IF.

L 4.6.19. For every frame, HF is a transit. Moreover, if F has a greatest
nontrivial transit C then C = HF. Otherwise, f = HF. So F is rooted iff it has a
greatest nontrivial transit.

L 4.6.20. For every frame F and every set C, if HF ⊆ C and C , f then
HF = K(C).

Recall that in a topological space X, a set S is called dense if the closure in X is
the entire space. A set is of measure zero if it does not contain any open set iff its
open kernel is empty iff its complement is dense.

L 4.6.21. For every frame, HF is either dense or closed.

P. Suppose HF is not dense. Then there exists a clopen set C such that HF ⊆
C ⊆ f . (For every closed set is the intersection of clopen subsets, and the closure of
HF is not f .) Therefore, by Lemma 4.6.20, HF = K(C). By Proposition 4.6.17, HF
is closed. �

P 4.6.22. For every algebra A, if IA+ is not of measure zero, then A is
subdirectly irreducible.

P. Let IA+ be not of measure zero. Then HA+ is not dense. Therefore it is
closed, by Lemma 4.6.21. By Corollary 4.6.16, A is subdirectly irreducible. �
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It might be deemed unnecessary to invoke the topology when we want to speak
about Kripke–frames. For example, we know that for a Kripke–frame f, Ma(f) is
subdirectly irreducible iff f is rooted. But this is almost the only result that does not
make use of the topological methods. So, let us deal first with the question of open
filters in the algebraMa(f) of a Kripke–frame. At first blush they seem to correspond
simply to the transits of f. As a particular corollary, if f is connected, Ma(f) should
be simple. But this is wrong. For let f be countably infinite. ThenMa(f) has at least
2ℵ0 elements. It is easy to show, however, that such an algebra cannot be simple. For
take any element b , 1. The least open filter containing b is countable. Hence it is
not {1} and not the entire algebra. Thus, the conjecture thatMa(f) is simple if every
world of f is a root is easily refuted. Nevertheless, it is instructive to see a concrete
counterexample.

E. Let z = 〈Z,C〉 be the frame with Z the set of integers and x C y iff
|x − y| = 1. Every world of Z is a root. So, HZ = ∅, which is a clopen set. So, the
algebra of sets is subdirectly irreducible (which also follows from the fact that Z is
rooted). Therefore, EZ is not empty. That is, we should have essential elements.

L 4.6.23. Ez consists exactly of the cofinite sets , Z.

P. Suppose that A is cofinite. Then there exists a k ∈ ω such that Z − A ⊆
[−k, k]. Let B ( ω. Then for some m ∈ Z, m < B. So, [m − n,m + n] ⊆ �nB. Hence,
[−k, k] ⊇ �m+kB, from which follows that A ⊇ �m+kB. So, A is essential. Now let
A not be cofinite and let B := ω − {0}. Then for no k ∈ ω, �kB ⊆ A, since �kB is
cofinite. �

We remark here that the converse of Proposition 4.6.22 is false.
E. Let Z := 〈z,O〉 where O consists of all finite unions of sets of the form

o(k, a) := {n · 2k + a : n ∈ Z}, where k is a natural number and a an integer. The
algebra A := Z+ is simple. For any set of O is of the form b =

⋃
i<p o(k, ai) for some

p and k and some ai. Let {b j : j < q} be the set of numbers such that for every j < q
there exist i, i′ < p such that b j ≡ ai + 1 (mod 2k) and b ≡ ai′ − 1 (mod 2k). Then
�b =

⋃
j<q o(k, b j). It follows that �2k

b = ∅ iff b , 1. By the criterion for subdirect
irreducibility, A is subdirectly irreducible with 0 an opremum. Hence A is simple.
We will show that the frame underlying A+ is decomposable into a disjoint union of
at least two frames, from which follows that IA+ = ∅. To see that, take an ultrafilter
U in A. We define a sequence J(U) = 〈 jk : k ∈ ω〉 as follows. For each k ∈ ω let
jk be the (unique) remainder (mod 2k) such that o(k, jk) ∈ U. J(U) is a sequence
satisfying

(‡) jk+1 = jk or jk+1 = jk + 21k
for all k ∈ ω. Conversely, let S = 〈sk : k ∈ ω〉 be a sequence satisfying (‡). Let
U(S ) be the ultrafilter containing o(k, sk). It is easy to see that this ultrafilter exists
(this collection has the finite intersection property, by (‡)), and that U(S ) is indeed
uniquely defined. Now, there are evidently 2ℵ0 many such sequences. Hence, A+ has
uncountably many worlds.
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Z satisfies alt2 and B and so A+ satisfies alt2 and B as well. Hence, the under-
lying frame has the property that (a) each point sees at most two points, (b) if x sees
y, y sees x. (This follows from the results of Chapter 5, but can also be established
directly.) It follows that a connected component is generated by any of its points, and
that it is countable. Since the frame is uncountable, it is has more than two connected
components. Consequently, IA+ = ∅.

Exercise 155. Show that a finite differentiated frame is full.

Exercise 156. Any finite frame is compact. Hence a finite differentiated frame is
descriptive.

Exercise 157. Prove Proposition 4.6.5.

Exercise 158. (This example is due to F W. It is very closely related to
the frame considered in Section 3.5.) Take the set ω + 1 and put i C j iff i < j < ω
or i = j = ω. The internal sets are all sets which are finite and do not contain ω or
else are cofinite and contain ω. Show that this frame is compact, differentiated but
not tight.

Exercise 159. Let V be a variety, n ∈ ω and Ai ∈ V, i < n. A subalgebra
B �

∏
i<n Ai is called skew–free if for every congruence Θ on B there exist

Ψi ∈ Con(Ai) such that Θ = (Xi<nΨ) ∩ B2 (see Section 1.3 for definitions). Show
that every subalgebra of a direct product of modal algebras is skew–free. Hint. Use
duality.

Exercise 160. Show that there exist simple modal algebras which do not generate
semisimple varieties.

4.7. Frame Constructions III

Our aim in this section is to translate Birkhoff’s Theorem on varieties into gen-
eral frames. This will allow us to say which classes of frames are classes of frames
for a logic. In the form that this theorem takes here, however, it is not very sur-
prising, but we will transform it later into stronger variants that allow deep insights
into the structure of such classes. Recall that Birkhoff’s Theorem says that a class is
equationally definable iff it is closed under products, subalgebras and homomorphic
images. In the context of modal algebras equational classes coincide with modally
definable classes, where a class K of algebras is called modally definable if there
is a set Φ of modal formulae such that K contains exactly the algebras satisfying
Φ. Likewise, a class K of frames is modally definable if K is the class of frames
for some Φ. This can be relativized to some class, e. g. the class of refined frames,
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descriptive, full frames etc. Of particular interest is the class of modally definable
Kripke–frames.

One immediate problem is that we have to translate the notions of product, sub-
algebra etc. into frames. Here, category theory is of good use since it provides
canonical definitions of these things. A good illustration is the notion of a product.

D 4.7.1. Let C be a category, and Bi, i ∈ I, an indexed collection of
C–objects. A pair 〈A, {pi : i ∈ I}〉, where A is a C–object and pi : A→ Bi C–arrows,
is called a product of the Bi if for each object C and arrows qi : C → Bi there
is a unique morphism m : C → A such that qi = m ◦ pi for all i ∈ I. The maps
pi are called projections. 〈A, {pi : i ∈ I}〉 is called a coproduct of the Bi if
〈A, {(pi)op : i ∈ I}〉 is a product in the dual category, Cop.

C ! - A
@
@
@R

p1

�
�
��p2

B1

B2

�
�
��

-

q2

@
@
@@ -

q1

Usually, only the object A in the pair 〈A, {pi : i ∈ I}〉 is referred to as the product.
(This at least is common usage in algebra.) So, a product is an object for which
projections pi that make 〈A, {pi : i ∈ I}〉 a product in the sense of the definition.
However, notice that the map denoted by ‘!’ in the picture above is not uniquely
defined by A and C alone but only given the pairs 〈A, {p1, p2}〉 and 〈C, {q1, q2}〉. We
can view a product as a solution to a special diagram (consisting of two objects and
identity arrows). This solution consists in an object and arrows from that object into
the objects of the diagram. What makes such a solution a product is a condition that
is usually referred to as the universal property. (See the exercises.) The reader is
advised to spell out the definition of a coproduct in detail. Before we proceed to
examples, let us note one important fact about products and coproducts.

T 4.7.2. Let C and D be products of the Bi, i ∈ I. Then C is isomorphic
to D. Moreover, if C is a product and isomorphic to D, then D also is a product of
the Bi, i ∈ I.

P. By assumption there are maps pi : C → Bi and qi : D→ Bi such that for
any E with maps ri : E → Bi we have m : E → C and n : E → D such that ri = pi◦m
and ri = qi ◦ n for all i ∈ I. We apply the universal property for C to D and get a map
f : D → C such that qi = pi ◦ f for all i. We apply the universal property of D to C
and obtain likewise a map g : C → D such that pi = qi ◦ g for all i. Then we have
qi = pi◦ f = (qi◦g)◦ f = qi◦(g◦ f ) as well as pi = qi◦g = (pi◦ f )◦g = pi◦( f ◦g), again
for all i. Since C is a product, there is only one map i : C → C satisfying pi = pi ◦ i.
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Since the identity id(C) on C has this property, we conclude that f ◦ g = id(C). And
analogously we get that g ◦ f = id(D). So C and D are isomorphic.

For the second claim let C be a product with projections pi, i ∈ I. Let h : D→ C
be an isomorphism with inverse k : C → D. Then we claim that D is a product with
projections qi := pi ◦ h. For let E be given and ri : E → Bi, i ∈ I. Then there exists
a unique map f : E → C such that ri = pi ◦ f for all i ∈ I. Let g := k ◦ f . Then
ri = pi ◦ f = qi ◦ k ◦ f = qi ◦ g for all i ∈ I. Furthermore, g is unique. For if g′ also
satisfies ri = qi ◦ g′ for all i, then ri = pi ◦ h ◦ g′ for all i, from which h ◦ g′ = h ◦ g.
This implies k ◦ h ◦ g′ = k ◦ h ◦ g, which is the same as g = g′. �

The product of two algebras, defined earlier, is a product in the categorial sense.
In general, let Ω be a signature, T an equational theory in Ω, and let Alg T be the
category of Ω–algebras for T . This category has products. 〈

∏
i∈I Ai, pi〉, where pi is

the projection onto the ith component, is a product of the family {Ai : i ∈ I}. This
fact is used later. We perform the argument with I := {1, 2}. LetB1,B2 be given. Put
A := B1 × B2, and let the projections be p1 : 〈b1, b2〉 7→ b1 and p2 : 〈b1, b2〉 7→ b2.
Take any C with homomorphisms qi : C → Bi. Put m : C → B1 × B2 : c 7→
〈q1(c), q2(c)〉. There is no other choice; for assuming m(c) = 〈x1, x2〉 we get

q1(c) = (p1 ◦ m)(c) = p1(〈x1, x2〉) = x1
q2(c) = (p1 ◦ m)(c) = p2(〈x1, x2〉) = x2

So m is unique, and we only have to show that it is a homomorphism. We trust that
the reader can fill in the proof. From the previous theorem we get that products are
unique up to isomorphism. Let us cash out on this immediately. Say that a category
has products (has coproducts) if for any family of objects the product (coproduct)
of that family exists. The category of algebras in a variety has products.

T 4.7.3. Let Λ be a polymodal logic. The category of descriptive Λ–
frames has coproducts.

P. The proof is by duality of the category of descriptive frames and the
category of modal algebras. Suppose that Fi, i ∈ I, is a family of frames; put∐

i∈I

Fi := (
∏
i∈I

(Fi)+)+ .

We claim that this a coproduct. By the Duality Theorem it is enough to show that
(
∐

i∈I Fi)+ is a product. However, it is isomorphic to
∏

i∈I(Fi)+. The latter is a
product of the (Fi)+. �

There also is a notion of a coproduct of frames, called the disjoint union. Let
Fi = 〈fi,Fi〉 be frames. The disjoint union,

⊕
i∈I Fi, is defined over the disjoint union

of the sets fi with relations being the disjoint union of the respective relations. The
sets are of the form b =

⋃
i∈I bi where bi ∈ Fi. Since the fi are disjoint, so are then



4.7. Frame Constructions III 205

the bi, and it turns out that we get

(
⊕

i∈I

Fi)+ �
∏
i∈I

(Fi)+ .

The projections are pi : a 7→ a ∩ fi. The so defined sets form a modal algebra.
To see this, consider the map π : b 7→

⋃
i∈I bi. This is readily checked to be a

homomorphism and bijective. The following theorem has been shown in the special
case I = {1, 2} and Kripke–frames in Theorem 2.4.4.

T 4.7.4.
⊕

i∈I Fi is a coproduct of the frames Fi in Frm.

P. Put G :=
⊕

i∈I Fi. Let H be a frame and hi : Fi → H. We define m :⊕
i∈I Fi → H by m(x) := hi(x) if x ∈ fi. Since the fi are all disjoint, this definition

by cases is unambigous. m is a p–morphism, for if x C j y in G and x ∈ fi then also y
in fi and xC j y already in fi. Since hi is a p–morphism, m(x) = hi(x)C j hi(y) = m(y).
Now assume m(x) C j u. Let x ∈ fi. Then also hi(x) C j u, and we get an y ∈ fi such
that hi(y) = u and x C j y. But then m(y) = hi(y) = u, and this proves the second
condition. Finally, let b ∈ H be a set. We have ci := h−1

i [b] ∈ Fi. Put c :=
⋃

i∈I ci. c
is an internal set of G and m[c] = b. �

Now we have two definitions of coproducts, one for descriptive frames and
one for arbitrary frames. Since the category DFrm is a subcategory of Frm in the
sense that it contains a subclass of the objects of Frm but all Frm–arrows between
them, it can be shown that for descriptive frames Fi, i ∈ I, there exists a map⊕

i∈I Fi �
∐

i∈I Fi. As it turns out, the two coproducts are not always the same.
For example, take the full frame ch]n, chn := 〈n, >〉. These frames are descriptive. Put
D :=

∐
n∈ω ch

]
n, and K :=

⊕
n∈ω ch

]
n. There exists an arrow K� D. Furthermore, the

algebras K+ and D+ are isomorphic, since they are (isomorphic to the) the product
of (ch]n)+. Nevertheless, there is no isomorphism between these frames. One way to
see this is as follows. The frame D contains a world which has no finite depth (or no
depth at all), while each point in K has a depth. Another argument is the following. K
has countably many worlds, the set of worlds being a countable union of finite sets.
ButD has uncountably many points, as there are uncountably many ultrafilters in the
algebra of sets. (This is given as an exercise below.) It appears to be paradoxical that
we should end up with several versions of a coproduct, but this is due to the fact that
a coproduct is a notion that makes sense only within a category; it has no absolute
meaning. Since the category Frm has more objects, we end up with different coprod-
ucts. Finally, it is clear that we shall end up with copoducts of frames rather than
products, by duality, or simply the fact that arrows go the opposite way. The reader
may however also check that the categories of frames and descriptive frames have
no products. Namely, take F1 to be the one point reflexive frame (κ = 1), F2 the one
point irreflexive frame. Then there is no product of these two in either category.
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Different problems arise with subalgebras and homomorphic images. It appears
at first sight that subalgebras translate into p–morphic images and homomorphic im-
ages into generated subframes. But the terminology on the frames is more subtle
here. We know that a subalgebra–map h : A � B defines a unique h+ : B+ � A+

and conversely. But we write f : F � G for frames if f is surjective on the worlds
only. Now consider case of Figure 4.2. We have F � G, and we have an iso-
morphism between the algebras of internal sets. We expect therefore that there is a
surjective p–morphism from F to G. But there is none. The duality theory cannot be
used in this case. A similar counterexample can be constructed for generated sub-
frames. Consider namely the frame H. Although the algebras of sets is isomorphic
to that of G, none is a generated subframe of the other.

Moreover, notice that there is a distinction between embeddings and subframe
embeddings. An embedding is just an injective p–morphism, while a map i : F� G
is a subframe embedding if i−1 : G → F is surjective. In the latter case F is required
to have no more sets than necessary to make i a p–morphism. If e : F → G is
an embedding, take F2 = {e−1[b] : b ∈ G}. Then the identity is an embedding:
id : 〈f,F2〉� 〈f,F〉 and the image of 〈 f ,F2〉 under e is a generated subframe.

Now let us proceed to the promised characterization of modally definable classes
of frames. The easiest case is that of classes of descriptive frames. In descriptive
frames, the correspondence is as exact as possible.

T 4.7.5. A class of descriptive frames is modally definable iff it is closed
under coproducts, p–morphic images and generated subframes.

P. This follows from the Duality Theorem as follows. Suppose that X is
modally definable. Then X+ is equationally definable, hence a variety. Therefore X
is closed under coproducts. For if Fi, i ∈ I, is a family of descriptive frames from
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X then (
⊕

i∈I Fi)+ �
∏

i∈I(Fi)+. Since X+ is closed under products the latter is in
X+, and thus is the former, by closure under isomorphisms. But since (X+)+ � X
we also have

⊕
i∈I Fi ∈ X. Analogously it is shown that X is closed under gener-

ated subframes since X+ is closed under homomorphic images, and that X is closed
under contractions since X+ is closed under subalgebras. Conversely, if a class X of
descriptive frames is closed under coproducts, X+ is closed under products. If X is
closed under generated subframes, X+ is closed under homomorphic images, and if
X is closed under contractions, X+ is closed under subalgebras. �

We know that two frames F andGwhose algebras are isomorphic have the same
modal theory. Hence, if we want to see what classes of frames are modally definable,
we just have to close it under the operation B : F 7→ (F+)+ as well as B−1. (F+)+ is
known as the bidual of F.

T 4.7.6. A class of frames is modally definable iff it is closed under dis-
joint unions, p–morphic images, generated subframes, and if it and its complement
are closed under biduals.

P. Suppose that X is modally definable. Then it is closed under biduals,
and its complement is closed under biduals as well. By the previous theorem, X is
closed under p–morphic images and generated subframes. Furthermore, the bidual
of

⊕
i∈I Fi is nothing but the coproduct in DFrm. Since X is closed under coproducts

and inverse biduals, X is closed under disjoint unions. Suppose then that X has all
the required closure properties. Then consider Xd := X ∩ D, the class of descriptive
frames contained in X. We have X = B−1[Xd], by closure and inverse closure under
B. Therefore, the modal theory of X is the same as the modal theory of Xd, and X is
the class of frames satisfying the modal description of Xd. So, we only need to show
that Xd is modally definable. Xd is closed under coproducts since the coproduct in
DFrm is the bidual of the disjoint union. Xd is closed under p–morphic images and
generated subframes by assumption on X. Thus Xd is modally definable. �

Exercise 161. Recall the notion of a net extension of Chapter 2.4. Prove that
given f, g and h, an embedding e : f� g and a contraction c : f� h, there exists a e
and maps p : g→ e, q : h→ e such that (i) p ◦ e = q ◦ c and (ii) for all e′, p′ : g→ e′

and q′ : h→ e′ satisfying (i) there exists a unique i : e� e′ such that p′ = i ◦ p, and
q′ = i ◦ q. Prove also that p is a contraction and q an embedding.

Exercise 162. Generalize the setting of the previous exercise as follows. Let A, B
and C be objects and morphisms p, q as in the picture below to the left. This is a
special diagram. Say that D together with morphisms B → D, C → D is a pushout
of this diagram in a category C if for any other D′ with maps B→ D′, C → D′ there
exists a unique map D → D′ making the entire diagram to the right commute. D
together with the maps into D is called a co–cone of the diagram to the left. The
dual notion is that of a pullback. It is based on the opposite or dual of the diagram
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to the left. Try to formulate the notion of a pullback. Show that any two pushouts of
a given diagram are isomorphic.

A -
p

?

q

C

B A -
p

?

q

C

B

-
?

DH
H
H
H
H
H
Hj

A
A
A
A
A
A
AU

@
@
@R

!

D′

Exercise 163. Let ∆ = 〈Ob,Mor〉 be a diagram in a category C. A cone for ∆ is a
pair L = 〈L, 〈pC : C ∈ Ob〉〉 where L is an object and pC : L → C such that for any

pair C,D ∈ Ob and C
f
→ D ∈ Mor we have pD = f ◦ pC . A limit for ∆ is a cone L

such that for any cone L′ for ∆ we have a uniquely defined map i : L′ → L such that
p′C = pC ◦ i. Now show that products and pullbacks are limits for special kinds of
diagrams. Dualize to define the notion co–cone and co–limit and see where you can
find instances of co–limits.

Exercise 164. Show that there exist 2ℵ0 ultrafilters on ℘(ω). (In fact, there are 22ℵ0

many.) Hint. Consider the sets In := {i : i ≡ 0 (mod pn)}, where pn is the nth prime
number. For each M ⊆ ω let UM be an ultrafilter containing In iff n ∈ M.

4.8. Free Algebras, Canonical Frames and Descriptive Frames

In this section we will discuss the difference between canonical frames and de-
scriptive frames. Before we do so, let us reflect on duality in connection with canon-
ical frames. We have shown in Section 1.3 that in any given variety V, for any
cardinality α, V contains freely α–generated algebras. Furthermore, if v : α � β
then v : FrV(α) � FrV(β) and if w : α � β then w : FrV(α) � FrV(β). Now let
V be the variety of Θ–algebras. Then CanΘ(α) turns out to be the dual of FrV(α).
Moreover, v+ : CanΘ(β) � CanΘ(α) and also w+ : CanΘ(β) � CanΘ(α). The dif-
ference is that while the worlds of CanΘ(α) are maximally consistent sets the worlds
of the dual of FrΘ(α) are ultrafilters. The difference, however, is negligeable. Let us
elaborate on this a little bit. For given cardinal number α let Vα := {pβ : β < α}. Now
let ϕ ≡ χ iff ϕ ↔ χ ∈ Θ. This is a congruence. Moreover, FrV(α) = Tm(Vα)/ ≡.
The homomorphism corresponding to ≡ is denoted by h≡ and the congruence class
of ϕ is denoted by [ϕ].

P 4.8.1. A set ∆ is a maximally consistent set of Vα–terms iff there
exists an ultrafilter U in FrV(α) such that ∆ = h−1

≡ [U].

P. Let ∆ be maximally consistent. Then it is deductively closed, as is easily
seen. In particular, if ϕ ∈ ∆ and ϕ ≡ χ, then χ ∈ ∆. So we have ∆ = h−1

≡ [h≡[∆]].
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Furthermore, the image U of ∆ under h≡ is deductively closed and so it is a filter,
by Proposition 1.7.8. To show that U is an ultrafilter, take b < U. Then b = [ϕ]
for some ϕ < ∆. By maximal consistency of ∆, ¬ϕ ∈ ∆ (Lemma 2.8.2). Moreover,
[¬ϕ] = −[ϕ] = −b. Hence −b ∈ U. If −b ∈ U, then b < U, otherwise ∆ is
inconsistent. So, U is an ultrafilter. Conversely, assume that U is an ultrafilter, and
put ∆ := h−1

≡ [U]. ∆ is deductively closed. For let ϕ ∈ ∆ and ϕ → χ ∈ ∆. Then
[ϕ] ∈ U and [ϕ] → [χ] = [ϕ → χ] ∈ U. U is deductively closed, so [χ] ∈ U, from
which χ ∈ ∆. ∆ is maximal. For given ϕ, [ϕ] ∈ U or [¬ϕ] = −[ϕ] ∈ U. Hence ϕ ∈ ∆
or ¬ϕ ∈ ∆. But not both, since not both [ϕ] ∈ U and −[ϕ] ∈ U. �

P 4.8.2. The map h−1
≡ is an isomorphism from FrΘ(α)+ onto CanΘ(α).

The proof of this proposition is left as an exercise. Now let v : α → β be a
function. Denote by v also the function pµ 7→ pv(µ), µ < α. Then v : FrΘ(α) →
FrΘ(β). Furthermore, if v is injective iff v is, and v is surjective iff v is. Then v+ :
FrΘ(β)+ → FrΘ(α)+, by duality. Furthermore, v+ is injective iff v is surjective, and
surjective iff v is injective. Recall also how v+ is defined; given an ultrafilter U of
FrΘ(β), v+(U) := v−1[U]. Now recall from Section 2.8 the map Xv : Tm(Vβ) →
Tm(Vβ), taking a β–term to its preimage under v. This map can be shown to map
maximally consistent sets onto maximally consistent sets. Namely, given ∆, put

Yv(∆) := h−1
≡ ◦ v ◦ h≡[∆]

L 4.8.3. For a maximally consistent set ∆, Yv(∆) = Xv(∆).

The proof is straightforward but rather unrevealing. The Theorem 2.8.11 follows
in this way from the duality theory developed in this chapter. On the one hand duality
theory is more general, since there are descriptive frames which are not canonical
for any logic. On the other hand, we will show below that descriptive frames are
generated subframes of canonical frames. This result of duality theory therefore
follows already from Theorem 2.8.11.

D 4.8.4. Let Λ be a modal logic and α a cardinal number. A frame F
is called a canonical frame for Λ if F is an α–canonical frame for some α; and
F is canonical simpliciter if it is a canonical frame for some logic.

Recall that the α–canonical frame forΛ is isomorphic to FrΛ(α)+. It may appear
at first blush that canonical frames are the same as descriptive frames. This is not so
as we will show below. However, every descriptive frame is a generated subframe
of a canonical frame. Namely, fix any logic Λ and let D be a descriptive frame for
Λ. Then D+ is a Λ–algebra. Every Λ–algebra is the image of a free Λ–algebra by
Theorem 1.3.5. Consequently, D � FrΛ(α) for some α. We will use this fact to
derive a useful characterization of canonicity of logics first shown in [186]

D 4.8.5. A logic Λ is called d–persistent if for every descriptive
frame D for Λ the underlying Kripke–frame, D], is a Λ–frame as well.
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T 4.8.6 (Sambin & Vaccaro). A logic is canonical iff it is d–persistent.

P. Since every canonical frame is descriptive, d–persistence implies canon-
icity. So let us assume that Λ is canonical andD a descriptive frame such thatD � Λ.
Then D� C for some canonical C frame for Λ. Because C � Λ, we have C] � Λ, by
the fact that Λ is canonical. But then D] � Λ, since D]� C]. �

We can cash out here a nice result concerning finite model property. A variety
is said to be locally finite if every finitely generated algebra is finite. Obviously, a
variety is locally finite if all finitely generated free algebras are finite. By duality,
they are isomorphic to the full algebra of sets over a finite Kripke–frame. Now say
that a logic is locally finite if its corresponding variety is. Say that a logic Λ has a
property P essentially if every extension of Λ has P.

T 4.8.7. If Θ is locally finite then every extension of Θ is weakly canoni-
cal and has the finite model property essentially.

Now let us return to the question whether descriptive frames are also canonical.
The question is whether modal algebras are free algebras in some variety. For ex-
ample, vector spaces are freely generated by their basis. However, not all boolean
algebras are free, for example the algebra 23. (A finite boolean algebra is freely
generated by n elements iff it has 22n

elements.) Nevertheless, it is interesting to ap-
proach the question to see clearly what the relation between the two notions is. Let
D be a descriptive frame and put Θ := Th(D). First, if D � CanΛ(α) for some α and
some Λ, then D � CanΘ(α). In other words, D is α–canonical in its own variety iff it
is α–canonical. For by duality, if an algebra A is freely α–generated in a variety V,
we have A ∈ V and so the variety generated by A is included in V. However, A is then
freely α–generated in any smaller variety containing it, and so freely α–generated in
the least such variety.

P 4.8.8. Let F be a frame. F is α–canonical for some logic iff it is
α–canonical for ThF.

We will need the distinction between an algebra generating a variety and an
algebra free in that variety later on in the connection with splittings. It is necessary
for the understanding of the results proved there to have seen an explicit construction
of α–free algebras and we will provide such an example now. Consider the frame
of Figure 4.4 This frame is not 0–generated; but it is 1–generated, for example, by
the set {y}. Therefore it is a canonical frame iff it is also freely 1–generated in its
own variety. Now, how does the 1–generated canonical frame look like? To that
effect recall that the freely n–generated algebra in a variety V is a subalgebra of the
direct product of the members of V, indexed by n–tuples of elements in the algebras.
In the present context, where K = {A}, this reduces to the direct product

∏
b∈A A.

The freely one–generated algebra is computed as the subalgebra generated by the
function which picks b in the component indexed by a. (Recall that the product is
indexed over A, so that each factor takes an index b ∈ A. In each factor, s takes a
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value, in this case s(b) = b.) The reason why this is so lies in the following. Let V be
generated by K. Let us call A α–free for K if there is a subset X ⊆ A of cardinality α
such that for everyB ∈ K and maps v : X → B there is a homomorphism v : A→ B.
The difference with the concept of a freely generated algebra is that A ∈ K is not
required; moreover, A need not be generated by X. But the following holds.

P 4.8.9. Let A be α–free for K. Then A is α–free for HSP(K).

P. Let A be α–free for K. We show that then A is α–free for the classes
H(K), S(K) and P(K). To simplify the argumentation, let us first remark that if A
is α–free for K, then it is α–free for I(K), the closure of K under taking isomorphic
copies.
(1.) Let C ∈ H(K). Then there is a B ∈ K and a homomorphism h : B � C. Now
take a map m : X → C. There exists a map n : X → B such that m = h ◦ n. (Just
let n(x) := a for some a ∈ h−1(m(x)).) By assumption there exists a homomorphism
n : A→ B extending n. Then h ◦ n : A→ C is a homomorphism extending m.
(2.) Let C ∈ S(K). Then there is a B ∈ K such that C ≤ B and so C ⊆ B. Let
i : C → B be the inclusion map. Let m : X → C be a map. Then i ◦ m : X → B
and by assumption there is an extension i ◦ m : A → B. However, the image of this
map is contained in C, and so restricting the target algebra to C we get the desired
homomorphism m : A→ C.
(3.) Let C ∈ P(K). Then there are Bi, i ∈ I, such that C �

∏
i∈I Bi. We may

assume C =
∏

i∈I Bi. Now take m : X → C. Then for the projections pi we have
pi ◦ m : X → Bi, and by assumption there are homomorphisms pi ◦ m : A → Bi.
By the fact that the algebraic product is a product in the categorial sense there is a
unique f : A→

∏
i∈I Bi such that pi ◦ f = pi ◦ m. Then f extends m. �

The present algebra, the algebra of sets over the frame f, has eight elements. Thus,
the freely one–generated algebra is a subalgebra of A8. The eight choices are dia-
grammed in Figure 4.5 below; in each copy the set of elements which are values of
p are put into a box. All we have to do is to calculate the algebra generated in this
complicated frame. However, we are helped by a number of facts. First, f admits an
automorphism, namely x 7→ x, y 7→ z, z 7→ y. By this automorphism,  is mapped
into  and  into . All other models are mapped onto themselves. This fact has as
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a consequence that the algebra induced on  and  jointly (on the underlying frame
f ⊕ f) is isomorphic to the one  induces on f (and isomorphic to the one induced
on  on its copy of f). Hence, we can drop  and  in the direct sum. Next, the
frames induced on , ,  and  are not refined.  and  are actually isomorphic
to a one–element frame,  and  to a two–element chain. This gives a reduced
representation of the underlying frame as the direct sum of two one–element chains,
two two–element chains and two copies of f. The general frame is still not refined.
Its refinement is the frame shown in Figure 4.6. (The frame is shown to the left. To
the right we repeat the frame, with worlds being numbered from 1 to 6.) It might be
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surprising that the frame just constructed should indeed be canonical, as it contains
more points. But notice that this frame is rather regular, having 8 automorphisms,
and thatAut(CanΘ(1)) � Z2×Z2×Z2, generated by the permutations (1 4)(2)(3)(5)(6),
(1)(2 3)(4)(5)(6) and (1)(2)(3)(4)(5 6). The orbits are {1, 4}, {2, 3} and {5, 6}. There
is up to automorphisms of the frame only one generating set, containing one world
from each orbit of the group.

Notes on this section. Canonical frames have been heavily used for obtaining
results, such as completeness results. Yet, their structure is not well–understood.
Some new results can be found in the thesis by T S ([204]). It is not
known, for example, whether there exists a cardinal number α such that if a modal
logic is α–canonical it is also β–canonical for any β.

Exercise 165. Prove Proposition 4.8.2.

Exercise 166. Show Theorem 4.8.7.

∗Exercise 167. Let S be a set, and letG be a group of permutations of S . We say that
G is transitive on S , if for every given pair of points 〈x, y〉 ∈ S 2 there exists a g ∈ G
such that g(x) = y. We say that G is sharply transitive if at most such g exists given
〈x, y〉. Now let FrΛ(λ) be the algebra freely generated by λ many elements. Call a
function f : κ → FrΛ(λ) an M–system if f [κ] is a maximal independent subset of
FrΛ(λ). (A set H ⊆ A is called independent in an algebra A if for all a ∈ H, a is
not contained in the subalgebra generated by H − {a} in A.) Show that Aut(FrΛ(λ))
is sharply transitive on the set of M–systems of FrΛ(λ).

Exercise 168. Let Θ be a consistent modal logic and n a natural number. Show that
Aut(FrΘ(n)) has a subgroup of size n! · 2n.

4.9. Algebraic Characterizations of Interpolation

Categories of frames have coproducts since they are dual to the algebras. How-
ever, to have coproducts is a rather rare property. This accounts in a way for the fact
that properties such as interpolation and Halldén–completeness are rather rare. We
will prove in this section two standard results on interpolation, both shown by L-
M in a series of papers, and then derive some useful characterizations of
Halldén–completeness.

D 4.9.1. A variety V of polymodal algebras is said to have the amal-
gamation property if for any triple A0, A1 and A2 of algebras in V and embed-
dings i1 : A0 � A1 and i2 : A0 � A2 there exists an algebra A3 ∈ V and maps
e1 : A1 � A3, e2 : A2 � A3 such that e1 ◦ i1 = e2 ◦ i2. V is said to be have the
superamalgamation property if in addition the ei can be required to have the
property that whenever e1(a1) ≤ e2(a2) for a1 ∈ A1, a2 ∈ A2 there exists an a0 ∈ A0
such that a1 ≤ i1(a0) and i2(a0) ≤ a2.
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T 4.9.2 (Maksimova). Let Λ be a polymodal logic. Then the following
are equivalent.

(1) Λ has local interpolation.
(2) The variety of Λ–algebras has the superamalgamation property.

P. Assume that Λ has local interpolation. Let A0, A1 and A2 be Λ–algebras
and i j : A0 � A j ( j ∈ {1, 2}) be embeddings. Without loss of generality we can
assume that A0 ⊆ A1∩A2. For each element a ∈ A1∪A2 fix a variable xa. We assume
all these variables are distinct for distinct elements. Denote by Fi, i ∈ {0, 1, 2}, the
Λ–algebra freely generated by {xa : a ∈ Ai}. Denote by F3 the algebra generated
by {xa : a ∈ A1 ∪ A2}. There are natural embeddings F0 � Fi � F3, i ∈ {1, 2}.
Also there are homomorphisms bi : Fi � Ai, i ∈ {1, 2} defined by b1 : xa 7→ a and
b2 : xb 7→ b. The maps assign the same value to each xa where a ∈ A0. Now let
T1 := {ϕ : b1(ϕ) = 1} and T2 := {ϕ : b2(ϕ) = 1}. Put

T := {χ : T1 ∪ T2 
Λ χ}.

Now we show that the following holds for {i, j} = {1, 2}

T 
Λ ϕ→ ψ ⇔ (∃χ ∈ F0)(ϕ→ χ ∈ Ti & χ→ ψ ∈ T j) .

From right to left is clear. Now assume that T 
Λ ϕ → ψ. Then for some finite set
Γ1 ⊆ T1 and some finite set Γ2 ⊆ T2 we have Γ1;Γ2 
Λ ϕ → ψ and so for some
compound modality � we get �Γ1;�Γ2 `Λ ϕ→ ψ. Thus

`Λ ϕ ∧ �Γ1.→ . � Γ2 → ψ.

There exists now a local interpolant χ, that is, a formula using the common variables
of ϕ and ψ and `Λ (�Γ1 ∧ ϕ) → χ as well as `Λ χ → (�Γ2 → ψ). With this χ we
have Γ1 
Λ ϕ→ χ and Γ2 
Λ χ→ ψ. Thus we have ϕ→ χ ∈ T1 and χ→ ψ ∈ T2.
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Now define ϕΘψ by T 
Λ ϕ↔ ψ. This defines a congruence on F3, since it defines
an open filter. Now put A3 := F3/Θ. There is a homomorphism b3 : F3 → A3.
We will show that the filters defined by Θ on the algebras F1 and F2 are exactly T1
and T2. (See picture above.) This means that ker(b3) � Fi = ker(bi) (i ∈ {1, 2}).
Namely, for ϕ ∈ F1 we have ϕΘ 1 iff T 
Λ > → ϕ. This means that for some χ in
the common variables we have > → χ ∈ T2 and χ → ϕ ∈ T1. Then χ is constant
and since > ∈ T1 we also have > → χ ∈ T1 showing > → ϕ ∈ T1, that is, ϕ ∈ T1.
Likewise we show that ψΘ 1 implies ψ ∈ T2 for ψ ∈ F2. Denote by ci the restriction
of b3 to Fi, i = 1, 2. So ci : Fi → A3. We have shown that ker(ci) = ker(bi).
There now exist maps ei : Ai � A3 (i ∈ {1, 2}) such that ci factors through ei, and
e1 ◦b1 = c1 as well as e2 ◦b2 = c2. Finally, let e1(a) ≤ e2(b). Then e1(a)→ e2(b) = 1
and so xa → xb Θ 1 which means that T 
Λ xa → xb. From this we get a χ ∈ F0
such that xa → χ ∈ T1 and χ → xb ∈ T2, and so a = b1(xa) ≤ b1(χ) as well as
b2(χ) ≤ b2(xb) = b. Moreover, b1(χ) = b2(χ), since b1 and b2 assign the same value
in A0 to χ, which is a common subalgebra of both A1 and A2. This shows that the
superamalgamation property holds for V.

Now assume that the variety ofΛ–algebras has the superamalgamation property.
Let ϕ = ϕ(~p,~r) and ψ = ψ(~r, ~q) be formulae such that for no χ based on the variables
~r we have `Λ ϕ → χ; χ → ψ. Let F0 be the algebra freely generated by ~r, F1
the algebra freely generated by ~p and ~r, F2 the algebra freely generated by ~q and
~r and F3 the algebra freely generated by ~p, ~q and ~r. Let U1 be an ultrafilter on F3
containing ϕ, and let V be the ultrafilter induced by U1 on the subalgebra F0. Then
V ∪{¬ψ} has the finite intersection property in F3 and so there exists an ultrafilter U2
containing it. We then have U2 ∩ F0 = U1 ∩ F0. Let Θ1 be the largest congruence
contained in U1, andΘ2 be the largest congruence contained in U2. PutΦ := Θ1tΘ2.
(The largest congruence induced by a filter F is the same as the congruence induced
by the largest open filter contained in F; and this is equal to the set of elements
a such that �a ∈ F for all compound modalities �.) For elements of F0, uΘ1 v
iff for all compound modalities �(u ↔ v) ∈ U1 iff for all compound modalities
�(u ↔ v) ∈ V iff for all compound modalities �(u ↔ v) ∈ U2 iff uΘ2 v. Put
Θ0 := Φ ∩ (F0 × F0) and A0 := F0/Θ0. Then we get an embedding i1 : A0 � A1
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as well as i2 : A0 � A2. Assume now that we have an element χ ∈ F0 such that
ϕ → χΘ1 1 and χ → ψΘ2 1. Then χ ∈ U1 since ϕ ∈ U1, and then also ψ ∈ U2.
But this contradicts our choice of U1 and U2. Hence no such element exists. By
superamalgamation, however, we get an algebra B and maps ei : Ai � B such that
e1 ◦ i1 = e2 ◦ i2 and e1([ϕ]Θ1) � e2([ψ]Θ2). Now define a map b : F3 → B by
b(pi) := e1([pi]Θ1), b(q j) := e2([q j]Θ2) as well as b(rk) = ε1([rk]Θ1) = e2([rk]Θ2).
This is uniquely defined and we have b(ϕ) � b(ψ) from which 0Λ ϕ→ ψ. �

T 4.9.3 (Maksimova). Let Λ be a polymodal logic. Then the following
are equivalent.

(1) Λ has global interpolation.
(2) The variety of Λ–algebras has the amalgamation property.

P. The proof of amalgamation from global interpolation is actually anal-
ogous to the previous one. So let us prove that amalgamability implies global in-
terpolation. We assume that ϕ 
Λ ψ but no interpolant exists. Define F0 to be
algebra freely generated by the common variables of ϕ and ψ, and F3 the algebra
generated by all the variables of ϕ and ψ. Let O1 be the open filter generated by
ϕ, and O2 an open filter containing ¬ψ and O1 ∩ F0. Such a filter exists. Then
O1 ∩ F0 = O2 ∩ F0. Let Θi be the congruence associated with Oi. Now put
A1 := F3/Θ1 and A2 := F3/Θ2. Then as before for elements of F0, uΘ1 v iff uΘ2 v,
and hence Θ1 and Θ2 induce the same congruence on F0. Therefore, we have an
embedding i1 : A0 � A1 and i2 : A0 � A2. Thus, assuming the amalgamation
property, there is an algebra B and morphisms ei, i = 1, 2, satisfying e1 ◦ i1 = e2 ◦ i2.
Define v by v(p) := e1([p]Θ1) if p ∈ var(ϕ) and v(p) := e2([p]Θ2) if p ∈ var(ψ).
This is noncontradictory. Since we have ϕ ∈ O1 we also have v(�ϕ) = 1 for all
compound modalities. Since ¬ψ ∈ O2 we have v(ψ) , 1, and so ϕ 1Λ ψ. �

The results on amalgamation property can be improved by showing that A3 en-
joys a so–called universal property. This means that given A0, A1 and A2, embed-
dings i j : A0 � Ai ( j ∈ {1, 2}) there exists an A3 and maps e j : A j → A3 such that
e1◦i1 = e2◦i2 and for every algebraB together with maps d1 : A1 → B, d2 : A2 → B

with d1 ◦ i1 = d2 ◦ i2, then there exists a unique homomorphism h : A3 → B such that
d1 = h◦ e1 and d2 = h◦ e2. Namely, consider the maps v1 : xa 7→ d1 ◦b1(xa) = d1(a),
v2 : xa 7→ d2 ◦ b2(xa) = d2(a). Then v1 and v2 agree on the elements in A0, and so
v := v1 ∪ v2 is well–defined. It extends to a unique homomorphism v : F3 → B. We
have that Θ1 := ker(v) � F1 = ker(d1 ◦ b1) and Θ2 := ker(v) � F2 = ker(d2 ◦ b2).
Put Θ := Θ1 t Θ2. As in the previous proof it is shown that Θ � F1 = Θ1 and
Θ � F2 = Θ2. Moreover, Θ is the kernel of the map v and includes ker(b3). Thus
it can be factored uniquely through b3, yielding a homomorphism h : A3 → B with
the desired properties. In the sense of the definitions in the exercises of Chapter 4.7
what we have shown is that a variety of modal algebras that has amalgamation also
has pushouts for those diagrams in which both arrows are injective.
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Now we turn to local and global Halldén–completeness. Recall that if a logic is
locally or globally Halldén–complete it has trivial constants; another way of saying
this is that the freely zero–generated algebra contains exactly two elements (if Λ is
consistent). Then for every pair of nontrivial algebras A1 and A2 we can find an A0
and injections i0 : A0 � A1 and i1 : A0 � A2. Simply take the zero–generated
subalgebra; if the algebras have more than one element, this algebra is isomorphic to
FrΛ(0).

D 4.9.4. A variety V has fusion if for every pair A1,A2 ∈ V of non-
trivial algebras there exists an algebra B and embeddings e1 : A1 � B and
e2 : A2 � B. V has superfusion if for every pair A1,A2 ∈ V of nontrivial al-
gebras there exists an algebra B and embeddings ei : Ai � B such that for every
a ∈ A1 − {0} and every b ∈ A2 − {1} the inequation i1(a) ≤ i2(b) does not hold.

The following theorem can be found in a slightly different form in [153].

T 4.9.5 (Maksimova). Let Λ be a polymodal logic. Then the following
are equivalent

(1) Λ is locally Halldén–complete.
(2) The variety of Λ–algebras has superfusion, and the zero–generated alge-

bra contains at most two elements.

The global version is as follows:

T 4.9.6 (Maksimova). Let Λ be a polymodal logic. Then the following
are equivalent

(1) Λ is globally Halldén–complete.
(2) The variety ofΛ–algebras has fusion, and the zero–generated algebra con-

tains at most two elements.

For a proof, let Λ be (locally/globally) Halldén–complete. We may assume that
Λ is consistent; otherwise the equivalence is clearly valid. Take two algebras A1 and
A2. We can embed FrΛ(0) into both of these algebras. Now follow the proofs of the
Theorems 4.9.2 and 4.9.3. We obtain an algebra B and embeddings ei : Ai � B.
The superfusion condition is verified for the local case. For the converse, let the
variety of Λ–algebras have (super)fusions, and let the zero–generated algebra have
two elements. Then enter the second half of the proof of Theorem 4.9.2 with ϕ and ψ
assuming that for no constant proposition both ϕ `Λ χ and χ `Λ ψ. But either χ = >
and then 0Λ ψ, or χ = ⊥ and then ϕ 0Λ ⊥. Performing the same argument as in the
proof we get that ϕ 0Λ ψ. As a consequence we get the following theorem of [15].

T 4.9.7 (van Benthem & Humberstone). Let Λ be a logic such that for
every pair 〈F1, x1〉 and 〈F2, x2〉 of pointed frames there exists a pointed frame 〈G, y〉
and two contractions p1 : G � F1 p2 : G � F2 such that p1(x1) = p2(x2) = y.
Then Λ is locally Halldén–complete.
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D 4.9.8. A variety V has finite coproducts if for every pair A1, A2
of algebras in V there exists a third algebra B and maps i1 : A1 → B, i2 : A2 → B

such that for every algebra C and every pair of maps e1 : A1 → C and e2 : A2 → C

a unique h : B → C exists satisfying e1 = h ◦ i1 and e2 = h ◦ i2. We denote B by
A1 ⊕ A2.

T 4.9.9. A logic is globally Halldén–complete iff it has trivial constants
and the corresponding variety has finite coproducts.

Exercise 169. Give a characterization of those logics whose variety has coproducts,
without any restriction on constant formulae.

Exercise 170. Let Λi, i < ω, be logics which have (local/global) interpolation.
Suppose that Λi ⊆ Λ j if i ≤ j. Show that i∈ωΛi has (local/global) interpolation.

Exercise 171. Give an example of logicsΛi which have local interpolation, such that
Λi ≥ Λ j for i ≤ j, such that

⋂
i∈ω Λi fails to have interpolation.



CHAPTER 5

Definability and Correspondence

5.1. Motivation

Correspondence theory developed from a number of insights about the possibil-
ity of defining certain elementary properties of frames via modal axioms. For ex-
ample, transitivity of Kripke–frames may either be characterized by the first–order
formula (∀xyz)(x C y C z.→ .x C z) or by the modal axiom ♦♦p→ ♦p. We therefore
say that the axiom 4 corresponds to transitivity on Kripke–frames. These insights
have sparked off the search for the exact limit of this correspondence. In particular,
the following two questions have been raised by J  B in [10], who has
also done much to give complete answers to them.

∗ Which elementary properties of Kripke–frames can be characterized by
modal axioms?

∗ Which modal axioms determine an elementary property on Kripke–frames?

Both questions were known to have nontrivial answers. Irreflexivity cannot be char-
acterized modally, so not all first–order properties are modally characterizable. On
the other hand, some modal axioms like the G–axiom determine a non–elementary
property of frames. Many people have contributed to the area of correspondence
theory, which is perhaps the best worked out subtheory of modal logic, e. g. J
 B [8], R G [77], [79]. With H S’s classi-
cal paper [183] the theory reached a certain climax. There have been attempts to
strengthen this theorem, but without success. It still stands out as the result in corre-
spondence theory. Nevertheless, there has been a lot of improvement in understand-
ing it. The original proof was rather arcane and methods have been found to prove
it in a more systematical way (see  B [10], S and V [187] and
also K [121] and [124]).

Meanwhile, the direction of the research has also changed somewhat. Corre-
spondence theory as defined above is just part of a general discipline which has
emerged lately, namely definability theory. Definability theory is the abstract study
of definability of sets and relations in general frames. There are a number of reasons
to shift to this more abstract investigation. First, as has been observed already in
S and V [187], there is a real benefit in raising the above questions not
for Kripke–frames but for frames in general and suitable classes thereof. For suppose
that (as in S’s original proof) correspondence of modal axioms of a certain
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form with first–order conditions is established not only for Kripke–frames but also
for descriptive frames. Then one can immediately derive that logics axiomatized by
such formulae must be complete. First–orderness on Kripke–frames is not enough
for that. Second, the success of canonical formulae of M Z for
logics containing K4 (see Chapter 8) shows that there can be useful geometric char-
acterizations of axioms which are not first–order in general. Even though first–order
properties are well–understood and there is a powerful machinery for first–order
logic, there is nevertheless much to be said in favour of an attempt to characterize
in whatever terms possible the geometric condition imposed on frames by an axiom.
They cannot all be first–order as we know, but they may in many cases be simple,
as the notorious example of G shows. The third generalization concerns the use of
relations rather than properties. That is, we ask which relations are characterizable
modally in a given class of frames. This move has many advantages, although we
need to clarify what we mean by a modal characterization of relations since modal
formulae are invariably properties of worlds rather than sequences of worlds. Never-
theless, we will develop such a theory here and it will be possible to say for example
that a frame is differentiated iff equality is modally definable. In this way natural
classes of frames are motivated by the possibility to define certain relations.

Definability theory is thus the study of the following questions.
∗ Given a class X of frames, which relations between worlds are characteri-

zable modally in X?
∗ Given a class X of frames, what geometric properties of frames do modal

axioms impose on the frames of X?
From there many questions arise which have been treated in the literature with some-
times surprising answers. These questions are for example the following.

∗ Which classes of frames can be characterized by modal axioms?
∗ What is the relation between closure properties of classes and the syntactic

form of definable properties or relations?

5.2. The Languages of Description

Before we can enter the discussion on definability we will fix a suitable lan-
guage within which we derive formal results. Such a language is traditionally seen
to be monadic second–order logic. Here, however, we will use a notational variant,
namely two–sorted first–order predicate logic. The special language will be called
the external language and denoted by Le. It is two–sorted; that means, there are two
sorts of well–formed expressions, namely modal propositions (called i–formulae)
and formulae. Moreover, Le has two sublanguages, Lm, the modal language, for
talking about modal propositions and L f , the frame language, for talking about
worlds. Lm is in fact isomorphic to the basic modal language we are operating in.
Remember that there is not just a single modal language, but a whole family of
them with varying number of modal operators and varying number of variables and
constants. For the moment we assume that we have countably many propositional
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variables and no constants, though nothing depends on that. Of proposition variables
and constants there will otherwise be as many as needed. Similarly, depending on
the cardinality κ of basic modal operators Lm will have the following symbols

∗ proposition variables p-var = {pi : i ∈ ω},
∗ boolean connectives >, ¬, ∧,
∗ modal connectives � j, j < κ.

All symbols are standard, and their interpretation will be as well. Notice that ♦ j

is not a primitive symbol. This is done to make the subsequent discussion simpler.
Nothing hinges essentially on that. Now the frame language L f has

∗ world–variables w-var := {wi : i ∈ ω},
∗ equality �, and relations Ci for i < κ,
∗ logical junctors t, ¬, ∧ and→,
∗ quantifiers ∀ and ∃.

(Here t is a constant, which receives the value true.) Finally, Le has two more ingre-
dients, namely

∗ a membership predicate ε,
∗ proposition–quantifiers ∀ and ∃.

For a rigorous definition of formulae we need two sorts, propositions and worlds,
over which the two sorts of quantifiers may range. Moreover, we define two sorts of
well–formed expressions, internal formulae (i–formulae) and external formulae
(e–fomulae). They are composed as follows

(1) pi, i < ω, >, ⊥ are i–formulae.
(2) If ϕ and ψ are i–formulae, so are ¬ϕ, ϕ ∧ ψ, � jϕ ( j < κ).
(3) If ϕ is an i–formula and i < ω then wi ε ϕ is an e–formula.
(4) t is an e–formula.
(5) wi � w j and wi Ck w j are e–formulae for all i, j < ω, k < κ.
(6) If ζ and η are e–formulae then so are ¬ζ, ζ ∧ η and ζ → η.
(7) If ζ is an e–formula and i < ω then (∀wi)ζ and (∃wi)ζ are e–formulae.
(8) If ζ is an e–formula and i < ω then (∀pi)ζ and (∃pi)ζ are e–formulae.

An e–model is a triple 〈F, β, ι〉 with F a frame, and with β : p-var → G and ι :
w-var → g. Given an e–model 〈G, β, ι〉 and an e–formula ζ, the relation 〈G, β, ι〉 �
ζ is defined inductively as follows. (Here, given two functions f and g, f ∼a g
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abbreviates the fact that f (x) , g(x) only if x = a.)

〈G, β, ι〉 � wi ε ϕ ⇔ ι(wi) ∈ β(ϕ)
〈G, β, ι〉 � wi � w j ⇔ ι(wi) = ι(w j)
〈G, β, ι〉 � wi Ck w j ⇔ ι(wi) Ck ι(w j)
〈G, β, ι〉 � ¬ζ ⇔ 〈G, β, ι〉 2 ζ
〈G, β, ι〉 � ζ ∧ η ⇔ 〈G, β, ι〉 � ζ and 〈G, β, ι〉 � η
〈G, β, ι〉 � ζ → η ⇔ from 〈G, β, ι〉 � ζ follows 〈G, β, ι〉 � η
〈G, β, ι〉 � (∀wi)ζ ⇔ for all ι′ ∼wi ι 〈G, β, ι′〉 � ζ
〈G, β, ι〉 � (∃wi)ζ ⇔ for some ι′ ∼wi ι 〈G, β, ι′〉 � ζ
〈G, β, ι〉 � (∀pi)ζ ⇔ for all β′ ∼pi β 〈G, β′, ι〉 � ζ
〈G, β, ι〉 � (∃pi)ζ ⇔ for some β′ ∼pi β 〈G, β′, ι〉 � ζ

Further, G � ζ iff for all β and all ι we have 〈G, β, ι〉 � ζ. Notice that we have
used β(ϕ) in the first clause. This is strictly speaking yet to be defined. However we
assume that β(ϕ) is computed as before by induction on ϕ. Notice that in addition to
equality there is one symbol whose interpretation is rather special, namely ε. It must
always be interpreted as membership. The following sentences are theorems of the
Le–logic of generalized frames. They show that the Li–connectives are in principle
dispensable. (Here ζ ≡ η abbreviates ζ → η. ∧ .η→ ζ. Open formulae are as usual
treated as if all free variables were universally quantified.)

wi ε ¬ϕ ≡ ¬(wi ε ϕ)
wi ε ϕ ∧ ψ ≡ wi ε ϕ ∧ wi ε ψ
wi ε ϕ→ ψ ≡ wi ε ϕ.→ .wi ε ψ
wi ε � jϕ ≡ (∀wk)(wi C j wk.→ .wk ε ϕ)

Le is not interesting for us because it defines a logic of structures, but because it is
a rather strong language within which we can express (almost) everything we wish
to say. For example, it contains both first–order properties for frames and properties
expressed by modal axioms. With respect to the latter only the notation has changed
somewhat. We can no longer write F � ϕ but must instead write

F � (∀w0)(w0 ε ϕ).

Also, the so–called standard translation of a modal formula is defined as follows.

ST(p, x) := x ε p
ST(¬ϕ, x) := ¬ST(ϕ, x)
ST(ϕ ∧ ψ, x) := ST(ϕ, x) ∧ ST(ψ, x)
ST(� jϕ, x) := (∀y)(x C j y.→ .ST(ϕ, y))

(In the last clause, y must be a variable not already occurring in ST(ϕ, x). By con-
struction, x is always the unique free variable. Clearly, ST(ϕ, y) is then the same as
ST(ϕ, x)[y/x].) Obviously we have in all frames

(∀x)(x ε ϕ ≡ ST(ϕ, x)) .
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To conclude this part we will introduce the language Re. In this language the quan-
tifiers over worlds are replaced by so–called restricted quantifiers. They are defined
as follows.

(∀w j Bk wi)ζ := (∀w j)(wi Ck w j.→ .ζ)
(∃w j Bk wi)ζ := (∃w j)(wi Ck w j. ∧ .ζ)

The restricted quantifiers can be defined from the unrestricted quantifiers as shown,
but the converse does not hold in absence of weak transitivity. Syntactically, we
want to construe the restricted quantifier as follows. It takes an e–formula ζ and two
variables wi, w j and returns an e–formula. Hence, for each i < κ there is a distinct
restricted quantifier. Notice that this quantifier is said to bind only w j, and that wi is
called a restrictor. Let Re denote the language Le with restricted world quantifiers
instead of unrestricted ones. Likewise, R f denotes the language obtained from L f by
replacing the unrestricted quantifiers by restricted quantifiers. Re can be construed
as a sublanguage of Le, and R f as a sublanguage of L f . The restricted languages are
expressively weaker, but the difference turns out to be inessential in the connection
with modal logic. On the other hand, Re and its frame counterpart R f have several
advantages, as will be seen shortly. With the restricted quantifiers we will define the
following shorthand notation, corresponding to compound modalities. Let σ range
over sequences of numbers < κ, and s, t over sets of such sequences. (If s = {σ}, we
omit the brackets.)

(∀x Bε w)ζ := ζ[w/x]
(∃x Bε w)ζ := ζ[w/x]
(∀x Bσ

ai w)ζ := (∀y Bi w)(∀x Bσ y)ζ
(∀x Bs∪t w)ζ := (∀x Bs w)ζ ∧ (∀x Bt w)ζ
(∃x Bσ

ai w)ζ := (∃y Bi w)(∃x Bσ y)ζ
(∃x Bs∪t w)ζ := (∃x Bs w)ζ ∨ (∃x Bt w)ζ

Here, it is assumed that y is not free in ζ. Similarly the shorthand notation x Cs y is
defined. It corresponds to the compound modality �s. Sets of the form {x : w Cs x}
are called cones. The restricted quantifiers range over cones. The last language
introduced is S f . It has in addition to the symbols of R f all Cs as primitive sym-
bols, where s is a finite union of finite sequences over κ. Also, it has the following
additional axioms

x C jaσ y ≡ (∃z B j x)(z Cσ y)
x C〈〉 y ≡ x � y
x C∅ y ≡ ¬(x � x)
x Cs∪t y ≡ x Cs y. ∨ .x Ct y

Exercise 172. Show that no Re and R f formula can be a sentence, i. e. have no free
w–variables.

Exercise 173. Show that R f has nontrivial constant formulae, in contrast to L f .
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5.3. Frame Correspondence — An Example

Before we start with the general theory we will look at an instructive example.
Let there be just one operator, for simplicity. Consider the axiom alt1 := ♦p∧♦q.→
.♦(p∧q). It is quite easy to show that a Kripke–frame satisfies this axiom iff the frame
is quasi–functional, that is, satisfies the first–order axiom (∀x)(∀y0B x)(∀y1B x)(y0 �
y1). Namely, if the frame f = 〈 f ,C〉 is quasi–functional, and 〈f, β, x〉 � ♦p ∧ ♦q, then
there is a successor y0 � p and a successor y1 � q. But y0 = y1, and so y0 � p ∧ q
from which we get x � ♦(p ∧ q). On the other hand, if f is not quasi–functional there
is an x ∈ f and x C y0, y1 for distinct y0, y1. Put β(p) := {y0} and β(q) := {y1}. Then
we have y0 � p;¬q, y1 � q;¬p and for all other points z we have z � ¬p;¬q. Whence
x � ♦p; ♦q;¬♦(p ∧ q).

Now lets suppose we have a general frame F = 〈f,F〉. Does it still hold that
it satisfies alt1 iff it is quasi–functional? Well, one direction is uncomplicated. If
the underlying Kripke–frame is quasi–functional then F � alt1. Just copy the proof
given above. However, in the converse direction we encounter problems. When x
has two different successors we took two special sets for β(p) and β(q) and there is
no guarantee that we may still be able to do so. In fact, the following frame shows
that the converse direction is false in general. Namely, let f be based on three points
x, y0, y1 with x C y0, y1. Define F := {∅, {x}, {y0, y1}, {x, y0, y1}}. Then F := 〈f,F〉
is a frame since F is closed under boolean operations and under �, as is quickly
computed. (See Figure 5.1.) The valuation that we used to show that alt1 can be
refuted is now no longer available. Moreover, the map p : x 7→ u, y0 7→ v, y1 7→ v is
a p–morphism onto the quasi–functional frame g. Moreover, F is the p–preimage of
the powerset of {u, v}. Thus, we actually have F � alt1.

We see that the correspondence between first–order properties and modal prop-
erties may break down if we pass to a larger class of frames. This is an important
point. In most of the literature on correspondence theory only the problem of corre-
spondence with respect to Kripke–frames is discussed. Although this is by itself a
legitimate problem, it is for reasons discussed earlier advisable to broaden the class
of frames to be looked at. We can also put the question on its head and ask how large
the class is for which the correspondence between alt1 and quasi–functionality can
be shown. The way to approach that question is to look for sets which can serve as
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values for valuations falsifying a given formula once the corresponding first–order
condition is not met. For example, if we have a violation of quasi–functionality be-
cause x C y0, y1 for y0 , y1 we want to be able to produce a valuation β such that
〈F, β, x〉 2 alt1. Above we have chosen β(p) = {y0} and β(q) = {y1}, so we conclude
that in atomic frames the correspondence will still hold. But this is not such a good
result. Consider the frame H = 〈h,H〉 where h = {x} ∪ {yi : i ∈ ω} and x C yi, but
no other relations hold. Finally, H is the boolean algebra generated by the sets of the
form r(i, k) := {yn : (∃` ∈ ω)(n = i · ` + k)}, where k < i. Thus H consists of finite
unions of such sets possibly with {x}. H as defined is closed under complements and
unions, as an analogous frame constructed in Section 4.6. The point about this frame
is that it is not atomic but nevertheless the correspondence holds. For pick any yi and
y j with i , j. What we need is sets a0, a1 such that yi ∈ a0, y j ∈ a1, and yk < a0 ∩ a1
for all k. Assume i < j. Then put a1 := r( j, 0) − r( j, i) and a0 := r( j, i). We have
a1 ∩ a0 = ∅ by construction and yi ∈ a0, y j ∈ a1. So, such sets exist for all choices
for offending triples x, y0, y1.

In general it is sufficient that F be differentiated. For let us assume that x sees
two distinct points y0 and y1. Then differentiatedness guarantees the existence of a
set a such that y0 ∈ a but y1 < a. Putting β(p) := a, β(q) := −a we get the desired
valuation proving F 2 alt1.

P 5.3.1. A differentiated frame is a frame for K.alt1 iff the underlying
Kripke–frame is quasi–functional.

Now consider the frame E in Figure 5.2. This frame is not quasi–functional, it is
not differentiated, but it also does not satisfy alt1. Thus, the result above is still not
optimal. The reason for this failure is easy to spot. On the one hand we have xCy1 and
x C y2 and there is a set a such that y1 ∈ a but y2 < a. This alone suffices to establish
the equivalence between failing alt1 and not being quasi–functional. However, on
the other hand we also have x C y0 and x C y1 and y0 and y1 are not separable by a
set. So, what we have shown in the cases above is that no matter what triple of points
x, y, z we choose such that x C y, z there always is a set a such that y ∈ a but z < a.
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The frame here does not have this property. To distinguish these two properties let
us say that quasi–functionality corresponds casewise to alt1 if for every choice of
points x C y, z such that y , z there is a set a with y ∈ a but z < a. And let us say
that quasi–functionality corresponds simply if from the failure of quasi–functionality
somewhere we can deduce the existence of triple x C y, z and a set a such that y ∈ a
but z < a. Simple correspondence is clearly weaker.

P 5.3.2. In the class of differentiated frames the property of being
quasi–functional corresponds casewise to the property of being a frame for K.alt1.

Casewise correspondence is not actually the same as local correspondence, the
notion we are ultimately interested in. Local correspondence is defined only with
reference to the root x. Namely, quasi–functionality locally corresponds to alt1 in a
frame G if

G � (∀u)[(∀y0 B u)(∀y1 B u)(y0 � y1) ≡ (∀p)(∀q)(u ε ♦p ∧ ♦q→ ♦(p ∧ q))]

The frame E above satisfies this correspondence as well, showing that the casewise
correspondence as just defined is really weaker. Nevertheless, it seems a rather ar-
tificial concept to begin with. The problem is, however, that the schema above can
be written down rather nicely. On the left hand side we have a first–order formula
satisfied at u, and on the right hand side we have a modal formula satisfied at u. No-
tice that the � is ambigous here. On the left we would have to construe the statement
as being expressed in R f , the frame part of the external language, whereas on the
right hand side we have the ordinary � from the internal language modal logic, and
not from the modal fragment of the external language. It is now in principle pos-
sible to rephrase the left hand side to state that we have a concrete triple violating
functionality.

〈F, ι〉 � x C y0 ∧ x C y1 ∧ y0 6� y1

On the left hand side we have several such statements:

〈F, β, ι(y0)〉 � p, 〈F, β, ι(y1)〉 � q, 〈F, β, ι(x)〉 � ¬♦(p ∧ q)

Thus, we can define (strong) local correspondence by requiring that the violation
of quasi–functionality is equivalent to the simultaneous satisfaction of three inter-
nal formulae, one at each of the worlds which constitute the triple violating quasi–
functionality. It is this latter formulation of correspondence that we will take as the
key definition. If we use Le here, we can write this sequence of conditions as

〈F, β, ι〉 � x ε ¬♦(p ∧ q) ∧ y0 ε p ∧ y1 ε q

Furthermore, we can abstract from the valuation β:

〈F, ι〉 � (∃p)(∃q)(x ε ¬♦(p ∧ q) ∧ y0 ε p ∧ y1 ε q)

Exercise 174. Show that H is a frame. In particular, show that the intersection of
two sets r(i0, k0), r(i1, k1) is a finite union of sets of the form r(i, k).
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Exercise 175. Show that for tight frames F and points x, y, z such that 〈F, ι〉 � x C
y C z; x 6 z iff for some valuation x � ¬♦p, y � > and z � p. Hence, transitivity
corresponds locally to .4 in the class of tight frames.

5.4. The Basic Calculus of Internal Descriptions

Informally, we will say that a (first–order) relation ζ(x0, . . . , xn−1) can be inter-
nally described in a given class X of frames if we can find a sequence 〈ϕ0, . . . , ϕn−1〉

of modal formulae such that for every frame F ∈ X we have

〈F, ι〉 � ζ(x0, . . . , xn−1) ⇔ for some β 〈F, β, ι(x0)〉 � ϕ0,
. . . , 〈F, β, ι(xn−1)〉 � ϕn−1

We will rewrite the right–hand side into

〈F, β, ι〉 � x0 ε ϕ0 ∧ . . . ∧ xn−1 ε ϕn−1

We use overstrike arrows in the following way. Let ~x and ~ϕ be n–long sequences.
Then

~x ε ~ϕ :=
∧
i<n

xi ε ϕi

Notice that the number i does double duty in xi by both identifying xi and assigning to
it a modal formula ϕ. This will be rather cumbersome. Thus, to make the association
of the variables with the modal formulae independent of the index i on the variables
xi, we use the following notational device. We write ζ[~x] to denote (a pair consisting
of) the formula ζ and a sequence 〈xi : i < n〉 such that every free variable of ζ is
identical to some xi, i < n. (It is not required that xi is distinct from x j if i , j.)
The numbers i < n of an n–long sequence are also called slots. Given an n–long
sequence ~ϕ of modal formulae, the slots of ζ[~x] are in one to one correspondence
with the slots of ~ϕ. Notice that writing ζ[~x] we may nevertheless have ~x * fvar(ζ), a
fact which we will make use of. We call ζ[~x] a slotted formula. We emphasize that
this is just a piece of notation, nothing more. If the association between variables and
slots is clear (especially when there is just one variable), we may drop the sequence.
Occasionally we will also use subscripts 0, 1 etc. rather than the sequence of slots.

D 5.4.1. Let X be a class of frames, ζ[x0, . . . , xn−1] a slotted L f –formula
and ~ϕ = 〈ϕ0, . . . , ϕn−1〉 a sequence of length n. We say that ~ϕ internally describes
ζ in X if for all F ∈ X and all ι, 〈F, ι〉 � ζ(~x) iff 〈F, ι〉 � ~x ε ~ϕ. Symbolically, we write
ζ[~x]!X ~ϕ, or simply ζ[~x]! ~ϕ. Given X and ~ϕ we say that ~ϕ is elementary in X
if an ζ ∈ L f exists which is described by ~ϕ in X.

Notice first of all that internal describability of ζ itself is Le–definable. Namely,
〈F, ι〉 � ~x ε ~ϕ is just a shorthand for the conjunction of xi ε ϕi. Now we have the
following equivalence

ζ!X ~ϕ ⇔ X � (∀~x)(ζ[~x]. ≡ .(∃~p)(~x ε ~ϕ))
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Here ~p collects all variables of ~ϕ. A particularly interesting example of an elementary
sequence are those of length 1. In that case it is of the form ϕ0, i. e. an ordinary
proposition. ϕ0 is elementary in X iff there is an ζ(x0) ∈ L f such that

X � (∀x0)(ζ(x0) ≡ (∃~p)(x0 ε ϕ0)) .

Alternatively,
X � (∀x0)(¬ζ(x0) ≡ .(∀~p)(x0 ε ¬ϕ0)) .

If the latter holds we say that ¬ϕ0 defines ¬ζ[x0] and is elementary, and that ζ
is modally definable. The same definition could be generalized to sequences, but
this is of little benefit. We say that a logic is X–elementary if all of its axioms are
elementary in X. In addition to this definition of elementarity, which for distinction
will be called local, there is also a global elementarity. Namely, we say that ϕ is
globally elementary in X if there exists an L f –sentence ζ such that for all F ∈ X we
have F � ϕ iff F � ζ. Global elementarity is weaker as we have seen earlier, and it
will be of little importance henceforth. Nevertheless, the following theorems can be
stated for global rather than local elementarity.

P 5.4.2. Let X be closed under the map 〈f,F〉 7→ f. Then if a logic is
globally X–elementary, it is complete with respect to the Kripke–frames of X.

Examples of such classes are the class of differentiated frames, of refined frames,
the class of canonical frames together with the class of Kripke–frames. With respect
to a class X we say that a logic Λ is persistent if for all F ∈ X we can infer F] � Λ
from F � Λ. This is the general scheme. Moreover, we have d–persistence, which is
persistence with respect to D, r–persistence, which is persistence with respect to R
etc.

P 5.4.3. If Λ is X–persistent and X–complete, Λ is X]–complete.

P. Let ϕ < Λ. Then since Λ is X–complete there is a frame F ∈ X such that
F � Λ but F 2 ϕ. Since Λ is X–persistent, F] � Λ. But F] 2 ϕ as well, showing Λ to
be X]–complete. �

P 5.4.4. If Λ is globally X ∪ X]–elementary it is X–persistent.

P. Let Λ = Kκ ⊕ ∆. Each ϕ ∈ ∆ is X ∪ X]–elementary, whence there is an
elementary sentence ζϕ such that F � ϕ iff F � ζϕ for all F ∈ X ∪ X]. Now assume
F � Λ. Then F � ∆. By X–elementarity of ∆, F � ζϕ for all ϕ ∈ ∆, hence F] � ζϕ,
for all ϕ ∈ ∆ since each ζϕ is an L f –sentence. So F] � ∆, by X]–elementarity of ∆.
Consequently, F] � Λ. �

Let us now turn to the problem of determining which statements of the form
‘ζ !X ~ϕ’ are valid. In the sequel we will be concerned with five basic choices for
X, namely the class of all frames, the class of differentiated frames, tight frames,
refined frames and of descriptive frames. Of course if ζ !X ~ϕ and X ⊇ Y then also
ζ !Y ~ϕ as well, so not all work has to be done separately. In this section we will
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introduce a calculus for deriving correspondence statements in a quasi–logical style,
with axioms and rules. This calculus, called Seq, will be correct for G and hence for
all classes. As starting sequences one can in all cases take a constant formula. Recall
namely, that if ϕ is constant, so is the standard translation ST(ϕ, x). Consequently,
the standard translation is first–order. Now we always have

F � (∀~p)(∀x)(x ε ϕ. ≡ .ST(ϕ, x))

In this special case, the propositional quantifier is superfluous since there are no
variables to be bound. This shows that we always have

(axiom.) ST(ϕ, x0)[x0]!X ϕ if var(ϕ) = ∅

Of course, this can be stated for sequences as well. So we do have some nontrivial
correspondences to start with. The next set of rules is rather obvious. We may add,
for example, an inessential variable. If ζ[x0 · . . . · xn−1] is a condition on the n–tuple
〈x0, . . . , xn−1〉, we can nevertheless view it as a condition on n+1–tuples 〈x0, . . . , xn〉

(which we abbreviate by ~x · xn). There is then no condition on xn, and so on the
modal side this corresponds to adding > at the end of the sequence. Furthermore,
we can permute sequences. Given a permutation π : n → n, we can write π(~x) for
the sequence 〈xπ(0), . . . , xπ(n−1)〉, and similarly for the modal side. Then the following
rules are valid.

(exp.)
ζ[~x]! ~ϕ

ζ[~x · xn]! ~ϕ · >
(per.)

ζ[~x]! ~ϕ

ζ[π(~x)]! π(~ϕ)

In both rules we used a double line separating the top row from the bottom row.
This means that the rules can be applied top–to–bottom or bottom–to–top, which in
the case of (exp.) amounts to killing an unnecessary variable. Next consider the
operation of renaming the variables in ~ϕ by a substitution σ. Obviously, if ps is
another variable and p 7→ pσ is injective, that is, no two variables are identified, then
this is just a harmless operation, with no bearing on the property described by the
sequence.

(ren.)
ζ! ~ϕ

ζ! ~ϕσ
σ : p–var� p–var

Similarly, consider swapping ¬p and p (denoted by ϕ[¬p 
 p]), or alternatively,
replacing p by ¬p and killing double negation. Again, this does not change the
elementary property described.

(swap.)
ζ! ~ϕ

ζ! ~ϕ[¬p
 p]

Next consider the operation of replacing in ζ(~x) a variable, say xn−1, by another, say
xn−2. This amounts on the modal part to replacing ϕn−2 by ϕn−2∧ϕn−1. Also consider
iterating a condition on another variable.
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(cnt.)
ζ(~x, y, z)[~x · y · z]! ~ϕ · ϕn−2 · ϕn−1

ζ(~x, y, y)[~x · y]! ~ϕ · ϕn−2 ∧ ϕn−1

(iter.)
ζ(~x, y)[~x · y]! ~ϕ · χ

(ζ(~x, y) ∧ ζ(~x, z))[~x · y · z]! ~ϕ · χ · χ

Suppose, namely, that ζ[~x · y · z] ! ~ϕ · ϕn−2 · ϕn−1. Then for all n–tuples ~w ⊆ f
of worlds in F ∈ X, we have ζ[~w] iff for some valuation β, wi ∈ β(ϕi) for all i < n.
Now choose an n− 1–tuple ~w ⊆ f . By assumption, ζ[~w ·wn−2] iff for some valuation
wi ∈ β(ϕi) for all i < n − 2 and wn−2 ∈ β(ϕn−2) as well as wn−2 ∈ β(ϕn−1), so that
wn−2 ∈ β(ϕn−2 ∧ ϕn−1), and conversely. Thus the rule is correct. Notice that we
must reduce the number of arguments here. We cannot conclude, for example, that
ζ ∧ xn−2 � xn−1 is describable, for this would require simultaneous fixing of xn−2
and xn−1 to the same value. The rule (iter.) is likewise straightforward. For the
statement of the following rule let ~ϕ1 and ~ϕ2 be two sequences of length n. Then
~ϕ1 ∧ ~ϕ2 := 〈ϕ1

i ∧ ϕ
2
i : i < n〉.

(∧–I.)
ζ1[~x]! ~ϕ1 ζ2[~x]! ~ϕ2

(ζ1 ∧ ζ2)[~x]! ~ϕ1 ∧ ~ϕ2 if var(~ϕ1) ∩ var(~ϕ2) = ∅

For a proof assume (ζ1 ∧ ζ2)[~w]. By assumption we have a valuation β1 such that
wi ∈ β

1
(ϕ1

i ) for all i < n, and a valuation β2 such that wi ∈ β
2
(ϕ2

i ) for all i < n. Define
β as follows. β(p) := β1(p) if p ∈ var(~ϕ), β(p) := β2(p) otherwise. This is well
defined by the assumption that ~ϕ1 and ~ϕ2 are disjoint in variables. Then wi ∈ β(ϕ1

i )
as well as wi ∈ β(ϕ2

i ) for all i < n, and so wi ∈ β(ϕ1
i ∧ ϕ

2
i ), as required. Conversely, if

wi ∈ β(ϕ1
i ∧ ϕ

2
i ) for all i < n then wi ∈ β(ϕ1

i ) as well as wi ∈ β(ϕ2
i ) for all i < n and so

by assumption ζ1[~w] as well as ζ2[~w].

(∨–I.)
ζ1[~x · y]! ~ϕ · χ ζ2[~x · y]! ~ϕ · ψ

(ζ1 ∨ ζ2)[~x · y]! ~ϕ · χ ∨ ψ

(♦–I.)
ζ(~x, y)[~x · y]! ~ϕ · χ

(∃z Bi y)ζ(~x, z)[~x · y]! ~ϕ · ♦iχ

To see the correctness of the first rule, assume the premisses hold, and that ζ1∨ζ2[~w]
for an n + 1–tuple ~w. Then either ζ1[~w] or ζ2[~w]. Assume without loss of generality
the first. Then there is a valuation β such that wi ∈ β(ϕi) all i < n and wn ∈ β(χ).
Then also wn ∈ β(χ ∨ ψ). Conversely, assume that wi ∈ β(ϕi) for all i < n and
wn ∈ β(χ∨ψ). Then either wn ∈ β(χ) or wn ∈ β(ψ). Assume without loss of generality
the first. Then, by the left hand premiss of the rule ζ1[~w], whence (ζ1 ∨ ζ2)[~w]. Next
the rule (♦–I.). Assume ((∃z Bi y)ζ)(~x, z). Then there is a sequence ~w · v such that
(∃z Bi y)ζ[~w · v], that is, there is a u such that v Ci u and ζ[~w · u]. By assumption, we
can find a valuation β such that wi ∈ β(ϕi) for all i and u ∈ β(χ). Then v ∈ β(♦iχ),
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which had to be shown. Conversely, assume wi ∈ β(ϕi) for all i and v ∈ β(♦iχ). Then
there is a u such that v Ci u and u ∈ β(χ). Thus, by the premiss of the rule, ζ(~w · u).
Then, however, ((∃z Bi v)ζ(~v, z))[~w · v], as required.

Now let Seq, consist of the axioms (axiom.) and of all the rules (exp.), (per.),
(ren.), (swap.), (cnt.), (iter.), (∧–I.), (∨–I.) and (♦–I.). We call Seq the base calcu-
lus. Let C be a calculus of internal descriptions, consisting of axioms and rules. A
statement ‘ζ ! ~ϕ’ is derivable in C if it can be produced from the axioms with the
help of the rules in finitely many steps. We say that ~ϕ is derivable in C if there exists
a ζ ∈ L f and a sequence ~x such that ‘ζ[~x] ! ~ϕ’ is derivable in Seq; and that ζ[~x]
is derivable in C if there exists a sequence ~ϕ such that ‘ζ[~x]! ~ϕ’ is derivable in C.
A calculus C of correspondence statements is sound for a class X if ‘ζ[~x] ! ~ϕ’ is
derivable in C only if ~ϕ internally describes ζ[~x] in X. C is called complete for X if
whenever ~ϕ internally describes ζ[~x] in X, ‘ζ[~x]! ~ϕ’ is derivable in C.

T 5.4.5. Seq is sound for all classes of frames.

An important consequence is the following.

T 5.4.6. Let X be any class of frames. If ζ(x0) is obtained from formulae
internally describable in X with the help of conjunction, disjunction or restricted
existential quantification, then ζ(x0) is internally describable in X.

P. From Lemma 5.4.7 we conclude that the set of internally describable
ζ(~x) is closed under ∧. It is clearly also closed under restricted ∃. Now let ζ(x0)
be composed from internally describable formulae with conjunction, disjunction and
restricted existential quantification. Then, by some straightforward manipulations,
ζ(x0) is equivalent in predicate logic to a disjunction of formulae ηi(x0), i < n, each
of which is made from describable formulae using only ∧ and restricted ∃. Then,
for all i < n, ηi(x0) is describable in X, and by Lemma 5.4.8, ζ(x0) is describable in
X. �

L 5.4.7. Let X be a class, and let ζ(~x) and η(~x) be describable in X. Then
(ζ ∧ η)(~x) is describable in X.

P. By assumption, there exists sequence ~ϕ such that ζ(~x) !X ~ϕ and a se-
quence ~ψ such that η(~x)!X

~ψ. Now let ~χ result from renaming variables of ψ in such
a way that they become disjoint to the variables of ~ϕ. Then, by (ren.), η(~x) !X

~ψ.
Finally, by (∧–I.), ~ϕ ∧ ~χ describes (ζ ∧ η)(~x) in X. �

L 5.4.8. Let X be a class, and let ζ(x0) and η(x0) be describable in X. Then
(ζ ∨ η)(x0) is describable in X.

The proof of this theorem is similar. Notice that in proving the correctness of
the rules we have always shown how to construct a valuation for a given sequence of
worlds. Now we consider two rules.

(6�–I.) x0 6� x1 ! p · ¬p (6–I.) x0 6i x1 ! �i p · ¬p
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T 5.4.9. Seq + (6�–I.) is sound for Df, the class of differentiated frames.

The proof is an exercise.

T 5.4.10. Seq + (6–I.) is sound for Ti, the class of tight frames.

Again the proof is an exercise. We now give some examples of the calculus.
E 1. K.T is ti–persistent. For a proof consider the following derivation.

x0 6 x1 ! �p · ¬p
x0 6 x0 ! �p ∧ ¬p

The first line is true in Ti. Hence �p→ p locally defines x0 C x0 in the class of tight
frames.

E 2. K.t is ti–persistent.

x0 60 x1 ! �0 p · ¬p
(∃u B1 x0)(u 60 x1)! ♦1�0 p · ¬p
(∃u B1 x0)(u 60 x0)! ♦1�0 p ∧ ¬p

x0 61 x1 ! �1 p · ¬p
(∃u B0 x0)(u 61 x1)! ♦0�1 p · ¬p
(∃u B0 x0)(u 61 x0)! ♦0�1 p ∧ ¬p

These two derivations show that in the class of tight bimodal frames the formulae
♦0�1 p → p and ♦1�0 p → p locally correspond to (∀u B1 x0)(u C0 x0) and (∀u B0
x0)(u C1 x0), respectively.

E 3. K.alt1 is df–persistent. The following derivation is a proof of this
fact.

x0 6� x1 ! p · ¬p
(∃x0 B u)(u 6� x1)! ♦p · ¬p

(∃x1 B v)(∃u B x0)(u 6� v)! ♦p · ♦¬p
(∃x0 B v)(∃u B x0)(u 6� v)! ♦p ∧ ♦¬p

Notice that the axiom ♦p ∧ ♦q. → .♦(p ∧ q) is not derivable with the help of the
calculus for differentiated frames.

T 5.4.11. Let ζ(x0) ∈ R f be universal, restricted and positive. Then
ζ(x0) is internally definable in R, the class of refined frames.

P. ¬ζ(x0) is negative, existential and restricted. Thus, it is composed from
formulae of the form xi 6� x j, xi 6k x j with the help of conjunction, disjunction and
restricted existential quantification. Whence it is derivable in Seq + ( 6� –I.) + (6
–I.). �
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Let us end this section by considering the question of the completeness of the
basic calculus. We will show in Section 9.5 that for a modal formula ϕ it is unde-
cidable whether it axiomatizes the inconsistent logic. Hence the set of sequences
‘ϕ! f’ is undecidable. The idea behind setting up modal equivalence not as a mat-
ter of theorems of second–order logic but as a deductive calculus is that while the
former is undecidable, the latter may be decidable, however at the price of being in-
complete. On the other hand, we will see later (Theorem 5.8.6) that Seq is complete
in the following weaker sense. If ‘ϕ! ζ(x)’ holds inG then there exist ψ and η such
that Kκ ⊕ψ = Kκ ⊕ ϕ and (∀x)ζ(x) ≡ (∀x)η(x) (in predicate logic) and ‘ψ! η(x)’ is
derivable in Seq. It is not clear whether this generalizes to arbitrary sequences, but
that seems to be the case. So, rather than generating all facts we generate at least a
representative class of them. We could in principle add rules that would make the
calculus complete (by closing under equivalence), but that would make it undecid-
able and useless for practical purposes.

Exercise 176. Show that (iter.) is sound for all classes.

Exercise 177. Show that inequality is internally describable in X iff X is a class of
differentiated frames. This proves Theorem 5.4.9.

Exercise 178. Show that j–inaccessibility (i. e. 6 j) is internally describable in X for
all j < κ iff X is a class of tight frames. This proves Theorem 5.4.10.

Exercise 179. Show that the set of X–elementary logics is closed under finite joins
and finite meets in the lattice of all modal logics.

∗Exercise 180. Show that �♦��p → ♦♦�♦p is globally Krp–elementary and corre-
sponds to (∀x)(∃y)(x C y). However, this axiom is not locally elementary. (The first
half is not so difficult, only the failure of local elementarity. For those who want to
see a proof, it can be found in  B [10], page 82.)

5.5. Sahlqvist’s Theorem

Two classes of modal formulae will play a fundamental role, monotone and ∧–
distributive formulae. A formula ϕ(p, ~q) is monotone in p if ` ϕ(p∧ r, ~q)→ ϕ(p, ~q),
where ` ϕ abbreviates ϕ ∈ Kκ, and ∧–distributive in p if ` ϕ(p ∧ r, ~q).↔ .ϕ(p, ~q) ∧
ϕ(r, ~q). ϕ is called monotone (∧–distributive) if it is monotone (∧–distributive) in
all occurring variables. The notions antitone and ∨–distributive are dual notions.
That is to say, ϕ is antitone (∨–distributive) in p iff ¬ϕ is monotone (∧–distributive)
in p. All of these notions can be characterized syntactically. We will give sufficient
criteria here. Call a formula ϕ(p, ~q) positive in p if all occurrences of p are in the
scope of an even number of negations. Call a formula strongly positive in p if p
does not occur in the scope of ¬ (or any ♦ j for j < κ if ♦ j is a primitive symbol).



234 5. Definability and Correspondence

ϕ is positive (strongly positive) if it is positive (strongly positive) in all occurring
variables. A formula is negative (strongly negative) if it can be obtained from a
positive (strongly positive) formula by replacing each occurrence of a variable p by
¬p. Notice that we can characterize a positive formula also as follows.

P 5.5.1. ϕ(p, ~q) is positive in p iff there exists a formula ψ which is
built from the letter p and formulae not containing p with the help of ∧, ∨, �i, ♦i,
i < κ, such that ϕ(p)↔ ψ ∈ Kκ.

The proof is an exercise. Notice that the occurring constant subformulae can be
arbitrarily complex. The formula �0((♦1(>∧¬�0⊥)∨ p)∧♦0 p) is positive. Likewise,
�0(♦1> ∨ �0 p) is strongly positive.

P 5.5.2. The following holds.
(1) If ϕ(p, ~q) is positive in p it is monotone in p.
(2) If ϕ(p, ~q) is strongly positive in p it is ∧–distributive in p.

P. (1.) By induction on ϕ(p, ~q). By Proposition 5.5.1 we can assume that
ϕ is built from the letter p and formulae not containing p with the help of ∧, ∨, � j

and ♦ j, j < κ. The formula p is monotone in p; likewise a formula not containing p
is obviously monotone in p. Suppose ϕ = ψ1 ∧ ψ2. By induction hypothesis, ψ1(p ∧
r, ~q) ` ψ1(p, ~q) and ψ2(p ∧ r, ~q) ` ψ2(p, ~q). Hence ϕ(p ∧ r, ~q) ` ψ1(p, ~q) ∧ ψ2(p, ~q)(=
ϕ(p, ~q)). Similarly for ϕ = ψ1 ∨ ψ2. Now suppose that ϕ = �iψ1. Then by induction
hypothesis ψ1(p ∧ r, ~q) ` ψ1(p, ~q). From this we get �iψ(p ∧ r, ~q) ` �iψ(p, ~q), as
required. Similarly for ϕ = ♦iψ1. (2.) Again by induction. A formula not containing
p is ∧–distributive in p by the fact that ` ψ ↔ ψ ∧ ψ. Now let ϕ = ψ1 ∧ ψ2, ψ1 and
ψ2 strongly positive. By induction hypothesis both are ∧–distributive in p. Then we
have ` ψi(p ∧ r, ~q)↔ ψi(p, ~q) ∧ ψi(r, ~q) and so

ϕ(p ∧ r, ~q) a` ψ1(p ∧ r, ~q) ∧ ψ2(p ∧ r, ~q)
a` ψ1(p, ~q) ∧ ψ1(r, ~q) ∧ ψ2(p, ~q) ∧ ψ2(r, ~q)
a` ϕ(p, ~q) ∧ ϕ(r, ~q) .

Similarly for ϕ = �iψ. �

A sequence ~ϕ of formulae is called a spone if each of its members is either
strongly positive in all variables or negative in all variables. (The name spone is an
acronym from strongly positive and negative.) We will usually write a spone in the
form ~π · ~ν, where ~π is the subsequence of the strongly positive formulae and ~ν the
subsequence of the negative formulae. We will show that in the class Krp ∪ D all
spones are elementary, and this will prove Sahlqvist’s Theorem. In the basic calculus
Seq not all spones can be derived. However, in the class Krp∪D another rule is valid.
The key to this rule is the following lemma. To state this lemma properly recall from
Section 2.9 the concept of an upward directed family of sets. Let a frame F be given.
Consider a set I of indices which is partially ordered by ≤, and for each pair i, j
there is a k such that i ≤ k and j ≤ k. A family over 〈I,≤〉 is simply a collection
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of sets ci, i ∈ I (or a function from I into F). This family is upward directed if
i ≤ j implies ci ⊆ c j. Given such a family D = 〈di : i ∈ I〉 we write � jD for the
family 〈� jdi : i ∈ I〉. An upward directed family has a limit, lim D, which is just the
union

⋃
i∈I di. The notion of a downward directed family is dual, that is, we require

i ≤ j⇒ di ⊇ d j instead. The following theorem is due to L E in [58].

L 5.5.3 (Esakia). Let F be a tight and compact frame and D = 〈di : i ∈ I〉
be an upward directed family of sets in F. Then

�i lim D = lim�iD.

P. D is upward directed, and so −D = 〈−di : i ∈ I〉 is downward directed.
It will be sufficient to show that for a downward directed family E, �i lim−E =
lim�i − E. This is the same as −�i lim−E = − lim�i − E since lim commutes with
−. This is finally equivalent to

�i lim E = lim �iE.

(For an upward directed family this is clear, but now E is downward directed.) (⊆.)
Let x ∈ �i lim E. Then there is a y ∈ lim E =

⋂
E such that x Ci y. Thus for all

j ∈ I, x ∈ �id j and so x ∈ lim �iE. (⊇.) Suppose x < � j lim E. Pick a y ∈ lim E.
Then x 6 j y. By tightness of F there is an internal set ay such that y ∈ ay, but
x ∈ � j−ay. Since the union of the ay contains lim E, there is a finite subset Y ⊆ lim E

such that lim E ⊆
⋃

y∈Y ay. (This follows from the compactness of the frame.) Let
b :=

⋃
y∈Y ay. Then lim E ⊆ b and x ∈ � j − b. Moreover, by compactness of F again,

there is an e ∈ E such that e ⊆ b. Then � je ⊆ � jb. Since x < � jb, x < � je. Therefore
x < lim � jE. �

T 5.5.4. The rule (�–I.) is sound for Krp ∪D.

(�–I.)
ζ[~x · y]! ~ρ · µ

(∀z B j y)ζ(~x, z)[~x · y]! ~ρ · � jµ
(~ρ a spone, µ negative)

P. Assume that ζ[~x · y]! ~ρ · µ in the class Krp ∪ D. Let ~x be of length n.
Take a frame F from Krp ∪D and a valuation β such that wi ∈ β(ρi) for all i < n and
v ∈ β(� jµ). Then for all u such that v C j u we have u ∈ β(µ), and so by assumption
ζ[~w · u]. Hence ((∀y B j v)ζ(~x, y))[~w · v], as required. For the converse direction
choose points w0, . . . ,wn−1, v such that for all u with v C j u we have ζ[~w · u]. Let
A := {u : v C j u}. By assumption, for each u ∈ A there is a valuation βu such that
wi ∈ βu(ρi) and u ∈ βu(µ).
Case 1. F is a Kripke–frame. Then put β(p) :=

⋂
u∈A βu(p). Then wi ∈ β(ρi) for all

i. For either ρi is negative (and the claim easily follows), or ρi is strongly positive,
in which case β(ρi) =

⋂
u∈A βu(ρi) and so wi ∈ β(ϕi). Furthermore, u ∈ β(µ) for all

u ∈ A, since µ is negative. Thus v ∈ β(� jµ), and so everything is shown.
Case 2. F is a descriptive frame. Let I be the set of finite subsets of A. For S ∈ I
let βS (p) :=

⋂
u∈S βu(p). It is not hard to verify that wi ∈ βS (ρi) for all i < n. Our
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aim is to find an S ∈ I such that v ∈ βS (� jµ). With respect to ⊆, I is ordered
and 〈βS (p) : S ∈ I〉 is a downward directed family of sets. Now, u ∈ βS (µ) if
u ∈ S . Hence A ⊆ lim βS (µ) and so v ∈ � lim βS (µ). By Esakia’s Lemma v ∈
� j lim βS (µ) = lim� jβS (µ) = lim βS (� jµ). By compactness of F there is an S ∈ I
such that v ∈ βS (� jµ); this had to be shown. �

We define a new calculus Seq+, which is Seq enriched by (6�–I.) and (�–I.)
and a new rule for conjunction, (∧–I2.). To define it, let ~ϕ1 and ~ϕ2 be two n–long
sequences. Recall that ~ϕ1 ∧ ~ϕ2 := 〈ϕ1

i ∧ ϕ
2
i : i < n〉.

(∧–I2.)
ζ1[~x]! ~π1 · ~ν1 ζ2[~x]! ~π2 · ~ν2

ζ1 ∧ ζ2[~x]! (~π1 ∧ ~π2) · (~ν1 ∧ ~ν2)
for ~πi · ~νi spones

It is left as an exercise to show the soundness of this rule. Moreover, this rule is sound
in all classes, so it can actually be added to Seq. It is only for ease of exposition that
we have chosen to ignore this rule previously.

T 5.5.5 (Sahlqvist). Let χ be a modal formula of the form

�(ϕ→ ψ)

where � is a compound modality. Suppose that
(1) ψ is positive.
(2) ϕ is composed from strongly positive formulae using only ∧, ∨ and ♦ j,

j < κ.
Then Kκ ⊕ χ is locally d–persistent and locally elementary in Krp ∪D.

P. It is enough if we can show that there is a ζ such that ζ ! ¬χ. Now
¬χ = ¬ � ¬(ϕ ∧ ¬ψ). By repeated use of (♦–I.) and (∨–I.) backwards this can be
reduced to showing that ϕ ∧ ¬ψ is derivable. By (cnt.) it is enough that ϕ · ¬ψ is
derivable. ¬ψ is negative, and ϕ is composed from strongly positive formulae using
∧, ∨ and ♦ j. By appealing to the rules (cnt.), (∨–I.), (♦–I.) this can be reduced
to the problem of showing that sequences of the form ~π · ν are derivable, where
~π is a sequence of strongly positive formulae and ν negative. The theorem below
establishes this. �

L 5.5.6. All spones are derivable in Seq+.

P. Let us concentrate on the modal formulae in Seq+. We proceed in several
steps.
Step 1. All spones ~π ·~ν are derivable where for some p, πi = p and ν j = ¬p, > or ⊥.
Simply start with p · ¬p and use (iter.) and (per.).
Step 2. All spones are derivable in which the νi are constant or a negated variable.
Namely, by (swap.) it is enough to show that if all πi are variables or constants and
ν j are strongly negative, the spone is derivable. So there are three possibilities, (i)
ν j is constant, (ii) ν j = µ1 ∨ µ2, (iii) ν j = ♦ jµ. We deal with these cases in turn,
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assuming without loss of generality that j = n − 1, the last entry of the list. So we
have the spone ~ρ · νn−1. Case (i). If ~ρ is derivable, so is ~ρ · >. Moreover, νn−1 is
derivable, and by (exp.) also ~> · νn−1, and so by (∧–I.) ~ρ · νn−1. Case (ii). If ~ρ · µ1
and ~ρ · µ2 are derivable, so is ~ρ · µ1 ∨ µ2, by (∨–I.). Case (iii). If ~ρ · µ is derivable, so
is ~ρ · ♦ jµ, by (♦–I.).
Step 3. All spones are derivable. We may start from spones in which the strongly
positive part can be complex. The reduction is similar to that in Step 2, with two
more cases to be considered, namely (iv) ν = µ1 ∧ µ2, (v) ν = � jµ. Case (iv) is dealt
with by using the rule (∧–I2.), and Case (v) is dealt with by using (�–I.). �

To master the syntactic description of the theorem requires some routine. We
note that for example the Geach formula ♦�p → �♦p satisfies the conditions of the
theorem while the McKinsey formula �♦p→ ♦�p does not.

E 1. The Geach formula is elementary in Krp ∪D.

x0 6� x1 ! p · ¬p
(∀u B x0)(u 6� x1)! �p · ¬p

(∀v B x1)(∀u B x0)(u 6� v)! �p · �¬p
(∃u′ B x0)(∀v B x1)(∀u B u′)(u 6� v)! ♦�p · �¬p

(∃v′ B x1)(∃u′ B x0)(∀v B v′)(∀u B u′)(u 6� v)! ♦�p · ♦�¬p
(∃v′ B x0)(∃u′ B x0)(∀v B v′)(∀u B u′)(u 6� v)! ♦�p ∧ ♦�¬p

E 2. The axiom ♦p∧♦q→ ♦(p∧ q) defines a df–persistent logic. Never-
theless, we have seen that this cannot be shown inside the calculus for differentiated
frames. However, in the extended calculus it is derivable. The derivation is some-
what contrived. First, from x0 6� x2 ! p · > · ¬p and t ! > · > · q we get
x0 6� x2 ! p · q · ¬p. Likewise, x1 6� x2 ! p · q · ¬q is derived. From this we get
x0 6� x2 ∨ x1 6� x2 ! p · q · ¬p ∨ ¬q. Now we get

(∀y B x2)(x0 6� y ∨ x1 6� y)! p · q · �(¬p ∨ ¬q)
(∃u B x0)(∃v B x1)(∀y B x2)(u 6� y ∨ v 6� y)! ♦p · ♦q · �(¬p ∨ ¬q)
(∃u B x0)(∃v B x0)(∀y B x0)(v 6� y ∨ u 6� y)! ♦p ∧ ♦q ∧ ¬♦(p ∧ q)

The formula (∃u B x0)(∃v B x0)(∀y B x0)(u 6� y ∨ v 6� y) is equivalent in predicate
logic to (∃u B x0)(∃v B x0)(u 6� v). Hence ♦p ∧ ♦q → ♦(p ∧ q) corresponds to
(∀u B x0)(∀v B x0)(u � v).

A formula satisfying the conditions of the theorem will be called a (modal)
Sahlqvist formula. A logic axiomatizable by Sahlqvist formulae is called a Sahlqvist
logic. We note that formulae of the form ϕ → ψ, where both ϕ and ψ are positive
and free of �, are all Sahlqvist formulae. There are some stronger versions of this
theorem. For example the following characterization due to J  B [10],
which uses the notions of positive and negative occurrences of a variable. These are
defined as follows. Let ϕ be a formula with n occurrences of p. For ease of reference,
we consider the different occurrences as being numbered from 0 to n − 1. Replace
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each occurrence by a distinct variable pi, and call the resulting formula ϕx. p occurs
positively at j in ϕ if ϕx is positive in p j. p occurs negatively at j if it does not
occur positively at j. For example, in ϕ = p ∧ ♦¬p, then the first occurrence of p
is positive and the second occurrence negative. We have ϕx = p1 ∧ ♦¬p2, which is
positive in p1 and negative in p2.

D 5.5.7. Call a formula ϕ a Sahlqvist–van Benthem formula
if for all occurring variables p either (i) no positive occurrence of p in ϕ is in a
subformula of the form ψ ∧ χ or � jψ if that subformula is in the scope of a ♦k or (ii)
no negative occurrence of p in ϕ is in a subformula of the form ψ ∧ χ or � jψ if that
subformula is in the scope of some ♦k.

Not every Sahlqvist formula is a Sahlqvist–van Bethem formula. For example
the formula ♦(p ∧ �♦¬p) → (♦�p ∨ ��¬p) is Sahlqvist–van Benthem, but not
Sahlqvist. It was shown in [10] that logics axiomatized by a Sahlqvist–van Benthem
formula are canonical. In the next section we will establish that the class of logics
axiomatizable by Sahlqvist–van Benthem formulae is actually not larger than the
class of Sahlqvist logics, so that this result actually immediately follows.

Here we will show a theorem to the effect that the class of Sahlqvist logics can be
axiomatized by simpler axioms than originally described by Sahlqvist. Namely, one
can dispense with the operator prefix. This is quite suitable for certain applications.
We should perhaps note that our definition of a Sahlqvist formula is not exactly
Sahlqvist’s own. In fact, he allows only an operator prefix of the form �k. (His proof
is only for monomodal logics, but is easily extended to polymodal logics.) We have
allowed ourselves to define a slightly larger class, which is also somewhat easier to
define in a polymodal setting. In view of the next theorem, these differences are
rather marginal. The class of Sahlqvist logics remains the same, no matter what
definition we choose.

T 5.5.8. Let �s be a compound modality. Let χ = �s(ϕ → ψ) be a
Sahlqvist formula and q < var(χ). Put χ◦ := ♦s(q ∧ ϕ) → �s(q ∨ ψ). χ◦ is Sahlqvist
and Kκ ⊕ χ = Kκ ⊕ χ

◦.

P. It is clear that χ◦ is Sahlqvist. Therefore, let us show the second claim.
ϕ → ψ is Sahlqvist. Let ϕ · ¬ψ describe ζ(x, y)[x · y]. Then ϕ ∧ ¬ψ describes
ζ(x, x), by (cnt.), and ♦s(ϕ ∧ ¬ψ) describes (∃y Bs x)ζ(y, y). Hence the elementary
condition of χ is (∀y Bs x)¬ζ(y, y). Now, q · ¬q describes (x 6� y)[x · y]. Hence, by
(∧–I.), q ∧ ϕ · ¬q ∧ ¬ψ describes the formula (ζ(x, y) ∧ x 6� y)[x · y]. Therefore,
♦s(q ∧ ϕ) · ♦s(¬q ∧ ¬ψ) describes

(∃x′ Bs x)(∃y′ Bs y)(ζ(x′, y′) ∧ x′ 6� y′)[x · y] .

♦s(q ∧ ϕ) ∧ ♦s(¬q ∧ ¬ψ) describes (∃x′ Bs x)(∃y′ B x)(ζ(x′, y′) ∧ x′ 6� y′), by (cnt.).
Hence χ◦, which is the negation, defines

(∀x′ Bs x)(∀y′Bs)(x′ � y′ → ¬ζ(x′, y′))

This is the same as (∀x′ Bs x)(¬ζ(x′, x′)). �
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Exercise 181. Show Proposition 5.5.1.

Exercise 182. Name formulae which are monotone but not positive, and formulae
which are ∧–distributive without being strongly positive.

Exercise 183. Show the soundness of the rule (∧–I2.).

Exercise 184. Suppose ϕ contains only positive or only negative occurrences of p.
Show that either Kκ ⊕ ϕ = Kκ ⊕ ϕ[>/p] or Kκ ⊕ ϕ = Kκ ⊕ ϕ[⊥/p]. Thus, to be
essential a variable must occur at least once positively and once negatively.

Exercise 185. Show that if ϕ is Sahlqvist there exists a Sahlvist formula ψ such that
Kκ ⊕ ϕ = Kκ ⊕ ψ, and every variable of ψ occurs exactly once positively and once
negatively.

Exercise 186. Generally, modal algebras are not closed under infinitary intersections
and unions. This can be remedied as follows. Given a modal algebra A, the comple-
tion of A is defined by EmA := ((A+)]

])+. (See Section 4.8.) It consists of all sets
which can be generated as arbitrary intersections and unions of sets in A. Show that
if ϕ is a Sahlqvist–formula then A � ϕ implies Em(A) � ϕ.

5.6. Elementary Sahlqvist Conditions

In this section we will characterize those elementary conditions which are de-
termined by axioms of the form considered in Sahlqvist’s Theorem. It is clear that
all derivable sequents ‘ζ! ~ϕ’ state a local correspondence and ζ ∈ R f . We will for
simplicity always assume that the situation never arises that a world–variable v oc-
curs both free and bound in a subformula. Such a formula is called clean. Not clean
is xC1 y ∧ (∃yB2 x)(yC1 x). Every unclean formula is equivalent to a clean formula
in the predicate calculus. In a clean formula ζ a variable y is inherently existential
if (i) all occurrences of y are free or (ii) ζ has a subformula η = (∃y Bk x)θ which is
not in the scope of a universal quantifier. Likewise y is inherently universal if either
all occurrences of y are free in ζ or ζ contains a subformula η = (∀y Bk x)θ which is
not in the scope of an existential quantifier.

Now recall the notation xCsy for sets s of sequences of indices < κ. It means that
x can see y through one of the sequences in s. The formula x � y can be represented
by xC{ε} y. We will change our language for frames. Recall from Section 5.1 that the
language S f is obtained from R f by adding x Cs y as primitive expressions. This is
only a technical move to simplify the terminology somewhat. The theorem we will
prove is the following.
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T 5.6.1. Suppose ζ(x) is a positive S f –formula such that every subfor-
mula x Cs y contains at least one inherently universal variable. Then there exists a
Sahlqvist formula ϕ which locally corresponds to ζ(x) in Krp ∪ D. Conversely, any
Sahlqvist formula corresponds in Krp ∪D to an elementary formula of this kind.

A first–order S f –formula in L f satisfying the conditions of the theorem will
henceforth be called an elementary or first–order Sahlqvist formula. General-
izing this somewhat, a formula ζ(~x) of S f is called Sahlqvist if it is positive and
every atomic subformula contains at least one inherently universal variable. If ζ(~x)
is Sahlqvist, ¬ζ(~x) will be called negative Sahlqvist. On the way to prove Theo-
rem 5.6.1 we will derive some useful facts.

L 5.6.2. Let ζ(~x, y) be a R f –formula such that every atomic subfor-
mula contains at most one variable < ~x. Then there exists a clean η(~x, y) such that
(∀y)(∀~x)(ζ(~x, y) ≡ η(~x, y)) in predicate logic and every subformula of η has at most
one free variable outside of ~x.

P. By induction on ζ. We can assume that negation occurs only in front
of the atomic formulae. Moreover, we can assume that ζ is clean and that a sub-
formula η is in the scope of a quantifier only if the quantifier binds a free variable
of η. The claim holds by virtue of the assumptions for positive and negative atomic
subformulae. Now let ζ(~x, y) = η1(~x, y) ∧ η2(~x, y). By hypothesis, every atomic
subformula of ζ has at most one free variable < ~x. This holds also of the ηi. By induc-
tion hypothesis there exist δ1(~x, y) and δ2(~x, y) such that (∀y)(∀~x)(η1(~x, y) ≡ δ1(~x, y))
and (∀y)(∀~x)(η2(~x, y) ≡ δ2(~x, y)) in predicate logic and every subformula of δ1 and
δ2 contains at most one free variable < ~x. Then put θ(~x, y) := δ1(~x, y) ∧ δ2(~x, y).
This satisfies the claim. θ is clean if δ1 and δ2 are. For a subformula θ′ of θ ei-
ther θ′ = θ or θ′ is a subformula of δ1 or δ2. In the first case only y is a free
variable < ~x. In the second case we know that every subformula of θ′ contains
at most one free variable < ~x. Similarly the case ζ(~x, y) = η1(~x, y) ∨ η2(~x, y) is
treated. Next assume ζ(~x, y) = (∀w Bk v)θ(~x,w, y). Then v ∈ ~x or v = y. As-
sume θ(~x,w, y) = δ1(~x,w, y) ∧ δ2(~x,w, y). Then distribute the quantifier over
the conjunction. The formula (∀w Bk v)(δ1(~x,w, y)) ∧ (∀w Bk v)(δ2(~x,w, y)) is
equivalent to ζ in predicate logic; it is clean and every atomic subformula con-
tains at most one variable < ~x. Now back to the case of ζ = η1 ∧ η2. Assume
θ(~x,w, y) = δ1(~x,w, y) ∨ δ2(~x,w, y). We may assume by induction hypothesis that
every subformula of δ1 and δ2 contains at most one free variable outside of ~x; this
variable is either w or y. Hence several cases may arise.
Case 1. w < fvar(δ1), w < fvar(δ2), where fvar(ζ) denotes the set of variables occur-
ring free in ζ. Then put η := θ1(~x, y) ∨ θ2(~x, y); η fulfills the requirements.
Case 2. w ∈ fvar(θ1) and w ∈ fvar(θ2). Then consider an atomic subformula con-
taining the variable y. By assumption on ζ it must be of the form xi C

s y or yCs xi for
some i and s. By assumption on ζ this cannot happen.
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Case 3. w ∈ fvar(θ1) and w < fvar(θ2). Then

η(~x, y) := (∀w Bk v)θ1(~x,w). ∨ .θ2(~x, y) .

Then since y = v or y ∈ ~x, η fulfills the claim.
Case 4. w < fvar(θ1) and w ∈ fvar(θ2). Then

η(~x, y) := θ1(~x, y). ∨ .(∀w Bk v)θ2(~x,w) .

This fufills the requirements. Proceed dually in the case of an existential quantifier.
�

The previous theorem shows that if the atomic subformulae are of the form xCs y
with x ∈ fvar(ζ), then ζ can be written in an essentially ‘modal’ way. If we do not
require ζ to be clean we can actually arrange that ζ contains very few variables by
reusing bound variables every time they are no longer needed. Two more variables
than occur free in ζ are therefore needed; in particular, for ζ = (∀x)η(x) with no free
variables, then if ζ is of this form, it has exactly three variables. This follows from
the next theorem. It has been shown by D G ([72]) (see the exercises).

P 5.6.3 (Gabbay). Let ζ(~x) ∈ R f be Sahlqvist, ~x of length n. Then
ζ ≡ η for an η which contains at most n + 2 variables.

L 5.6.4. Every ζ(~x, y) ∈ S f which is negative and in which every subfor-
mula has exactly one free variable outside of ~x is derivable in Seq+ and corresponds
to a spone ~π · ν.

P. By induction on ζ(~x, y), using the rules (∧–I2.), (∨–I.), (♦–I.) and (�–
I.). The starting sequences are x0 6

s y0 ! �
s p · ¬p, which in turn are derivable in

Seq+. �

The proof of Theorem 5.6.1 is now quite short. Suppose that ζ(x0) is a negative
Sahlqvist formula. According to Theorem 5.4.6 it is enough to prove the claim for
negative Sahlqvist formulae of the form (∀y′ Bk xi)η(~x, y′). The latter formula results
from δ := (∀y′Bk y0)η(~x, y′) by applying (cnt.). Hence it is enough to show the claim
for the latter formula. By Lemma 5.6.2, we can assume that every subformula of δ
contains at most one variable < ~x. Those subformulae with free variables completely
in ~x can be moved outside the scope of any quantifier using laws of predicate logic.
So the problem is reduced to the case where every subformula of ζ contains exactly
one extra free variable. By Lemma 5.6.4, those are derivable in Seq+. The proof of
Theorem 5.6.1 is now complete.

Let us discuss the theorem to get a better insight into the classes of formulae
that are at issue here. Clearly, a somewhat more satisfying result would be one
in which we had only the restriction that ζ ∈ R f and that ζ is positive. Better
than that we can never do. (See the next sections.) The really hairy part is the
conditions on variables. Moreover, two questions arise. (1.) Why have we chosen
R f rather than L f to begin with? (2.) Why use S f rather than R f in Seq+? The
answer to both questions is: this is a matter of utility. For example, it is hard to state
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what we mean by positive in R f inside L f without actually talking about restricted
quantifiers in some hidden form. The second question is somewhat harder to answer,
but it will become clear by discussing some cases. Suppose first that ζ ∈ R f and
that ζ contains no existential quantifiers; then the restriction on variables is vacuous.
By Theorem 5.4.11 we know already that all elementary conditions are derivable.
Next consider the formulae of the form ∀∃ which are not ∀. These formulae have
existential quantifiers inside universal quantifiers, but not conversely. In this case the
condition says that in a subformula xCs y not both x and y may be existentially bound
variables. If we replace the clause xCs y by (∃zBs x)(z � y), then both z and y may be
existentially bound so the condition on the variables cannot be stated in the same way.
Finally, consider the case where ζ is of the form ∀∃∀. Here, if we rewrite the clauses
xCs y the quantifier alternations increase; the resulting formula is of the form ∀∃∀∃.
Moreover, the newly introduced existentials are innermost, that is, closest to the
atomic subformulae. Let us now assume that we have eliminated the expressions xCs

y. Then both x and y may be existentially bound. But there is a difference between
variables that are introduced from rewriting the complex accessibility clauses and the
original variables. The former must be bound by an innermost existential which in
turn must have a restrictor which is inherently universal. No such restriction applies
to the other variables. Although the restriction can be restated in this way, it is clear
that this characterization is much less straightforward.

As an application, the following result will be proved.

T 5.6.5. Let ϕ be a Sahlqvist–van Benthem formula. Then the logic
Kκ ⊕ ϕ is locally d–persistent and locally elementary in Krp ∪ D. Moreover, there
exists a Sahlqvist formula ψ such that Kκ ⊕ ϕ = Kκ ⊕ ψ.

P. We shall show that ¬ϕ corresponds to an elementary negative Sahlqvist–
formula. First we rewrite ¬ϕ so that it contains only variables, negated variables,
♦ j, � j, ∧ and ∨. Recall the definition of a Sahlqvist–van Benthem formula. The
negation of such a formula satisfies the dual of that condition. This is the following
condition: for every variable p, either (i) no positive occurrence of p is a subformula
of the form ψ ∨ χ or ♦ jψ if that subformula is in the scope of a �k or (ii) no positive
occurrence of p is a subformula of the form ψ ∨ χ or ♦ jψ if that subformula is in the
scope of a �k. By substituting ¬p for p, we can arrange it that for every variable p
only (i) obtains. Call such a formula good. A formula is good if every subformula
�kχ is either negative or strongly positive. Notice that the set of good formulae is
closed under subformulae. We will now show by induction on the constitution of the
formulae that each sequence ~χ = χ0 · χ1 · . . . · χn−1 of good formulae corresponds to
a negative Sahlqvist formula. To start, assume every χi is either positive or negative.
In that case, because the χi are good, the positive χi are actually strongly positive.
Hence ~χ is a spone, and it corresponds to a negative Sahlqvist–formula. If this does
not obtain, ~χ contains a formula, say χ0, which is neither positive nor negative. Then
one of the following cases obtains. Case 1. χ0 = ♦ jτ. Then τ·χ1·. . .·χn−1 corresponds
by induction hypothesis to an elementary negative Sahlqvist formula ζ(~x). Then ~χ
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corresponds to ((∃yB j x0)ζ[y/x0])[~x], which is negative, elementary Sahlqvist. Case
2. χ0 = τ1∨τ2. By induction hypothesis and closure of elementary negative Sahlqvist
formulae under disjunction. Case 3. χ0 = τ1 ∧ τ2. Then by induction hypothesis
τ1 ·τ2 ·χ1 · . . . ·χn−1 corresponds to some ζ(~x), which is elementary negative Sahlqvist.
Then ~χ corresponds to ζ[x1/x0], which is also elementary negative Sahlqvist. �

For future reference we will introduce the Sahlqvist Hierarchy to measure the
complexity of descriptions given by Sahlqvist formulae in R f . This will be measured
roughly by the number of quantifier alternations occurring in the formula. This can
be defined as follows. Let η be an occurrence of a subformula of ζ. Then by replacing
t by xi � xi and by suitably renaming the occurrences of the variables in ζ we can
achieve it that each subformula occurs only once. Let ζ† denote a formula resulting
from ζ by this operation. ζ† need not be unique. Under this condition, the following
is well–defined (and does not depend on a particular choice of ζ†).

sq-rank(ζ†, ζ†) = 0
sq-rank(ζ†,¬η) = sq-rank(ζ†, η)
sq-rank(ζ†, η1 ∧ η2) = sq-rank(ζ†, η1)
sq-rank(ζ†, η1 ∧ η2) = sq-rank(ζ†, η2)

sq-rank(ζ†, (∃y B j x)η) =


sq-rank(ζ†, η)

if sq-rank(ζ†, (∃y B j x)η) is odd
sq-rank(ζ†, η) + 1

if sq-rank(ζ†, (∃y B j x)η) is even

sq-rank(ζ†, (∀y B j x)η) =


sq-rank(ζ†, η)

if sq-rank(ζ†, (∀y B j x)η) is even
sq-rank(ζ†, η) + 1

if sq-rank(ζ†, (∀y B j x)η) is odd

Call a formula constant if all atomic subformulae are of the form f or xi � xi.
Finally,

sq-rank(ζ) := max{sq-rank(ζ†, η) : η ∈ sf (ζ†), η not constant}

Here, the maximum over an empty set is defined to be 0. This defines the rank of
an elementary formula. For example, a universal restricted formula comes out with
rank 0, while an existential formula has rank 1. This is desired even though the rank
counts quantifier alternations. Let us note, namely, that a R f formula must contain
at least one free variable since all quantifiers are restricted and the free variables are
assumed to be quantified universally (though by an unrestricted quantifier). Thus, all
formulae invariably start with a universal quantifier, and this causes the asymmetry.
Notice further that the rank does not increase in case of a constant formula (even
though this has not been noted explicitly in the informal definition, but should be
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clear from the first clause). This is another deviation from classical quantifier com-
plexity. It is essential for many reasons that constant formulae have zero complexity.
If for some reason we want to count the constant formulae as well, we speak of the
pure rank. It is defined by

sq-rank(ζ) := max{sq-rank(ζ†, η) : η ∈ sf (ζ†)}

We denote by Sqn the class of Sahlqvist formulae of rank n and the logics axioma-
tizable by such formulae by Sqn. So, ♦> ∈ Sq0, but it has pure rank 1. Likewise,
alt1 ∈ Sq0, .4 ∈ Sq0. Finally, it is helpful to distinguish the rank we obtain as above
from a rank in which x C j y is not a primitive formula, but equal to (∃z B j x)(z � y).
This we call the special rank. Notice that the special rank of ζ is equal to the
Sahlqvist–rank of ζ rank if the latter is odd or if the atomic formulae are of the form
x � y (i. e. not using C j), and = sq-rank(ζ) + 1 otherwise. This is so, because for the
special rank we only have to eliminate the formulae xC j y, introducing an existential
quantifier.

Notes on this section. Let FOk be the set of expressions of predicate logic in
which at most k distinct variables occur. It is known that FO3 is generally unde-
cidable. However, M. M has shown in [158] that FO2 has the finite model
property and is therefore decidable. Given ϕ, the size of model of a minimal model
for ϕ is exponential in the length of ϕ. Hence polymodal K is decidable. This does
not extend to polymodal logics in general. For there exist finitely axiomatizable
Sahlqvist–logics without the finite model property; the first system of this kind is the
one of D M in [145]. M only shows that his logic is complete
but does not possess the finite model property. His paper predates that of S
and does therefore not discuss the fact that this logic is Sahlqvist. See also [106] for
a discussion. Examples of Sahlqvist logics without the finite model property can be
found in this book in Section 9.4. These logics are elementary, but the corresponding
first–order property is in FO3. It cannot be in FO2, by M’s result.

Exercise 187. (G [72].) Show Proposition 5.6.3.

Exercise 188. Show that Sqn is closed under arbitrary unions and finite intersec-
tions.

Exercise 189. Show that a Sahlqvist logic can be axiomatized by formulae of the
form �(ϕ → ψ) where both ϕ and ψ are positive and each occurring variable occurs
exactly once in ϕ and exactly once in ψ. Moreover, if that axiom corresponds to ζ,
the number of variables is at most the number of atomic subformulae in ζ.

Exercise 190. A naive approach to correspondence is to take a formula and re-
gard the variables as referring to worlds rather than sets of worlds. For example, in
p→ ♦p or p→ �♦p we can get the desired first–order correspondent by thinking of
p as denoting a single world. This is not in general a correct approach (for example,
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it fails with the Geach Axiom). Show however, that if ϕ → ψ is Sahlqvist, and ϕ
contains no box–modalities and each variable in the antecedent at most once, then
pretending p to denote single worlds yields a correct first–order correspondent. Hint.
Consider valuations of the form β(p) = {w} and show that they can detect a failure of
the axiom.

Exercise 191. Show that the Sahlqvist–van Benthem formulae are Seq+–derivable.

5.7. Preservation Classes

The next two sections will require some techniques from model theory, though
quite basic ones. In contrast to the previous sections, which characterized those state-
ments ‘ζ!X ~ϕ’ which are valid, we will now derive facts about the correspondence
statements that are not valid for any ζ. We will prove in this section that if a logic is
complete and closed under elementary equivalence it is canonical, which is the same
as being d–persistent, by Theorem 4.8.6. Whether the converse holds is unknown and
has resisted any attempt to solve it. Moreover, in the next section we will elucidate
the connection between the syntactic form of elementary conditions and persistence
with respect to a class. Both questions receive only partial answers; for the most in-
teresting class, Krp∪D, they are in effect still unsolved. The first result is that when
X contains all Kripke–frames and is Le–definable, any X–persistent logic is elemen-
tary. Furthermore, we will show that if X includes the class of Kripke–frames and
if ζ is internally describable then ζ is equivalent to a positive and restricted formula.
So all that is needed in order to show that Sahlqvist’s Theorem is optimal is to derive
the condition on variables occurring in atomic subformulas. No one has solved that
yet.

Recall now from model theory the construction of an ultraproduct. In connec-
tion with algebra this construction has been introduced in Section 4.1. An ultraprod-
uct can be defined for Kripke–frames and for generalized frames as well. However,
these are two different constructions. One is the ultraproduct of Kripke–frames de-
fined in the usual way. The other is the ultraproduct of Kripke–frames viewed as
general frames, i. e. as full frames. Take an index set I, an ultrafilter U on I and a
family 〈fi : i ∈ I〉 of Kripke–frames. The ultraproduct of the fi modulo U, denoted
by

∏
U fi is defined as follows. The worlds are equivalence classes of sequences

~w = 〈wi : i ∈ I〉 modulo ≈, which is defined by ~v ≈ ~w iff {i : vi = wi} ∈ U. We write
~wU for {~v : ~v ≈ ~w} and

∏
U fi for the set {~vU : ~v ∈ Xi∈I fi}. (Mostly, we will write ~w

rather than ~wU if no confusion arises.) We put ~vU C j ~wU iff {i : vi C j wi} ∈ U. This
definition does not depend on the choice of representatives, as is easily checked. Fi-
nally,

∏
U fi := 〈

∏
U fi, 〈C j : j < κ〉〉. Now to the ultraproduct of generalized frames.

Let Fi, i ∈ I, be a family of frames. The ultraproduct
∏

U Fi of the frames is de-
fined as follows. The underlying Kripke–frame of

∏
U Fi is the frame

∏
U fi, where

fi := (Fi)]. The internal sets are as equivalence classes of sequences ~a = 〈ai : i ∈ I〉
modulo ≈, where ~a ≈ ~b iff {i : ai = bi} ∈ U. We write ~aU (or mostly simply ~a) for
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the set {~b : ~b ≈ ~a}. Furthermore, ~wU ∈ ~aU iff {i : wi ∈ ai} ∈ U. It is straightforward
to verify that this definition does not depend on the choice of representatives of the
classes. This is the only nontrivial fact here. Notice that elementhood really has to be
defined, so we had actually better use a different symbol here. In the same way as in
model theory we can conclude that

∏
U Fi is a frame. Namely, by Proposition 5.7.1

below the so defined set of internal sets is closed under the operations.

P 5.7.1. Let Fi, i ∈ I, be a family of frames, and U an ultrafilter over
I. Let

∏
U Fi be the ultraproduct of the Fi with respect to U. Then (i) ~w ∈ −~a iff

~w < ~a, (ii) ~w ∈ ~a ∩ ~b iff ~w ∈ ~a and ~w ∈ ~b, (iii) ~w ∈ � j~a iff there is a ~v such that ~w C j ~v
and ~v ∈ ~a.

The proof of this theorem is left as an exercise. Moreover, the identity map is an
isomorphism between (

∏
U Fi)+ and

∏
U(Fi)+. This is not hard to see. A valuation on

an ultraproduct can be seen as the equivalence class of a sequence ~γ (~ι) of valuations
on the individual factors.

T 5.7.2. LetFi be a family of Kripke–frames and ζ ∈ Le. Then 〈
∏

U Fi, ~γ,~ι〉 �
ζ iff {i : 〈Fi, γi, ιi〉 � ζ} ∈ U.

P. Analogous to the elementary case. For example, let ζ = (∃p)η. Then
〈
∏

U Fi, ~γ,~ι〉 � ζ iff there is a valuation ~γ′ = 〈γ′i : i ∈ I〉 different from γ at most in
p such that 〈

∏
U Fi, ~γ′,~ι〉 � η iff there is a valuation ~γ′ different from γ at most in p

such that {i : 〈Fi, γ
′
i , ιi〉 � η} ∈ U iff {i : 〈Fi, γi, ιi〉 � (∃p)η} ∈ U. �

L 5.7.3 (Goldblatt). The ultraproduct
∏

U fi is a generated subframe of the
ultrapower

∏
U(

⊕
i∈I fi).

P. Take h : ~w 7→ {〈i,wi〉 : i ∈ I}. Then ~wC j~v iff {i : wi C j vi} ∈ U. However,
{i : wi C j vi} = {i : 〈i,wi〉 C j 〈i, vi〉}, and so ~w C j ~v iff h(~w) C j h(~v). Similarly it
is shown that ~v = ~w iff h(~v) = h(~w), so h is injective. And similarly for the other
properties. It is easy to see that the map defines a p–morphism, for if h(~w) C j ~v then
for almost all i, 〈i,wi〉 C j 〈i, vi〉. In that case, define ~v′ by 〈i, v′i〉 := 〈i, vi〉 if wi C j vi

and 〈i, v′i〉 := 〈i,wi〉 otherwise. We have ~v′ ≈ ~v, so they are equal in the ultraproduct,
and for ~u = 〈v′i : i ∈ I〉 we have h(~u) = ~v′. �

C 5.7.4. Any class of Kripke–frames closed under generated subframes,
disjoint unions, isomorphic copies and ultrapowers is closed under ultraproducts.

A class of first–order structures is called elementary if it is characterized by a
single sentence, and ∆–elementary if it is characterized by a set of sentences. It is
called Σ–elementary if it is a union of elementary classes, and Σ∆–elementary if
it is a union of ∆–elementary classes. It can be shown that a class is closed under
elementary equivalence iff it is Σ∆–elementary. Moreover, Theorem 6.1.15 of [45]
states that two structures are elementarily equivalent iff some ultrapowers of the
structures are isomorphic. Hence a class is elementary iff it and its complement
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are closed under ultraproducts and isomorphisms. In the present case, the hierarchy
collapses.

T 5.7.5 (van Benthem). Let X be a Σ∆–elementary class of Kripke–
frames closed under generated subframes and disjoint unions. Then X is∆–elementary.
Under the same conditions X is elementary if it is Σ–elementary.

P. X is closed under elementary equivalence and hence under ultrapowers.
By Lemma 5.7.3 it is also closed under ultraproducts. By a standard model theoretic
result X is ∆–elementary. (For example, see 4.1.12(i) in [45]. There a class is called
elementary if it is ∆–elementary in our sense.) Now assume that X is Σ–elementary.
Then its complement is ∆–elementary hence closed under ultraproducts as well. So,
X is elementary. �

T 5.7.6. A modal formula globally corresponds inKrp to an L f –sentence
iff it is preserved in Krp under L f –elementary equivalence iff it is preserved under
ultrapowers of Kripke–frames.

P. If ϕ corresponds to ζ ∈ L f , ζ a sentence, then it is closed under elemen-
tary equivalence. And if it is preserved under elementary equivalence then it must
be closed under ultrapowers. By the previous corollary we have that the class of
Kripke–frames for ϕ, Krp(ϕ), in addition to being closed under isomorphic copies
and generated subframes is also closed under ultraproducts. Now, consider the com-
plement of Krp(ϕ). It is definable by (∃x0)(∃~p)(x0 ∈ ϕ). By 4.1.14 in [45] we have
that the class of models of this formula is closed under ultraproducts, too. Both
classes are therefore closed under ultraproducts and isomorphic images. Therefore
Krp(ϕ) is elementary. Hence ϕ corresponds to an L f –sentence. �

We can immediately boost this up. Let X be class of general frames which can
be defined by a set Φ of Le–sentences. Examples are the classes G, Df, Ti, R. We
can define a modal logic Λ to be Φ–persistent if for all frames F such that F � Φ
we can infer f � Λ from F � Λ.

T 5.7.7 (Goldblatt). Let Φ a set of Le–sentences true in all Kripke–
frames. Then if a finitely axiomatizable logic Λ is Φ–persistent, it is globally ele-
mentary in Krp.

P. We want to proceed as before and show that the class of frames for Λ
and its complement are closed under ultraproducts. For the complement there is no
problem, we appeal again to 4.1.14 of [45]. For the class itself notice that if we take
the ultraproduct of the Kripke–frames as full frames then we may from f]i � Λ still
conclude

∏
U f

]
i � Λ. The latter is not in general a Kripke–frame. But we can use the

fact that the underlying frame is in fact
∏

U fi, the desired ultraproduct, and that it is
in the class defined by Φ, by assumption. Furthermore, we have Φ–persistence, so∏

U fi � Λ. �



248 5. Definability and Correspondence

This shows that g–persistent, df–persistent and ti–persistent logics are∆–elementary
and also the

C 5.7.8 (Fine). Let Λ be r–persistent. Then Λ is ∆–elementary.

We half–complete the circle by showing the following famous theorem of K
F in [65] below. To prove it, let us recall some notions from model theory. Let
xi, i < n, be a set of variables,M a first–order structure for a first–order language L.
Let Γ = {γi(~x) : i ∈ I} be a set of formulae in the variables xi, i < n. An n–tuple
~u := 〈ui : i < n〉 realizes Γ if M � γ[~u] for all γ ∈ Γ. Γ is finitely realizable in M
if every finite subset of Γ is realized by some ~u. M is n–saturated if every finitely
realizable set in n variables can be realized. M is ℵ0–saturated if it is n–saturated
for every n < ℵ0. It is a well–known fact of model theory that for every L–structure
M there exists an elementary extension G which is ℵ0–saturated.

D 5.7.9. A frame F is called modally 1–saturated if for every set
U ⊆ F with the finite intersection property,

⋂
U , ∅. F is called modally 2–

saturated if for every j < κ and every set U ⊆ F such that x ∈ � jU there is a y B j x
such that y ∈

⋂
U. F is modally saturated if it is modally 1– and 2–saturated.

Clearly, a frame is 1–saturated iff it is compact. Recall from Section 4.6 the no-
tion of the refinement map. We show that on modally saturated frames the refinement
map is a p–morphism, and the image is a descriptive frame.

L 5.7.10. Let F be modally saturated. Put Ux := {a ∈ F : x ∈ a}. Define
∼ ⊆ f × f by x ∼ y iff Ux = Uy. Then ∼ is a net on F, and F/∼ is descriptive. The
algebra of sets of F is isomorphic to the algebra of sets of F/∼.

P. Let v ∼ v′ and v C j w. Then v ∈
⋂
� jUw. Then, by definition of ∼,

v′ ∈
⋂
� jUw. By 2–saturation, there exists a w′ ∈

⋂
Uw such that v′ C j w′. Again

by definition of ∼ and of Uw, w′ ∼ w. The algebra of sets over F/∼ is defined as the
set of sets [c] := {[x] : x ∈ c}. Given two internal sets b, c ∈ F there exists an x such
that x ∈ b, but x < c. Then [x] ∈ [b] but [x] < [c]. Hence b 7→ [b] is bijective. This
shows the last of the claims. In F/∼ we have Ux = Uy iff x = y, and so it is refined.
Moreover, it is compact, since F is. Finally, let [v] 6 [w]. Then for no w′ ∼ w,
v C j w′. By 2–saturatedness of F, therefore, v <

⋂
� jUw. So there exists a c ∈ Uw

such that v < � jc. �

T 5.7.11 (Fine). If Λ is Krp–complete and Krp–Σ∆–elementary then Λ
is ℵ1–canonical.

P. If ϕ is Λ–consistent there is a Λ–model 〈fϕ, βϕ, xϕ〉 � ϕ. Let f :=
⊕

ϕ fϕ

and β :=
⊕

ϕ βϕ. Now let F consist of all the sets of the form β(ψ) for some ψ.
Then 〈f,F〉 is a general frame, since F is closed under the usual operations. Also,
F+ � FrΛ(ℵ0). For consider the map ϕ 7→ β(ϕ); we show that it is an isomorphism.
If FrΛ(ℵ0) � ϕ ≈ ψ then Λ ` ϕ ↔ ψ and so F � ϕ ↔ ψ, thus β(ϕ) = β(ψ).
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Further, if FrΛ(ℵ0) 0 ϕ ≈ ψ then Λ 0 ϕ ↔ ψ, then χ := ¬(ϕ ↔ ψ) has a model
〈fχ, βχ, xχ〉. Hence the world 〈χ, xχ〉 ∈ f is a member of β(χ), that is, 〈F, β〉 2 ¬χ, or
equivalently, 〈F, β〉 2 ϕ ↔ ψ. Now adjoin for each c ∈ F a unary predicate c to L f .
This defines the language L f (F). Expand f to an L f (F)–structure f◦ by interpreting
c as the set c itself. (This allows to forget the set structure on F for a while.) There
exists an elementary extension of f◦ in the language L f (F), denoted by g◦, which
is ℵ0–saturated. Put [c] := {w ∈ g : c(w)}. The [c] are closed under intersection,
complement and � j. In particular, we have −[c] = [−c], [c] ∩ [d] = [c ∩ d] and
� j[c] = [� jc]. For these are elementary statements which hold in f◦, thus they hold
in g◦. The map k : c 7→ [c] is therefore an isomorphism of the algebras. Let g be
the L f –reduct of g◦. Put G := {[c] : c ∈ F}. We have managed to get a structure
G = 〈g,G〉 such thatG+ � FrΛ(ℵ0) with g+ ℵ0–saturated. We show thatG is modally
saturated. Namely, if A ⊆ G has the finite intersection property, then

⋂
A , ∅. For

under the given assumption, {c(x0) : [c] ∈ A} is finitely satisfiable; by saturatedness
of g◦ there exists a w such that c(w) for all [c] ∈ G. Hence w ∈

⋂
A. So, G is

1–saturated. Second, if A is a set such that for every finite subset A0, v ∈ � j
⋂

A0,
then there exists a w such that v C j w and w ∈ c for all c ∈ A. For by assumption on
A, the set {vC j y ∧ c(y) : [c] ∈ A} is finitely satisfiable. Hence by saturatedness there
exists a w such that v C j w and c(w) for all [c] ∈ A. So, G is modally 2–saturated.
By Lemma 5.7.10 the refinement map is a p–morphism from G onto a descriptive
frame whose set algebra is isomorphic to FrΛ(ℵ0). Hence there is a p–morphism
G � FrΛ(ℵ0). Now, for all ϕ we had fϕ � Λ and so f � Λ. g, being an elementary
extension, also satisfies Λ, by assumption that KrpΛ is closed under elementary
equivalence. Finally, FrΛ(ℵ0)] � Λ by closure under p–morphisms. �

The proof works analogously for any cardinal α ≥ ℵ1. Using this theorem we
can obtain a partial converse of Theorem 5.7.11. Namely, if we have a logic which
is ℵ1–canonical and elementary, then we can get FrΛ(α) in a similar process from
finite models. Moreover, the following holds as well.

T 5.7.12 (Fine). Suppose thatΛ isKrp–complete andKrp–Σ∆–elementary.
Then Λ is canonical.

The connection between canonicity and elementarity is a very delicate one as
F shows in [65]. Consider the logic Θ := K ⊕ ϕ where

ϕ := ♦�p→ ♦�(p ∧ q) ∨ ♦�(p ∧ ¬q)

We claim the following: (a) Θ is canonical, (b) Krp(Θ) is not Σ∆–elementary and
(c) Θ is complete with respect to some elementary class of Kripke–frames. So,
canonicity does in general not imply elementarity. It is believed until today that it
does imply completeness with respect to some (∆–)elementary class of frames. Θ is
a case in point. Let us prove the stated properties of Θ. Consider the formula

ε(x) := (∀y B x)(∃z B x)(∀u, v B z)(u � v ∧ y C z)
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L 5.7.13. Let F be a frame. If F � (∀x)ε(x) then F � ϕ.

P. Assume F � (∀x)ε(x) and let β and x be such that 〈F, β, x〉 � ♦�p. Then
for some yB x we have 〈F, β, y〉 � �p. Now, by our assumptions, there is a zB x such
that z is either a dead end or has exactly one successor. If z is a dead end, �(p∧ q) is
true at z and so ♦�(p∧q) is true at x. So, let us assume that z actually has a successor,
u. Then y C u. Since �p holds at y, p is true at u. Now either q is true at u or not.
In the first case, 〈F, β, z〉 � �(p ∧ q) and so 〈F, β, x〉 � ♦�(p ∧ q). In the second case
〈F, β, x〉 � ♦�(p ∧ ¬q), as required. �

L 5.7.14. Let F be a canonical Θ–frame. Then F satisfies (∀x)ε(x).

P. Since F is canonical, worlds are actually maximally consistent sets of
formulae. Let X be a point of F. In case that X has no successor or sees a dead end
(that is, in case �⊥ ∈ X or ♦�⊥ ∈ X) ε holds trivially of X. So, let us consider the
case where this is not so. Then pick a successor Y . We have to show that there is a Z
with exactly one successor, call it U, such that YCU. Now choose an enumeration χn

of the language. Inductively we define formulae αn as follows. α0 := >. αn+1 := αn∧

χn if ♦�(αn∧χn) ∈ X and �(αn∧χn) ∈ Y , and αn+1 := αn∧¬χn if ♦�(αn∧¬χn) ∈ X.
Finally, we let U be the MP–closure of the set {αn : n ∈ ω}. By force of the axiom
ϕ, this is actually well–defined and if ♦�αn ∈ X then also ♦�αn+1 ∈ X. Moreover,
♦�α0 ∈ X, and so ♦�αn ∈ X for all n ∈ ω. It follows that U is consistent. For if not,
for some n, αn is inconsistent, that is, αn ` ⊥. But since ♦�αn ∈ X, also ♦�⊥ ∈ X,
which we have excluded. Furthermore, by construction, for every n either χn ∈ U
or ¬χn ∈ U. So, U is a maximally consistent set, and so a world of F. Also, for
every �χ ∈ Y , χ ∈ U, again by construction. It follows that Y C U. Finally, put
A := {�χ : χ ∈ U} and D := {χ : �χ ∈ X}. We claim that A ∪ D is consistent.
If not, there is δ ∈ D and �α ∈ A such that δ;�α ` ⊥. (A and D are closed under
conjunction.) So, �α ` ¬δ and hence ♦�α ` ♦¬δ. Since ♦�α ∈ X we also have
¬�δ ∈ X, against the definition of D. So, A ∪ D is consistent and is contained in a
maximally consistent set Z. Then if �χ ∈ Z, χ ∈ U and so Z C U. Furthermore, if
Z C V then A ⊆ V , from which U ⊆ V . Since U is maximally consistent, U = V .
Finally, assume that �χ ∈ X. Then χ ∈ D and so χ ∈ Z, by construction. This shows
that Z has the desired properties. �

C 5.7.15. Θ is canonical and complete with respect to an elementary
class of frames.

P. Let F be some canonical frame for Θ. Then by Lemma 5.7.14 F �
(∀x)ε(x), whence also F] � (∀x)ε(x). By Lemma 5.7.13, F] � ϕ. Hence Θ is
canonical. Clearly, this shows that Θ is complete with respect to the class of Kripke–
frames satisfying (∀x)ε(x). �

L 5.7.16. Krp(Θ) is not Σ∆–elementary.
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P. Let F be a nonprincipal ultrafilter on ω. Let O be the union of ω, F and
{F}. It is easy to see that this union is disjoint. Finally, put C := {〈x, y〉 ∈ O2 : y ∈ x}
and Ω := 〈O,C〉. It is not hard to show that Ω � ϕ. O is not countable. By the
downward Löwenheim–Skolem theorem, Ω has an elementary countable submodel
p = 〈P,CP〉, where P ⊆ O and CP = C∩P2. We will show that p 2 ϕ. This establishes
the claim. The following properties of p are easy to establish. (1) p contains the root
of Ω. (2) P∩F is infinite. (3) For any two M,M′ ∈ P∩F the set succ(M)∩ succ(M′)
is infinite. Now let P∩F = {Mi : i ∈ ω} be an enumeration of P∩F. We can assume
by (3) that there are sequences 〈ai : i ∈ ω〉 and 〈bi : i ∈ ω〉 of natural numbers which
are all distinct such that all ai, bi ∈ M0 ∩ P, and Mn C an, bn. Put β(p0) := M0 ∩ P
and β(p1) := {ai : i ∈ ω}. Then 〈p, β, F〉 � ♦�p0 since 〈p, β,M0〉 � �p0. Now take
an M such that F C M. Then for some n, M = Mn. Then Mn � ♦(p0 ∧ p1) since
Mn C an and an � p0; p1. On the other hand bn � p0;¬p1, and since Mn C bn we also
have Mn � ♦(p0 ∧¬p1). It follows that 〈p, β, F〉 � ¬♦�(p0 ∧ p1);¬♦�(p0 ∧¬p1). So,
p 2 ϕ. �

Let us close with a characterization of classes of Kripke–frames which are both
modally definable and elementarily definable. Those classes must be closed under
the standard operations of generated subframes, disjoint unions and p–morphic im-
ages. However, notice that we also have in the case of generalized frames the closure
under biduals for both the class and its complement. The bidual of a Kripke–frame
is not necessarily a Kripke–frame; however, let us define for a Kripke–frame f the
ultrafilter extension ue(f) to be the Kripke–frame underlying the bidual of f, that is,
ue(f) = (f]+)+]. The following has been proved in [83].

T 5.7.17 (Goldblatt & Thomason). A class of Kripke–frames is both
modally and elementarily definable iff it is closed under generated subframes, dis-
joint unions, p–morphic images and ultrafilter extensions, while its complement is
also closed under ultrafilter extensions.

If we analyse the proof of Theorem 5.7.11 we see that it proves that the ultrafilter
extension of a frame is a p–morphic image of some ultrapower. This is a rather useful
fact.

T 5.7.18. The ultrafilter extension of a Kripke–frame g is a contractum
of an ultrapower of g.

Notes on this section. The theorem by K F was proved again by B
J́ in [112] using methods from universal algebra. Later, Y V has gen-
eralized the results as follows (see [222]). Call an elementary condition α a pseudo–
correspondent of χ if α holds in the Kripke–frames underlying each canonical frame
for K ⊕ χ, and every frame satisfying α also satisfies χ. Obviously, the formula
(∀x)ε(x) above is a pseudo–correspondent of ϕ. Now let π(p) be a positive formula
in one variable. Then the formula π(p ∨ q) ↔ π(p) ∨ π(q) has a first–order pseudo–
correspondent. Hence it is canonical, complete with respect to an elementary class
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of Kripke–frame, but its class of Kripke–frames is in general not Σ∆–elementary.
The formula of K F falls into this class of formulae, as is easily demonstrated.

Exercise 192. Show Proposition 5.7.1.

Exercise 193. Show Theorem 5.7.17.

5.8. Some Results from Model Theory

In this section we will use some techniques from model theory which enable
us to derive characterizations of modally definable elementary conditions. For an
extensive exposition the reader is referred to  B [10] and also for a survey
to [11]. Here we will basically prove two of the results, which we consider to be the
most central.

D 5.8.1. A first–order formula α(~x) on frames is preserved under gen-
erated subframes if for each model 〈g, ι〉 � α(~x) and each f � g such that ι(~x) ⊆ f
also 〈f, ι〉 � α(~x). α(~x) is reflected under generated subframes if (¬α)(~x) is pre-
served under generated subframes. α(~x) is invariant under generated subframes
if it is both preserved and reflected under generated subframes.

The following theorem is an analogue of a theorem by G (modeled after
F [59]).

T 5.8.2. A first–order formula α(~x) with at least one free variable is
invariant under generated subframes iff it is equivalent to a β(~x) ∈ R f .

P. Surely, if α is equivalent to a restricted β in the same variables, then α
is invariant under generated subframes. The converse needs to be established. Thus
assume that α(~x) is invariant under generated subframes, and let α be consistent.
Moreover, α contains at least one free variable, say x0. Let R(α) := {β(~x) : β ∈
R f and α � β}. Thus if we can show that R(α) � α we are done. Namely, by
compactness there is a finite set ∆ ⊆ R(α) such that ∆ � α and so, taking β to be
the conjunction of ∆, we have found our desired formula. Thus assume R(α) has a
model F0 = 〈f0, ι〉. (From now on we will suppress the explicit mentioning of the
valuation; thus when we speak of a model F0 we mean the frame endowed with a
valuation.) The language we are using is called L0, for future reference. Now form
L1 by adjoining a constant ci for each variable xi occurring free in α. Expand the
model F0 to a model F1 by interpreting the constants ci by ι(xi). We claim that the
set

Σ := {δ ∈ R1 : F1 � δ} ∪ {α[~c/~x]}

is consistent. Otherwise there is a finite set — or indeed, a single formula δ(~x),
by closure of the set under conjunction — such that α[~c/~x] � (¬δ)[~c/~x], whence
¬δ ∈ R(α). But this contradicts the definition of R(α), by consistency of α. So,
Σ ⊆ L1 has a model, G1. Moreover, every restricted L1–sentence is true in F1 iff it is
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is true in G1. (We say briefly that F1 and G1 are r–equivalent.) For, if δ is restricted
and holds in F1 then it is in Σ and holds in G1, too. And if δ fails in F1, then ¬δ
holds in F1, so ¬δ holds in G1 as well. This is now the starting base. We have two
models F1 and G1 over a common language L1, such that G1 is a model for α[~c/~x]
and both are r–equivalent. We will now construct sequences Li of languages, and Fi

and Gi such that
(1) Fi, Gi are Li–models.
(2) Gi � α[~c/~x].
(3) The same Li–sentences hold in Gi and Fi. (Fi and Gi are r–equivalent.)
(4) Fi−1 is an Li−1–elementary substructure ofFi andGi−1 is an Li−1–elementary

substructure of Gi.
We have started the construction with i = 1. Now let the construction proceed as
follows.
Case 1. i is odd. First we define Li+1. Assume that we have a constant c in Li and
that Gi � c C j x for some x ∈ Gi. Then adjoin a constant x for x. Do this for all
x of this kind. This defines Li+1. Gi+1 is defined as the expansion of Gi in which
x is interpreted as x. Then Gi is an Li–elementary substructure of Gi+1, which we
abbreviate by Gi ≺i Gi+1. Now form the set

Σ := {δ ∈ Ri+1 : Gi+1 � δ}

This set is finitely satisfiable in Fi. To show this it is enough to see that every formula
δ ∈ Σ is satisfiable in Fi. Let δ ∈ Σ be given. Now retract the new constants in Li+1
as follows. Let x ∈ Li+1 − Li occur in δ. Then there is a c such that Gi � c C j x.
Put δ1 := (∃y B j c)δ[y/x]. Continuing this process until there are no free variables
outside Li left, we get a formula δ? ∈ Ri. Now since Gi � δ? and Fi is r–equivalent
to Gi, we get Fi � δ?. Hence δ is consistent, δ? being the existential closure of δ.
Therefore, Σ is consistent. So there is a model Fi+1 in the language Li+1 such that
Fi ≺i Fi+1 and Gi+1 and Fi+1 are r–equivalent in Li+1.
Case 2. This step is dual. Now adjoin constants for worlds x such that Fi � c C j x,
c ∈ Li. Interchange the roles of Fi and Gi in the above construction.

F1 ≺1 F2 ≺2 F3 ≺3 F4 . . . F?

G1 ≺1 G2 ≺2 G3 ≺3 G4 . . . G?

L1 L2 L3 L4 . . . Lω

F◦�

?

f

G◦�

Let Lω :=
⋃

i Li. Now consider the structure F? :=
⋃

i Fi. Since Fi is an Li–
elementary substructure and also contained in Fi+1, we can invoke Tarski’s Lemma
on elementary chains to conclude that Fi is Li–elementary in F?. Likewise for G?.
Consider the substructures induced by the constants. That is, let F◦ be the subframe
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of F? based on all interpretations of constants c ∈ Lω and likewise G◦ the subframe
of all interpretations for constants in G?. We claim that F◦ � F? and G◦ � G?.
Namely, if x ∈ F? is the value of a constant c in Lω, there is an i such that c ∈ Li, and
so c is interpreted in Fi. Let xC j y for some y ∈ fi. If i is even then there is a y ∈ Li+1

such that y is interpreted in Fi+1, and its interpretation is y by construction. If i is odd,
then a y will be introduced in Li+2. Similarly forG◦. Now, define a map f : F◦ → G◦

as follows. We put f (x) := y if there is a constant c such that c is interpreted as x inF◦

but as y in G◦. We claim that this function is an isomorphism. (i.) It it is defined on
F◦. (ii.) If c and d are two constants such that their interpretations coincide, then they
coincide in a Fi for some i, and so Gi � c � d, from which follows that G? � c � d.
So the definition of f is sound. (iii.) f is onto, by definition ofG◦. (iv.) f is injective.
For if c and d are interpreted by different worlds in F? then F? � ¬(c � d), whence
Fi � ¬(c � d), for all i such that c, d ∈ Li. Then Gi � ¬(c � d), by r–equivalence.
And (v.) F◦ � c C j d iff G◦ � c C j d, by the fact that the two are generated subframes
and the formula is restricted.

Thus, since G1 � α[~c/~x], we also have G? � α[~c/~x] and therefore G◦ � α[~c/~x],
since α was assumed to be invariant under generated subframes. Now also F◦ �
α[~c/~x], by the fact that the two models are isomorphic. Again by invariance under
generated subframes, we get F? � α[~c/~x] and finally F1 � α[~c/~x], which is to say
〈f0, ι〉 � α. This had to be shown. �

D 5.8.3. A first–order condition α(~x) is said to be preserved under
contractions if whenever 〈f, ι〉 � α(~x) and p : f� g is a p–morphism then for ι′(xi) :=
p(ι(xi)) we have 〈g, ι′〉 � α(~x). α(~x) is reflected under contractions if (¬α)(~x) is
preserved under contractions, and it is called invariant under contractions if it is
both preserved and reflected under contractions.

Below we will prove that a formula with at least one free variable is invariant
under generated subframes and preserved under p–morphisms iff it is equivalent to
a positive R f –formula. The proof is taken from  B [10]. This shows that
if α defines a modal class in Krp ∪ D then it is equivalent to a restricted positive
formula. To show that Sahlqvist’s Theorem is the best possible result for local corre-
spondence, two things need to be established. (1.) Every locally D–persistent logic
is elementary, (2.) every restricted positive α defining a modal class in Krp ∪ D is
equivalent to a Sahlqvist formula. Both are still open questions. Notice that for (1.)
and (2.) the choice of the class seems essential. We have seen (Corollary 5.7.8) that
(1.) holds if the class R is chosen instead. If it holds for the class D we would have
the converse of Theorem 5.7.11. It is unknown whether or not this holds. Also, with
respect to (2.) it is also not known whether it holds. In the exercises we will ask
the reader to show that if α ∈ L f is at most ∀∃ and modally definable, then α is
equivalent to some restricted formula.
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T 5.8.4 (van Benthem). A first–order formula α(~x) with at least one free
variable is invariant under generated subframes and preserved under contractions
iff it is equivalent to a positive restricted formula in the same free variables.

P. We proceed as in the previous proof. The construction is somewhat
more complicated, though. It is clear that a positive R f –formula is invariant under
generated subframes and preserved under p–morphisms. The converse is the difficult
part of the proof. Let α = α(~x) be a formula in xi, i < n, with n > 0. Put

RP(α) := {β(~x) : β ∈ R f , β positive and α � β} .

If we can show that RP(α) � α we are done. For then, by compactness of first–order
logic, there is a finite subset ∆ of RP(α) such that ∆ � α. The conjunction δ of the
members of ∆ is also in RP(α). It follows that α � δ � α, as desired. Let F be a
model for RP(α). Let xi be interpreted by wi. The language L1 is obtained from our
initial language by adjoining a constant wi, i < n. F1 is the expansion of F in which
wi is interpreted by wi. Consider now the set

Σ := {α[~w/~x]} ∪ {¬β : β a restricted positive L1–sentence,F1 � ¬β} .

Σ is finitely satisfiable. For if not, there is a finite subset Σ0 := {α[~w/~x]} ∪ {¬βi :
i < p} such that Σ0 � f. This however implies that α[~w/~x] �

∨
i<p βi. So, α �

(
∨

i<p βi)[~x/~w](=: β). (Here, bound variables of the form xi are suitably renamed.)
Thus β ∈ RP(α). But then, by definition of F1, F1 � β[~w/~x], in contradiction to
the definition of Σ, because F1 � ¬βi for all i < n. Hence, Σ0 is consistent. So, Σ
is finitely consistent and therefore has a model, G1 (for example, an ℵ0–saturated
extension). The following holds of G1.

(i) G1 � α[~w/~x].
(ii) Every positive restricted L1–sentence which holds in G1 also holds in F1.

We will now construct a series of languages Li, i < n, such that Li ⊆ Li+1, Li an
expansion of L0 by constants, and two series of models, Fi and Gi, such that for
i > 1

1. Fi, Gi are Li–models.
2. Gi � α[~w/~x].
3. Every positive restricted Li–sentence which holds in Gi also holds in Fi.
4. Fi−1 is an Li−1–elementary substructure ofFi andGi−1 is an Li−1–elementary

substructure of Gi.
We repeat the picture from the previous proof in a modified form.

F1 ≺1 F2 ≺2 F3 ≺3 F4 . . . F?

G1 ≺1 G2 ≺2 G3 ≺3 G4 . . . G?

L1 L2 L3 L4 . . . Lω

F◦�

6
π

G◦�
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Assume that we have Ln and Fn, Gn satisfying (0.) – (3.). We show how to produce
Ln+1, Fn+1 and Gn+1 satisfying (0.) – (3.). Let c be a constant of Ln and w ∈ Gn

such that Gn � (c C j x)[w/x]. Then add a new constant w to Ln. L1
n shall denote the

language obtained by adding all such constants. Gn is expanded to an L1
1–structure

by interpreting w by w. Let

∆ := {β : β a restricted positive L1
n–sentence such that G1

n � β} .

We show that each finite subset of ∆ can be satisfied in a model which is an expansion
of Fn. Let namely ∆0 := {βi : i < p} be such a set, and denote its conjunction by δ.
Assume that w j, j < k, are the constants of L1

n − Ln occurring in δ. By construction
of L1

n there exist constants c j, indices j(i) < κ and variables xi for all i < k such that

Gn � {(ci C j(i) xi)[wi/xi] : i < k} ∪ {δ[~w/~w]}

Gn � (∃x0 B j(0) c0)(∃x1 B j(1) c1) . . . (∃xk−1 B j(k−1) ck−1)(δ[~x/~w])

This formula is an Ln–sentence. By (2.) it holds in Fn. Hence we find corresponding
values for the constants w j, j < k. There exists an F1

n such that

(a) F1
n is an Ln–structure.

(b) Fn is an Ln–elementary substructure of F1
n.

(c) Every positive restricted L1
n–sentence which holds in G1

n also holds in F1
n.

Now we turn to the dual step. For each constant c of L1
n and each w in F1

n such that
F1

n � (cC j x)[w/x] add a new constant γ(c, j,w). Let Ln+1 be the language obtained by
adding all such constants. Expand F1

n to an Fn+1–structure by interpreting γ(c, j,w)
by w. Let

Ξ := {¬β : β a restricted positive Ln+1 sentence such that Fn+1 � ¬β}

∪ {c C j γ(c, j,w) : γ(c, j,w) ∈ Ln+1 − L1
n}

We show that each finite subset of Ξ is satisfiable in an expansion of F1
n. For suppose

that Ξ0 is a finite subset of Ξ. It consists of a set of ¬βi, i < s, from the first set,
and a set C := {ci C ji γ(ci, ji, xi) : i < t}. The conjunction of the ¬βi is denoted
by ξ. ξ is also in Ξ, so we may take ξ in place of the first subset of Ξ0. We may
additionally assume that C already contains all γ(c, j,w) ∈ Ln+1 − L1

n that appear in
ξ. Now suppose that C ∪ {ξ} is not satisfiable in any expansion of G1

n. Then

G
1
n � (∀x0 B j0 c0)(∀x1 B j1 c1) . . . (∀xt−1 B jt−1 ct−1)(¬ξ[xi/γ(ci, ji,wi) : i < t])

This is a positive restricted L1
n–sentence, so it holds in F1

n, by (c.). But

F
1
n � {ci C ji xi : i < t}; ξ[wi/γ(ci, ji,wi) : i < t]

This is a contradiction. Hence, every finite subset of Ξ is satisfiable in an expansion
of G1

n, and so there exists a Gn+1 such that
(a) Gn+1 is an Ln+1–structure.
(b) G1

n+1 is an L1
n–elementary substructure of Gn+1.
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(c) Every positive restricted Ln+1–sentence which holds in Gn+1 also holds in
Fn+1.

The claims (1.) – (4.) now easily follow for Ln+1, Fn+1 and Gn+1 using (a.), (b.)
and (c.). We have that Fn is an Ln–elementary substructure of Fn+1. By induction
it follows that Fn is an Ln–elementary substructure of Fn+m for every m. Similarly
for Gn. Let Lω :=

⋃
i∈ω Li, and let F? be the union of the Fi, G? the union of the

Gi. Then F? and G? are Lω–structures, of which Fn and Gn are respective Ln–
elementary substructures. Furthermore, let F◦ be the transit of the wi in F? and G◦

the transit of the interpretation of the wi in G?. By construction, the constants of
Lω all take values in F◦ (G◦), and every element of F◦ (G◦) is the interpretation of
a constant from Lω. Define π : G◦ → F◦ as follows. If x ∈ G◦, let c be a constant
with interpretation x. Then π(x) := y, where y is the interpretation of c in F◦. (1.)
π is well–defined. Suppose that c and d are interpreted by x. Then there is a n ∈ ω
such that c ∈ Ln and d ∈ Ln. Then Gn � c � d, and so G? � c � d, being an Ln–
elementary superstructure. Hence F? � c � d, and this shows that the interpretation
of c is equal to the interpretation of d in F? (and it is in F◦). (2.) π is onto. For since
every element of F◦ is in the interpretation of some c. Take x ∈ G◦ such that x is the
interpretation of c in G◦. Then π(x) = y. (3.) π is a p–morphism. (a) Suppose x C j y.
Let x be the interpretation of c in G◦ and y the interpretation of d. Then G? � cC j d.
There is an n such that c ∈ Ln and d ∈ Ln. For this n, Gn � cC j d. Hence Fn � cC j d,
and so F? � c C j d. Therefore π(x) C j π(y). (b) Let π(x) C j u. There exists a constant
c such that c is interpreted by π(x) in F?. Then consider γ(c, j, u). By construction,
G? � c C j γ(c, j, u). Let y be the interpretation of γ(c, j, u) in G?. The interpretation
of γ(c, j, u) in F? is just u. Therefore, π(y) = u, and x C j y, as required.

Finally, we know that G1 � α[~w/~x]. Hence, G? � α[~w/~x]. Since α is invariant
under generated subframes, G◦ � α[~w/~x]. α is also preserved under contractions,
and so F◦ � α[~w/~x]. Again by invariance under generated subframes, F? � α[~w/~x].
Finally, since F1 is a L1–elementary substructure, F1 � α[~w/~x]. By construction,
this is the same as F � α[~w/~x]. This is the desired conclusion. �

The proof in M K [124], supposed to be a construction of the equivalent
formula, is actually incorrect. There is a plethora of similar results concerning the
interplay between syntactic form (up to equivalence) and invariance properties with
respect to class operators. A particular theorem is the following.

T 5.8.5. Call a formula ζ(~x) constant if no prime subformula contain-
ing a variable is in the scope of a quantifier. Let α(~x) be a formula with at least one
free variable. Assume that α is invariant under generated subframes and contrac-
tions. Then α is equivalent to a constant formula χ(~x).

P. The direction from right to left is easy. So, assume that α is invariant
under contractions and generated subframes. Let α(~x) be given. The initial language
is R f . Put

C(α) := {β(~x) : β constant, α � β}
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Clearly, α � C(α). We show that C(α) � α. To do that, let F � C(α), where xi is
mapped to wi. Adjoin new constants wi. This yields the language L1. Make F into a
L1–structure F1 by interpreting wi by wi. Now let

Ξ := {α[~w/~x]} ∪ {δ : δ a constant L1–sentence and F1 � δ}

Ξ is finitely satisfiable, and so there is a model G1. Let F? be a ℵ0–saturated expan-
sion of F1 and G? a ℵ0–saturated expansion of G1. Further, let F◦ be the subframe
of F? generated by wi, i < n, and G◦ the subframe of G? generated by the interpre-
tation of wi. Now, define a binary relation ∼ on F◦ by u ∼ u′ iff u and u′ satisfy the
same constant R f –formulae. It is not hard to show that this is a net. For if u ∼ u′

and u C j v, let D(y) be the set of constant R f –formulae in y satisfied by v. Then let
♦ jD(y) := {(∃y B j x)δ(y) : δ ∈ D(y)}. u satisfies ♦ jD(y). Hence u′ satisfies ♦ jD(y).
By saturatedness, there is a successor v′ of u′ satisfying D(y). Similarly, define ≈ on
G◦ by u ≈ u′ iff they satisfy the same constant R f –sentences. Now, let ti interpret
wi in G1. Then ti satisfies the same constant formulae as does wi. Therefore, it can
be shown by induction on the depth that F◦/∼ is isomorphic to G◦/≈. Now the con-
clusion is easily established. G1 � α[~w/~x]. By elementary embedding, G? � α[~w/~x]
and so G◦ � α[~w/~x], G◦/≈ � α[w/~x] by preservation under generated subframes and
contractions. Then F◦/∼ � α[w/~x], since it is isomorphic to the latter structure. It
follows that F1 � α[~w/~x], and finally F � α[~w/~x]. �

T 5.8.6 (van Benthem). A logic K ⊕ χ is g–persistent iff there exists a
constant formula γ(x0) such that the class of frames for that logic is defined by γ(x0).

These theorems establish the weak form of completeness of the calculus Seq for
G discussed at the end of Section 5.4.

Exercise 194. (κ < ℵ0.) Let α(x) ∈ L f be modally definable in Krp. We can
assume that α is in prenex normal form; furthermore, assume that α contains only
∀–quantifiers. Show that α is equivalent to a formula β in which every universal
quantifier ∀y is replaced by a restricted quantifier (∀y Bs x) for some x and some
finite set s of finite sequences over κ. Hint. Let δi(x) be obtained by replacing
each quantifier ∀y by (∀y Bsn x), where sn consists of all sequences of length ≤ n.
Then δn(x) ` δn+1(x) in predicate logic, and δn(x) ` α(x). It remains to prove that
some n exists such that α(x) ` δn(x). Suppose that no such n exists; then the set
{¬δn(x) : n ∈ ω} ∪ {α(x)} is consistent. It has a model 〈f, ι〉. Now use the fact that
α(x) is closed under generated subframes.

Exercise 195. As above, but for α of the complexity ∀∃. (Assume κ < ℵ0; see [128]
for a proof.)

Exercise 196. The same as the previous exercise, but without the restriction κ < ℵ0.



CHAPTER 6

Reducing Polymodal Logic to Monomodal Logic

6.1. Interpretations and Simulations

The main body of technical results in modal logic is within monomodal logic,
for example extensions of K4. The theory of one operator is comparatively speaking
well–understood. Many applications of modal logic, be they in philosophy, computer
science, linguistics or mathematics proper, require several operators, sometimes even
infinitely many. Moreover, in the theory of modal logic many counterexamples to
conjectures can be found easily if one uses logics with several operators. So there is
a real need for a theory of polymodal logic. On the other hand, if such a theory is
needed and we have developed a theory of a single operator, it is most desirable if
we could so to speak transfer the results from the one operator setting to several op-
erators. This, however, is not straightforward. It has often been deemed a plausible
thing to do but turned out to be notoriously difficult. Only fairly recently methods
have been developed that allow to transfer results of reasonable generality. They
go both ways. It is possible to interpret a monomodal logic as a polymodal logic,
which involves axioms for one of the operators only. Let us call these one–operator
logics. They were introduced by S. K. T [211] and systematically studied
in K F and G S [67] and also M K and FW
[132]. If we fix an operator, we have a natural embedding of monomodal logic into
polymodal logic. We can also study unions of one–operator logics, where the dis-
tinguished operators differ. Such logics are called independently axiomatizable. For
independently axiomatizable logics there exist a number of strong transfer results.
Basically, all common properties of the one operator logics transfer to the union.

This direction is unsurprising, perhaps. Moreover, polymodal logics contain
monomodal logics. The converse, however, is prima facie unplausible for it suggests
that we can model several operators with the help of a single one. Yet, exactly this is
the case. S. K. T has proved a lot of negative results for monomodal logic by
reducing polymodal logic and other sorts of logics to monomodal logic. However,
it has gone unnoticed that not only negative properties of logics such as incomplete-
ness, undecidability and so on are transferred, but also positive ones. Once this is
noticed, we derive a plethora of strong results concerning monomodal logic. In this
way we can gain insight not only into polymodal logic but also into the theory of a
single operator.

259
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Before we enter the discussion of polymodal versus monomodal logic, we need
to make our ideas precise concerning reduction. We have mentioned two cases
of reduction, one from polymodal logic to monomodal logic, and another from
monomodal logic to polymodal logic. More precisely, these reductions consist of
a translation of one language into another. Moreover, this translation reduces a logic
in the first language to a logic in the second language if it is faithful with respect to
the deducibilities. This is made precise as follows. Let L1 and L2 be two propo-
sitional languages with variables drawn from var. An interpretation of L1 in L2
is a map which assigns to the variables uniformly an expression of L2 and to each
connective of L1 a possibly complex functional expression of L2. This means that
for I : L1 → L2 to be an interpretation it must satisfy

( f (ϕ0, . . . , ϕk−1))I = ( f (p0, . . . , pk−1))I[ϕI
0/p0, . . . , ϕ

I
k−1/pk−1]

for all connectives f in L1, formulae ϕ0, . . . , ϕk−1 ∈ L1, and variables pi, i < k; and
for all variables p, q

qI = pI[q/p]
In brief, an interpretation is fixed by the term it assigns to a simple expression; inter-
pretations are not to be confused with homomorphisms. First of all, an interpretation
is a map between languages with possibly different signatures. Moreover, even when
the signatures are not different, the concept itself may still differ. For example, the
duality map is an interpretation, though strictly speaking not a homomorphism, be-
cause conjunction and disjunction may not be interchanged by a homomorphism.
Furthermore, an interpretation is free to assign a complex term to a simple term.
For example, we might choose to interpret � as �♦ (for example, in interpreting
non–classical monomodal logics as bimodal logics, see [133]).

The definitions have some noteworthy consequences. First of all, a variable p
is translated into an expression pI which contains at most the variable p, that is,
var(pI) ⊆ {p}. For if q , p we have pI = qI[p/q], thus q < var(pI). Likewise, for
any expression ϕ we have var(ϕI) ⊆ var(ϕ).

Now consider two logics 〈L1, `1〉 and 〈L2, `2〉 and an interpretation I. Then `2
simulates `1 with respect to I if for all Γ ⊆ L1 and ϕ ∈ L1

Γ `1 ϕ iff ΓI `2 ϕ
I .

Denote by SI(`1) the set of all consequence relations ` over L2 which simulate `1
with respect to I. It is readily checked that SI(`1) contains a minimal element. The
following is a fundamental property of simulations.

P 6.1.1. Suppose that `2 simulates `1 with respect to some interpre-
tation I. Then if `2 is decidable, so is `1.

For a proof just observe that by definition the problem Γ `1 ϕ is equivalent
to ΓI `2 ϕI . A priori, a connective can be translated by an arbitary expression.
However, under mild conditions the interpretation of a boolean connective � must
be an expression equivalent to �. In the case of modal logics this means that under
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these conditions only the modal operators receive a nontrivial interpretation. Call
an interpretation I atomic if pI = p for all propositional variables p. In this case
f I(ϕ0, . . . , ϕk−1) will be used instead of f (p0, . . . , pk−1)I[ϕ0/p0, . . . , ϕk−1/pk−1]. The
following then holds, as has been oberserved in [133].

P 6.1.2 (Wolter). Write ϕ ≡2 χ for ϕ `2 χ and χ `2 ϕ. Suppose
that ∧ and ¬ are both symbols of L1 and L2, that the restrictions of `1 and `2 to
expressions containing ¬ and ∧ equals the propositional calculus over ¬ and ∧.
And suppose that we have the replacement rule for `2; that is, if ϕ1 ≡2 ϕ2 then
ψ[ϕ1/p] ≡2 ψ[ϕ2/p]. Finally, suppose that I is an atomic interpretation. Then if `2
simulates `1 with respect to I the following holds:

(1) p ∧ q ≡2 p ∧I q.
(2) ¬p ≡2 ¬

I p.

P. (1.) We have p ∧ q `2 {p, q} `2 p ∧I q `2 {p, q} `2 p ∧ q. (2.) It
is readily checked that ϕ is `1–inconsistent iff ϕI is `2–inconsistent. Hence, p;¬I p
is `2–inconsistent, since p;¬p is `1–inconsistent. Hence ¬I p `2 ¬p. It remains to
show that ¬¬I p;¬p is `2–inconsistent. But this follows with q `2 ((p∧q)∨(¬p∧q))I

and (i) by

¬¬I p ∧ ¬p
`2 (p ∧I (¬¬I p ∧ ¬p)) ∨I (¬I p ∧I (¬¬I p ∧ ¬p))
`2 (p ∧I ¬p) ∨I (¬I p ∧I ¬¬I p)
`2 ((p ∧ ¬p) ∨ (p ∧ ¬p))I

and the `2–inconsistency of this last formula. �

It is worthwile to reflect on the notion of a simulation. We will use it also to show
undecidability of certain logics. The rationale will be to use well–known undecidable
problems, in this case facts about word–problems in semigroups, and simulate these
problems in polymodal logics. Furthermore, as polymodal logics can themselves be
simulated by monomodal logics, this yields undecidable problems for monomodal
logic. We shall indicate here that the notion of simulation is quite similar to a notion
that is defined in RW́ [231].

6.2. Some Preliminary Results

In the next sections we are dealing with the following standard situation. We
have a bimodal language L2, denoted here by L��, and two monomodal fragments,
L� and L�. Naturally arising objects such as formulae and consequence relations
are subject to the same notation, which we assume to be clear without explanation.
There are two possible interpretations of a single operator — denoted here by �— in
bimodal logic over � and �. We may read it as � or as �. Notice that these symbols
are used in place of �λ. Although from a technical viewpoint, if, say � = �0 and
� = �1, then � and � are the same, we wish to make notation independent from an
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accidental choice of interpretation for � and �. Seen this way, we are now dealing
with three independent operators, �, � and �.

Define two translations, τ� and τ� in the following way.

τ�(p) := p τ�(p) := p
τ�(>) := > τ�(>) := >

τ�(¬ϕ) := ¬τ�(ϕ) τ�(¬ϕ) := ¬τ�(ϕ)
τ�(ϕ ∧ χ) := τ�(ϕ) ∧ τ�(χ) τ�(ϕ ∧ χ) := τ�(ϕ) ∧ τ�(χ)
τ�(�ϕ) := �τ�(ϕ) τ�(�ϕ) := �τ�(χ)

We speak of the translation τ� as the dual of τ�, by which we want to imply that
the roles of � and � are interchanged. (So, τ� likewise is the dual of τ�.) It is in
this sense that we want to be understood when we talk about duality in this chapter.
This will frequently arise in proofs, where we will perform the argument with one
operator, and omit the case of the other operator. Given two modal logics, Λ and Θ,
the fusion is defined as in Section 2.5 by

Λ ⊗ Θ := K2 ⊕ τ�[Λ] ⊕ τ�[Θ]

This defines an operation − ⊗ − : (EK1)2 → EK2. ⊗ is a -homomorphism in both
arguments. Moreover, it is easy to see that

(K1 ⊕ X) ⊗ (K1 ⊕ Y) = K2 ⊕ τ�[X] ⊕ τ�[Y]

(Namely, observe that τ� and τ� translate valid derivations in K1 into valid deriva-
tions in K2. So, if Λ derivable from X by (mp.), (mn.) and substitution in K1, all
formulae of τ�[Λ] are derivable from τ�[X] by means of (mp.), (mn.) and substitu-
tion in K2.) We call a bimodal logic Ξ independently axiomatizable if there exist
Λ and Θ such that Ξ = Λ ⊗ Θ. The following theorem will be made frequent use of.

L 6.2.1. 〈g,C,J,G〉 � Λ ⊗ Θ iff 〈g,C,G〉 � Λ and 〈g,J,G〉 � Θ.

The easy proof is left to the reader. Moreover, it should be clear that if 〈g,C,J
,G〉 is a bimodal frame, 〈g,C,G〉 and 〈g,J,G〉 are monomodal frames. Given a
bimodal logic Λ define

Λ� := τ−1
� [Λ]

Λ� := τ−1
� [Λ]

There are certain easy properties of these maps which are noteworthy. Fixing the
second argument we can study the map − ⊗ Θ : EK1 → EK2. This is a –
homomorphism. The map −� : EK2 → EK1 : Λ 7→ Λ� will be shown to be
almost the inverse of − ⊗ Θ.

L 6.2.2. (1.) Let Λ be a normal modal logic. Then (Λ ⊗ Θ)� ⊇ Λ. (2.) Let
Ξ be a normal bimodal logic Ξ. Then Ξ� ⊗ Ξ� ⊆ Ξ. Moreover, Ξ is independently
axiomatizable iff Ξ = (Ξ�) ⊗ (Ξ�).
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P. 〈g,C,J,G〉 � Ξ implies 〈g,C,G〉 � Ξ� and 〈g,J,G〉 � Ξ�. This implies
in turn that 〈g,C,J,G〉 � Ξ�⊗Ξ�. Consequently, if Ξ is independently axiomatizable
then 〈g,C,J,G〉 is a general Ξ–frame iff 〈g,C,G〉 is a general Ξ�–frame and 〈g,J,G〉
is a general Ξ�–frame. �

Given a monomodal frame G := 〈g,6,G〉, put G• := 〈g,C,J,G〉, where C := 6,
and J := ∅, and put G◦ := 〈g,C,J,G〉 where we have C := 6 and J := {〈x, x〉 : x ∈
g}. It is easy to check that bothG• andG◦ are bimodal frames. (To see that, one only
has to verify that for b ∈ G also �b ∈ G; but this is straightforward.) The following
was shown in [211].

T 6.2.3 (Thomason). (Λ ⊗ Θ)� = Λ iff ⊥ < Θ or ⊥ ∈ Λ.

P. (⇒) Suppose⊥ ∈ Θ and⊥ < Λ. Then⊥ ∈ Λ⊗Θ and hence⊥ ∈ (Λ⊗Θ)�,
so hat Λ , (Λ ⊗ Θ)�.

(⇐) Suppose ⊥ ∈ Λ. Then ⊥ ∈ Λ ⊗ Θ and so ⊥ ∈ (Λ ⊗ Θ)� from which
Λ = (Λ ⊗ Θ)�. Now suppose ⊥ < Λ. Then ⊥ < Θ and hence either • � Θ or
◦ � Θ. Let G = 〈g,C,G〉 be a Λ–frame. Then put G• := 〈g,C,J,G〉 as above

with J := ∅ and G◦ = 〈g,C,J,G〉 with J := {〈x, x〉 : x ∈ g}. If • � Θ then G•

is a Λ ⊗ Θ–frame and if ◦ � Θ then G◦ is a Λ ⊗ Θ–frame. For ϕ ∈ Λ� we have
G � ϕ⇔ G• � ϕ⇔ G◦ � ϕ. Thus (Λ ⊗ Θ)� ⊆ Λ and therefore (Λ ⊗ Θ)� = Λ. �

The theorem states that if ⊥ ∈ Λ or ⊥ < Θ then Λ ⊗Θ is a conservative extension of
Λ. Thus given two logics Λ, Θ we have both Λ = (Λ ⊗ Θ)� and Θ = (Λ ⊗ Θ)� iff
⊥ ∈ Λ ⇔ ⊥ ∈ Θ. In all the theorems that will follow the case that ⊥ ∈ Λ or ⊥ ∈ Θ
will be excluded. These cases are trivial anyway, so nothing is lost. The way in
which Makinson’s theorem has been used to build a minimal extension of a mono–
modal frame to a bimodal frame is worth remembering. It will occur quite often
later on. Although Makinson’s theorem has no analogue for bimodal logics as there
are infinitely many maximal consistent bimodal logics, at least for independently
axiomatizable logics the following holds.

C 6.2.4. Suppose that Λ is a consistent, independently axiomatizable
bimodal logic. Then there is a Λ–frame based on one point.

T 6.2.5. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ is finitely axiomatizable
(recursively axiomatizable) iff both Λ and Θ are.

P. If Λ and Θ are recursively axiomatizable, so is clearly their fusion. And
if the fusion is, then the theorems are recursively enumerable, and hence also (Λ ⊗
Θ)� and (Λ ⊗ Θ)�. Thus Λ and Θ are recursively axiomatizable. Now for finite
axiomatizability. Only the direction from left to right is not straightforward. Assume
therefore that Λ ⊗ Θ is finitely axiomatizable, say Λ ⊗ Θ = K2(Z). Let X and Y be
such thatΛ = K1(X), Θ = K1(Y). Then Z ⊆ K2(τ�[X]∪τ�[Y]). By the Compactness
Theorem we have finite sets X0 ⊆ X, Y0 ⊆ Y such that Z ⊆ K2(τ�[X0]∪ τ�[Y0]). But
then Λ ⊗ Θ = K2(τ�[X0] ∪ τ�[Y0]) = K1(X0) ⊗ K1(Y0) and hence Λ = K1(X0) and
Θ = K1(Y0). �
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T 6.2.6. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ is r–persistent iff both Λ
and Θ are.

P. (⇐) Suppose that both Λ and Θ are r–persistent. Further assume that
〈g,C,J,G〉 � Λ⊗Θ. Then 〈g,C,G〉 � Λ and 〈g,J,G〉 � Θ. By assumption, 〈g,C〉 � Λ
and 〈g,J〉 � Θ and so 〈g,C,J〉 � Λ ⊗ Θ. (⇒) Suppose that ⊥ < Λ and that Λ is not
r–persistent. We have to show that Λ⊗Θ is also not r–persistent. We know that there
is a Λ–frame G = 〈g,C,G〉 such that 〈g,C〉 2 Λ. On the condition that G• and G◦

are both refined the theorem is proved. For either G• � Λ ⊗ Θ or G◦ � Λ ⊗ Θ, but
〈g,C,J〉 2 Λ ⊗ Θ since 〈g,C〉 2 Λ.

Both G• and G◦ are differentiated and tight. That G◦ satisfies tightness for � is
seen as follows. If x = y then for all c ∈ G, x ∈ �c implies x ∈ c since �c = c. But
if x , y there is a c ∈ G such that x ∈ c, y < c. Then x ∈ �c, y < c, as required.
Similarly,G• satisfies tightness for � since for arbitrary x, y there is c ∈ Gwith y < c.
Moreover, x ∈ �c, since �c = 1. �

T 6.2.7. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ is d–persistent iff both Λ
and Θ are.

P. As in the previous theorem. One only has to check that if G is descrip-
tive, so are G• and G◦. We have seen that if G• and G◦ are both refined, so we
only have to check compactness. So let U be an ultrafilter G• (G◦). Then U is also
an ultrafilter of G, since the underlying boolean algebras are identical. Since G is
compact we have

⋂
U , ∅, as required. �

C 6.2.8. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ is canonical iff both Λ
and Θ are.

P. By Theorem 4.8.6. �

Exercise 197. Let Θ be a consistent logic. Define e : E K1 → E K2 by Λ 7→
Λ⊗Θ and let r : E K2 → E K1 be defined by Γ 7→ Γ�. Both e and r are not necessarily
lattice homomorphisms. However, both are isotonic (prove this). Show that e is left
adjoined to r. That is, for monomodal logics Λ and bimodal logics

e(Λ) ⊆ Γ ⇔ Λ ⊆ r(Γ)

It follows that ere(Λ) = e(Λ) as well as rer(Γ) = r(Γ). Moreover, show that e
preserves infinite joins, while r preserves infinite meets. In both cases, give a direct
proof and a proof using the adjoinedness of the maps.

Exercise 198. Show that d is a left adjoint of r, where d : E K1 → E K2 is defined
by d : Λ 7→ Λ ⊗ Λ.
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Exercise 199. Let t, the twist map, be defined as follows.

pt := p
(¬ϕ)t := ¬ϕt

(ϕ ∧ ψ)t := ϕt ∧ ψt

(�ϕ)t := �ϕt

(�ϕ)t := �ϕt

For a logic let Λt := {ϕt : ϕ ∈ Λ}. Show that Λt is again a logic, that Λtt = Λ and that
(−)t : E K2 → E K2 is an automorphism of the lattice of bimodal logics.

Exercise 200. (Continuing the previous exercise.) Show that K2(X)t = K2(Xt).
Hence show that for all bimodal logics Γ, ∆ := ΓtΓt is the smallest logic containing
Γ such that ∆t = ∆. Show also that if Γ = Λ ⊗ Θ then Γ t Γt = (Λ t Θ) ⊗ (Λ t Θ).

Exercise 201. This exercise is given to motivate the notation of fusion as ⊗. Show
namely that ⊗ distributes over arbitrary joins, thus behaves like a meet operator.
Show also that it distributes over arbitary meets!

Exercise 202. Show that the lattice E K2 ⊕ (�p↔ �p) is isomorphic to E K1.

6.3. The Fundamental Construction

In this section we will prove Theorem 6.3.6. It says that a consistent bimodal
logic Λ⊗Θ is complete with respect to atomic frames iff both Λ and Θ are complete
with respect to atomic frames. The proof is a successive construction of a model, and
it allows similar results concerning completeness and finite model property. It allows
to reduce the decision procedure in the bimodal logic Λ ⊗ Θ to a decision procedure
in the logic Λ (or Θ) given an Λ ⊗ Θ–oracle for formulae of smaller complexity.
However, it is conditional on the completeness of Λ and Θ with respect to atomic
frames. A proof of this fact without this assumption will be proved in the next
section.

For a proper understanding of the method some terminology needs to be intro-
duced. For each formula �ψ,�ψ ∈ L�� we reserve a variable q�ψ and q�ψ respec-
tively, which we call the surrogate of �ψ (�ψ). q�ψ is called a �–surrogate and
q�ψ a �–surrogate. We assume that the set of surrogate variables is distinct from
our original set of variables. Any variable which is not a surrogate is called a p–
variable and every formula composed exclusively from p–variables a p–formula.
A p–variable is denoted by p, p1, . . . , pi, . . . and an arbitrary variable by q. Finally,
if ϕ is a formula, then varp(ϕ) denotes the set of p–variables of ϕ, and likewise the
var�(ϕ), var�(ϕ) denote the set of �–surrogates of ϕ and the set of �–surrogates.
The set of p–variables in L�� is assumed to be countably infinite.
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D 6.3.1. For a p–formula ϕ we define the �–ersatz ϕ� ∈ L� as fol-
lows.

q� := q
(ϕ1 ∧ ϕ2)� := ϕ�1 ∧ ϕ

�
2

(¬ϕ)� := ¬ϕ�

(�ϕ)� := �ϕ�

(�ϕ)� := q�ϕ

Notice that the ersatz of ϕ is computed outside in and not inside out, which is
typical for an inductive definition. For a set Γ of p–formulae call Γ� := {ϕ� : ϕ ∈ Γ}
the �–ersatz of Γ. Dually for �.

Now let ϕ be composed either without �–surrogates or without �–surrogates.
Then we define the reconstruction of ϕ, ↑ϕ, as follows.

↑ϕ := ψ(�ϕ�0 /q�ϕ0 , . . . ,�ϕ
�
`−1/q�ϕ`−1 , p0, . . . , pm−1)

↑ϕ := ϕ(�ϕ�0 /q�ϕ0 , . . . ,�ϕ
�
`−1/q�ϕ`−1 , p0, . . . , pm−1)

Note that if ↑ is defined on ϕ it is also defined on ↑ ψ; for if ϕ was free of �–
surrogates, ↑ϕ is free of �–surrogates and vice versa. Now if ϕ is a p–formula then
ϕ� is free of �–surrogates and therefore the reconstruction operator is defined on ϕ.
Also, if ↑ is defined on ϕ then for some n ∈ ω, ↑ n+1ϕ = ↑ nϕ (where ↑ n denotes the
nth iteration of ↑) which is the case exactly if ↑ nϕ is a p–formula. We then call ↑ nϕ
the total reconstruction of ϕ and denote it by ϕ↑. ϕ↑ results from ϕ by replacing
each occurrence of a surrogate qχ in ϕ by χ. Now let ϕ be a p–formula. Then we put
ϕn := ↑ n(ϕ�). It is clear that (ϕ�)↑ = ϕ. The �–alternation–depth of ϕ — adp�(ϕ)
— is defined by adp�(ϕ) = min{n : ϕn = ϕ}. For m > adp�(ϕ), ϕm = ϕm−1. The
�–alternation depth, adp�(ϕ) is defined dually. Finally

adp(ϕ) := (adp�(ϕ) + adp�(ϕ))/2 .

It is easy to show that |adp�(ϕ) − adp�(ϕ)| ≤ 1. For example, if ϕ ∈ L� then
adp�(ϕ) = 0 and adp�(ϕ) = 1 and so adp(ϕ) = 1/2. Conversely, adp(ϕ) = 1/2
implies ϕ ∈ L� ∪ L�. Finally, let us define the �–depth of a p–formula ϕ, dp�(ϕ),
as follows.

dp�(p) := 0
dp�(>) := 0
dp�(¬ϕ) := dp�(ϕ)
dp�(ϕ ∧ ψ) := max{dp�(ϕ), dp�(ψ)}
dp�(�ϕ) := 1 + dp�(ϕ)
dp�(�ϕ) := dp(ϕ)

Dually the �–depth is defined.
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D 6.3.2. Let Λ be a (bimodal) logic and ∆ ⊆ L�� be a finite set. For a
set A ⊆ ∆ let

ψA :=
∧
〈χ : χ ∈ A〉 ∧

∧
〈¬χ : χ < A〉 .

The consistency set of ∆, C(ϕ), is defined by

C(∆) := {ψA : A ⊆ ∆, ψA is Λ–consistent} .

The consistency formula Σ(∆) of ∆ (with respect to Λ) is defined by

Σ(∆) :=
∨
〈χ : χ ∈ C(∆)〉 .

If ∆ is an infinite set then we define

C(∆) :=
⋃
〈C(∆′) : ∆′ ⊆ ∆,∆′ finite〉

Σ(∆) := {Σ(∆′) : ∆′ ⊆ ∆,∆′ finite}

Note that the consistency formulae are Λ–theorems. They depend of course on
Λ, but we write Σ(∆) rather than ΣΛ(∆). We abbreviate the consistency formula for
the set sf {ψ : qψ ∈ var(ϕ�)} ∪ varp(ϕ) by Σ�(ϕ).

T 6.3.3. Let Λ and Θ be complete with respect to atomic frames. Then
Λ ⊗ Θ is also complete with respect to atomic frames.

P. In the proof of Theorem 6.3.3 we construct not ordinary models but
partial models. If G is a frame and V a set of variables then β : V → {0, 1, ∗}g is
called a partial valuation if β−1(0), β−1(1) and β−1(∗) are internal. Here, 0, 1 are
called the standard truth values and ∗ is the undefined or — to avoid confusion
— the nonstandard truth value. We define the value of a formula according to the
three–valued logic of ‘inherent undefinedness’ (or Weak Kleene Logic). It has the
following truth tables

¬

0 1
1 0
∗ ∗

∧ 0 1 ∗

0 0 0 ∗

1 0 1 ∗

∗ ∗ ∗ ∗

We put
β(¬ϕ, x) := ¬β(ϕ, x)
β(ϕ ∧ ψ, x) := β(ϕ, x) ∧ β(ψ, x)
β(�ϕ, x) :=

∧
〈β(ϕ, y) : x C y〉

Note that by definition �ϕ and ^ϕ receive a standard truth value iff every successor
receives a standard truth value. We define the following order on the truth values

∗
@
@

�
�

0 1
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In the sequel we will assume that all valuations are defined on the entire set of vari-
ables. In contrast to what is normally considered a partial valuation, namely a partial
function from the set of variables, the source of partiality or undefinedness is twofold.
It may be local, when a variable or formula fails to be standard at a single world, or
global, when a variable or formula is nonstandard throughout a frame. Our proof
relies crucially on the ability to allow for local partiality. The domain of a valua-
tion β : V → {0, 1, ∗}g is the set of variables on which β is not globally partial i. e.
dom(β) := {q : (∃x ∈ g)β(q, x) , ∗}. If β, γ : V → {0, 1, ∗}g we define β ≤ γ if
β(p, x) ≤ γ(p, x) for all p ∈ V and all x ∈ g. It is easy to see that if β ≤ γ then for all
x ∈ g and all ϕ with var(ϕ) ⊆ V: β(ϕ, x) ≤ γ(ϕ, x). Hence if β and γ are comparable
then they assign equal standard truth values to formulae to which they both assign
a standard truth value. In the proof we will only have the situation where a partial
valuation β is nonstandard either on all �–surrogates or on all �–surrogates. In the
latter case we define for a point x ∈ g and a set ∆ of formulae

Xβ,∆
� (x) := {ψ : ψ ∈ ∆, β(ψ�, x) = 1}

∪ {¬ψ : ψ ∈ ∆, β(ψ�, x) = 0}

and call Xβ,∆
� (x) the characteristic set of x in 〈g, β〉. If Xβ,∆

� (x) is finite (for example,
if ∆ is finite), then χ

β,∆
� (x) :=

∧
Xβ,∆
� (x) is the characteristic formula of x. And

dually Xβ,∆
� (x) and χβ,∆� (y) are defined. We call a set ∆ sf–founded if for all χ ∈ ∆

and τ ∈ sf (χ) then either τ ∈ ∆ or ¬τ ∈ ∆.
Now we begin the actual proof of the theorem. Assume 0�� ¬ϕ and adp�(ϕ) =

n. Let

Si := sf {ψ : qψ ∈ var(ϕi)} ∪ varp(ϕ)

For i = 0 this is exactly the set of formulae on which the consistency formula for ϕ
is defined. We will use an inductive construction to get a Λ ⊗ Θ–frame for ϕ. We
will build a sequence 〈〈Gi, βi,w0〉 : i ∈ ω〉 of models, which will be stationary for
i ≥ adp�(ϕ). The construction of the models shall satisfy the following conditions,
which we spell out for i = 2k; for odd indices the conditions are dual.
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[a]2k 〈G2k, β2k,w0〉 � ϕ2k

[b]2k dom(β2k) = var(S�2k)
[c]2k 〈g2k,C2k,G2k〉 = 〈g2k−2,C2k−2,G2k−2〉 ⊕ H for some H, and

J2k =J2k−1

[d]2k G2k is an atomic frame and G2k � Λ

[e]2k For x ∈ g2k−1:
(1) β2k(p, x) = β2k−1(p, x), p ∈ var(ϕ)
(2) β2k(q�ψ, x) ≤ β2k−1(�ψ�, x), q�ψ ∈ var(S�2k)
(3) β2k−1(q�ψ, x) ≤ β2k(�ψ�, x), q�ψ ∈ var(S�2k−1)

[f]2k X2k(x) := Xβ2k ,S2k
� (x) is Λ ⊗ Θ–consistent and sf–founded for

x ∈ g2k − g2k−1

We begin the construction as follows. Let ϕ be given; put δ := dp�(ϕ). Since ϕ is
Λ⊗Θ–consistent, so is �≤δΣ�(ϕ)� ∧ϕ�. For Σ�(ϕ) is a theorem of Λ⊗Θ. A fortiori,
�≤δΣ�(ϕ)� ∧ ϕ� is Λ–consistent and has a model

〈〈g0,C0,G0〉, γ0,w0〉 � �
≤δΣ�(ϕ)�;ϕ�

such that 〈g0,C0,G0〉 is atomic and dom(γ0) = var(S�0 ). We put J0 := ∅; this way,
G0 := 〈g0,C0,J0,G0〉 is a bimodal frame. We may assume that the frame is rooted
at w0. Furthermore, we may assume that the valuation is nowhere partial for q ∈
dom(γ0), that is, γ0(q, x) , ∗ for all x and all q. Let now I0 be the set of points for
which Xγ0

� (x) is Λ⊗Θ–inconsistent; and let Ik := ♦kI0−♦
≤k−1I0 for all k < δ. Finally,

put Iδ := g0 −
⋃

j<δ I j. All sets Ik are internal. (To see that, notice that the set of
points with a given consistency set is internal; I0 is a finite union of such sets.) We
define a partial valuation β0 ≤ γ0 as follows. β0(qψ, x) := ∗ iff for some k, x ∈ Ik and
dp�(ψ) > k. Since w0 ∈ Iδ, ϕ� is defined at w0 and since β0 ≤ γ0

〈G0, β0,w0〉 � ϕ
� (= ϕ0) .

Therefore, [a]0, [b]0 and [d]0 hold. [c]0 and [e]0 are void, there is nothing to show.
For [f]0 note that X0(x) ⊆ Xγ0 (x); and the latter is consistent. To show that X0(x)
is sf–founded notice that: (i) S0 is sf–founded; (ii) χ ∈ X0(x) iff β(χ, x) , ∗, by
definition. And so it is enough to show that

(‡) If β(χ, x) , ∗ and τ ∈ sf (χ) then also β0(τ, x) , ∗ .

This is, however, immediate; for if β0(τ, x) = ∗ then there exists a k such that x ∈ Ik

and dp�(τ) > k. From this follows dp�(χ) > k, and so β0(χ, x) = ∗ as well.
The inductive step is done only for the case i = 2k > 0. For odd i the con-

struction is dual. Assume [a]2k–[f]2k. For every point y ∈ g2k − g2k−1 we build a
model

〈〈hy,Jy,Hy〉, γy, y〉 � �dp�(χ2k(t))Σ�(χ2k(t))�; χ2k(t)�

based on an atomic Θ–frame Hy := 〈hy,Jy,Hy〉, where χ2k(y) := χ
β2k ,S2k
� (y). This

is possible since all the characteristic formulae are Λ ⊗ Θ–consistent and so their
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�–ersatz is Θ–consistent. We assume that hy ∩ hy′ = ∅ for y , y′, hy ∩ g2k = {y}
and hy = Tr�(y, hy). Now call x and y C–equivalent if χ2k(x) = χ2k(y). We will
assume that if x and y are C–equivalent there is an isomorphism ιxy from the model
〈Hx, γx, x〉 to the model 〈Hy, γy, y〉. (This means that ιxy is an isomorphism of the
frames, that γx(q, u) = γy(q, ιxy(u)) for all u ∈ hx and that ιxy(x) = y.) Finally, the
following composition laws shall hold for all x, y, z ∈ g2k − g2k−1: ιxx = id, ιyx = ι

−1
xy ,

ιxz = ιxy ◦ ιyz. This is always possible. For let Y be the set of all points C–equivalent
to a given point y0. For every y ∈ Y let κy be an isomorphism from 〈Hy0 , γy0 , y0〉 onto
〈Hy, γy, y〉. Then put ιxy := κy ◦ κ

−1
x .

In case that dp�(χ2k(y)) = 0 we set in particular

hy := {y}

Jy :=

 {〈y, y〉} if ◦ � Θ
∅ otherwise

Clearly then β2k(q, y) = γy(q, y) for q ∈ var(S�2k). As before, I0 is the set of z such
that χγy

� (z) is inconsistent. Let δ := dp�(χγy
� (z)) and k < δ. Then Ik := �kI0 − �

≤k−1I0,
Iδ := hy−

⋃
j<δ I j. We put βy(q, x) := ∗ for q < var(X2k(y)�) and βy(q�ψ, x) = ∗ if there

is a k such that x ∈ Ik and dp�(ψ) > k. In all other cases βy(q, x) := γy(q, x). Clearly,
βy ≤ γy. Now observe that var(S�2k) = var(S�2k+1) and therefore var(χ2k(y)�) ⊆
var(S�2k+1). We can conclude that (1) χ2k(y)� is defined at y in 〈Hy, βy〉 and therefore
〈〈hy,Jy,Hy〉, βy, y〉 � χ2k(y)� and that (2) Xβy (x) is consistent and sf–founded (using
(‡)). Now let

g2k+1 := g2k ∪
⋃
〈hy : y ∈ g2k − g2k−1〉

C2k+1 := C2k

J2k+1 := J2k ∪
⋃
〈Jy: y ∈ g2k − g2k−1〉

For the internal sets, some care is needed. Put h :=
⋃
〈hy : y ∈ g2k − g2k−1〉. A subset

T ⊆ h is called homogeneous with support a if (1.) a ⊆ g2k − g2k−1, a ∈ G2k, (2.)
T =

⋃
x∈a T ∩ hx, (3.) all x, y ∈ a are C–equivalent and ιxy(T ∩ hx) = T ∩ hy. A

set T is called homogeneous if there exists an a such that T is homogeneous with
support a. T is called semihomogeneous if it is a finite union of homogeneous sets
(not necessarily with identical support).

G2k+1 := {S ∪ T : S ∈ G2k−1,T semihomogeneous}
G2k+1 := 〈g2k+1,C2k+1,J2k+1,G2k+1〉

We have to show that G2k+1 is a (bimodal) frame. G2k+1 is clearly closed under finite
unions. To see that it is closed under complements it is enough to show that the
relative complement of a homogeneous set T in h, h−T , is semihomogeneous. h−T
is the union of the sets uy := hy − T , y ∈ g2k − g2k−1. Let a be the support of T ,
U :=

⋃
y∈a uy and V :=

⋃
y∈−a uy. Then U is homogeneous with support a, and V is

homogeneous with support −a. Moreover, h − T = U ∪ V , and so the complement
of T is semihomogeneous. Furthermore, we have to show that the internal sets are



6.3. The Fundamental Construction 271

closed under ♦ and �. First ♦. Let S ∈ G2k+1. Then ♦S = ♦(S ∩ g2k). g2k is the
union of g2k−1 and g2k−g2k−1. g2k−1 is internal. g2k−g2k−1 is semihomogeneous with
support g2k −g2k−1, for by construction, all frames Hy are atomic, and so in particular
the set {y} is internal in Hy. Hence ♦(S ∩ g2k) is an internal set of G2k and so by the
same argument an internal set of G2k+1. Next, closure under � must be shown. Take
a set S ∪T , where S ∈ G2k−1 and T semihomogeneous. Then �(S ∪T ) = (�S )∪(�T ).
By construction, �S ∈ G2k−1. Moreover, it is easy to see that if T ′ is homogeneous
with support a, so is �T ′. Thus, �T is semihomogeneous, since T is. Finally, G2k+1
is atomic. For if x ∈ g2k−1 then {x} is internal by [d]2k−1. If x < g2k−1 then there exists
a y such that x ∈ hy. Then {x} is an internal set of Hy, and since {y} is internal in G2k,
{x} is homogeneous with support {y}. (Here we use the fact that ιyy(x) = x.)

Define β2k+1 as follows. Put β2k+1(q, x) := βy(q, x) for x ∈ hy and β2k+1(q, x) :=
β2k−1(q, x) for x ∈ g2k−1, q ∈ var(S�2k+1); in all other cases β2k+1(q, x) := ∗. By
construction, [b]2k+1 holds. [c]2k+1 holds because

〈g2k+1,J2k+1,G2k+1〉 = 〈g2k−1,J2k−1,G2k−1〉 ⊕ H ;

moreover, H is based on the disjoint union of the 〈hy,Jy〉, taking semihomogeneous
sets as internal sets. And C2k+1 = C2k. [d]2k+1 is immediate from the observation
above that the frame is atomic, and from [c]2k+1, [d]2k−1 and Hy � Θ. Now we show
[e]2k+1.
Ad (1). Let x ∈ g2k−1. Then by [e]2k, β2k(p, x) = β2k−1(p, x) = β2k+1(p, x). If
x ∈ g2k − g2k−1 then

β2k+1(p, x) = 1
⇔ βx(p, x) = 1
⇔† p ∈ X2k(x)
⇔ β2k(p, x) = 1

Here, ⇔† is true since X2k(x) is sf–founded and dom(βx) = var(X2k(x)). Similarly,
β2k+1(p, x) = 0⇔ β2k(p, x) = 0 is shown.
Ad (2). If x ∈ g2k−1 we have β2k+1(q�ψ, x) = β2k−1(q�ψ, x) ≤ β2k(�ψ�, x), by [e]2k. If
x ∈ g2k − g2k−1 then

β2k+1(q�ψ, x) = 1
⇔ βx(q�ψ, x) = 1
⇔ �ψ ∈ X2k(x)
⇔ β2k(�ψ�, x) = 1

The argument continues as in (1).
Ad (3). If x ∈ g2k−1 the claim follows by [e]2k. Now let x ∈ g2k − g2k−1. If
β2k(q�ψ, x) = ∗ then there is nothing to show. However, if β2k(q�ψ, x) , ∗ then
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�ψ ∈ X2k(x) or ¬�ψ ∈ X2k(x) and thus

β2k+1(�ψ�, x) = 1
⇔ βx(�ψ�, x) = 1
⇔ �ψ ∈ X2k(x)
⇔ β2k(q�ψ, x) = 1

[f]2k+1 holds because of [c]2k+1 and by the definition of β2k+1 and finally because of
(2) of [e]2k+1. [a]2k+1 follows directly from [e]2k+1 (1) and (3).

If n = adp�(ϕ) we have gn+1 = gn and dp�(χn(y)) = dp�(χn(y)) = 0 for all y
since Sn = var(ϕ) and therefore dom(βn) = var(ϕ), by [b]n. By construction, the Hy

are based on a single point and thus gn+1 is based on the same points as gn. Moreover,
by [d]n and [d]n+1, Gn+1 � Λ ⊗ Θ and by [a]n+1, 〈Gn+1, βn+1,w0〉 � ϕn+1 (= ϕ). Take
any valuation γ ≥ βn+1 which is standard for the p–variables. Then 〈Gn+1, γ,w0〉 �
ϕ. �

C 6.3.4. Suppose that Λ ⊗ Θ are complete with respect to atomic
frames. Let ϕ be a bimodal formula, m ≥ dp�(ϕ), and n ≥ dp�(ϕ). Then the fol-
lowing are equivalent.

(1) `�� ϕ .
(2) `� �≤mΣ�(ϕ)� → ϕ� .
(3) `� �≤nΣ�(ϕ)� → ϕ� .

The proof of the latter theorem is evident from the construction used in the
previous proof.

T 6.3.5. Suppose that Λ and Θ are complete with respect to atomic
frames. Then Λ ⊗ Θ is decidable iff both Λ and Θ are decidable.

P. By induction on n := adp(ϕ). If n = 0, ϕ is boolean and since ⊥ < Λ⊗Θ
`�� ϕ iff ϕ is a boolean tautology. Since the propositional calculus is decidable,
this case is settled. Now suppose that for all ψ with adp(ψ) < n we have shown the
decidability of `�� ψ. We know by Theorem 6.3.4 that for m ≥ max{dp�(ϕ), dp�(ϕ)}

`�� ϕ ⇔ `� �
≤mΣ�(ϕ)� → ϕ�

`�� ϕ ⇔ `� �
≤mΣ�(ϕ)� → ϕ�

Therefore we can decide `�� ϕ on the condition that either Σ�(ϕ) or Σ�(ϕ) can be
constructed. But now either adp(Σ�(ϕ)) < n or adp(Σ�(ϕ)) < n. This is seen as
follows. Suppose that adp�(ϕ) ≤ adp�(ϕ). Then there is a maximal chain of nested
alternating modalities starting with �. Then any maximal chain of nested alternating
modalities in Σ�(ϕ) starts with � (!) and is a subchain of of such a chain in ϕ.
Consequently, we have adp�(Σ�(ϕ)) < adp�(ϕ) and with adp�(Σ�(ϕ)) ≤ adp�(ϕ) the
claim follows. Now assume that adp(Σ�(ϕ)) < adp(ϕ) is the case. Then

Σ�(ϕ) =
∨
〈ψc : c ⊆ C, 0�� ¬ψc〉
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Consequently, Σ�(ϕ) can be constructed if only `�� ¬ψc is decidable for all c. But
this is so because adp(¬ψc) < n. �

Note that for m > 1 we have adp�(�≤mΣ�(ϕ)) ≤ adp�(ϕ). However,

adp�(�≤mΣ�(ϕ)) ≤ adp�(ϕ) + 1 .

A case where the inequalities are sharp is given by ϕ = �p. But in all these cases
adp�(ϕ) > adp�(ϕ) in which case we also have

adp�(�≤mΣ�(ϕ)) ≤ adp�(ϕ)

and
adp�(Σ�(ϕ)) < adp�(�≤mΣ�(ϕ)) ≤ adp�(ϕ)

and therefore adp(�≤mΣ�(ϕ)) ≤ adp(ϕ).

C 6.3.6. Suppose ⊥ < Λ,Θ. Then Λ ⊗ Θ is complete iff both Λ and Θ
are complete.

C 6.3.7. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ has the finite model
property iff both Λ and Θ have the finite model property.

Notes on this section. E S [202] has investigated the complexity of the
fusion of modal logics. If Λ and Θ are both C–hard, so is Λ⊗Θ. If Λ and Θ are both
in PSPACE, then so is Λ ⊗ Θ. The fusion may however become PSPACE–hard even
if the individual factors are in NP. For example, J H and Y. M [95]
have shown that S5 ⊗ S5 is PSPACE hard. However, S5 is itself in NP by a result of
R. L [137]. (See also the exercises of Section 3.1.)

Exercise 203. Show with a specific example that there are monomodal logics Λ and
Θ which are consistent and tabular such that Λ ⊗Θ is not tabular. Show furthermore
that Λ ⊗ Θ has the finite model property and that it is tabular iff one of Λ, Θ is of
codimension 1.

∗Exercise 204. (W [237].) As the previous exercise has shown, there are logics
whose lattice of extension is finite, yet the lattice of extensions of their fusion is
infinite. Now show that the lattice E K.T is isomorphic to the lattice E(K.alt1 ⊗ S5).
As we will see, each of the lattices E K.alt1 and E S5 is countable, but E(K⊕p→ ♦p)
is uncountable.

∗Exercise 205. Let Λ = K.alt1.�
3⊥. Show that E(Λ ⊗ Λ) has 2ℵ0 elements.

∗Exercise 206. The following three exercises will establish that the requirement of
completeness for atomic frames can be lifted in the Consistency Reduction Theorem
when we consider only extensions of K4. The next section will establish this for
all logics but with a different technique. Call a K4–frame F separable if for all
x ∈ f there exists a a ∈ F such that x C y and y ∈ a implies y C x. Show that
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every extension of K4 is complete with respect to separable frames. Hint. Take the
canonical frame CanΛ(n). Call W eliminable if for all formulae ϕ such that W ∈ ϕ̂
there exists a V ∈ ϕ̂ such that W C V 6 W. Show that if W is eliminable and ϕ ∈ W
then there exists a noneliminable V such that W C V and ϕ ∈ V . Now take the set N
of noneliminable points and let N be the frame based on N. (Since N is not internal,
this is not a subframe.) Show that ThN = ThCanΛ(n). (The term separable is taken
from R [169]. The completeness result is from F [63].)

Exercise 207. (Continuing the previous exercise.) Call a frame G hooked if it is
rooted, and that for the root w0 the set {w0} is internal. Show that the results of
this section can be generalized to logics which are complete with respect to hooked
frames.

Exercise 208. (Continuing the previous exercise.) Show that all extensions of K4
are complete with respect to hooked frames.

6.4. A General Theorem for Consistency Reduction

The results and proofs of this section are from FW [243]. They make
use of another type of completeness for logics, namely with respect to algebras which
are atomless. For simplicity we assume that κ ≤ ℵ0 throughout this section. Recall
that an element x of a boolean algebra is an atom if for all y such that 0 < y ≤ x
we have y = x. A boolean algebra is called atomless if it has no atoms. A modal
algebra is called atomless, if its boolean reduct is atomless. An atomless algebra is
either isomorphic to 1 or infinite. The following is a well–known fact about boolean
algebras (see [117]).

P 6.4.1. Let A and B be two countably infinite atomless boolean al-
gebras. Then A � B.

Moreover, let A be atomless and countable and a > 0. Then let Aa be the
algebra based on all sets b ≤ a, with the operations being intersection and relative
complement. Then Aa is also countable and atomless, and Aa is not isomorphic to 1.
Hence, it is countably infinite and so by the previous theorem isomorphic to A.

D 6.4.2. Let A be a boolean algebra. A family {ai : i ∈ n} is a parti-
tion of A if (1.) ai , 0 for all i < n, (2.) ai∩a j = 0 if i , j and (3.)

⋃
〈ai : i < n〉 = 1.

L 6.4.3. Let A be a countably infinite atomless boolean algebra and {ai :
i < n} be a partition of A. Then σ : A→

∏
i<n Aai defined by σ(x) := 〈x ∩ ai : i < n〉

is an isomorphism. Moreover, if {ai : i < n} is a partition of A and {bi : i < n} a
partition of B, then there exists an isomorphism τ : A→ B such that τ(ai) = bi.

P. The proof of the first claim is as follows. The map x 7→ x ∩ a is a
homomorphism from A onto Aa. Hence, σ defined above is a homomorphism. Now
suppose that σ(x) = σ(y). Then x∩ai = y∩ai for all i < n. So we have x∩

⋃
i<n ai =
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y∩
⋃

i<n ai. Since
⋃

i<n ai = 1, x = y. Hence σ is an isomorphism. Now let {ai : i < n}
be a partition of A, and {bi : i < n} a partition of B. Let σ : x 7→ 〈x ∩ ai : i < n〉,
and σ̂ : x 7→ 〈x ∩ bi : i < n〉. These are isomorphisms. Furthermore, there exist
isomomorphisms hi : Aai → Bbi . Put υ :=

∏
i<n hi. Finally, τ := σ̂−1 ◦ υ ◦ σ. This is

an isomorphism, and

τ(ai) = σ̂−1 ◦ υ(〈0, . . . , 0, 1, 0, . . . , 0〉)
= σ̂−1(〈0, . . . , 0, 1, 0, . . . , 0〉)
= bi

�

P 6.4.4. (κ < ℵ1.) LetΛ be a κ–modal logic and λ an infinite cardinal.
Then FrΛ(λ) is atomless. Moreover, FrΛ(ℵ0) is countable.

If Λ is inconsistent then FrΛ(λ) is finite and isomorphic to 1. In all other cases
it is infinite.

D 6.4.5. Let Λ a κ–modal logic. By AtgΛ we denote the set of count-
ably infinite atomless algebras A of AlgΛ.

The following is now immediate.

P 6.4.6. (κ ≤ ℵ0.) Let Λ be a consistent κ–modal logic. Then Λ =
Th AtgΛ.

T 6.4.7 (Wolter, Global Consistency Reduction). (κ < ℵ1.) Let Λ and Θ
be consistent monomodal logics. Then the following are equivalent

(1) ϕ 1�� ψ
(2) There exists ∆ ⊆ C�(ϕ;ψ) such that

(a) ϕ�; (
∨
∆)�) 1� ψ�

(b) for all χ ∈ ∆, ϕ�; (
∨
∆)� 1� ¬χ� and (

∨
∆)� 1� ¬χ�

(3) There exists ∆ ⊆ C�(ϕ;ψ) such that
(a) ϕ�; (

∨
∆)�) 1� ψ�

(b) for all χ ∈ ∆, ϕ�; (
∨
∆)� 1� ¬χ� and (

∨
∆)� 1� ¬χ�

If ∆ satisfies 2., then ϕ;
∨
∆ 1�� ψ and

∨
∆ 1�� ¬χ for all χ ∈ ∆.

P. Obviously, it is enough to prove the equivalence of (1.) and (2.). More-
over, (1.) implies (2.). For suppose that ϕ 1�� ψ. Then there exists a bimodal algebra
B and a valuation β such that β(ϕ) = 1 but β(ψ) , 1. Let ∆ := {χ ∈ sf �(ϕ;ψ) : β(χ) >
0}. Then ∆ is as required for (2.). So, in the remainder of the proof we will show
that (2.) implies (1.). Assume therefore that ∆ ⊆ C�(ϕ;ψ) exists satisfying the re-
quirements under (2.). Then for each χ ∈ ∆ ∪ {¬ψ} there exists a Bχ ∈ AtgΛ and a
valuation βχ such that

βχ((
∨
∆)� ∧ ϕ�) = 1 and βχ(χ�) > 0 .
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Let
B :=

∏
〈Bχ : χ ∈ ∆ ∪ {¬ψ}〉

and
β� :=

∏
〈βχ : χ ∈ ∆ ∪ {¬ψ}〉

Then B ∈ AtgΛ, β
�
(ϕ�) = 1, β

�
(ψ�) , 1 and the set

{β
�
(χ�) : χ ∈ ∆}

is a partition of B. Since (
∨
∆)� 1� ¬χ� for all χ ∈ ∆ we get in a similar way a

C ∈ AtgΘ and a valuation β� such that the set

{β
�
(χ�) : χ ∈ ∆}

is a partition of C. By Proposition 6.4.3 there is an isomorphism σ from the boolean
reduct of C onto the boolean reduct of B such that for all χ ∈ ∆

σ(β
�
(χ�)) = β

�
(χ�) .

Via this isomorphism we define the following algebra

A := 〈B, 1,−,∩,�′,�′〉

where �′a := �a and �′a := σ−1(�σ(a)). Clearly, A ∈ Atg(Λ ⊗ Θ). It holds for all
η ∈ sf �(ϕ;ψ) that

β
�
(η�) =

∨
〈β
�
(χ�) : χ ∈ ∆, η a conjunct of χ〉

=
∨
〈β
�
(χ�) : χ ∈ ∆, η a conjunct of χ〉

= β
�
(η�)

We now define a valuation γ on the p–variables of ϕ and ψ by

γ(p) := β�(p) (= β�(p)) .

We claim that for all η ∈ sf �(ϕ;ψ)

γ(η) = β
�
(η�) (= β

�
(η�)) .

The proof is by induction on the complexity of η. The claim holds by construction
for the p–variables. Moreover, the steps for ¬ and ∧ are straightforward. Now let
η = �θ. Then

γ(�θ) = �′γ(θ)
= �′γ�(θ�)
= �′β

�
(θ)

= β
�
(�θ)

Analogously, the case η = �θ is dealt with. With the claim being proved, we have
γ(ϕ) = β

�
(ϕ�) = 1 and γ(ψ) = β

�
(ψ�) , 1. And that had to be shown. �
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T 6.4.8 (Wolter, Local Consistency Reduction). (κ < ℵ1.) LetΛ andΘ be
consistent normal monomodal logics. Let ϕ be a bimodal formula, and m ≥ dp�(ϕ),
n ≥ dp�(ϕ). Then the following are equivalent

(1) `�� ϕ.
(2) `� �≤mΣ�(ϕ)� → ϕ�.
(3) `� �≤nΣ�(ϕ)� → ϕ�.

L 6.4.9. Suppose that �≤mΣ�(ϕ)� → ϕ� < Λ. Then there exists A ∈ AtgΛ,
a valuation β� and a sequence 〈ai : 0 ≤ i ≤ m〉 such that the following holds:

(a1) ai+1 ≤ ai ∩ �ai for all i < m.
(a2) ai ≤ β

�
(�≤iΣ�(ϕ)�), for all 0 ≤ i ≤ m.

(a3) am ∩ β
�
(¬ϕ�) , 0.

(a4) The set {β
�
(χ�) ∩ am : χ ∈ Σ�(ϕ)} is a partition of Aam .

(a5) The sets {β
�
(χ�) ∩ (ai − ai+1) : χ ∈ Σ�(ϕ)}

are partitions of A(ai−ai+1), for all i < m.

P. There exists a B ∈ AtgΛ and a valuation γ such that

γ(¬ϕ� ∧ �≤mΣ�(ϕ)�) > 0 .

We put for 0 ≤ i ≤ m,
bi := γ(�≤iΣ�(ϕ)�) .

Take for each i ≤ m an algebra Ci ∈ AtgΛ and valuations δi such that

{δi(χ�) : χ ∈ Σ�(ϕ)}

is a partition of Ci. (For example, Ci := FrΛ(X), where X := var(Σ�(ϕ)�), and
δi : p 7→ p̂ the natural valuation, as defined in Section 2.8.) Put

A := B ×
∏
〈Ci : i ≤ m〉, β� := γ ×

∏
〈δi : i ≤ m〉

and define the ai by
a0 := 〈b0, 1, 1, . . . , 1〉
a1 := 〈b1, 0, 1, . . . , 1〉

. . . . . .

am := 〈bm, 0, 0, . . . , 0, 1〉 .

Then the elements 〈ai : 0 ≤ i ≤ m〉 and the valuation β� satisfy (a1) – (a5).
Ad (a1). �ai = 〈bi+1,�0,�0, . . . ,�0, 1, . . . , 1〉. Therefore we have ai ∩ �ai =

〈bi+1, 0, . . . , 0, 1, . . . , 1〉 (i times 0). Thus ai+1 ≤ ai ∩ �ai.
Ad (a2). By definition of δi, δi(Σ�(ϕ)�) = 1. Therefore β

�
(�≤iΣ�(ϕ)�) = 〈bi, 1, . . . , 1〉 =

ai.
Ad (a3). am ∩ β

�
(¬ϕ�) = 〈γ(¬ϕ�), 0, . . . , 0, δi(¬ϕ�)〉 > 0.

Ad (a4). Clearly, β
�
(χ�1 ) ∩ am and β

�
(χ�2 ) ∩ am are disjoint for χ1 , χ2, and the sum

of all of these sets is = am. Moreover, by choice of am and the definition of Σ�(ϕ),
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these elements are all distinct from 0.
Ad (a5). Again, the members {δi(χ�) : χ ∈ Σ�(ϕ)} are pairwise distinct and their
sum is ai − ai+1. Also, by choice of the ai, none of the elements is = 0. �

L 6.4.10. Suppose that �≤mΣ�(ϕ)� → ϕ� < Λ. Then there exists a A ∈
AtgΛ ⊗ Θ such that there are valuations β� and β� and a sequence 〈ai : 0 ≤ i ≤ m〉
satisfying (a1) – (a5) and

(a6) β
�
(χ�) ∩ a0 = β

�
(χ�) ∩ a0, for all χ ∈ C(ϕ).

(a7) For all 0 ≤ i ≤ m and all b ∈ A, ai ∩ �b = �(ai ∩ b).

P. For each i ≤ m take a Bi ∈ AtgΘ and a valuation γi such that

{γi(χ
�) : χ ∈ C(ϕ)}

is a partition of Bi. In addition, take an arbitrary B−1 and an arbitrary valuation γ−1
on B−1. Put

C :=
∏
〈Bi : −1 ≤ i ≤ m〉

γ� :=
∏
〈γi : −1 ≤ i ≤ m〉

Now take D ∈ AtgΛ and a valuation γ� such that the conditions (a1) – (a5) are
satisfied. Put a−1 := 1D−a0. Without loss of generality we may assume that a−1 , 0.
There exist boolean isomorphisms σm : Bm → Dai and σi : Bi → Dai−ai+1 such that
for all i < m

σm(γ�(χ�)) = γ�(χ�) ∩ am and σi(γ�(χ�)) = γ�(χ�) ∩ (ai − ai+1) .

Fix an arbitrary boolean isomorphism σ−1 : B−1 → Da−1 . Now the map σ defined by
σ :=

∏
〈σi : −1 ≤ i ≤ m〉 is an isomorphism from C to D. Using this isomorphism

we define A as follows.

A := 〈D, 1,−,∩,�′,�′〉
�′a := �a
�′a := σ−1(�σ(a))

Put β�(p) := σ(γ�(p)) and β�(p) := γ�(p). Then (a6) holds by construction. (a7)
holds by virtue of the fact that A is isomorphic to a product of �–algebras based on
the relative boolean algebras Aai and A1−ai , for all 0 ≤ i ≤ m. �

Proof of Theorem 6.4.8. The equivalence between (1.) and (3.) is proved in the
same way as the equivalence between (1.) and (2.). So we perform only the latter.
Moreover, (2.) implies (1.) by definition of the consistency formulae. So, let us
assume that (2.) fails. We will show that (1.) fails as well. Suppose therefore that
�≤mΣ�(ϕ)� → ϕ� < Λ, where m ≥ dp�(ϕ). Take A ∈ AtgΛ ⊗ Θ and valuations β�

and β� satisfying (a1) – (a7). Using (a4), (a5) and (a6) and the definition of Σ�(ϕ) it
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is shown that for all η ∈ sf �(ϕ)

a0 ∩ β
�
(η�) = a0 ∩

⋃
〈β
�
(χ�) : χ ∈ Σ�(ϕ), η a conjunct of χ〉

= a0 ∩
⋃
〈β
�
(χ�) : χ ∈ Σ�(ϕ), η a conjunct of χ〉

= a0 ∩ β
�
(η�)

We define a valuation β on A by putting for all p–variables p of ϕ

β(p) := β�(p) .

We claim that for all 0 ≤ k ≤ m and for all η ∈ sf �(ϕ) such that dp�(η) ≤ k:

ak ∩ β(η) = ak ∩ β
�
(η�) .

The proof is by induction on η. If η is a p–variable, the claim is obviously correct.
The inductive steps for ¬ and ∧ are straightforward. So, we are left with the cases
η = �θ and η = �θ.

Assume that η = �θ. By induction hypothesis, ak ∩ β(θ) = ak ∩ β
�
(θ�). So,

ak ∩ �ak ∩ β(η) = ak ∩ �ak ∩ �β(θ)
= ak ∩ �ak ∩ �β

�
(θ�)

= ak ∩ �ak ∩ β
�
(η�)

(This makes use of the following. If a ∩ c = a ∩ b, then �a ∩ c ∩ �c = �b ∩ c ∩ �c.)
Since ak+1 ≤ ak ∩�ak (by (a1)), the claim now holds for η. Next assume that η = �θ.
We know by induction hypothesis that ak ∩ β(θ) = ak ∩ β

�
(θ�). Therefore

�(ak ∩ β(θ)) = �(ak ∩ β
�
(θ�)) .

Using (a7) we conclude

ak ∩ �β(θ) = ak ∩ �β
�
(θ�) .

This gives ak ∩ β(η) = ak ∩ β
�
(θ�). It follows that ak ∩ β(θ) = ak ∩ β

�
(θ�) since

ak ∩ β
�
(η�) = ak ∩ β

�
(η�). Finally, am ∩ β(ϕ) = am ∩ β

�
(ϕ�) > 0, by (a3). Thus

ϕ < Λ ⊗ Θ. This concludes the proof.

6.5. More Preservation Results

T 6.5.1. Let ⊥ < Λ,Θ. Then Λ ⊗ Θ is compact iff both Λ and Θ are
compact.

P. Proceed as in the proof of Theorem 6.3.3. The only difference is that we
work with sets of formulae rather than a single formula. Call the starting set ∆. We
get a sequence of models 〈gk, βk,w0〉 satisfying [a]k – [f]k for ↑ k∆�. Now put

gω :=
⋃

k∈ω gk

Ck :=
⋃

k∈ω Ck

Jk :=
⋃

k∈ω Jk
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Furthermore, for a p–variable p put βω(p, x) := 1 if βk(p, x) = 1 for almost all k ∈ ω,
βω(p, x) := 0 if βk(p, x) = 0 for almost all k. It is checked that if βk(p, x) = 1 then
also βk+1(p, x) = 1, and if βk(p, x) = 0 then βk+1(p, x) = 0. Finally, let γ be any
standard valuation such that βω ≤ γ. It is not hard to show, using the properties [a] –
[f], that 〈gω, γ,w0〉 � ∆. �

T 6.5.2. Suppose ⊥ < Λ,Θ. Then Λ ⊗ Θ is globally complete (globally
compact) iff both Λ and Θ are globally complete (globally compact).

For weak compactness this method fails to yield a transfer theorem. Indeed, a
counterexample can be contructed as follows. Take a monomodal logic Λ which is
weakly compact but not compact, for example Grz.3. As is shown in [66], Grz.3 is
weakly compact. To show this is an exercise, see below. Earlier, in Section 3.2, we
have shown that Grz.3 is not ℵ1–compact. Now we show that Grz.3⊗K is not even
1–compact. For there exists a set ∆ which is Grz.3–consistent but lacks a Kripke–
model. Then ∆ is based on infinitely many variables, say var[∆] = {pi : i ∈ ω}; now
let ∆̃ result from ∆ by replacing the variable pi by the formula �i+1⊥∧¬�i⊥ for each
i ∈ ω. Then var[∆̃] = ∅ and so ∆̃ is based on no variables. Clearly, ∆̃ is consistent;
but if ∆̃ has a model based on a Kripke–frame then this allows a direct construction
of a Kripke–model for ∆. Thus Grz.3 ⊗K is indeed not 1–compact. It is to be noted
that this argument uses only the fact that K has infinitely many constant formulae.
Any other weakly compact logic with these properties will do.

Now we will turn to interpolation and Halldén–completeness. The proof in both
cases consists in a close analysis of the consistency formulae Σ�(ϕ∨ψ) and Σ�(ϕ→
ψ). Since both are identical, it suffices to concentrate on the latter. We can write
Σ�(ϕ) =

∨
〈ϕ̃c : c ∈ C〉 and Σ�(ψ) =

∨
〈ψ̃d : d ∈ D〉. Then obviously Σ�(ϕ → ψ) is

(up to boolean equivalence) a suitable disjunction of ϕ̃c∧ψ̃d; namely, this disjunction
is taken over the set E of all pairs 〈c, d〉 such that ϕ̃c ∧ ψ̃d is consistent. Equivalently,
we can write

Σ�(ϕ→ ψ) = Σ�(ϕ) ∧ Σ�(ψ) ∧
∧
〈ϕ̃c → ¬ψ̃d : 〈c, d〉 < E〉

We abbreviate the third conjunct by ∇(ϕ;ψ) (or, to be more precise we would again
have to write ∇�(ϕ;ψ)). Obviously, ∇(ϕ;ψ) serves to cut out the unwanted disjuncts.
In some sense ∇(ϕ;ϕ) measures the extent to which ϕ and ψ are interdependent. So
if ∇(ϕ;ψ) = > both are independent. It is vital to observe that all reformulations are
classical equivalences.

T 6.5.3. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ is Halldén–complete iff
both Λ and Θ are.

P. (⇒) Suppose ϕ ∨ ψ ∈ Λ and var(ϕ) ∩ var(ψ) = ∅. Then ϕ ∨ ψ ∈ Λ ⊗ Θ
and so either ϕ ∈ Λ⊗Θ or ψ ∈ Λ⊗Θ and thus either ϕ ∈ Λ or ψ ∈ Λ, since Λ⊗Θ is
a conservative extension of Λ. (⇐) By induction on n := adp(ϕ ∨ ψ). For n = 0 this
follows from Theorem 1.7.14. Now assume that n > 0 and that the theorem is proved
for all formulae of alternation depth < n. Take ϕ ∨ ψ such that var(ϕ) ∩ var(ψ) = ∅
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and adp(ϕ ∨ ψ) = n. Assume adp�(Σ�(ϕ ∨ ψ)) < adp�(ϕ ∨ ψ). (By the calculations
following Theorem 6.3.5 we may assume that adp�(Σ�(ϕ∨ψ)) < adp�(ϕ∨ψ) or that
adp�(Σ�(ϕ ∨ ψ)) < adp�(ϕ ∨ ψ). We only show how to deal with the first case; the
other case is dual.) Then by Theorem 6.4.8,

`� �
≤mΣ�(ϕ ∨ ψ)� → ϕ� ∨ ψ�

for large m, by which

`� �
≤mΣ�(ϕ)� ∧ �≤mΣ�(ψ)� ∧ �≤m∇(ϕ;ψ)� → ϕ� ∨ ψ�

The crucial fact now is that ∇(ϕ;ψ) = >. For if ϕ̃c and ψ̃d are both Λ⊗Θ–consistent,
then since var(ϕ̃c)∩var(ψ̃d) ⊆ var(ϕ)∩var(ψ) = ∅ and adp(ϕ̃c), adp(ψ̃d) < n, ϕ̃c∧ψ̃d

is Λ ⊗ Θ–consistent by induction hypothesis. Thus ∇(ϕ;ψ) is an empty conjunction.
Consequently, we can rewrite the above to

`� �
≤mΣ�(ϕ)� ∧ �≤mΣ�(ψ)� → ϕ� ∨ ψ�

`� �
≤mΣ�(ϕ)� → ϕ�. ∨ .�≤mΣ�(ψ)� → ψ�

Now since Λ is Halldén–complete, we have �≤mΣ�(ϕ)� → ϕ� ∈ Λ or �≤mΣ�(ψ)� →
ψ� ∈ Λ from which by Theorem 6.4.8 ϕ ∈ Λ ⊗ Θ or ψ ∈ Λ ⊗ Θ. �

T 6.5.4. Suppose that ⊥ < Λ,Θ. Then Λ ⊗ Θ has interpolation iff
both Λ and Θ have interpolation. Moreover, if ϕ → ψ ∈ Λ ⊗ Θ then an inter-
polant χ can be found such that adp�(χ) ≤ min{adp�(ϕ), adp�(ψ)} and adp�(χ) ≤
min{adp�(ϕ), adp�(ψ)}.

P. (⇒) Let ϕ → ψ ∈ Λ. Then by hypothesis there is a χ such that ϕ →
χ, χ → ψ ∈ Λ ⊗ Θ based on the common variables of ϕ and ψ. Now, by Makinson’s
Theorem, either Θ(p ↔ �p) or Θ(�p) is consistent. Let the former be the case.
Then let χ◦ result from χ by successively replacing a subformula �ψ by ψ. Then
χ◦ ∈ L� and χ ↔ χ◦ ∈ Θ(p ↔ �p). Hence, as ϕ → χ ∈ Λ ⊗ Θ, then also
ϕ → χ◦ ∈ Λ ⊗ Θ(p ↔ �p). But Λ ⊗ Θ(p ↔ �p) is a conservative extension of Λ
and therefore ϕ → χ◦ ∈ Λ. In the case where Θ(�p) is consistent, define χ◦ to be
the result of replacing subformulas of type �ψ by >. Then use the same argument as
before.
(⇐) By induction on n := adp(ϕ → ψ). The case n = 0 is covered by Theo-
rem 1.7.14. Now suppose that n > 0 and that the theorem has been proved for all
formulae of alternation depth < n. Let ϕ → ψ ∈ Λ ⊗ Θ. We may assume that
adp�(ϕ→ ψ) ≤ adp�(ϕ→ ψ) and thus

adp�(Σ�(ϕ→ ψ)) < adp�(ϕ→ ψ)

(see the calculations following Theorem 6.3.5). Then adp(Σ�(ϕ → ψ)) < adp(ϕ →
ψ). By Theorem 6.4.8, for sufficiently large m,

`� �
≤mΣ�(ϕ→ ψ)→ ϕ� → ψ�

(†) `� �
≤mΣ�(ϕ)� ∧ ϕ� ∧ �≤m∇(ϕ;ψ)� → �≤mΣ�(ψ)� → ψ�
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Let ϕ̃c → ¬ψ̃d be a conjunct of ∇(ϕ;ψ). By induction hypothesis and the fact that
adp(ϕ̃c), adp(ψ̃d) < adp(ϕ → ψ) (since we have adp�(ϕ̃c), adp�(¬ψ̃d) < adp�(ϕ →
ψ) and adp�(ϕ̃c), adp�(¬ψ̃d) ≤ adp�(ϕ → ψ)) there is an interpolant Qc,d for ϕ̃c and
ψ̃d. Note that var(Qc,d) = varp(Qc,d) ⊆ var(ϕ) ∩ var(ψ) and that

adp�(Qc,d) ≤ min{adp�(ϕ̃c), adp�(ψ̃d)} ≤ min{adp�(ϕ), adp�(ψ)} .

Likewise for �. Again by Theorem 6.4.8 we get

`� �
≤mΣ�(ϕ̃c → Qc,d)� ∧ �≤mΣ�(Qc,d → ¬ψ̃d)�.
→ .(ϕ̃c → Qc,d)� ∧ (Qc,d → ¬ϕ̃d)�

and therefore with F := C × D − E (recall the definition of ∇)∧
F �
≤mΣ�(ϕ̃c → Qc,d)� ∧

∧
F �
≤mΣ�(Qc,d → ¬ψ̃d)�

`�
∧

F(ϕ̃c → Qc,d)� ∧
∧

F(Qc,d → ¬ψ̃d)�

`� ∇(ϕ;ψ)�

Thus (†) can be rewritten modulo boolean equivalence into

�≤mΣ�(ϕ)� ∧ ϕ� ∧
∧

F �
≤mΣ�(ϕ̃c → Qc,d)�

`�
∧

F �
≤mΣ�(Qc,d → ¬ψ̃d)� ∧ �≤mΣ�(ψ)� → ψ�

Abbreviate the formula to the left by η` and the one to the right by ηr. Then

adp�(↑ η`) = max{adp�(�≤mΣ�(ϕ)), adp�(ϕ),
adp�(

∧
F �
≤mΣ�(ϕ̃c → Qc,d))}

= adp�(ϕ) ,

since we have that adp�(�≤mΣ�(ϕ)) ≤ adp�(ϕ) by an earlier observation and

adp�(
∧

F

�≤mΣ�(ϕ̃c → Qc,d)) ≤ adp�(�≤mΣ�(ϕ)).

By a similar argument

adp�(↑ ηr) = max{adp�(�≤mΣ�(ψ)), adp�(ψ),
adp�(

∧
F �
≤mΣ�(Qc,d → ¬ψ̃d))}

= adp�(ψ) .

Likewise we argue with adp�. By assumption on Λ, there is an interpolant χ for
η` and ηr. By definition, χ is based on the same surrogate variables as η` and ηr.
Therefore for the total reconstruction χ↑ of χ

adp�(χ↑) ≤ min{adp�(↑ η`), adp�(η↑r )} = min{adp�(ϕ), adp�(ψ)}

and similarly for adp�. It is easily verified that varp(χ↑) ⊆ varp(ϕ)∩ varp(ψ). More-
over, from η` = η

↑�
`
`�↑ χ

� with Theorem 6.4.8 and the fact that the consistency for-
mulae areΛ⊗Θ–theorems we conclude that ϕ `�� χ↑ and likewise that χ↑ `�� ψ. �
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Theorem 6.5.4 implies a stronger interpolation property for Λ ⊗ Θ. Namely, if
ϕ → ψ ∈ Λ ⊗ Θ then an interpolant exists which is not only based on the com-
mon variables but also contains only the modalities which occur in both ϕ and ψ.

Exercise 209. The logic Here defined by the axiom p → �p is Sahlqvist. It corre-
sponds to (∀yBx)(x = y)∨(∀yBx)f. Define for a modal logicΛ the logicΛ(c), which
is the result of adding a new propositional constant c to the language. Now define a
translation from Pκ(c) to Pκ+1 by translating c by ♦κ>. (Further, the translation com-
mutes with ¬, ∧ and ♦λ, λ < κ.) Show that the translation induces an isomorphism
from EΛ(c) onto EΛ ⊗Here.

Exercise 210. (F [63] and [66].) Show that Grz.3 is weakly compact. Hint. First
of all, the canonical frame based on n generators is linear. Now show that there is no
infinite properly ascending chain of points by showing that the underlying Kripke–
frame is isomorphic to 〈α,≥〉, where α is an ordinal number. To do that, let F be a
Grz.3–frame such that F+ is generated by the elements ai, i < n. Define the charac-
ter of a point x to be the set of all subsets C of n such that

x ∈
⋂
i∈C

ai ∩
⋂
i<C

−ai

A point is of minimal character in M ⊆ α iff for all yB x, and y ∈ M, y has the same
character as x. Show that if x is of minimal character in M and x C y for y ∈ M then
x = y. Let x0 be the point of minimal character in α. In general, let xβ be the point of
minimal character in the set Mβ := {y : (∀γ < β)(y C xγ and y , xγ)}. Whenever Mβ

is not empty, there exists a point of minimal character. Now define as the new frame
G the subframe induced on the set g of all xβ. Show that G+ is isomorphic to F+.

6.6. Thomason Simulations

Now that we have seen how to embed modal logics into polymodal logics, we
will turn to the question of simulating polymodal logics by monomodal logics. The
results can be found also in [133], though sometimes with different proofs. Again, it
is useful to restrict the discussion to the case of bimodal logics. It is a priori not clear
that we can use a single operator to simulate two operators but it will turn out that
the situation is as good as possible. Not only can we perform such a simulation, we
can also map the whole lattice of extensions of K2 isomorphically onto the interval
[Sim,Th • ], where Sim is some finitely axiomatizable (monomodal) logic. This
will have numerous consequences for the theory of modal logic, as we will see.
The construction works only for normal logics, and in the exercises we give some
indication as to why it fails for quasi–normal logics. The basic idea of simulations
is due to S. K. T, who used it in [209], [208] and [210] as a tool to derive
certain negative facts about monomodal logics. We explain this simulation first by
using frames and then go over to algebras.
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F 6.1. A Simulation
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Take a bimodal frame B = 〈b,C,J,B〉. The simulation of B is a frame Bs =

〈bs,6,Bs〉 for the logic with the operator �. It is defined as follows. We let ∇ :=
{◦, •, ∗}. Put bs := {∗} ∪ b × {◦, •}. We will denote 〈x, ◦〉 by x◦ and 〈x, •〉 by x•.
Moreover, if x ∈ b then x∗ will be another name for ∗. The notation is extended to
sets of points. For a set A ⊆ b, A◦ := A × {◦}, A• := A × {•} and A∗ := {∗} if A
is nonempty, and ∅∗ := ∅. We use the symbols [ and \ as variables ranging over
∇(= {◦, •, ∗}). The relation 6 is defined as follows.

x[ 6 y\ if



[ = ◦, \ = ∗,

or [ = ◦, \ = •, x = y
or [ = •, \ = ◦, x = y
or [ = ◦, \ = ◦, x C y
or [ = •, \ = •, x J y

Bs := {c∗ ∪ d◦ ∪ e• : c, d, e ∈ B}

This definesBs. Proposition 6.6.1 asserts that this is indeed a frame. Given a Kripke–
frame b, bs := 〈bs,6〉. For example, let b consist of three points, 1, 2 and 3. Let 1C1,
1 C 2 and 2 J 2 and 2 J 3. Then bs is shown in Figure 6.1. If B is the empty frame
then Bs = • . This is a useful fact. It accounts for the fact that the simulation of the
inconsistent bimodal logic is not the inconsistent monomodal logic, but rather the
logic of • .

P 6.6.1. Let B be a bimodal frame, and let Bs be defined as above.
Then Bs is a frame.

P. Closure under complement and negation is clear. Now we show closure
under ♦ . We can reduce this to a discussion of three cases, namely c = d∗, c = d◦

and c = d•. Let c = d∗. If d = ∅, ♦d∗ = ∅ = d∗. If d , ∅, then ♦d∗ = b◦. Next,
let c = d◦. Then ♦ c = d• ∪ (♦d)◦. Finally, let c = d•. Then ♦ c = d◦ ∪ (�d)•. Since
both ♦d and �d are in B, we are done. �
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Let us note that the sets {∗}, b◦ and b• are definable by constant formulae. This will
be of extreme importance. Namely, put

ω := �⊥

α := ♦ � ⊥

β := ¬♦ � ⊥ ∧ ¬ � ⊥

We will usually also denote by α, β and ω the sets of points defined by α, β and ω
in a given frame. It is easy to verify that ω = {∗}, α = b◦ and β = b•. We can now
conclude that if we haveB thenBs is generated by the sets c◦∪c• using the operations
−, ∩ and �. Now let B and C be bimodal frames and π : B→ C a p–morphism. Put

πs(x[) := π(x)[

We claim that πs : Bs → Cs. So, let us check the first condition on p–morphisms.
Assume x[ 6 y\. (1.) [ = ◦, \ = ∗. Then πs(x[) = π(x)◦ 6 π(y)∗ = πs(y\). (2.)
[ = ◦, \ = • and x = y. Then πs(x[) = π(x)◦ 6 π(x)• = πs(y\). (3.) [ = •, \ = ◦
and x = y. As in (2.). (4.) [ = \ = ◦. Then x C y and so π(x) C π(y) by assumption
on π. Therefore, πs(x[) = π(x)◦ 6 π(y)◦ = πs(y\). (5.) [ = \ = •. Analogous to
(4.). This exhausts all cases. Now let us check the second condition. Assume that
π(x)[ 6 u\ for some u ∈ c, c the underlying set of C. By definition of πs, πs(x[) 6 u\.
Hence [ , ∗. If \ = ∗, then [ = ◦ and we may take u := x. Then u\ = ∗, and
πs(x[) = π(x)◦ 6 π(x)∗ = u\. So assume from now on that \ , ∗ and [ , ∗. Assume
first that [ = ◦. If also \ = ◦ then we must have π(x) C u, by construction of Cs.
Since π is a p–morphism there is a y such that π(y) = u and x C y. Then x[ 6 y\

and πs(y\) = π(y)\ = u\, as required. If \ = • then u = π(x). In that case, we
have x[ 6 x\ and πs(x\) = π(x)\ = u\, again as desired. Assume next that [ = •.
The argumentation is parallel to the first case. Finally, we must show that for every
internal set d of Cs the set (πs)−1[d] is internal in Bs. So let d = d◦w ∪ d•b ∪ d∗o for
some sets dw, db, do ∈ C. Then

(πs)−1[d] = π−1[dw]◦ ∪ π−1[db]• ∪ π−1[do]∗

This is an internal set of Bs.

T 6.6.2. The map (−)s is a functor from the category of bimodal frames
into the category of monomodal frames. Moreover, for a bimodal frame B, (B])s =

(Bs)] and for a bimodal Kripke–frame b, (b])s = (bs)].

P 6.6.3. Let B be a bimodal frame.
(1) Bs is differentiated iff B is.
(2) Bs is refined iff B is.
(3) Bs is compact iff B is.

P. (1.) If Bs is differentiated, then surely B is differentiated. Now assume
that B is differentiated. Since b◦, b• and {∗} are internal sets, x[ and y\ can be
discriminated by an internal set if [ , \. So, assume that [ = \. In case [ = ∗
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we have x = y by construction. So, finally, [ = \ ∈ {◦, •}. In that case x , y and there
exists a set c ∈ B such that x ∈ c but y < c. Then x[ ∈ c[ but y\ < c[.
(2.) Suppose that Bs is tight. Then B is tight as well. For let x 6 y. Then x◦ 
 y◦

and so there is a set a such that x◦ ∈ �a but y◦ < a. Let a = a◦1 ∪ a•2 ∪ a∗3 for some
internal sets a1, a2, a3 of B. Then x ∈ �a1 but y < a1. Now let x J y not be the case.
Then x• 
 y•. So there is a set a such that x• ∈ �a but y• < a. Let a = a•1 ∪ a◦2 ∪ a∗3
for some internal sets a1, a2 and a3 of B. Then y < a1, but

x◦ ∈ α ∩ �(β→ �(β→ �(α→ a◦1)) .

From this follows x ∈ �a1, as desired. Now it follows by (1.) that if Bs is refined, B
is refined as well. Now assume that B is refined. Then Bs is differentiated, by (1.).
We have to show that it is tight. Let x 
 y. We have to find a such that x ∈ �a but
y < a. Case 1. x = ∗ or y = ∗. If x = ∗ put a := ∅. If y = ∗ then x ∈ β. So put
a := −β. Case 2. x = u◦ and y = v• (or x = u• and y = v◦). Then u , v and so
there is a set c such that u ∈ c but v < c. Then x ∈ �(−β ∪ c•), since every successor
which does not satisfy β must be of the form u• ∈ c•. Moreover, y < −β ∪ c•. So,
a := −β ∪ c•. Case 3. x◦ 
 y◦ or x• 
 y•. Let the first be the case. (The other case
is dual.) Here, we can use the assumption of tightness for B to get a set c such that
x ∈ �c but y < c. Then x◦ ∈ �(c◦ ∪ −α) but y◦ < −α ∪ c◦. Put a := −α ∪ c◦.
(3.) Assume Bs is compact, and let U be an ultrafilter on B. Put Uα := {a◦ : a ∈ U}.
Uα is an ultrafilter on α in Bs. Uα can be expanded to an ultrafilter U+ on Bs, taking
all sets c such that c ∩ α ∈ Uα. We have α ∈ U+. U+ has nonempty intersection by
assumption on Bs. Let x ∈

⋂
U+. Then x ∈ α, so x = u◦ for some u. Thus u ∈

⋂
U,

showing the compactness of B. Now assume that B is compact and let U ⊆ Bs be
an ultrafilter on Bs. We have ω ∪ α ∪ β ∈ U. Thus three cases arise. Case 1. ω ∈ U.
Then {∗} ∈ U and so ∗ ∈

⋂
U. Case 2. α ∈ U. Then the trace Uα = {a ∩ α : a ∈ U}

is an ultrafilter on α. Hence it corresponds to the ultrafilter V := {v : v◦ ∈ Uα} on
B. By assumption, there is a y such that y ∈

⋂
V . Then y◦ ∈

⋂
Uα =

⋂
U. This

completes the second case. Case 3. β ∈ U. Then the trace Uβ := {a ∩ β : a ∈ U} is
an ultrafilter on β. But then U′ = {α ∩ ♦ βa : a ∈ Uβ} is an ultrafilter on α, since we
replace sets of the form a• by sets of the form a◦. We then get a y◦ ∈

⋂
U′ and so

y• ∈
⋂

Uβ =
⋂

U, as required. �

The construction can be defined on algebras as well. Namely, assume that B =
〈B, 1,−,∩,�,�〉 is a bimodal algebra. Then let Bs := B × B × 2 and

�〈a, b, c〉 :=

 〈b ∩ �a, a ∩ �b, 1〉 if c = 1
〈0, a ∩ �b, 1〉 if c = 0

Then Bs := 〈Bs, 1,−,∩,�〉 is a monomodal algebra, where 1 := 〈1, 1, 1〉. We use
α, β and ω for the value of α, β and ω, respectively, in A. Given a homomorphism
h : B → C of bimodal algebras, the map h × h × id(2) can be shown to be a homo-
morphism of monomodal algebras.
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T 6.6.4. (−)s is a functor from the category of bimodal algebras to the
category of monomodal algebras.

T 6.6.5. Let B be a bimodal algebra. Then (B+)s � (Bs)+. Let C be a
bimodal frame. Then (C+)s � (Cs)+.

P. The second claim is rather straightforward. Let C be given. Then the
maps d 7→ d ∩ α, d 7→ d ∩ β and d 7→ d ∩ ω are projections of the boolean algebra
of internal sets of Cs onto the boolean algebra of internal sets of C, C and onto 2,
respectively. They induce an isomorphism Cs � C × C × 2. The operation � on
Cs is checked to be exactly as in the definition of (C+)s. This shows the second
claim. Now to the first claim. We define a bijection ι from the set of points of (Bs)+

onto the set of points of (B+)s. Take an ultrafilter U of Bs. This is an ultrafilter
in the boolean algebra B × B × 2, where B = 〈B, 1,−,∩〉. Now, 〈1, 1, 1〉 ∈ U, and
〈1, 1, 1〉 = 〈1, 0, 0〉 ∪ 〈0, 1, 0〉 ∪ 〈0, 0, 1〉 and so either 〈1, 0, 0〉 ∈ U, or 〈0, 1, 0〉 ∈ U
or 〈0, 0, 1〉 ∈ U. In the first case, there exists an ultrafilter V on B such that U =
{〈a, b, c〉 : a ∈ V, b ∈ B, c ∈ 2}. We then put ι(U) := V◦. In the second case there
exists an ultrafilter V on B such that U = {〈a, b, c〉 : a ∈ B, b ∈ V, c ∈ 2}. Then we
put ι(U) := V•. In the third case U = {〈a, b, 1〉 : a, b ∈ B}. Then we put ι(U) = ∗
or ι(U) := V∗, where V is any ultrafilter of B (by our naming convention this is the
same). By careful checking of cases it is shown that ι is an isomorphism. �

Given a class K of frames we write Ks for the class {Bs : B ∈ K} and similarly
for classes of algebras.

D 6.6.6. Let Θ be a bimodal normal logic. Then we define Θs :=
Th (FrmΘ)s. This is called the (monomodal) simulation of Θ.

Our aim is to show that the map Θ 7→ Θs actually is an isomorphism from the
lattice E K2 onto an interval in the lattice E K1. To show this we first show how to
axiomatizeΘs. Before we can give such an axiomatization, we state a simple lemma.

L 6.6.7. Let M be a monomodal frame. M � Bs for some bimodal frame
iff

(A) every point satisfies either ω, α or β,
(B) there exists exactly one point in ω,
(C) every point in α sees one point in ω,
(D) no point of β sees a point in ω,
(E) every point in α has exactly one successor in β,
(F) every point in β has exactly one successor in α,
(G) for every point x in α and every point y in β, x 6 y iff y 6 x.

It is clear that the properties (A), (C) – (G) are modally characterizable and also
df–persistent. The problem lies in condition (B). However, notice the following.

L 6.6.8. LetM be a rooted monomodal frame. LetM satisfy the properties
(A), (C) – (G) of Lemma 6.6.7. ThenM satisfies (B) iff it satisfies (H).
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(H) for all x and all y, y′ ∈ ω such that x 6≤3 y; y′ we have y = y′.

P. It is clear that (H) rules out that a point has more than one (direct) ω–
successor. On the other hand, each point sees an ω–point in at most two steps. If that
point is always the same for each point reachable from the root, we have only one
ω–point. So, if ω contains more than one point, there must be a point x < ω seeing
in at most two steps an ω–point u, and a 6–successor y of x such that y sees in at
most 2 steps an ω–point u′ different from u. Then x sees in at most three steps two
different ω–points. This is ruled out by (H), however. �

D 6.6.9. The logic Sim is the extension of K1 by the axioms (a) – (h).

(a) ω ∨ α ∨ β

(b) α.→ .♦ (ω ∧ p)→ �(ω→ p)
(c) α.→ .♦β ∧ ♦ω

(d) α.→ .♦ (β ∧ p)→ �(β→ p)
(e) β.→ .♦α ∧ ¬♦ω

( f ) β.→ .♦ (α ∧ p)→ �(α→ p)
(g) α.→ .p→ �(β→ �(α→ p))

(h) ♦
≤3

(ω ∧ p)→ �≤3(ω→ p)

Some of the axioms are satisfied by choice of α, β and ω, but this is unimportant.
The following is easy to verify.

P 6.6.10. Sim is df–persistent. It is Sahlqvist and of special rank 0.

(For a proof, notice that the axioms state properties that assert (i.) the existence
of successors or (ii.) the uniqueness of successors. These are of special rank 0.)
Before we prove that Sim is correctly defined let us introduce some notation. Put
♦ αχ := ♦ (α ∧ χ), �αχ := �(α→ χ) and likewise for β and ω. Then

♦χ =
∨
[∈∇ ♦ [ = ♦ αχ ∨ ♦ βχ ∨ ♦ωχ

�χ =
∧
[∈∇ �[χ = �αχ ∧ �βχ ∧ �ωχ

Clearly, ♦ [χ is satisfied at a point x in a frame if there exists a successor y which is
in [ and satisfies χ. �[χ is satisfied at a point x if all successors y of x which are in [
satisfy χ. This allows to rewrite some of the postulates.

(b′) α.→ .♦ωp→ �ωp
(d′) α.→ .♦ βp→ �βp
( f ′) β.→ .♦ αp→ �βp
(g′) α.→ .p→ �β �α p

Moreover, we have the following theorems, which follow from Lemma 6.6.7 and
6.6.8, respectively.
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C 6.6.11. Let M be a differentiated monomodal frame whose theory
contains (a) to (g). Let ω have a single point as its extension in M. Then for some
bimodal frame B we haveM � Bs.

C 6.6.12. LetM be a rooted, differentiated frame for Sim. ThenM �
Bs for some (possibly empty) differentiated bimodal frame B.

The previous theorem shows that Sim axiomatizes the right kind of frames, as-
suming that we deal with differentiated frames. To obtain an axiomatization of Θs

on the basis of an axiomatization for Θ we must also find a syntactic correlate of the
frame simulation. The simulation of a bimodal formula ϕ is defined as follows.

ps := p
(¬ϕ)s := α ∧ ¬(ϕs)
(ϕ ∧ ψ)s := ϕs ∧ ψs

(♦ϕ)s := α ∧ ♦ϕs

(�ϕ)s := α ∧ ♦ (β ∧ ♦ (β ∧ ♦ (α ∧ ϕs)))

P 6.6.13. If ϕ is a Sahlqvist formula, so is ϕs.

P 6.6.14. Let B be a bimodal frame and γ a valuation on Bs such
that γ(p) ∩ b◦ = (β(p))◦. Then

〈B, β, x〉 � ϕ iff 〈Bs, γ, x◦〉 � ϕs

P. By induction on ϕ. �

P 6.6.15. Let 〈B, β, x〉 be a bimodal model. Put βs(p) := β(p)◦. Then
the following holds.

〈B, β, x〉 �ϕ ⇔ 〈Bs, βs, x◦〉 �ϕs

〈B, β〉 �ϕ ⇔ 〈Bs, βs〉 �α→ ϕs

B �ϕ ⇔ Bs �α→ ϕs

P. The first is an immediate consequence of the previous lemma. The sec-
ond also follows, since x[ satisfies α in Bs iff [ = ◦. The third is proved thus.
From right to left is a consequence of the previous line. From left to right is not
entirely obvious. Pick a valuation γ on Bs. Then let β(p) := {x : x◦ ∈ γ(p)}. Then
β(p) ∩ b◦ = (γ(p))◦ and so by the previous lemma 〈B, β, x〉 � ϕ iff 〈Bs, γ, x◦〉 �
α → ϕs. Moreover, 〈Bs, γ, x•〉 � α → ϕs as well as 〈Bs, γ, x∗〉 � α → ϕs. So,
〈B, β〉 � ϕ iff 〈Bs, γ〉 � α → ϕs. Since γ was arbitrary and B � ϕ, we conclude that
Bs � α→ ϕs. �

T 6.6.16. Let Θ be a bimodal logic and Θ = K2 ⊕ X. Then Θs = Sim ⊕
{α→ ϕs : ϕ ∈ X}.
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P. Let Λ := Sim ⊕ {α → ϕs : ϕ ∈ X}. A differentiated rooted frame for Λ
is of the form Bs for some bimodal frame B by Corollary 6.6.12. Bs � α → ϕs for
all ϕ ∈ X. Hence B � ϕ for all ϕ ∈ X. So, B is a Θ–frame. The converse also holds.
Hence, Λ = Θs. �

Now that we have defined the simulation of a bimodal formula let us see whether
there is a possibility of recovering from a bimodal frame the monomodal frame of
which it is a simulation; this we call unsimulating. We will deal with unsimulations
of frames that are frames for Sim and differentiated. It is possible to generalize this
somewhat (see the exercises) but there is no benefit for the aims that we are pursuing
here. First, the previous theorems guarantee that for a rooted differentiated Sim–
frame M there is exactly one B such that Bs � M. We can make B unique by the
following construction.

D 6.6.17. A standard simulation frame is a differentiated monomodal
Sim–frame such that ω has a single point as its extension. The category of stan-
dard simulation frames and p–morphisms is denoted by StSim. Let M be a stan-
dard simulation frame. Then Ms is defined as follows. ms := m ∩ α, x C y iff
x 6 y and x J y iff there exist x′, y′ ∈ β such that x 6 x′ 6 y′ 6 y. Finally,
Ms := {a ∩ α : a ∈ M} = {a ∈ M : a ≤ α}. Then Ms := 〈ms,C,J,M〉. Ms is called
the unsimulation ofM.

Let M and N be standard simulation frames and π : M → N a p–morphism.
Then put πs(x) := π(x), x ∈ α. It is not hard to verify that this is a p–morphism from
Ms to Ns. Moreover, each p–morphism ρ : Ms → Ns is actually of the form πs for
some π : M→ N.

T 6.6.18. Let Df2 denote the category of differentiated bimodal frames.
(−)s is a functor from StSim to Df2. Moreover, the two categories are naturally
equivalent; there is a natural transformation from the identity functor on StSim to
the functor ((−)s)s and a natural transformation from the identity functor on Df2 to
((−)s)s. In particular, for a bimodal frame B and a monomodal frame M we have
(Bs)s � B, (Ms)s � M.

P. Let B be a bimodal frame. Then η(B) : x 7→ x◦ is an isomorphism from
B to (Bs)s. η is a natural transformation from the identity on Df2 to ((−)s)s as is
straightforward to check. Now let M be a standard simulation frame. Then ε(M)
is defined as follows. ε(M)(x) := x◦ if x ∈ α, ε(M)(∗) = ∗. If x ∈ β, ε(M)(x) :=
y•, where y ∈ α and x 6 y. Again, it is straightforward to verify that ε(M) is an
isomorphism from M onto (Ms)s and ε a natural transformation from the identity
functor on StSim to ((−)s)s. �

Notice the following particular consequence. The category of bimodal frames
has coproducts, namely the disjoint union. So, by equivalence, the category of stan-
dard simulation frames must have coproducts, too. However, it is not closed under
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disjoint unions. So, the coproduct of frames exists but is not the disjoint union. Since
we have an equivalence, the frame operation

⊕̂
defined below is a coproduct.⊕̂

i∈I

M
i := (

⊕
i∈I

M
i
s)

s .

There is an alternative way of defining
⊕̂

. Take a differentiated Sim–frameM. Let ∼
be defined by x ∼ y iff x, y ∈ ω or x = y. Then ∼ is a net and the natural factorization
M/∼ is denoted by M?. It is easy to verify that M? is a standard simulation frame.
Moreover, for every point x, Th 〈M, x〉 = Th 〈M?, [x]〉. (This follows from the fact
that the transit of x inM has a unique ω–point in it, and so is isomorphic to the transit
of [x] inM?.) It is easy to see that⊕̂

i∈I

M
i � (

⊕
i∈I

M
i)? .

Similar definitions can be made with respect to the coproduct of descriptive frames.∐̂
i∈I

M
i := (

∐
i∈I

M
i)?

Call this construction the reduced coproduct. Now recall from Theorem 4.7.5 that
a class of descriptive frames is modally definable iff it is closed under coproducts,
p–morphic images and generated subframes. It follows that if a class of bimodal
descriptive frames is modally definable, its simulation image is closed under reduced
coproducts, p–morphic images and generated subframes. The converse also holds. A
class of descriptive Sim–frames is modally definable iff its intersection with the class
of standard Sim–frames is closed under reduced coproducts, generated subframes
and p–morphic images. Putting this together we obtain the following result.

T 6.6.19. The map Θ 7→ Θs is an isomorphism from the lattice EK2
onto the interval [Sim,Th • ] in K1.

D 6.6.20. Let Λ be an extension of Sim contained in Th • . Then let
Λs be the unique bimodal logic Θ such that Θs = Λ.

It is clear that the map Λ 7→ Λs is a lattice isomorphism from the interval
[Sim,Th • ].

Exercise 211. Let B be a bimodal algebra. Show that Sub(Bs) � Sub(B) and
Con(Bs) � Con(B) + 1. (Here, L + 1 denotes the addition of a new element at
the top of the lattice L.)

Exercise 212. Call a monomodal algebra local if it has a unique maximal congru-
ence , ∇. Show that a Sim–algebra is local iff its dual is a standard simulation frame.
Moreover, show that every Sim–algebra has a largest local subalgbra.

Exercise 213. Call a monomodal frame M local if (1.) F is differentiated, (2.) the
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subframe G of points x such that 〈F, x〉 � Sim is a standard simulation frame. De-
fine (−)t on local frames as follows. Let G be the subframe of points x such that
〈F, x〉 � Sim. Then Ft := Gs. Show that (−)t is a functor. Now define (−)t, a func-
tor from the category of bimodal frames into the category of local frames simply by
Bt := Bs. Show that (−)t is right adjoint to (−)t.

Exercise 214. Let Θ be a quasinormal bimodal logic. Then define

Θq :=
⋂
〈B,x〉�Θ

Th 〈Bs, x◦〉 ∩ Th 〈Bs, x•〉 ∩ Th 〈Bs, x∗〉

Show that the map Θ 7→ Θq maps Q K2 isomorphically into Q Sim. (This map does
not need to be onto!) Moreover, show that if Θ is normal, Θq = Θs.

Exercise 215. Show that there exists no lattice isomorphism (−)q from Q Sim onto
Q K2 such that for a normal logic Λ, Λq = Λs. Show furthermore that there is
no homomorphism from Q Sim into Q K2 such that for normal bimodal logics Θ,
Λq = Θ iff Λ = Θs. Hint. Consider the bimodal frame f := 〈{0, 1},C,J〉 where J= ∅
and C = {〈0, 1〉}. Put Θ := Th f. Show that there is no lattice isomorphism from QΘs

onto QΘ with the required properties.

6.7. Properties of the Simulation

In this section we will investigate what properties of logics are preserved under
simulation and unsimulation. As on similar occasions, we say that a property P is
preserved under simulation if for a given bimodal logic Λ, Λs has P if Λ has P. P
is reflected under simulation if Λ hasP whenever Λs hasP; andP is invariant under
simulation if it is both preserved and reflected under simulation. As a first step we
investigate the problem of axiomatizing Λs on the basis of an axiomatization of Λ.
A. In analogy to the construction of ϕs from a bimodal formula ϕ we
want to construct for a given monomodal formula ϕ a bimodal formula ψ such that
ϕ is equivalent to ψs. This is not possible; just take the formula α ∧ ♦ (β ∧ p). The
problem is that the bimodal frame is internally reconstructed as the area defined by
α. So the values under a valuation in the β and ω region cannot be distinguished. We
can, however, mimick the behaviour of a monomodal valuation as follows. For each
variable p we introduce three new variables, p∗, p◦ and p•. Given our original set V
or variables, we obtain three new sets, V[ := {p[ : p ∈ V}, [ ∈ {•, ◦, ∗}. All four sets
are assumed to be pairwise disjoint.

In this section we are working in the language �α, �β and �ω together with their
duals ♦ α, ♦ β and ♦ω. Let ϕ be a formula and χ a subformula of ϕ. Fix an occurrence
of χ in ϕ. A modal cover of that occurrence of χ is a minimal subformula ψ of
modal degree greater than χ containing that occurrence of χ. We also say that this
particular occurrence of ψ modally covers χ. If χ has a modal cover, it is unique
and a formula beginning with a modal operator. (We will often speak of formulae
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rather than occurrences of formulae, whenever the context allows this.) Now let ϕ
be a formula of the language with operators �[, ♦ [, [ ∈ {α, β, ω}. Let us agree to
say that an occurrence of a formula χ in ϕ is [–covered if it modally covered by a
formula of the form �[ψ or ♦ [ψ. Call ϕ and χ white–equivalent if α `Sim ϕ ↔ χ
and black–equivalent if β `Sim ϕ ↔ χ. Given a formula, we say that a subformula
occurs white if it is not in the scope of a modal operator or else is α–covered. A
subformula occurs black if it is β–covered. If ϕ occurs white (black) in ψ, and ϕ is
white–equivalent (black–equivalent) to χ, then that occurrence of ϕ may be replaced
in ψ by χ preserving white–equivalence. By axioms (c) and (d) of Sim, �βτ is white–
equivalent to ♦ βτ and by (e) and (f), �ατ is black–equivalent to ♦ ατ.

L 6.7.1. Let ϕ be a formula in the language with �[ and ♦ [, [ ∈ {α, β, ω}.
There exists a finite number n and formulae χi and ψi, i < n, such that χi is nonmodal
for all i < n, and ψi is in the language with �α,�β, ♦ α and ♦ β for all i < n, and ϕ is
white–equivalent to the formula ∨

i<n

(♦ωχi) ∧ ψi

P. By a straightforward semantic argument one shows for every n

α;�ωχ 
Sim �ωχ

Take S ⊆ var(ϕ). Put
χ(S ) :=

∧
p∈S

p ∧
∧

p∈var(ϕ)−S

¬p

Then
α `sim ϕ ↔

∨
S⊆var(ϕ)

ϕ ∧ ♦ωχ(S )

Now by the above consideration, any occurrence of ♦ωχ(S ) as a subformula of ϕ
can be replaced by > in the formula ϕ ∧ ♦ωχ(S ). It remains to be shown that any
subformula �ωχ is of this type. Clearly, by some Sim–equivalences, any subformula
�ωχ can be transformed into a subformula �ωχ′ where χ′ is nonmodal. Moreover,
we are allowed to replace χ′ by χ(S ) ∧ χ′. The latter reduces via some equivalences
to either χ(S ) or to ⊥. Therefore, the subformulae of the form �ω⊥ need to be
treated. Several cases need to be distinguished. (a) �ω⊥ is ω–covered. Then it can
be replaced by >. (b) �ω⊥ is α–covered. Then it can be replaced by ⊥. (c) �ω> is
β–covered. Then it can be replaced by >. (d) �ω⊥ is not in the scope of an operator.
Then it can be replaced by ⊥. All these replacements are Sim–equivalences. This
shows the lemma. �

D 6.7.2. A monomodal formula ϕ is called simulation transparent

if it is of the form p, ¬p, ♦ βp, ¬♦ βp, ♦ωp, ¬♦ωp, p a variable, or of the form ψ∧χ,
ψ∨χ, ♦ αψ, �αψ, ♦ β ♦ β ♦ αψ or �β�β�αψ where ψ and χ are simulation transparent.
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D 6.7.3. Call a formula ϕ white based if there do not exist occur-
rences of subformulae χ0, χ1, χ2 and χ3 such that χ0 β–covers χ1, χ1 β–covers χ2,
and χ2 β–covers χ3.

L 6.7.4. For every formula ϕ there exists a formula χ which is white–based
and white–equivalent to ϕ.

P. Suppose that there is a quadruple 〈χ0, χ1, χ2, χ3〉 of occurrences of sub-
formulae such that χ0 β–covers χ1, χ1 β–covers χ2, and χ2 β–covers χ3. Then there
exists such a quadruple in which χ0 occurs white. Now replace the occurrence of χ3
by �α�βχ3. Since χ3 is black equivalent with �α�βχ3, this replacement yields a for-
mula ϕ′ which is white equivalent to ϕ′. Now repeat this procedure with ϕ′. It is not
hard to see that this process terminates with a white based formula. (For example,
count the number of occurrences of quadruples 〈χ0, χ1, χ2, χ3〉 such that χ0 β–covers
χ1, χ1 β–covers χ2, and χ2 β–covers χ3. It decreases by at least one in passing from
ϕ to ϕ′. If it is zero, the formula is white based.) �

L 6.7.5. Let ϕ be a monomodal formula. Then there exists a simulation
transparent formula χ such that

α `Sim ϕ↔ χ

P. First we simplify the problem somewhat. Namely, by some standard
manipulations we can achieve it that no operator occurs in the scope of negation. We
call a formula in such a form basic. So, let us assume ϕ to be basic. By Lemma 6.7.1
we can assume ϕ to be a disjunction of formulae of the form υ ∧ ψ, where υ = ♦ωχ,
for a nonmodal χ, and τ contains only �α, ♦ α, �β and ♦ β. In general, if the claim
holds for ϕ1 and ϕ2, then it also holds for ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2. Therefore, we have
two cases to consider: (i) ϕ contains no occurrences of ♦ α, �α, ♦ β or �β, or (ii) ϕ
contains no occurrences of ♦ω and �ω. In case (i), we know that ♦ω distributes over
∨ and ∧, so that we can reduce ϕ (modulo white–equivalence) to the form ♦ωp, and
♦ω¬p. Now we have

α `Sim ♦ω¬p↔ ¬♦ωp

So in Case (i) ϕ is white–equivalent to a simulation transparent formula. From now
on we can assume to be in Case (ii). Furthermore, by Lemma 6.7.4, we can assume
that ϕ is white based, and (inspecting the proof of that lemma) that ϕ is built from
variables and negated variables, using ∧, ∨, and the modal operators ♦ α, ♦ β, �α and
�β.

Let µβ(ϕ) denote the maximum number of nestings of black operators (♦ β, �β)
in ϕ. Call ϕ thinner than χ if either µβ(ϕ) < µβ(χ) or ϕ is a subformula of χ. We
will show that for given white based, basic ϕ there exists a simulation transparent
formula χ which is white–equivalent to ϕ on the condition that this holds already for
all white based basic formulae ϕ′ thinner than ϕ.
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If ϕ = p we are done; for ϕ is simulation transparent. Likewise, if ϕ = ¬p.
Suppose ϕ = ϕ1 ∧ ϕ2. ϕ1 and ϕ2 are thinner than ϕ. Therefore there exist simulation
transparent formulae χ1 and χ2 such that χi is white–equivalent to ϕi, i ∈ {1, 2}. Then
χ1 ∧ χ2 is white–equivalent to ϕ1 ∧ ϕ2. Similarly for ϕ = ϕ1 ∨ ϕ2. If ϕ = ♦ αϕ1 there
exists a simulation transparent χ which is white–equivalent to ϕ1. So α → ϕ1 a`Sim

α → χ, and therefore ♦ αϕ1 a`Sim ♦ αχ; it follows that ♦ αχ is white–equivalent to
ϕ. Similarly for ϕ = �αϕ1. We are left with the case that ϕ is either ♦ βτ or �βτ. By
inductive hypothesis, for every basic white based χ such that µβ(χ) < µβ(ϕ) there is
a simulation transparent ω such that ω is white–equivalent to χ. As ϕ occurs white,
we can distribute �β and ♦ β over ∧ and ∨, and so reduce τ to the form p, ¬p or �[ρ
or ♦ [ρ, with [ ∈ {α, β} and ρ basic. This reduction does not alter µβ(ϕ).
Case 1. τ = p. Then ϕ is simulation transparent.
Case 2. τ = ¬p. Observe that ♦ β¬p is white equivalent to ¬♦ βp. So we are done.
Case 3. τ = �αρ or τ = ♦ αρ. Then ϕ is white–equivalent to ρ. The claim follows by
induction hypothesis for ρ.
Case 4. τ = �βρ or τ = ♦ βρ, ρ basic. Now let us look at ρ. ρ occurs black.
Furthermore, ρ is the result of applying a lattice polynomial to formulae of the form
p, ¬p, �βµ, ♦ βν, �αζ, ♦ αη. (Here, a lattice polynomial is an expression formed
from variables and constants using only ∧ and ∨, but no other functions. It turns
out that > and ⊥ can be eliminated from this polynomial as long as it contains at
least one variable. It it does not contain a variable, it is equivalent to either > or
⊥. Finally, > may be replaced by p ∨ ¬p and ⊥ by p ∧ ¬p, so we may assume
that the polynomial does not contain any occurrences of > and ⊥.) However, as
ϕ is white based, formulae of the form ♦ βµ or �βν do not occur. Furthermore,
if µβ(ρ) > 0, we replace the unmodalized occurrences of p by �α �β p, and the
unmodalized occurrences of ¬p by �α �β ¬p. This replacement does not change
µβ(ρ). (The case µβ(ρ) = 0 needs some attention. Here we replace ρ by �α �β ρ.
Then ϕ is white equivalent to either �β �β �α �β ρ or ♦ β ♦ β ♦ α �β ρ, ρ nonmodal.
Now we are down to the case of a formula of the form �βρ. �β commutes with ∧
and ∨, which leaves the cases �βp and �β¬p to consider. These are immediate.)
Now, after this replacement, ρ is a lattice polynomial over formulae of the form
�αζ, ♦ αη. The latter occur black, so �αζ is intersubstitutable with ♦ αζ and ♦ αη is
intersubstitutable with �αη. Finally, ♦ α> is intersubstitutable (modulo equivalence)
with >. So ρ is without loss of generality of the form f (〈�αδi|i < n〉) for some lattice
polynomial f . Thus, ρ can be substituted by the formula �w f (〈δi|i < n〉). Therefore,
ρ can be reduced to the form �αδ for some basic δ. δ is white based. Therefore, by
induction hypothesis, δ is white–equivalent to a simulation transparent formula θ. τ
has the form �β�α δ (Case A) or ♦ β�α δ (Case B), so ϕ is white–equivalent to either
χ1 := �β �β �αθ (Case A) or �β ♦ β �α θ (Case B). The latter is white–equivalent to
χ2 := ♦ β ♦ β ♦ αθ. Both χ1 and χ2 are simulation transparent, by assumption on θ. �
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L 6.7.6. Let ϕ be a monomodal formula in the variables {pi|i < n}. There
exists a bimodal formula χ in the variables {p◦i , p•i , p∗i |i < n} such that

(‡) : α `Sim ϕ↔ χs[pi/p◦i , ♦ βpi/p•i , ♦ωpi/p∗i |i < n]

χ is called an unsimulation of ϕ.

P. There exists a simulation transparent τ which is white–equivalent to ϕ.
χ is obtained from τ by applying the following translation outside in.

(χ1 ∧ χ2)τ := (χ1)τ ∧ (χ2)τ (χ1 ∨ χ2)τ := (χ1)τ ∨ (χ2)τ
(♦ αχ)τ := ♦χτ (�αχ)τ := �χτ

(♦ β ♦ β ♦ αχ)τ := �χτ (�β �β �αχ)τ := �χτ

(♦ωp)τ := p∗ (¬♦ωp)τ := ¬p∗

(♦ βp)τ := p• (¬♦ βp)τ := ¬p•

pτ := p◦ (¬p)τ := ¬p◦

This concludes the proof. �

The formula χ is of course not uniquely determined by τ, but is unique up to
equivalence. The proof of Lemma 6.7.5 is actually a construction of χ, and so let us
denote by χs the particular formula that is obtained by performing that construction.
Now take a set ∆ of monomodal formulae; put ∆s := {ϕs : ϕ ∈ ∆}. Assume thatM is
a simulation frame and 〈M, β, x〉 � α;∆. Then we have

〈M, β, x〉 � α;σ((∆s)s),

where σ(p◦) := p, σ(p•) := ♦ βp, σ(p∗) := ♦ωp. Now define a valuation β� of the
set {p◦, p•, p∗ : p ∈ var[∆]} by

β�(p◦) := β(p) ∩ f ◦, β�(p•) := ♦ bβ(p) ∩ f ◦, β�(p∗) := ♦ tβ(p) ∩ f ◦

By definition of β�,

〈M, β, x〉 � α;σ(ψ) ⇔ 〈M, β�, x〉 � α;ψ

Thus we conclude
〈M, β�, x〉 � α; (∆s)s

Define a valuation γ onMs by γ(q) := β�(q). x is of the form y◦ for some y ∈ ms; in
fact, by construction, y◦ = x. By the previous results,

〈M, β�, x〉 � α; (∆s)s ⇔ 〈Ms, γ, x〉 � ∆s.

It therefore turns out that the satisfaction of ∆ in a simulation frame at a white point is
equivalent to the satisfaction of ∆s in the unsimulation of the frame. The satisfaction
of ∆ at a black point is equivalent to the satisfaction of �β∆ := {�βϕ : ϕ ∈ ∆} at a
white point. The satisfaction of ∆ at f ∗ is likewise reducible to satisfaction of �ω∆
at a white point, which is defined analogously.

Now assume that ϕ is a theorem of Λ, Λ monomodal and consistent. Then
ω → ϕ, α → ϕ and β → ϕ are theorems of Λ as well. By consistency, ω → ϕ
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can only be a theorem if it is a tautology. β → ϕ is globally equivalent in Sim to
α → �βϕ. Thus, we can always assume that an axiom is of the form ψ := α → ϕ
for some ϕ. (This follows independently from the surjectivity of the simulation map
and the fact that an axiomatization of this form for simulation logics has been given
above.) Now ϕ is falsified in a model based onM iff ϕ is rejected at a white point iff
ϕs is rejected in a model based onMs.

We summarize our findings as follows. Given a monomodal rooted Sim–frame
G, a set ∆, a valuation γ, we define γs by γs(q) := γ�(q), where q is a variable of the
form p◦, p• or p∗.

〈G, γ, x〉 �α ∧ ∆ ⇔ 〈Gs, γs, x〉 �∆s

〈G, γ〉 �∆ ⇔ 〈Gs, γs〉 �∆s; (�β∆)s; (�ω∆)s

G �∆ ⇔ Gs �∆s; (�β∆)s; (�ω∆)s

Two cases may arise. Suppose that G contains only one point. Then Gs is empty,
and no formula is satisfiable in it. This case has to be dealt with separately. Else,
let G have more than point, and be rooted. Then satisfiability of ∆ in G is reducible
to satisfiability of either α;∆s or α;�ω∆s or α;�β∆s. All problems are reducible to
satisfiability of a set ∆ in Gs. Global satisfiability of ∆ in 〈G, γ〉 is equivalent to the
global satisfiability of {α→ ϕ : ϕ ∈ ∆+}, where ∆+ := ∆;�β∆;�ω∆.

T 6.7.7. LetΛ be a monomodal logic in the interval [Sim,Th • ]. Then
Λ is axiomatizable as Λ := K1 ⊕ {α → δ : δ ∈ ∆} for some ∆. Furthermore,
Λs = K2 ⊕ ∆s ⊕ (�α∆)s ⊕ (�ω∆)s.

The following properties are now shown to be invariant under simulation: finite
axiomatizability, (strongly) recursive axiomatizability, 0–axiomatizability.
D  C.

P 6.7.8. Let ∆ be a set of bimodal formulae, ϕ a bimodal formula,
and Θ a bimodal logic. Then

∆ `Θ ϕ ⇔ α→ ∆s `Θs α→ ϕs

∆ 
Θ ϕ ⇔ α→ ∆s 
Θs α→ ϕs

P. Assume ∆ `Θ ϕ. Let M be a rooted and differentiated Θs–frame, δ a
valuation and x a world such that 〈M, δ, x〉 � α→ ∆s. ThenM � Bs for some rooted
Θ–frame B. Two cases arise.
Case 1. 〈M, δ, x〉 � ¬α. Then 〈B, δ, x〉 � α→ ϕs.
Case 2. x � α. Then x = y◦ for some y ∈ b. and a valuation γ on B such that
γ(p)◦ = δ(p)∩b◦. Then 〈B, γ, y〉 � ∆. By assumption, 〈B, γ, y〉 � ϕ and so 〈M, δ, x〉 �
α → ϕs. Thus α → ∆s `Θs α → ϕs. Now assume that the latter holds. Take a
bimodal model 〈B, γ, y〉 � ∆. Then 〈Bs, γs, y◦〉 � α → ∆s and so by assumption
〈Bs, γs, y◦〉 � α→ ϕs and so 〈Bs, γs, y◦〉 � ϕs. From this we get 〈B, γ, y〉 � ϕ. Hence
∆ `Θ ϕ. Now for the global deducibility assume ∆ 
Θ ϕ. Let 〈M, γ〉 � α → ∆s.
Then we can assume that M = Bs for some B and that γ = δs. We then have
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〈B, δ〉 � ∆. By assumption, 〈B, δ〉 � ϕ. From this we get 〈Bs, δs〉 � α → ϕ.
Hence α → ∆s 
Θs α → ϕs. Assume the latter holds and let 〈B, δ〉 � ∆. Then
〈Bs, δs〉 � α → ∆s and so 〈Bs, δs〉 � α → ϕs. From this we obtain 〈B, δ〉 � ϕ. Hence
∆ 
Θ ϕ. �

P 6.7.9. LetΛ be a monomodal logic, ∆ a set of monomodal formulae
and ϕ a monomodal formula. Then

∆ `Λ ϕ ⇔ ∆s `Λs ϕs

and (�β∆)s `Λs (�βϕ)s

and (�ω∆)s `Λs (�ωϕ)s

∆ 
Λ ϕ ⇔ ∆s; (�β∆)s; (�ω∆)s 
Λs ϕs; (�βϕ)s; (�ωϕ)s

P. Let ∆ `Λ ϕ. Suppose that 〈B, δ, x〉 � ∆s. Then 〈Bs, δs, x◦〉 � α ∧ ∆.
By assumption, 〈Bs, δs, x◦〉 � α ∧ ϕ. Hence 〈B, δ, x〉 � ϕs. This shows ∆s `Λs ϕs.
Similarly, (�β∆)s `Λs (�β∆)s and (�ω∆)s `Λs (�ω∆)s are proved. Now assume that
all three obtain. Let 〈M, γ, x〉 � ∆.
Case 1. x = u◦. Then 〈Ms, γs, u〉 � ∆s and so 〈Ms, γsu〉 � ϕs. Thus 〈M, γ, u◦〉 � ϕ.
Case 2. x = u•. Then 〈M, γ, u◦〉 � �β∆. As in Case 1. we get 〈M, γ, u◦〉 � �βϕ.
Therefore 〈M, γ, u•〉 � ϕ. Case 3. x = u∗. Then 〈M, γ, u◦〉 � �ω∆. As in Case 1.
we get 〈M, γ, u◦〉 � �ωϕ. Hence 〈M, γ, u∗〉 � ϕ. Hence, ∆ `Λ ϕ. For the global
deducibility let ∆ 
Λ ϕ. Assume 〈B, δ〉 � ∆s; (�β∆)s; (�ω∆)s. Then 〈Bs, δs〉 � ∆. By
assumption, 〈Bs, δs〉 � ϕ; this gives 〈B, δ〉 � ϕs; (�βϕ)s; (�ωϕ)s. Therefore

∆s; (�β∆)s; (�ω∆)s 
Λs ϕs; (�βϕ)s; (�ωϕ)s .

Assume finally that the latter holds. Let 〈M, γ〉 � ∆. Then 〈Ms, γs〉 � ∆; (�β∆)s; (�ω∆)s.
By our assumption, 〈Ms, γs〉 � ϕs; (�βϕ)s; (�ωϕ)s. This gives 〈M, γ〉 � ϕ. Hence
∆ 
Λ ϕ. �

As a consequence of these two theorems, the following properties are invari-
ant under simulations: local decidability, global decidability, local completeness,
global completeness, local finite model property, global finite model property, weak
compactness, strong compactness.
C. Let ϕ be a bimodal formula. Then ϕs can be computed in quadratic time.
Moreover, its length is O(|ϕ|). So, if Θs is C–computable (where C is for example
NP, PSPACE or EXPTIME, but any class invariant under linear time reductions will
do) then so is Θ. Similarly, if Θs is globally C–computable, so is Θ. Conversely,
let χ be a monomodal formula. Going carefully through the construction one can
show that it takes polynomial time to construct χs from χ. Moreover, |χs| is of size
O(|χ|). It follows that if Θ is in C, so is Θs. Therefore, Θ and Θs belong to the same
complexity class, as satisfiability problems are linearly interreducible. Hence the
following properties of logics are invariant under simulation: local and global C–
computability, local and global C–hardness and local and global C–completeness.
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P. Assume that Λ is r–persistent. Then let M be a refined Λs–frame.
We know that Ms is a Λ–frame, and is refined by Proposition 6.6.3. So (Ms)] is
a Λ–frame, by r–persistence of Λ. But (Ms)] = (M])s, so M] is a Λs–frame as
well. The same reasoning establishes preservation of df–persistence, d–persistence
and c–persistence. And analogously the reflection of these persistence properties is
shown. Only with properties such as α–canonicity one has to be careful, since the
unsimulation uses more variables. Finally, if ϕ is constant, so is ϕs. And if ψ is
constant, so is ψs. This shows invariance of g–persistence as well. The following
properties have been shown to be invarariant under simulation: g–persistence, df–
persistence, r–persistence, d–persistence, κ–canonicity (κ infinite).
E. The next lemma shows that a bimodal logic is Krp–elementary iff its
simulation is Krp–elementary.

L 6.7.10. Let K be a class of bimodal Kripke–frames, L a class of standard
simulation frames. Then

UpKs = (UpK)s

UpLs = (UpL)s

It is easy to define a translation for elementary properties under simulation.

ω(x) := (∀y > x)¬(y � y)
α(x) := (∃y > x)ω(x)
β(x) := ¬ω(x) ∧ (∀y > x)¬ω(x)

These formulae define the sets f t, f w and f t in a Sim–frame. Now put

δe :=
∧

x∈fvar(δ)

α(x).→ .δ f

(x � y) f := x � y
(x C y) f := x 6 y
(x J y) f := (∃v > x)(∃w > y)(β(v) ∧ β(w) ∧ v 6 w)
(δ1 ∧ δ2) f := δ

f
1 ∧ δ

f
2

(¬δ) f := ¬(δ f )
((∃x)δ) f := (∃x)(α(x) ∧ δ f )

It is not difficult to show that for a sentence α,

f � δ ⇔ f
s � δe

It is not hard to see that the class of Sim–Kripke frames is elementary. This also
follows from the fact that axioms for Sim are Sahlqvist.

The case of unsimulating elementary properties is more complex than the simu-
lating part. Take a formula ϕ in the first–order language for 1–modal frames. We may
assume (to save some notation) that the formula does not contain ∀. Furthermore,
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we may assume that the formula is a sentence, that is, contains no free variables. Fi-
nally, we do not assume that structures are nonempty. We introduce new quantifiers
∃α, [ ∈ {α, β, ω}, which are defined by

(∃[x)ϕ(x) := (∃x)([(x) ∧ ϕ(x))

Furthermore, for each variable x we introduce three new variables, x[, where [ ∈
{α, β, ω}. Now define a translation (−)† as follows.

(ϕ ∧ ψ)† := ϕ† ∧ ψ†

(ϕ ∨ ψ)† := ϕ† ∨ ψ†

(¬ϕ)† := ¬ϕ†

((∃x)ϕ(x))† := (∃αxα)ϕ(xα)† ∨ (∃βxβ)ϕ(xβ)† ∨ (∃ωxω)ϕ(xω)†

It is clear that ϕ and ϕ† are deductively equivalent. In a next step replace (∃βxβ)ϕ(xβ)
by

(∃αxα)(∃βxβ > xα)ϕ(xβ)

and (∃ωxω)ϕ(xω) by

(∃αxα)(∃ωxω > xα)ϕ(xω)

Call ψδ the result of applying this replacement to ψ. It turns out that (in the first–order
logic of simulation frames)

(∃x)w(x) ` ψδ ↔ ψ

That means that ψδ and ψ are equivalent on all frames Gs where G is not empty. In
ψδ the variables xβ and xω are bound by a restricted quantifier with restrictor xα; xα

in turn is bound by ∃α. To see whether such formulae are valid in a frame we may
restrict ourselves to assignments h of the variables in which x[ is in the [–region for
each [ and each x, and furthermore h(xα) > h(xβ). In a final step, translate as follows

(ϕ ∧ ψ)‡ := ϕ‡ ∧ ψ‡

(ϕ ∨ ψ)‡ := ϕ‡ ∨ ψ‡

(¬ϕ)‡ := ¬ϕ‡

((∃αxα)ϕ(xα))‡ := (∃x)ϕ(xα)‡

((∃βxβ > xα)ϕ(xβ))‡ := ϕ(xβ)‡

((∃ωxω > xα)ϕ(xω))‡ := ϕ(xω)‡
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For atomic formulae, ϕ‡ is computed as follows:

\→

x[ 6 y\ w b t

[ w x C y x � y >

↓ b x � y x J y ⊥

t ⊥ ⊥ ⊥

\→

x[ � y\ w b t

[ w x � y ⊥ ⊥

↓ b ⊥ x � y ⊥

t ⊥ ⊥ >

Let ψ be a subformula of ϕ†δ for some sentence ϕ. Let G be a 1–modal simulation
frame. ThenG is isomorphic to Fs for some bimodal frame F (for example, F := Gs)
and therefore G has exactly one point in the ω–region. Suppose G � ψ[h]. Then we
may assume that h(x[) is in the α–region for each [, and that h(xβ) ≺ h(xα). Now put
k(x) := h(xα). It is verified by induction on ψ that G � ψ[h] iff Gs � ψ

‡[k]. On the
other hand, if k is given, define h as follows: h(xα) := k(x), h(xβ) is the unique world
u in the β–region such that k(x) > u, and h(xω) is the unique world in the ω–region.
h is uniquely determined by k, and again it is verified that G � ψ[h] iff Gs � ψ

‡[k].
In particular, for ψ = ϕ†δ we get G � ψ iff Gs � ψ

‡. Now we return to ϕ. We have
ϕ ≡ ϕ∧ (∀x)ω(x).∨ .ϕ∧ (∃x)¬ω(x). The first formula is either equivalent to ⊥ (Case
1) or to (∀x)ω(x) (Case 2). Case 1. Put ϕe := (ϕ†δ)‡. Then G � ϕ iff Gs � ϕe. Case
2. Put ψe := ((∀x)¬(x � x)) ∨ (ϕ†δ)‡.

P 6.7.11. Let X be a class of simulation frames. If X is elementary
(∆–elementary) so is Xs.

The following properties have been shown to be invariant under simulation:
Krp–(∆)–elementarity.
S L. Likewise, by Proposition 6.6.13, ifΘ is Sahlqvist, so isΘs. For the
other direction, we need to be a little bit more careful. Assume thatΛ is a monomodal
logic and Sahlqvist. Then by Theorem 5.5.8 it is axiomatizable by formulae of the
form ϕ → ψ where ψ is positive and ϕ is composed from strongly positive formulae
using ∧, ∨, and ♦ j. Now (ϕ → ψ)s is the same as ϕs → ψs. It is not hard to see
that the unsimulation of a positive formula is positive, and that the unsimulation of
a strongly positive formula is strongly positive. Moreover, ψs is composed from
strongly positive formulae using ∧, ∨ and ♦ j. So, it is Sahlqvist.
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The rank as well as the special rank do not increase under simulation. This can
be shown by observing a few equivalences. Namely, note that the following holds.

((∀y B x)δ)s ≡ (∀y > x)(α(y)→ δ(x)s

((∀y I x)δ)s ≡ (∀x̂ > x)(∀̂y > y)(∀y > ŷ)(β(x̂) ∧ β(̂y) ∧ α(y).→ .δs)
((∃y B x)δ)s ≡ (∃y > x)(α(y) ∧ δ(y)s)
((∃y I x)δ)s ≡ (∃x̂ > x)(∃̂y > y)(∃y > ŷ)(β(x̂) ∧ β(̂y) ∧ α(y).→ .δs)
(x J y) ≡ (∀x̂ > x)(∀̂y > y)(β(x̂) ∧ β(̂y).→ .̂x 6 ŷ)
(x J y) ≡ (∃x̂ > x)(∃̂y > y)(β(x̂) ∧ β(̂y) ∧ x̂ 6 ŷ)

So, we translate a restricted ∀ by a sequence of restricted ∀ and a restricted ∃ by a
sequence of restricted ∃. The atomic formulae x C y and x J y may be translated
by existential formulae or universal formulae, and so neither the rank nor the special
rank are changed under simulation. Thus the special rank of ϕs is equal to the special
rank of ϕ. Conversely, let ψ be given, a monomodal Sahlqvist–formula of special
rank n. Then it is likewise checked that the unsimulation ψs is a Sahlqvist formula
of rank at most that of ψ. Moreover, ψ is deductively equivalent to a formula ψ̂
whose unsimulation has rank equal to that of ψ̂. (The construction of the unsimulated
formula actually proceeds by producing ψ̂ and unsimulating ψ̂ rather than ψ.) Now,
Sim is Df–elementary and of special rank 0. Hence, if K2 ⊕ ∆ is a Sahlqvist logic of
(special) rank n, then its simulation Sim⊕∆s is of (special) rank n, the rank being the
maximum of the ranks of Sim and of ∆. (Notice that the property of being Sahlqvist
of rank n are here properties of logics, not of the actual axiomatization; otherwise the
claim would be false.) Therefore the properties being Sahlqvist of rank n and being
Sahlqvist of special rank n are invariant under simulation.
I. Finally, we take a look at interpolation. It is easier to show that inter-
polation is transferred from monomodal to bimodal logic using the characterization
via the amalgamation property than using the simulation of formulae. However, this
has the disadvantage that an interpolant is not explicitly constructed. Take a bi-
modal logic Θ. Assume that Θs has global interpolation. Let ι1 : B0 � B1 and
ι2 : B0 � B2 be embeddings of Θ–algebras. Then ιs1 : Bs

0 � B
s
1 and ιs2 : Bs

0 � B
s
2

are embeddings of the simulations. Now, by the assumption that Θs has global in-
terpolation we get a A3 and embeddings ζ1 : Bs

1 � A3, ζ2 : Bs
2 � A3 such that

ζ1 ◦ ι
s
1 = ζ2 ◦ ι

s
2. Let B3 := (A3)s and put ε1 := (ζ1)s and ε2 := (ζ2)s. Then

ε1 ◦ ι1 = (ζ1)s ◦ (ιs1)s

= (ζ1 ◦ ι
s
1)s

= (ζ2 ◦ ι
s
2)s

= (ζ2)s ◦ (ιs2)s

= ε2 ◦ ι2
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Therefore, the variety of Θ–algebras has amalgamation. Suppose that the variety
of Θs–algebras has superamalgamation. Then we can show that the variety of Θ–
algebras has superamalgamation, too. For assume that ε1(b1) ≤ ε2(b2). Then via
the identification of elements with subsets of the ◦–region we conclude (ε1(b1))◦ ≤
(ε2(b2))◦ from which also ε s

1(b◦1) ≤ ε s
2(b◦2). Thus there exists a a0 such that b◦1 ≤ ζ1(a0)

and ζ2(a0) ≤ b◦2. Intersecting with α we get b◦1 ≤ ζ1(a0) ∩ α and ζ2(a0) ∩ α ≤ b◦2.
Now, put b0 := a0 ∩ α. Then ζ1(b0) = ζ1(a0) ∩ α as well as ζ2(b0) = ζ2(a0), from
which follows that b1 ≤ ε1(b0) and ε2(b0) ≤ b2.

Assume that Θ has local interpolation. Put ` := `Θs . Assume ϕ ` ψ. Then
(a) α → ϕ ` α → ψ. Moreover, we also have (b) β → ϕ ` β → ψ and (c)
ω→ ϕ ` ω→ ψ. (b) can be reformulated into (b′) α→ ♦ βϕ ` α→ ♦ βψ. The cases
(a), and (b′) receive similar treatment. Take (a). We have ϕs `Θ ψs. There exists by
assumption on Θ an χ such that var(χ) ⊆ var(ϕs)∩ var(ψs) and ϕs `Θ χ `Θ χs. Then
α → (ϕs)s ` α → χs ` α → (ϕs)s. Now take the substitution σ as defined above.
Then

(ϕ a`)α→ σ((ϕs)s) ` α→ σ(χs) ` α→ σ((ψs)s)(a` ψ) .
Put ζ := σ(χs). Then we have var(α → ζ) ⊆ var(ϕ) ∩ var(ψ) and α → ϕ ` α → ζ `

α → ψ. Similarly, we find a formula η such that α → ♦ βϕ ` α → η ` α → ♦ βψ.
Hence β → ϕ ` β → ♦ αη ` β → ψ. For (c) we can appeal to the fact that classical
logic has interpolation to find a θ such that α→ ♦ωϕ ` α→ ♦ωθ ` α→ ♦ωψ. (For
in the scope of ♦ω, ϕ and ψ reduce to nonmodal formulae.) Then put λ := (α →
ζ) ∧ (β → ♦ αη) ∧ (ω → θ). It follows that ϕ ` λ ` ψ. Thus Θs has interpolation.
Exactly the same proof can be used for global interpolation (no use of the deduction
theorem has been made). So, local interpolation and global interpolation have been
shown to be invariant under simulation.

T 6.7.12 (Simulation Theorem). The simulation map Λ 7→ Λs is an iso-
morphism from the lattice of bimodal normal logics onto the interval [Sim,Th • ]
in EK1 preserving and reflecting the following properties of logics.

∗ finite, strongly recursive, recursive axiomatizability,
∗ codimension n,
∗ tabularity,
∗ local and global decidability,
∗ local and global C–computability (C–hardness, C–completeness),
∗ local and global completeness,
∗ local and global finite model property,
∗ local and global interpolation,
∗ strong and weak compactness,
∗ g–, df–, r–, d– and c–persistence,
∗ being a Sahlqvist logic of (special) rank n.

Exercise 216. Show the remaining claims in the Simulation Theorem.
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Exercise 217. Show by direct calculation that (−)s is a –homomorphism.

Exercise 218. Using the simulation, we can simulate the fusion operator inside E K1
as follows. Define Λ⊗̂Θ := (Λ ⊗ Θ)s. By the transfer results Λ⊗̂Θ has finite model
property (is complete etc.) iff Λ andΘ are. Now suppose thatΛ andΘ are logics with
finite model property such that their join, i. e. Λ t Θ, fails to have the finite model
property. Show that Λ⊗̂Θ is a logic with finite model property such that adding
(�p ↔ �p)s fails to have the finite model property. Clearly, Sim ⊕ (�p ↔ �p)s

has the finite model property. Thus we have shown that if finite model property is
not preserved under joins, there is a Sahlqvist logic of special rank 1 which fails
to preserve joins. We will later refine this result somewhat; but already it shows
that very simple axioms can induce rather drastic effects if added to a logic, on the
condition that such effects can occur at all.

6.8. Simulation and Transfer — Some Generalizations

We have proved the simulation and transfer theorems only for the case of two
monomodal logics. This suggests two dimensions of generalization. First, we can
generalize to the simulation and transfer of several logics with one operator each,
and of two logics with several operators; of course, the two can be combined. Let
us begin with the fusion. Obviously, if we can generalize the transfer theorems to
the case of two logics with several operators, we have — by induction — a transfer
theorem for the independent fusion of n monomodal logics. The case of infinitely
many logics needs to be discussed separately. In fact, it does give rise to a number
of exceptions which must be carefully noted.

Now let us study the case of two polymodal logics Λ and Θ. The constructions
of an ersatz is straightforwardly generalized. The only difficulty we face is that the
proof of Consistency Reduction makes use of M’s Theorem. Recall, namely,
that in the model building procedure we want to insert certain small models at an
internal set of nodes. What we therefore need is that Λ ⊗ Θ allows for at least one
finite model, if for example transfer of finite model property is desired. This is true
if only Λ and Θ both have a finite model. Namely, the following construction yields
frames for the fusion. Take a frame F = 〈f,F〉 for Kκ and a frame G = 〈g,G〉 for Kλ.
We define the Kκ+λ–frame F ⊗G as follows. The underlying set is f × g. For α < κ,
〈v1,w1〉 C

⊗
α 〈v2,w2〉 iff w1 = w2 and v1 Cα v2. For β < λ we put 〈v1,w1〉 C

⊗
κ+β 〈v2,w2〉

iff v1 = v2 and w1 Cβ w2. Finally, F⊗G is the set of all unions of sets a⊗ b = {〈v,w〉 :
v ∈ a,w ∈ b}, where a ∈ F and b ∈ G. It is easy to check that this is indeed a frame.
For if α < κ then �α(a ⊗ b) = (�αa) ⊗ b and if β < λ then �κ+β(a ⊗ b) = a ⊗ (�βb).
The frame F ⊗G is called the tensor product of F and G.

L 6.8.1. Let F be a Λ–frame and G be a Θ–frame. Then F⊗G is a Λ⊗Θ–
frame.
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P. The projections of a set a are defined by

xay1 := {v : (∃w)(〈v,w〉 ∈ a)}
xay2 := {w : (∃v)(〈v,w〉 ∈ a)}

Let β be a valuation on F ⊗ G. Define a valuation γ1(p) := {v : xβ(p)y1}, and
γ2(p) := {w : xβ(p)y2}. By induction it is shown that if ϕ uses only modalities �α,
α < κ, then xβ(ϕ)y1 = γ1(ϕ) and if ϕ uses only modalities κ+β then xβ(ϕ)y2 = γ2(ϕ).
Hence, if ϕ is a theorem of Λ, it is a theorem of F ⊗ G, and if it is a theorem of Θ,
then it is a theorem of Λ⊗Θ, under suitable identification of modalities. This proves
the theorem. �

Let us note that if we have infinitely many logics, this method does not allow to
find a finite model for their fusion. However, suppose that there is a number m such
that all logics have a frame of size at most m (e. g. if they are all monomodal) then
we can construct a finite model for the infinite fusion. The basic idea is that there are
only finitely many choices of relations, so rather than taking the infinite product as
above, we will collapse a lot of relations into a single one. Let us first observe that if
Λ is a logic with infinitely many operators which has a frame F of size ≤ n, then the
theory of F contains many axioms of the form ♦αp ↔ ♦βp, α, β < κ, saying that the
relations α and β are identical. It is then possible to regard ThF as a finite operator
theory, and to compress F into a frame containing finitely many relations. Call an
unindexed frame a pair 〈 f ,R〉 where R is a set of binary relations over f . The map
〈 f , 〈Cα : α < κ〉〉 7→ 〈 f , {Cα : α < κ}〉 is called the compression map. Given n := ] f
there are finitely many unindexed frames of size n, for there are at most 2n2

different
binary relations, and a compressed frame contains a subset of them. Notice also that
if f and g are finite frames of size n, f a frame for Λ and g a frame for Θ, then there
exists an unindexed frame of size n for Λ ⊗ Θ. For we can assume the underlying
sets to be identical. Then we interpret Cα, α < κ by Cα and Cκ+β by Cβ, and then
compress. Now, for the final result, take a set of logics Λi, i ∈ I, such that there is a
number n such that each Λi has a frame of size ≤ n. Then take the unindexed tensor
product. It is finite. Now uncompress the frame, assigning each modality its relation.

L 6.8.2. Let Λi, i ∈ I, be an indexed family of polymodal logics. Let n be
a number such that every Λi has a model of size ≤ n. Then

⊗
i∈I Λi has a model of

size ≤ n!.

D 6.8.3. A property P of logics is said to be preserved under fu-
sion if for each family Λi, i ∈ I, of consistent logics,

⊗
i∈I Λi has P whenever each

Λi has P. If we can infer P for the factors from that of the fusion we say P is re-
flected under fusion. P transfers under fusion iff it is both preserved and
reflected under fusion.

T 6.8.4 (Transfer Theorem). The following properties are transferred
under fusion.
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∗ finite and recursive axiomatizability, provided the indexed collection is fi-
nite,

∗ g–, df–, ti–, r–, d– and c–persistence,
∗ local and global decidability,
∗ local and global finite model property, under the condition that there exists

a uniform bound for the smallest model of the factors,
∗ local and global completeness,
∗ weak and strong compactness,
∗ local interpolation, local Halldén completeness.

Of course, at some points things can be improved. Finite axiomatizability is
reflected under fusion even when I is infinite and the same holds for recursive ax-
iomatizability. Tabularity transfers exactly when almost all factors are trivial.

Now let us turn to simulation. We can generalize in two directions. First, we
can simulate an extension of Kκ+κ by using only the modalities of Kκ. (Notice that
we cannot simply simulate Kκ+λ for different κ and λ. But if κ , λ, it is possible to
adjoin to one of the logics a number of trivial operators to make the reduction work
in this case.) In that case we double up the frame and pick one modality to play
the complicated role of encoding the double structure. Notice that the reduction can
only be iterated a finite number of times, unlike the fusion. But we can also wrap
up the modalities in one step as follows. For n modalities, f n consists of n different
copies f i, i < n, plus n − 1 extra points ∗0, . . . , ∗n−2. Given x ∈ f we write xi for the
corresponding point in f i. Then the relation C j is coded among the x j. The points
∗i are related by ∗ j 6 ∗k iff k = j − 1. Furthermore we have x j 6 ∗k iff j = k. This
serves to distinguish the x j from the xk, k , j. Finally, for j , k we put x j 6 yk iff
x = y. Notice that x j 6 x j iff x C j x. Then the formulae α j and ω j are defined as
follows.

ω( j) := � j+1⊥ ∧ ♦
i
> j < n − 1

α( j) := ¬ω( j + 1) ∧ ♦ω( j) j < n − 2
α(n − 2) := ♦ω(n − 2)
α(n − 1) :=

∧
j<n−1 ¬ω( j) ∧ ¬α( j)

As before, the logic of simulation structures can be axiomatized. It is the best strat-
egy to define the operators �α( j) and �ω( j). These operators all satisfy alt1. Moreover,
we have α( j)→ ♦ α(i)> for i , j. In total, we have the following postulates.

α(i)→ ♦α( j) i , j
α(i) ∧ ♦ α( j) p.→ . �α( j) p i , j
α(i)→ ♦ω(i)
α(i)→ ¬♦ω( j) i , j
α(i) ∧ ♦ α( j) p.→ ♦ α(k) ♦ α( j) p i , k, j , k

♦
≤4
ω( j) ∧ p.→ . �≤4 (ω( j)→ p)
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for j , k. This defines Sim(n). The special postulates ensure that we can move from
x j to xk in one step. The price to be paid for this is that the special rank of Sim(n)
is 1 for n > 0. There is a simulation which avoids this (see the exercises), but it has
other disadvantages. We put Inc(n) := K.alt1⊕�

n⊥, which is the same as (Kn⊕⊥)s.

T 6.8.5 (Simulation Theorem). The simulation map Λ 7→ Λs is an iso-
morphism from the lattice of normal n–modal logics onto the interval [Sim(n), Inc(n)]
preserving and reflecting the following properties.

∗ finite, strongly recursive and recursive axiomatizability,
∗ tabularity,
∗ local and global decidability,
∗ local and global C–computability (C–hardness, C–completeness),
∗ local and global completeness,
∗ local and global finite model property,
∗ local and global interpolation,
∗ strong and weak compactness,
∗ g–, df–, r–, d–, and c–persistence,
∗ being a Sahlqvist logic of (special) rank n,
∗ being weakly transitive,
∗ being of bounded alternativity.

To close this chapter we will generalize the conservativity result of this chapter
to consequence relations. Apart from being interesting in its own right, this will also
sharpen our understanding of the methods used previously. As before, the situation
we look at is the fusion of two monomodal consequence relations and the simulation
of a bimodal consequence relation by a monomodal consequence relation. The re-
sults are general, however. The simplification is made only to avoid baroque notation
and to be able to concentrate on the essentials of the method. As is to be expected,
the proofs of some theorems are more involved. In particular, to show that the fu-
sion of two consequence relations is conservative requires other methods because an
analogue of Makinson’s Theorem is missing. (See Section 3.9.) For the purpose of
the next definition recall that if R is a set of rules, `R denotes the least modal conse-
quence relation containing R. We have the two translations τ� and τ� from P1 into
P2, defined in Section 6.2. τ� replaces � by � and τ� replaces � by �.

D 6.8.6. Let `1 = `
R and `2 = `

S be two monomodal consequence
relations. Put T := τ�[R] ∪ τ�[S ]. Then `1 ⊗ `2 is a bimodal consequence relation
defined by `1 ⊗ `2:= `T . `1 ⊗ `2 is called the fusion of `1 and `2.

Let ` be a bimodal consequence relation. Define two consequence relations,
(`)� and (`)� by

`� := τ−1
� [`]

`� := τ−1
� [`]

We call `� and `� the white and black reduct of `, respectively.
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P 6.8.7. Let `1 and `2 be monomodal consequence relations. Then
`1 ⊗ `2 is the least consequence relation such that (`1 ⊗ `2)� = `1 and (`1 ⊗ `2
)� = `2.

Our first main result is the analogue of Theorem 6.2.3.

T 6.8.8. Let either `1 be inconsistent or else `2 be consistent. Then

(`1 ⊗ `2)� = `1

First, let us deal with the easy case. If `1 is inconsistent then so is `1 ⊗ `2, and
the fusion is clearly conservative. So, let us from now on assume that `1 is consistent.
In that case, `2 is also assumed to be consistent. Now suppose M = 〈A,D〉 and
N = 〈B, E〉 are matrices such that `1 ⊆ `M and `2 ⊆ `N. Then construct a bimodal
matrixM ⊗N as follows. It is based on the tensor product of boolean algebras. This
tensor product is formed from so–called basic tensors. These are pairs 〈x, y〉 ∈ A×B,
denoted by x ⊗ y. The (boolean) tensor algebra is the boolean algebra generated by
the basic tensors with respect to the following rules.

(x1 ⊗ y1) ∩ (x2 ⊗ y2) := (x1 ∩ x2) ⊗ (y1 ∩ y2)
x ⊗ 0 := 0 ⊗ 0
0 ⊗ y := 0 ⊗ 0

(x1 ⊗ y) ∪ (x2 ⊗ y) := (x1 ∪ x2) ⊗ y
(x ⊗ y1) ∪ (x ⊗ y2) := x ⊗ (y1 ∪ y2)

−(x ⊗ y) := (−x) ⊗ y ∪ x ⊗ (−y) ∪ (−x) ⊗ (−y)

It can be shown that an element of A ⊗ B is of the form
⋃

i<n xi ⊗ yi, where xi > 0
as well as yi > 0 for all i < n. (Moreover, if n = 0, then this disjunction denotes the
tensor 0 ⊗ 0.) For a basic tensor x ⊗ y = 0 ⊗ 0 iff x = 0 or y = 0. This defines the
tensor product of boolean algebras.

L 6.8.9. The following holds.
(A.) x1 ⊗ y1 = x2 ⊗ y2 iff

(1.) 0 ∈ {x1, x2} and 0 ∈ {y1, y2} or
(2.) x1 = x2 and y1 = y2.

(B.) x1 ⊗ y1 ≤ x2 ⊗ y2 iff
(1.) x1 = 0 or
(2.) y1 = 0 or
(3.) x1, x2, y1 and y2 are all distinct from 0 and x1 ≤ x2 and y1 ≤ y2.

P. Clearly, (A.) follows from the construction. Therefore we need to show
(B.). If x1 ≤ x2 and y1 ≤ y2, then

(x1 ⊗ y1) ∩ (x2 ⊗ y2) = (x1 ∩ x2) ⊗ (y1 ∩ y2) = x1 ⊗ y1 .

So, x1⊗y1 ≤ x2⊗y2. Now let x1 = 0 or y1 = 0. Then x1⊗y1 = 0⊗0 ≤ x2⊗y2. Let all
elements be distinct from zero. Then x1 ⊗ y1 ≤ x2 ⊗ y2 implies (x1 ⊗ y1)∩ (x2 ⊗ y2) =
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x1⊗y1. So, (x1∩ x2)⊗ (y1∩y2) = x1⊗y1. Now, x1 , 0 and y1 , 0, hence x1∩ x2 = x1
and y1 ∩ y2 = y1. This implies x2 , 0 and y2 , 0, and moreover x1 ≤ x2 and
y1 ≤ y2. �

The bottom element is 0 ⊗ 0, and the top element is 1 ⊗ 1. The action of � and
� is defined via their duals, ♦ and �, in the following way.

♦(
⋃

i<n xi ⊗ yi) :=
⋃

i<n ♦(xi ⊗ yi)
♦(x ⊗ y) := (♦ x) ⊗ y
�(

⋃
i<n xi ⊗ yi) :=

⋃
i<n �(xi ⊗ yi)

�(x ⊗ y) := x ⊗ (♦ y)

This defines now the fusion of two monomodal algebras. Finally, let D ⊗ E denote
the least filter containing the elements x ⊗ y, x ∈ D and y ∈ E. It can be shown that
this is likewise the filter generated by x ⊗ 1, x ∈ D, and 1 ⊗ y, y ∈ E. Finally, put

M ⊗ N := 〈A ⊗B,D ⊗ E〉

The first fact to note is

L 6.8.10. Assume that 0 < D and 0 < E. Then x ⊗ y ∈ D ⊗ E iff x ∈ D and
y ∈ E.

P. From right to left holds by definition of D⊗E. From left to right, assume
that x ⊗ y ∈ D ⊗ E. Then there is x′ ∈ D and y′ ∈ E such that x ⊗ y ≥ x′ ⊗ y′. Since
x′ > 0 and y′ > 0 by assumption on D and E, x ≥ x′ and y ≥ y′ from which x ∈ D
and y ∈ E, since D and E are filters, and x ⊗ y ∈ D ⊗ E, by definition of D ⊗ E. �

L 6.8.11. The map x 7→ x⊗1 is an in injective homomorphism from A into
A ⊗B � {1,−,∩,�}. Dually, the map y 7→ 1 ⊗ y is an injective homomorphism from
B into A ⊗B � {1,−,∩,�}.

This is left as an exercise.

L 6.8.12. Assume thatN = 〈B, E〉 is a monomodal matrix and 0 < E. Then
(`M⊗N)� ⊆ `M.

P. Assume thatM = 〈A,D〉. Let ρ = 〈∆, ϕ〉 < `M. Then 0 < D. We want to
show that τ�[ρ] := 〈τ�[∆], τ�(ϕ)〉 < `M⊗N. To that end, let β be a valuation such that
β[∆] ⊆ D but β(ϕ) < D. Then γ(p) := β(p) ⊗ 1 is a valuation intoM ⊗ N. Moreover,
by Lemma 6.8.11, for any formula χ ∈ P1, γ(τ�(χ)) = β(χ) ⊗ 1. It follows with
Lemma 6.8.10 that γ(τ�(χ)) ∈ D ⊗ E iff β(χ) ∈ D. Hence, γ[τ�[∆]] ⊆ D ⊗ E, and
γ(τ�(ϕ)) < D ⊗ E. So, τ�[ρ] < `M⊗N. �

Recall from Section 3.5 the following notation. Given a modal algebra B, Bz

denotes the algebra of elements ≤ z. This is called the relativization of B.

L 6.8.13. The map rz : x→ x ∩ (1 ⊗ z) is a homomorphism with respect to
the operations 1, −, ∩, �.
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P. Let C := A⊗Bz. We have 1A⊗B = 1⊗1, and 1C = 1⊗z = (1⊗1)∩(1⊗z). It
is easy to check that rz commutes with ∩ and ∪. The latter is useful in order to derive
that rz(−x) = −rz(x). Namely, we can reduce this now to the case where x = x ⊗ y. In
that case,

rz(−(x ⊗ y)) = rz((−x) ⊗ y ∪ x ⊗ (−y) ∪ (−x) ⊗ (−y))
= (−x) ⊗ (y ∩ z) ∪ x ⊗ ((−y) ∩ z) ∪ (−x) ⊗ (−y) ∩ z
= −C(x ⊗ (y ∩ z))
= −Crz(x ⊗ y)

Finally,
rz(♦(x ⊗ y)) = rz((♦ x) ⊗ y)

= (♦ x) ⊗ (y ∩ z)
= ♦(x ⊗ (y ∩ z))
= ♦(rz(x ⊗ y))

�

L 6.8.14. (`M⊗N)� ⊇ `M.

P. Let ρ = 〈∆, ϕ〉 be a rule of monomodal logic. Assume that τ�[ρ] < `M⊗N
where 〈A,D〉 and N = 〈B, E〉. We have to show that ρ < `M. To that end, note that
there is a valuation γ intoM ⊗ N such that γ[∆] ⊆ D ⊗ E but γ(ϕ) < D ⊗ E. Let the
variables occurring in ∆ and ϕ be pi, i < k. We may assume that there exist elements
c j, j < m, of B such that c j > 0 for all j < m, ci ∩ c j = 0 iff i = j and for certain
ai

j ∈ A,

γ(pi) =
⋃
j<m

ai
j ⊗ c j

(Of course, some or all of the ai
j may be zero.) Now, put

β j(pi) := ai
j

Then γ(pi) ∩ c j = β j(pi) ⊗ c j. It follows that γ(τ�(χ)) ∩ c j = β(χ) ⊗ c j for every
χ ∈ ∆ ∪ {ϕ}. Finally, observe that rc j [D ⊗ E] = D ⊗ Ec j , where Ec j is the filter
generated by y ∩ c j, y ∈ E. Notice that it may well happen that Ec j = B, for example
if −c j ∈ E. Now, for χ ∈ ∆ ∪ {ϕ}, γ(τ�(χ)) ∩ c j = β j(χ) ⊗ c j ∈ D ⊗ Ec j iff β j(χ) ∈ D.
Now, γ[τ�[∆]] ⊆ D ⊗ E implies that β j[∆] ⊆ D for all j < m and γ(τ�(ϕ)) < D ⊗ E
implies that for some j < m, β j(χ) < D. Hence ρ < `M. �

C 6.8.15. Let N = 〈B, E〉 be a matrix such that 0 < E. Then (`M⊗N
)� = `N.

C 6.8.16. LetM be a matrix for `1 and N a matrix for `2. ThenM⊗N
is a matrix for `1 ⊗ `2.
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We are now in a position to prove Theorem 6.8.8. Assume that `1 is consistent.
Then `2 is consistent, according to the assumptions of the theorem. Hence there
exists a matrix N = 〈B, E〉 such that `2 ⊇ `N. Now assume that ρ < `1. Then there
exists a matrix N such that ρ < `N. Then τ�[ρ] < `M⊗N. Thus, τ�[ρ] < `1 ⊗ `2,
since M ⊗ N is a matrix for the fusion. It follows that ρ < (`1 ⊗ `2)�. Hence
(`1 ⊗ `2)� ⊆ `1. The converse inclusion is straightforward from the definition. The
theorem is proved. As an immediate consequence we obtain from it the fact that the
fusion of logics is directly connected with the related consequence relations.

T 6.8.17. Let Λ and Θ be monomodal logics. Then

`Λ⊗Θ = `Λ ⊗ `Θ 
Λ⊗Θ = 
Λ ⊗ 
Θ

Exercise 219. Prove Theorem 6.8.17.

Exercise 220. Is Halldén–completeness reflected under simulations?

Exercise 221. Propose a different simulation by putting x j 6 xk iff j = k (and xC j x)
or k = j+1 (mod n)). Show that in this simulation the special rank of the simulating
logic is not increased even in the case it is zero.

Exercise 222. Discuss the tradeoffs of the various simulations in terms of the alter-
nativity bounds versus transitivity bounds.

Exercise 223. Show that tabularity transfers under fusion exactly when all but one
factor only have frames of size 1.

Exercise 224. Recall that a logic is α–compact if for every consistent set based on
< α variables there is a model based on a frame for that logic. Show that for finite α,
Λ is α–compact only if Λ ⊗K is 1–compact.

Exercise 225. Show that a logic is 1–compact iff it has at least one Kripke–frame.

Exercise 226. Call a property P operator compact if it holds of an infinite fusion of
logics iff it holds of all finite sub–fusions. That is to say,

⊗
i∈I Λi has P iff

⊗
i∈J Λi

has P for all finite J ⊆ I. Find out which properties are operator compact.





CHAPTER 7

Lattices of Modal Logics

7.1. The Relevance of Studying Lattices of Logics

We have seen in an earlier chapter that the lattices of (normal) modal logics are
— at least from a lattice theoretic point of view — quite well–behaved. However,
a typical fact of lattice theory is that the abstract properties of a lattice give very
little insight into the actual structure of a lattice. We always need a lot of special
information about it. We will see that there is no hope of deducing strong results
about logics using these abstract properties; however, there is a mixture between
abstract theory and concrete work with modal logic that yields surprisingly deep
insights into both the structure of the lattices and the properties of the logics. The
main tool will be that of a splitting, developed within logic by V. A. J [108,
109] for intuitionistic logic and in modal logic especially by W B [25] and
W R [168, 170]. These authors have also paid explicit attention to
the structure of lattices in their work. Elsewhere, lattice theory had only a minor role
to play. The motivation for introducing the concept of a splitting has been solely the
quest for studying the lattice of normal monomodal logics as an object. However, it
soon appeared that there are deep connections between splitting results and intrinsic
properties of logics. Here we will develop the theory with hindsight, paying attention
to the interplay between the structure of the lattices of extensions of a logic and
properties of the logics in that lattice.

The objects of study are extensions of the logic Kκ (or extensions thereof), the
minimal logic for Kripke–frames with κ operators. Most results hold only if κ is
finite, but they will be explicitly marked — as we have done before on similar
occasions. E Kκ is the image of 〈℘(Pκ),

⋂
,
⋃
〉 under the map α : X 7→ Kκ ⊕ X.

This map commutes with infinite joins but generally not with meets. (For exam-
ple, let X1 := {p} and X2 := {q} with p , q. Then X1 ∩ X2 = ∅ but obviously
K ⊕ X1 = K ⊕ X2 = K ⊕ ⊥.) The structure of the lattice is fully determined by
α. However, since ℘(Pκ) is uncountable, we must restrict ourselves to finite sets,
or occasionally also recursive or recursively enumerable sets. These restrictions oc-
casionally cause complications; the set of finitely axiomatizable logics is not closed
under intersection, except for weakly transitive logics, and generally not closed under
infinitary unions. The set of (strongly) recursively axiomatizable logics are closed
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under unions and meets, but closed under infinitary unions only under special cir-
cumstances. Mostly, we will consider finitely axiomatizable logics. Even here the
situation is not so favourable. We will show in Chapter 9 that for given (finite!) sets
X, Y it is undecidable whether Kκ⊕X = Kκ⊕Y . So, not too much should be expected
from this approach.

In general we will be concerned with decidable subsets of E Kκ. A subset E ⊆
E Kκ is called decidable if for given finite X, the problem ‘α(X) ∈ E’ is decidable.
α is a closure operator on Pκ. A closed element is of the form α(X). Take two
elements, α(X) and α(Y). Suppose that α(X) is decidable and Y finite. Then it is
decidable whether or not α(Y) ⊆ α(X). Namely, we only have to test all elements
of Y whether they are in α(X). And since ‘ϕ ∈ α(X)’ is decidable, so is therefore
‘α(Y) ⊆ α(X)’.

P 7.1.1. (κ < ℵ1.) Kκ ⊕ X is decidable iff {Λ : Λ ⊆ Kκ ⊕ X} is
decidable iff for all finite Y it is decidable whether or not Kκ ⊕ Y ⊆ Kκ ⊕ X.

We remark here that to say that α(X) decidable is not the same as to say that
{α(X)} is decidable. Now take the lattice E S4.3. We will see later that all extensions
are finitely axiomatizable and decidable. Hence, we can decide for two logics S4.3⊕
X and S4.3 ⊕ Y , where X and Y are finite, whether S4.3 ⊕ X ⊆ S4.3 ⊕ Y and hence
whether S4.3 ⊕ X = S4.3 ⊕ Y . The same holds for the lattices of extensions of
K.alt1 and K5. In general, however, not only are there non–finitely axiomatizable
logics, there are also finitely axiomatizable, undecidable logics. In general, therefore,
intrinsic properties of logical systems and properties of logics in the lattice E Kκ are
unrelated, with some important exceptions. One such exception are splitting pairs.
We say that 〈Kκ ⊕ X,Kκ ⊕ Z〉 is a splitting pair in the lattice E Kκ if the lattice is
the disjoint union of the principal ideal generated by Kκ ⊕ X, and the principal filter
generated by Kκ ⊕ Z. Suppose that 〈Kκ ⊕ X,Kκ ⊕ Z〉 is a splitting pair and both
Kκ ⊕ X and Kκ ⊕ Z are decidable. Then for each finite set Y , ‘Kκ ⊕ Y = Kκ ⊕ X’
is decidable. For let Y be given; and let Y be finite. Then, by the decidability of
‘Kκ ⊕ Z’, for every ϕ ∈ Y , ‘Kκ ⊕ ϕ ⊆ Kκ ⊕ Z’ is decidable. Hence ‘Kκ ⊕ Y ⊆ Kκ ⊕ Z’
is decidable. Moreover, ‘Kκ ⊕ Y + Kκ ⊕ Z’ is equivalent to ‘Kκ ⊕ Y ⊆ Kκ ⊕ X’.
The latter is decidable. So, splitting pairs are ideal tools for getting a grip on the
structure of the lattice. Yet, it turns out that such pairs are quite rare. In general, to
have sufficiently many such pairs the base logic must be strengthened to include at
least an axiom of weak transitivity. There are many interesting logics that are weakly
transitive, especially in the case of a single operator. But naturally arising logics in
several operators will most likely not be weakly transitive. (However, one can always
add a universal modality to make a logic weakly transitive.) This is on the one hand
a rather negative fact, but on the other hand even the absence of splittings reveals
something about the structure of the lattice.
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7.2. Splittings and other Lattice Concepts

Let 〈L,>,⊥,u,t〉 be a bounded lattice. An element x is called u–irreducible
if x , > and for every pair y, z of elements such that y u z = x either y = x or z = x.
Dually, we say that x is t–irreducible if x , ⊥ and for every pair of elements y and
z such that x = y t z we have either x = y or x = z. An element x is called u–prime
or meet prime (t–prime or join prime) if x , > (x , ⊥) and for every pair y and z
of elements such that yu z ≤ x (yt z ≥ x) we have either y ≤ x or z ≤ x (either y ≥ x
or z ≥ x). The following is an easy fact about lattices.

P 7.2.1. Let L = 〈L,>,⊥,u,t〉 be a bounded lattice and x ∈ L. If x
is u–prime, x is u–irreducible. If x t–prime it is also t–irreducible. Suppose that L
is distributive. Then x is u–irreducible iff x is u–prime and x is t–irreducible iff x
is t–prime.

In finite lattices meet–irreducibility is equivalent to having exactly one upper
cover, and join–irreducibility is equivalent to having exactly one lower cover. Now,
in a finite lattice, every element is the meet of meet–irreducible elements, and every
element is the join of join–irreducible elements. This follows from the fact that for
every pair of elements x < y there exists a maximal element p such that p ≥ x
but p � y. p must be meet–irreducible, for every element strictly larger than p is
above y, and if p = u u v for some u, v > p then u, v ≥ y and hence p = u u v ≥
y, a contradiction. The reader may now check that any finite distributive lattice is
isomorphic to the lattice of upward closed sets of meet–irreducibles, and — dually
— also isomorphic to the lattice of downward closed sets of join–irreducibles. This
is the general idea behind the topological representation that we will develop later.

In a complete lattice we can define infinitary versions of these notions as well.
Call x –irreducible or strictly meet–irreducible if whenever x = 〈yi : i ∈ I〉
we have x = yi for some i ∈ I. Call an element x –prime or strictly meet–
prime if x ≥ 〈yi : i ∈ I〉 implies x ≥ yi for some i ∈ I. And analogously

–irreducibility or strict join–irreducibility and –primeness or strict join–
primeness are defined. Again, primeness is stronger than irreducibility. A set Y =
〈yi : i ∈ I〉 is called a subreduction of x if Y ≤ x while yi � x for all i ∈ I.

P 7.2.2. Let L be a complete and distributive lattice. If L is upper
continuous then every –irreducible element is –prime; if L is lower continuous
then every –irreducible element is also –prime.

P. Surely, the two statements are dual to each other, so let us prove only the
first. Let x be –irreducible and let x ≤ 〈yi : i ∈ I〉. Then x = x u 〈yi : i ∈ I〉.
Since x u 〈yi : i ∈ I〉 = 〈x u yi : i ∈ I〉 we have x = 〈x u yi : i ∈ I〉, so by
the irreducibility of x, x = x u yi for some i ∈ I. Thus for some i ∈ I, x ≤ yi, as
required. �

The converse of these statements fails to hold. Just consider the lattice 1 +
Z × Z + 1, obtained by adjoining to the product of the linear lattice 〈Z,min,max〉
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F 7.1.

XXXXXXXXXXXX

XXXXXXXXXXXX

•
x
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

. . . . . . . .

. . . . . . . .

•

with itself a new bottom and a new top element. This lattice is not continuous, but
distributive. No element is even simply meet– or join–irreducible. So all strictly
join–irreducible elements are also strictly join–prime. Lattices of modal logics are
upper continuous, so strictly join–irreducible logics are also strictly join–prime. To
give the reader an impression of lattices which are distributive but fail one of the
large distributive laws, consider the lattice in Figure 7.1. The bottom element is
the intersection both of the lower descending chain and the upper descending chain.
Hence x is –irreducible but not –prime. Other examples are the lattices of open
subsets of the topological spaces Rn, and the lattice E K.alt1 (see Chapter 7.6). The
following example illustrates that E K.alt1 is not lower continuous. The theory of the
one–point reflexive frame, ◦ , contains the theory of the infinite frame 〈ω,≺〉 where
i ≺ j iff j = i + 1. For the map n 7→ 0 is a contraction of 〈ω,≺〉 onto ◦ . The theory
of 〈ω,≺〉 is the intersection of the theories of 〈n,≺〉, by the fact that the n–transits
of the respective roots are isomorphic. So {Th 〈n,≺〉 : n ∈ ω} is a subreduction of
the theory of ◦ . Strongly irreducible elements have a nice characterization from a
lattice theoretic point of view. Given an element x ∈ L we say that y is an upper
cover of x if x < y but for no element z we have x < z < y. x is called a lower cover
of y if y is an upper cover of x. We write x ≺ y to say that x is a lower cover of y (or
that y is an upper cover of x). The following is not hard to see.

P 7.2.3 (Blok). In a complete lattice, x is strongly join–irreducible
iff it has an upper cover y and for all z > x we have z ≥ y. Dually, x is strongly
meet–irreducible iff it has a lower cover y and for all z < x we have z ≤ y.

For finitely axiomatizable logics we can show they are never the limit of an
ascending sequence of logics (see [23]).

T 7.2.4. Let Λ be finitely axiomatizable. Then for every logic Θ ( Λ
there exists a lower cover Θo of Λ such that Θ ⊆ Θo.



7.2. Splittings and other Lattice Concepts 317

P. Consider the following property P. X has P iff Θ ⊕ X + Λ. This is a
property of finite character. ForΛ = Θ⊕E for some finite set E. Thus ifΘ⊕X ⊇ Θ⊕E
then there exists a finite subset X0 ⊆ X such that E ⊆ Θ ⊕ X0. Therefore P has
finite character. So ∅ is contained in a maximal set Xo, by Tukey’s Lemma. Put
Θo := Θ ⊕ Xo. By definition of Xo, Θo is a lower cover of Λ. For consider an
extension Θo ⊕ Y . If Θo ⊕ Y + Λ then Xo ∪ Y must have P, which by the maximality
of Xo means that Y ⊆ Xo. Thus Θo ⊕ Y = Θo, as required. �

Similarly the following theorem is proved. For the purpose of stating the theorem, a
pair x/y is called a quotient if x ≥ y. The quotient x/y is prime if x > y and for no
z, x > z > x.

T 7.2.5. Let Λo < Λo. Then the interval [Λo,Λ
o] contains a prime

quotient.

P. It is not hard to see that the interval contains a logic Θ , Θo which is
finitely axiomatizable over Λo. Now show as above that there exists a lower cover
Θo for Θ. �

The lattice of rational (or real) numbers in the closed interval [0, 1], with min and
max as operations, contains no prime quotients. So this is a nontrivial property of
lattices of logics. Logics which are not finitely axiomatizable may also have lower
covers. Examples are the logics ι(M) of Chapter 2.6, for infinite M. The covers are
not necessarily unique. Moreover, even if Λ has a lower cover Λo it may happen that
there exist logics Θ such that Θ ( Λ but Θ * Λo.

The notion of a sublattice and homomorphic image of a lattice is defined just
as all the other algebraic concepts. (However, notice that our lattices usually have
infinitary operations. So the concepts must be extended to infinitary operations; we
trust that the reader understands how this is done.) If we just consider lattices as
objects, we can afford to be vague as to whether or not we consider infinitary op-
erations or the top and bottom elements as being primitve operations, because we
can define them from the others if necessary. When we consider homomorphisms of
lattices, however, this makes a great difference. A homomorphism which is faithful
to the finitary operations need not be faithful to the infinitary ones. (This is a point
where the notion of a category defined in Section 4.4 is helpful. Taking the class of
complete lattices with maps respecting the finitary operations results in a different
category than taking the class of complete lattices together with maps preserving the
infinitary operations.) Let us say, therefore, that a lattice only has the finitary oper-
ations. Recall that locales are structures 〈L,u, 〉 where u and are the finitary
meet and infinitary join. (See Section 3.) Notions of subobject and homomorphism
differ with respect to the top and bottom element, depending on whether they are
present in the signature. If they are they must be preserved under embeddings. In
boolean algebras, where the top and bottom are definable, a subalgebra must contain
the top and bottom of the original algebra. For lattices this need not be so. For our
purposes, we are quite happy not to have the top and the bottom in the signature.
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Recall from Section 1.1 the notation ↑X and ↓X. An upper cone is a filter if it is
closed under finite intersections; a lower cone is called an ideal if it is closed under
finite unions. A filter (an ideal) is principal if it is of the form ↑{x} (↓{x}) for some
x. We usually write ↓ x instead of ↓{x} and ↑ x instead of ↑{y}. If F is a principal
filter and F = ↑ x = ↑y then x = y. Similarly for ideals. Filters and ideals are special
sorts of sublattices. If they are principal, then they are also complete sublattices, or,
for that matter, sublocales.

Now we come to the main definition of this section, that of a splitting, shown in
Figure 7.2.

D 7.2.6. A pair 〈p, q〉 of elements is said to split a lattice L if for every
element x ∈ L we have x ≤ p or x ≥ q, but not both. Equivalently, 〈p, q〉 is a splitting
if L is the disjoint union of the ideal ↓ p and the filter ↑q. If that is so, p is said to
split L, and q is said to co–split L. p and q are splitting companions of each
other. We write L/p or ⊥/p for the splitting companion of p.

The situation is depicted in Figure 7.2. We give some examples from modal
logic.

E. K1/Th • = K1.D. For let Λ * Th • . Then �⊥ < Λ, and so ♦> ∈ Λ.

E. S4/Th ◦ -◦ = S5. ◦ -◦ consists of two points, 0 and 1, and
C = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}. Assume that Λ is an extension of S4 such that Λ * S5. We
have to show that h is a frame for Λ. So, by assumption, ♦(p∧♦�¬p)∨♦(¬p∧♦�p)
is consistent with Λ and therefore there exists a model 〈F, β, x〉 � p; ♦�¬p. Put

V := β(�(p→ �♦p) ∧ �(¬p→ �♦¬p))

V is an internal set of F and nonempty. It is a generated subset. Furthermore, every
point not in V has a sucessor in V . To see this, define the span of y ∈ f to be the set
of formulae ϕ ∈ {p,¬p} such that there exists a z B y with 〈F, β, z〉 � ϕ. A point y is
of minimal span if every successor of y has the same span as y. It is easy to see that
every point sees a point of minimal span. V is the set of points of minimal span. Let
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W be the set of successors of x which are not in V . W is not empty, for it contains
x. (By the fact that x has span {p,¬p}, and has a successor of span {¬p}, x < V .)
Define π by π(y) := 0 if y ∈ W and π(y) := 1 if y ∈ V . π is a contraction onto h of the
subframe generated by x in F.

E. (See [241] for details.) Let Θ be the tense logic of the rational numbers
〈Q, <〉 and Λ the tense logic of the real numbers 〈R, <〉. Then Λ = Θ/Th ◦ -◦ .
For let 〈 f ,C〉 be a rooted frame for Θ. Then C is a linear dense order without end-
points, though not necessarily irreflexive. Suppose that there is a tense p–morphism
onto ◦ -◦ . Then there are sets A, B ⊆ f such that for every x ∈ A and every
y ∈ B: x C y. Moreover, every element in A has a successor in A, and every element
in B has a predecessor in B. Such pair of sets is called a gap. Hence, the frames for
Λ are those frames for Θ which contain no gaps. In particular, 〈Q, <〉 is not a frame
for Λ.

The following theorem gives a full characterisation of splitting elements and
splitting pairs.

T 7.2.7. An element p splits a complete lattice iff p is –prime. Dually,
an element q co–splits a complete lattice iff q is –prime. If p splits L, the com-
panion is uniquely determined, similarly for co–splitting elements. The map p 7→ p?
which sends a strictly meet–prime element to its splitting companion is an isomor-
phism from the poset of –prime elements onto the poset of –elements. Its inverse
is the map q 7→ q? which sends a co–splitting element to its splitting companion.

P. First, if p splits L, then the complement of ↓ p is a principal filter ↑q
for some q. q is certainly unique. Moreover, consider p ≥ 〈yi : i ∈ I〉. Then,
〈yi : i ∈ I〉 < ↑q. This can only be the case if for some i ∈ I, yi < ↑q, which

means for that i, yi ≤ p. Thus p is –prime. Dually, we can show that if q co–
splits the lattice, then q is –prime. Conversely, assume that p is –prime. Take
q := 〈y : y � p〉. We have q � p. Moreover, if x � p then by definition of q,
x ≥ q. And if x ≥ q, then x ≤ p cannot hold. So, we have a splitting pair 〈p, q〉.
Dually for –prime elements. Now for the last claim. Take as a map the map that
sends a splitting element to its companion. This map is injective; for if p1 , p2
then ↑ p1 , ↑ p2. Then also ↓ (p1)? , ↓ (p2)?, showing (p1)? , (p2)?. The map is
surjective, because each –prime element has a companion. Now consider p1 ≤ p2,
and let 〈p1, q1〉 and 〈p2, q2〉 be splitting pairs. Then ↓ p1 ⊆ ↓ p2, whence ↑q1 ⊇ ↑q2,
from which q1 ≤ q2. �

If we have a splitting pair, then there arise two natural sublattices, namely ↓ p
and ↑q. Generally, in modal logic, we are interested in lattices of extensions, so the
lattices ↑q are of special importance. It is generally the case that if 〈p̂, q̂〉 is a splitting
pair of L and p̂ ≥ q then p̂ splits the lattice L/p. (In case p̂ � q the induced splitting
is trivial.) The splitting companion is q t q̂. So we have the following equation.

(L/p1)/p2 = L/p1 t L/p2
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F 7.3. Iterated Splitting
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The iterated splitting does therefore not depend on the order in which we split. Thus
for a possibly infinite set N of prime elements of L we define

L/N := 〈L/p : p ∈ N〉

In Figure 7.3 the situation is shown where p and r are being split in succession, with
q the splitting companion of p and s the splitting companion of r. In case we have
a complete boolean algebra and a splitting pair 〈p, q〉, p is a coatom and q an atom.
(Only coatoms are u–irreducible, and only atoms are t–irreducible.)

T 7.2.8. A complete lattice L is isomorphic to 2 × K for some complete
lattice K iff there exists a splitting pair 〈p, q〉 such that p is a coatom and q is an
atom.

P. Assume L � 2×K. We may actually assume that L = 2×K. Let b be the
bottom element of K, and t the top element of K. (These elements exist in K since it
is a complete lattice.) Put t∗ := 〈0, t〉 and b∗ := 〈1, b〉. The pair 〈t∗, b∗〉 is a splitting
pair of L. For assume that 〈i, y〉 � t∗ = 〈0, t〉. Then i � 0, since y ≤ t by choice
of t. Hence i = 1. But then 〈i, y〉 ≥ 〈1, b〉 = b∗. And conversely. Now assume that
〈p, q〉 is a splitting pair and that p is a coatom, while q is an atom in L. We show that
the map x 7→ x t q is a bijection between the ideal ↓ p and the filter ↑q with inverse
y 7→ y u p. For notice that under the assumptions, p u q = ⊥ and p t q = >. (For
q � p and so p u q < q. Therefore p u q = ⊥, for q is an atom. Likewise, p t q > p
and so p t q = >, since p is a coatom.) Now for x ≤ p and y ≥ q we have

(x t q) u p = (x u p) t (q u p) = x u p = x

(y u p) t q = (y t q) u (p t q) = y t q = y

This shows that both maps are bijective. Moreover, they are isotonic and hence
isomorphisms. �
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It follows, for example, that a finite boolean algebra is isomorphic to a direct product
of some copies of 2. However, in general, in a splitting pair 〈p, q〉 neither is p a
coatom, nor is q an atom. An example is the six element chain 6 = 〈6,min,max〉.
In this lattice 〈2, 3〉 is a splitting pair, but 2 is not an atom and 3 not a coatom. The
reader may verify that also the splitting 〈Th • ,K.D〉 is an example.

Theorem 7.2.9 and Corollary 7.2.10 of the published version are false. Theorem
7.2.9 states that if 〈Θ,Λ〉 is a splitting of the lattice of extensions of Σ then 〈`m

Θ
, `Λ〉

is a splitting of E(`Σ. A counterexample was given by Emil Jerabek. Let Σ = K,
Θ = K ⊕ �⊥ and Λ = K.D. The consequence `m

K contains the rule 〈{�p}, p〉, but this
rule is not in `m

K⊕�⊥. So the former is not contained in the latter. On the other hand,
it has the same tautologies as `K and so it does not contain `K.D. It does not matter
whether we start with a splitting of the lattice of normal logics or of quasinormal
logics. Observe that the same counterexample can be used for quasinormal logics,
choosing K + �⊥.

Exercise 227. Show Proposition 7.2.1.

Exercise 228. Let L be a lattice, not necessarily complete. Show that an element ,
⊥,> is join–irreducible (meet–irreducible) iff it has exactly one lower cover (exactly
one upper cover).

Exercise 229. Let L be a complete lattice. Show that if p is –irreducible in L ( –
prime) then it is also –irreducible ( –prime) in any complete sublattice containing
it.

Exercise 230. Show with a specific example that there are lattices L and elements
p such that p is not –prime in L but –prime in the lattice L/N, for some set
of –prime elements N. Thus the notion of being a splitting element is not stable
under iterated splittings.

Exercise 231. A logic Λ is called essentially 1–axiomatizable over Θ if for every
axiomatization Λ = Θ(X) over Θ there exists a ϕ ∈ X such that Λ = Θ(ϕ). Show that
a modal logic Λ co–splits EΘ iff it is essentially 1–axiomatizable over Θ.

7.3. Irreducible and Prime Logics

In this section we will investigate the possibility of characterizing irreducibility
and primeness of logics algebraically.

T 7.3.1. Λ ∈ EΘ is –irreducible only if Λ = ThA for a subdirectly
irreducible A.

P. Surely we have Λ = ThA for some A. Suppose that A is not subdirectly
irreducible. Then, by Theorem 4.1.3, A is a subdirect product of 〈Ai : i ∈ I〉, where
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every Ai is subdirectly irreducible. Then we have ThA = 〈ThAi : i ∈ I〉. Hence
there is a Ai such that ThA = ThAi = Λ. �

The converse of Theorem 7.3.1 is generally false. For example, take the S4.3–
frame o := 〈ω + 1,≥〉. This frame is generated by ω and therefore the algebraMa(o)
of subsets of that frame is subdirectly irreducible. However, ThMa(o) = Grz.3 has
the finite model property and is therefore not irreducible in E K. A useful result is
this.

P 7.3.2. Let Λ be –irreducible. Then Λ = ThA for an A which is
finitely generated.

P. Let Λ = ThA. We have A 2 ϕ iff there is a valuation β and a U such
that 〈A, β,U〉 � ¬ϕ. Take C to be the subalgebra generated by β(p), p ∈ var(ϕ). Let
V := U ∩ C = {a ∈ U : a ∈ C}. We claim that V is an ultrafilter on C. For V is
obviously upward closed in C. Moreover, it is closed under intersection, since C is
closed under intersection and U is as well. Also, if x ∈ C, then also −x ∈ C. Now
either x ∈ U or −x ∈ U. Hence either x ∈ V or −x ∈ V . So, V is an ultrafilter in
C. Since C is a subalgebra of A, we have ThC ⊇ ThA. Also, 〈C, β,V〉 � ϕ, since
β(¬ϕ) ∈ C and β(¬ϕ) ∈ U. We conclude that if there is a model based on A, there is
a model based on a finitely generated subalgebra of A. So

ThA =
⋂
〈ThC : C� A,C finitely generated〉

Consequently, if ThA is –irreducible, there must be a finitely generated C � A
such that ThC = ThA. �

T 7.3.3. Λ is irreducible in EΘ if and only if Λ = ThA for a subdirectly
irreducible algebra such that ThA is prime in EThA.

P. Observe that in a lattice an element x is –irreducible iff it is –prime
in ↑ x. �

Thus, in order to find algebras whose logics are irreducible we need to answer the
question of which algebras are splitting algebras. This is by no means trivial or
more easy, so the last theorem is really of little practical significance. By analogy,
an algebra A or a frame F is called prime in EΘ or AlgΘ if ThA (ThF) is prime
in EΘ. For the statement of our next theorems we shall introduce the notion of a
presentation of an algebra. We shall first give a general definition and then specialize
to modal algebras.

D 7.3.4. Let V be a variety of Ω–algebras and A ∈ V. A pair 〈X, E〉
is called a presentation of A if (i.) X is a set, E ⊆ TmΩ(X) × TmΩ(X), and (ii.)
FrV(X)/Θ(E) � A, where Θ(E) is the least congruence in FrV(X) containing E. A
presentation is finite if X and E are both finite. A is called finitely presentable
in V if A has a finite presentation in V.
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Since every algebra is the homomorphic image of a free algebra in a variety,
every algebra of a variety is presentable in it. Simply let h : TmΩ(X) � A be a
surjective homomorphism. Then put E := ker(h). The pair 〈X, E〉 is a presentation
of A.

Now fix an isomorphism i. Then i ◦ hΘ(E) : X → A. So, we may actually assume
that X consists of elements of A. Then A is generated by X, and E is a set of equations
such that the minimal congruence containing E is the kernel of the canonical map
FrV(X)� A. In the present context, we speak of logics rather than varieties, and of
open filters rather than congruences. We write 〈∆〉 for the open filter generated by ∆.

D 7.3.5. Let A be a κ–modal algebra, Θ a κ–modal logic. A presen-
tation of A over Θ is a pair 〈X,∆〉 where X ⊆ A, is a set of variables and ∆ a set
of terms over X such that the map pr : FrΘ(X)/〈∆〉 → A induced by the identity
assignment pr(a) := a is an isomorphism. A is called finitely presentable if both
X and ∆ can be chosen finite. We call ∆ a diagram of A over Θ. ∆ is not uniquely
determined. We also say that A is α–presentable if ]X = α.

If ∆ can be chosen finite, we write δ to denote the set ∆ as well as
∧
∆. More-

over, we may identify CanΘ(X) and CanΘ(α). In order to appreciate this definition,
consider the dual frames A+ and CanΘ(α). Of course, since A is α–generated there
is a homomorphism h : FrΘ(α) � A. Thus, h+ : A+ � CanΘ(α). So, A+ is a gener-
ated subframe of the α–canonical frame for Θ. It is clear that there exists a possibly
infinite ∆ such that FrΘ(α)/〈∆〉 � A. We also call this a diagram. Thus, viewing
the canonical frame as equivalence classes of formulae, there is a set of formulae
characterizing the notion being in the generated subframe underlying A+ generated
by α. A is finitely presentable if there is a finite set of this kind. Now, recall that even
if Θ is the modal theory of A, there are many ways in which A+ lies embedded in the
canonical Θ–frame, just because there are many ways to generate A by α elements.
The diagram of A completely determines the map h : FrΘ(α) � A— at least up to
isomorphisms of A, which is the best we can hope for anyway. Now fix h, let ∆ be
the associated diagram, and H is the h+–image of the frame underlying A+. Thus in
the canonical frame, a world x satisfies this diagram, x ∈ �ω∆, iff x is in H.

If A is finite and the number κ of primitive modalities is finite then for every
k ∈ ω, A is k–presentable iff it is k–generated. In particular, A is k–presentable for
k := ]A:

P 7.3.6. (κ < ℵ0.) Let A be finite. Define

δ(A) :=
∧
〈pa ∧ pb ↔ pa∩b : a, b ∈ A〉

∧
∧
〈¬pa ↔ p−a : a ∈ A〉

∧
∧
〈�i pa ↔ p�ia : a ∈ A, i < κ〉

Then δ(A) is a diagram for A over Θ.

P. Consider ε : FrΘ(var(δ)) → A : pa 7→ a. ε is surjective and factors
through pr, that is, ε = pr ◦ κ for a homomorphism κ. Since pr ◦ κ = ε is surjective,
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pr is surjective. It remains to show that pr is injective. This is done by showing that
κ(ϕ) = κ(ψ) iff ϕ ↔ ψ ∈ 〈δ〉 and for every ϕ there is a a ∈ A such that ϕ ↔ pa ∈ 〈δ〉.
This is proved by induction on ϕ. Hence ]im(κ) = ]A and since A is finite, pr is
injective. �

This diagram uses as many variables as there are elements in the algebra. However,
it is possible to use far less variables. First, a finite algebra is isomorphic to the set
algebra over a finite Kripke–frame f. Given f we may replace the diagram by

δ(f) :=
∨
〈pv : v ∈ f 〉

∧
∧
〈pv → ¬pw : v , w〉

∧
∧
〈pv → ♦ j pw : v C j w, j < κ〉

∧
∧
〈pv → ¬♦ j pw : v 6 j w, j < κ〉

This is clearly an equivalent characterization of A. Notice that by passing from vari-
ables for sets of worlds to variables for worlds we have used k := ] f variables where
previously we had 2k. We can compress this diagram further. Let ` := p2log kq, the
least integer such that 2` ≥ k. Then there exists an injection s : f → ℘(`). Now take
variables qi, i < `. For S ⊆ {0, . . . , ` − 1} define

χ(S ) :=
∧
i∈S

qi ∧
∧
i<S

¬qi

Then the diagram for f can be replaced by the following formula

δ(f) :=
∨
〈χ(s(v)) : v ∈ f 〉

∧
∧
〈χ(s(v))→ ♦ jχ(s(w)) : v C j w, j < κ〉

∧
∧
〈χ(s(v))→ ¬♦ jχ(s(w)) : v 6 j w, j < κ〉

Thus the number of variables needed is at most logarithmic in the size of the under-
lying frame. It is clear that a sharp bound is the number of generators of A. We have
shown, however, that this number is at most doubly logarithmic in ]A.

D 7.3.7. Let A be subdirectly irreducible. Let ∆ be a diagram of A
over Θ, B ∈ AlgΘ. For a compound modality � and a finite subset δ ⊆ ∆ we say
that B is �δ–consistent with A, if a valuation β : var[∆] → B and an ultrafilter
U exists such that 〈B, β,U〉 � ¬pc;�δ, where pc ∈ var[∆], c being an opremum
of A. B is called ω–consistent with A if a valuation β : var[∆] → B exists
satisfying 〈B, β,U〉 � ¬pc; {�δ : � compound, δ ∈ ∆}. If B is �δ–consistent with A
for every compound modality � and finite subset δ ⊆ ∆ then B is said to be weakly
consistent with A.

T 7.3.8. Let A be subdirectly irreducible. Then the following assertions
are equivalent for all B ∈ AlgΘ:

(i) B is ω–consistent with A.
(ii) A ∈ SH(B).

(iii) A ∈ HS(B).
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F 7.4.
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P. Let ∆ be a diagram of A over Θ. Assume first (i). Let then β : var[∆]→
B and U be such that β(¬pc) ∈ U and for all compound modalities � and formulae
δ ∈ ∆ we have β(�δ) ∈ U. Let F be the open filter generated by the β(�δ). Consider
the induced mapping ε : B → B/F =: C and put γ := ε ◦ β : var[∆] → C.
Then γ(�δ) = 1 for all � and δ ∈ ∆. The homomorphism γ factors through η :
FrΘ(var[∆]) → A, for A � FrΘ(var[∆])/〈∆〉. (See Figure 7.4.) A is subdirectly
irreducible and has a minimal nontrivial congruence relation, which is generated by
c. To show that the induced mapping ζ is injective it is therefore sufficient to show
that ζ(c) , 1 — or, equivalently — that ζ(−c) , 0. But ζ(−c) = ζ ◦ η(¬pc) =
γ(¬pc) = ε ◦ β(¬pc) > 0, because for every a ∈ F there exists a � and a finite subset
δ ⊆ ∆ such that a ≥ β(�δ). Then β(¬pc) ∩ a ≥ β(¬pc) ∩ β(�δ) = β(¬pc ∧ �δ) , 0.
Hence ζ is injective and A ∈ S(C) ⊆ SH(B). This shows (ii). That (ii) implies (iii)
we have seen in Chapter 1.3. Finally, assume (iii) holds. We will show (i). Let
A ∈ HS(B). Then there is a C, an injective ε : C� B and a surjection ρ : C � A.
(See Figure 7.5.) Here, F := FrΘ(var[∆]) and κ is the canonical mapping. F is free
and thus κ can be lifted over ρ to γ : F → C. Then β := ε ◦ γ. For every n ∈ ω,
κ(¬pc∧�δ) = κ(¬pc) > 0 and since ε is injective, β(¬pc∧�δ) = ε ◦γ(¬pc∧�δ) > 0
for every �δ. Hence B is ω–consistent with A; (i) is shown. �

L 7.3.9. Let A be subdirectly irreducible. If B is weakly consistent with A
then there is a S ∈ Up(B) which is ω–consistent with A.

P. Let S be the set of formulae �δ such that δ is a finite subset of ∆ and �
is a compound modality. (We have � = �s for some finite set s of sequences over κ.)
For each σ ∈ S we have a valuation βσ : var[∆]→ B and an ultrafilter Uσ such that
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F 7.5.
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βσ(¬pc ∧ σ) ∈ Uσ. Let s be a finite set of sequences and δ a finite subset of ∆.

E(s, δ) := {�tδ′ : s ⊆ t, δ ⊆ δ′}

Next put
E := {E(s, δ) : s ⊂ κ∗, δ ⊆ ∆, s, δ finite}

E has the finite intersection property, for we have

E(s1, δ1) ∩ E(s2, δ2) = E(s1 ∪ s2, δ1 ∪ δ2) .

Therefore, E is contained in an ultrafilter, say V . Now define C :=
∏

V B, γ :=∏
V βσ. Then γ(¬pc ∧ �δ) > 0 for every �δ ∈ S . The set

{γ(¬pc ∧ �
sδ) : s ⊆ κ∗, δ ⊆ ∆}

has the finite intersection property and is contained in an ultrafilter. Let it be U. Then
〈C, γ,U〉 � ¬pc; S . Hence C is ω–consistent with A. �

Putting our results together we get

T 7.3.10. Let A be subdirectly irreducible. Then the following assertions
are equivalent for every B:

(i) B is weakly consistent with A.
(ii) A ∈ SHUp(B).

(iii) A ∈ HSP(B).

P. (i)⇒ (ii). Assume (i). By Lemma 7.3.9 there is a C ∈ Up(B) which is
ω–consistent with A. Hence by Theorem 7.3.8 A ∈ SH(C) ⊆ HSUp(B). (ii)⇒ (i).
If B is not weakly consistent with A then there is a �δ such that B � �δ → pc. It
follows that S � �δ → pc for any S ∈ Up(B). Hence S is not ω–consistent with A
and thus A < SH(C). Since this is valid for all S ∈ Up(B), A < SHUp(B). Now (ii)
implies (iii) because HSUp(B) ⊆ HSP(B), and (iii) implies (i). �
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Notice that we did not actually use Jónsson’s Lemma, but derived it. That this is
possible was first observed in [234]. Notice that in the course of the definitions we
have made crucial use of the fact that A is subdirectly irreducible. The previous
theorem shows quite clearly why this must be so. For if not, all varieties are of the
form HSUp(K) for a class K. The following Splitting Theorem can now be proved.
The original version appeared in R [170] but only for finite algebras in
weakly transitive logics. In K [120] it was generalized to the case where A is
finitely presentable. The following version is fully general and was proved in W
[234].

T 7.3.11 (Splitting Theorem). Let A be a subdirectly irreducible modal
algebra with diagram ∆. Then the following are equivalent.

1. ThA is prime in EΘ.
2. There is a compound modality � and a finite δ ⊆ ∆ such that for all B ∈

AlgΘ:

(†) If B is �δ–consistent with A then B is weakly consistent with A.

3. {B : A < HSPB} is a variety.
4. {B : A < HSPB} is closed under ultraproducts.

Moreover, if A and �δ fulfill (†) we have EΘ/A = Θ ⊕ �δ→ pc.

P. Clearly, the first and the last are equivalent, for if we have a splitting,
the corresponding splitting partner axiomatizes a variety, the variety of all algebras
whose theory is not contained in the theory of A, or those algebras in whose variety
A is not contained. Thus, we have to show the equivalence of the last three. Let S
be the set of all �δ. Assume that (†) fails for all σ ∈ S . For every σ ∈ S there
is a Bσ which is σ–consistent with A but not weakly consistent with A. Hence by
the preceding theorem, for every σ ∈ S , A < HSP(Bσ) that is ThBσ + ThA.
However, a suitable ultraproduct C =

∏
σ∈S Bσ is weakly consistent with A, and

hence ThA ⊇ ThC, from which follows that {B : A < HSPB} is not closed under
ultraproducts and hence also not a variety. Also, Th A is not prime in EΘ. Let now
(†) be fulfilled by some �δ. Then {B : A < HSPB} = {B : B � �δ→ pc} and hence
it is a variety, and so closed under ultraproducts. Thus ThA is prime, with splitting
companion Θ ⊕ �δ→ pc. �

There are two important subcases of the Splitting Theorem, which are each
quite characteristic. One concerns the case of weakly transitive logics, the other
that of cycle–free frames. Recall that weakly transitive logics are characterized by
the existence of a strongest compound modality. Furthermore, each finite subdirectly
irreducible algebra has a diagram. Hence (†) is easy to satisfy in this case.

C 7.3.12 (Rautenberg). (κ < ℵ0.) Let Θ be weakly transitive. Then
every finite subdirectly irreducible Θ–algebra splits EΘ.
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Let us say that a finite algebra is cycle–free iff A � �m⊥ for some m ∈ ω. It
can be seen that A is cycle–free iff the corresponding Kripke–structure contains no
cycles. If A 2 �≤m−1⊥ then �≤m−1⊥ is an opremum of A.

C 7.3.13 (Blok). (κ < ℵ0.) Let A be finite subdirectly irreducible and
cycle–free. Then A is prime in every variety containing it. Then there exists a finite
number m such that EΘ/A = Θ ⊕ �≤m+1δ(A)→ ¬ �m ⊥.

P. Let �m⊥ be an opremum of A; let δ := δ(A) be a diagram of A. Then
�≤m+1δ satisfies (†) in Theorem 7.3.11. For if 〈B, β,U〉 � �≤m+1δ ∧ �m⊥ then for all
r > 0 〈B, β,U〉 � �≤m+rδ∧�m⊥ because 1 = β(�m⊥ → �m�r δ) = β(�m⊥ → �m+rδ)
for all r ≥ 0. So for all r > 0, β(�≤mδ ∧ �m⊥) ≤ β(�m⊥ ∧ �≤m �r δ). �

Exercise 232. Show that the number of variables needed to axiomatize EΛ/A
over Λ is equal to the number of elements needed to generate A.

Exercise 233. LetΘ = i∈IEΛ/Bi whereBi are splitting algebras. Suppose that the
ThBi are incomparable. Then the minimum number n of variables such that Θ is n–
axiomatizable is equal to the minimum number k such that every Bi is k–generated.

Exercise 234. A variety is said to have the congruence extension property (CEP)
if for every algebra A and every subalgebra B ≤ B the following holds. Every con-
gruence Θ on B is the restriction to B of a congruence on A. Hence, in a variety with
CEP we have HSA = SHA for all A. Show that Abelian groups have the CEP, but
groups in general do not.

Exercise 235. Show that the variety of κ–modal algebras has CEP for any κ.

∗Exercise 236. Show that the algebra A of the frame ◦ -◦ splits the lattice of
extensions of K.alt3.B.T of reflexive, symmetric frames with at most three succes-
sors. However, show that in general it does not follow that if A ∈ SHUpB then also
A ∈ SHB. The latter is in fact in many cases true, and a counterexamples are rather
difficult to construct. For example, B must in any case be infinite. (Can you show
this?)

7.4. Duality Theory for Upper Continuous Lattices

We have seen that lattices of modal logics are locales also called upper contin-
uous lattices and that they are generated by their join–compact elements, because
by Theorem 2.9.8 the latter coincide with the finitely axiomatizable logics. In this
chapter we want to go deeper into the structure theory of such locales and see what
further properties of the lattices of logics we can derive. There is a duality theory
for locales (see [110]). A topological space always gives rise to an upper continuous
lattice, also called a locale. Namely, let X = 〈X,X〉 be a topological space over the
set X with open sets X. Then let Ω(X) := 〈X,∩,

⋃
〉. By definition of a topological



7.4. Duality Theory for Upper Continuous Lattices 329

space all finite intersections of open sets are open, and all unions of open sets are
open; so, Ω(X) is a locale. Let f : X → Y be a continuous map. Then let Ω( f ) be
the the restriction of f −1 : 2Y → 2X : A 7→ f −1[A] to X. By continuity of f this is a
map from X to Y. It is not hard to see that Ω( f ) : Ω(Y) → Ω(X), i. e. that Ω( f ) is
a homomorphism of locales. It is easily seen that Ω is a contravariant functor from
the category of topological spaces into the category of upper–continuous distributive
lattices. Thus Ω can also be construed as a covariant functor from the category of
topological spaces to the category of locales.

To make the exposition analogous to that of Stone–Duality, let us switch from
the category of locales to the dual category, that of frames. A point of a frame is
a surjective frame–morphism p : L � 2. To have a surjection onto 2 means that
L can be split into two sets, F := p−1(1) and I := p−1(0), where F is a filter and
I an ideal, and I is closed under arbitrary joins. For if p(as) = 0 for all s ∈ S ,
then p( s∈S as) = s∈S p(as) = 0. Thus I = ↓ x for some x. Moreover, x must
be u–irreducible (since F is closed under intersection). So, x is u–prime. This
characterization is exact. For if x is u–irreducible then ↓ x is an ideal and L − ↓ x
is a filter. Namely, from y � x and y ≤ z we deduce z � x, and from y, z � x also
y u z � x. Let pt(L) denote the set of points of L. There is a bijection between
the set of points and the u–irreducible elements of L, defined by x 7→ px, where
px is defined by px(y) = 0 iff y ≤ x. On pt(L) we take as open sets the sets of the
form x̂ = {p : p(x) = 1}. So, since every p is of the form py for some y, we have
x̂ = {py : y � x}. Now putSpc(L) = 〈pt(L), {x̂ : x ∈ L}〉. In place of homomorphisms
we might also take the meet–irreducible elements as elements of Spc(L). Spc(L) is
a topological space, by the next theorem, if we add that ∅ = >̂ and pt(L) = ⊥̂.

L 7.4.1. The map x̂ = {p : p(x) = 1} commutes with arbitrary joins and
finite meets.

P. Let z = i∈I xi. p ∈ ẑ iff p(z) = 1 iff p(xi) = 1 for at least one i ∈ I iff
p ∈ x̂i for at least one i ∈ I. So ẑ =

⋃
i∈I x̂i. Furthermore, p ∈ ̂x1 u x2 iff p(x1ux2) = 1

iff p(x1) = 1 and p(x2) = 1 iff p ∈ x̂1 ∩ x̂2. Hence ̂x1 u x2 = x̂1 ∩ x̂2. �

The sets of the form ↑ x are closed sets. Now consider a homomorphism h :
L → M. Then the map p 7→ p ◦ h maps a point p : M � 2 ofM onto a point of L.
Thus put Spc(h) : p 7→ p ◦ h.

T 7.4.2. The map Spc mapping a locale L onto Spc(L) and a homomor-
phism h : L → M onto Spc(h) : p 7→ p ◦ h is a covariant functor from the category
of locales to the category of topological spaces and continuous maps.

P 7.4.3. Let Locop be the opposite category of the category Loc of
locales and homomorphisms; and let Top be the category of topological spaces.
Then Ω considered as a functor Top → Locop is left adjoined to Spc considered as
a functor Locop → Top.
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The proof of this fact is an exercise. Interesting for us are the unit and counit
of this adjunction. If we have a locale, the function x 7→ x̂ is a canonical map
L→ Ω(Spc(L)). This map is surjective, but in general not injective, see the exercises
below. Likewise, given a topological space X, we have a map X→ Spc(Ω(X)). This
map is surjective, but in general not injective. For a point x, the set {x} is join–
irreducible and so its complement is meet–irreducible. Hence it gives rise to a point
px of Ω(X). There may exist x and y such that x , y and px = py. This motivates the
following definition.

D 7.4.4. A locale L is called spatial if the map x 7→ x̂ is a bijection
from L onto Ω(Spc(L)). A space X is called sober if the map x 7→ px is a bijection
from X onto Spc(Ω(X)).

T 7.4.5. A locale is spatial iff every element is the meet of meet–irreducible
elements.

P. Let L be spatial. Then there is a canonical map x 7→ x̂. This is surjective
iff L is spatial. �

A characterization of sober spaces is harder to obtain. There are various reasons
why a space can fail to be sober. First of all, it can happen that in X two different
elements, say x and y, are contained in the same open sets. Then the locale of open
sets is isomorphic to the locale of the space Y which differs from X only in that x has
been taken away. (Y is the image of X by a continuous map.) Therefore we define
the following.

D 7.4.6. Let X = 〈X,X〉 be a topological space. X is a T0–space if
for every pair of elements x, y ∈ X if x , y there exists an open set O such that
](O ∩ {x, y}) = 1.

The Sierpiński–space is a T0–space, though not a T2–space. Now we define a
relation ≤ on points of a T0–space by x ≤ y⇔ {x} ⊇ {y}. We call ≤ the specialization
order. (In [110] the converse ordering is considered. The order defined here has the
advantage to make the sets ↑ x closed and coincide with the upper set in Ω(X).)

P 7.4.7. A topological space is a T0–space iff the specialization order
is a partial order.

P. Let X be a T0–space. Since {x} ⊇ {x} we have x ≤ x. Moreover, if x ≤ y
and y ≤ z then {x} ⊇ {y} and {y} ⊇ {z}, from which {x} ⊇ {z}, or x ≤ z. Hence ≤ is a
partial order. Now assume that X is not a T0–space. Then there exist x, y, x , y such
that for all open sets O, either O ∩ {x, y} = ∅ or {x, y} ⊆ O. Hence, for all closed sets
C, either {x, y} ⊆ C or C ∩ {x, y} = ∅. It follows that y ∈ {x} and x ∈ {y}. So, x ≤ y
and y ≤ x, that is, ≤ is not a partial order. �

L 7.4.8. A space is T0 iff the map x 7→ px is injective.

The proof of this lemma is left as an exercise.
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T 7.4.9. For any locale, the space Spc(L) is sober.

P. Let L be a locale and A a meet–irreducible element of Ω(Spc(L)). Then
A is of the form x̂ for some x ∈ L. Since the map y 7→ ŷ preserves infinite joins, there
is a largest such x. We show that x is u–irreducible. For otherwise, there are y and
z such that x = y u z and so x̂ = ŷ ∩ ẑ, a contradiction to the assumption that A is
meet–irreducible. Now let px be the point defined by x, x u–irreducible. Then

{px} = pt(L) − x̂ .

For x̂ = {py : py(x) = 1} = {py : x � y}. Thus, x̂ = {py : y < ↑ x}. Hence,
pt(L) − x̂ = {py : y ≥ x}. This is a closed set. Moreover, it is the least closed set
containing x. Thus the canonical map x 7→ x̂ is surjective. Moreover, it is injective,
since for different points p, q we cannot have p(x) = q(x) for all x. Thus x̂ contains
just one of p and q and so Spc(L) is a T0–space, and so by the previous lemma the
canonical map is injective. �

The specialization ordering onSpc(L) can be determined easily in L. For notice
that we have

px ≤ py ⇔ {px} ⊇ {py}

⇔ x̂ ⊆ ŷ
⇔ {q : q(y) = 1} ⊆ {q : q(x) = 1}
⇔ {z : pz(y) = 1} ⊆ {z : pz(x) = 1}
⇔ {z : z � y} ⊆ {z : z � x}
⇔ x ≤ y .

The interest in this duality of sober spaces with spatial locales for our purposes lies
in the possibility to describe the lattices of modal logics as certain sober spaces. The
way to approach the structure of a sober space is by first studying the specialization
ordering and then looking at the topology defined over it. However, some care is
needed. Just as with boolean algebras, the space of irreducible elements alone cannot
provide a complete description of the lattice. For notice that in many cases there are
at least two topologies for a given specialization order. Namely, given 〈X,≤〉 let
Y(X,≤) be the set of all lower closed sets, that is, sets of the form ↓S for some S .
This is the finest topology we can define. Also, let Φ(X,≤) be the smallest topology
that contains ∅ and all sets of the form

X − (↑ x1 ∪ ↑ x2 ∪ . . . ∪ ↑ xn)

Φ(X,≤) is called the weak topology and Y(X,≤) the Alexandrov topology.

T 7.4.10. Let X = 〈X,X〉 be a T0–space with specialization order ≤.
Then

Φ(X,≤) ⊆ X ⊆ Y(X,≤)
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P. First, all sets of the form ↑ x for a single element x must be closed sets.
Moreover, ↑ x = {x}. For y ∈ {x} iff every closed set containing x also contains y iff
{y} ⊆ {x} iff y ≥ x. This shows the first inequality. The second follows, for Y(X,≤)
contains all sets which are lower closed. �

T 7.4.11. Let L be a spatial locale. L is continuous iff the topology on
Spc(L) with respect to the specialization order is the Alexandrov topology.

P. A locale is continuous iff every –irreducible element is –prime.
Now let x be –irreducible. Assume that x is not –prime. Then we can find
a sequence yi of elements such that yi ≤ x while for all i we have yi � x. Since
we have a spatial locale, we can choose the yi to be –irreducible. Now, yi ≤ x iff
{px} + {pyi } iff pyi < {px}. By the next theorem, lim y exists, since Spc(L) is sober.
We have lim y ≤ x by assumption. Hence lim y ∈ {px}. This shows that the set⋃
{pyi } is not closed, even though it is upward closed. Taking complements, we see

that we have a downward closed set which is not open. Hence the topology is not
equal to the finest topology. For the other direction, just reason backwards. �

It is a rather intricate matter to say exactly what specialization orders admit a
sober topology. We will prove a rather useful theorem, stating that the specialization
order on a sober space must be closed under lower limits.

T 7.4.12. Let X be sober and x = 〈xi : i ∈ ω〉 be a descending chain of
points. Then lim x exists in X.

P. Let 〈xi : i ∈ ω〉 be a descending sequence of points. Then the sequence
〈{xi} : i ∈ ω〉 is ascending, that is, {xi} ⊆ {x j} if i ≤ j. Let T be the closure of its
union. Assume that T = S 1 ∪ S 2 for some closed sets S 1 and S 2. Then almost all xi

are in S 1 or in S 2. Hence, by directedness, either all xi are in S 1 or all xi are in S 2.
Thus T = S 1 or T = S 2, showing T to be indecomposable. By sobriety, T = {y} for
some y. It is easy to see that y = lim x. �

Such elements corresponding to limits of chains are u–irreducible elements
which are –reducible. We have seen that in lattices of logics a –irreducible logic
is the logic of a subdirectly irreducible algebra. By the decomposition theorem, ev-
ery logic is the intersection of the ThA for some subdirectly irreducible A. We have
seen, however, that we are not entitled to conclude that ThA is –irreducible if A is
subdirectly irreducible. Nevertheless, the following theorem can be established.

T 7.4.13. In the lattices EKκ, every logic is the intersection of –
irreducible logics.

P. Let Θ be a logic, and ϕ < Θ. Then let S ϕ = {Λ ⊇ Θ : ϕ < Λ}. S ϕ is not
empty, and is closed under direct upper limits. For if for a chain Λn ∈ S ϕ, Λn ⊇ Λn+1
we have limΛn < S ϕ, then there exists an n0 such that ϕ ∈ Λn0 . Hence we conclude
that there must be a maximal element in S ϕ, which we denote by S ∗ϕ. (This element
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is not necessarily unique.) Now every proper extension of S ∗ϕ contains ϕ, while S ∗ϕ
does not. Hence S ∗ϕ is –irreducible. Now Θ = 〈S ∗ϕ : ϕ < Θ〉. �

C 7.4.14. For any modal logic Λ, EΛ is spatial.

We can use Theorem 7.4.13 for a sharper variant of the representation theorem.
Above we have seen that in a sober space the limit of a descending chains always
exists. This limit is not –irreducible. Under mild assumptions on the space it
is redundant in the representation. Let Irr(L) be the set of –irreducibles; and
Irr(L) := 〈Irr(L),≤〉. Then define the topology as before, namely putting x̌ = {p ∈
Irr(L) : p(x) = 1} = x̂ ∩ Irr(L). Let ISpc(L) = 〈Irr(L), {x̌ : x ∈ L}〉.

D 7.4.15. A topological space is called a TD–space if for every point
x the set {x} is relatively open in {x}.

T 7.4.16. The natural map x 7→ x̌ : L→ Ω(ISpc(L)) is an isomorphism
iff every element is an intersection of –irreducible elements.

We obtain that every lattice of extensions is representable by a TD–space. Let us
make this explicit. With a logicΛwe associate a locale EΛ, and two spaces. The first
is Spc(EΛ). It consists of the u–irreducible logics, ordered by set inclusion. The
topology has as closed sets the sets of the form ↑Θ, where Θ ⊇ Λ. The second space
is ISpc(EΛ). Its members are the –irreducible logics ordered by set inclusion.
Again, the closed sets are the sets of the form ↑Θ for Θ ⊇ Λ. It is immediately
clear that ISpc(EΛ) is nothing but the relativization of the space Spc(EΛ) to the
set of –irreducible elements, and so uniquely defined. We have proved in addition
that given ISpc(EΛ), the space Spc(EΛ) is uniquely determined. It can in fact be
constructed. (See the exercises.)

Exercise 237. Show Proposition 7.4.3.

Exercise 238. Prove Lemma 7.4.8.

Exercise 239. Take the lattice V = 1 + (Z × 2) + 1, which is isomorphic to the direct
product of Z with the two–element chain plus a bottom and a top element. Show that
V is a locale, but not spatial.

Exercise 240. For a topological space X, the soberification is the space Spc(Ω(X)).
Show that for lattices of modal logics,Spc(L) is the soberification of ISpc(L). (This
shows how Spc(Ω(X)) can be recovered from ISpc(X).)

Exercise 241. Show with a counterexample thatΦ(X,≤) does not necessarily contain
only sets of the form

X − (↑ x1 ∪ ↑ x2 ∪ . . . ∪ ↑ xn)
(in addition to ∅). Thus depending on the properties of ≤, the topology Φ(X,≤) may
contain more sets.
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7.5. Some Consequences of the Duality Theory

Lattices of (normal) extensions of a logic are algebraic, with the compact ele-
ments being the finitely axiomatizable logics; we have seen also that in the lattice
EΛ every element is the intersection of –irreducible elements. The finitely ax-
iomatizable logics are closed under finite union, just as the compact elements. An
infinite join of finitely axiomatizable logics need not be finitely axiomatizable again.
Likewise, the finite meet of finitely axiomatizable logics need not be finitely axiom-
atizable. However, in the case of weakly transitive logics, any finite intersection of
finitely axiomatizable logics is again finitely axiomatizable.

D 7.5.1. A locale is coherent if (i) every element is the join of compact
elements and (ii) the meet of two compact elements is again compact.

Coherent locales allow a stronger representation theorem. Let L be a locale,
K(L) be the set of compact elements. They form a lattice K(L) := 〈K(L),u,t〉, by
definition of a coherent locale. Given K(L), L is uniquely identified by the fact that
it is the lattice of ideals of K(L).

L 7.5.2. A locale is coherent iff it is isomorphic to the locale of ideals of a
distributive lattice.

P. Let L be coherent. Denote by Id(K(L)) the set of ideals in K(L); more-
over, let IK(L) := 〈Id(K(L)),∩,

⋃′〉. Here, if Ic, c ∈ C, is a family of ideals,
⋃′

c∈C Ic

is the least ideal containing
⋃

c∈C Ic. This is a locale; the compact elements are of the
form ↓S where S is finite. For x ∈ L let x? be defined by x? := {y ∈ K(L) : y ≤ x}.
We show that this map is an isomorphism from L onto IK(L). First, x? is clearly
an ideal. Moreover, if x ≤ y then x? ⊆ y?. Conversely, let I ⊆ K(L) be an ideal;
then put I? := I. If I ⊆ J then I? ≤ J?. Both maps are order preserving; it is
therefore enough to show that one is the inverse of the other. We show that x = (x?)?
and that I = (I?)?. For the first, observe that x ≥ (x?)? generally holds in a lattice.
Since by assumption every element is the union of join compact elements, we also
have (x?)? ≥ x. This gives x = (x?)?. For the second claim, let y be compact and
I an ideal. Suppose that y ∈ I. Then y ≤ I = I? and so y ∈ (I?)?. Conversely,
if y ∈ (I?)? then y ≤ I? = I. By compactness, there exists a finite subset I0 ⊆ I
such that y ≤ I0. Since I is closed under finite joins, I0 ∈ I, and so y ∈ I.
Hence I and (I?)? contain the same compact elements. So they are identical subsets
of K(L). Now let D be a distributive lattice. Then I(D) = 〈Id(D),∩,

⋃′〉 is coher-
ent. An ideal is compact iff it is principal, that is, of the form ↓y for some y. Since
↓y ∩ ↓z = ↓ (y u z), principal ideals are closed under meet. Furthermore, suppose
that I is an ideal. Then I =

⋃′
x∈I ↓ x. So I(D) is a coherent locale. �

If we have a lattice homomorphismK(L)→ K(M) then this map can be extended
uniquely to a homomorphism of locales L → M. Not all locale homomorphisms
arise this way, and so not all locale maps derive from lattice homomorphisms. Hence
call a map f : L→ M coherent if it maps compact element into compact elements.
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T 7.5.3. The category DLat of distributive lattices and lattice homomor-
phisms is dual to the category CohLoc of coherent locales with coherent maps.

Now if Λ is weakly transitive, the intersection of two finitely axiomatizable
logics is again finitely axiomatizable. Now, a logic is compact in EΛ iff it is finitely
axiomatizable over Λ. We conclude the following theorem.

P 7.5.4. Let Λ be weakly transitive. Then EΛ is coherent.

The converse need not hold. In Chapter 9 we will see that E K.alt1 is coher-
ent (because every logic in this lattice is finitely axiomatizable) but the logic is not
weakly transitive.

The next property of lattices has already made an appearance earlier, namely
continuity. It is connected with a natural question about axiomatizability of logics.

D 7.5.5. Let L be a complete lattice. A set X ⊆ L is a generating set
if for every member of L is the join of a subset of X. L is said to have a basis if there
exists a least generating set. Moreover, X is a strong basis for L if every element
has a nonredundant representation, that is, for each x there exists a minimal Y ⊆ X
such that x = Y.

T 7.5.6. Let L be a locale. L has a basis iff (i) L is continuous and (ii)
every element is the meet of –irreducible elements. L has a strong basis iff it has
a basis and there exists no infinite properly ascending chain of –prime elements.

P. Assume that (i) and (ii) hold. Let I be the set of –irreducible elements.
Since L is continuous, I is also the set of –prime elements. Hence every element
of I splits L. Take an element x ∈ L. Let J := ↑ x ∩ I. Then put K := I − J and
x0 := L/K = y∈KL/y. Since for no y ∈ K it holds that x ≤ y, we have x ≥ L/y;
and hence x ≥ x0. We also have x0 ≤ x since x0 ≤ q for all q ∈ J, and so also
x0 ≤ J = x. Hence x is a union of elements of the form L/y, y –irreducible.
We have to show that the set X of –irreducible elements is minimal. The elements
of X are also –prime and hence compact. Moreover, let Y ( X. Say, y ∈ X − Y .
Then for no subset U ⊆ Y we can have U = y, since y is –irreducible. Thus X
is a basis. Now let L have a basis, X. Let x ∈ X. Assume that x = Y for some
Y = {yi : i ∈ I}. By assumption, each yi is the join of some set Xi, Xi ⊆ X. Put
X0 :=

⋃
i∈I Xi. Then x = X0. Suppose x < X0. Then X − {x} is a generating

set, contradicting our assumption on X. Consequently, X consists of –irreducible
elements. L is a locale, and so X consists of the –prime elements. Hence, each
element y ∈ X has a splitting companion y?. Now take x ∈ L. Put U := (X − ↑ x).
Consider the element x0 := y∈Uy∗. Clearly, x ≤ x0; for if y ∈ U then x � y, so
y? ≥ x. Now, if x , x0 there exists a y ∈ X such that y ≤ x0 but y � x. Then x ≥ y?.
Hence x0 ≥ y?. Contradiction. So, x = x0. Hence, (ii) is fulfilled. Moreover, each
element is the meet of prime elements. This implies that (i) holds. For assume that u
is –irreducible and the intersection of a set of –prime elements. Then this set is
one–membered, and u is therefore also –prime.
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Now let us turn to strong bases. Assume that L has a base and let 〈xi : i ∈ ω〉
be a strictly ascending chain of –prime elements. Then 〈L/xi : i ∈ ω〉 is a strictly
ascending chain of –prime elements. Let y be its limit. Then there exists no
minimal set Y of –primes whose join is y. Thus L fails to have a strong basis.
Assume on the other hand that there exists no such chain. Then for each upper closed
set P of –prime elements the set max(P) := {x ∈ P : (∀y ∈ P)(y ≥ x ⇒ y = x)} is
well–defined and is the least set Q such that ↓Q = P. �

P 7.5.7. Let L be a locale with a strong basis. Then the elements of L
are in one–to–one correspondence with antichains in ISpc(L).

P. By Theorem 7.2.7 the map p 7→ p? := L/p induces an order isomor-
phism from the poset of –primes onto the poset of –primes, whose inverse is
q 7→ q?. Let x be an element. Then let Y be a minimal set of –primes whose join
is x. Then Y is an antichain. Then Y? is an antichain of –primes. Put xo := Y?.
Conversely, given an antichain Z of –primes, let Zo := Z?. Then x = (xo)o as
well as (Zo)o, so this is a bijection. �

T 7.5.8. Let Λ be a modal logic. Then EΛ has a basis iff EΛ is contin-
uous.

Since continuous lattices are the exception in modal logic, most extension lat-
tices do not have a basis. We can sharpen the previous theorem somewhat to obtain
stricter conditions on continuity.

C 7.5.9. Let Λ be weakly transitive and have the finite model property.
Then the following are equivalent.

1. EΛ has a basis.
2. EΛ has a strong basis.
3. Every extension of Λ has the finite model property.
4. Every extension of Λ is the join of co–splitting logics.
5. Every join of co–splitting logics has the finite model property.

P. The most interesting part is perhaps the fact that if we have a basis, then
we already have a strong basis. But this follows, because there is no infinite strictly
ascending chain of –irreducibles. For the –irreducible logics are the logics of
finite frames, and for finite frame f, gwe have that Th g ⊇ Th f implies ]g ≤ ] f . IfΛ is
weakly transitive then every finite subdirect irreducible algebra induces a splitting.
On the other hand, if Λ has the finite model property, then no more elements can
induce splittings. The equivalence now follows directly. �

C 7.5.10. Let AlgΛ be locally finite. Then EΛ is continuous.

P. Since AlgΛ is locally finite, every extension of Λ has the finite model
property (see Theorem 4.8.7). Moreover, the one–generated Λ–algebra, FrΛ({p}), is
finite. Now consider the elements �p, � a compound modality. Up to equivalence



7.5. Some Consequences of the Duality Theory 337

there exist only finitely many of them. So a largest compound modality exists. So,
Λ is weakly transitive and has the finite model property. By Corollary 7.5.9, EΛ has
a basis, and by Theorem 7.5.8 it is therefore continuous. �

The converse does not hold. The lattice E S4.3 is continuous but S4.3 fails to
be locally finite. Now, finally, consider the question of finite axiomatizability. In
lattices which have a basis, this can be decided rather easily. Given a set S , a re-
lation ≺ is called a well–partial order (wpo) if it is a partial order and there are
no infinite strictly descending chains, and no infinite antichains. There is a rather
famous theorem by J. B. K which says that the set of finite trees under the
embedding–ordering is a wpo ([135]).

T 7.5.11. Let L be locale with a basis. Then the following are equivalent.

1. ≥ is a well partial order on ISpc(L).
2. L has a strong basis and no infinite antichains exist in ISpc(L).
3. Every element is a finite union of –primes.
4. L � K(L).
5. Every strictly ascending chain in L is finite.

P. If L has a basis it is continuous and so the properties on the poset of
–irreducible elements can equivalently be checked on the poset of –irreducible

elements. Let (1.) be the case. Then (2.) holds by Theorem 7.5.6. Now consider an
element x of L and let Y be a minimal set of –primes such that x = Y . Then Y is
an antichain, and so Y is finite. Now, if every element is a finite union of join–primes,
then every element is compact. Now let 〈xi : i ∈ ω〉 be an infinite strictly ascending
chain. Then its limit cannot be compact. Finally, assume that there are no infinite
strictly ascending chains in L. Then there are no strictly ascending chains in Irr(L).
Furthermore, if X is an infinite antichain, then we can choose an infinite ascending
chain of subsets of X corresponding to an infinite ascending chain of elements in L.
Hence ≥ is a wpo, as required. �

C 7.5.12. (κ ≤ ℵ0.) Let EΛ have a strong basis. Then the following
are equivalent.

1. Every extension of EΛ is finitely axiomatizable.
2. EΛ is finite or countably infinite.
3. There exists no infinite set of incomparable splitting logics.

There are lattices of modal logics in which there are infinite ascending chains of
irreducible elements and infinite antichains. The latter has been shown in [61] (see
exercises below). Another example is the logics of Chapter 2.6. Here we will pro-
duce an infinite ascending chain of irreducible elements; a first proof of this fact was
given by B [23]. Our example will allow to prove a number of very interesting
negative facts about modal logics in general. Let F andG be frames. Then let F >©G
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be the following frame.

h := f × {0} ∪ g × {1}
Ch := {〈〈x, 0〉, 〈y, 0〉〉 : x, y ∈ f , x C f y}

∪ {〈〈x, 1〉, 〈y, 1〉〉 : x, y ∈ g, x Cg y}
∪ {〈〈x, 0〉, 〈y, 1〉〉 : x ∈ f , y ∈ g}

H := {a × {0} ∪ b × {1} : a ∈ F, b ∈ G}
F >©G := 〈h,Ch,H〉

Moreover, if α is an ordinal number, let α := 〈α, 3〉. We are interested in the logic of
the frames of the form • >© (α ⊕ β) >© γ for infinite α and β. In Figure 7.6 the frame

• >© (ω ⊕ ω) >© n is shown.
Consider the following formulae.

ϕ0 := p0 ∧ ¬p1 ∧ �(¬p0 ∧ ¬p1)
ϕ1 := ¬p0 ∧ p1 ∧ �(¬p0 ∧ ¬p1)

The logic G.Ω2 is defined as follows.

G.Ω2 := K.G ⊕ ♦p0 ∧ ♦p1 ∧ ♦p2 →
∨

i< j<3 ♦(pi ∧ p j) ∨
∨

i,i ♦(pi ∧ ♦p j)
⊕ ♦ϕ0 ∧ ♦ϕ1 → ♦♦ϕ0 ∧ ♦♦ϕ1

⊕ ♦ϕ0 ∧ ♦ϕ1 → �¬(♦ϕ0 ∧ ♦ϕ1)

T 7.5.13. Every extension of G.Ω2 is complete with respect to frames of
the form (i) • >© (ω ⊕ ω) >©α, α ≤ ω, or (ii) α, α ≤ ω.

The Theorem 7.5.13 is proved as follows. Every extension of G.Ω2 is com-
plete with respect to simple noetherian frames, by Theorems 8.6.14 and 8.6.15 of
Section 8.6. Moreover, it is easy to see that the Kripke–frames underlying the re-
duced canonical frames for G.Ω2 have the structure • >© (α ⊕ β) >© γ, for certain
ordinal numbers α, β and γ. Furthermore, if α and β are nonzero, they must be
infinite. Let Λ ⊇ G.Ω2, and let ϕ < Λ. Then there exists a model 〈F, β, x〉 � ¬ϕ
based on a generated subframe of a reduced weak canonical frame. Let y ∈ f ; define
C(y) := {χ ∈ sf (ϕ) : y � χ}. Call y ϕ–maximal if for every zBy such that C(z) = C(y)
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also zC y. Let D be the set of points which are ϕ–maximal. D has ≤ 2 · ]sf (ϕ) points.
Consider the subframe D of F based on D. It is cofinal, that is, it contains all points
of depth 0. Let γ(p) := β(p) ∩ D. There exists a weak successor y ∈ D of x and
〈D, β, y〉 � ϕ. D can be partitioned into four possibly empty pairwise disjoint frames
W, A, B, Z, each linearly ordered by C such that D � Z >© (A ⊕ B) >©W. Observe
that if A is empty, we can choose B in such a way that it is empty, too.
Case 1. A or B is empty. Then D is linear. This case is rather straightforward.
Case 2. Both A and B are nonempty. Then Z is nonempty and so Z � • . Let
G = Z >© ((α1 >©A) ⊕ (α2 >©B)) >© (α3 >©W) for certain ordinal numbers α1, α2 and
α3. G is a G.Ω2–frame. Let E be the subframe ofG based on the union W∪A∪B∪Z.
It is possible to extend the valuation γ on D to a valuation δ on F such that (i)
δ(p) ∩ E = γ(p), (ii) each δ(p) is a finite union of intervals and singletons, (iii)
〈F, δ, y〉 � ¬ϕ. (Namely, let x ∈ δ(p) for x ∈ α1 iff for the root y1 of A, y ∈ γ(p). Let
x ∈ δ(p) for x ∈ α2 iff for the root y2 of B, y ∈ γ(p), and let x ∈ δ(p) for x ∈ α3 iff
for the root y ofW, y3 ∈ γ(p).)

Now, the size of D depends on ϕ. However, it is always finite. Hence we
obtain that the logic of • >© (α ⊕ β) >© γ, where α ≤ β is identical to the logic of

• >© (α′ ⊕ β′) >© γ′, where α′ ≤ β′ if (i) α = α′, β = β′ or α = α′ and β, β′ ≥

ω or α, α′, β, β′ ≥ ω, and (ii) γ = γ′ or γ, γ′ ≥ ω. This completes the proof of
Theorem 7.5.13. We deduce the following.

T 7.5.14. EG.Ω2 � ω + 2 + ωop.

P. It is a matter of direct verification (using some formulae) that the logics
Th γ, γ ≤ ω, as well as Th • >© (ω ⊕ ω) >© γ, γ ≤ ω, are pairwise distinct. Now, the
theorem is established by the following facts.

1. m� n iff m ≤ n.
2. • >© (ω ⊕ ω) >©m� • >© (ω ⊕ ω) >© n iff m ≥ n.
3. Th (• >© (ω ⊕ ω) >© n) ⊆ Th (• >© (ω ⊕ ω) >©ω).
4. n� ω� • >© (ω ⊕ ω) >©ω.

This ends the proof. �

Call a set ∆ of formulae independent if for every δ ∈ ∆ we have δ < K ⊕
(∆ − {δ}). (For example, a basis is an independent set.) A logic Λ is independently
axiomatizable if there exists an independent set ∆ such that Λ = K ⊕ ∆. Every
finitely axiomatizable logic is independently axiomatizable. It has been shown in
C and Z [42] that there exists a logic which is not independently
axiomatizable. Furthermore, K [125] gives an example of a logic which is not
finitely axiomatizable, but all its proper extensions are. Such a logic is called pre–
finitely axiomatizable. Here is a logic that has both properties.
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F 7.7. E G.Ω2

• Th • >© (ω ⊕ ω) >© 0G.Ω2

• Th • >© (ω ⊕ ω) >© 1

• Th • >© (ω ⊕ ω) >© 2

• Th • >© (ω ⊕ ω) >© 3

...

...

• Th • >© (ω ⊕ ω) >©ωΘ

• ThωG.3

...

...

• Th 3

• Th 2

• Th 1

•

T 7.5.15. The logic of the frame • >© (ω ⊕ ω) >©ω is pre–finitely axiom-
atizable. It splits the lattice of extensions of G.Ω2. Moreover, it is not axiomatizable
by a set of independent formulae.

P. The first two claims are immediate. For the last, let Θ := Th • >© (ω ⊕
ω) >©ω. Let ∆ be a set of formulae such that Θ = K ⊕ ∆. G.Ω2 is finitely axioma-
tizable. Hence there exists a finite set ∆0 ⊆ ∆ such that G.Ω2 ⊆ K ⊕ ∆0 ( Θ. Let
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δ, δ′ ∈ ∆ − ∆0 be two different formulae. Then either K ⊕ ∆0 ⊕ δ ⊆ K ⊕ ∆0 ⊕ δ
′ or

K ⊕ ∆0 ⊕ δ
′ ⊆ K ⊕ ∆0 ⊕ δ. Hence the set ∆ is not independent. �

Moreover, with this logic we have an example of an algebra that induces a split-
ting but is not finitely presentable. This shows that the generality of Theorem 7.3.11
is really needed.

T 7.5.16. LetA be the algebra generated by the singleton sets of • >© (ω⊕
ω) >©ω is not finitely presentable. Its logic splits EG.Ω2.

P. Take the freely 2–generated G.Ω2–algebra, with the generators a and b,
and consider the open filter F generated by the set E.

E := {a→ −b ∩ �(−a ∩ −b), b→ −a ∩ �(−a ∩ −b)}
∪ {(a ∪ b)→ �(�n+10 ∩ −�n0) : n ∈ ω}

We will show that A � FrΘ({a, b})/F and that for every finite subset E0 of E and filter
F0 generated by E0, A is actually not isomorphic to the quotient FrΘ({a, b})/F0. The
second claim is easy. For if E0 ⊆ E is finite, for some n, (a∪b)→ �(�n+10∩−�n0) <
E0. It is consistent to add (a ∪ b) ∩ �n+10, that is to say, adding that formula does
not generate the trivial filter. So, no finite subset is enough to generate the filter of
E. Now we show the first claim. Let us look at the reduced 2–canonical frame rather
than the 2–canonical frame. (See Section 8.6 for a definition.) Let W be the set
of (noneliminable) points satisfying −a ∩ −b ∩ �(−a ∩ −b). This set is the set of
0–definable points. It is not hard to see that it is linearly ordered by C. Moreover,
it is not finite, by choice of E. Moreover, we can show that every world of infinite
depth is eliminable, and so that 〈W,C〉 is isomorphic to ω. To see that, it is enough to
show that for every formula ϕ(p, q), ϕ(a, b) is either finite or cofinite. This is shown
by induction on ϕ. Now, let u be of depth ω in W, and let ψ(a, b) hold at a point of
infinite depth in W. We may assume that ψ is strictly simple (see Section 1.7 for a
definition). Any set (♦χ)(a, b) containing u is cofinite, and so is every set (�χ)(a, b)
containing u. Now, a nonmodal formula µ(a, b) containing u holds at all points of
W. So, u is eliminable. However, the frame consists only of noneliminable points.
This shows that 〈W,C〉 � ω. Now, every world of −W must see all worlds of W.
Moreover, it must be in a∪ b∪ �a∪ �b. Let A be the set of worlds in (a∪ �a)∩−�b,
B the set of worlds in (b∪ �b)∩ −�a. Finally, Z := −(W ∪ A∪ B). Every world of Z
is in �a and in �b. For otherwise it contains �− a or �− b. Suppose it contains both;
then it is in W. Suppose it contains only one, say � − b. Then it does not contain
� − a, so it contains �a. But then it is a member of A. Contradiction. By the axioms
of G.Ω2, if x ∈ Z, then x has no successor in Z. So, Z has one member only and
it generates the frame. Both A and B are linearly ordered. This follows from two
facts. (i) No member of A sees a member of B, and no member of B sees a member
of A. (ii) There are no three incomparable points. Both A and B must be infinite, by
the axioms of G.Ω2. Hence, by the same argument as for W, they are isomorphic to
ω. �
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Exercise 242. Show that a coherent locale is spatial.

Exercise 243. Let Grz3 be the logic of Grz–structures of depth 3. Show that Grz3 is
locally finite but that E Grz3 is uncountable. Hint. The frames for Grz3 are simply
characterized by the fact that they are a poset in which no strictly ascending chain of
length 4 exists.

Exercise 244. Show that there exists a logic Θ such that all extensions of Θ are
finitely axiomatizable over Θ but not all extensions are finitely axiomatizable over
K.

7.6. Properties of Logical Calculi and Related Lattice Properties

In this section we will map out the distribution of logics that have a certain
property in terms of their closure under lattice operations. Some easy facts are the
following. Given a class X of frames, the logics which are X–complete are closed
under (infinite) intersection. The set of logics which are X–persistent are closed
under (infinite) union. Moreover, it can be shown that logics which are X–elementary
for some modal class X of frames form a sublocale in the locale EΛ. We will show
here a special case, the most important one, namely that of the Sahlqvist logics (see
[127]). The general fact is proved the same way. Recall that Sqn denotes the class
of logics axiomatizable by a set of Sahlqvist axioms of Sahlqvist rank n.

T 7.6.1. (κ < ℵ0.) The logics Sqn form a sublocale of the locale E Kκ of
κ–modal logics.

P. The only thing which is not straightforward is the closure under meet. To
this end take two elementary Sahlqvist formulae of rank n, (∀x)α(x)and (∀x)β(x). We
want to show that (∀x)α(x) ∨ (∀x)β(x) is again Sahlqvist of rank n. Define formulae
γk, k ∈ ω, by

γk := (∀x)([
∧
j≤k

(∀y B j x)α(y)] ∨ [
∧
j≤k

(∀y B j x)β(y)])

where x C j y iff there exists a path of length j from x to y. Observe now that

F � (∀x)α(x) ∨ (∀x)β(x) iff F � {γk : k ∈ ω}

For if F � (∀x)α(x) ∨ (∀x)β(x) then F � (∀x)α(x) or F � (∀x)β(x). Assume withouth
loss of generality the first. Thus F � (∀x)(∀y B j x)α(y) for all j and consequently
F � γk for all k. For the converse assume F satisfies all γk. Take a world w ∈ F.
Then for an infinite number of k ∈ ω we have either

F � {(∀y B j x)α(y)[w] : j ≤ k}

or
F � {(∀y B j x)β(y)[w] : j ≤ k}
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Let the first be the case. Denote by G be the subframe generated by w in F. Then
G � (∀x)α(x). Consequently,

G � (∀x)α(x) ∨ (∀x)β(x)

This holds for all generated subframes, and so it holds for F as well, since α(x), β(x)
are restricted. Secondly, for every k, γk is Sahlqvist of rank n. Two cases need to be
distinguished. First case is n = 0. Then γk is constant and so Sahlqvist of rank 0.
Second case n > 0. Since the formula begins with a universal quantifier and (∀yB j x)
is a chain of universal quantifiers, the rank of γk is the maximum of the ranks of α
and β, hence at most n. �

As a particular application of the splitting theorem we will prove that there are
effective means to axiomatize tabular logics and that the tabular logics form a filter in
the lattice of logics. This is by no means trivial to show, and requires some advanced
methods, despite the seemingly simple character of the generating algebra. In gen-
eral, these results have been shown to hold in congruence distributive varieties by
B in [2]. However, his proof uses abstract algebra, whereas here we can make
use of geometric tools. Moreover, some results can be sharpened. Crucial to the
analysis are two families of logics, the family of weakly transitive logics and logics
of bounded alternativity. Recall from Theorem 3.2.12 that logics of bounded alterna-
tivity are canonical. Consider now a logic which is m–transitive and satisfies altn for
some m, n ∈ ω. Then each rooted subframe of the canonical frame has at most nm+1−1

n−1
many points. For, by induction, the kth wave consists of at most nk many points and
the transit of a point is the union of the k–waves for k ≤ m, by m–transitivity. So,
there are only finitely many non–distinct frames in the canonical frame.

T 7.6.2. A logic is tabular iff it is of bounded alternativity and weakly
transitive.

P. Let Θ be tabular, say, Θ = Th f for some finite f. Let n = ] f . Then Θ is
n–transitive, and each point has at most n successors. Conversely, let Θ be weakly
transitive and of finite alternativity. Then Θ is canonical, hence complete. Each
rooted subframe for Θ is finite and bounded in size by 1+ n+ n2 + . . .+ nm. So there
are up to isomorphic copies finitely many rooted frames for Θ. Their disjoint union,
g, is finite and Θ = Th g. �

C 7.6.3. The tabular logics form a filter in the lattice of modal logics.

How can we axiomatize the logic of a single frame f if it is finite? First, we
know that there is an axiom of weak transitivity satisfied by f, say trsm. Hence, we
know that all finite frames for Th f induce a splitting of the lattice of extensions of
K.trsm. Moreover, there is an axiom altn satisfied by f, so in fact all rooted frames
are finite. Hence we have the following representation.

Th f = K.altm.trsn/N
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F 7.8.

3 :

•

•

•

1

Th ◦

Θ

where N is the set of logics of rooted frames g which are not generated subframes
of p–morphic images of f and which are frames for K.altm.trsn. There are finitely
many of them.

P 7.6.4. Tabular logics are finitely axiomatizable and of finite codi-
mension.

The converse does not hold. We give an example in monomodal logic, namely
the logic of the veiled recession frame. It is of codimension 2. Its lattice of extensions
is depicted in Figure 7.8; it is isomorphic to 〈3,≤〉. Let r denote the frame defined
by r := 〈ω,C〉 where nCm iff n ≤ m+ 1 (see [25]). Let R be the algebra of the finite
and cofinite subsets of ω and Θ := ThB = K(�♦p → ♦�2 p, �p → p, ♦p ∧ �(p →
�p) → p). R is 1–generated; simply take {0} ⊆ ω. It is not entirely simple to see
that the logic of the veiled recession frame is –prime in its own lattice. However,
consider the structure of the frame FrΘ(1). It is constructed by taking a product of R,
each factor representing a possible valuation of p into the algebra R. The canonical
value of p in that frame is then the sequence of the values β(p). Crucial is the fact
that a valuation sends p to a non–trivial set, that is, a set , ∅ and , r, iff it does
not send ♦p ∧ ¬p to ∅. Notice on the other hand that a set generates R exactly
if it is nontrivial. (This will be an exercise.) Now consider an extension Λ ) Θ.
Then there is a nontrivial map h : FrΘ(1) � FrΛ(1). By the fact that Θ is the logic
of the veiled recession frame, FrΛ(1) must not contain any generated component
looking like the recession frame. Hence, all components have been killed by h, that
is, h(♦p∧¬p) = ∅, since the latter formula defines exactly the generated components
looking like veiled recession frames. To put this differently, h(♦p → p) = 1, that
is, ♦p → p ∈ Λ, which means that Λ contains the logic of the one–point reflexive
frames. Hence R is prime in EΘ and induces a splitting EΘ/Θ = Th ◦ . It is no
coincidence that the counterexample is a logic of depth 2, by the Theorem 2.9.9. We
will show later that with two operators there are 2ℵ0 many logics of codimension 1.

Our last example concerns the problem of closure under union of completeness
properties. We have seen that tabular logics are closed under union. B [21] has
first given an example of two logics which have the finite model property such that
their join does not. Here we will show that there are complete logics such that their
join is incomplete. The example is based on [62], one of the first examples of an
incomplete logic. (The article by F appeared in the same edition of the journal
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where T published his [207]. The two results have been independently ob-
tained.) Consider the frame of Figure 7.9. The frame is denoted by f. The first three
rows of points are of finite depth, the lowest consists of points of infinite depth. No-
tice that the points of infinite depth form an infinite ascending chain. We refer to the
first two rows as the spine of the frame, the points of the third row are called needles.
The lowest row is the head. Consider the algebra F generated by the finite subsets
of the spine. This set contains all finite sets of needles. It can be shown inductively
that each element of F has a maximal point. That is, if a ∈ F then for every x there
exists a y ∈ a such that x C y and for all y C z ∈ a we have z = y. This holds of
the generating sets, and if it holds of set a, b then of −a, of �a, and of a ∪ b. Hence
F � Grz. On the other hand f 2 Grz.

T 7.6.5 (Fine). The logic of F is incomplete.

P. Consider a formula ϕ such that ϕ can be satisfied in F under a valuation
β at a point w0 iff there exist points z1, z2, z3, y and x such that (i.) w0CxCyCz1; z2; z3
and z2 C z3, z1 6 z3, z3 6 z1, x 6 w0, y 6 x, (ii.) for all v such that z2 C v either
v = z2 or v = z3, (iii.) for all v such that y C v either y = v or z1 C v or z2 C v. We
leave it to the reader to construct such a formula ϕ. Then 〈F, β,w0〉 � ϕ iff w0 is in
the head of the frame. Moreover, if G is a frame for ThF such that G 2 ¬ϕ then its
underlying Kripke–frame contains an infinite strictly ascending chain of points and
so the Kripke–frame on which it is based is not a frame for ThF. Hence there exists
no model for ϕ based on a Kripke–frame. Thus ThF is incomplete. �

C 7.6.6. The logics Th f and Grz are complete. Their union is incom-
plete, however.

We summarize the facts in Table 1. We include here not only facts about closure
under finite union and finite intersection but also about upper and lower limits. Not
all facts have been shown so far. That the finite model property and completeness
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T 1. Closure of Properties of Logics

sup inf t u

tabularity yes no yes yes
finite model property no yes no yes
completeness no yes no yes
compactness ? no no ?
canonicity yes no yes yes
∆–elementarity yes no yes yes
finite axiomatizability no no yes ?
decidability no no no yes
subframe logic yes yes yes yes
Halldén–completeness yes no no no
interpolation yes no no no

may be lost under suprema is left as an exercise. FW in [240] gives an ex-
ample of two compact logics whose join is not compact. G.3 is the infimum of logics
which are compact, ∆–elementary and canonical, but G.3 is neither. Nonpreservation
of decidability under join is shown in Section 9.4. Nonpreservation of decidability
under suprema is straightforward. Now consider the frames pn = 〈n + 1,C〉 where
i C j iff i = j = 0 or i < j. Let P := {pn : 0 < n ∈ ω}. These frames are frames
for K4.3. Clearly, the logic of finitely many such frames is decidable (it is tabu-
lar), but also the logic of any cofinite set R. For this logic is simply K4.3/Q, where
Q = P − R. So, consider the map κ sending each subset of P to the logic of its
frames. (This is similar to ι(M) of Section 2.6.) Clearly, the splitting formula for
pn is satisfiable in κ(M) iff n ∈ M. So, κ(M) is undecidable for a nonrecursive set
M and hence it is not finitely axiomatizable. This logic is the supremum of finitely
axiomatizable logics with finite model property. These logics are decidable. Yet,
κ(M) is not decidable. The logics κ(M) are also useful in showing that ∆–elementary
logics as well as finitely axiomatizable logics are not closed under infima. From The-
orem 9.4.6 one can easily deduce that Halldén–complete logics are not closed under
meets. Halldén–complete logics are closed under suprema just like logics with in-
terpolation. The proof is rather straightforward. Logics with interpolation are not
closed under intersection or meet. This follows from the classification of logics con-
taining Grz with interpolation (see [148]). That subframe logics are closed under all
these operations has been shown in Section 3.5.

There is also the notion of a bounded property. A logic Λ is said to bound a
property P if Λ does not possess P but all its proper extensions do. For facts about
bounded properties see Section 8.8.
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Exercise 245. Show Corollary 7.6.3.

Exercise 246. Show that a set in the veiled recession frame generates the algebra
of finite and cofinite sets iff it is not empty and not the full set. Hint. Proceed as
follows. Show that there must exist a set of the form [n) = {m : n ≤ m}. Then
all [k) for k ≥ n exist. Then we have almost all singletons {k}. Now observe that
�{n} = {n − 1, n, n + 1} and show that we get all other singletons as well.

Exercise 247. Let f be a finite frame and let Th f split EΘ. Show that there is a
formula in p2log(] f + 1)q variables axiomatizing Θ/f. Hint. Use a different axiom-
atization than developed above. Instead of adding altn add an axiom saying that the
frames must have at most ] f points.

Exercise 248. Using the fact that S4.3 is axiomatized over S4 by splitting the follow-
ing two frames, show that there is no axiom for .3 using one variable only. However,
show that S4.3.t can be axiomatized over by axioms using a single variable.
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Exercise 249. Let Θ have the finite model property. Show that any logic in EΘ has
a lower cover.

Exercise 250. Construct a formula ϕ satisfying the requirements of the proof of
Theorem 7.6.5. Supply the remaining details of the proof!

∗Exercise 251. Show that there is an ascending chain of logics which have the finite
model property such that their supremum fails to have the finite model property.
Hint. Put Pn := {pm : 0 < m ≤ n} with pn as above. Next put Θn := K4/Pn and
Θω := K4/P. Clearly, Θω is the supremum of the Θn. Show that (a) Θω has the same
finite models as G, (b) K4/pn is axiomatizable by a constant formula. Deduce that
Θn has the finite model property for all n. (c) Θ , G.

Exercise 252. (Continuing the previous exercise.) Show that Θω has interpolation.
(So, there exist logics with interpolation but without the finite model property.)

Exercise 253. Show that there exist logics with interpolation which are undecidable.

Exercise 254. Let Θ be the modal logic of frames 〈N,C1,C2,C3,C4,C5〉, where
〈N,C1〉 is isomorphic to the set of natural numbers and the successor function, C2 =
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C`1 , C3 = C
+
1 , C4 = C

+
2 , and finally C5 a subset of the diagonal of N. Show that Θ

has up to isomorphism only frames of the form specified. Consider extensions of the
form

Θm := Θ ⊕ {�n
2⊥ → �5⊥ : n < m} .

Let Θω := sup{Θm : m ∈ ω}. Show that Θω is consistent and has no frames. Clearly,
all Θm are complete. Conclude that completeness is not preserved under suprema.

Exercise 255. Show that 0–axiomatizability is preserved under join and meet, and
under suprema. (It is not known whether 0–axiomatizability is preserved under in-
fima.)

7.7. Splittings of the Lattices of Modal Logics and Completeness

We will start the investigation of splittings in the lattices of modal logics by
studying the lattice of extensions of the minimal modal logic. We will see that for
a logic Λ in order to split the lattice E Kκ, Λ must be the logic of a finite cycle–free
frame. There are several questions which come to mind. First, what happens if we
try to iterate the construction? Are there possibilities to split the lattices by algebras
which did not previously induce a splitting? Secondly, what interesting properties
do the resulting splitting logics have? We will give quite complete answers to these
questions. First of all, notice that by the unravelling technique we know that if a
formula ϕ is consistent with Kκ then it has a model based on a cycle–free frame, in
fact a totally intransitive tree. This shows that only cycle–free frames can split E Kκ.

P 7.7.1 (Blok). (κ < ℵ0.) A logic splits EKκ iff it is the logic of a
finite rooted cycle–free frame.

P. Kκ =
⋂
〈Th f : f finite cycle–free〉. So, an element Θ is prime in E Kκ

only if Θ ⊇ Th f, for some finite f, that is, Θ = Thh for some h which is a p–morphic
image of some generated subframe of f. If f is cycle–free, so is h. On the other hand,
by Corollary 7.3.13 finite rooted cycle–frames induce a splitting of E Kκ. �

We can derive the following fact about the structure of the lattice of extensions from
[23].

T 7.7.2 (Blok). EKκ has no elements of finite nonzero dimension. Hence
EKκ is atomless.

P. Suppose otherwise. Then there is an atom Λ in the lattice. Atoms are
–irreducible and so –prime, by the fact that lattices of extensions are upper

continuous. Hence they are co–splitting, and so there must be a splitting companion
of Λ. Call it Θ. We know from the previous theorem that Θ = Th f for some finite,
rooted and cycle–free frame. It is easy to see that there is a splitting logic Θ′ ( Θ.
Namely, if f = 〈 f ,C〉 with w0 the root, let u < f and put C′ := C ∪ {〈u,w0〉}.
Finally, g := 〈 f ∪ {u},C′〉 and Θ′ := Th g. g is rooted and cycle-free and so Θ′ splits
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E Kκ. It has a splitting partner Λ′ for which Λ′ ( Λ. But then Λ′ = Kκ, which is
impossible. �

We will show now another theorem by B which says that any iterated splitting
of Kκ has the finite model property. However, our method is markedly different
from that of B, keeping with the spirit of the technique of constructive reduction.
Moreover, the original proofs only deal with monomodal logics and are redone here
for polymodal logics.

T 7.7.3. (κ < ℵ0.) Adding an axiom of the form �k⊥ → ϕ preserves
decidability, global completeness, and the global finite model property.

P. The proof is based on the observation that for any m, n ∈ ω there is a
finite set S (m, n) of substitutions form the set of formulae over pi, i < m, into the set
of fromulae over pi, i < n, such that for any finite set of generators {a0, . . . , an−1} for
the set algebra F of a refined frame F = 〈f,F〉 for the valuation β : pi 7→ ai, i < n,
any formula ϕ in the variables pi, i < m, and any point x ∈ f

(†) 〈F, β, x〉 � {�k⊥ → ϕσ : σ ∈ S (m, n)} ⇔ F � �k⊥ → ϕ

For then it holds that for all χ, ψ based on the sentence letters p0, . . . , pn−1

�ωχ `Λ(�k⊥→ϕ) ψ ⇔ �ωχ;�ω(
∧

σ∈S (m,n)

�k⊥ → ϕσ) `Λ ψ

From this we can deduce that if Λ is globally complete, so is now the logic Λ ⊕
�k⊥ → ϕ and if Λ has the global finite model property, so does also the logic
Λ ⊕ �k⊥ → ϕ. For a proof of this consequence from (†) just check all models
on rooted refined frames F where the underlying set algebra is generated by the val-
ues of β(p0), . . . , β(pn−1). It is enough to show the theorem in the class of refined
frames.

Now for the proof of (†). From right to left holds for any set S (m, n). So the
difficult part is from left to right. We begin by constructing the S (m, n). Consider
the subframe C based on the set C of all points x such that 〈F, x〉 � �k⊥. C is a
generated subframe of F and hence refined since F is. By Theorem 2.7.14, C is
finite, bounded in size by a function depending only on n (and k). Hence C is full.
Consider now the induced valuation on C, also denoted by β. It is possible to show
that any set T ⊆ C can be presented as the extension of τT (a0, . . . , an−1) under β
for a suitable τT which is of modal degree ≤ 2k. Collect in S (m, n) all substitutions
σ : pi 7→ τi(p0, . . . , pn−1), i < m, for formulas of depth ≤ 2k. S (m, n) is finite. We
show (⇒) of (†) with these sets. To that end, assume that F 2 �k⊥ → ϕ for some ϕ
such that var(ϕ) = {pi : i < m}. Then there exist γ and x such that

〈F, γ, x〉 � �k⊥ ∧ ¬ϕ

Then x ∈ C and so we have by the fact that C is a generated subframe

〈C, γ, x〉 � ¬ϕ .
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There exist τi(~p), i < m, such that γ(pi) = β(τi(~p)). It follows that γ(ϕ) = β(ϕ[τi(~p)/pi :
i < m]). Put σ : pi 7→ τi(~p), i < m. Then γ(ϕ) = β(ϕσ). Therefore

〈C, β, x〉 � ¬ϕσ .

And so

〈F, β, x〉 � �k⊥ ∧ ¬ϕσ .

This demonstrates (†). �

Since Kκ has the global finite model property we conclude that splitting finitely
many frames does not disturb the global finite model property. However, we can
conclude the following.

T 7.7.4 (Blok). (κ < ℵ0.) All splittings EKκ/N where N is a set of finite
rooted cycle–free frames have the local finite model property.

P. The proof will be performed for the case κ = 1. The generalization to
arbitrary finite κ is straightforward but somewhat tedious. Let N be a set of finite
rooted cycle–free frames. Suppose that N is finite. By Theorem 7.3.13 the splitting
formula is of the form �≤m+1δ(A) → ¬ �m ⊥ for some m and A. By repated use of
Theorem 7.7.3, one can show that E Kκ/N has the global finite model property. Now
let N be infinite. Put Λ := E Kκ/N. Suppose that ϕ is a formula and d = dp(ϕ).
By induction on d we prove that every Λ–consistent formula of degree ≤ d has a
Λ–model based on a frame of depth ≤ d. This certainly holds for d = 0. Let N(d) be
the set of frames of depth ≤ d contained in N whose powerset algebra is generable
by at most ]var(ϕ) elements. This set is finite by Theorem 2.7.14. It is enough to
show that if ϕ is Λ–consistent then it has a model based on a frame of depth ≤ d not
having a generated subframe that is contractible to a member of N(d). Suppose that
ϕ is consistent with Λ. Then it is consistent with Kκ as well. So there exists a finite
Kripke–frame f such that f 2 ¬ϕ. Two cases have to be considered.
Case 1. ϕ ` �d⊥ (where ` = `Kκ

). Then any model for ϕ is based on a cycle–free
frame of depth ≤ d. Now ϕ is consistent with Λ and so it is consistent with Kκ/N(d).
Thus it has a finite model based on a frame g by the fact that N(d) is finite. g must
be a frame which is not reducible to any member in N(d), hence g < N, since g is of
depth ≤ d.
Case 2. ϕ 0 �d⊥. Then we can build a finite model of ϕ ∧ ¬ �d ⊥ with root
w0. Let ϕ be in normal form and ϕ =

∨
i<n ϕi. Let ϕi = µi ∧ �χi ∧

∧
j<mi
♦ψi

j.
Pick i < n such that ϕi is Λ–consistent. Let 〈g j, β j, y j〉 � ψ

i
j ∧ χi, g j = 〈g j,C j〉.

Assume that the g j are disjoint, of depth ≤ d − 1 and rooted at y j; moreover, let
w0 < gi for all i. By inductive hypothesis we may assume that no g j has a generated
subframe which can be contracted to a member of N. Now put h := {w0} ∪

⋃
j<mi

g j,
C :=

⋃
j<mi
C j ∪ {〈w0, y j〉 : j < mi}, h := 〈h,C〉. By choice of i, µi is consistent in
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boolean logic. Let δ be a valuation into 2 such that δ(µi) = 1. Put

γ(p) :=


⋃

j<mi
β j(p) ∪ {w0} if δ(p) = 1⋃

j<mi
β j(p) if δ(p) = 0

Then 〈h, γ,w0〉 � ϕi as can be verified immediately. Suppose that h has a generated
subframe k which can be contracted to a member of N. Then, by construction of h,
k = h. So, h is cycle–free. Suppose therefore that for every i < n the construction
must yield a cycle–free frame. Then ϕ ` �m⊥ for some m. It is not hard to show that
m ≤ d. This contradicts our assumptions, however. Hence, there is an i < n and g j,
j < ni such that the frame h constructed from the g j has a cycle. (So, one of the g j

contains a cycle.) Then h is not contractible to a member of N. �

Here now is another result about lattices of extensions, which is rather peculiar in
nature.

T 7.7.5. The lattice EK.t is isomorphic to a direct product 2×L, where
L has no splittings.

P. First of all, E K.t has a splitting 〈Λ,Θ〉, that is induced by the one–point
irreflexive frame, by the fact that it splits E K2, of which K.t is a member. But notice
that Θ has finite model property by Theorem 3.6.1, because it is axiomatized by the
constant formula ^> ∨ ^>. The frames for Θ are all frames which are different
from the one point irreflexive frame. Suppose now that Θ′ ( Θ. Then there must be
a finite frame for Θ′ which is not a frame for Θ. The only choice is the one–point
irreflexive frame; and then Θ′ = K.t. Thus Θ is an atom, and Λ is a coatom. Now
Theorem 7.2.8 yields the decomposition into 2 × L. Any splitting of L induces a
splitting of 2 × L, so we are done if we can show that no other splittings exist. This
is left as an exercise. �

We have seen in the preceding chapter that there are quite strong incomplete
logics, so completeness is actually not a guaranteed property of modal logics, as has
been believed until the early seventies, before counterexamples have been produced
by S. K. T [207] and K F [62], later also by J  B [9].
Nevertheless, despite the fact that there are incomplete logics one might still believe
that the phenomenon of incompleteness is somewhat marginal. To get an insight
into the whereabouts of incomplete logics K F has proposed in [61] to study
the degree of incompleteness of a logic. This is defined to be the set of all logics
sharing the same Kripke–frames with a given logic. Of course, only one of these
logics can be complete, so the cardinality of this set gives an indication of how many
incomplete logics close to a given logic exist.

D 7.7.6. The Fine–spectrum of a logic Λ is the set sp(Λ) := {Θ :
Krp(Θ) = Krp(Λ)}. The cardinality of the Fine–spectrum of Λ is called the degree
of incompleteness of Λ. If Λ has degree of incompleteness 1 then it is called
intrinsically complete or strictly complete.
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We can give a lattice theoretic analogue of this definition. Suppose we are given
a set P ⊆ L in a lattice. Then the P–spectrum of an element is the set

spP(x) := {y : (∀p ∈ P)(x ≤ p⇔ y ≤ p)}.

With P being the set of complete logics (or the logics of rooted frames), we get
our definition of the Fine–spectrum. It is clear that each P–spectrum has a maximal
element, namely 〈p : x ≤ p ∈ P〉. In general, there is however no least element.
Fine–spectra do not always contain a minimal element. Here is an example. (See
also Section 7.9.)

We are interested in the tense theory of ωop. Put Θ := G.3.t.K4.3.D−. It is
not hard to show that the Kripke–frames for Θ are of the form αop, where α is a
limit ordinal. For the axioms of G.3 guarantee C to be a conversely well–founded
relation. Adding K4.3− forces the relation to be a well–order. Finally, adding D−
α is forced to be a limit ordinal. The theory of ωop contains Θ. What we will
show is that this theory is a maximal consistent and complete logic in the lattice of
tense logics, and that it is the intersection of countably many logics extending it.
Since the extensions have no frame, they are incomplete, and are all in the Fine–
spectrum of the inconsistent tense logic. Hence, in tense logic the Fine–spectrum of
the inconsistent logic is not an interval.

Let us define for subsets A, B of ω, A ∼ B iff for almost all n ∈ ω, n ∈ A iff
n ∈ B. We say that in this case A and B are almost equal. It is not hard to show that
∼ is a congruence in the algebra of sets over ω, with the operations

� A := {n : (∀m < n)(m ∈ A)}
� A := {n : (∀m > n)(m ∈ A)}

Furthermore, let O be the set of finite and cofinite subsets of ω. O is closed under
all operations, and therefore 〈ω, >,O〉 is a general frame. O contains exactly the
sets which are almost zero or almost one. For the purpose of the next theorem, a
partition of a set M is a subset X of ℘(M) such that (a) ∅ < X, (b) M =

⋃
X, and

(c) for any S ,T ∈ Z, if S , T then S ∩ T = ∅.

L 7.7.7. Let A ⊆ ℘(ω) be a finite partition of ω. Then the least algebra
containing A is the set of all sets which are almost identical to a union of elements
of A.

L 7.7.8. Let G := {S i : i < n} be a finite set of subsets of ω. Then there
exists H = {T j : j ≤ k}, which is a partition of H of cardinality ≤ 2n such that G and
H generate the same algebra of sets.

L 7.7.9. LetQ be an n–generated set of sets. Then 〈ω, >,Q〉 satisfies χ(2n),
where χ(k) is the following formula.∨

i<k ^�¬pi

∨
∨

i< j<k ^�(pi ↔ p j)
∨ ^�

∨
i<k pi
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P. Let β be a valuation and let ai := β(pi). Pick some point n ∈ ω. We have
to show that 〈〈ω, >,Q〉, k, β〉 � χ(2n). To that end, assume that k 2

∨
i<k ^�¬pi. Then

all ai are infinite. Assume furthermore that k 2
∨

i< j<k ^�(pi ↔ p j). Then for no
different i, j we have ai ∼ a j. Hence no two sets ai and a j are almost equal. We know
by Lemma 7.7.8 that in an n–generated algebra there are at most 2n sets such that
no two are almost equal. Moreover, their union is almost ω. Hence k � ^�

∨
i<k pi.

That had to be shown. �

L 7.7.10. No logic containing Θ ⊕ χ(k) has a nonempty Kripke–frame.

P. Let f be a (nonempty) Kripke–frame for Θ ⊕ χ(k). Then f is isomorphic
to a converse well–order αop, where α is a limit ordinal, and so not finite. But then
χ(k) is clearly not valid in f. �

T 7.7.11. The tense logic of ωop is the downward limit of logics which
have no frame.

P. Suppose that ωop 2 ¬ϕ. Then there exists a model 〈ωop, β, k〉 � ϕ. Now
let Q be the algebra generated by β(p), p ∈ var(ϕ). Clearly, we have 〈ω, >,Q〉 2 ¬ϕ.
Q is finitely generated. Hence 〈ω, >,Q〉 satisfies an axiom χ(k) for some k. Hence ϕ
is consistent in ThΩ ⊕ χ(k). So,

Thωop =
⋂
k∈ω

Thωop ⊕ χ(k)

This concludes the proof of the theorem. �

C 7.7.12. The spectrum of the inconsistent tense logic is not an inter-
val.

T 7.7.13. The spectrum of the monomodal logic Th • is not an interval.

This last theorem follows immediately from the Simulation Theorem. The sit-
uation is different if we specialize on the set P of prime or splitting elements. The
P–spectrum of x is called the prime–spectrum and denoted by psp(x).

P 7.7.14. Let L be a lattice. For every x ∈ L there are x0 and x0 such
that psp(x) = [x0, x0]. x0 is P–complete and x0 is a union of co–splitting elements.
Consequently, if x = x0 and x is P–complete then x is strictly P–complete.

P. Put x0 := 〈p : p ∈ P, p ≥ x〉 and x0 := 〈L/p : p ∈ P, p � x〉.
Suppose that z ∈ psp(x). Then clearly z ≤ x0. We have to show that x0 ≤ z. Now
for p ∈ P we have p � x ⇔ p � z whence L/p ≤ x ⇔ L/p ≤ z. Therefore
z ≥ 〈L/q : p ∈ P, p � x〉 = x0. Conversely, if x0 ≤ z ≤ x0 then p ≥ z ⇔ p ≥ x for
all p ∈ P and so z ∈ psp(x). �

This shows among other that the splittings of Kκ by cycle–free frames are intrin-
sically complete. Thus incomplete logics cannot be ‘close’ to unions of co–splitting
logics. The difficult question remains as to where these logics are. We will spend the
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rest of this section and the whole next section to prove one of the most beautiful the-
orems in modal logic. We will call it Blok’s Alternative, because it says that logics
have only two choices for their degree of incompleteness: 1 or 2ℵ0 .

T 7.7.15 (Blok’s Alternative). A logic containing K1 is intrinsically
complete iff it is an iterated splitting of K1. Otherwise, the logic has degree of
incompleteness 2ℵ0 .

The proof is done in two steps. The first step consists in showing that the
coatoms have degree of incompleteness 2ℵ0 . In the second step we use the frames
produced in the first step to show that in fact any non–splitting logic has degree of
incompleteness 2ℵ0 . Let us begin by defining the frames PM , where M ⊆ ω − {0}.
The set of worlds of PM is the (disjoint) union of the sets {n• : n ∈ ω}, {∗,∞,∞ + 1}
and {n◦ : n ∈ M}. We put

x C y⇔



x ∈ {m•,m◦}, y ∈ {n•, n◦},m > n,
or x = y = m◦,
or x = 0•, y ∈ {∗,∞ + 1},
or x ∈ {∞,∞ + 1}, y = ∞,
or x = ∞, y ∈ {n•, n◦}.

This defines the frame pM . The frame corresponding to M = {1, 4, . . .} is shown in
the picture. pM is intuitively obtained as follows. We have the set of natural numbers
ordered by C = >. Each point in that set is referred to as n•. Moreover, if n ∈ M
we also have a reflexive companion n◦. Notice that the set {∗} is the only nontrivial
generated subframe. We let PM be the algebra of all finite sets not containing∞ and
of all cofinite sets containing ∞. This set is closed under all operations. Indeed,
if we have a finite set S not containing ∞, ∗ or ∞ + 1, or a cofinite set then �S is
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cofinite, and contains ∞. Furthermore, we have �{∗} = �{∞ + 1} = {0•} which is
finite and does not contain∞. If S is cofinite and contains∞, so does �S . Thus this
is well–defined and so PM := 〈pM ,PM〉 is a frame.

L 7.7.16. PM is 0–generated.

P. We will show two things. (1.) {∗} is definable, and (2.) all other sets are
definable from {∗}. (1.) is easy. We have �∅ = {∗}. For (2.) we need to do some
work. First, �{∗} = {0•}. Moreover, {∞ + 1} = �≤2{0•} − �≤1{0•}. Now define by
induction on n the polynomials in(p), p•n(p), p◦n(p).

in(p) :=
∨

k≤n(p•k(p) ∨ p◦k(p))
p•0(p) := p
p◦0(p) := ⊥

p•n+1(p) := �in(p)
p◦n+1(p) := ♦p•n(p) ∧ ¬p•n+1(p) ∧ ¬♦p•n+1(p)

Then i0(p) = p. By induction it is verified that p•n({0•}) = {n•} and that p◦n({0•}) =
{n◦} if n ∈ M, and = ∅ otherwise. Hence in({0•) = {k• : k ≤ n} ∪ {k◦ : k ≤ n, k ∈ M}.
Finally, {0•} = �∅, so we can define all these sets if we replace p by �⊥. So all
singleton sets except for {∞} are 0–definable, and all finite sets not containing∞ and
their complements are also 0–definable. �

Notice that the definition of the polynomials does not depend on the set M ⊆ ω.
We will make use of that in the next section. The next goal is to show that the logics
of these frames are all of codimension 2. To see this we can use the splitting theo-
rem. The algebra is subdirectly irreducible and the logic it generates is 4–transitive.
Hence we are done if we can show this algebra to be finitely presentable. But this is
entirely obvious, since we have just shown that it is 0–generated, and so isomorphic
to FrΛ(0). Hence, we can take as a diagram simply >. To get an extension of this
logic we simply add the formula �⊥, for �⊥ is an opremum! Therefore, ThPM

has codimension 2. Finally, for different sets M, the logics of the frames are dis-
tinct, simply by the fact that the points n◦ are definable by constant formulae. We
have proved now not only that there are uncountably many incomplete logics with
Kripke–frame • , but also that the logic of the irreflexive point is co–covered by
them.

D 7.7.17. Let L be a lattice, and x ∈ L. Define the co–covering
number of x to be the cardinality of the set {y : y ≺ x}.

T 7.7.18 (Blok). The logic of the irreflexive point is co–covered by 2ℵ0

incomplete logics. Hence it has co–covering number 2ℵ0 and degree of incomplete-
ness 2ℵ0 .

Next we need to deal with the frame ◦ . The solution will be quite similar.
Namely, instead of the frame pM we define the frame qM consisting of the same set,
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and the relation C differs minimally in that we now put ∗ C ∗. The rest is the same.
We put QM := PM and this defines QM .

L 7.7.19. QM is 1–generated. Moreover, a set generates QM iff it is , ∅
and , qM .

P. Since the frame is identical on −{∗}, we can use (2.) of the previous
proof to show that QM is generated from {∗} and so 1–generated. For the second
claim it suffices to show that {∗} is definable from any other nontrivial set. We claim
that −{∗} = �≤4b − �≤4b iff b , ∅ and −b , ∅. Namely, suppose that b , ∅ as well
as −b , ∅. Then, because b , ∅, �≤4b ⊇ −{∗}. For if x ∈ b for some x then by
4–transitivity all elements that can at all reach x are in �≤4b. Hence either ∗ ∈ b and
then �≤4b = 1 or ∗ < b and then �≤4b = −{∗}. Case 1. ∗ ∈ b. Then there exists an
x , ∗ such that x < b. Consequently, �≤4b = {∗}. Case 2. ∗ < b. Then �≤4b = −{∗},
and �≤4b = ∅, as required. �

The algebra underlying QM has two subalgebras, the two element algebra and
itself. It has three homomorphic images, itself, the trivial algebra and the algebra of
◦ , the latter corresponding to the subframe generated by {∗}. Now take a logic Θ ⊇
ΛM := ThPM . We have h : FrΛM (1) � FrΘ(1). We will use an argument similar
to the one before. However, this time we do not have such a simple structure for the
free frame. Namely, it consists of countably many copies ofQM , each corresponding
to a different generating set. The generating sets are exactly the nontrivial sets. We
now reason as with the veiled recession frame of Section 7.6.

L 7.7.20. Let S be an internal set of QM and C := S ∩ � − S . C = ∅ iff
S = ∅, S = {∗} or S = qM .

P. Suppose that S = ∅. Then C = ∅. Suppose on the other hand that
−S = ∅. Then C ⊆ �∅ = ∅. Finally, if S = {∗}, then ∗ < � − S , and so C = ∅
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as well. Now assume that neither of the three is the case. Let S be cofinite. Then
it contains ∞. −S is finite, and � − S contains ∞ if −S contains at least n◦ or n•

for some n. In that case, ∞ ∈ C. Now let −S ⊆ {∞ + 1, ∗}. In this case 0• ∈ C.
This finishes the case where S is cofinite. So, let now S be finite. It does not contain
∞, so ∞ + 1 ∈ � − S . Hence if ∞ + 1 ∈ S we are done. So, assume from now on
∞ + 1 < S . Let n be the smallest number such that S ∩ {n•, n◦} , ∅. n := −1 if
such number does not exist. If n > 0, 0• ∈ −S and so {n•, n◦} ⊆ � − S . In that case,
C , ∅. Now let n = 0. Then, since∞ + 1 ∈ −S , 0• ∈ � − S , and so 0• ∈ C. Finally,
let n = −1. Then S = {∗}. But that was excluded. �

So, h(p → �p ∧ ¬p → �¬p) = 1 iff h(p → �p) = 1 and h(¬p → �¬p) = 1
iff h(p) = ∅ or h(¬p) = ∅ iff h(p) does not generate the full algebra of internal sets
iff h(p) generates a subalgebra isomorphic to the algebra of subsets of ◦ . Hence
if p → �p < Θ, FrΘ(1) contains a generated subframe isomorphic to QM , so that
Θ = ΛM . The following is now proved.

T 7.7.21 (Blok). The logic of the reflexive point is co–covered by 2ℵ0 in-
complete logics. Hence it has co–covering number 2ℵ0 and degree of incompleteness
2ℵ0 .

Exercise 256. Show that there are 2ℵ0 iterated splittings of K1.

Exercise 257. Show that the frame underlying the freely 0–generated K1–algebra
has cardinality 2ℵ0 .

Exercise 258. Show that Th • is co–covered by 2ℵ0 logics in the lattice EK.trs4.
Hint. This should be entirely easy.

Exercise 259. Describe the structure of the canonical frame for one variable in
ThQM .

∗Exercise 260. Show that the lattice of tense logics has exactly one splitting. Hint.
Show first that K.t is complete with respect to finite frames which contain no forward
cycle, and hence no backward cycle. Now let f be such a frame and let it have more
than one point. Create a sequence of frames fn such that (i) they contain a reflexive
point and so Th fn * Th f and (ii) that

⋂
Th fn ⊆ Th f. (See [123].)

Exercise 261. Let A be a finite n–generated modal κ–algebra. Then ThA can be
axiomatized by formulae containing at most n + 1 variables.

7.8. Blok’s Alternative

Now that we have shown for the two coatoms that they are maximally incom-
plete, we proceed to a proof that in fact all consistent logics which are not joins of
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co–splittings of E K1 have degree of incompleteness 2ℵ0 . Suppose that Θ is a con-
sistent logic and not identical to a logic K1/N, N a set of cycle–free frames. Then
Θ properly includes Θ0, the splitting of K1 by all cycle–free frames not belonging
to KrpΘ. Since Θ0 has the finite model property, there must be a finite frame f such
that f � Θ0 but f 2 Θ. By the construction of Θ0, f cannot be cycle–free. It is by
playing with f that we obtain a set of frames GM , where M ⊆ ω and GM is not a
frame for Θ, but all Kripke–frames for ThGM are frames for Θ, so that Θ ∩ ThGM

is an incomplete logic different from Θ.
Consider now the frame f. The desired frames GM will be produced in two

stages. First, we know that f contains a cycle, say c0 C c1 C . . . C cγ = c0. Put
C := {ci : i < γ}. We assume the cycle to be minimal, that is, ci C c j iff j ≡ i + 1
(mod γ). The proof of the existence of such a cycle is an exercise. We produce a
variant of f, fn, by blowing up this cycle. This variant is defined as follows. We put
f n := ( f − C) ∪ C × n. (Here, the union is assumed to be disjoint.) We write xi

rather than 〈x, i〉 for x ∈ C and i < n. Also we write Cn := {ci
j : i < n, j < γ}.

So, f n consists in replacing C by n copies, so that a point x ∈ C is now split into
x0, . . . , xn−1. J is defined as follows.

x J y iff



(1) x, y < Cn and x C y
or (2) x = ci

j, y = ci
k and k ≡ j + 1 (mod γ),

or (3) x = ci
0, y = ci+1

1 ,

or (4) x = ci
j, y < Cn, c j C y,

or (5) x < Cn, y = c0
j , and x C c j

Figure 7.12 shows a duplication of a minimal four cycle according to the previous
construction.

P 7.8.1. Define π by π(ci
j) := c j and π(y) := y for y < Cn. Then

π : fn � f.

P. This is a straightforward checking of cases. The first p–morphism con-
dition is proved as follows. Assume x J y. Then if (1) holds, also x C y; moreover,
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x = π(x) and y = π(y). If (2) holds, then x = ci
j and y = ci

k with k ≡ j + 1 (mod γ).
Then π(x) = c j and π(y) = ck. By the fact that C is a cycle, c j C ck. Similarly for
(3). Now let x = ci

j J y, y < Cn. Then π(x) = c j C y = π(y). Similarly for (5). This
concludes the proof of the first condition. For the second condition assume π(x) C u.
Case 1. x < Cn. Then π(x) = x. Now either (1a) u < C; in this case x J u and
π(u) = u. Or (1b) u ∈ C; in this case π(c0

j ) = u for some c j such that x C c j. Then by
(5) x C c0

j . Case 2. x ∈ Cn, x = ci
j, for some i, j. Then either (2a) u < C in which

case we have u = π(u) and x J u by (4); or (2b) u ∈ C. In this case we must have
u = ck for k ≡ j + 1 (mod γ), by the fact that the cycle was chosen to be minimal.
Hence if we put y = ci

k then x J y by (3), and π(y) = u. �

We also note the following. If ι : f � g, then ι[C] is a cycle of g, and gn is
defined in an analogous way. Then there is a p–morphism ιn : fn � gn defined
by ιn(x) := ι(x) if x < C and ιn(ci

j) := ι(c j)i for c j ∈ C. We call ιn the lifting
of ι. Likewise, a p–morphism π : f � g which is injective on C defines a lifting
πn : fn � gn, with gn analogously defined.

Take two pointed frames 〈F, x〉 and 〈G, y〉. Assume that the underlying sets of
worlds are disjoint. Then the connected sum, denoted by FYx

y G— or, if the context
allows this, by F YG— is defined as follows.

Ch := C f ∪ Cg ∪ {〈x, y〉}
H := {a ∪ b : a ∈ F, b ∈ G}
F Yx

y G := 〈 f ∪ g,Ch,H 〉

It is easy to see that whenever {x} is internal in F, FYx
y G is a frame. For �h(a∪ b) =

� f a ∪ �gb if y < b and �h(a ∪ b) = � f a ∪ �gb ∪ {x} else.
In what is to follow we will fix G to be PM , M ⊆ ω − {0}, and F will be the

full frame corresponding to a frame of the form fn for a finite frame with a cycle C.
Given this choice, the construction always yields a frame. For this cycle we assume
to have fixed an enumeration C := {ci : i < n} and so defines a frame of the form fn.
Now define F Y PM to be F Yx

∞+1 PM , where x = cn−1
1 . Notice that the construction

depends on several parameters, the number n, the distinguished cycle, the order of
the cycle, and the set M. Let us agree to call a point of F Y PM bad if it is in g,
and good otherwise. There are only finitely many good points, since F is finite. The
following theorem holds quite generally for arbitrary G in place of PM (if glued at
the same point x).

L 7.8.2. Suppose that f 2 ϕ and that d > dp(ϕ). Then fd YPM 2 ϕ.

P. Suppose that 〈f, β, x〉 � ¬ϕ. Fix the p–morphism π : fd � f of Lemma 7.8.1.
If x ∈ C choose y := x, else y := x0. Take the valuation γ(p) := π−1[β(p)]. Then
by Proposition 7.8.1, since d > dp(ϕ) we have 〈fd, γ, y〉 � ¬ϕ. Now let δ be any
valuation on fd YG such that δ(p)∩ f d = γ(p). We claim that 〈fd YG, δ, y〉 � ¬ϕ. For
that purpose it is enough to show that the d − 1–transit of y in fd YG contains no bad
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points. For then it is identical to the d − 1–transit of x in fd. Since J ∩(fd × fd) = Cd,
the two transits are isomorphic as frames and the conclusion follows. So, suppose
there is a chain 〈yi : i < d〉 such that y0 = y and yi C yi+1, i < d − 1. If it contains
a bad point, by construction of fd Y PM there is a i0 < d − 1 such that yi0 = cd−1

1 .
Then there must be a i1 < i0 such that yi1 = cd−2

0 , a i2 < i1 such that yi2 = cd−3
0 etc. It

follows finally that there is a id−1 such that yid−1 = c0
0. But this means that id−1 < 0,

contradiction. �

Let us get some more insight into the structure of fd Y PM . First, PM is a
generated subframe of fd Y PM . Next, look at the polynomials p◦n, p•n and in. Since
PM is a generated subframe of fd YPM , p•n(♦> ∧ �2⊥) is satisfiable in fd YPM , and
if n ∈ M, p◦n(♦> ∧ �2⊥) is also satisfiable in that frame. However, if n < M, then
p◦n(�2⊥) is not satisfiable at n◦. Moreover, p•n(♦>∧�2⊥) is satisfiable only at n• and
p◦n(♦> ∧ �2⊥) only at n◦ if n > ] f d. From that we deduce

P 7.8.3. Let d ∈ ω and M,N be subsets of ω. Suppose that there exists
a n ∈ (M − N) ∪ (M − N) such that ] f d < n. Th fd YPM * Th fd YPN .

P. Suppose M , N. Then there exists a n such that n ∈ N−M or n ∈ M−N.
Assume the first. Then p◦n(♦> ∧ �2⊥) is not satisfiable in fd Y PM since n > ] f d.
Hence ¬p◦n(♦>∧�2⊥) ∈ Th fdYPM . However, p◦n(♦>∧�2⊥) is satisfiable in fdYPN .
Now assume n ∈ M−N. Then p•n+1(♦>∧�2⊥)→ ♦p◦n(�2⊥) is a theorem of fd YPM

but not of fd YPN . �

L 7.8.4. Let 〈f, y〉 be a finite pointed frame. Assume that H is a subalgebra
of the algebra of internal sets of f Yy

∞+1 PM . Then either H is finite or there is a
p–morphism π : f Yy

∞+1 PM � K for some atomic frame K, such that H is the π–
preimage of K. Moreover, if {∗} ∈ H, then K � g Yπ(y)

∞+1 PM for some contraction
π : f� g.

P. Assume that H is infinite. Then it contains a nontrivial subset ofPM . By
the results of the previous section, the trace algebra induced by H onPM is the entire
algebra PM . Now put x ∼ y iff for all a ∈ H, x ∈ a iff y ∈ a. If x is bad and , ∗, then
x ∼ y only if y = x. Hence, [x]∼ := {y : x ∼ y} is finite. f Y PM is atomic; therefore
there is a set ax for every x such that [x]∼ = ax. Now x C y iff x ∈ �ay and from
this follows easily that ∼ is a net, and we have an induced p–morphism. If {∗} ∈ H,
then [∗]∼ = {∗}. It is easy to see that the induced map comes from a p–morphism
π : fd � gd. �

L 7.8.5. Let 〈f, y〉 be a finite pointed frame and G generated subframe of
f Yy
∞+1 PM . Then

(a) G � g Yy
∞+1 PM , where g ≤ f and y ∈ g, or

(b) G � PM , or
(c) G � • , or
(d) G is a generated subframe of f and y < h.
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With 〈f, y〉 given, let fZy
∞+1PM or simply fZPM denote the frame which results

from fYy
∞+1PM by factoring out the net ∼ for which [∗]∼ = {∗, z} for some z ∈ f and

[x]∼ = {x} for all x < {∗, z}.

L 7.8.6. Let 〈f, y〉 be a finite frame. Let Λ be an extension of Th fYy
∞+1PM .

Then Λ is the intersection of logics of the form
1. Th g YPM or Th g ZPM , where g is a contractum of some generated sub-

frame of f containing y,
2. ThPM ,
3. Th • and
4. Th g, where g is a contractum of a subframe of f not containing y.

P. The proof is by induction on ] f . We assume that the theorem holds for
all frames g such that ]g < ] f . Let F = f Yy

∞+1 PM or F = Zy
∞+1PM . There exists

a formula ξ such that 〈F, β, x〉 � ξ iff the transit of x is F, and the map β is onto.
Before showing the existence of ξ, let us see how it proves the theorem. Consider
an extension Λ of ThF. It is proper iff it contains ¬ξ. Now the algebra FrΛ(n) is
a subdirect product of all algebras generated by valuations into F satisfying ¬ξ. By
Lemma 7.8.4 and Lemma 7.8.5 these algebras correspond to frames of the form (a)
with g being of smaller cardinality than f , (b) or (c). By induction hypothesis the
desired conclusion follows.

Now for the existence of ξ. We perform the argument for F = f Y PM . First, F
is d–transitive with d := ] f + 4. For each x ∈ f let px be a variable. Add p∗ as a
variable. Let p0 be the variable of the root of f. Define now ψ := ♦3 p•n(�p∗) ∧ ��⊥
for n > ] f .

L 7.8.7. Let 〈F, β, x〉 � ψ for some β. Then x = 0•.

The proof of this lemma is an exercise. Now put

ρ(n•) := p•n(ψ),
ρ(n◦) := p◦n(ψ),
ρ(∞ + 1) := ♦♦ρ(0•) ∧ ¬♦ρ(0•) .

By Lemma 7.8.7, 〈F, β, y〉 � ρ(α), α ∈ pM , iff x = α.

δ := p∗ → �⊥
∧ py → ♦ρ(∞ + 1)

∧
∨
〈px : x ∈ f ∪ {∗}〉 ∨ ♦≤2ρ(0•)

∧
∧
〈px → ¬px′ : x , x′; x, x′ ∈ f ∪ {∗}〉

∧
∧
〈px → ♦px′ : x C x′; x, x′ ∈ f ∪ {∗}〉

∧
∧
〈px → ¬♦px′ : x 6 x′; x, x′ ∈ f ∪ {∗}〉

ξ := p0 ∧ �
≤dδ
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Suppose that 〈F, β, x〉 � ξ. Then x � p0. It can be shown chasing successors that
x � ♦≤d py, and so x � ♦≤d♦ρ(∞+1). Since ρ(∞+1) can only be satisfied at∞+1, we
have first of all that the transit of x contains PM . Moreover, β(ρ(∞ + 1)) = {∞ + 1},
and so the trace algebra of im[β] relative to PM is PM . Using this one can show
that the transit of x must contain exactly ] f many points outside of PM . Finally, it is
shown that β(px) = {o(x)} for some function o : f → f , and that o is an isomorphism.
It follows that x generates the whole frame, and that the algebra induced by β is the
entire algebra of internal sets. This concludes the proof. �

L 7.8.8. Let 〈f, y〉 be a finite frame. Then Th fYPM has finite codimension
in EK.

The previous results also hold if PM is replaced by QM . However, some adap-
tations have to be made. For example, ψ is now defined by

ψ := ♦3 p•n(�p∗) ∧ �p∗ .

Furthermore, in δ we need to put p∗ → �p∗ in place of p∗ → �⊥. The analogue of
Lemma 7.8.7 does not hold with this definition. The entire argument goes through
nevertheless, with some slight complication. We will not spell out the full details.
This is what we need to prove the next theorem.

T 7.8.9 (Blok). Let Θ be consistent and not equal to a splitting K1/N by
a set of cycle–free frames. Then Θ is co–covered by 2ℵ0 incomplete logics.

P. If Θ is consistent, then Θ ⊆ Th • or Θ ⊆ Th ◦ , by Makinson’s The-
orem. Suppose that Θ ⊆ Th • . Take a minimal f such that f is not a frame for Θ.
Then there exists a formula ϕ such that f 2 ϕ but ϕ ∈ Θ. Put d := dp(ϕ) + 1. Let
M ⊆ ω − {0}. Then by Lemma 7.8.2, fd Y PM 2 ϕ, so ΛM := Th fd Y PM + Θ. Let
Λo

M be a maximal extension of ΛM not containing Θ. By Lemma 7.8.6, the fact that
Θ ⊆ Th • and the choice of f, Λo

M is incomplete. Moreover, it is u–irreducible, and
so Λo

M is of the form Th g Y PM , Th g Z PM or ThPM . Θ u Λo
M co–covers Θ. For

if Θ ) Θ′ ) Θ u Λo
M then Θ′ t Λo

M ⊇ Θ, since Θ′ t Λo
M properly contains Λo

M . On
the other hand Θ = (Θ′ t Λo

M) u Θ = (Λo
M u Θ) t Θ′ = Θ′ � Θ. Contradiction. Λo

M
is incomplete. and by minimality of f all finite frames of ΛM are frames for Θ. It
remains to be seen that there exist 2ℵ0 many different such logics. To that effect note
that by Proposition 7.8.3 that there is a number c such that if (N − M) ∪ (M − N)
contains an n ≥ c then Th g Y PM and Th g Y PN are incomparable, and similarly
Th g Z PM and Th g Z PN are incomparable. Hence, for such sets Λo

M and Λo
N are

incomparable. Moreover, Θ ∩ Λo
M , Θ ∩ Λ

o
N . Both are co–covers of Θ. Hence, any

set N such that N ∩ {0, . . . , c − 1} = M ∩ {0, . . . , c − 1} would have sufficed equally
well. There are 2ℵ0 many such sets. This concludes the proof of the case Θ ⊆ Th • .
If Θ * Th • , use QM is place of PM . �

Little remains to be done to complete the proof of Blok’s Alternative. Namely,
we need to show that there arise no new splittings except for K.D = K/ • , which
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has a splitting frame ◦ , yielding the inconsistent logic as an iterated splitting of K.
Since the inconsistent logic was always included in the theorems, they hold for that
case as well. Hence, the following theorem concludes the proof.

T 7.8.10 (Blok). Let Λ = K1/N for a set N of cycle–free frames. Then
either • ∈ N and Th ◦ splits EΛ or • < N and Θ splits EΛ iff it splits EK1.

P. Let • < N. Then • is a frame for Λ. Assume that f is not cycle–free
and minimally so, that is, for every frame g to which f reduces either g = f or g is
cycle–free. Then

〈Th fd YPM : d ∈ ω〉 ⊆ Th f

But for no d Th fd YPM ⊆ Th f. Hence Th f is not prime in EΛ. �

Exercise 262. Show that if a frame contains a cycle, it contains a minimal cycle.

Exercise 263. Let L be a distributive lattice, x, y ∈ L. Show that the interval [x u
y, y] is isomorphic to the interval [x, x t y]. (In fact, distributivity is stronger than
necessary.)

Exercise 264. Show Lemma 7.8.7. Hint. Show first that 〈F, β, x〉 � p•n(p) implies
that there is a chain 〈xi : i < n + 1〉 such that x = x0, xi C x j iff i < j, and that all xi

are different.

7.9. The Lattice of Tense Logics

Tense logic is on the one hand an important area of modal logic when it comes
to its applications. On the other hand it has proved to be influential also in the
theoretical development of modal logic. It was here that many counterexamples to
general conjectures have been found. Moreover, it has been shown that the rich
theory of extensions of K4 is not the effect of it being operator transitive, but rather
of the combination of it being operator transitive and weakly transitive. The first
implies the second when there is one basic operator, but already in tense logic this
fails to be the case. The consequences of this will be seen below. We begin this
section by showing that in the lattice of tense logic there exist incomplete logics
of codimension 1. The first example is due to S. K. T [206]. (See also
Section 7.7.) We present it in the form given in R [169]. Let

Λ := G.3.t ⊕K4.3.D− ⊕ �^p→ ^� p .

A Kripke–frame for G.3.t ⊕ K4.3− is nothing but a converse well–order λop. A
Kripke–frame for G.3.t ⊕ K4.3.D− is a converse well–order λop where λ is a limit–
ordinal. It is easy to show, however, that no such frame can be a frame for �^p →
^� p. Λ therefore has no Kripke–frames. But it is not inconsistent. For example, let
Ω be the frame based on ω with the finite and cofinite subsets as internal sets. Then
Ω is a frame for Λ. It can be shown that Λ = ThΩ.
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T 7.9.1 (Thomason). The lattice of tense logics has an incomplete logic
of codimension 1.

Already, this allows to deduce that the lattice E K1 has an incomplete logic of
codimension 2. So, Theorem 2.9.9 is the best possible result. One can play several
variations on that theme. It is possible to produce 2ℵ0 many incomplete logics of any
finite codimension in E K.t. It that way many results of Section 7.8 can be shown
using tense logic.

The previous section has illustrated that we can deduce important facts about
logics if we concentrate on certain sublattices. These sublattices also had the best
properties we could expect, namely to be continuous sublattices. The general sit-
uation is far from being that good. As an illustration we will study some basic
properties of the lattice of tense logics. It is easy to see that there are embeddings
of the lattice of modal logic into the lattice of tense logics, and that there are also
maps in the opposite direction. However, these maps usually behave well only with
respect to one of the two operations. The general situation is as follows. We have a
pair of modal languages, L1 and L2, and L1 is a sublanguage of L2. Then a logic Θ
over L1 has a natural least extension Θe in the lattice of L2–logics. Moreover, each
L2–logic gives rise to an L1–logic by restricting to the language L1. Since we are
always dealing with normal modal logics, this is satisfied.

We will study the extension lattices of K.t, K4.t and S4.t. The method is uniform
in all three cases and can be transferred to numerous other logics. Each of these
logics has the finite model property and therefore only finite algebras can induce
splittings. Thus we can concentrate on the Kripke–frames of those algebras. Here is
an important fact about tense algebras.

P 7.9.2. For finite tense algebras A the following are equivalent.
1. A is subdirectly irreducible.
2. A is directly irreducible.
3. A+ is connected.
4. A is simple.

This can easily be established by using the duality theory. It can also be obtained
using the methods of Section 4.3. Notice that this theorem fails for infinite algebras;
a counterexample will be given below in the exercises. This is due to the fact that
there exist logics which are not weakly transitive. Notice also that K4.t and S4.t
while being operator transitive are not weakly transitive. This has to be borne in
mind.

For the definition of subreducing frames we use the following construction. Take
two frames f, g and let x ∈ f , y ∈ g. Then let f xoy g denote the frame 〈 f xoy g,C〉 where
f x oy g = f × {0} ∪ g × {1} − {〈y, 1〉} and C is defined by

(i) 〈a, 0〉 C 〈b, 0〉 iff a Cf b
(ii) 〈a, 1〉 C 〈b, 1〉 iff a Cg b

(iii) 〈x, 0〉 C 〈b, 1〉 iff y Cg b
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This is well–defined whenever x Cf x ⇔ y Cg y. If f, g are transitive, C will be taken
to be the transitive closure of the relation defined above. We call f x oy g a book and f
and g the pages. When the choice of the points is clear we write f o g instead of f xoy g.
With two points x C y ∈ f fixed we define nf, n ≥ 1, by

1f := f

2k+1f := 2kf x ox f

2k+2f := 2k+1f y oy f

We distinguish the elements of different pages in nf by indices 0, . . . , n−1. The map
ϕ : xi 7→ x is a p–morphism; for if xi C y j then either i = j and thus x C y by (i) and
(ii) or i + 1 = j and x C y by (iii). Now if ϕ(xi) C y we have y = ϕ(yi) and xi C yi.
Likewise for x C ϕ(yi). The same can be shown in the transitive case. By this we see
that any map ψ : nf o g { f satisfying ψ(xi) = x is n − 1–localic with respect to any
point x0 of the first page. This suggests that by taking a suitable g so that there is
no p–morphism from nf o g to f for any n ∈ ω, {Th nf o g : n ∈ ω} is a subreduction
of Th f. A particularly important class of frames for our purposes and for illustration
of the books let us introduce the garlands. A garland is a zigzag frame shown in
Figure 7.14. Formally, we define gln as a frame 〈n + 1,C〉 where i C j iff i = j or i
is odd and j = i ± 1. Thus, gn has 3n arrows and n + 1 points. Note that a garland
is isomorphic to a book where each page is the frame ◦ ◦- . Garlands can be
characterized modally. A frame f = 〈g,C〉 is called meager if there are no two points
x C y C x. A connected frame f is a garland iff it is reflexive, meager, of alternativity
3 in both directions, and of depth 2. Thus Ga := Grz.t.alt+3 .alt−3 as the reader may
verify. We first prove an important
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L 7.9.3. Suppose that f is not a cluster. Then Th g splits EK.t, EK4.t and
ES4.t only if g is a garland.

P. f is finite and connected and ] f = n. Since f is not a cluster, there
are points x, y such that x C y 6 x. Also f = Trn

f
(x). Now consider the frame

mf o0 gl2n+8. This is well defined in case x and y are both reflexive points. In case one
of them is not reflexive we take mf o0 gl

◦
2n+8 instead, where gl◦2n+8 is identical to gl2n+8

except that 0 6 0. We have to show that if there is a p–morphism (in both relations)
π : mf o0 gl

(◦)
2n+8 → f then (a) f is reflexive and transitive, (b) f is of alternativity ≤ 3,

(c) f is meager and (d) f is of depth ≤ 2. For then g splits the lattice only if it satisfies
(a) – (d) and thus is a garland. The details of the proof are left to the reader. The
crucial fact to be shown is that if x ∈ f there exists a z ∈ gl2n+8 such that p(z) = x.
For then π[gl2n+8] = f, from which the rest follows. �

This considerably reduces the class of possible splitting frames. However, we will
also show that most of the garlands and clusters cannot split any of these logics. We
do this by establishing a lemma on splittings of E Ga.

L 7.9.4. Th gln splits EGa iff n ≤ 1.

Once this lemma is proved it follows that gln cannot split E K.t, E K4.t nor E S4.t
for n > 1 since all these lattices contain E Ga.

P 7.9.5. There is a p–morphism π : glm → gln iff n = 0, m = ω or n
divides m.

P. (⇒) Suppose π : glm → gln is a p–morphism. Assume n > 0. Write i ≡ j
for π(i) = π( j). We now have the following

C 7.9.6. On the condition that n > 0, if i ≡ j then i ≡ j(mod 2). Moreover,
if i ≡ j then i − 1 ≡ j − 1 or ≡ j + 1 and i + 1 ≡ j − 1 or ≡ j + 1, whenever these
points exist.

For suppose i ≡ j and that i is even and j is odd. Then jC j−1, j and if j+1 ≤ m
then also jC j+ 1. By the p–morphism condition for C and the fact that iC k iff k = i
we get j − 1 ≡ i and j + 1 ≡ i. Similarly, if i > 0 then by the p–morphism condition
for B we have i − 1 ≡ j and if i < m also i + 1 ≡ j. Continuing this argument we
get k ≡ ` for all k, ` and hence n = 0, which we have excluded. Now let again i ≡ j.
Then if both are even, i−1, i, i+1C i and j−1, j, j+1C j whenever these points exist.
By the second p–morphism condition, either i−1 ≡ j−1 or i−1 ≡ j or i−1 ≡ j+1.
But since j is even and i− 1 is odd, i− 1 ≡ j cannot hold. Likewise, i+ 1 ≡ j as well
as i ≡ j − 1, j + 1 cannot occur. This proves Claim 7.9.6.

In order to prove that m is a multiple of n we look at subsets C of glm which are
connected and on which π � C is injective. Such sets are called partial sections. If
π � C is also surjective, in other words, if ]C = n + 1 then C is called section. We
now prove
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C 7.9.7. If C is a partial section and ]C > 1 then C is contained in exactly
one section.

To see this observe first that since C is connected and π is a C–homomorphism,
π[C] is connected as well. Therefore, C ⊆ {0, . . . ,m} is an interval as is π[C] ⊆
{0, . . . , n}. If i, i + 1 ∈ C and π : i 7→ k then by Claim 7.9.6, π(i + 1) = k + 1 or
π(i + 1) = k − 1. If π : i + 1 7→ k + 1 then π : i + 2 7→ k + 2, for by the same
argument π : i + 2 7→ k, k + 2 but π(i + 2) = k contradicts the injectivity of π � C.
But if π : i + 1 7→ k − 1 then similarly π : i + 2 7→ k − 2. So, by induction, either
π � C is a strictly increasing or strictly decreasing function. Now if C = {i, . . . , j}
and π[C] = {k, . . . , `} and π is monotone increasing then if k > 0, π(i) = k > 0 we
get by the second p–morphism condition that either i − 1 or i + 1 is in the preimage
of k − 1. But π(i + 1) = k + 1. Thus i > 0 and π(i − 1) = k − 1. So we add i − 1 to C.
Likewise, π( j) = ` and if ` < n then j < m and we add j + 1 to C. Similarly, if π is
decreasing. This proves Claim 7.9.7.

Now glm contains exactly m subsets of the form {i, i + 1}. π is injective on each
of them and they are all contained in one and only one section. Each section contains
n + 1 points and thus n subsets { j, j + 1}. Hence n divides m or m = ω.
(⇐) If n = 0 take the constant map j 7→ 0. If n > 0, gm must be covered by sections
as follows. If S ,T are sections then S = T or ](S ∩T ) ≤ 1. Each section is an interval
of n + 1 points and each pair {i, i + 1} is in exactly one section. Hence the sections
are S k = {nk, nk + 1, . . . , n(k + 1)}. On each section π is bijective. Suppose that π is
increasing on S i. Then π(n(k + 1)) = n. Thus π must be decreasing on S i+1 and vice
versa. Thus let π be increasing on all even numbered sections S 2i and decreasing on
all odd numbered sections S 2i+1. Thus π(i) = s iff i = 2kn + s or i = 2(k + 1)n − s
for some k. We show that π defined this way is a p–morphism. We have i C i and
π(i) C π(i). Moreover, if i C i + 1 or i C i − 1 then i is odd. Now if π(i) = s then either
i = 2kn + s or i = (2k + 2)n − s. In both cases s is odd as well and s C s + 1, s − 1
and {s − 1, s + 1} = π[{i − 1, i + 1}]. Similarly if i is even. Now suppose π(i) C `. If
i ∈ S , π(i) C `, then take s ∈ π−1(`)∩ S . s is unique. Since π � S : 〈S ,C〉 → gln is an
isomorphism, i C s as well. Similarly if ` C π(i). �

With this result in our hands we can probe quite deeply into the structure of E Ga
and also prove the desired theorem. We have that Ga = Th glω since Th glω ⊇ Th gln
for every n. Each logic containing Ga must be complete. This is due to the fact that
logics of bounded alternative are complete in general. The –irreducible elements
are the Th gln for n ∈ ω. Every proper extension of Ga which is not trivial is therefore
an intersection 〈Th gln : n ∈ F〉 where F ⊆ ω is finite. For if F is infinite we
immediately have

〈Th gn : n ∈ F〉 = Ga ,
since glω is contained in Up gln for a non–trivial ultrafilter U on F. (This can also
be shown without the use of ultrafilters. This is left as an exercise.) Therefore every
proper extension of Ga is tabular while Ga itself is not.
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T 7.9.8. Ga is pretabular.

It is now straightforward to map out the structure of the locale E Ga. We will
establish here the structure of the corresponding TD–space. Recall that the latter
consists of the –irreducible logics as points, and the closed sets correspond to sets
of the form ↑Λ where Λ is a logic. Thus, by the results obtained above, the points
are logics Th gn, n ∈ ω. Let µ := 〈ω − {0}, |〉op where m | n iff m divides n. Now
let µ + 1 be the poset obtained by adding a new top element. Recall that Φ(µ + 1)
denotes the weak topology on µ+ 1. In this topology, an upper set is closed if it is (i)
the entire space or (ii) a finite union of sets of the form ↑ x.

T 7.9.9. ISpc(EGa) � Φ(µ + 1).

The corresponding space Spc(E Ga) can easily be determined. It has a new
element at the bottom (corresponding to Ga itself, which is u–irreducible but not

–irreducible). The closed sets are those sets which are finite (and hence do not
contain Ga) or contain Ga (and hence all other elements). Thus the upper part of
E Ga is depicted in Figure 7.15. To the left of each node we have written numbers n
such that the node is the intersection of the logics of the corresponding gln.

P 7.9.10. For n ≥ 3 there are infinitely many logics of codimension n
in EGa.

The proof of Lemma 7.9.4 is now easy. Clearly, both gl0 and gl1 split the lattice.
But for n > 1 observe that the sequence 〈glp : p prime, p > n〉 subreduces gln. As we
have noted, this implies also that none of the garlands gln split E S4.t unless n ≤ 1.
It will turn out soon that we cannot improve this result for E S4.t. But for EK.t and
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E K4.t even these cases are ruled out. Look at the sequence 〈gl◦n : n ∈ ω〉 where gl◦n
differs from gln in that n 6 n. The maps π and ρ defined by π : gl◦n { gl1 : j 7→ j
(mod 2) and ρ : gl◦n { gl0 : j 7→ 0 are n–localic with respect to 0. Thus this sequence
subreduces both frames in E K4.t and in E K.t.

L 7.9.11. For no n, Th gln splits EK.t, EK4.t.

It now remains to treat the clusters. Here the situation is quite similar to the
situation of the garlands.

L 7.9.12. Suppose g is a cluster. Then Th g splits EK.t and EK4.t only if
g � • and ES4.t only if g � ◦ .

P. Let n := ]g > 1 and hk = 〈hk,C〉 with

hk = {0, . . . , k} × {1, . . . , n} − {〈k, n〉}

and 〈i, j〉C 〈i′, j′〉 iff (i) i is odd, i′ = i+ 1 or i− 1 or (ii) i is even and i′ = i. This can
be visualized by Here, denotes a cluster with n points and ◦ a cluster with 1 point.
There is no p–morphism from hk into g as there is no way to map a point belonging
to an n − 1–point cluster onto a n–point cluster.

Now look at the k–transit of 〈0, 0〉 in hk; call it e. Let e be its underlying set.
Every point in e is contained in an n–point cluster since 〈i, j〉 ∈ e iff i < k. Thus
there is a p–morphism π : e → g. Extend π to a map p+ : hk { g. p+ is k–localic
with respect to 〈0, i〉 for every i. Hence hk is k–consistent with g. It follows that
〈Th hk : k ∈ ω〉 is a subreduction of Th g. �

Now we have collected all the material we need to prove the splitting theorems.
Notice that a splitting frame for any of these logics can only be one–point cluster or
a two–point garland. We will now show that the frames not excluded by the above
lemmata are indeed splitting frames.

T 7.9.13. Λ splits the lattice ES4.t iff Λ = Th gl1 = Th ◦ ◦- or
Λ = Th gl0 = Th ◦ .

P. (⇐) The nontrivial part is gl1. We will show E S4.t/gl1 = S5.t by proving
that (†) of the Splitting Theorem holds for m = 1. Therefore let A be an algebra
satisfying ThA + S5t. Then there is a set c ∈ A of A such that 0 < c ∩ � � − c.
Consequently, in the underlying Kripke–frame there are two points s C t such that
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s ∈ c and t ∈ � − c whence t 6 s. Now we have δ(gl1) = (pa ↔ ¬pb) ∧ ^pb ∧

^pa ∧ (� pb ↔ pb) ∧ (� pa ↔ pa). Suppose that under these circumstances we can
construct valuations αn : {pa, pb} → A such that s ∈ αn(pa ∧ �

≤nδ(gl1)). Then (†)
of the Splitting Theorem, 7.3.11 (2), gl1 splits E S4.t. To construct the αn we define
inductively subsets an, bn in A as follows:

(0) b0 := � − c
a0 := −b0

(A) a2k+1 := −b2k+1

b2k+1 := b2k ∩ � a2k

(B) a2k+2 := a2k+1 ∩ � b2k+1

a2k+2 := −a2k+1

Furthermore define T0 := {s}, T2k+1 := � T2k, T2k+2 := � T2k+1. The Tn are not
necessarily internal. Since T2k ⊆ � � T2k = � T2k+1 and furthermore T2k+1 ⊆

� � T2k+1 = � T2k+1 it follows that Tn ⊆ �
≤1Tn+2. For �≤1T2k+2 := � T2k+2 ∩

� T2k+2 ⊇ T2k+1 ∩ � T2k+1 ⊇ T2k and dually for odd n. Consequently, s ∈ �≤nTn+1.
We now verify the following claims:

(I) an ∩ bn = ∅

an ∪ bn = 1
(II) an = � an

bn = � bn

(III) Tn ∩ an = Tn ∩ an+1

Tn ∩ bn = Tn ∩ bn+1

(IV) Tn ⊆ � bn ∩ � an

(I) holds by construction. (II) – (IV) are verified by induction; for (II) we only
need to show an ⊆ � an and bn ⊆ � bn. By symmetry of (A) and (B) we may
restrict to (A). b2k+1 = b2k ∩ � a2k = � b2k ∩ � a2k ⊆ � b2k ∩ � � � a2k =

� (b2k ∩ � a2k) = � b2k+1, a2k+1 = −b2k+1 = −� b2k+1 = � a2k+1 ⊆ � � � a2k+1 =

� � a2k+1 = � − � b2k+1 = � − b2k+1 = � a2k+1. This shows (II). For (III) we
now observe that T2k ∩ b2k+1 = T2k ∩ b2k ∩ � a2k = T2k ∩ b2k since T2k ⊆ � a2k by
(IV). T2k ∩ a2k+1 = T2k ∩ a2k immediately follows. To prove (IV) we observe that if
y ∈ T2k+1 there is a x ∈ T2k such that xBy. By induction hypothesis we have x ∈ � b2k

and therefore there is a z B x such that z ∈ T2k ∩ b2k. Now z ∈ b2k ∩ � a2k = b2k+1
and, as y C x C z, y ∈ � b2k+1. To show y ∈ � a2k+1 we distinguish two cases: (α)
y ∈ a2k+1 and (β) y ∈ b2k+1. In case (α) we immediately have y ∈ � a2k+1 and in case
(β) we have y ∈ � a2k. But as

� a2k+1 = � (a2k ∪ � b2k) ⊇ � a2k

we also have y ∈ � a2k+1.
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Now we put αn : pa 7→ an+1, pb 7→ bn+1. It remains to be shown that s ∈
αn(pa ∧ �

≤nδ(gl1)). Notice that (I) – (IV) together yield Tn+1 ⊆ αn(δ(gl1)) whence
{s} ⊆ �≤nTn+1 ⊆ αn(�≤nδ(gl1)). And since by (III) and the fact that s ∈ Tn+1 we have
s ∈ αn(pa), everything is proved. �

T 7.9.14. The following holds.
1. Θ splits EK.t iff Θ = Th • .
2. Θ splits EK4.t iff Θ = Th • .

P. • is cycle–free and therefore splits EK.t. A fortiori it splits EK4.t.
�

Notes on this section. The results of this section have mainly been established in
[123]. The connections between monomodal logics and their minimal tense exten-
sions have been investigated thoroughly in a series of papers by F W.
He has shown that many properties are lost in passing from a monomodal logic to
its minimal tense extension; these are among other the finite model property and
completeness. (See [238], [239].) W has also shown that the minimal tense
extension of a modal logic need not be conservative. For completeness results in
tense logic see also [242] and [236].

Exercise 265. Complete the proof of Lemma 7.9.3.

Exercise 266. Show Proposition 7.9.2.

Exercise 267. Show that S4.2.t, where S4.2 = S4 ⊕ ♦�p → �♦p, is 2–transitive.
Hence show that every finite connected frame splits ES4.3.t and S5.t.

Exercise 268. Show that E S4.t has exactly two elements of codimension 2.

Exercise 269. Let Glω the frame consisting of glω and the finite and cofinite sets as
internal sets. Describe the bidual (Glω)++. Show that its algebra of sets is subdirectly
irreducible but that the frame is not connected.

Exercise 270. Show without the use of ultrafilters that
⋂

n∈M gln = Ga whenever
M ⊆ ω is infinite.
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CHAPTER 8

Extensions of K4

8.1. The Global Structure of EK4

The first general results in modal logic were obtained for transitive logics. More-
over, transitive logics have for a long time been in the focus of interest of modal lo-
gicians since the motivating applications very often yielded transitive logics. More-
over, as we shall see, the structure of K4–frames is also by far easier than the the
structure of frames for nontransitive frames. The first general result about a large
classes of logics rather than individual logics was undeniably R B’s [34]
and the sequel [60] by K F. These papers gave an exhaustive theory of logics
containing S4.3. However, S4.3 is a very strong logic, and the result therefore did
not cover many important transitive logics. The starting point of a general theory
of transitive logics was the paper [63] by K F in which it was shown that the
addition of an axiom of finite width makes transitive logics complete. The paper
also contained useful results concerning weak canonical frames. The paper [66] was
another breakthrough. It introduced the notion of a subframe logic. It was shown
that all transitive subframe logics have the finite model property. Moreover, char-
acterizations were given of canonical subframe logics. Many important logics turn
out to be subframe logics. These results were discovered around the same time by
M Z, who introduced the still more general notion of a cofinal
subframe logic. All transitive cofinal subframe logics were shown to have the finite
model property. Moreover, each transitive logic is axiomatizable by a set of so–called
canonical formulae. These are formulae which characterize the frames of the logic
by some geometric condition. This allows to deal with transitive logics by means of
geometric conditions on frames rather than axioms. These results have established
a novel way of thinking about transitive logics, and have also influenced the general
theory of modal logic through the concepts of subframe and cofinal subframe logic.

Before we plunge into the theory of K4–frames, we will introduce some notation
and recall some easy facts about K4–frames and p–morphisms between them. In
transitive frames we say that y is a strong or strict successor of x if x C y 6 x and
that y is a weak successor of x if x C y or x = y. We write x~Cy if y is a strong
successor of x and x E y if y is a weak successor of x. A cluster is a maximal set C
of points such that given x, y ∈ C then x is a weak successor of y. Thus, for elements
x, y of a cluster C, if x , y then x C y. Consequently, if ]C > 1 then C ∩ C2 = C2.

375
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On the other hand, if ]C = 1, say C = {x}, then either x C x (and so C ∩C2 = C2) or
x 6 x (and so C ∩ C2 = ∅). C is called degenerate if it contains a single point and
x 6 x, and improper if C = {x} with x C x. If ]C > 1, C is called proper. The type
of a cluster C is the cardinality of the set {y : x C y} for some x ∈ C. This is clearly
independent of the choice of x. If the type is at least 2 then the cluster is proper, if
the type is 1 the cluster is improper, and the cluster is degenerate if the type is 0.
Instead of saying that a cluster has type 0 we also say that it has type ∅. The cluster
containing a given point x is denoted by C(x). If C and D are clusters, and for some
x ∈ C and y ∈ D we have xCy, then in fact for all x ∈ C and all y ∈ D holds that xCy.
This justifies the notation C C D for clusters. Finally, if C and D are distinct clusters
and CCD, then all points of D are strong successors of all points in C. Consequently,
we may represent a transitive frame as a triple 〈p,J, ν〉 where 〈p,J〉 is a partial order
and ν a function from p to ω. (〈p,J〉 is the ordering of clusters, and p(x) is the type
of the cluster represented by x.) Let f = 〈 f ,C〉 be a Kripke–frame. Recall that the
depth of a point x, in symbols dp(x), is an ordinal number defined by

dp(x) := {dp(y) : x~Cy}

This requires that dp(y) is defined for all strong successors y of x. In particular, x is of
depth 0 if for every successor y of x, yCx. In other words, x has no strong successors.
We then say that the cluster of x is final. Notice that the definition assigns depth only
to points for which there is no infinite ascending chain of strong successors, or to
rephrase this, if the partial order of clusters from x onwards has no ascending chains.
The definition as given also extends to infinite ordinals; for example, a point is of
depth ω if all strong successors are of finite depth and, moreover, for each n ∈ ω
there is at least a point of depth n. It is left as an exercise to show that if x is of depth
α and α > β then there is a strong successor of depth β. We call the points of a given
depth α the α–slice of the frame.

D 8.1.1. Let f be a Kripke–frame and α an ordinal number. Then f<α

denotes the subframe of points of depth < α. Likewise, f>α and fα denote the sub-
frames of points of depth > α and = α, respectively. F<α is the subframe induced by
F on the Kripke–frame f<α. Likewise for F>α, if that is well–defined.

D 8.1.2. Let F be a frame. The depth of F is the set of all ordinals
α such that there exist points of depth α. A frame is said to satisfy the ascend-
ing chain condition (acc) iff there exists no infinite, strictly ascending chain of
points. Such frames are also called noetherian.

Notice that a frame F is noetherian iff F = F<α for some α. (In fact, any ordinal
greater or equal to the depth of F suffices if F is noetherian.)

We begin by recalling the frame constructor ⊕, standing for the disjoint union.
It takes two frames and places them side by side. We say that it places the frames
parallel to each other. Now we introduce a second constructor, >© . Rather than
placing frames parallel to each other it places the first before the second. To be
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precise, let f = 〈 f ,C f 〉 and g = 〈g,Cg〉 with f and g disjoint. Then

f >© g := 〈 f ∪ g,C f ∪ f × g ∪ Cg〉

Thus, the underlying set is the disjoint union of the sets of the individual frames.
And x C y iff either x and y are in f and x C f y or x in f and y in g (and no other
condition) or x and y are both in g and xCg y. Now if I = 〈I, <〉 is an ordered set and
fi = 〈 f ,Ci〉, i ∈ I, an indexed family of frames on disjoint sets then

>© i∈Ifi := 〈
⋃

I

fi,
⋃

I

Ci ∪
⋃
i< j

fi × f j〉

P 8.1.3 (Decomposition). Let f = g >© h. (1.) A generated subframe of
f is of the form d >© h for a d� g or of the form d for some d� h. (2.) If p : g � ĝ
and q : h� ĥ are contractions, so is p >© q : g >© h� ĝ >© ĥ.

Call a p–morphism lateral if it is depth preserving. A contraction map π : g �
h, g, h finite, is minimal if in any decomposition π = ρ ◦ ρ′ either ρ or ρ′ is an
isomorphism. Any contraction of a finite frame can be decomposed into a sequence
of minimal contractions and there is only a small number of such contractions. First
of all, let us take a point v of minimal depth which is identified via π with another
point and let w be of minimal depth such that π(v) = π(w). Now two cases arise.
Either dp(w) = dp(v) or dp(w) > dp(v). In the latter case it is easily seen that there
exists a pair w and v′ such that v′ ∈ C(v) and dp(w) = dp(v′) + 1. We may assume
that v′ = v. A non–lateral p–morphism collapses at least a point with an immediate
successor. In that case, the successor cannot be irreflexive. Furthermore, if w C v
then C(w) is mapped onto C(v). So we have the situation π : m >© n � k. Then the
restriction of π to the cluster n is surjective. Hence k ≤ n. Moreover, k < n implies
that we can decompose π in the following way:

m >© n� m >© k� n >© k .

This is left for the reader to verify. So, by minimality and the fact that we have a
non–lateral contraction, k = n. Likewise, m > n cannot occur, because then we can
decompose π into

m >© n� n >© n� n .

So m ≤ n. π : m >© n � n is actually indecomposable iff it is injective on both
clusters. If m ≤ n such a contraction can be constructed.

Now we come to the case where two points of identical depth are identified.
Let d be the minimal depth of points on which p is not injective. It is clear that
if π is a contraction, and we let π̂ be defined by π̂(w) := w if w is of depth , d
and π̂(w) = π(w) else, π̂ is a contraction as well, and π factors through π̂. Thus by
minimality π is lateral. Let v and w be two distinct points such that π(v) = π(w).
Then two cases arise. 1. Case. C(v) = C(w). Then π is of type m � n for m > n.
2. Case. C(v) , C(w). Then π is of the type π : m ⊕ n� k. Then either all three are
degenerate or all three are nondegenerate. Again we find that π must be injective on



378 8. Extensions of K4

both clusters, hence m = n, and that k < n contradicts minimality. So, π : n⊕n� n,
and π is injective on the individual clusters.

T 8.1.4. π is a minimal contraction iff it is of the following types. Lat-
eral. (a.) n+1 � n, ≥ 1, (b.) ∅ ⊕ ∅ � ∅ or (c.) n ⊕ n � n. Nonlateral.

∅ >©n � n or m >©n � n with m ≤ n. In all cases, π is injective on the two
individual subclusters.

Recall the notion of a local subframe. We know that ifG is a local subframe of F
then any contraction onG can be extended to a contraction on Fwhich is the identity
on all points not in F. For example, clusters are always local in a Kripke–frame.
Notice that this is so no matter how they are embedded into the frame. So, clusters
can always be contracted. Moreover, there are additional situations which are useful
to know. For example, in a finite frame, if x has a single immediate successor, y, and
y is reflexive, then the set {x, y} is local. For if x C z then either x = z or y E z by the
fact that y is the only immediate successor, and so yC z, since y is reflexive. And yC z
implies x C z. Thus the set is local, and there is a contraction reducing it to a single
point in the total frame. We call x in this situation a unifier (for y). In general, x is a
unifier for a set X if X is the set of all immediate successors of x.

Say f (or f) is totally local if it is local and for all x ∈ g − f and all y, z ∈ f we
have x C y iff x C z. In case f is totally local, we write sometimes g[f] to denote the
given, totally local occurrence of f. A replacement of f by another frame h is then
unambigously defined. We define g[h/f] to be a frame with underlying set g − f + h
and relation xĈz iff (1.) neither x and z are in h and x C z or (2.) x ∈ g and z ∈ h or
x ∈ h and z ∈ g or (3.) both x, z in h and then x C z (in h).

From a theoretical viewpoint it has shown useful to introduce four parameters
to classify transitive logics.
Depth. Let F be a refined transitive frame. The depth of F is the set of all α such
that there exists a point of depth α in F. We write dp(F) to denote the depth of F.
The depth of Λ ⊇ K4 is the supremum of all dp(F), where F is a refined Λ–frame –
if such a supremum exists. Otherwise Λ is said to be of unbounded depth. The logic
of frames of depth ≤ n can be axiomatized for finite n. Namely, put

dp(> n) := p0 ∧�+
∧

i< j<n+1 pi → ¬p j

∧�+
∧

i< j<n+1 pi → ♦p j

∧�+
∧

i< j<n+1 p j → ¬♦pi

(Here the convention �+ϕ := ϕ ∧ �ϕ is used.) dp(> n) is satisfiable in F if there
is a chain 〈xi : i < n〉 of length n such that xi 6 xi+1 for every i < n − 1; we call
such a chain properly ascending. Clearly, if no such chain exists, F is of depth ≤ n,
and conversely. Let dp(≤ n) := ¬dp(> n). This axiom is also denoted by Jn in the
literature. Then K4.dp(≤ n) is the logic of frames of depth ≤ n.
Width. A set {x0, . . . , xk} of points is an antichain of length k + 1 if for no two
distinct points xi, x j we have xi C x j. A refined frame F has width n if there is a point
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x and an antichain Y of length n such that x sees every member of Y . We denote
by wd(F) the width of F. The width of Λ is the supremum of all widths of refined
Λ–frames (if such a supremum exists) and denoted by wd(Λ). If a logic is of width
n for some n < ω it is of finite width. A logic is of width n if it satisfies the axiom

wd(≤ n) :=
n∧

i=0

♦pi.→ .
∨
i, j

♦(pi ∧ p j) ∨
∨
i, j

♦(pi ∧ ♦p j)

This axiom is also denoted by In in the literature.
Tightness. Let F be a refined transitive frame. Let x be a point and xC y. Moreover,
let G be a subframe such that no point of G is comparable with x. Then if G is
of depth α, F is said to be of tightness α. We write ti(F) = α in that case. The
tightness of Λ ⊇ K4 is the supremum of all ti(F), where F is a refined Λ–frame, if
such a supremum exists. Consider the following formula.

ti(> n) := p0 ∧�+
∧

i< j<n+2 pi → ¬p j

∧�+p0 → ♦pn+1

∧�+
∧

i< j<n+1 pi → ♦p j

∧�+
∧

j<i<n+2 pi → ¬♦p j

∧�+
∧

i<n+1 pn+1 → ¬♦pi

∧�+
∧

0<i<n+1 pi → ¬♦pn+1

This formula is satisfiable in a refined frame iff there is a point seeing a properly
ascending chain of length k + 1 and an incomparable point. Let ti(≤ k) := ¬ti(> k).
Then F � ti(≤ k) iff F does not have tightness > k. So, K4.ti(≤ k) is the logic of
frames of tightness ≤ k.
Fatness. For a cardinal number α, the cluster α is the cluster containing α many
points. We also write n for n, n ∈ ω. We call the type of a cluster C also its fatness
and denote it by ft(C). The fatness of a refined frame, ft(F) is the supremum of all
ft(x), where x is a point of F. The fatness of a logic Λ is the supremum of the set of
all ft(F), F a refined frame for Λ. Equivalently, a frame fails to be of fatness n if the
following formula is satisfiable

ft(> n) := p0 ∧�+
∧

i< j<n+1 pi → ¬p j

∧�+
∧

i< j<n+1 pi → ♦p j

The logic of frames of fatness ∅ is the logic G = ♦p→ ♦(p ∧ �¬p).
The significance of the choice of these logics will become clearer later on. Let

us say here only that the logics of finite depth K4.dp(≤ k) form an infinite descending
chain in the lattice E(K4); likewise the logics K4.Ik (alias K4.wd(≤ k)) and K4.ti(≤
k) as well as K4.ft(≤ k). Moreover, the axiom of linearity, known as .3 is the same
as I1 and the same as wd(≤ 1). Grz is the logic of reflexive frames of fatness 1, G
the logic of frames of fatness ∅. The last two statements need a rigorous proof, but
with the methods developed in this chapter this is actually very easy.
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Exercise 271. Prove Proposition 8.1.3.

Exercise 272. Show that m >© n� 1 >© n� n.

Exercise 273. Let f be a finite reflexive frame. Show that there is a p–morphism
f� g such that ]g = ] f − 1. So there always exists a truly minimal p–morphism.

Exercise 274. Let f = 〈 f ,C〉 be a frame of depth ≥ 2. Define x q y by x 6 y and
y 6 x. We call 〈 f , q〉 the antiframe of f. Show that if f is >© –decomposable the
antiframe 〈 f , q〉 is disconnected. Show that the converse need not hold.

8.2. The Structure of Finitely Generated K4–Frames

Fundamental for the study of the lattice E K4 is the fact that the structure of
the finitely generated algebras is rather well–behaved. Looking at the underlying
Kripke–frame for a refined frame, we can say that all these algebras contain an up-
per part, consisting of points of finite depth, and that each point of infinite depth is
‘behind’ this upper part. Moreover, this upper part is atomic, and each level is fi-
nite. It should be said that the infinitely generated algebras are not as nice as that,
so the restriction to finitely generated algebras is indeed necessary. But we know
that logics are complete with respect to such frames, so we do not loose anything by
specializing to such frames. Before we begin let us note a simple fact.

T 8.2.1. Let F be a transitive refined frame and F be n–generated. Then
the clusters have type ∅ or t for t ≤ 2n.

P. Let A = {ai : i < n} be a generating set and let x and y be two points in
a cluster. By induction on the sets generated from A it is shown that x ∈ ai ⇔ y ∈ ai

for all i < n implies that x ∈ b ⇔ y ∈ b for all b ∈ F. Hence a cluster can have at
most 2n distinct points. �

This idea of induction on the sets generated from A can be made precise in the
following way. Let us take a general frame F = 〈f,F〉 for K4 which is refined, such
that the algebra of subsets is n–generated. Let {a0, . . . , an−1} be a generating set. Let
Pn := {pi : i < n}. Put v : Pn → F : pi 7→ ai, i < n. Then for any b ∈ F there
is a ϕ with var(ϕ) ⊆ Pn and b = v(ϕ). Therefore we can prove a property of all
internal sets by induction on the constitution of formulae ϕ such that var(ϕ) ⊆ Pn.
If v(ϕ) = b and dp(ϕ) = k, we say that b is k–definable. (Notice that 0–definable
was also defined to mean that the set is definable by a constant formula. Throughout
this chapter we will not use the term 0–definable in that latter sense.) Notice finally,
that if F is n–generated then any generated subframe is n–generated by the same set
of generators. Since F is refined, f is transitive. We will now show that f contains a
generated subframe f<ω such that each point of f<ω is of finite depth and, moreover,
any point not in f<ω sees a point of arbitrary finite depth. Such a structure is called
top–heavy.
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D 8.2.2. A frame F is called top–heavy if every point not in F<ω has
a successor of depth n for any n < ω.

f<ω will be defined inductively. The generated subframe of F induced by f<ω

will be denoted by F<ω.

L 8.2.3. Let α be an ordinal and f be a Kripke–frame. Then the subframe
f<α consisting of all points of depth < α is a generated subframe of f.

P. Let x be of depth β. dp(x) is well–defined only if all strong successors
have a depth. By definition, if x C y then either y is not a strong successor, in which
case y belongs to the cluster of x and is of equal depth, since x and y have the same
successors and the same strong successors. Or y is a strong successor and has a depth
according to the definition of the depth. �

L 8.2.4. Let F = 〈f,F〉 be n–generated and refined. Then the following
holds.

1. There are at most 2n(22n−1 + 1) points of depth 0.
2. F<1 is a full finite frame.
3. Every set a ⊆ f<1 is 2–definable.
4. Every point has a weak successor of depth 0.

P. Because F<1 is a generated subframe of F, it is refined and generated by
the ai. So if (1.) holds, (3.) holds as well, since finite refined frames are full. Let us
start then by attacking (2.). For S ⊆ {0, 1, . . . , n − 1} define

χ(S ) :=
∧
i∈S

pi ∧
∨
i<S

¬pi

Put AS := v(χ(S )). Every node is in exactly one of the sets AS . If x ∈ AS , χ(S ) is
called the atom of x. Let C be system of subsets of {0, 1, . . . , n − 1}. Define

C–span :=
∧
〈♦χ(S ) : S ∈ C〉 ∧

∧
〈¬♦χ(S ) : S < C〉

mspan :=

 �⊥

∨
∨
〈χ(S ) ∧ C–span ∧

∧
D(C ¬♦D–span : S ∈ C〉

We say that x is of span C if x ∈ v(C–span). We say that x is of miminal span
if it is in v(mspan). So, x is of minimal span iff it is without successor or it has
successors, among which one has the same atom as x and all successors of x have
the same span as x. The set of points of span C is 1–definable, the set of minimal
span is 2–definable.

(†) Let x and z be points of identical span and identical atom. Assume that x and z
are of minimal span. Then x = z.

Let the span of x by C. We show by induction on ϕ that x ∈ v(ϕ) iff z ∈ v(ϕ). It
follows that x ∈ b iff z ∈ b for all b ∈ F and by refinedness x = z. Now for the
inductive proof. Since x and z have the same atom, x ∈ v(pi) iff z ∈ v(pi) for all
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i < n. The induction steps for ¬ and ∧ are straightforward. Now let ϕ = ♦η. Assume
that x ∈ v(ϕ). Then there exists a y such that x C y and y ∈ v(η). Now y has minimal
span (as it succeeds a point of minimal span). Hence its span is equal to the span of
x. Let χ(S ) be the atom of y. Then ♦χ(S ) is a conjunct of C–span. But z has span C,
and so there is a point u such that z C u and u has atom χ(S ). Also u has span C. By
induction hypothesis, u ∈ v(η). Hence z ∈ v(♦η) = v(ϕ).

It follows now that a point x is of depth 0 iff it is of minimal span. From left to
right is clear. Now assume that x is of minimal span. If it has no successors, the case
is clear. Now let x have successors. Let y be a successor of x. By assumption, the
span of y equals the span of x, so there is a successor z of y satisfying the same atom
as x, by definition on the formula mspan. By (†), z = x, since z and x have the same
span. It follows that y C x. So, x is of depth 0.

Now we come to (1.). What we need to specify for a point of depth 0 is its span,
which is then minimal, and hence defines the size of the cluster as well as the atoms
which are represented in it, unless the point is successorless, in which case its own
atom suffices for a characterization. There are at most 2n degenerate clusters. If the
cluster is nondegenerate, it has size between 1 and 2n, for each size k there is a choice
of

(
2n

k

)
atoms. Summing this we get

] f1 ≤ 2n +

2n∑
k=1

k
(
2n

k

)
= 2n + 2n

2n−1∑
k=0

(
2n − 1

k

)
= 2n(22n−1 + 1)

Moreover, each point in that frame is 2–definable. Hence each subset is. This shows
(3.).

Next we show (4.). Put Z0(x) := {S : x ∈ �AS }. Z0(x) is finite. Hence there is a
weak successor y of x such that for all z B y, Z0(z) = Z0(y). Two cases arise. Case 1.
y is reflexive. Then y is of minimal span and so of depth 0. Case 2. y is irreflexive.
Then if y has no successors it is of minimal span and so of depth 0. Finally, if y has
successors, then let z B y. Since Z0(z) = Z0(y) and since the atom of z is in Z0(y), the
atom of z is in Z0(z). It follows that z is of minimal span. �

Let the function δ(n, k) be defined inductively as follows

δ(n, 1) := 2n(22n−1 + 1)
δ(n, k + 1) := δ(n, 1)(2δ(n,k) − 1)

T 8.2.5. Let F = 〈f,F〉 be an n–generated refined K4–frame. Then the
following holds

1. There are at most δ(n, k + 1) points of depth ≤ k.
2. F<k+1 is a full finite frame.
3. Every subset of F<k+1 is 4k + 2–definable.
4. Every point in F not of depth < k has a weak successor of depth k.

P. The case k = 0 is covered by the previous lemma. Now we do the
induction step for k. Again, (2.) follows from (1.) and (1.) follows from (3.). For
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each point x of depth < k there exists a formula γ(x) in the variables Pn such that
x ∈ v(γ(x)). Let us consider the set P of formulae γ(x) where x ∈ f <k. We know by
induction hypothesis that ]P ≤ δ(n, k) and that for each x, γ(x) if of degree ≤ 4k − 2.
Moreover, the disjunction of all γ(x) is a formula of degree 4k−2 defining the points
of depth < k. Denote it by dp(< k). Let Q ⊆ P. Say that a point in the frame is of
width Q if x ∈ v(Q–width) where

Q–width := ¬dp(< k) ∧
∧
〈♦C : C ∈ Q〉 ∧

∧
〈¬♦C : C ∈ P − Q〉

Clearly, a point in the frame is of width Q iff it is not of depth < k and sees exactly the
points defined by Q. Notice that the width can never be empty, in fact must contain
at least k − 1 formulae. Furthermore, a point is of minimal width if it satisfies

mwidth :=
∨
Q⊆P

(Q–width ∧
∧
R(Q

¬♦R–width)

A point is of minimal width if it is of width Q for some Q and no successor can be
of lesser width (unless it is of depth < k in which case it has no width). It is easy
to see that the points of minimal width together with the points of depth < k form
a generated subframe. However, this is not yet the desired subframe. For now we
have to start the same procedure as above, selecting points of minimal span. As in
the previous lemma, each point has an atom AS , S ⊆ {0, 1, . . . , n − 1}. A point is of
span C within being of minimal width, C ⊆ 2n, if it satisfies the formula

C–span :=
∧
〈♦(mwidth ∧ χ(S )) : S ∈ C〉 ∧

∧
〈¬♦(mwidth ∧ χ(S )) : S < C〉

It is easy to check that a point is of C–span within being of minimal width iff it has
exactly the successors with atoms χ(S ) of minimal width. Finally, the formula

mspan := �dp(< k) ∨
∨

(〈χ(S ) ∧ C–span ∧
∧
D(C

¬♦D–span : χ(S ) ∈ C ⊆ 2n)

defines the points of minimal span within being of minimal width. We claim it
defines the slice of points of depth k. It is easy to see that if a point is of depth
k it must be of minimal width and within that of minimal span. For the converse,
however, we prove the following.

(‡) Let x, z be of minimal width and of minimal span within being of minimal width.
Assume that x and z are of equal width, equal span and equal atom. Then x = z.

By induction on the constitution of the formula ϕ in the variables Pn we show that for
points x and z satisfying the assumptions of (‡), x ∈ v(ϕ) iff z ∈ v(ϕ). This suffices for
a proof. Now for variables this is so by the fact that x and z have the same atom. The
steps for ∧ and ¬ are straightforward. Now assume that ϕ = ♦η and that x ∈ v(ϕ).
Let x have span Q and width C. Then there exists a y such that x C y and y ∈ v(η).
Suppose that y is of depth < k. Then ♦γ(y) is a conjunct of Q–span. So, z has a
successor satisfying γ(y). But only y satisfies γ(y). Therefore z C y. Now assume
that y is not of depth < k. Then it has span Q and width C. Let χ(S ) be the atom of
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y. Now x has a successor of span Q, width C and atom χ(S ). Then z has a successor
u with span Q, width C and atom χ(S ). By induction hypothesis, u ∈ v(η). Hence
z ∈ v(♦η) = v(ϕ).

Next we shall show that the points satisfying mspan are exactly the points of
depth k. Clearly, if a point is of depth k it satisfies mspan. So, assume that x satisfies
mspan. If every successor of x is of depth < k we are done. So let this not be case.
Then the atom of x is in the span of every successor of x which is not of depth < k.
Moreover, no successor of x which is not of depth < k has lesser width than x. So,
let x C y and y not of depth < k. Then y has the same width and the same span as x
and the atom of x is in the span of y, which means that there exists a successor u of
y not of depth < k which has the same atom as x. By (‡), u = x and so y C x. This
shows that x is of depth k.

The formula defining the points is of degree 4k + 2, since at most four modal
operators are stacked on top of formulae defining points of depth < k. Counting
the points, we find that if there are δ(n, k) points of depth < k, there can be at most
2δ(n,k) − 1 nonempty subsets. For each subset C, there is a (possibly empty) set of
points having minimal width C. Within that set, we have counted in effect the number
of points of depth 0. This shows (1.). Finally (4.). If x is not of depth < k, then it has
a width. If that width is not minimal, there is a successor v of minimal width, since
the width is finite. As in the proof of the previous theorem we see that v has a weak
successor w of minimal span within being of minimal width, by the same argument.
A weak successor of w is a successor of x. If the width of x is minimal, then argue
with x = w. This completes the proof. �

Let us remark that the bound for the number of points of depth 0 is exact. There
is a frame (the frame underlying the free algebra) which has δ(n, 0) many points.
However, for greater depth the bound is too large. This is so because not for every
set S of points of depth < k there exists a point of width exactly S . For if x sees a
point y ∈ S and y C z then x C z as well, so suitable S are only those sets which are
closed under successors. However, to count their number is more intricate and not of
immediate interest for us. As a first consequence we will show that the upper part of
the lattice E K4 is rather well–behaved. Recall from Section 4.8 the Theorem 4.8.7
on locally finite varieties.

T 8.2.6 (Segerberg). Let Λ ⊇ K4 ⊕ dp(≤ n). The variety of Λ–algebras
is locally finite. Consequently, Λ has the finite model property.

T 8.2.7 (Maksimova). An extension of K4 is of finite codimension iff it
is tabular.

P. The direction from right to left follows from Proposition 7.6.4. Now
assume that Λ has finite condimension. Consider the sequence of logics Th(FrΛ(n)),
n ∈ ω. Clearly, Λ ⊆ Th(FrΛ(n)) for all n, and Λ = Th(FrΛ(n)). Furthermore,
Th(FrΛ(n + 1)) ⊆ Th(FrΛ(n)). If equality holds then we have Λ = Th(FrΛ(n)).
These facts together show that since Λ has finite codimension there is an n0 such that
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Λ = Th(FrΛ(n0)). Now consider the extensions Λ(d) := Th(Fr<d
Λ (n0)) for d < ω,

where Fr<d
Λ (n0) is the subframe of points of depth < d. Again, Λ =

⋂
d∈ω Λ(d)

and Λ(d + 1) ⊆ Λ(d). If equality holds, Λ = Λ(d). So there exists a d0 such that
Λ = Λ(d0) = Th(Fr<d0

Λ
(n0)). This frame is finite. Hence Λ is tabular. �

Thus, if one of the four parameters, the depth, is finite, we have more or less good
control over the situation. A logic is called pretabular if it is not tabular, but all
of its proper extensions are. By abstract arguments one can show that any logic
which is not tabular must be contained in a pretabular logic. In the mid–seventies it
was established by L E and V. M in [57] that ES4 has exactly five such
logics. (This fact has been proved independently also by W R and
L M.) The proof is a real classic in the theory of K4. We prove it by
playing with the fundamental parameters of depth, fatness and width. Let Π be a
pretabular logic in E S4. If its width, fatness and depth is finite, Π is tabular. So, one
of the parameters is infinite. Suppose, then, that the depth of Π is not finite. Then as
one can easily see, the n–element chains are models of that logic. This follows from
the following useful fact.

P 8.2.8. Let f be a noetherian Kripke–frame for S4 of depth α. The
map x 7→ dp(x) is a p–morphism onto 〈α,≥〉. Let f be a noetherian Kripke–frame for
G of depth α. The map x 7→ dp(x) is a p–morphism onto 〈α, >〉.

P. Let f be a Kripke–frame for S4. Call the map which sends x to its depth
π. Clearly, if x C y then π(x) ≥ π(y), by definition of depth. Next, assume that
π(x) ≥ β. Then x is of depth at least β. It follows by definition of depth that there
exists a successor of x which has depth β. Likewise for G. �

Namely, let Π be of unbounded depth. By the fact that frames for Π are top–
heavy, for each d < ω there exists a Π–frame f of depth d. Then, by the previous
theorem, 〈d,≥〉 is also aΠ–frame. The logic of all finite chains is Grz.3. It is also the
logic of the infinite chain 〈ω,≥〉. It is clearly not tabular, but each proper extension
is of finite depth; since the logic is of fatness 1 and of width 1, every extension is
tabular. This concludes the case of infinite depth. Now we may assume that the depth
of Π is finite. Let now the fatness be unbounded. We distinguish two cases. Case
1. The depth of prefinal clusters is unbounded. Notice that if n is a prefinal cluster,
take the subframe g generated by that cluster. Then g � n >©◦. So, all these frames
can be mapped onto a frame of the form n � ◦, called tacks in [57]. Let Π be the
logic of the structure fℵ0 = ℵ0 >©◦. Π has depth 2 and width 2 but infinite fatness.

It is the logic of ℵ0 >©◦. Then Π is not tabular. But every proper extension must be
of finite fatness and hence tabular. Case 2. The depth of final clusters is unbounded.
Then Π = S5, the logic of the lonely clusters, called clots. For in a refined frame
with a final cluster of size n we find a generated subframe isomorphic to the cluster
n. So, Π ⊆ S5. On the other hand, S5 is not tabular, since it is not of finite fatness.
Yet, every proper extension must be.
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F 8.1. The five pretabular extensions of S4
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Now we have reduced the investigation to logics of finite depth and finite fatness.
Since Π is not tabular its width must be unbounded. Now, if the depth and fatness
is bounded then the number of immediate incomparable successors of a point is also
not bounded. (If it were, letΠ be of depth d and fatness f , and let points have at most
q immediate incomparable successors. Then there are at most 1+ q+ q2 + . . .+ qd−1

clusters; each cluster has at most f points. Hence Π is tabular.) So for any n there
is a refined frame Fn and a point x with n incomparable immediate successors. Take
the subframe Gn generated by x. Then Π is the logic of the Gn, as is not hard to
see. Furthermore, we may assume that Gn are of fatness 1. (Otherwise, take the
set of all frames Hn resulting from Gn by collapsing each cluster to 1. This set is
of unbounded width, and so not tabular. Since Π is pretabular, Π is the logic of the
Hn.) Let gn = {x} ∪ In ∪ Nn ∪ Zn, where In is the set of immediate successors of x
of depth 0, Nn the set of immediate successors of x not of depth 1, and Zn the set of
the remaining points. Case 1. The set {]In : n ∈ ω} is unbounded. Let kn := 〈kn,Cn〉,
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where

kn := {x} ∪ In ∪ {y}
Cn := {〈w,w〉 : w ∈ kn} ∪ {〈x,w〉 : w ∈ kn} .

Then bn � 1 >©
⊕

i≤n 1 with n = ]In + 1; this frame is also called the n–fan. So kn
is a ]In + 1–fan. Let ρn : gn → kn be defined by ρn � {x} ∪ In = id, and ρn(w) = y
for w ∈ Nn ∪ Z. This is a p–morphism. Now Π is included in the logic of all n–
fans. The logic of n–fans is not tabular, but a proper extension is, since it must be of
finite width. This exhausts the first case. Case 2. {]In : n ∈ ω} is bounded. Then
{]Nn : n ∈ ω} is unbounded. Put dn := 1 >© (

⊕
1≤n 1) >© 1, and call it the n–top or

n–kite. There is a p–morphism from Gn onto the ]Nn–kite. Namely, collapse In and
z into a single point. Hence Π is contained in the logic of all kites. The latter is not
tabular. Hence Π is equal to it.

T 8.2.9 (Maksimova, Esakia and Meskhi, Rautenberg). Let Λ be a logic
containing S4. Λ is pretabular iff Λ is one of the following five logics: the logic of
the chains, the logic of the clusters, the logics of the tacks, the logics of the fans, the
logic of the kites.

Notes on this section. The structure of finitely generated K4–algebras and of
finitely generated S4–algebras — also called interior algebras — has been studied
by a number of people, either directly or indirectly by means of the canonical frame;
the first to mention is K S [193]. For interior algebras, see W B
[22] and F B [4]. The presentation here follows M K [121],
who builds on K F [66]. It can be shown that E G has ℵ0 many pretabular logics.
EK4 has 2ℵ0 many pretabular logics, as was proved by W B.

Exercise 275. Show that all pretabular logics of S4 are finitely axiomatizable.

Exercise 276. Let f be a finite, rooted, reflexive frame. Show that Th(f) is of codi-
mension ≥ ] f . Hint. Show that for each cardinality < ] f there is a rooted frame g
with f� g.

Exercise 277. As before, but with f not necessarily reflexive.

Exercise 278. Let Λ ⊇ K4 be pretabular. Show that EΛ � 1 + ω?. Hint. Show first
that the sublattice of points of finite codimension must be linear.

Exercise 279. A variety of K4–algebras is locally finite iff it is of finite depth. Hint.
Show that dp(≤ n) is expressible with one variable. Now look at FrΛ(1). It must be
finite.
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8.3. The Selection Procedure

This section will introduce one of the most important techniques in modal logic,
that of the selection procedure, developed by K F ([66]) and M Z
([245]). The idea is that if we have a general frame refuting a formula ϕ, we can ex-
tract a finite countermodel for ϕ. We cannot expect that the new model will be based
on a frame for the logic under consideration. However, as has been noted, many
logics are actually closed under this new operation, so that for them this will be a
proof of the finite model property. We begin by examining a special case. Suppose
that we have a global modelM = 〈F, β〉 and a formula ϕ. Let X := sf (ϕ) and x ∈ f .
Then there is a unique set Y ⊆ X such thatMx � χ iff χ ∈ Y . Now define

moM(x) :=
∧
χ∈Y

χ ∧
∧

χ∈X−Y

¬χ

If no confusion arises, we write mo(x) rather than moM(ϕ). moM(x) is called the ϕ–
molecule of y. We say that y is µ–maximal if it has molecule µ but no strict successor
has molecule Y . Given ϕ, we say that y is maximal (for ϕ) if it is Y–maximal for
some Y . If f is noetherian it has no infinite strictly ascending chain and so every point
y which is not itself maximal has a successor which is maximal for the molecule for
y. Thus, given y there is a weak successor which is maximal for the molecule of y; it
is denoted by yµ. Let fµ be the subframe of maximal points.

L 8.3.1. Assume 〈f, β, x〉 � ϕ. Let g v f be a subframe such that every
point in f has a weak successor in g with identical molecule, and let x ∈ g. Then
〈g, β, x〉 � ϕ.

P. By assumption there is a function y 7→ yp such that y and yp have the
same molecule in f and yp is a weak successor of y contained in g. We may assume
that xp = x. By induction on χ ∈ sf (ϕ) we show that

〈f, β, y〉 � χ ⇔ 〈g, β, yp〉 � χ

〈g, β, z〉 � χ ⇔ 〈g, β, zp〉 � χ

Let χ = p, a variable. Then, since yp has the same molecule as y, they satisfy the
same variables of ϕ, irrespective of the subframe they are in. So the base case is
treated. The steps for ∧ and ¬ are straightforward. Now let χ = ♦ψ. If 〈f, β, y〉 � ♦ψ
then 〈f, β, yp〉 � ♦ψ by definition of yp. There is a successor z such that 〈f, β, z〉 � ψ.
By induction hypothesis, 〈g, β, zp〉 � ψ. Then, as yp C z, zp is a successor of yp,
so 〈g, β, yp〉 � ♦ψ. Conversely, assume 〈g, β, yp〉 � ♦ψ. Then for some successor z,
〈g, β, z〉 � ψ. We have that zp is a weak successor of z, so it is a successor of yp and of
y. By induction hypothesis, 〈g, β, zp〉 � ψ, and so 〈f, β, y〉 � ♦ψ. This shows the first
claim. The second is similar. �
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Let S be a subset of f . Put

↑S := {y : x C y} ↑S := {y : x E y}
↓S := {y : y C x} ↓S := {y : y E x}

D 8.3.2. Let 〈f,F〉 be a K4–frame. a ∈ F is called cofinal if ↓a ⊇↑a.
G is a cofinal subframe of F if it is of the form F ∩ a for some cofinal a ∈ F.

Let ϕ be given and 〈f, β, x〉 � ϕ. If f is noetherian and g contains the maximal
points, then g is cofinal in f. For if y ∈ g and z a weak successor of y, then zµ is weak
successor, which is in g.

We return now to the general case. Recall the definition of a molecule. Given
ϕ, we have ≤ 2k molecules, where k := ]sf (ϕ). We call a molecule also the set of
points satisfying one and the same molecule. Moreover, M(ϕ), or simply M, is the
set of all molecules with respect to ϕ. M forms a partition of the original frame. Let
a ∈ F. Call x critical for a if for no weak successor y of x such that y ∈ a we have
moM(y) = moM(x). This leads to the following definition

crit(χ) :=
∨
µ∈M

µ ∧ ¬χ ∧ �(χ→ ¬µ)

A point has molecular span (or m–span) N if it is in the set

N–span :=
∧
µ∈N

♦µ
∧

µ∈M−N

¬♦µ

The molecular depth (or m–depth) of a point x is the length of a maximal sequence
x = x0 C x1 C . . . C xn−1 such that xi+1 has lesser molecular span than xi. (It follows
then that xi~Cxi+1.) In particular, x is of m–depth 0 iff it is of minimal m–span. Notice
that x ∈ crit(χ) iff every successor of x satisfying χ has lesser m–span (unless x
is irreflexive). So, as can easily be seen, the operation of taking critical points can
only be nontrivially iterated finitely many times, at most as many times as there are
molecules.

Now letM = 〈F, β〉 be a global model. We define a frameS(ϕ), a finite Kripke–
frame z(ϕ) and a p–morphism π : S(ϕ)� z(ϕ) such that the following holds.

1. s(ϕ) is a cofinal subframe of f, and S(ϕ) ⊆ F.
2. π : S(ϕ)� z(ϕ) is the refinement map.
3. For every x ∈ f there exists a weak successor xp ∈ S(ϕ) of x such that

(1.) xp has the same molecule as x;
(2.) xp has the same molecular depth as x.

4. For every x ∈ s(ϕ), x is of molecular depth d iff π(x) is of depth d in z(ϕ).
5. For every x ∈ z(ϕ), π−1(x) is definable by means of a formula of modal

degree 2 + d · dp(ϕ), d the molecular depth of x.
The framesS(ϕ) and z(ϕ) will be defined in stages. We defineSd(ϕ), zd(ϕ) and maps
πd : Sd(ϕ) � zd(ϕ). Here, Sd(ϕ) is the frame of points of S(ϕ) of molecular depth
< d; πd is the refinement map. zd(ϕ) is the set of points of depth < d in z(ϕ). We
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will have the following facts: Sd(ϕ) is a generated subframe of Sd+1(ϕ), consisting
of the points x such that πd+1(x) is of depth ≤ d. Furthermore, πd+1 � sd(ϕ) = πd. πd

is the refinement map. For x ∈ z(ϕ) we denote by γ(x) the formula defining the set
π−1(x). It is clear from the previous remarks that γ(x) is independent of d.

We start with d = 1. S1(ϕ) consists of all points of depth 0. These are the points
critical for⊥. Moreover, the formulae γ(x) are of degree 2. Now we define the points
of Sd+1(ϕ) on the basis of the points of Sd(ϕ). Let ∆ be the set of γ(x), x ∈ zd(ϕ).
Put δ∗ :=

∨
∆. A point y is of molecular width Γ ⊆ ∆ if it satisfies the formula

Γ–width defined by
Γ–width :=

∧
γ∈Γ

♦γ ∧
∧
γ∈∆−Γ

¬♦γ

As before, the notion of minimal molecular width is defined by

mwidth := ¬δ∗ ∧ �δ∗ ∨
∨
Γ⊆∆

(Γ–width ∧
∧
Σ(Γ

Σ–width→ δ∗)

Among the points of minimal molecular width we select the points of minimal
molecular span.

mspan := ¬δ∗ ∧


∨
µ∈M(ϕ) µ ∧ �(¬µ ∧ δ∗)

∨
∨

N⊆M(ϕ)(N–span ∧
∧

O(N(O–span→ δ∗))

Finally
ζ := mspan ∧ mwidth

Let now x ∈ sd+1(ϕ) iff x ∈ sd(ϕ) or x is of minimal molecular span and molecular
width. For x ∈ sd+1(ϕ), let x have molecular span N and molecular width Γ; then put

γ(x) := N–span ∧ Γ–width ∧ ζ

This is a formula of depth kd+1 := kd + dp(ϕ) if ϕ has depth at least 1. It is clear that
Sd(ϕ) is a generated subframe of Sd+1(ϕ). Moreover, every point of Sd+1(ϕ) has a
strict successor in Sd(ϕ). As internal sets we take the sets generated by β(pi). Let
πd+1 be the refinement map of Sd+1(ϕ). We show that the image of πd+1 is a finite
frame of depth d + 1.

L 8.3.3. Suppose that x and y in Sd+1(ϕ) have identical width, identical
span and identical molecule in 〈F, β〉. Then in Sd(ϕ), x ∈ a iff y ∈ a for all internal
sets. Hence πd+1(x) = πd+1(y). Consequently, zd+1(ϕ) is finite.

P. Every set is generated by β(pi), so we may reason by induction on the
formula χ(~p). For χ = pi the case is clear, likewise the steps for ¬ and ∧. Now let
χ = ♦η. Assume that x ∈ β(♦η). Then there is a successor u of x satisfying η. Two
cases arise. Case 1. u ∈ Sd(ϕ). Then, as y has the same width as x, there is a point
v such that y C v and v satisfies η. Case 2. u < Sd(ϕ). Then u has the same width as
x. It also has the same span as x. The atom of u is the span of x. u is critical, that
is, it satisfies a molecule that no successor of layer < d can satisfy. As y is of equal
span as x and of equal m–span as x (by virtue of being of equal width) there exists
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a point v such that y C v and v satisfies the molecule of u. v cannot be of layer < d,
since its molecule cannot be satisfied there. Hence v is of layer d. This means that v
has the same span as u, the same width as u and the same atom as u. By induction
hypothesis, v ∈ β(η). Hence y ∈ β(♦η) = β(χ). And that had to be shown. �

Now we put for x ∈ z(ϕ), γ(x) := γ(y), where πd+1(y) = x. By definition of z(ϕ),
this is independent of the representative. Now let x be a point of molecular depth
d. By assumption, if x C y and y has lesser molecular span than x, y is of molecular
depth < d. Moreover, x has a successor y of molecular depth d − 1 such that the
molecule of x is not satisfied at any weak successor of y. By induction hypothesis, y
has a weak successor yp in Sd(ϕ) which is of depth d − 1 in zd(ϕ). Clearly, x C yp.
Therefore, γ(yp) is contained in the width of x. Consider a weak successor u of x
which is of minimal width and minimal span. Then, by choice of x, u has the same
span and same molecule as x, and γ(yp) is contained in its width. It follows that u
has molecular depth d. This shows the claims.

T 8.3.4 (Zakharyaschev, Fine). Let ϕ be a formula and assume that
〈F, β, x〉 � ϕ. Let k := ]sf (ϕ). Then there exist S(ϕ) and z(ϕ) such that the fol-
lowing holds.

1. S(ϕ) is a cofinal subframe of 〈f,G〉, where G is a subalgebra of F; the
refinement of S(ϕ) is z(ϕ).

2. z(ϕ) is finite and of depth ≤ 2k.
3. For every x ∈ f there exists a xp ∈ s(ϕ) such that

(1.) xp is a weak successor of x;
(2.) the molecule of x in 〈F, β〉 is the same as the molecule of xp in 〈S(ϕ), β〉.

〈S(ϕ), β〉 andS(ϕ) is called the ϕ–extract of 〈F, β〉 and 〈z(ϕ), β〉 as well as z(ϕ) the
ϕ–reduct. x is called quasi–maximal if x ∈ s(ϕ).

Recall from Section 3.5 the definition of a subframe logic. It is a logic whose
class of frames is closed under taking subframes. Now call Λ a cofinal subframe
logic if for every F � Λ and every cofinal G ⊆ F also G � Λ.

C 8.3.5 (Zakharyaschev). Every cofinal subframe logic has the finite
model property.

C 8.3.6 (Fine). Every subframe logic has the finite model property.

We remark here that there is a simple criterion for a logic to see whether it is a
(cofinal) subframe logic.

T 8.3.7. Let Λ be a logic. If Λ has the finite model property and the
set of finite models is closed under taking (cofinal) subframes, then Λ is a (cofinal)
subframe logic.

The proof is simple. Let Θ be the cofinal subframe logic whose set of finite
frames equals the set of finite frames for Λ. Such a logic exists by assumption on
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Λ. Since Λ has the finite model property, Θ = Λ. Hence, S4, S5, G and Grz are
subframe logics.

Exercise 280. Show that K4.D is a cofinal subframe logic but not a subframe logic.

Exercise 281. Show that the logics of width θ, the logics of tightness τ, the logics of
fatness ϕ, the logics of depth δ, all are subframe logics, in all combinations.

Exercise 282. Let Λ ⊇ K4 be canonical and let the frames be determined by a set of
universal sentences. Then Λ is a subframe logic.

8.4. Refutation Patterns

This section is devoted to the so-called canonical formulae by M Z-
. Basically, for every formula ϕ there exists a finite set of geometrical
configurations, called refutation patterns, such that a frame refutes ϕ iff it realizes
one of the refutation patters. The exclusion of a refutation pattern can be character-
ized by a modal axiom, and this axiom is called a canonical formula. The refutation
patterns for ϕ can be constructed from the frames underlying minimal countermodels
for ϕ, by observing how the selction procedure selects points and how the selected
frame lies embedded in the whole frame. For concreteness, let us take a frame F.
Let 〈F, β, x〉 � ¬ϕ. In F lies cofinally embedded the ϕ–extract S(ϕ). There is a
contraction π : S(ϕ) � z(ϕ) onto the reduct. Now let us take a look at the other
points of the frame and see how they lie with respect to S(ϕ). More precisely, we
are only interested in the way they lie with respect to z(ϕ), because points that are
being mapped onto the same element in the reduct have the same molecule. Call
a subset V of points of z(ϕ) a view if V = ↑V . Now take a point x ∈ f. The set
vw(x) = π[↑ x ∩ z(ϕ)] is a view. It is called the (z–)view of x. A view V is internal
if there is an x ∈ s(ϕ) such that V = vw(x), and external if there is an x ∈ f − s(ϕ)
such that V = vw(x). Notice that a given view may be both external and internal; it
may also be neiter internal nor external. We say that the frame realizes an external
(internal) view V if V is the external (internal) view of some point of f . We will
see that for a given frame two factors determine whether or not a model for ϕ can be
based on it. One is to which frames it is subreducible and the other is which z–views
it realizes. To make this precise, two more definitions are needed. We say that two
points 0–agree if they satisfy the same non–modal formulae, and that they ϕ–agree
if they satisfy the same subformulae of ϕ (iff they have the same molecule).

P 8.4.1 (Agreement). Let 〈F, β〉 be a model, S(ϕ) the ϕ–extract, z(ϕ)
the ϕ–reduct and π : S(ϕ) � z(ϕ) the refinement map. Let x and y have the same
z–view. If x and y 0–agree, then they also ϕ–agree.

P. By induction on the subformula χ it is shown that for two points x and
y which 0–agree, x � χ iff y � χ. The only nonobvious case is χ = ♦ψ. Let x � ♦ψ.
Then there is a successor u of x such that u � ψ. Furthermore, there exists a weak
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successor up ∈ s(ϕ) of u such that up � ψ. We then have x C up as well. By
assumption, there exists w such that y C w and π(w) = π(v). It follows that for all
subformulae τ of ϕ, up � τ iff w � τ. Choose τ = ψ. This implies w � ψ and thus
y � χ. �

P 8.4.2 (Homogenization). Let 〈F, β〉 be a model, x an external world,
and Y a set of external worlds and let all points of Y∪{x} have identical view. Assume
that Y is an internal set. Define γ as follows. γ(p) := β(p) ∪ Y if x ∈ β(p), and
γ(p) := β(p)−Y otherwise. Let y, y′ ∈ Y. Then y and y′ ϕ–agree in 〈F, γ〉. Moreover,
for z < Y the molecule of z in 〈F, γ〉 is the same as the molecule of z in 〈F, β〉.

P. Since Y is internal, γ is a valuation. Now, all internal points have the
same valuation as before, likewise all external points < Y . Now we prove that if
z < Y , then for all χ ∈ sf (ϕ) we have

〈F, γ, z〉 � χ ⇔ 〈F, β, z〉 � χ

The only non–obvious case is χ = ♦ψ. Let v be a successor of z such that 〈F, γ, v〉 �
ψ. v has a weak successor vp such that 〈F, β, vp〉 � ψ. By induction hypothesis,
〈F, γ, vp〉 � ψ. Hence, 〈F, β, z〉 � ♦ψ, since z C vp. Now let the latter be the case.
Then, analogously, there is a vp such that 〈F, β, vp〉 � ψ. By induction hypothesis,
〈F, γ, vp〉 � ψ and so 〈F, γ, z〉 � ♦ψ, as required. �

The last lemma says that for external points we can make the valuation quite uniform,
because in evaluating a formula we can ‘skip’ the external points. It is actually
possible to derive the Homogenization Lemma from the first lemma. Finally, we are
also interested in the possibility to insert points. Let 〈F, β〉 be a model. We then
have a uniquely defined extract S(ϕ) and the refinement map π : S � z. We fix all
these elements. We see that we can tinker with the external points quite drastically,
taking them away if we want, and add new ones. However, what we need to know
when we insert points is that its view (if external) must already be realized in the
frame by a point x. Then we simply extend the valuation by giving the new point the
valuation of x and we have again a model of ϕ. Thus, the structure of the external
points is quite irrelevant as long as certain views are not realized. Notice also that if
a view is realized then we always have a witness x giving us a valuation for the new
point. Now go one step further. Take any frame F with a cofinal subframe G and a
p–morphism π : G � z. Then we can define z–views analogous to views. Namely,
given a point x we put vw(x) = π[↑ x] and call it the z–view of x. Notice that views
depend on G and π in addition to z. And we have the following theorem.

P 8.4.3. LetM := 〈F, β〉. LetS = S(ϕ) be the ϕ–extract of 〈F, β〉 and
π : S� z the refinement map. Consider a frame G containing a cofinal subframe H
and ρ : H � z, such that every external z–view of G is realized in F. Moreover, let
every point of g have a weak successor in h with identical view. Then there exists a
valuation γ such that the ϕ–reduct of N := 〈G, γ〉 is isomorphic to z.
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P. By assumption there is a function z 7→ zp : g→ h such that zp is a weak
successor of z with identical view. Furthermore, zp = z if z ∈ h. The valuation is as
follows. (i) x ∈ h. Then x ∈ γ(p) iff there is a y ∈ s(ϕ) with π(y) = ρ(x) and y ∈ β(p).
(ii) x < h. For each external view V take an external yV in Fwith identical z–view. yV

exists by assumption. Then let x ∈ γ(p) iff yV ∈ β(p). This is a valuation on G. For
γ(p) is a union of sets of the form ρ−1(u), u ∈ z(ϕ), and sets of points of indentical
view. These are all internal sets. We claim the following.

(∗) if π(y) = ρ(x) then moM(y) = moN(x)
(∗∗) moN(z) = moN(zp)

From this it immediately follows that the reducts are isomorphic. We show (∗) and
(∗∗) by simultaneous induction on the subformulae of ϕ. For variables both hold by
construction. The case of ¬ and ∧ is clear. Now let χ = ♦ψ. We show (∗) for χ.
Let 〈F, β, y〉 � ♦ψ. Then there exists a z such that y C z and 〈F, β, z〉 � ψ. We may
actually assume that z ∈ s(ϕ). Then there exists a v ∈ h such that π(z) = ρ(v). Now,
π(y) = ρ(x) and π(y) C π(z) imply ρ(x) C π(z). Since ρ is a p–morphism, there is a
v such that x C v and ρ(v) = π(z). By (∗) for ψ, 〈G, γ, v〉 � ψ and so 〈G, γ, x〉 � ♦ψ.
Now let the latter be the case. Then there exists a v such that x C v and 〈G, γ, v〉 � ψ.
By inductive hypothesis for (∗∗), 〈G, γ, vp〉 � ψ. Now there exists a w such that yCw
and π(w) = ρ(vp), and so 〈F, β,w〉 � ψ. It follows that 〈F, β, y〉 � ♦ψ. Now we show
(∗∗) for χ = ♦ψ. Assume that 〈G, γ, zp〉 � ♦ψ. Then there exists a y B zp such that
〈G, γ, y〉 � ψ. Hence 〈G, γ, z〉 � ♦ψ, since z E zp C y. Now assume that 〈G, γ, z〉 � ♦ψ.
Then for some y B z, 〈G, γ, y〉 � ψ. Since y E yp, z C yp. Now z and zp have the
same z–view and so there is a up such that zp C up and ρ(up) = ρ(yp). By (∗) for ψ,
〈G, γ, up〉 � ψ. Hence 〈F, β, zp〉 � ♦ψ. �

The last theorem has in effect identified what the geometric condition for ϕ
is. We need to know: (1.) the structure of the reducts and (2.) the admissible
external views for each reduct. Since views are upward closed sets, that is, cones,
the following definition emerges.

D 8.4.4. Let z be a finite Kripke–frame and V be a set of cones of z.
Then the pair P := 〈ρ,V〉 is called a refutation pattern. We say that a frame F
satisfies or realizes P if there is a subframe G and a contraction G� z such that
no external z–view is in V. v ∈ V is called a closed domain of P. If F does not
realize P we say that it omits P.

Given ϕ, there exist only finitely many reducts. On each reduct there exist
finitely many closed domains, hence there are finitely many refutation patterns for ϕ.
They can be calculated algorithmically. With ϕ given, enumerate all models of size
≤ 2k, k := ]sf (ϕ). If necessary, reduce these models. This enumerates all reducts.
Next try inserting a new point x somewhere and defining a valuation such that the
reduct remains intact. If this is impossible, the view of x is a closed domain.
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The nonsatisfaction of a refutation pattern can be characterized axiomatically.
Given a refutation pattern 〈z,V〉, where z is a frame based on the set {0, 1, . . . , n − 1}
and with root 0, we take for each i a distinct variable pi and define

real(z,V) :=
∧
〈pi → ¬p j : i , j〉 (,)

∧
∧
〈pi → ♦p j : i C j〉 (C)

∧
∧
〈pi → ¬♦p j : i 6 j〉 (6)

∧
∧
〈¬evr(v) : v ∈ V〉 (cd)

evr(v) :=
∧
〈♦pi : i ∈ v〉

∧
∧
〈¬♦pi : i < v〉

∧
∧
〈¬pi : i < n〉

Consider a valuation β : pi 7→ ai into F and a world x such that 〈F, β, x〉 � p0 ∧

�+real(z,V). Then the set
⋃

i β(pi) is a subframe which can be mapped onto z. This
follows from (,), (C) and (6). The formula evr(v) says that a point has ρ–view v and
is external. This is excluded by real(z,V). The cofinality requirement need not be
stated separately, for we have the following fact.

P 8.4.5. Let 〈z,V〉 be an embedding pattern. If G is a subframe in F
and G� z then G is cofinal iff the empty z–view is not external.

Now define
γ(z,V) := �+real(z,V)→ ¬p0

D 8.4.6. A formula ϕ is called a canonical formula if ϕ is of the
form γ(P) for some refutation pattern P = 〈z,V〉.

P 8.4.7. Let P be a refutation pattern. Then F 2 γ(P) iff F satisfies P.

Now consider ϕ again. We can specify all refutation patterns for ϕ. If ϕ is an
axiom, the frames satisfying the refutation patterns are exactly those frames which
must be excluded. For they allow to define a valuation refuting ϕ. We have seen
that these patterns can be axiomatized by canonical formulae. Thus we have the
following theorem.

T 8.4.8 (Zakharyaschev). There is an algorithm which for given formula
ϕ returns a finite set of refutation patterns 〈zi,Vi〉, i < n, such that K4 ⊕ ϕ =
K4 ⊕ {γ(ρi,Vi) : i < n}.

The consequences of this theorem are enormous and we will have to be content
to list a few of them in the sequel. For the moment let us notice a few details. In
[245], the closed domains are defined as antichains rather than cones. The effect
is the same, because an antichain generates a cone, and each cone is generated by
an antichain. However, there are more antichains than there are cones, so taking
antichains introduces a redundancy here. The formulae γ(z,V) are therefore not
identical with the α–formulae of [245]. We will switch freely between a definition
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of refutation pattern via cones and via antichains, taking whatever suits the purpose
best.

Finally we have to discuss the case where external views are also internal, that
is, when there is a point x ∈ z such that ↑ x = v for v ∈ V. What happens if we
exclude such an external view? There are two cases. First, assume that x is reflexive.
Then x ∈ v, corresponding to an antichain {x}. Then nothing changes if in the frame
we take all points with view v as internal points, changing their valuation into that of
x. Thus, forbidding such an external view has no effect. If, however, x is irreflexive,
then forbidding the view of x to be external will have substantial effects.

P 8.4.9. Let 〈z,V〉 be a refutation pattern, and x a reflexive point.
Then K4 ⊕ γ(z,V) = K4 ⊕ γ(z,V ∪ ↑ x).

It should be emphasized that even though the formulae γ(z,V∪{↑ x}) and γ(z,V)
are axiomatically equivalent over K4, they are not satisfied by the same models and
so not deductively equivalent. A valuation refuting the first formula refutes the sec-
ond; the converse does not necessarily hold. Namely, to satisfy the first formula, the
view ↑ x may not be external, while for the second it is enough that ↑ x is internal, it
may also be external. To prove Proposition 8.4.9, assume that M = 〈F, β〉 satisfies
γ(z,V). Define a new valuation δ and a model N := 〈F, δ〉 as follows. If x ∈ β(p) let
δ(p) be the union of β(p) and all external points with view ↑ x; if x < β(p), let δ(p) be
β(p) minus the set of all external points with view ↑ x (check that this is an internal
set, so δ is well–defined). In 〈F, δ〉 the view ↑ x is now internal. To see that, note that
the points of M which were external and had view ↑ x have the same molecule as x
in N, and it can be shown that they belong to the extract of N. So they are internal.
Nothing else changed. Therefore, the ϕ–reduct of N is the same as the ϕ–reduct of
M, and they realize the same views except for ↑ x. Playing with this distinction will
be helpful sometimes.

In addition to γ(z,V) there is a formula γ◦(z,V), which results from γ(z,V) by
dropping the cofinality requirement. We then have

T 8.4.10. A logic Λ is a cofinal subframe logic iff for every γ(z,V) we
have that from γ(z,V) ∈ Λ follows γ(z,∅) ∈ Λ. A logic is a subframe logic iff
γ(z,V) ∈ Λ implies γ◦(z,∅) ∈ Λ. Hence a cofinal subframe logic can be axiomatized
by formulae of the form γ(z,∅), a subframe logic by axioms of the form γ◦(z,∅).

P. Let γ(z,∅) < Λ, that is, Λ admits the refutation pattern 〈z,V〉. Suppose
there is a a frame F with a cofinal subframe G such that G � z respecting the
external views. However, by assumption on Λ, G is itself a frame for Λ and realizes
the refutation pattern 〈z,∅〉. Likewise for subframe logics. �

T 8.4.11. A logic K4⊕γ(z,V) is a splitting of K4 by z iffV∪{↑ x : xC x}
contains the set of all cones of z.
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P. Let F be a frame, G ⊆ F a cofinal subframe such that G � z. If G is a
generated subframe, then no view is external. Hence no external view is realized. On
the other hand, let no external view be realized. ThenG is a generated subframe. �

The canonical formulae do not provide an axiomatic basis for extensions of K4.
This follows from the fact that there exists an extension of K4 that does not possess
an independent axiomatization. In the case of (cofinal) subframe logics the situation
is different, though. Let Λ be a subframe logic and z rooted and finite. Denote by
Λ/F z the smallest subframe logic containingΛ not having z as a frame, and callΛ/F z

the Fine–splitting of Λ by z. It turns out that Λ/F z = Λ ⊕ γ
◦(z,∅). Any subframe

logic Λ is a F–splitting K4/F G with G = {z : z < Krp(Λ), g rooted and finite}.
Analogously, let Λ be a cofinal subframe logic. The Zakharyaschev–splitting of
Λ by z is the least cofinal subframe logic containing Λ for which z is not a frame.
It is axiomatizable by Λ ⊕ γ(z,∅). We write Λ/Z z. It follows from the fact that the
cofinal subframe logics have the finite model property that we have a sublattice S K4
of subframe logics and a sublattice CF K4 of cofinal subframe logics, that all (and
only) the rooted finite frames induce splittings and the splitting logics all have the
finite model property. Under these circumstances we conclude the following. Put
f ≺F g if g is a contractum of a subframe of f, and f ≺Z g if g is a contractum of
a cofinal subframe of f. Then ≺Z ⊆≺F and in both cases the lattices are isomorphic
to the lattice of upper sets of finite rooted frames. Hence, on the finite frames the
topology is the Alexandrov–topology and so the lattices are actually continuous.
Moreover, there is no infinite strictly ascending chain of prime elements.

C 8.4.12. Both SK4 and CF K4 are continuous lattices and have a
strong basis. The natural embeddings SK4 ⊆ CF K4 ⊆ EK4 are continuous maps.

The continuity of the embeddings is a consequence of the fact that the upper
limits and the lower limits of chains coincide with the respective limits in E K4. So
any infinite intersection of (cofinal) subframe logics is again a (cofinal) subframe
logic. In addition, we can study the splittings of the sublattices as induced splittings
of the larger lattice. Notice namely, that if we have a locale L and a point p : L� 2
such that p−1(0) is a principal ideal and p−1(1) a principal filter, and we have a
sublocale i : M� L such that the embedding respects all limits, then i ◦ p : M� 2
is a point with similar properties. To put this concretely, if 〈p, q〉 is a splitting of L
then 〈p↓, q↑〉 is a splitting ofM where

p↓ := 〈x : i(x) ≤ p〉
q↑ := 〈x : i(x) ≥ q〉

p↓ is the largestM–logic below p, while q↑ is the smallestM–logic containing q. In
the present context, Λ↑ is the (cofinal) subframe closure, the logic of all frames for
which all (cofinal) subframes are frames for Λ, while Λ↓ is the (cofinal) subframe
kernel, the logic of all (cofinal) subframes of frames for Λ. Figure 8.2 illustrates the
situation. Take the distributive lattice to the left. It is a sublattice of the lattice to
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the right, the top and bottom elements are the same. The splitting 〈p, q〉 of the larger
lattice induces the splitting 〈p↓, q↑〉 of the embedded lattice. The cofinal subframe
logics provide a rich class of natural logics. We present them here without proof.
In the exercises the reader is asked to supply some of the proofs, and to compare
the Fine– and Zakharyaschev–splittings with standard splittings. We have K4.1 :=
K4⊕�♦p→ ♦�p, K4.2 := K4⊕♦�p→ ♦�p. K4n is the logic of Kripke–frames in
which there is no chain of points 〈xi : i < n + 1〉 such that xi~Cxi+1; K4.In is the logic
of Kripke–frames in which there is no antichain of length n + 1.

S4 = K4/F •

G = K4/F ◦

Grz = K4/F { • , ◦◦ }

K4.1 = K4/Z ◦◦

K4.2 = K4/Z F1

K4.3 = K4/F F1

K4n = K4/F Ln

K4.In = K4/F Fn+1

The notation is as follows. Ln is the set of frames whose reflexive closure is 〈n,≥〉
and Fn+1 is the set of frames whose reflexive closure is the frame dn+1 of Figure 8.3.
The exercises below shed some light on the splittings of E K4 as first outlined in
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F 8.3. dn+1
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 n + 1

[169].
Notes on this section. The idea to study lattices of subframe logics rather than

lattices of logics is a major theme of W [244]. This has turned out to be a more
promising line of research than the investigation of entire lattices of logics, since the
latter are too complex if the logics is not so strong (e. g. in the case of S4.3, K5).

Exercise 283. Show that S4 = K4/F • . Show also that S4 is obtainable by splitting
two frames from K4.

Exercise 284. Show that Grz is obtained by splitting two frames from S4, and that
Grz = S4/F ◦◦ . Verify that S4.3 = S4/Fd2 and that S4.3 is obtained by splitting two
frames from S4.

Exercise 285. Show that G = K4/F ◦ . Name a set U of frames such that G =
K4/ZU. Show that there is no set N of frames such that G = K4/N.

Exercise 286. Show that K4.1 and K4.2 are cofinal subframe logics but not sub-
frame logics.

Exercise 287. Show that there exist extensions of K4 which are not cofinal subframe
logics. Can you name one?

Exercise 288. (K [126].) Show that any splitting G/N for finite N has the finite
model property.

Exercise 289. Let z be a frame, V and W be sets of cones with V ⊆ W. Show that
K4 ⊕ γ(z,W) ⊆ K4 ⊕ γ(z,V).

Exercise 290. Obviously, a subframe logic is a cofinal subframe logic. Given
γ◦(z,V) compute explicitly a finite set C of cofinal subframe axioms such that K4 ⊕
γ◦(z,V) = K4 ⊕C.
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Exercise 291. (R B [34].) Show that every extension of S4.3 has the finite
model property. Hint. Show that every extension is a cofinal subframe logic.

8.5. Embeddability Patterns and the Elementarity of Logics

Refutation patterns are second–order conditions; some of them cannot be re-
duced to first–order conditions. An example is the logic G defined by the exclusion
of ◦ as a subframe. Moreover, it is generally not decidable whether a logic is
first–order or not (see [44]). However, as have noted K F and M Z-
, for cofinal subframe logics there is a close connection between the
geometric conditions expressed by the refutation patterns and the elementarity of
the conditions they impose on frames. (See [66] and [246].) We approach this cir-
cle of themes by defining a different condition associated with a refutation pattern
P = 〈z,V〉, called embedding pattern or embeddability pattern.

D 8.5.1. Let z be a finite frame and V a set of cones. Then the Kripke–
frame f satisfies the (cofinal) embedding pattern P := 〈z,V〉 if there is no
(cofinal) embedding of z into f such that no view in V is external in the frame gener-
ated by the image of z in f. We write ε(z,V) for the property of satisfying the cofinal
embedding pattern and ε◦(z,V) for the property of satisfying the embedding pattern
P.

Clearly, ε(z,V) and ε◦(z,V) are first–order. Moreover, they are describable by a
restricted ∀∃–sentence. Namely, let z = 〈z,C〉 be given. Let z = {0, 1, . . . , n − 1} and
0 be the root. Now ¬ε(z,V) is the condition

(∃x0)(∃x1 B x0) . . . (∃xn B x0)



∧
i< j<n xi 6� x j

∧
∧

iC j xi C x j

∧
∧

i6 j xi 6 x j

∧ (∀y B x0)(
∨

i<n y C xi ∨ y � xi)
∧ (∀y B x0)(

∨
i<n y � xi

∨(
∧

V∈V(
∨

i∈V y 6 xi

∧
∨

i<V y C xi)))


Here, the first three formulae describe the fact that we have an embedding, the fourth
that this embedding is cofinal and the last that it satisfies the closed domain condition
(no view fromV is external). As we can see, parts of the conditions are positive; it is
not clear that these conditions define at all a modal class of frames. However, notice
the following.

L 8.5.2. ε◦(z,∅) is equivalent to a positive universal R f –sentence.

P. Let f = {i : i < n}. Let A(n) be the set of atomic fomulae of the form
xi � x j, i, j < n or xi C x j, i, j < n. Let C ⊆ A(n); then let r(C) be the frame
〈 fC ,CC〉 where fC is the factorization of f by the equivalence relation generated by
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〈i, j〉, where xi � x j ∈ C. Then put [i] CC [ j] iff there is a g ∈ [i] and an h ∈ [ j] such
that xg C xh. We call C a barrier if for no D ) C, r(D) is isomorphic to f. Let B be
the set of barriers. Now let

α(f) := (∀x0)(∀x1 B x0) . . . (∀xn−1 B x0)(
∨
C∈B

∧
C)

Then g � α(f) iff f is not embeddable into g. α(f) is positive, universal and restricted.
�

Similarly ¬ε◦(z,V) is ∃∀. Now, just as γ(z,V) need not be elementary, ε(z,V)
need not be modal. We will investigate situations in which the embeddability condi-
tions are modal and situations where the refutation patterns are elementary. In both
cases, we may either consider special sets of patterns or special classes of frames. Let
us first consider the general question of reducing the refutation patterns to first–order
conditions in special classes, namely noetherian frames.

T 8.5.3. In noetherian frames of width θ every (cofinal) refutation pat-
tern is a conjunction of finitely many (cofinal) embedding patterns. Moreover, a
(cofinal) embedding pattern corresponds to a ∀∃–sentence.

P. Let f be a noetherian frame, and 〈z,V〉 be a refutation pattern. We may
assume that no closed domain is of the form ↑ x, where x is reflexive. In that case,
if there is a cofinal subframe g of f and a p–morphism π : g � z such that the
closed domains are not external views, then let k be the frame consisting of all points
maximal in π−1. π � k : k � z and no closed domain is an external view. Moreover,
no cluster of k is larger than the largest cluster of k. Now let z have ` many points.
Let the largest cluster have size c. Then k has at most ` · c · θ many points. Take
the embedding pattern based on 〈k,W〉 where W consists of all closed domains V
such that π[V] ∈ V. Then f realizes that embedding pattern. So, let B be the set of
all embedding patterns 〈k,W〉 based on frames with ≤ ` · c · θ points such that there
exists a π : k � z and W consists of all closed domains V with π[V] ∈ V. Then f
realizes the refutation pattern P iff it realizes some embedding pattern of B. �

Another important case is when we have no closed domains. Then the refuta-
tion pattern defines a cofinal subframe logic. Even though the following arguments
extend to cofinal subframe logics we focus on subframe logics. Take a finite frame
f with root z. Let Z := C(z). Call a cluster sequence of f a sequence 〈Ci : i < k〉
of clusters of f such that C0 = Z and Ci+1 is an immediate successor cluster of Ci.
It is clear that the length of a cluster sequence is bounded by the depth of f. Let
u(f) be the set of pairs 〈Σ, x〉 such that Σ is a cluster sequence and x a member of
the last cluster of Σ. Put 〈Σ, x〉 J 〈Γ, y〉 if either (a) Σ = Γ and x C y or (b) Σ is a
proper prefix of Γ. Now put u(f) := 〈u(f),J〉 and call it the cluster unravelling. The
map d : 〈Σ, x〉 7→ x is a p–morphism. Now let d be any frame such that there exist
p–morphisms π : u(f) � d and ρ : d � f. Then d is called a disentangling of f.
(Disentanglings are called descendants in [66].)
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L 8.5.4. Let f be a finite frame and g a noetherian frame. Suppose that g is
subreducible to f. Then there is a disentangling d of f which is embddable into g.

P. Assume there is a subframe h of g and a p–morphism π : h� f. h is also
noetherian. It suffices to show that there is a disentangling of f which is embeddable
into h. We select a subset of h in the following way. We define a map τ : u(f)→ g by
induction on the length of the cluster sequence. Let Σ = 〈Z〉. Since h is noetherian,
the set U := π−1[Z] contains a cluster W isomorphic to Z. Namely, let w ∈ U be such
that w C v and v ∈ U implies v C w. Then two cases arise. Case 1. Z is degenerate.
Then U is a disjoint union of degenerate clusters, and we may pick any w ∈ U. Case
2. Z is nondegenerate. Then a C–maximal cluster contains at least as many points
as Z. So, we pick a subset of size ]Z from such cluster. We may in fact pick such
a subset W on which π is injective. Finally, put τ(〈Σ, x〉) := y, where y ∈ W and
π(y) = x. Now let τ be defined on all pairs 〈Σ, x〉 where Σ is a cluster sequence of
length < d. Let Γ := 〈Σ,C〉. Let x be an element of the last cluster of Σ and y ∈ C.
Put w := τ(〈Σ, x〉). Select a cluster D from the set π−1[C]∩ ↑w. Such a cluster exists
since π is a p–morphism and h is noetherian. Moreover, we let D be such that π is
injective on D. Now put τ(〈Γ, y〉) := v where v ∈ D and π(v) = y. This defines τ. Let
d be the image of u(f) under τ. Then τ induces a map from u(f) to d. This is easily
seen to be a p–morphism. Finally, the restriction of π to d is a p–morphism as well.
So, d is a disentangling of f and a subframe of g. �

It is clear that if g is cofinally subreducible to f then some disentangling of f is
cofinally embeddable into g. It follows

L 8.5.5. Let P = 〈z,∅〉 be a refutation pattern without closed domains.
Then there exists a finite set E of embedding patterns without closed domains such
that a noetherian frame realizes P iff it realizes some member of E.

T 8.5.6. Every (cofinal) subframe logic is ∆–elementary in the class of
noetherian frames.

This start is promising. So we have to study what happens if we lift the condition
that the frames be noetherian. Here we face a problem. Now it is the case that a frame
is subreducible to a finite frame fwithout there being a finite subframe dwhich can be
mapped p–morphically to f. This situation however arises exclusively with clusters.
A case in point is the chain ω< = 〈ω, <〉. This chain can be mapped onto ◦ , but ◦
cannot be embedded in it; also there does not exist any finite subframe of ω< which
can be mapped p–morphically onto ◦ . Another case is the chain ω≤ = 〈ω,≤〉. It can
can be mapped onto any cluster n. However, if n > 1, there exists no finite subframe
which can be mapped p–morphically onto n; moreover, n is not embeddable into ω≤.
These two examples play a pivotal role here. Let k< := 〈k, <〉 and k≤ := 〈k,≤〉 for
every k ∈ ω. Let f be a frame, and C a cluster. Then the subframe based on C is
totally local, and so the replacement of C by any other frame g is well–defined. g
is an immediate variant of g if there exists a cluster C in f such that either (a) C
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is improper and g = f[k</C] for some k ∈ ω, or (b) C is proper and g = f[k≤/C]
for some k ∈ ω. To summarize, immediate variants are obtained from frames by
replacing a nondegenerate cluster by a finite irreflexive chain or replacing a proper
cluster by a finite reflexive chain. A variant of f is obtained by iterating the process
of forming immediate variants. Now say that a set S of frames is quasi–closed under
variants if for each f ∈ S and each cluster C of f, some variant f[k</C] (f[k≤/C])
is subreducible to a member of S . A set T has the finite embedding property if a
frame f belongs to T exactly when each finite subframe belongs to T . Say that a logic
has the finite embedding property if its class of frames has the finite embedding
property.

T 8.5.7 (Fine). Let S be a set of finite frames. Then the set Krp(K4/FS )
has the finite embedding property iff S is quasi–closed under variants. If either
condition holds, the set of frames not subreducible to a member of S equals the set
of frames into which no disentangling of a member of S is embeddable.

P. Suppose that S is not quasi–closed under variants. Then there exists a
d ∈ S such that no immediate variant is subreducible to a member of S . We may
assume that f is a frame of minimal size with this property. Take a cluster C of f and
consider the frame g := f[ω</C] if C is improper and g := f[k≤/C] if C is proper. By
assumption, no finite subframe is subreducible to any member of S . (Here we need
the assumption that f is of minimal size.) However, g is subreducible to f. Hence,
g < Krp(K4/FS ) while every finite subframe h of g is contained in that class. So,
Krp(K4/FS ) does not have the finite embedding property. Now assume that S is
quasi–closed under variants. Let g be a frame which is subreducible to some f ∈ S .
So, there exists a subframe h and a p–morphism π : h � f. Suppose there exists
an improper cluster C of f such that π−1[C] contains a cofinal subset of the form
ω<. There is a variant z := f[k</C] which is subreducible to a member of S . g
is subreducible to z, as can be shown. Hence g fails the subframe condition for S .
Similarly if C is proper. It follows that if g is subreducible to f, some disentangling
of f is embeddable into g. �

T 8.5.8 (Fine). For a subframe logic Λ ⊇ K4 the following are equiva-
lent.

1. Krp(Λ) is definable by a set of universal, positive R f –sentences.
2. Λ is r–persistent.
3. Λ is ∆–elementary.
4. Λ is canonical.
5. Λ is compact.
6. Λ has the finite embedding property.

P. The implication from (1.) to (2.) follows from Theorem 5.4.11. The
implication from (2.) to (3.) is a consequence of Theorem 5.7.8. If (3.) holds, then
(4.) follows from Theorem 5.7.11 and the fact that subframe logics are complete. A
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canonical logic is compact. This follows from Proposition 3.2.7. Now, suppose that
(5.) holds. We establish (6.). Take an infinite frame f such that every finite subframe
satisfies Λ. Let ∆(f) be the diagram. This diagram is finitely satisfiable, since each
finite subset involves only a finite number of points. So, a finite subset describes a
finite subframe, which is a frame for Λ. So the whole diagram is satisfiable. Thus,
Λ has the finite embedding property. Now assume (6.). Then, let F be the class
of rooted finite frames not being Λ–frames. Consider the set of sentences ε◦(z,∅),
z ∈ F. This is a set of universal R f –sentences. This set can be turned into a set of
universal positive R f –sentences since F is inversely closed under contractions. �

C 8.5.9 (Fine). A subframe logic K4/FS is canonical iff S is quasi–
closed under variants.

So, S4 is canonical, since it is obtained by excluding • , while G is not canoni-
cal, being obtained by excluding ◦ . The latter set is not quasi–closed under variants;
no variant of ◦ is subreducible to ◦ . Likewise, S5 is canonical while Grz is not.
This concludes the discussion of subframe logics. Now in special circumstances,
other refutation patterns yield elementary logics. A special case are logics of finite
width. If we consider only noetherian frames, then elementarity is guaranteed. But
we do not always need to assume that the frame is noetherian. For example if we
consider splittings of irreflexive frames in logics of finite width. In this special case
the assumption that the frame is noetherian can be dropped.

T 8.5.10. Each splitting condition by a finite irreflexive frame is elemen-
tary in the class of frames of width θ.

In [12] it was claimed that this holds without assuming finite width. To see that
the condition of finite width is essential look at the following frame. Let p be a prime
number and zp := {q} ∪ {k∗ : k ∈ p} ∪ {k∗ : k ∈ p}. We put

Cp :=


{〈q, k∗〉 : k < p}

∪ {〈q, k∗〉 : k < p}
∪ {〈k∗, n∗〉 : k, n < p, and n = k or n ≡ k + 1 (mod p)}

Finally, zp := 〈zp,Cp〉. It is not hard to see that zp cannot be contracted onto z3
unless p = 3. Let U be an ultrafilter over ω − {0, 1, 2} containing all cofinite sets.
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Put z∞ :=
∏

U zpn , where pn is the nth prime number. We show that z∞ can be
mapped onto z3 (in fact onto any zp). Thus the condition ‘does not contain a generated
subframe which can be mapped onto z3’ is not elementary. z∞ is of depth 3, and every
point of depth 1 sees exactly two points of depth 0, every point of depth 0 is seen by
exactly two points of depth 1 (these properties are elementary, hence preserved by
passing to an ultrapoduct). Let H be the set of points of depth 0 in z∞. Call a subset
C ⊆ H a cycle if it is closed under the operations

u 7→ u∗ + m := 〈(vi)∗ : vi ≡ ui + k (mod pi)〉

for each k ∈ Z. Pick from each cycle C a representative r(C). Let Z be the set of all
cycles. Now let

H0 :=
⋃

C∈Z{r(C) + 3k : k ∈ Z}
H1 :=

⋃
C∈Z{r(C) + 3k + 1 : k ∈ Z}

H2 :=
⋃

C∈Z{r(C) + 3k + 2 : k ∈ Z}

Let
K0 := {u∗ : u∗ ∈ H0}

K1 := {u∗ : u∗ ∈ H1}

K2 := {u∗ : u∗ ∈ H2}

Define π : z∞ � z3 as follows. π(q) := q, π(x) = i∗ iff x ∈ Ki and π(x) = i∗ iff x ∈ Hi.
We leave it to the reader to check that this is a p–morphism.

Notes on this section. F W has shown in [242] that the minimal
tense extension of a cofinal subframe logic has the finite model property iff it is
∆–elementary. Nevertheless, the minimal tense extension of any finitely axiomatiz-
able cofinal subframe logic is decidable.

Exercise 292. Show that an extension of G is canonical iff it is of finite depth. Show
that an extension of Grz is canonical iff it is of finite depth.

Exercise 293. K4.1 = K4 ⊕ �♦p → ♦�p is the cofinal subframe logic K4/Z ◦◦ .
Show that it is not canonical but ℵ0–canonical.

Exercise 294. (Continuing the previous exercise.) Say that a set of frames is quasi–
closed under nonfinal variants if for each f ∈ S and each nonfinal cluster C some
variant f[k</C] (f[k≤/C]) is cofinally subreducible to a member of S . Show that
if S is quasi–closed under nonfinal variants, the cofinal subframe logic K4/ZS is
ℵ0–canonical.

8.6. Logics of Finite Width I

Before we begin with logics of finite width proper, we will think somewhat
more about how models can be made simple. A natural consequence will be that
logics of finite width satisfy one of the central properties that allow to make models
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countable. Though we have in principle settled the question of characterizing the
frames determined by an axiom, we will introduce here another line of thinking,
which considers the question of how to make a model small without distorting it
too much. As we have seen, there are ways to obtain very small models, based
on frames whose cardinality depends only on ϕ. However, the price we have paid
is that we do not know whether this operation ends in a model for the logic under
consideration. We have seen that the logic must be a cofinal subframe logic if this
is case generally. If not, we are however not without tools. Still, we can make the
model well–behaved in certain respects. Some special cases are provided when we
consider a local subframe g of a Kripke-frame f. If g � ◦, then we can contract g
in f, by locality, and so we can actually contract f as soon as it contains no quasi–
maximal points. For we know that if in a given model f contains no quasi–maximal
points, then all points realize the same external view; contracting them to a single
point leaves the refutation pattern that is being realized intact. On the other hand,
since it is a contraction, it preserves the fact that the frame is a frame for the logic.

P 8.6.1. Let 〈F, β, x〉 � ϕ and G a local subframe containing no
quasi–maximal points for ϕ, and ∼ a net on G. Let ≈ be the unique extension on
F and π : F → K the corresponding p–morphism. Then there exists a valuation γ
and a y such that 〈K, γ, y〉 � ϕ.

P. Let 〈F, β, x〉 � ϕ and ∼ a net on G, G a local subframe of F containing
no quasi–maximal points. Denote by ≈ the extension of ∼. For z ∈ g Let [z] := {y :
z ≈ y}. By assumption this is an internal set, and by the locality of G, all members
of [z] have the same view. For each [z] let r([z]) ∈ [z]. Now put δ(y) := β(y) if y < g
and δ(y) := β(r([y])) if y ∈ g. By the Homogenization Theorem, the molecule of y
in 〈F, β〉 is the same as the molecule of y in 〈F, δ〉. It follows that 〈F, δ, x〉 � ϕ. The
p–morphism π corresponding to ≈ is admissible for δ. Denote by γ the valuation
γ(π(x)) := β(x). Then 〈K, γ, π(x)〉 � ϕ. �

For example, we may eliminate points x such that for some y, x~Cy and x~Cz
implies yEz for all z, on condition that x is not quasi–maximal, and we may eliminate
all non quasi–maximal points in a proper cluster. Let F be a frame, N ⊆ f a subset
(not necessarily internal). We say thatG results from dropping N ifG = F∩( f −N).
So, dropping points is another way of saying that we are passing to a subframe. In
analogy to [125] we say that dropping N is safe if Th(G) ⊇ Th(F). We say that
dropping N is supersafe if N can be safely dropped even when F is a totally local
subframe of another frameG. Evidently, if dropping a set is supersafe, it is also safe.
The converse need not hold. A first case of (super)safe dropping is dropping points
from a cluster. A more general case is dropping points which can be thought of as
being collapsed by a p–morphism. For example, in the kite ◦ >© (◦ ⊕ ◦) >©◦ we can
drop one (or both) of the intermediate clusters.

Let us return to the problem of reducing a model of ϕ. Clearly, not all points
are available for dropping; either because they are quasi–maximal or because they
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are required to keep the “structure” intact. But if a point can see another point of
identical molecule, then it may be dropped. More generally, N is called ϕ–covered
if every point in N has a successor outside of N with identical molecule.

L 8.6.2. Let 〈F, β〉 be a model and N a ϕ–covered subset. Then every point
in f − N has the same molecule in 〈F − N, β〉 as it has in 〈F, β〉.

P. By Lemma 8.3.1. �

A note of caution is in order. In principle, the process of dropping can be iterated
as many times as one likes. However, repeating it infinitely often requires careful
argumentation. Just consider the frame 〈ω, <〉. Dropping a single point is safe —
the resulting frame is still isomorphic to 〈ω, <〉. Hence, we might consider dropping
0, then 1, then 2, etc. In the limit, however, the whole structure is gone! There is
an additional difference between dropping from a frame and dropping from a model.
When we drop from a frame we are only interested in the fact that it is a frame for
the logic. If on the other hand we want to drop from a model for ϕ we want to ensure
in addition that after dropping we still have a model for ϕ. Now let in our previous
case be ϕ = p and β(p). Each finite set is p–covered, but their union is not.

A second critical case is provided by bω := ◦ >©
⊕

i∈ℵ0
◦. Consider the formula

ϕ = p ∧ ♦¬p, and let β(p) := {x0} where {x0} is the initial cluster. Then dropping
a single point from the model, even a finite set, is permissible since every point is
ϕ–covered. Again, if we drop all points, we no longer have a model for ϕ.

Evidently, if we want to avoid the dangers just described, we need to make sure
that there are no infinite ascending chains and no infinite antichains.

D 8.6.3. A frame has the finite antichain property (fap) if every
antichain is finite.

D 8.6.4 (Fine). A frame is said to have the finite cover property

(fcp) if for every set N there is a finite C such that N ⊆ ↓C.

P 8.6.5. If a frame is noetherian and has the finite antichain property
it also has the finite cover property.

P. Now assume that f is both noetherian and has the finite antichain prop-
erty. Let S ⊆ f be a set. Let max S be the set of points without strict successors
in S . We have S ⊆ ↓max S . For if x = x0 is a point, and has a strict successor in
S , then x1 be such a successor. If x1 has a strict successor in S , let x2 be such a
successor. By the ascending chain condition, this process must stop; and so we get
a successor in S without a strict successor in S . max S is a subframe which is of
depth 1, thus a direct sum of clusters, max S =

⊕
i∈I Ci. Pick from each cluster C j

a representative x j. Then D := {xi : i ∈ I} is an antichain, and so it must be finite.
Moreover, ↓D ⊇ maxS and so ↓D ⊇ S , by transitivity. �
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The ℵ0–kite ◦ >© (
⊕

i∈ℵ0
◦) >©◦ is an example of a frame with the finite cover prop-

erty but without the finite antichain property. It is quite important to have a geomet-
rical intuition as to what points are eliminable from a frame. A useful case is this
one.

D 8.6.6. A cluster is slim if it has type ∅ or 1, that is, if it contains a
single point. A frame is slim if every cluster is slim. A frame is almost slim if (1.)
all clusters are finite and (2.) all but finitely many clusters are slim.

T 8.6.7. Suppose that Λ ⊇ K4 is complete with respect to noetherian
frames. Then it is complete with respect to almost slim noetherian frames.

The proof is straightforward. Recall for that purpose the fact that in noetherian
frames of bounded width all refutation patterns can be replaced by suitable embed-
ding patterns. Consider a subset N of f such that every cofinal refutation pattern
which can be realized on f at all can be realized avoiding N. Then N can safely be
dropped. For if ϕ fails at x in f, x < N, there is a cofinal embedding pattern (for ϕ)
which can be realized in f. By assumption on N, the same pattern can be realized
with no points in N. Then N may add some external views, but it is harmless to drop
them. Now consider — for the converse – that ϕ fails at x in f − N. Then a cofinal
embeddability pattern for ϕ can be realized in f − N. Now consider what happens
when N is added. Then there is the possibility that some external views are actually
added. If N is initial, that is, if f− N is a generated subframe in f, then these external
views are harmless. However, N need not be initial, and therefore a stronger notion
is called for.

D 8.6.8. Let f be a frame. A set N ⊆ f avoids all configurations
if for all cofinal subframes m of f there is an isomorphism ι : m� m̂, where m̂ is a
cofinal subframe of f such that m̂ ∩ N = ∅ and for any external m–view V which is
realized in f the m̂–view ι[V] is realized in f − N.

P 8.6.9. Let f be noetherian and let N avoid all configurations in f.
Then dropping N is supersafe.

P. Obviously, dropping a set which avoids all configurations is safe. So it
is enough to show that it is safe when f is embedded as a totally local subframe. So,
let f be a local subframe in g and let m be a cofinal subframe of g. Then n := m ∩ f
is a subframe of f. Then there exists an isomorphic copy n̂ in f such that all external
n–views (for f) are realized for n̂ in f. Let m̂ := (m − n) ∪ n̂. We must ensure that m̂
is cofinal. This is evidently so if f is not itself cofinal. For then every point in f has a
strict successor outside of f, so m − n is cofinal, and thus m̂ is as well. However, if f
is cofinal, n is cofinal in f and so is n̂ by construction, and so m̂ is cofinal in g. Fix a
bijection m 7→ m̂ and extend it to a bijection n 7→ n̂. Modulo this bijection, n–views
are translated into n̂–views and back. Now let a view be realized in g, say by x. Two
cases arise. First, x < f . Then the n–view of x is n or ∅, depending on where x is
situated with respect to f. If it is = n, then the n̂–view is n̂, and if it is ∅ then the
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n̂–view is ∅ as well. Thus, the m̂–view and them–view of x correspond. (Recall that
f is assumed to be totally local.) Next, assume that x ∈ f . Then by assumption on N,
there is an x̂ realizing the n̂–view in f − N corresponding to the n–view of x. Now,
the m − n–view of x and the m − n–view of x̂ concide. For if x C y and y < f then
also x̂ C y, and conversely, by the fact that f is totally local in g. So, the m̂–view of x̂
corresponds to the m–view of x. And that had to be shown. �

After all these theoretical results we will finally prove some useful, concrete results.

T 8.6.10. (1.) Let ◦ >© f be a S4–frame of depth ω + 1. If f is of finite
tightness then the initial cluster can be supersafely dropped. (2.) Let • >© f be a G–
frame of depth ω + 1. If f is of finite tightness then the initial cluster can supersafely
be dropped.

P. Show that in the cases given the cluster avoids all geometrical configu-
rations. �

These are generic cases; one should not be mislead into easy generalizations, see
the exercises. However, as a guideline, if we have a frame f of depth ω which looks
completely regular in shape, then in f >© f the first occurrence of f can be dropped.
We will meet situations like this later on.

T 8.6.11 (Fine). LetΛ be a logic of finite width. Then the weak canonical
frames are noetherian and have the finite cover property.

P. Let Λ be of width θ. Recall the structure theory for finitely generated
K4 algebras. We have seen there how the points of layer α can be constructed on the
basis that we have constructed the points of depth < α. However, in that construction,
α was finite. Here we will show that the procedure extends to all ordinals α. Let us
assume then that we have constructed all points of depth < α. We show that each
point sees a point of minimal width in the set of points of depth < α. For let x = x0
be a point not of depth < α. Suppose that there is a chain 〈xi : i ∈ ω〉 such that for
each i < ω there is a wi such that xi C wi but xi+1 6 wi. We cannot have wi+1 C wi.
Otherwise xi+1 Cwi+1 Cwi which was excluded. So the sequence 〈wi : i ∈ ω〉 is non–
descending. Since each wi is incomparable with at most θ points in the chain, there
must be an ascending subchain. Contradiction. Consequently, there exists no infinite
ascending chain 〈xi : i ∈ ω〉 with decreasing width, and we must have a successor
for x of minimal width. Within the set of points of minimal width we choose again
the set of points of minimal atomic span, and this is the desired set of points of depth
α. Since the frame can be enumerated with the ordinals, every point will eventually
be assigned a depth. So there are no ascending chains, and every point has a depth.

Now consider an arbitrary set N of points, not necessarily internal. For each
point x in N there is a weak successor of minimal depth in N. The set of these points
will be called maxN. maxN is a sum of clusters and there are at most θ clusters. Pick
a representative from each cluster. This is a cover for N. Hence N has a cover of size
≤ θ. �
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Let F = 〈f,F〉 be a K4–frame. Call a point x eliminable if for all a such that
x ∈ a there exists a strong successor y such that y ∈ a. Call F separable if there are
no eliminable points.

T 8.6.12 (Fine). Every logic containing K4 is complete with respect to
separable frames.

P. Let F = 〈f,F〉 be a descriptive frame. Now drop from f all eliminable
points. Denote the resulting set by f ◦ and the resulting Kripke–frame by f◦. ( f ◦ is
not an internal set.) We show that the algebra induced by F on f◦ is isomorphic to
the original one, and so their logics coincide. First, the map a 7→ a ∩ f ◦ is a boolean
homomorphism. Next, we have to show that it respects �. So let x ∈ f ◦ and x ∈ �d.
Then x has a successor y ∈ d; y has a noneliminable weak successor yν ∈ d. For the
set d contains an ascending chain 〈xi : i ∈ α〉 such that xi+1 6 xi which is cofinal in
d. Suppose this chain is strictly ascending, that is, xi~Cxi+1 for all i < ω. Consider the
set U of all sets containing almost all points from this chain. Then U is contained in
an ultrafilter U?. Then U? ∈ a, and moreover, U? is final in d. Contradiction. Then
x C yν and so x ∈ �(d ∩ f ◦). The converse is easy. �

C 8.6.13. Let Λ be of finite width and F a finitely generated, refined,
separable Λ–frame. Then F is atomic.

P. Let x be a point. By separability there is a set d such that no strong
successor of x is in d. Case 1. x 6 x. Then put e := d ∩ � − d. This set contains x
and is an antichain. Consequently, it is finite. By refinedness, {x} is an internal set.
Case 2. x C x. Let N := {y : x 6 y} and let C := maxN, the set of points y such that
y ∈ N and if y~Cz then z < N. For each z ∈ C let cz be a set such that x ∈ � − cz but
x ∈ cz (this exists by refinement and the fact that x < C) and bz a set such that z ∈ bz

but for no strong successor y, y ∈ bz. Put

e := d ∩
⋂
〈−bz ∩ � − cz : z ∈ C〉

Let y ∈ e. We claim that xC yC x. First, if y ∈ N then there is a z ∈ C such that yE z.
If y = z then y ∈ C. Hence y < −by, so y < e; if y < C then y C z for some z and so
y < � − cz, from which y < e. Hence, e is disjoint with N. It follows that for y ∈ e,
x 6 y cannot hold. So assume now that xC y. If y 6 x then y < d and so y < e. Hence
also y C x. It follows that e is a subset of the cluster of x. Since the algebra of sets is
finitely generated, e is finite. The frame is refined, and so the set {x} is easily shown
to be internal. �

T 8.6.14 (Fine). Every logic of finite width is ℵ0–canonical. Every logic
of finite width is complete with respect to countable frames with the finite cover prop-
erty, without ascending chains and of depth < ε, where ε is the smallest uncountable
ordinal.

P. Let F be a weak canonical frame for Λ. Then F is noetherian and has
the finite cover property. It is also atomic. Take a refutation pattern 〈r,V〉. We
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can assume that there are no sets of the form ↑ x in V for a reflexive x. Suppose that
〈r,V〉 can be realized in F. Then there exists a cofinal subframem and a p–morphism
π : m� r satisfying the closed domain condition. Let n consist of the sets maxπ−1(x)
for all x ∈ r. π � n : n� r. The subframe n is cofinal and satisfies the closed domain
conditions for 〈r,V〉. Then there are only finitely many points in π−1(x). We have
just seen that these sets are internal in a separable frame. Hence adding new sets does
not change the logic. This shows that the logics are weakly canonical. Since there
are only countably many formulae in the language (the restriction to finitely many
generators plays no role here), there can be only countably many internal sets of the
form {x}, hence only countably many points. The smallest uncountable ordinal is ε,
so if a frame is countable, it is of depth < ε. �

So all logics of finite width have Kuznetsov–index ≤ ℵ0. To get a more fine–
grained view of the matter, let us define the ordinal Kuznetsov–index OKz(Λ) of a
logic complete with respect to noetherian frames as follows. OKz(Λ) is the supre-
mum of all ordinal numbers α such that there is a formula ϕ < Λ and a Λ–frame
of depth α refuting ϕ but no Λ–frame of depth < α exists refuting ϕ. It is shown
in [125] that for every α < ω2 there is a logic Λ with OKz(Λ) = α. This can be
extended up to ωω. Whether the ordinal Kuznetsov–index can be greater than ωω is
unknown. We conjecture that this is false for logics of finite width.

We may cash out a useful result from the previous proof. Call a set a an interval
if it is of the form [x, y] := {z : x E z E y}, (x] := {y : y E x}, ]x) := {y : x~Cy} or of the
form {x}. Call a set simple if it is a finite union of intervals. It is a matter of direct
verification that in a noetherian frame with the finite antichain property the simple
sets are closed under all operations and are the least such set containing all singleton
sets.

T 8.6.15. Let Λ be a logic of finite width. Then Λ is complete with
respect to countable frames F of finite width which are atomic, separable and such
that the internal sets are the simple sets.

Theorem 8.6.14 deserves special attention. We have shown that all logics of
finite width are complete. Moreover, they are complete with respect to countable
frames. We will state this explicitly once again, but we will be more specific about
the structure of the frames for these logics. Take a subset of the form

sκ = {y : dp(y) = ωκ + β0 for some β0 < ω}

sκ is the disjoint sum of at most θ many sets Γi which are ⊕–indecomposable. Such
sets are called galaxies. We say a galaxy in sκ has depth κ, and a point in that galaxy
has galactic depth κ. The local depth of a point is just the unique β0 < ω such that
dp(x) = ω · κ + β0. So, a point is determined both by its galactic depth and its local
depth. A logic has galactic finite model property if it is complete with respect to
frames of finite galactic depth. In case of finite width this means that there are only
finitely many galaxies. Many notions are now generalized to galaxies, such as being
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linear. Moreover, we can in some sense consider the frame as a frame of galaxies.
Namely, let gal(F) be the set of galaxies of f. Put Γ Cf ∆ if for every x ∈ Γ there is a
y ∈ ∆ such that x C y. Finally, let

f(f) := 〈gal(F),Cf〉

f(F) is called the frame of galaxies of f. It is not necessarily a contractum of f.

P 8.6.16. Let f be a noetherian frame. Then f(f) has fatness 1.

P. Let Γ Cf ∆ Cf Γ. Let x ∈ Γ. Then there exists a y ∈ ∆ such that x C y.
There exist a κ0, κ1 and β0, β1 such that the depth of x is ωκ0 + β0 and the depth of y
is ωκ1 + β1. Furthermore, κ1 < κ0 or β1 ≤ β0. From ∆ Cf Γ it follows that κ0 = κ1.
Hence, Γ and ∆ are not disconnected subsets of sκ0 , and so they are identical. �

We put f2(f) := f(f(f)). There is a different construction which runs as fol-
lows. Let a hypergalaxy of depth κ be a maximal ⊕–indecomposable subset of the
set of points of depth ω2κ +ωβ1 + β0, for some β0, β1. For two hypergalaxies Γ2 and
∆2 put Γ2 Cf2 ∆2 if for all x ∈ Γ2 and all y ∈ ∆2 we have xC y. Now let gal2(f) be the
set of hypergalaxies of f and

f2(F) := 〈gal2(f),Cf2〉

It seems plausible that f2(F) � f2(f). However, this is false. We leave a proof of
that as an exercise and indicate only why this is in fact not to be expected. For note
that for two hypergalaxies G, D we have G Cf2 D iff for all x ∈ G and all y ∈ D,
x C y. On the other hand, let [G] be the set of galaxies contained in G, and [D] the
set of galaxies contained in D. In f(f(F)), [G] C [D] iff for all Γ ∈ [G] there exists
a ∆ ∈ [D] such that for all x ∈ Γ some y ∈ ∆ exists such that x C y. The latter is
clearly a stronger condition than the previous one. However, there is an important
case where the two coincide.

P 8.6.17. Let f be a noetherian frame of finite tightness.
1. If Γ is not initial in f(f), it is infinite.
2. f(f) is galactically linear.
3. f2(f) � f2(f).

P. Let Γ be noninitial. Then there exists an immediate predecessor ∆ of
Γ. Suppose that there does not exist an infinite Γ′ such that Γ 6f Γ′ and Γ′ 6f
Γ. Then ∆, Γ are part of the same galaxy. Contradiction. Hence there exists an
infinite immediate successor Γ′ of ∆. Suppose Γ′ is incomparable with Γ. Then the
frame is not of finite tightness. So, Γ is the only immediate successor of ∆. Hence
f(f) is galactically linear and of fatness 1, by Proposition 8.6.16. Moreover, take
hypergalaxies G and D. Let G Cf2 D. Let Γ and ∆ be galaxies and Γ ⊆ G, ∆ ⊆ D.
Then Γ Cf ∆ or ∆ Cf Γ, by galactic linearity. Suppose now that G , D. Then Γ~C∆.
Suppose G = D. Then for every x ∈ G there is a y ∈ G such that x C x. Let ∆ the
galaxy of least depth in G. Then ∆ Cf ∆. Furthermore, for every Γ ⊆ G, Γ Cf ∆, by
galactic linearity. This shows that G Cf2 D. �
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This approach can be generalized as follows. Let ξ be an ordinal number. For
every ordinal κ put

s(ξ, κ) := {x : dp(x) = ωξ · κ + β, β < ωξ}

Call a ⊕–indecomposable subset Γ of s(ξ, κ) a ξ–hypergalaxy of depth κ. Thus,
galaxies are 1–hypergalaxies and hypergalaxies are 2–hypergalaxies. We let Galξ(f)
be the set of ξ–hypergalaxies, and Γ Cξ ∆ iff for all x ∈ Γ and y ∈ ∆ we have x C y.
Finally, fξ(f) := 〈Galξ(f),Cξ〉. We mention also an interesting particular case, ξ = 0.
It turns out that the 0–hypergalaxies are exactly the clusters, and C C0 D iff C C D.
We call f0(f) the skeleton of f.

L 8.6.18. Let f be a noetherian frame. Then there is a p–morphism f �
f0(f).

The proof is very simple and is omitted. Notice that for ξ > 0 this need not hold.
There is no restriction on ξ. In principle, it is possible to define the notion of

an ω–hypergalaxy. We believe, however, that logics of finite width are complete
with respect to frames of depth < ωω. That is to say, we conjecture that the ordinal
Kuznetsov–index of logics of finite width is ≤ ωω. If that is so, the need of consid-
ering ω–hypergalaxies does not arise. At present, however, this is only speculation.
We will show that the conjecture holds for extensions of S4 of finite width and finite
tightness, and we will see later that it also holds for all logics of finite width and
finite tightness.

T 8.6.19. Every extension of S4 of finite width and finite tightness has
the galactic finite model property. Equivalently, it is complete with respect to frames
of hypergalactic depth 1.

P. Let f be a frame for Λ, and let 〈f, β, x〉 � ϕ. Consider the ϕ–extract. It
is a cofinal subframe of finite depth hence finite. Hence only finitely many galaxies
contain (quasi–)maximal points. The p–morphism contracting such a galaxy to a
single reflexive point is locally admissible. So, we can reduce such galaxies. If f had
depth ω · β1 + β0, it now has depth β1. If after that step we still have infinitely many
galaxies left, i. e. if k − 1 > 1, we iterate the procedure, infinitely often if necessary.
After completion we have reached a frame of finite galactic depth on which a model
for ϕ is based. �

Exercise 295. Give an example of a frame which has the finite cover property
but is not noetherian. Hint. There is a linear frame with this property.

Exercise 296. Show that all logics containing S4 of tightness 1 have the finite model
property.

Exercise 297. Show that all extensions of S4/k2 have the finite model property. Hint.
Only the 0–slice may contain a proper antichain.
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Exercise 298. Let f be of depth ω. Show that when ◦ >© f is local but not totally local,
◦ may not be safely dropped.

Exercise 299. Show that in general for a frame f of depth ω, ◦ in ◦ >© f cannot be
safely dropped. Likewise for • >© f.

Exercise 300. Show that in general, if f is an S4–frame of depth ω, the initial cluster
of n >© f may not be safely dropped if n > 1.

Exercise 301. Show that no nonempty set in a finite frame avoids all configurations.
Show that, nevertheless, there is safe dropping from finite models.

8.7. Logics of Finite Width II

Consider a logic containing K4.3. We know that it is complete with respect to
linear noetherian frames. Moreover, we know that we can assume these frames to
be almost slim. Let us see how we can simplify the structure of frames even more.
Let 〈f, β〉 be a Λ–model for ϕ, f noetherian and linear. Consider a segment Γ without
maximal points. Then f � f1 >© Γ >© f2. Case 1. Γ � Γ′ >© n >© Γ′′. Then there is a
p–morphism Γ� ◦ >© Γ′′. By Proposition 8.6.1, there is a model for ϕ on the frame

f1 >© ◦ >© Γ′′ >© f2

Case 2. Γ contains no reflexive point. Then g � αop, α an ordinal. However, if α > ω
it can be shown that all points of depth ≥ ω in αop can be supersafely dropped. It
follows from this consideration that logics containing K4.3 are complete with respect
to frames of the following form

fk >©ωop >© fk−1 >©ωop >© . . . >©ωop >© f0

where each fi is finite and linear. It follows that every extension of S4.3 has the finite
model property.

T 8.7.1 (Bull, Fine). Every extension of S4.3 has the finite model prop-
erty and is finitely axiomatizable. Hence there are only countably many such exten-
sions, and all are decidable.

P. We know already that all extensions have the finite model property. An
extension is characterized by a set of canonical axioms γ(m,V), where m is linear.
Since all closed domains of the form ↑ x, we can dispense with the closed domains
entirely. For we have S4.3⊕γ(m,V) = S4.3⊕γ(m,∅). (Hence all extensions of S4.3
are cofinal subframe logics, from which it follows once again that they have the finite
model property.) We have to show that every extension is finitely axiomatizable. We
m� n iff n � m iff m is subreducible to n. Consider the partial order ≺ on chains
of clusters defined by n ≺ m iff m is a subframe of n. This ordering can be construed
as chains–over–〈ω,≥〉. The latter is a well–partial order (see [135]) and so is then
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the order ≺. Now consider f >©m v g >© n iff g ≺ f and m ≥ n. Then this actually
defines the order of being–a–cofinal–subframe–of, and thus the converse of being–
reducible–to, the one we are interested in. Now this order is a product of two well
partial orders, and hence itself a well partial order. So there are no infinite antichains,
and hence every logic is finitely axiomatizable. �

This more or less finishes the case of S4.3. If we drop reflexivity, things get a bit
more awkward. First of all, the frames ◦ >© ch(n) where ch(n) is an irreflexive chain
of length n, form an infinite antichain.

P 8.7.2. There are 2ℵ0 many logics in EK4.3.

Call a frame almost irreflexive if all but finitely many clusters consist of a single
irreflexive point.

T 8.7.3. Every extension of K4.3 has the galactic finite model property.
Moreover, it is complete with respect to finite chains of almost irreflexive galaxies.

C 8.7.4. G.3 has the finite model property. It is weakly canonical but
not canonical. Every proper extension of G.3 is tabular.

P. The first statement actually follows from the fact that G.3 is a subframe
logic, but can be shown also by showing that every finite G.3–configuration can be
realized on a finite chain. A proper extension must therefore have one of the finite
chains not among its models. But then almost all of them are not among the models.
The logic is then the logic of a finite chain, hence tabular. G.3 is weakly canonical,
being of finite width. But it is not canonical. Consider namely the following set

{�(pi.→ .♦pi+1 ∧ (¬pi ∧ ¬♦pi)) : i ∈ ω}

Each finite subset is satisfiable on a finite frame, so the set is consistent. A Kripke–
frame underlying a model for this set must have a strictly ascending chain, so cannot
be a G.3–frame. �

P 8.7.5. The logic of the frame ◦ >©ωop is not finitely axiomatizable
and fails to have the finite model property. Th(◦ >©ωop) is the lower cover of G.3
in EK4.3. Hence every proper extension is finitely axiomatizable and has the finite
model property.

P. Add to K4.3 the axiom ft(≤ 1) and the subframe axiom saying that a
reflexive cluster must be strictly initial, that is, not properly preceded by any other
point. Call this logic Ref. Now add all splitting axioms for ◦ >© ch(n), n ∈ ω. The
resulting logic is not finitely axiomatizable, because this axiomatization is indepen-
dent. Moreover, the only infinite frames for this logic are frames of the form αop or
◦ >©αop with α an ordinal. Now, similar reasoning as in the Corollary 8.7.4 shows
that for an infinite ordinal α we have Th(◦ >©αop) = Th(◦ >©ωop). Thus we have ax-
iomatized the logic of Th(◦ >©ωop). Any proper extension does not have this frame
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among its models, hence must be a logic of irreflexive chains. Consequently, every
proper extension contains G.3. �

Finally, we turn to the question of decidability. Recall from Section 2.6 that a logic
which is finitely axiomatizable is decidable if it is complete with respect to an enu-
merable set of effective algebras. So, we have to show that for finitely axiomatizable
logics there exists such a set of algebras. We know that logics of finite width are
complete with respect to frames 〈f,F〉 where f is a noetherian frame of finite width
and finite fatness and F is the algebra of simple sets. For the purpose of the next
definition, a computable function from Z → ℘(ω), where Z is a possibly infinite set,
is a function that yields a finite set for each z ∈ Z and which can be computed.

D 8.7.6. Let F = 〈f,F〉 be a frame. Call F simple if it is of finite width
and finite fatness and F is the set of simple sets. Call F effective if f = ω, (A) ‘xCy’
is decidable for all x, y ∈ ω, (B) ‘]y) = ∅’ is decidable for all y ∈ ω, and (C) there
are computable functions a, c, ` : ω → ℘(ω), and d, p, q : ω2 → ℘(ω) such that (1.)
a(x) is an antichain with x 6 z for all z ∈ a(x), such that x 6 y implies that there is a
z ∈ a(x) with y E z (2.) `(x) is the cluster containing x, (3.) c(x) is an antichain such
that y~Cx iff y has a weak successor in c(x), (4.) d(x, y) is an antichain such that zC x
and z 6 y iff u E z for some u ∈ d(x, y), (5.) p(x, y) is an atichain such that for all z:
zEw for some w ∈ p(x, x′) iff zE x and zE y, and (6.) q(x, y) is an atichain such that
for all z: w E z for some w ∈ q(x, x′) iff x E z and y E z.

We remark here that this definition of effectiveness is only useful for noether-
ian frames of finite width and finite tightness. For other classes of frames, other
definitions have to be found.

T 8.7.7. Let F be simple. If F is effective, the algebra F+ is effective.

P. First of all, F is countable and there is a computable bijection between
the set of finite sets of intervals and ω. (Basically, an interval is a set [x, y] hence
a pair of natural numbers, a set (x], a set [x) or a set {x}. Hence a set in F can be
represented by a sequence 〈W, X,Y,Z〉where W is a finite sequence of pairs of natural
numbers and X, Y and Z finite sequences of natural numbers. It is a standard fact
that there is a computable bijection between ω and such quadruples.) We have to
show how the operations can be computed. Union is clear. Next intersection. It is
easy to see that since [x, y] = [x) ∩ (y], it is enough to show that we can compute the
intersections of two open intervals. By definition of p and q we have

[x) ∩ [y) =
⋃

w∈q(x,y)

[w)

and
(x] ∩ (y] =

⋃
w∈p(x,y)

(w]

Now �. If x C x then �{x} = (x]. If x 6 x then �{x} =
⋃

y∈c(x)(y]. �(x] = �{x} and
�[y, x] = �{x}. Therefore the case � ]x) remains. Suppose first that ]x) is empty (this



8.7. Logics of Finite Width II 417

is decidable). Then � ]x) = ∅. So, suppose that ]x) , ∅. Let Y := {y ∈ a(x) :]y) ,
∅}. By assumption (A) and the computability of a, Y is computable. We have

� ]x) = (x] ∪ ]x) ∪
⋃
y∈Y

(y]

For let z ∈ �]x). Then there is a y such that x C y and z C y. If y = x, y ∈ (x]. If x C z
then z ∈]x). Assume therefore x 6 z. Then there exists a y ∈ a(x) such that z E a(x).
Moreover, y must have a successor (and this must be a point in ]x), by definition of
a(x)). Hence y ∈ Y . The converse inclusion is established similarly. Finally, we
treat the complement. This is by far the most involved case. First the singletons. Put
L := `(x) − {x}.

−{x} = ]x) ∪
⋃
y∈L

{y} ∪
⋃

y∈a(x)

(y]

For if y , x then either (a) x C y C x, or (b) x C y 6 x or (c) x 6 y. In case (a), y ∈ L,
in case (b) y ∈]x). In case (c) there is a z ∈ a(x) such that y E z. So y ∈ (z]. Since
x is not contained in the right hand side, equality is shown. Next the sets (x]. Put
D := {d(y, x) : y ∈ a(x)} and A := a(x) − {x}. It is checked that

−(x] =
⋃

z∈D,y∈A

[z, y] ∪ ]x) ∪
⋃
y∈A

]y)

The sets −]x) are computed as follows.

−]x) = `(x) ∪
⋃

y∈a(x)

(z]

For if it is not the case that x~Cy then either (a) x C y C x or (b) x 6 y. In case (a)
y ∈ `(x) in case (b) y ∈ (z] for some z ∈ a(x). Finally the sets −[x, y]. u ∈ −[x, y] iff
either x 6 u or u 6 y iff u ∈ −(y] or u ∈ −[x). We can compute −(y], so we need to
know how to compute −[x). It is easily seen that

−[x) =
⋃

y∈a(x)

(z]

Finally, we want to show that for two unions of intervals b, c, it is decidable whether
‘b = c’. This is equivalent to the decidability of the emptiness of a given union of
intervals. This in turn is equivalent to the problem to decide whether an interval is
empty. (a) (x] is never empty. (b) {x} is never empty. (c) [x, y] is empty iff x , y and
x 6 y. This is decidable by (A). (d) Whether ]x) is empty is decidable by (B). �

D 8.7.8. Let F = 〈ω,C,F〉 be simple. F is called supereffective if
(a) it is effective and (b) there is a computable function j from the set of embedding
patterns into ℘(ω) such that for every embedding pattern ε = ε(r,V) the set j(ε) is
a finite set of points such that whenever ε is realizable in F there is an embedding
p : r → j(ε) realizing ε in F.

T 8.7.9. Suppose that F is supereffective. Then ThF is decidable.
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P. It is enough to show that for every embedding pattern it is decidable
whether or not it is realizable. Take ε = ε(r,V). Then whether or not ε is realizable
in F can be checked by trying all embeddings p : r → j(ε). There are only finitely
many of them. Hence it is enough to show that for every embedding p it is decidable
whether p satisfies all closed domain conditions. So take a closed domain v ∈ V. We
need to decide whether v is an external view, that is, whether there is a point x not
in p[r] such that p[v] is the set of points p(y) seen by x. For that we need to check
whether the set b is empty, where

b := −p[r] ∩
⋂
y∈v

�{p(y)} ∩
⋂
y<v

−�{p(y)}

b can be computed, since the frame is effective. Whether b is empty is decidable. �

T 8.7.10. Let Λ be a logic of finite width. Suppose that Λ is finitely
axiomatizable and complete with respect to a recursively enumerable class of frames
which are supereffective. Then Λ is decidable.

P. Let C be a recursively enumerable class of supereffective frames such
that Λ is C–complete. Since Λ is finitely axiomatizable it is recursively enumerable.
Let Λ = K4 ⊕ ϕ. It is decidable for F ∈ C whether F � ϕ. Hence the class of
C–frames for Λ is recursively enumerable. Let it be D. Hence Λ is complete with
respect to a recursively enumerable class of effective algebras, and so co–recursively
enumerable. �

K4.3 is complete with respect to finite chains of the form

gk >©ωop >© gk−1 >©ωop >© . . . >©ωop >© g0

where each gi is finite. It is not hard to see that these frames are supereffective. How-
ever, this is not all we have to show. For we need to be able to determine whether
or not a given Kripke–frame f is a frame for a logic. It remains to show that we
can decide for such frames and a given refutation pattern whether it is satisfiable in
the frame. This is not hard to see. For let γ(r,V) be given; let ]r = k. For cofinal
embeddability, we need to check only final segements of ω of depth ≤ k. So, 〈r,V〉
is satisfiable in this frame iff it is satisfiable in a finite subframe which can be com-
puted from the original frame and the refutation pattern. The latter problem is now
clearly decidable because we have to check only finitely many cases. Now given an
extension of K4.3 by means of finitely many canonical formulae, we can enumerate
the frames of the above form, because we can decide whether the refutation patterns
are satisfiable. Now let a (canonical) formula ϕ be given. At the same time that we
are checking these frames for whether they satisfy the canonical axioms for the logic
we can also check whether or not ϕ can be refuted. Again, this is decidable.

T 8.7.11 (Alekseev & Zakharyaschev). Every finitely axiomatizable ex-
tension of K4.3 is decidable.
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This theorem is actually the first general theorem on decidability of modal logics
without assuming the finite model property.

Logics of width 2 play a significant role in the lattice of extensions of S4. We
will concentrate on such extensions here. We begin by showing that S4.I2 = S4.wd(≤
2) has an exceptional status with respect to logics of finite width in that it has a
splitting representation.

T 8.7.12. S4.wd(≤ 2) is a finite splitting of S4 and hence of K4.

P. Consider the frames in Figure 8.5. We will show that there is a finite set
R of finite frames of width 3 such that for all refined frames F for S4 of width 2 there
exists an r ∈ R such that some generated subframe g of f is contractible to r. Suppose
that b3 = ◦ >© (◦ ⊕ ◦ ⊕ ◦) is a subframe of a refined S4–frame F. Then we have four
points x, y0, y1 and y3 such that x sees yi for all i < 3 and yi C y j iff i = j. There
are sets bi, i < 3, such that yi ∈ b j iff j = i. Put Z := −�b0 ∩ −�b1 ∩ −�b2. If Z is
empty, the first frame is cofinally embeddable. Now suppose that Z is not empty. Z
is a definable subset and the map contracting Z to a single point is a p–morphism; for
Z is successor closed. Thus without loss of generality we may assume Z = {z}. Let
B0 := �b0 ∩ −�b1 ∩ −�b2, B1 := −�b0 ∩ �b1 ∩ −�b2 and B2 := −�b0 ∩ −�b1 ∩ �b2.
Then yi ∈ Bi. The map sending Bi to a single point for each i < 3 is a p–morphism.
Hence we may also assume that Bi = {yi}. Now four cases arise. Case 1. z is
incomparable with all yi. Collapse z and y2 into a single point. This is a p–morphism
and we now have an antichain of size 3 in which each point is of depth. (First picture
in Figure 8.5.) Case 2. z is comparable with exactly one of the yi. Then without
loss of generality y2~Cz. (Second picture in Figure 8.5.) Case 3. z is comparable with
exactly two of the yi. Then without loss of generality y1~Cz and y2~Cz. (Third picture
in Figure 8.5.) Case 4. All three yi are comparable with z. Then yi~Cz for all i < 3.
(Last picture of Figure 8.5.)

The set R is produced as follows. Take a frame m from Figure 8.5. It consists
of an antichain Y := {y0, y1, y2}, a root x and (with one exception) also a point z of
depth 0. If i < j < 3 then let qi j be a new point. Let m0 := m ∪ {q01, q02, q12} and
let x~Cqi j and qi j C yk iff k = i or k = j. Then m is a subframe of m0. There exist 5
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subframes which contain m and which are contained in m0. R is the set of all such
frames. (See Figure 8.6.)

We show that F contains a generated subframe which can be mapped onto some
member of F. We may assume that x generates F (otherwise take the subframe
generated by x). Let i < j < 3. Choose k such that {1, 2, 3} = {i, j, k}. Define sets
Ci j := �bk ∩ −�b j ∩ −�bi and X := �b0 ∩ �b1 ∩ �b2. The sets Ci j (if nonempty) can
be mapped onto a single point. After that X can be mapped onto a single point. After
this process we have a frame of R. �

There are a number of important frames which will play a fundamental role in the
theory of finite width. They exhibit a certain regular pattern connected with their
tightness. The simplest of them are shown in Figure 8.7.

The first of the three galaxies is called photonic, the second leptonic and the third
mesonic. Their indecomposable generated subframes are the elementary particles
from which the galaxies are composed. So, there is only one photon, namely ◦, and
there are two leptons, ◦ and ◦ ⊕ ◦. There is an infinite series of mesons. So the
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mesonic galaxy is itself a meson. It is immediately checked that ϕω is of tightness 0,
λω of tightness 1 and µω of tightness 2. In a similar fashion we can create ‘heavier’
particles. It is perhaps intuitively clear how we will proceed, but let us introduce
some notions that will help us with more complex structures as well. Let f be a
noetherian Kripke–frame of width 2 and depth β. Then there exist sequences c =
〈cα : α < β〉 and d = 〈dα : α < β〉 such that (1.) cα and dα are clusters of f of depth α,
(2.) cα C cα′ and dα C dα′ for all α > α′, and (3.) every point is contained in some cα
or dα. Notice that it is not required that cα and dα are distinct. We call c and d the two
spines of f. The division of f into spines is arbitrary but the results are independent
of it.

Let us restrict our attention to a single galaxy for the moment. Such a galaxy is
fixed in its structure by two things: (1.) the cardinality of the clusters cα and dα, (2a.)
the maximal local depth of a cluster in the d–chain seen by cα, (2b.) the maximal
local depth of a cluster in the c–chain seen by dα. Let us call the index of x ∈ cα
(or of cα itself for that matter) the order type of ↑dα − ↑ x and the index of y ∈ dα
the inverse order type of ↑cα − ↑y, which is the same as its depth as a frame. This
is therefore an ordinal number. This cumbersome definition takes care of the case
where there is no finite index. (This can happen! Think of two parallel chains of
galaxies.) The proof of the next proposition is left as an exercise.

P 8.7.13. The following holds.

1. ind(x) ≥ 0.
2. ind(x) ≤ dp(x).
3. If y immediately precedes x then ind(x) ≤ ind(y) ≤ ind(x) + 1.
4. If y immediately precedes x and ind(y) = ind(x)+1 then y is nonbranching.

L 8.7.14. Extensions of S4 of width 2 are complete with respect to noe-
therian frames of bounded index.

P. Consider a formula ϕ rejected on a (noetherian) frame. We can safely
drop a nonbranching point if it is nonmaximal. Thus, as there are at most ]sf (ϕ)
maximal points in a single spine, the index of a point is bounded by ]sf (ϕ). �

To have a bounded index is in this case the same as being of bounded tightness.
It is now easily deduced that extensions of S4 of width 2 are galactically linear.
Moreover, we know that frames can be assumed to be almost thin. Call a frame h
(k, `)–hadronic if there is a partition into two spines such that every point of the
first spine has index k, and every point of the second spine has index `. Call a
frame h almost (k, `)–hadronic if there is a p–morphism π : h � k >©◦ such that
card(π−1(x)) = 1 for almost all x, and k is (k, `)–hadronic.

T 8.7.15. The setH of reflexive frames of width 2 and finite galactic depth
in which all galaxies are almost hadronic is recursively enumerable. Moreover, all
members of H are supereffective.
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P. We show that the set of almost hadronic frames is enumerable and that
these frames are supereffective. The general case is rather cumbersome and not
revealing. A slice is uniquely characterized by a quadruple of natural numbers τ =
〈i, a, j, b〉, where i is the index of a point of the first spine, a the size of the cluster
of that point, j the index of a point of the second spine, and b the size of its cluster.
Hence a reflexive frame of width 2 is uniquely characterized by a sequence 〈τn :
n ∈ α〉, τn = 〈in, an, jn, bn〉, where α < ω + 1. A frame is almost hadronic if there
is a n0 < α, such that for all n > n0, τn0 = τn = 〈k, 1, `, 1〉. (Or, by switching the
spines, almost all types are = 〈`, 1, k, 1〉.) Thus we need three things: k, `, n0 and the
sequence T = 〈τi : i < n0〉. This is a finite set. What needs to be shown is that given
these four parameters we can compute the relations and operations of the frame.
(This shows that the frame is effective.) For that, points can be represented as triples
〈i, n, p〉 where i = 1 or i = 2; n < ω; p < an if i = 1 and p < bn otherwise. For any
triple it can be decided whether it is a member of the frame 〈k, `, n0,T 〉. Next it can
be decided whether x := 〈i, n, p〉C y := 〈i′, n′, p′〉 as follows. If i = i′, xC y iff n ≥ n′.
If i = 1 and i′ = 2 then xCy iff n′ ≤ n− in, where in is given by τn for n < n0 and by k
for n ≥ n0. If i = 2 and i′ = 1 then xCy iff n′ ≤ n− jn. Further, whether ]x) is empty is
equivalent to n = 0 and so decidable. If x = 〈1, n, p〉 then c(x) = {〈1, n, q〉 : q ≤ an};
if x = 〈2, n, p〉 then c(x) = {〈2, n, q〉 : q ≤ bn}. a(x) can be computed as follows.
Let x = 〈1, n, p〉. If in = 0 then a(x) = {x} otherwise a(x) = {x, 〈2, n − jn + 1, 0〉} (if
such a point exists) and a(x) = {x} otherwise. Similarly for x = 〈2, n, p〉. Similarly
the existence of the other functions is proved. This shows that the frames are all
effective. Now we show that they are supereffective. Let ε(r,V) be an embedding
pattern and let it be realizable in F. We show that it is realizable in the set of all
points of depth ≤ n0 + k · ]r if k ≥ ` and ≤ n0 + ` · ]r otherwise. Without loss of
generality we assume that k ≥ `. For let q : r → f be an embedding. Take W the set
of all x ∈ r such that q(r) is of depth > n0 and for all y such that x~Cy, the depth of q(y)
is ≤ q(x) − k. Let x be a member of W. Then the cluster of x is degenerate. Then let
q′ be defined by q′(y) := q(y) for y < W and q′(x) := 〈i, n−1, 0〉 for x = 〈i, n, p〉 ∈ W.
We shall show that q′ is an embedding realizing ε(r,V). Suppose that x C y and
x, y ∈ W. Then q(x) C q(y) depends only on the difference between the depths of
q(x) and q(y) (and the spine of them) and so q′(x) C q′(y) iff q(x) C q(y). Or x, y < W
and q(x) C q(y) iff q′(x) C q′(y), since q′(x) = q(x) and q′(y) = q(y). Or x ∈ W and
y < W. Then q(x) C q(y), since the depth of q(x) exceeds that of q(y) by more than k.
Then the difference between q′(x) and q′(y) is ≥ k and so q′(x) C q′(y). Similarly it
is shown that an external view is realized by q iff it is realized by q′. Consequently,
as long as W , ∅ this operation is applicable and reduces the maximum depths of
points q(x), x ∈ r, by 1. The procedure ends when W = ∅. Then if x immediately
precedes y, the depth of q(x) minus the depth of q(y) is at most k. �

T 8.7.16. Extensions of S4 of width 2 are complete with respect to
frames with almost hadronic galaxies. Moreover, each finitely axiomatizable ex-
tension of S4 of width 2 is decidable.
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P. Let Λ be of width 2. Since Λ is galactically linear, the index of a
point is always finite. We know moreover that it can be bounded. The sequences
〈ind(xα) : x ∈ cα〉 and 〈ind(xα) : xα ∈ dα〉 are bounded by a number k. Moreover,
in a galaxy there are for any model only finitely many maximal points, and so by
Proposition 8.7.13 we can assume that these sequences are almost non–increasing.
Hence, they must be stationary from some depth α? onwards. Put k? := ind(cα? )
and `? := ind(dα? ). Then the galaxy is almost (k?, `?)–hadronic. S4 has the galactic
finite model property by Theorem 8.6.19. Thus we can assume models to be finite
sequences of almost hadronic frames. The theorem now follows from the previous
theorem. �

Extensions of S4 of finite width in general enjoy a rather nice finiteness property,
namely that they are complete with respect to frames with finitely many segments.
Namely, take any model for ϕ based on a frame. Each segment which does not
contain a maximal point for ϕ can be reduced p–morphically to a single point. Thus,
in analogy to the case of fatness, we can already assume that almost all segments
are one–membered. Now, take such a one–point segment {x}. If it is of depth ω · λ,
then it can be dropped. Otherwise it precedes directly another segment. In almost all
cases this segment is of the form {y}, one–membered. In that case, we can collapse x
into y, reaching a further reduction. It is not hard to show that this leaves us with at
most twice as many segments as there are maximal points.

T 8.7.17. All extensions of S4 of finite width are complete with respect
to frames with finitely many indecomposable segments.

C 8.7.18. All extensions of S4 of tightness 2 have the finite model
property.

P. Indecomposable segments consist of points of same depth. So, the logics
are complete with respect to frames of finite depth. Hence they have the finite model
property. �

We can push this result a little bit further. Consider a frame of width 2 and tight-
ness 3. Then the points of infinite depth are all eliminable because any embedding
pattern using these points can be avoided.

T 8.7.19. All logics containing S4 of width 2 and tightness 3 have the
finite model property.

Exercise 302. A logic is called dense if it contains the axiom ♦p→ ♦♦p. Show that
this corresponds with the refutation pattern γ◦(∅1 >©∅0, {0}). Show that all logics of
dense linear frames have the finite model property.

Exercise 303. Show that there are countably many logics of dense linear orders,
each finitely axiomatizable.
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Exercise 304. (S [194].) Show that all quasi–normal extensions of S4.3 are
normal.

Exercise 305. Show that all extensions of S4.3 of the form Th f for a single frame
are Halldén–complete.

Exercise 306. (S [202].) Show that for every consistent logic containing S4.3
satisfiability of a formula is NP–complete. Hint. NP–hardness is clear. Show that
given ϕ, there is a model of size at most |ϕ| + 1.

Exercise 307. Show Proposition 8.7.13

Exercise 308. Show that all dense logics of width 2 have the finite model property.

Exercise 309. Give a detailed proof of Theorem 8.7.19.

8.8. Bounded Properties and Precomplete Logics above S4

In G S [190] the following definition is given. A logic Θ bounds a
property P of logics if Θ fails to have P while all proper extensions of Θ have P.
Often such a logic is said to have pre–P. (For example: pretabular, precomplete.)
Let us call a property essentially bounded if every logic without P is contained in
a logic that bounds P. If the inconsistent logic has P then no consistent logic can
bound P. So the concept of boundedness is only interesting for properties which the
inconsistent logic has.

T 8.8.1. Let Θ be finitely axiomatizable. Then the property ‘contains
Θ’ is bounded.

The proof of this theorem is left as an exercise. It uses only the fact that the
finitely axiomatizable logics are the compact logics, and that the lattice of logics
is algebraic. Notice that a lower cover of a finitely axiomatizable logic need not be
finitely axiomatizable again. For tabular transitive logics this is correct, though. This
is the deeper reason for correctness of the following theorem.

T 8.8.2. The property ‘is of codimension less than n’ is a bounded
property in the lattice EK4.

P. There exist only finitely many logics of codimension ≤ n in E K4. They
are tabular and finitely axiomatizable. Hence for each logicΘ of codimension n there
is a finite set L(Θ) of lower covers, such that every logic properly contained in Θ is
contained in a member of L(Θ). Let L be the union of L(Θ), Θ of codimension n.
Then any logic of codimension � n is contained in a member of L. �

In this section we will examine completeness and incompleteness of logics con-
taining S4. In [62], K F has constructed a logic containing S4 which is not
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complete. We have met this logic in Section 7.6. We will show that it is also pre–
complete. The underlying frame of C is shown again in Figure 8.8. The sets are the
sets which are finite or cofinite subsets of the three upper layers and finite or cofinite
on the lower layer.

T 8.8.3. The logic of C is precomplete. Moreover, each proper extension
has the finite model property.

P. We have ThF ⊇ Grz. The following embedding pattern is satisfiable
but cannot be satisfied on a frame. (The oval encloses the only closed domain of this
embedding pattern.)

◦ ◦

◦

◦

◦

◦

- �
��3

Q
QQs

-

-

�

�

�

�
The reason is simply that the root point must always be a part of the head. Hence
it has a successor which is also a head part etc. There exists therefore an ascending
chain of points satisfying this embedding pattern. Hence the underlying frame does
not satisfy Grz.

Now we show that the logic of C is pre–complete, and that every proper exten-
sion has the finite model property. Consider the subframe generated by x1. If the
points of depth < 2 are contracted onto a single point (they are enclosed in a box in
Figure 8.8) then we get a p–morphism onto C. Hence if a formula is satisfiable at x1
it is satisfiable at x0. So, by induction, ϕ is satisfiable at xi, i ∈ ω, iff it is satisfiable
at x0. Let ϕ be such that ThC ⊕ ϕ is different from ThC. Then ϕ is not satisfiable at
any point xi. Then ThC ⊕ ϕ ⊇ ThC<ω. This logic has the finite model property. �

The situation changes drastically when we shift to logics of finite width. By
Theorem 8.6.14, there are no pre–complete extensions of finite width. What we will
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show is that there are 13 logics of finite width which have pre–finite model property,
and that finite model property is essentially bounded in the lattice of logics of finite
width. Let Θ be a logic of finite width that does not have the finite model property.
We will show that Θ is contained in one of 13 logics that will be described below.

L 8.8.4. Let Θ be a logic containing S4 without the finite model property.
Then µω >©◦ is a frame for Θ.

P. We may assume that Θ = ThF for some F. Consider G := F<ω. Sup-
pose that G is decomposable into infinitely many segments. Then

G = . . . >©K3 >©K2 >©K1 >©K0

for some Ki, i ∈ ω. Then all Ki are finite. They are totally local, and so the contrac-
tion of Ki � ◦ induces a p–morphism of F reducing that component. Let k ∈ ω.
Denote by Fk the result of contracting the frame . . .Kk+2 >©Kk+1 >©Kk onto a single
point. Then ThF =

⋂
k ThFk. Hence one of the ThFk fails to have the finite model

property. We may assume therefore that G is not decomposable into infinitely many
segments. Then it contains a single infinite segment. Contract all other segments
into a single point. Then we have reduced G to a single indecomposable segment.
Moreover, we can assume that there is a single galaxy of depth 0. Otherwise, we
contract all but one galaxy into a single point of depth 0. Then ti(> 2) is satisfiable
in G. Therefore there exist points x0, y0, y1 and u such that u~Cx0, u~Cy1~Cy0, and
x0 q y1, x q y0. Contract all points which do not see x0 or y0 into a single point. Now
we construct the points of depth 2. There exists a point x1~Cx0 of depth 2. We may
assume that x1 sees a point yi. Since the segment is indecomposable, i = 0. Now for
the points os depth 3. There exist x2 and y2 such that x2~Cx1 and y2~Cy1. x2 sees a yi.
By indecomposability, i = 1. Likewise, y2 C x j for some j < 2. Again j = 1. And so
on. Hence, the segment is isomorphic to µω. Now, µω � µω >©◦. �

The following is proved using Proposition 8.6.9.

L 8.8.5. Th µω >© µω = Th µω.

It follows that if Θ is without the finite model property, there is a Θ–frame
g >© µω >©◦ such that Th g >© µω >©◦ fails to have the finite model property. Suppose
that (A), (B), (C) and (D) hold.

(A) g is of fatness 1.
(B) g is of tightness 3.
(C) g does not contain p.
(D) g is of width 2.

Then the logic of g >© µω >©◦ has the finite model property. For an indecomposable
segment of g is either of tightness 1 and so of depth 1, or it is of tightness 2 and then
isomorphic to µω. We leave the verfication of this fact to the reader. So, one of (A),
(B), (C) and (D) must fail. Suppose (A) fails. Then g contains a cluster of fatness
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> 1. Let it be C. Let h be the subframe of g generated by C. Then h � C � 2
or h � C >©◦ � 2 >©◦. In the first case, Th g >© µω >©◦ ⊆ Th 2 >© µω >©◦. In
the second case Th, g >© µω >©◦ = Th 2 >© ◦ >© µω >©◦ = Th 2 >© µω >©◦. The last
equation follows from Theorem 8.6.10. Now suppose that (B) fails; we assume for
simplicity that (D) does not fail. Call u the frame consisting of a chain of length 2
parallel to a single point. This frame is embeddable into g. g is noetherian. There
exists chain x4~Cx3~Cx2~Cx1~Cx0 and a point y such that x4~Cy and y q x0 (and so y q x1,
y q x2 and y q x3 as well). It follows that we may choose the points in such a
way that xi immediately succeeds xi+1 and also y immediately succeeds x4. Take
the subframe h of g generated by x4. We may assume that all clusters have size 1.
Take a point u different from y or xi; then either y C u or x0 C u. Therefore, we may
contract all points different from y and the xi onto a single point v. Case 1. x0 6 v.
Then contract y and v to a single point. Case 2. y 6 v. Then contract x0 and v to
a single point. Case 3. Both y C v and x0 C v. Hence, we may assume that g is of
the form u >© µω or u >© ◦ >© µω. In the latter case we may use Theorem 8.6.10 again
and drop the ◦. Hence we have shown that the logic of the frame is contained in
u >© µω. Now suppose that (C) fails. Then as before we may assume that we have
points x2~Cx1~Cx0 and x2~Cy1~Cy0. For simplicity we assume again that the frame is of
width 2. In the same way we reduce g to the form p >© µω or p >© ◦ >© µω. Aagain,
by Theorem 8.6.10 the logic of the latter is identical to the logic of the former. This
leaves us with (D) to discuss. Suppose we have an antichain X = {x0, x1, x2}. By
dropping intermediate galaxies (after contraction to a point and then dropping that
point supersafely) we can reduce f to a decomposition of two galaxies g >© µω, where
g contains an antichain of size 3. We contract all points seen by either member
of X into a single point z, if such points exist. This is a p–morphism. Furthermore,
consider a point y q X. The map contracting the interval [y, z] onto z is a p–morphism.
Therefore we may assume from now on that X is an antichain of maximal size. We
have now the following structure at depth 0 and 1 of g shown in Figure 8.10. The
first situation can be reduced to the last by Theorem 8.6.10. The third can be reduced
to the last as well by contracting x1 and z. This leaves us with two frames. Now we
consider the points immediately preceding members of X. Given an antichain Z, call
u a Z–unifier if for all z ∈ Z u~Cz and if u~Cv then z E v for some z ∈ Z. If ]Z = k,
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call u a k–unifier. If Z = {z} and u a Z–unifier, then the map collapsing u into z is
a p–morphism. We may therefore assume that we have no 1–unifier. For a subset
Y ⊆ X of cardinality at least 2 denote by yY the Y–unifier. For certain Y there may
not exist such a yY . Case 1. There is an X–unifier, yX . Then we take the subframe
generated by yX . (This gives two possibilities, depending on whether X is of depth ω
or whether x0 and x1 are of depth ω + 1, see Figure 8.10. For the first possibility can
be eliminated through dropping z and the third by a contraction.) Case 2. yX does not
exist. Case 2a. Assume that all 2–unifiers yY exist and that there is a {y01, y02, y12}–
unifier w. Then we take the subframe generated by w. This gives 2 distinct frames,
shown in Figure 8.11. Case 2b. For two sets Y,Z ⊆ X of cardinality 2 there exist yY

and yZ and a {yY , yZ}–unifier w. We take the subframe generated by w. (This gives 3
possibilities, depending on whether X is entirely of depth ω or whether two points,
say x0 and x1 are of depth ω + 1. In the latter case we have to distinguish whether
or not {x0, x1} ∈ {Y,Z}.) Case 2c. For only one set Y of cardinality 2 there exists yY .
Let xi ∈ X − Y . Then {xi, yY } is an antichain and has a unifier, w. We take the frame
generated by w. (Again 3 possibilities.)

T 8.8.6. Finite model property is a bounded property in the lattice of
logics of finite width containing S4. Moreover, there are 3 logics of width 2 bounding
finite model property, and 13 logics of width 3.

We close this section with an overview over bounded properties. For most
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T 1. Bounded Properties

property bounded

finite codimension yes
tabularity yes
finite model property yes
completeness yes
compactness yes
finite axiomatizability yes
elementarity yes
decidability yes
interpolation yes
Halldén–completeness yes

claims the proof is rather easy. G.3 bounds the following properties: finite codi-
mension, tabularity, compactness and elementarity. Above we have shown that com-
pleteness is a bounded property. We have shown in Theorem 7.5.15 that there is a
logic bounding finite axiomatizability. Now we turn to decidability. Let a(0) := •
and a(1) := • ⊕ ◦. Take an infinite sequence α : ω → {0, 1}. Then let fα be the
following Kripke–frame

fα := . . . >© a(α(3)) >© a(α(2)) >© a(α(1)) >© a(α(0))

It is easily seen that for any two different sequences α and β that Th fα , Th fβ.
Hence we obtain the following theorem.

T 8.8.7 (Blok). There are 2ℵ0 many pretabular logics in EK4.

Now it is obvious that there must be also pretabular logics which are undecid-
able. These logics bound decidability since all proper extensions are tabular and so
decidable, by Theorem 1.6.1. The logic of the two one–point frames (axiomatized
by ♦p→ p) is not Halldén–complete. For ♦>∨ �⊥ is a theorem, but neither ♦> nor
�⊥ is a theorem. However, all proper extensions are Halldén–complete. In order to
show that interpolation is bounded it is in fact enough to show that there is a logic of
S4 of finite codimension which fails to have interpolation. This is left as an exercise.

Exercise 310. (W B [21].) Let b3 := ◦ >© (◦ ⊕ ◦ ⊕ ◦) and h := b3 >© µω. Show
that the logic of h fails to have finite model property. Show that it is the union of
two logics which have finite model property. Hint. Define the subframe logic which
consists of frames of fatness 1, width 2, tightness 4, such that there exists at most one
chain of length three parallel to a point. Show that the theory of h can be obtained by
splitting two frames from this logic, and that splitting either frame results in a logic
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with finite model property.

Exercise 311. (Continuing the previous exercise.) Show that Th h is a splitting of K4
by finitely many frames. Hence, splitting does not always preserve the finite model
property.

Exercise 312. Let D be the irreflexive counterpart of C of Figure 8.8. Show that the
logics ThD >©αop for α < ω form an ascending chain of logics. The limit of this
chain is ThD >©ωop.

Exercise 313. Prove Theorem 8.8.1.

Exercise 314. Let Θ be the logic of the frame µ >© λω where µ = ◦ >© (◦ ⊕ (◦ >©◦)).
Show that Θ cannot be finitely axiomatized. Show that any proper extension can be
finitely axiomatized, however. (See [125].)

∗Exercise 315. Show that there are 2ℵ0 many pre–complete logics in the lattice
E Grz.

Exercise 316. Show that if α , β are infinite sequences of 0 and 1 then Th fα , Th fβ.

Exercise 317. Let Λ bound decidability. Show that (a) Λ is u–irreducible, (b) if Λ
is recursively enumerable then it is not the lower limit of a chain of logics.

Exercise 318. Show that there exists a tabular logic in E S4 which fails to have inter-
polation. Hint. Show that there exists a logic which fails to have superamalgamation.

Exercise 319. Show that the logic of ◦ >©• bounds 0–axiomatizability. Hint. ◦ >© (•⊕
•) satisfies the same constant formulae as ◦ ⊕ •.

8.9. Logics of Finite Tightness

We advise the reader to study Section 10.4 before entering this section. We
will show here that logics of finite width and finite tightness are decidable if finitely
axiomatizable. The proof uses methods from the theory of finite automata, which are
provided in Section 10.4.

L 8.9.1. Let Λ be a logic extending K4 and let ϕ be a formula. Suppose
that ]var(ϕ) ≤ k. Then ϕ ∈ Λ iff ϕ ∈ Λ.ft(≤ 2k).

P. Clearly, if ϕ ∈ Λ then ϕ ∈ Λ.ft(≤ 2k). Now suppose that ϕ < Λ. Then
CanΛ(k) 2 ϕ. Now, CanΛ(k) is of fatness ≤ 2k; so it is a frame for Λ.ft(≤ 2k). Hence
ϕ < Λ.ft(≤ 2k). �
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Let θ be fixed. A θ–accessibility matrix is a θ × θ–matrix over ω such that
aii = 0 for all i < θ. A θ–fatness vector is a θ–vector of elements in ω. A θ–type
is a pair 〈A, v〉, where A is a θ–accessibility matrix and v a θ–fatness vector such that
if ai j = 0 for some i , j then vi = v j and for all k < θ aik = a jk and aki = ak j. (It
follows that ai j = aii = a ji = a j j = 0.) A (θ, τ, π)–type is a type such that (i) ai j ≤ τ
for all i, j < θ, (ii) vi ≤ π for all i < θ. The set of (θ, τ, π)–types is finite and denoted
by Tp(θ, τ, π) or simply by Tp. Types are intended to code the structure of frames. A
sequence of (θ, τ, π)–types 〈tα : α < γ〉 is called a frame sequence if the following
holds. If tα = 〈Aα, vα〉 then aαi j ≤ aα+1

i j ≤ aαi j + 1 for all i, j < θ such that i , j. A

sequence is called rooted if γ = β + 1 and aβi j = 0 for all i, j < θ.
For a rooted noetherian Kripke–frame f of width θ, tightness τ and fatness ϕ a

rooted frame sequence of (θ, τ, ϕ)–types is constructed as follows. Let γ be the depth
of F. Then there exist θ many sequences Σ(i) = 〈Ci

α : α < γ〉 for i < θ and a map
κ from the set of clusters of F into the set θ such that (i) the restriction of κ to the
clusters of depth α is injective, (ii) for a cluster C of F of depth α, C = Cκ(C)

α , (iii)
Ci
α immediately succeeds Ci

α+1, α + 1 < γ. Now a sequence 〈tα : α < γ〉 of types
is defined as follows. tα = 〈Aα, vα〉, where vαi is the type of Ci

α, and aαi j is the least

number k such that α = β + k and Ci
α E C j

β. (Since the frames are of tightness τ, k
exists, is finite and ≤ τ. Clearly, aii = 0 by choice of the clusters. Each tα is a type.
For let aαi j = 0. Then Ci

αEC j
α. Hence the clusters, being of identical depth, are equal.

So, a ji = 0. Furthermore, aik = a jk and aki = ak j for all k. Finally, aα+1
i j = aαi j or

aα+1
i j = aαi j + 1. Now suppose that F is rooted with root cluster C. Let C be of depth

β. Then γ = β + 1. Moreover, all clusters of depth β are identical; so, aβi j = 0 for all
i, j < θ. So, the frame sequences is rooted. It should be noted that the type sequence
of f depends on the division into sequences of clusters. The results are independent
of this, however. Denote by Seq(f) the set of all possible type sequences for f. Given
a type sequence, let Fr(Σ) be the frame corresponding to Σ. This is unique.

P 8.9.2. For every rooted frame sequence Σ of (θ, τ, π)–types there
exists a rooted noetherian frame f of width θ, tightness τ and fatness π such that
Σ ∈ Seq(f).

P. Now let Σ = 〈tα : α < γ〉 be a rooted frame sequence. Let Γ be the set of
pairs 〈α, i〉 such that α < γ and aki , 0 for all k < i. Γ represents the set of clusters
of F. For C ∈ Γ has type vαi . Now put 〈α, i〉 C 〈β, j〉 if (1) i = j and (1a) α > β or
(1b) α = β and vαi , ∅, (2) i , j and α ≥ β + ai j. (Note that in case (2), ai j , 0 by
choice of the set of clusters.) We will leave it to the reader to show that C as defined
is transitive, and that Σ ∈ Seq(f). �

Now let Σ = 〈tα : α < γ〉. Let κ be an ordinal such that ωκ ≤ γ. Put

Σ(κ) := 〈tα : ωκ ≤ α < ω(κ + 1)〉
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Σ(κ) corresponds to the galaxy of depth κ in f(F). Hence we call Σ(κ) a galaxy
sequence. Put

f(Σ) := 〈Σ(κ) : ωκ ≤ γ〉
Just as with frames, we may study Σ be means of the sequence of galaxy sequences.

D 8.9.3. A class X of (noetherian) frames is type regular if there
exists a regular language R such that f ∈ X iff for all κ such that ωκ ≤ dp(f), Σ(κ) ∈ R.

L 8.9.4. The class of all noetherian frames of width θ, tightness τ and
fatness π is regular. For regular classes X and Y, X∪Y, X∩Y and X−Y are regular.

The proof of this theorem is left as an exercise. We note that if τ ≤ τ′ and π ≤ π′

then Tp(θ, τ, π) ⊆ Tp(θ, τ′, ϕ′). A regular class X of (θ, τ, π)–frames is therefore also
a regular class of (θ, τ′, π′)–frames. Moreover, if R is a regular expression defining X
as a class of (θ, τ, π)–frames, then R is a regular expression defining X as a class of
(θ, τ′, π′)–frames. This is useful to know. Now let us see why we can limit ourselves
to type regular frames. Suppose we want to know which frames can refute ϕ. Then,
alternatively, we can ask ourselves which refutation patterns can be realized. Fi-
nally, since we have bounded width and no ascending chains, we can limit ourselves
to embedding patterns. Take an embedding pattern ε(d,V). Let us for the moment
ignore the closed domains. Let d = dn−1 >© . . . >© d0 be a decomposition into inde-
composable parts. Then ι : d → f is a cofinal embbedding into f if ι � d0 is a cofinal
embedding, ι � di is an embedding for 0 < i < n and ι preserves the decomposition,
that is,

ι[d] = ι[dn−1] >© . . . >© ι[d0]
Now, let us consider the simplest possible case, that of the embeddability of an in-
decomposable part, cofinal or not. Recall the definition of the antiframe. We have
defined x q y by x 6 y 6 y, and defined the antiframe of f = 〈 f ,C〉 to be the frame
〈 f , q〉. Now, if f is indecomposable then its antiframe is connected. Moreover, if f is
a subframe of g, then the antiframe of f is embedded as a subframe in the antiframe
of g. Consequently, in our case ι[di] must be connected in 〈 f , q〉. However, by the
fact that the target frame f is of tightness τ, the points of di cannot be too far apart.
Namely, if x q y then ι(x) q ι(y); but the latter can only be if ι(x) and ι(y) are in
the same galaxy (recall that f is galactically linear) and their local depths differ by at
most τ. If d is indecomposable, the antiframe is connected, and for each pair x, y of
points there is a path of length at most ]d connecting x to y in the antiframe. This
shows the following lemma.

L 8.9.5. Let d be an indecomposable frame of cardinality ` and let ι : d→ f
be an embedding into a noetherian frame of tightness τ. Then for any two points x
and y of d the points ι(x) and ι(y) are in the same galaxy, and the local depths differ
by at most τ · `.

L 8.9.6. Let d be indecomposable, and ε(◦)(d,V) a (cofinal) embedding
pattern. The class of frames that realize ε(d,V) is type regular.
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P. We show the criterion of embeddability first. Let Σ ∈ Seq(f). Clearly,
ε(◦)(d,V) is realizable iff ε(◦)(d,V) is realizable in a galaxy of f iff ε(◦)(d,V) is realiz-
able in a subframe of points consisting of the slices α, α + 1, . . ., α + τ · `, for some
α. Hence there exists a finite set T of sequences of length ≤ τ · ` such that ε(◦)(d,V)
is realizable in f iff no member of T is a subword of some Σ(κ). For each κ, the
language of types not containing a member of T as a subword, is a regular language.
Namely, for each t ∈ T we can write a term ~t defining just the language {t}. Then the
term Tp∗ ·~t ·Tp∗ defines the language of sequences containing t. Now take the union
of all these terms (this is well–defined since T is finite). The intersection of the just
defined language and the language of frame sequences is again regular and can be
described by a regular term. For cofinal embeddability there exists a finite set S of
sequences of length ≤ τ · ` such that ε(d,V) is realizable iff Σ(0) does not start with
a member of S . This is a regular language, as is shown similarly. �

So, the next step is to consider embedding patterns consisting of a decomposable
frame. Here, we meet a subtle problem. If d = m >© n we may not necessarily
conclude that an embedding pattern for d can be realized by embedding m before n.
Whether this division can be made depends on the closed domains of that embedding
pattern. Recall that a closed domain can be viewed as a cone, i. e. an upper set, or
alternatively as an antichain. It is the latter that suits our purpose best here. Let

d = dn−1 >© dn−2 >© . . . >© d1 >© d0

Each antichain v is contained in one and only one segment of d. An antichain is
called an outer antichain of di if di = ↑v, else it is called an inner antichain. An
antichain is an outer (inner) antichain of d if it is an outer (inner) antichain of some
segment (which is unique given the antichain). The outer chains glue the segments
to each other in the following way.

L 8.9.7. Let ι : d1 >© d0 → f be an embedding and v an outer antichain of
d0. If ι satisfies the closed domains condition for v then d1 and d0 are in the same
galaxy and the depth of a maximal point of ι[d1] is at most τ larger than the maximal
depths in ι[d0].

P. Let zC ι[v]. Then z may not be an external point; hence z ∈ ι[d1]. On the
other hand, there is such a z at depth ≤ max dp[ι(v)] + τ. �

By a compartment of d with respect to V we understand a maximal chain of the
form di+ j−1 >© . . . >© di of segments of d such that for every k < j−1 there is an outer
antichain for di+k in V.

L 8.9.8. Let d = dk >© . . . >© d0 be a decomposition of d in compartments
with respect to V. Then the embedding pattern ε(d,V) can be satisfied iff there is an
embedding ι : d → f which satisfies all embedding patterns 〈di,V � di〉 considering
points of depth ≤ max{dp(x) : x ∈ v} + τ.
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P. If ι satisfies the embedding pattern for d then it satisfies the embedding
patterns for the compartments. For the converse, let ι respect the decomposition
and satisfy the embdeding patterns for the compartments. Then ι is an embedding
for d. Furthermore, let v ∈ V. Then v ⊆ di for some i. Let z C ι[v]. We have to
show that z is in ι[d]. Suppose that v is an outer antichain; then, by definition of a
compartment, it is not an outer antichain of the compartment, so all antichains are
inner antichains of the compartments. This means that there is no antichain v in a
compartment di such that ↑z∩↑di = ↑v for an internal point not belonging to di itself.
Or, to put it another way, internal points outside of di cannot realize views forbidden
by the closed domain conditions for di. So if such a view is realized, it is externally
realized. But we know that we need not look very far for such points, namely only
up to depth maxdp(ι[v]) + τ. �

Notice that it is not enough to satisfy all local patterns for compartments, since they
are formulated such that we need only consider points of the subframe generated
by these compartments. For the overall embedding, intermediate points have to be
checked as well. If a decomposition of the original frame is given, for example into
galaxies, then the condition is satisfied since it does not have to be enforced that the
decomposition is respected. The proof of the next proposition is now obvious.

L 8.9.9. Let ε(d,V) be a cofinal embedding pattern. Let f = >© α<βgα

be an arbitrary frame. The embedding pattern can be satisfied in f iff there is a
decomposition of d = dk−1 >© . . . >© d0 respecting the compartments and a monotonic
sequence of numbers 〈αi : i < k〉 such that α0 = 0 and the cofinal embedding pattern
〈d0,V � d0〉 is satisfiable in g0, the embedding patterns ε(di,V � di) are satisfiable
in gαi , 0 < i < k.

The consequence is that we have a preservation theorem concerning decompo-
sitions. Namely, if ε(d,V) is satisfiable in f >© g then it is also satisfiable in f >© h >© g,
simply by checking that the same embedding modulo identification of the parts does
the job. This implies among other the following.

T 8.9.10. Let Λ be of finite width and finite tightness. Then dropping
nonfinal galaxies is supersafe. Hence Λ has the galactic finite model property.

Having progressed this far we now need a notational system for frames which
consist of a single hypergalaxy. The essential idea is the following. Each regular lan-
guage is defined by a regular expression. Let us take a set R of regular expressions
over the set of types. R is called a block if (0) R is finite, (i) every frame sequence
belongs to some member of R, and (ii) no frame sequence belongs to different mem-
bers of R. In other words, the members of R partition the set of frame sequences. A
galactic R–expression is a regular expression E over R. A sequence 〈Σ(k) : k < α〉
(α ≤ ω) is accepted by E if there is a sequence 〈Ri : i < α〉 of terms in R which is
accepted by E and Ri accepts Σ(i) for all i < α. Likewise, a frame f of hypergalactic
depth 1 is accepted if f(Σ) is accepted by E for some Σ ∈ Seq(f). (We note that
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in principle, even if Σ ∈ Seq(f) is accepted, some other Σ′ ∈ Seq(f) might not be
accepted. This is however harmless.) A hypergalactically regular class of frames
is a class X of frames such that there exists a block R and a galactically regular ex-
pression E over R such that f ∈ X iff for each hypergalaxy Γ2 of f, E accepts Γ2. We
show that the class of frames of frames of hypergalactic depth 1 satisfying a given
embedding pattern is hypergalactically regular. From this everything follows. We
already have completeness with respect to noetherian frames of hypergalactic depth
1.

P 8.9.11. Let X and Y be hypergalactically regular classes of noe-
therian (θ, τ, π)–frames. Then X ∩ Y, X ∪ Y and X − Y are also hypergalactically
regular. The class of all frames is hypergalactically regular. Moreover, X is also
hypergalactically regular as a class of (θ, τ′, π′)–frames for τ ≤ τ′ and π ≤ π′.

P. First, let E define X and F define Y. If E and F are regular expressions
over the same block R, the claim is clear. So, let E be defined over R and F defined
over S. Let T the set of all expressions defining the languages L(R) ∩ L(S ), R ∈ R
and S ∈ S, if nonempty. These expressions exist, since regular languages are closed
under intersection. T as just defined is a block. Let R ∈ R. Define R† by R† :=⋃
〈T : T ∈ S, L(T ) ⊆ L(R)〉. The latter is well–defined, since the union is finite. By

the definition of T, L(R) = L(R†). Call E† the result of replacing each occurrence
of R by R†, for each R ∈ R. E† is a regular expression over T. The class of frames
accepted by E† is exactly X. Similarly we can produce a term F‡ over T defining Y.
Now the first claim is clear. For the second claim, note that the class of all frames
corresponds to the term (

⋃
R∈R R)∗. For the last claim, note that E accepts X also as a

class of (θ, τ′, π′)–frames for τ ≤ τ′ and π ≤ π′. �

T 8.9.12. The set of noetherian frames of width θ, tightness τ and fatness
π and depth ≤ ω2 realizing a given embedding pattern is hypergalactically regular.

P. Let d = dk−1 >© dk−2 >© . . . >© d1 >© d0 be a division of d into compart-
ments. Then define R as follows. For each pair i, j < k such that i ≤ j let
d[i, j] := d j >© d j−1 >© . . . >© di and E[i, j] be the regular expression defining the
class of galactic frames in which ε◦(d[ j, i],V � d[i, j]) is realizable, for i > 0, and
ε(d[ j, i],V � d[ j, i]) if i = 0. Let X define the class of frames into which no d[i, j]
is embeddable (confinally, if i = 0). Take all possible intersections of those E[i, j]
which are nonempty. The set of the terms thus defined together with X forms a block.
Call it R. Let the union of all terms of R be R. Let H := 〈ix : x < r〉 be a strictly
ascending sequence of natural numbers < k − 1. Put

E[H] := E[0, i0] · R∗ · E[i0 + 1, i1] · . . . · E[ir−2 + 1, ir−1] · R∗ · E[ir−1 + 1, k − 1] · R∗

Now let E be the union of all E[H]. Since there are only finitely many sequences H,
this is well–defined. It is not hard to check that E admits a frame f consisting of a
single hypergalaxy iff ε(d,V) is realizable. �
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C 8.9.13. Let Λ be a finitely axiomatized logic of width θ, tightness
τ and fatness π. Then the class of rooted frames for Λ of hypergalactic depth 1 is
hypergalactically regular.

C 8.9.14. Let Λ be of finite width and finite tightness. If Λ is finitely
axiomatizable, it is decidable.

P. Let ϕ be given. We want to decide whether ϕ ∈ Λ. For π large enough,
this is equivalent to the problem ‘ϕ ∈ Λ.ft(≤ π)’. Λ is complete with respect to
noetherian frames of hypergalactic depth 1. It determines a hyperregular set in that
class. Likewise, the set of frames of hypergalactic frames in which ϕ is satisfiable
is a hyperregular set. Now their intersection is also hyperregular. Moreover, terms
representing these sets can be algorithmically computed. Hence we are done if we
can decide whether for a given E we can decide whether or not there exists a frame
accepted by E. To that end, we decide whether there are nonempty R–sequences
falling under E. This is decidable on the basis of E. If there exists such a sequence,
there exists a frame accepted by E. �

Exercise 320. Show Lemma 8.9.4.



CHAPTER 9

Logics of Bounded Alternativity

9.1. The Logics Containing K.alt1

Throughout this chapter we will deal with logics with one or several operators
each of which satisfies an axiom of the form altn for some n. These are the logics
of bounded alternative or logics of bounded alternativity. The study of such logics
has been initiated by several insights and questions. First, any relation on a set can
be seen as the union of sufficiently many partial functions. Hence, any monomodal
Kripke–frame can be viewed as a frame for polymodal K.alt1 where the distinction
between the operators has been lost. We will study this interpretation under the name
of colouring and decolouring of polymodal frames. The second motivation comes
from studying attribute–value formalisms, as used in computer science and linguis-
tics. It has been realized that modal logics containing K.alt1 provide an ideal basis
for studying such formalisms. It quickly turned out that the quasi–functional logics
bear close resemblance to Thue–systems and this connection has been exploited to
derive numerous undecidability results in modal logic. Many of these results were
known already to AA. M, but only few got published (see [55] and [56]).
K S in [197] has investigated the lattice E K.alt1. Most of his results
were reproved by F B in [5], who added some facts about the lattice
E K.alt2. The logics of bounded alternative form a neglected area of modal logic,
with most results generally being unknown. However, as we will see, they provide
an ideal source of many powerful negative results on modal logic, as well as an ideal
tool for modelling certain mathematical structures.

We start the investigation by classifying the extensions of K.alt1. We have seen
in Section 3.2 that extensions of K.alt1 are canonical, and it is not hard to see that
they all are df–persistent. We derive from this the fact that all extensions are com-
plete, and so we can classify the extensions just by looking at the frames for K.alt1.
Furthermore, it is enough to look at the rooted frames. We can view them as ordinary
frames 〈 f ,C〉 or as structures 〈 f , s〉, where s is a partial function such that s(x) is the
C–successor of x, if such a successor exists, and undefined else. A map π : f → g is
a p–morphism from 〈 f , s〉 to 〈g, s′〉 iff for all x ∈ f , π(s(x)) exists iff s′(π(x)) exists,
and then both are equal. To say that f is rooted is to say that there is a point x ∈ f
such that f = {sn(x) : n ∈ ω}. There are three possibilities. Case 1. There is an
n ∈ ω such that sn(x) is not defined. Assume that sn−1(x) exists. In that case we have

437
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a chain of length n. We abbreviate this frame by chn. Case 2. sn(x) exists for all n. In
that case, there are two further possibilities. Case 2a. All sn(x) are different. Then
our frame is isomorphic to the natural numbers with the successor function. We de-
note this frame by chω. Case 2b. There are m, n such that sm(x) = sn(x). Let m, n be
minimal such that m < n. Then put p := n − m and y := sm(x). We have sp(y) = y,
and consequently, for all natural numbers, si+p(y) = si(y). Hence, y is in a cycle
of length p (since n was chosen minimally). The elements x, s(x), s2(x), . . . , sm−1(x)
form a chain leading into the cycle. We denote this frame by cycm,p.

P 9.1.1. (i.) chm is a generated subframe of chn iff m ≤ n, but not a
generated subframe of either chω or cycn,p. No frame for K.alt1 maps p–morphically
onto chm, except for chm. (ii.) cycm,p is a generated subframe of cycn,q iff p = q and
m ≤ n, and a p–morphic image of cycn,q iff m ≤ n and p divides q. cycm,p is a
p–morphic image of chω, but no image of chn for any n.

The proof of these facts is easy in all cases except for the p–morphic images of
cycm,p. In that case we have that if π(x) = u then π(s(x)) = s(u), from which above
claims can be derived. We now have a full overview of the relation between these
frames. Furthermore, for finite f and g we have Th f ⊆ Th g iff g is a p–morphic
image of a generated subframe of f. Finally, let us observe that all frames except
for chω are finite. However, Th chω has the finite model property. For consider a
formula ϕ and chω 2 ϕ. Without loss of generality we can assume that ϕ does not
hold at the root. Then for n + p ≥ dp(ϕ) we get cycn,p 2 ϕ. This is so, because the
dp(ϕ)–transits of the roots of chω and cycn,p are isomorphic. Likewise it is shown that
chω =

⋂
〈Th chn : n ∈ ω〉.

P 9.1.2.

Th chn = K.alt1 ⊕ ¬♦
n>

Th chω = K.alt1.D

Th cycn,q = K.alt1.D ⊕ �
n(p↔ ♦q p)

P. By correspondence theory. Notice that we can describe the structure of
these frames by first–order restricted sentences, namely in the case of chn by (∀yBn+1

x)f, in the case of chω by (∃yBx)t, and in the case of cycn,q by (∀yBn x)(∀zBq y)(z � y).
All these are clear instances of Sahlqvist–formulae. The axioms above are the modal
correspondents. �

Notice also that the conditions expressed by these formulae are derivable in Df,
the class of differentiated frames, another proof that these logics are df–persistent.

T 9.1.3 (Segerberg). K.alt1 is the logic of the chains chn, n ∈ ω. Every
extension of K.alt1 is df–persistent and has the finite model property. Moreover,
K.alt1.D is pretabular. Each proper extension of K.alt1 not containing K.alt1.D
is of the form Λ u Th chn for some n ∈ ω, where Λ ∈ EK.alt1.D. Hence in EK.alt1
there are only countably many elements.



9.1. The Logics Containing K.alt1 439

P. For the first claim let ϕ be a formula of modal depth d and let it have a
model on a rooted frame f. If f is not a finite chain then it is a p–morphic image of
chω, so a model for ϕ can be based on chω. However, the d–transit of the root of chd
is isomorphic to the d–transit of any point in chω, so a model can be based on chd as
well. Consider a proper extension Λ of K.alt1.D. Suppose there are infinitely many
cycn,p which are frames for Λ. Then the set {n + p : cycn,p � Λ} is unbounded. Hence
every formula satisfiable in chω is satisfiable in a frame for Λ, so that Λ ⊆ Th chω.
Hence all cycn,p are frames for Λ, a contradiction, since then Λ = K.alt1.D. Every
logic containing K.alt1 is determined by its frames of the form chn, n ∈ ω, and the
frames of the form cycn,p. Of the first there are finitely many, since the extension is
proper. Then there is a largest chain chn contained in the set and the set of chains
for Λ is the set of chains of the form chm, m ≤ n. The logic of the cycles for Λ is
an extension of K.alt1.D and this proves the claim. Finally, to see that the lattice of
extensions is countable, observe that K.alt1.D has at most as many proper extensions
as there are finite subsets of ω × ω. ω × ω is countable, and the set of finite sets of
a finite set is countable again. So E K.alt1.D is countable. Now, an extension Λ of
K.alt1 is characterized by the number of the largest chain admitted by it and the logic
Λ tK.alt1.D. So there are at most ω × ω logics, again a countable number. �

From this theorem we can get a complete overview of the lattice E K.alt1 by
describing the corresponding TD–space. Recall that if S is a poset then Φ(S) is the
space of the topology having as closed sets all unions of sets of the form ↑ x. Now,
given two topological spaces X and Y, define X o Y as follows. A set is closed iff
it is a finite union of sets A × B where (i) A , X or (ii) A = X and B = Y . It is
immediately verified that this is a topological space.

T 9.1.4. Let α := 〈ω,≤〉op, and µ := 〈ω − {0}, |〉op.

ISpc(EK.alt1.D) � Φ(α × µ)
ISpc(EK.alt1) � Φ(µ) o Φ(α × µ)

α derives from the additive structure over ω (n ≤ m iff there exists a k such that
n + k = m), and µ from the multiplicative structure over ω − {0} (with n | m iff there
exists a k > 0 such that nk = m). Note that α = 〈ω,≥〉, but for stating the theorem it
is better to display the similarity between α and µ. For a proof of the first fact notice
that every proper extension is tabular, and so its corresponding set in the space is
finite. Hence the topology is indeed the weak topology. Now, an extension of K.alt1
is an intersection of an extension of K.alt1.D with a logic of the form Th chn. This
representation is unique. Hence, any logic extending K.alt1 corresponds to a closed
set in ISpc(K.alt1.D) and a closed set in Φ(α). However, if the latter is the entire
space, the extension is not proper, and conversely. In that case, the first set is the
entire space as well. This shows the correctness of the representation.

T 9.1.5. All logics in EK.alt1 are finitely axiomatizable, have the global
finite model property and are globally decidable.
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F 9.1. EK.alt1
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K.alt1.D
(= Th (chω) ) •

•Th (cyc0,1)    
 •

L2 (= Th (ch0) )

•Th (chω) ∩ Th (ch1)

•Th (cyc0,1) ∩ Th (ch1)    
 • Th (ch1)

•

•

•

•

•

•

•

•

•

•

•

•

•Th (chω) ∩ Th (chn)

•

Th (cyc0,1) ∩ Th (chn)
   • Th (chn)

• K.alt1

P. If Λ = K.alt1.D, the claim is clearly true, so let Λ be a proper extension.
Every extension of K.alt1.D is either this logic itself or tabular. In that case, all three
claims follow. The logics Th chn also have all these properties. Any finite intersection
of logics which have the global finite model property also has the global finite model
property, so we need to show that the intersection is finitely axiomatizable. This is
unproblematic ifΛ ) K.alt1.D, since in that caseΛ is tabular. Thus, we have to study
logics of the form K.alt1.D u Th chn. In that case Λ = K.alt1 ⊕ ¬♦

n> ∨ ♦n+1>. �

P 9.1.6. Every quasi–normal extension of K.alt1.D is normal.

P. A quasi–normal extension is the theory of some set of pointed frames
〈f,w0〉, where w0 is the root of f. We will show for every x ∈ f we have Th 〈f,w0〉 ⊆

Th 〈f, x〉. It follows that Th 〈f,w0〉 = Th f. So, take an f. Case 1. f = chω. Then the
claim is immediate. Case 2. f = cycm,p. Then the transit of x in f is of the form cycn,p
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for n ≤ m. By Proposition 9.1.1 there exists a map cycm,p � cycn,p. It maps the root
of the former frame onto the root of the latter frame. Hence Th 〈f,w0〉 ⊆ Th 〈f, x〉. �

P 9.1.7. An extension of K.alt1 is Halldén–complete iff it is the logic
of ch1, chω or cycn,p for some n, p ∈ ω.

P. A logic is Halldén–complete only if it is the logic of the one–element
chain or contains the axiom D. Let the latter be the case. In case Λ is the theory
of a single frame cycu,v, it is the quasi–normal theory of 〈cycu,v, x〉, where x is the
generating point. Hence, using Theorem 1.6.5 we see that the logic is Halldén–
complete. If it is not the logic of a single frame, then there exist frames cycm,p
and cycn,q such that there is no frame for Λ having both of them as its p–morphic
image. Call these frames minimal. There exists ϕ such that ϕ is refutable on cycm,p
but not on cycn,q, and a ψ which is refutable on cycm,q but not on cycn,p. We can
assume that ϕ and ψ are disjoint in variables. Then ϕ ∨ ψ is not refutable on either
frame, or of a p–morphic image of the two. So, if Λ is characterized by these two
minimal frames, ϕ ∨ ψ cannot be refuted on any frame for Λ, though ϕ and ψ both
are refutable. Likewise we can proceed if Λ is characterized by n minimal frames,
picking a formula ϕn for each minimal frame. (Choose, for example, the diagrams
of each of these frames, prefixed by a sufficiently large �≤n.) �

Exercise 321. Show that K.alt1 has 2ℵ0 many quasi–normal extensions.

Exercise 322. Show that K.alt2 has 2ℵ0 many normal extensions. Hint. These
extensions can even be axiomatized by constant axioms.

Exercise 323. Show that K.alt1.D is the only pretabular logic in E K.alt1.

Exercise 324. Show that Λ splits E K.alt1.D iff Λ = Th chn for some n ∈ ω. The
logics K.alt1/chn are called Chellas–Hughes–Logics in [197]. Show that they can be
axiomatized by constant formulae.

Exercise 325. Show that E K.alt1.D has exactly one splitting, namely the reflexive,
one–point frame.

Exercise 326. Show that every element in E K.alt1.D has ℵ0 many lower covers.

Exercise 327. Show that E K.alt1.D has 2ℵ0 automorphisms.

Exercise 328. (S [202].) Show that K.alt1 is NP–complete. Hint. Estimate the
size of models.
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9.2. Polymodal Logics with Quasi–Functional Operators

In this section we will turn to the logics containing
⊗

i<κ K.alt1. The principal
aim is to define a set of formulae with which any extension can be axiomatized and
which is geometrically perspicuous.

D 9.2.1. Let Θ be a modal logic, and ϕ, ψ formulae. We say that ϕ and
ψ are axiomatically equivalent over Θ if Θ ⊕ ϕ = Θ ⊕ ψ.

Obviously, if ϕ and ψ are deductively equivalent inΘ then they are also axiomat-
ically equivalent. The converse does not hold, however. For example, if ψ = p and
ϕ = q, p , q, then Θ ⊕ ϕ = Θ ⊕ ⊥ = Θ ⊕ ψ. But if Θ is consistent, ϕ and ψ are
not deductively equivalent. For then p ↔ q ∈ Θ, from which p ↔ ¬p ∈ Θ, hence
⊥ ∈ Θ.

Recall that a model for polymodal K.alt1 is thought of as a frame or alternatively
as a partial algebra with κ many partial unary functions. An extension of polymodal
K.alt1.D is complete with respect to semigroup models. To be precise, take a frame
〈 f , 〈C j : j < κ〉〉. Let x ∈ f and j < κ. Then if x has a j–successor y we put j(x) := y
and let j(x) be undefined otherwise. For a sequence σ we define inductively σ(x) to
be that element which can be reached from x ‘following’ the path defined by σ, if
that path exists. In extensions of polymodal K.alt1.D all paths exist, and they form
a semigroup under concatenation. Now, our first aim is to derive a special normal
form for formulae. Notice, namely that we have for each operator the theorems

♦ j p.↔ .♦ j> ∧ � j p , ♦ j(p ∧ q).↔ .♦ j p ∧ ♦ jq ,
� j p.↔ .� j⊥ ∨ ♦ j p , � j(p ∨ q).↔ .� j p ∨ � jq .

If we apply the standard algorithm for obtaining normal forms of Section 2.7 we
observe that a normal form of degree n + 1 is a disjunction of formulae ψ of some
ψi, i < n, where each ψi is a conjunction of (i) a normal form µ of degree 0 and (ii)
for each j, either � j⊥ or � jχ ∧ ♦ jχ, where χ is some normal form form of degree n.
The following definition was proposed in [91].

D 9.2.2. A formula ϕ is a strict canonical alt1–formula if it is of
the following form ∧

σ∈W>
♦σ> ∧

∧
σ<W⊥

¬♦σ> ∧
∧
i<k

♦σi p↔ ♦τi p

Here, σi, τi are finite sequences of indices, and W>,W⊥ finite sets of such sequences.
A formula ϕ is a canonical alt1–formula if it is a disjunction of strict canonical
formulae ϕi, i < n, such that var(ϕi) ∩ var(ϕ j) = ∅ if i , j.

P 9.2.3 (Grefe). There is an effective algorithm reducing each for-
mula ϕ into a canonical

⊗
K.alt1–formula ψ which is axiomatically equivalent

with ϕ over
⊗

K.alt1.
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P. Step 1. Let ϕ be given. Eliminate all symbols different from variables,
>, ¬, ∧, ∨ and ♦ j by their respective definitions. Next move unary operators into the
scope of binary ones, i. e. negation into the scope of conjunction and disjunction,
and ♦ j into the scope of conjunction and disjunction as well. The latter is admissible,
by the laws of distribution given above. Next, replace subformulae of the form ♦ j¬ψ
by ¬♦ jψ∧♦ j>. Finally, move conjunction out of the scope of disjunction. If none of
these operations are applicable, we have obtained a formula ϕ(1) which is deductively
equivalent to ϕ and of the form

∧
i<m ϕ

(1)
i , where for each i there exist finite sets of

finite sequences over κ, W+ and W−, such that

ϕ(1)
i :=

∨
σ∈W>

♦σ> ∨
∨
σ∈W⊥

¬♦σ> ∨
∨
σ∈W+

♦σpσ,i ∨
∨
σ∈W−

¬♦σpσ,i

The variables pσ,i need not be distinct for distinct σ or i. Step 2. There exists a
renaming of the variables which makes the formulae ϕ(1)

i disjoint in variables. In
general, the axiom α ∧ β is equal in force with the axiom α

.
∧ β, which results from

making α and β disjoint in variables. Now assume that pσ,i occurs only positively in
ϕ(1)

i . Then we can replace ♦σpσ,i by⊥. Likewise, if pσ,i occurs only negatively. (That
this results in an axiomatically equivalent formula has been the content of an exercise
of Section 5.5.) Now take Σ+ to be the set of paths in W+ with associated variable
p = pσ,i and Σ− the set of paths in W− with associated variable p. By construction,
Σ+ and Σ− are not empty. Let χ be the disjunction

χ :=
∨
σ∈Σ+

♦σp ∨
∨
σ∈Σ−

¬♦σp

Replace χ by χ′ which is defined by

χ′ :=
∨

σ∈Σ+,τ∈Σ−

♦σpσ,τ ∨ ¬♦τpσ,τ

We show that χ and χ′ are axiomatically equivalent. Since χ is a substitution instance
of χ′, we must have

⊗
K.alt1 ⊕χ ⊆

⊗
K.alt1 ⊕χ

′. The converse inclusion remains
to be shown. Now let g 2 χ′, say 〈g, x〉 2 χ′. Then all paths τ from Σ− must exist.
Furthermore, assume a path σ ∈ Σ+ exists starting from x. Then its endpoint is dis-
tinct from all endpoints of paths τ starting from x. Let β(p) := {σ(x) : σ ∈ Σ−}. Then
〈g, β, x〉 2 χ, as required. Let ϕ(2)

i result from ϕ(1)
i by performing the substitution

just mentioned. A slight modification of the previous argument shows that ϕ(2)
i is ax-

iomatically equivalent to ϕ(1)
i . This concludes the second step. Put ϕ(2) :=

∧
i<m ϕ

(2)
i .

ϕ(2) is a conjunction of formulae of the type ϕ(2)
i with the distinctive property that

each variable occurs in at most one ϕ(2)
i and there exactly once positively and once

negatively. Step 3. For each variable p of ϕ(2), there exists an i < m and two
subformulae of ϕ(2)

i of the form ♦σp and ¬♦τp. ϕ(2)
i is therefore deductively equiv-

alent to a formula ψ ∨ ♦σp ∨ ¬♦τp for some ψ not containing p. Replace ϕ(2)
i by

ψ∨¬♦τ>∨ (♦σp↔ ♦τp). This results in a deductively equivalent formula. Perform
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this operation for every occurring variable. The resulting formulae are denoted by
ϕ(3)

i . Rewrite ϕ(3)
i by moving disjunction out of the scope of conjunction. After that

ϕ(3)
i is a disjunction of formulae ψi, j which are conjunctions of formulae which are

either constant and of the form ♦σ> or ¬♦τ> or they are of the form ♦σp ↔ ♦τp.
Moreover, ϕ(3) is deductively equivalent to the disjunction of the ψi, j for some suit-
able set E of pairs 〈i, j〉. In each ψi, j, replace all variables by a single one among
them. This yields the formula τi, j. By choice of the variables, var(τi, j)∩var(τm,n) = ∅
for 〈i, j〉 , 〈m, n〉. It is easy to check that τi, j and ψi, j are axiomatically equivalent
and so is their disjunction. Finally, let ϕ(4) be the disjunction of the τi, j, 〈i, j〉 ∈ E.
ϕ(4) is axiomatically equivalent to ϕ(3). ϕ(4) is in alt1–canonical form. �

P 9.2.4. Every extension of polymodal K.alt1 can be axiomatized by
formulae of the form

χ ∨
∨
i<d

 ∧
σ∈W>i

♦σ> ∧
∧
σ∈W⊥i

¬♦σ> ∧
∧
j<k

(♦σi j> ∧ ♦τi j> ∧ ♦σi j pi ↔ ♦
τi j pi)


where var(χ) = ∅ and σi j , τi j.

C 9.2.5. Every extension of
⊗

K.alt1.D is axiomatizable by formulae
of the form

∨
i<m ♦

σi pi ↔ ♦
τi pi for some finite sequences σi, τi. Moreover, these

axioms correspond in the class of differentiated frames to

(∀x)[
∨
i<m

(∀y Bσi x)(∀z Bτi x)(y � z)] .

C 9.2.6. Each extension of polymodal K.alt1 is of special Sahlqvist
rank 0. Every extension of polymodal K.alt1.D is of pure, special Sahlqvist rank 0.

We can cash out on this characterization as follows. Call a statement of the form

♦σ> ∧ ♦τ> ∧ ♦σp↔ ♦τp

a path–equation, and denote it by σ ≈ τ. A path equation states that both paths
exist and that they are equal:

(∃y Bσ x)t ∧ (∃y Bτ x)t ∧ (∀y Bσ x)(∀z Bτ x)(y � z)

An extension of polymodal K.alt1 is then characterized by a disjunction of con-
junctions of path equations and constant formulae. The constant formulae are either
existence or nonexistence statements for certain paths. An extension of

⊗
K.alt1D

is axiomatizable by a set of disjunctions of path equations.
Finally, recall that an elementary class of frames is modally definable iff it is

closed under contractions, generated subframes, disjoint unions and ultrafilter exten-
sions, while also the complement is closed under ultrafilter extensions. In the present
context the last restriction can be dropped.
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P 9.2.7. (κ < ℵ0.) A class of frames for logics of bounded operator
alternative is modally definable iff it is closed under contractions, generated sub-
frames, disjoint unions and ultrafilter extensions.

P. We have to show that the class is inversely closed under ultrafilter ex-
tensions. We show that g is isomorphic to a generated subframe of ue(g), which will
establish the theorem. The elements of g correspond to the principal ultrafilters of
ue(g). Thus we have to show that no principal ultrafilter can see a non–principal
ultrafilter. So let Ux be the ultrafilter of sets containing x and let T be non–principal.
The set of points seen in one step by x via j is finite, consisting, say, of y0, . . . , yn−1,
where n ≤ κ. For each i < n there exists a set ai such that yi ∈ ai and ai < T . Put
b :=

⋃
i<n ai. Then b < T , since T is an ultrafilter. On the other hand, x ∈ � jb. Thus

Ux 6 j T . �

C 9.2.8. (κ < ℵ0.) A class of frames of bounded operator alternativity
is modally definable iff it is closed under contractions, generated subframes, disjoint
unions and ultraproducts.

P. Let K be modally definable. Then it is elementary, since its logic is r–
persistent. It follows that K is closed under ultraproducts. Conversely, assume that
K is closed under ultraproducts. By Theorem 5.7.18, the ultrafilter extension of a
frame f is a contractum of an ultrapower of g. Therefore K is closed under ultrafilter
extensions as well. �

The lattice of extensions of E
⊗

j<κ K.alt1 is quite complex despite the fact
that the extensions are axiomatizable by such simple axioms. We will restrict our
attention to κ = 2, but it is clear that the results can be generalized.

P 9.2.9. E(K.alt1 ⊗K.alt1) contains countably many tabular logics
of codimension 1. E(K.alt1.D ⊗K.alt1.D) contains countably many tabular logics
of codimension 2.

P. Consider the frames f–cycn defined on the set 2n + 1 where i C j iff
i + 1 = j and i even, or i = 2n − 1 and j = 2n, and i J j iff j = i + 1 and i is odd
or i = 2n and j = 0. The frames f–cycn are almost like a cycle where the relations
between neighbouring elements alternate. There is one position where this regularity
is disturbed and this accounts for the fact that f–cycn has no proper contracta. Since
it has no proper generated subframes either, its logic is of codimension 1. In bimodal
K.alt1.D we have exactly one logic of codimension 1, which is the logic of the one–
point frame, which is reflexive with respect to all relations. Now for this case take a
prime number q , 2 and define on q the relations C and J as follows. We let 0 C 0
and q − 1 J q − 1. For even numbers i we put i J i + 1 J i and for odd numbers i we
put i C i + 1 C i. No other relations hold. This defines the frame d–cycq. Now define
a function f : q→ q by taking f (i) to be the C–successor of the J–successor of i. It
is verified in the case of q = 5 that f (0) = 2, f (2) = 4, f (4) = 5, f (5) = 3, f (3) = 1
and f (1) = 0. In general, we have f q(x) = x but f r(x) , x for r < q. The powers
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of f form a cyclic group of order q under composition. Now take a p–morphism π
of d–cycq onto a frame e. Then the function f induces a function g on e defined as
follows; g(x) := π( f (y)) where y ∈ π−1(x). (By the conditions on p–morphisms this
is well–defined.) Moreover, the powers of g under composition must form a group,
too. For g is invertible, since gq(x) = x. However, the cyclic group of order q has
only two images, itself and the group of order 1. In the first case p must be injective,
in the second case e has one element. For d–cycq is connected under f , that is, for
any two elements i, j there exists an r such that j = f r(i). e must have the same
property with respect to g. So e has one element, and thus the theory of d–cycq has
codimension 2. �

Since the finite frames are countable for finite κ, this is the best possible result.
Since all extensions of polymodal K.alt1 are complete this leaves us with the possi-
bility of maximal consistent logics which are complete but not tabular, that is, which
are determined by a single, infinite frame. The key to such logics lies in the exis-
tence of infinite sequences over a given alphabet which are nonrepeating. These are
sequences in which no subword is eventually repeated over and over. By a simple
cardinality argument there are 2ℵ0 sequences which are nonrepeating. However, the
result that we are going to prove is much stronger; it shows that there are 2ℵ0 many
infinite sequences over the alphabet {0, 1} such that no subword is repeated five times
consecutively.

D 9.2.10. For a natural number k and a finite sequence σ, let k × σ
denote the sequence consisting of the k–fold repetition of σ. Let α : ω → {0, 1} be
an infinite sequence and σ = s0s1 . . . sn−1 a finite string over {0, 1}. The index of σ
in α, Hα(σ) is the maximal ordinal number j < ω+1 such that α contains a subword
of the form j×σ. That is to say, Hα(σ) = j iff there is an r such that for all i < j and
e < n, α(r + n · i + e) = se.

For an infinite sequence α let gα be the frame based on ω and i C j iff j = i + 1
and α(i) = 0 and i J j iff j = i + 1 and α(i) = 1. If Hα(s) = ω, then there is
a point from which the sequence α repeats the sequence σ periodically. Put E :=
{a : Hα(σ) ∈ ω, for all σ ∈ {0, 1}∗}. Thus E is the set of sequences in which every
subword has finite index. It is clear that E has the cardinality 2ℵ0 . It is the logics of
gα for α ∈ E that we want to use as examples of logics of codimension 1. However,
there are two obstacles. The difficulty lies in showing that (i) they are of codimension
1 and (ii) that they all give rise to distinct logics. We will solve these problems as
follows. We show first that even if the theory of gα is not maximal, it has no finite
frames. The second problem is solved by constructing special sequences, in which
even Hα(σ) ≤ 4 for all σ.

L 9.2.11. Let σ be a non–empty finite string with index m. Then

gα � ¬♦
(m+1)×σ>.
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L 9.2.12. Let gα be a frame such that α ∈ E and let f be a finite frame.
Then Th gα * Th f.

P. Let F = 〈 f ,C,J〉. It is enough to show this for such finite f for which the
theory is of codimension 1. In that case f has no proper generated subframes. Case
1. f is the one–element frame with empty relations. Then ♦> ∨ �> ∈ Th gα − Th f.
Case 2. Not both C and J are empty. Let f have n elements. Then f is a full cycle,
that is, there is a sequence σ = s0s1 . . . sn−1 over {0, 1} and a world w0 such that
wi+1 = si(wi), i < n − 1 and w0 = σn−1(wn−1). Put m := Hα(σ). Then ¬♦(m+1)×σ> ∈

Th gα − Th f, as required. �

D 9.2.13. Let X ⊆ ω. We define a sequence aX to be the concatenation
of the words zX

n , which are defined as follows. We put zX
n := lX

n rX
n . lX

n and rX
n — or

simply ln and rn from now on — are defined inductively by

l0 := 0, r0 := 1, if 0 < X,
l0 := 00, r0 := 11, if 0 ∈ X,
ln+1 := lnrn, rn+1 := rnln, if n + 1 < X,
ln+1 := lnrnlnrn, rn+1 := rnlnrnln, if n + 1 ∈ X.

In order to understand this definition, let us note some properties of this se-
quence. First, it can be divided from left to right into blocks of equal length of the
form l0r0 or r0l0, and starting from the first occurrence of ln, it can be divided into
blocks of the form lnrn and rnln. These blocks have length 2k for some k. Let us
define a new sequence from aX by forgetting zX

0 and dividing the remaining sequence
into parts of the form l0r0 and r0l0, as indicated. The sequence l0r0 is replaced by
0 (its first symbol) and r0l0 is replaced by 1 (again its first symbol). The resulting
sequence is a sequence of the form aY where Y = {n : n + 1 ∈ X}. The proof is by
induction. So, if the sequence taken from a certain point onwards and is thinned by
taking only the 2k–next symbol, we get a sequence of type aY . In particular, if 0 ∈ X
then we may replace in the entire sequence blocks of the form l0r0 = 0011 by 0 and
blocks of the form r0l0 = 1100 by 1. Then we get a sequence of the form aY with
Y = {n : n+1 ∈ X}. The point where the sequence lnrn appears for the first time, will
be denoted by on. Furthermore, if 0 < X then the subsequence 〈aX(2n), aX(2n + 1)〉
contains a zero and a one, and if 0 ∈ X then 〈aX(4n), aX(4n+1), aX(4n+2), aX(4n+3)〉
is either 0011 or 1100. Thus, in any subsequence the number of zeros may differ from
the number of ones by at most four. (For each subsequence of length can be divided
into a sequence ~p · ~w0 · ~w1 · . . . · ~wn−1 · ~s where the ~wi are equal to 0011 or 1100, ~p a
postfix of 1100 or 0011 of length ≤ 3, and ~s a prefix of length ≤ 3 of 0011 or 1100.
Each ~wi contains two ones and two zeros, so it is balanced. In ~p and ~s the number of
ones and zeros can differ at most by 2.)

L 9.2.14 (Grefe). For all X ⊆ ω and all finite strings σ HaX (σ) ≤ 4. In
particular aX ∈ E.
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P. Let lng(σ) denote the length of a string. Let σ have the length 2k · u,
u an odd number. Suppose, aX contains the subsequence 5 × σ. Case 1. There is
an n such that lng(lnrn) = 2k. Let 5 × σ begin at the number r and let t ∈ ω the
unique number such that on + (t − 1) · 2k < r ≤ on + t · 2k. (This number exists since
on < lng(lnrn) = 2k.) Then aX(on+ (t+ i) ·2k) = aX(on+ i+ j ·u) ·2k) for all i < lng(s)
and j < 5. We may then form the sequence b(i) := a(on + 2k · i) and get b = aY

for some Y . Then 〈b(t), b(t + 1), . . . , b(t + u − 1)〉 has uneven length. So it has one
more zeros than ones ore one more ones than zeros. Since this sequence repeats five
times consecutively, we have found a subsequence in which the number of ones and
zeros differs by at least 5, in contradiction to the fact that b is of the form aY . Case 2.
There is no n such that lng(lnrn) = 2k. Then there is an n such that lng(lnrnlnrn) = 2k.
Now proceed as in Case 1. �

T 9.2.15 (Grefe). The lattice E Th ch4 ⊗ Th ch4 has 2ℵ0 many logics of
codimension 1.

P. The monomodal fragments of Th gaX contain the theory of the four–
element chain, since neither 0 nor 1 may be iterated five times. Th gaX is contained
in a maximal consistent logic. It is enough to show that for X , Y , Th gaX t Th gaY is
inconsistent. Let n be the smallest number on which X and Y disagree, say, n ∈ X−Y .
Now, assume that n = 0. Then gaY � ���⊥. However, rX

2 contains four consecutive
zeros. Moreover, lX

2 may not be repeated more than four times, so that wherever we
are, after at most k = 5 · lng(lX

2 ) steps rX
2 must occur, and hence a sequence with three

consecutive zeros. Thus gaY � ¬ �
≤k ♦♦♦>. For n = m + 1 the proof is performed

with the subword lm in place of 0 and rX
m+2 in place of rX

2 . �

Notes on this section. In E S [202] is is shown that K.alt1 is locally
NP–complete and globally PSPACE–complete, while polymodal K.alt1 is locally
NP–complete and globally EXPTIME–complete.

Exercise 329. With this set of exercises we will shed some more light on the results
by W B of the preceding chapter. First, show that any tabular κ–modal logic is
co–covered by 2ℵ0 complete logics, κ > 1. Hint. Use the fact that the inconsistent
logic has this property.

Exercise 330. Show that any tabular monomodal logic contained in Th • is co–
covered by 2ℵ0 complete logics. Hint. Use the simulation theorem.

Exercise 331. Let the degree of nonfinite model property of a logic Λ be defined
to be the cardinality of the spectrum of logics with the same class of finite models
as Λ. Show that a tabular κ–modal logic has degree of nonfinite model property 2ℵ0

unless κ = 1 and Λ = K1 ⊕ ⊥.

Exercise 332. (S [202].) Show that polymodal K.alt1 is NP–complete.
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9.3. Colourings and Decolourings

A bimodal frame in which each operator satisfies alt1 can be seen as a kind
of monomodal alt2–frame in which the successors are discriminated by the modali-
ties. We can define two operations on these frames going in opposite directions; we
call them colouring and decolouring. Decolouring is the process of forgetting the
distinction between the relations, and colouring is the (re)introduction of the distinc-
tion. Any monomodal Kripke–frame can in principle be treated in this way, given
enough additional relations. If each point of the frame has at most κ many successors
then given κ many operators the successors can be distinguished by the new accessi-
bility relations. Each of the new accessibility relations satisfies K.alt1 and may thus
be interpreted as a partial function on the frame. In this way, modal logic seems gen-
erally reducible to the study of (polymodal) K.alt1. Moreover, alternative semantics
in terms of functions on frames rather than relations — as proposed e. g. in  B-
 [13] — can be studied as well. Therefore, in this section we will show how to
perform such a reduction and where its limits are. Basically, the limitation is to log-
ics which are of bounded alternativity. The reason is that otherwise the logics are not
necessarily complete and the operation of colouring may not be definable on enough
frames to guarantee that the logic is recoverable from its coloured counterpart.

There are two approaches to colouring and decolouring. One is to view this as a
relation between bimodal and monomodal frames. The other is to view it as a relation
between bimodal and trimodal frames. In the first approach the monomodal frame
contains the relation that is ‘split’ in its bimodal coloured version. In the second
approach the three modalities are merged. So, the three–modal frame is obtained by
a fusion of the bimodal coloured frame and its uncoloured variant. (This has been
brought to my attention by K F.) Both approaches have their merits. Prima
facie colouring seems to be an operation that is always defined. Unfortunately, we
have to introduce two restrictions. Namely, we must restrict ourselves to Kripke–
frames, and moreover to Kripke–frames in which a point has a C–successor iff it has
a J–successor.

D 9.3.1. Let f = 〈 f ,C,J〉 be a Kripke–frame for K.alt1⊗K.alt1(♦> ↔
�>). Then D(f) := 〈 f ,C∪J〉 is called the decolouring of f. Conversely, if g = 〈g,6〉
is a monomodal Kripke–frame then any f such that D(f) = g is called a colouring
of g. We denote by C(g) the set of colourings of g, and for a class K of monomodal
Kripke–frames, C K := D−1[K].

Let us first present an example of an uncolourable frame. Take the set f = ω×4.
Let f = 〈 f ,6〉 where

6 := {〈〈n, 0〉, 〈n, 0〉〉 : n ∈ ω}
∪ {〈〈n, 0〉, 〈n, 1〉〉 : n ∈ ω}
∪ {〈〈n, 2〉, 〈n, 3〉〉 : n ∈ ω}
∪ {〈〈n, 2〉, 〈n + 1, 3〉〉 : n ∈ ω}
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Put Y := (ω × {0}) ∪ (ω × {2}) and X := (ω × {1}) × (ω × {3}). The sets X and Y
are definable by constant formulae, for example �⊥ and ♦ � ⊥. Finally, let F be the
algebra of sets generated by the finite sets. This is exactly the algebra A of sets a
such that a ∩ X is finite or cofinite in X and a ∩ Y is finite or cofinite in Y . To show
that A = F, let us first note that A contains all finite sets. Moreover, A ⊆ F because
if we have a finite set a, we have a ∩ X ∈ F and a ∩ Y ∈ F, as well as X ∩ (−a) and
Y ∩ (−a). So we can compose any set which is finite or cofinite in X and finite or
cofinite in Y . F ⊆ A is clear. It is also routine to check that A is closed under the
natural operations.

P 9.3.2. F := 〈f,A〉 is not colourable.

P. Let 〈 f ,C,J,A〉 be a colouring of 〈 f ,6,A〉. Then 6 = C∪ J. Any point
in ω×{2} sees exactly one point in ω×{3} in each direction. Hence the sets ♦(ω×{3})
and �(ω× {3}) are both cofinite in ω× {2}. But ♦(ω× {1}) and �(ω× {1}) cannot both
be cofinite in ω× {0}. Without loss of generality we assume that ω× {0} − ♦(ω× {1})
is infinite. Then ♦X = ♦(ω × {1}) ∪ ♦(ω × {3}) is neither finite nor cofinite in Y , and
so not in A. Thus no colouring exists on F. �

The next question is the restriction to frames which validate the axiom �> ↔
♦>. If we are interested in the mere operations of colouring and decolouring such
a restriction is strictly speaking unnecessary. However, consider the monomodal
frame m := 〈{0, 1},6〉 where 6 := {〈0, 1〉, 〈1, 1〉}. Consider the bimodal frame
b := 〈{0, 1},C,J〉 where C = {〈0, 1〉} and J = {〈1, 1〉}. Then m has a one–point
contractum, but b does not. This is not a good situation; we want that a colouring of
m must be a frame c such that each p–morphic image n of m can be coloured in such
a way that it is a contractum of c. This gives rise to the restriction that a point must
have a C–successor iff it has a J–successor.

D 9.3.3. Let Λ be an extension of K.alt2. Then Λ, defined by Λc :=
Th (C [KrpΛ]) is called the colouring of Λ. Let Θ be an extension of the logic⊗

2

K.alt1 ⊕ ♦> ↔ �> .

Then Θd := Th (D [KrpΘ]) is called the decolouring kernel of Θ.

In this section we will be concerned with the algebraic properties of these maps,
with a syntactic description of the operations of colouring and decolouring as well
as the properties of the corresponding semantic maps. First, as it is easy to see,
colouring and decolouring are isotone maps between the poset reducts of the lattices
of logics.

T 9.3.4. The colouring map (as a map between posets) is left adjoined
to the decolouring kernel map. Moreover, for every extension Θ of K.alt2, Θ = Θcd.

P. We have DD−1 [K] = K for all classes of monomodal Kripke–frames.
Putting K := KrpΘ shows Θ = Θcd. For by Kripke–completeness, Θ = Th KrpΘ.
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Let Λ be a bimodal logic, Θ a monomodal logic. Then Λ ⊇ Θc iff KrpΛ ⊆ KrpΘc =

C [KrpΘ]. The latter implies D[KrpΛ] ⊆ DD−1 [KrpΘ] and so D KrpΛ ⊆ KrpΘ,
since DD−1 [K] = K for all classes of Kripke–frames. The latter is equivalent to
Λd ⊇ Θ. It is checked that the converse holds as well. �

The connection between frames and colourings is introduced by the following
translation.

D 9.3.5. The map c : P1 → P2 is defined by

pc := p
(ϕ ∧ ψ)c := ϕc ∧ ψc

(¬ϕ)c := ¬ϕc

(♦ϕ)c := ♦ϕc ∨ �ϕc

Moreover, ∆c := {ϕc : ϕ ∈ X} for a set ∆ ⊆ P1.

P 9.3.6. Let b be a Kripke–frame for K.alt1 ⊗ K.alt1(♦> ↔ �>),
x ∈ b and β a valuation on b. Then

〈b, β, x〉 � ϕc ⇔ 〈D(b), β, x〉 � ϕ

Moreover, b � ϕc iff D(b) � ϕ.

P. By induction on ϕ. Only the step for ϕ = ♦ψ is nonobvious.

〈b, β, x〉 � (♦ψ)c

iff 〈b, β, x〉 � ♦ψc or 〈b, β, x〉 � �ψc

iff for some y B x 〈b, β, y〉 � ψc or for some y I x 〈b, β, y〉 � ψc

iff for some y(B∪ I)x 〈b, β, y〉 � ψc

iff for some y > x 〈D(b), β, y〉 � ψ
iff 〈D(b), β, x〉 � ϕ.

The second claim follows immediately. If b 2 ϕc then 〈b, β, x〉 � (¬ϕ)c for some β, x.
Hence 〈D(b), β, x〉 � ¬ϕ and so D(b) 2 ϕ. And conversely. �

The syntactic correlate of colouring of a bimodal logic is also rather easily de-
fined.

P 9.3.7. Suppose Λ = K.alt2 ⊕ ∆. Then Λc =
⊗

2 K.alt1 ⊕ ♦> ↔
�> ⊕ ∆c.

P. Let m be a monomodal frame for K.alt2. From Proposition 9.3.6 we
deduce that m � ϕ iff C(m) � ϕc. Alternatively, m ∈ Krp K.alt2 ⊕ ϕ iff C(m) ⊆
Krp

⊗
2 K.alt1 ⊕ ♦> ↔ �> ⊕ ϕ

c. From this the theorem follows. �

T 9.3.8. The colouring map is a homomorphic embedding of the locale
EK.alt2 into the locale E (

⊗
2 K.alt1 ⊕ ♦> ↔ �>).
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P. Using the results of Section 2.9 it is not hard to see that colouring com-
mutes with (infinite) joins. To see that it commutes with meets, suppose that Λ1 =

K.alt1 ⊕ ∆1 and Λ2 = K.alt2 ⊕ ∆2. Then

Λc
1 u Λ

c
2

= (
⊗

2 K.alt1 ⊕ ♦> ↔ �> ⊕ ∆
c
1) u (

⊗
2 K.alt1 ⊕ ♦> ↔ �> ⊕ ∆

c
2)

=
⊗

2 K.alt1 ⊕ ♦> ↔ �> ⊕ {�
≤mϕ

.
∨ �≤mψ : ϕ ∈ ∆c

1, ψ ∈ ∆
c
2,m ∈ ω}

=
⊗

2 K.alt1 ⊕ ♦> ↔ �> ⊕ {(�≤mϕ
.
∨ �≤mψ)c : ϕ ∈ ∆1, ψ ∈ ∆2,m ∈ ω}

= (Λ1 u Λ2)c

(Note that the definition of � depends on the language. Hence the step from the
second to the third line is correct.) Finally, we have to show that the colouring is
injective. So, let Λ := K.alt2 ⊕ ∆ and Θ := K.alt2 ⊕ ∆

′ and Λ , Θ. Without loss
of generality there exists a Kripke–frame m such that m � ∆, but m 2 ψ for some
ψ ∈ ∆′. Then there exists a colouring b of m such that b 2 ψc. b � ∆c. This shows
Λc , Θc. �

P 9.3.9. Let Θ be an extension of
⊗

2 K.alt1 ⊕ ♦> ↔ �>. Then
Θd = {ϕ : ϕc ∈ Θ}.

P. ϕ ∈ Θd iff ϕ ∈ Th D[KrpΘ] iff for all b ∈ KrpΘ we have D(b) � ϕ iff for
all b ∈ KrpΘ we have b � ϕc iff ϕc ∈ Θ. �

T 9.3.10. The decolouring operation D commutes with the class oper-
ators of taking generated subframes, contraction images, disjoint unions and ultra-
products.

The proof is routine and left as an exercise. We note that from Corollary 9.2.8
we derive

C 9.3.11. For any class K of bimodal Kripke–frames for the logic⊗
2 K.alt1 ⊕ ♦> ↔ �> it holds that D M K = M D K. Here, M K := Krp Th K.

T 9.3.12 (Grefe). The colouring map map leaves invariant finite ax-
iomatizability and local finite model property.

P. Finite model property is clear from the definition and the construction of
decolouring. Moreover, if Λ is finitely axiomatizable, so is Λc, by Proposition 9.3.7.
For the converse, let Λc be finitely axiomatizable. Then KrpΛc is an elementary
class. Therefore KrpΛ = D KrpΛc is an elementary class, since D commutes with
Up, by Theorem 9.3.10. �

T 9.3.13. C commutes with taking generated subframes and disjoint
unions of Kripke–frames. Moreover, for contraction images Cn, Cn C K ⊆ C Cn K.

P. Generated Suframes. Let g be a Kripke–frame, and f � g. Then any
colouring of g induces a colouring of f. Any colouring on f can be extended to a
colouring of g. Disjoint Unions. Let gi be Kripke–frames, i ∈ I. Pick a colouring
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hi on each gi. It is easy to check that
⊕

i∈I hi is a colouring of
⊕

i∈I gi. Also, every
colouring on

⊕
i∈I gi gives rise to a colouring of each individual gi. Contraction

Images. Assume that g and h are monomodal Kripke–frames, and π : g � h. Let
hc be a colouring of h. We have to show that there is a colouring gc of g such that
π : gc � hc. So let x, y ∈ g and x 6 y. we have to decide whether x C y or whether
x J y. Three cases arise. (i.) x has a single successor. This successor is y. Then we
put x C y and x J y. (ii.) x has two successors y and z and π(y) , π(z). Then x C y iff
π(x) C π(y) and x J y iff π(x) J π(y); and similarly for z. (iii.) x has two successors
y and z but π(y) = π(z). In this case we choose as to whether x C y and so x J z or
x J y and so x C z. With this definition made, let us show that π : gc � hc. So, let
xC y. Then x 6 y and so π(x) 6 π(y). It remains to be seen that π(x)C π(y). If π(y) is
the only 6–successor of π(x), then π(x) C π(y) by virtue of definition of a colouring.
So assume that π(x) has two successors, u1 and u2. By construction, if x C u1 then
u1 = π(y), and so π(x) C π(y). Similarly the case x J y is dealt with. This shows the
first condition on p–morphisms. For the second condition, assume π(x) C u. Then
π(x) 6 u and for some y we have x 6 y and π(y) = u. Then x J y or x C y. Clearly, x
has a 6–successor. Case 1. x has exactly one successor. Then both x J y and x C y
and we are done. Case 2. x has two successors and their images are distinct. Then
x C y by definition of C. Case 3. x has two successors y1, y2, and both are being
mapped onto u. Then we have x C y1 or x C y2, by construction. This concludes the
proof of the fact that π is a p–morphism. �

L 9.3.14. Let K be a class of Kripke–frames for K.alt2. Then Up C K ⊆

C Up K.

P. Let gi, i ∈ I, be Kripke–frames in K, and choose a colouring gci of each
frame. Let U be an ultrafilter on I. We want to show that

∏
U g

c
i is isomorphic to

a colouring of an ultraproduct of the gci . We take h :=
∏

U gi. We let xU C yU iff
{i : xi C yi} ∈ U. This definition does not depend on the choice of the representatives.
Moreover, it shows that the identity map is an isomorphism from

∏
U g

c
i onto hc. �

T 9.3.15 (Grefe). Let K be a modally definable class of Kripke–frames
for K.alt2. Then C K is a modally definable class of Kripke–frames for K.alt1 ⊗

K.alt1(♦> ↔ �>).

P. By the previous theorems, C K is closed under generated subframes,
contractions, disjoint unions and ultraproducts. By Corollary 9.2.8 we get that M C K ⊆

C M K, since M consists in taking generated subframes of contractions of ultraprod-
ucts. If K = M K then C K ⊆ M C K ⊆ C M ,K = C K. And so equality holds. �

T 9.3.16. Th Up C K = Th C Up K.

P. The inclusion ‘⊇’ follows from Lemma 9.3.14. For the other inclusion
assume ϕ < Th C Up K. Then for some gi there exists a colouring h of

∏
U gi such

that h 2 ϕ, say 〈h, β, xU〉 � ¬ϕ. Let δ be the modal depth of ϕ. Now look at the
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δ–transit of xU in h. It is finite, and hence

A := {i : Trδgi (xi) � Trδhd (xU)} ∈ U

For each i ∈ A fix an isomorphism ιi from the δ–transit of xi in gi onto the δ–transit
of xU in h. We colour the δ–transit of xi in gi in the way prescribed by h. That is, we
put xi C yi iff ιi(xi) C ιi(yi). This defines for each i ∈ I a partial colouring (if i < A,
then nothing is prescribed so far). Choose any colouring on the gi that extends the
partial colouring. This defines gci . Then let k :=

∏
U g

c
i . It is routine to show that

the δ–transit of xU in k is isomorphic to the δ–transit of xU in h. Hence k 2 ϕ. And
k ∈ Up C K. �

T 9.3.17. For any class K of K.alt2–Kripke–frames

M C K = C M K

P. Both are modal classes. And their theory is identical. Hence they are
identical. �

Exercise 333. Suppose Λc is defined on the basis of an axiomatization as in
Proposition 9.3.7. Verify syntactically that this definition is independent of the cho-
sen axiomatization of Λ.

Exercise 334. Let Θ be an extension of
⊗

2 K.alt1 ⊕ ♦> ↔ �>. Show syntactically
that {ϕ : ϕc ∈ Θ} is a logic.

Exercise 335. Show Theorem 9.3.10.

Exercise 336. Show with a particular counterexample that C Cn K ⊆ Cn C K does
not hold in general.

∗Exercise 337. Generalize the results of this section to polymodal logics. Show that
extensions of n–modal K.alt1 can be interpreted as extensions of K.altn.

9.4. Decidability of Logics

Consider a finite set A of symbols, called alphabet. By A∗ we denote the set
of finite strings over A, including the empty string, denoted by ε. Strings will be
denoted by a vector arrow, e. g. ~x, ~y etc. An equation is a pair 〈~v, ~w〉 ∈ A∗ × A∗,
written ~v ≈ ~w. A Thue–process over A is a finite set of equations. Given a Thue–
process P we write ~y ≈1

P ~z iff there exist ~c, ~d ∈ A∗ and ~v ≈ ~w ∈ P such that ~y = ~c ·~v · ~d
and ~z = ~c · ~w · ~d or ~y = ~c · ~w · ~d and ~z = ~c · ~v · ~d. We say also that ~z is one–step
derivable from ~y. Thus, ~z is one–step derivable from ~y iff it can be produced from ~y
by replacing a substring matching one side of an equation in P by the other side of
that equation. We define ~y ≈n

P ~z inductively by ~y ≈0
P ~z iff ~y = ~z and ~y ≈n+1

P ~z iff there
exists ~x such that ~y ≈1

P ~x ≈
n
P ~z. Finally, ~y ≈P ~z iff there exists an n ∈ ω such that
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~y ≈n
P ~z. We say that ~z is n–step derivable from ~y if ~y ≈n

P ~z and that it is derivable if
~y ≈P ~z. A Thue–process is decidable if for given ~y,~z it is decidable whether or not
~z ≈ ~y is derivable in it. A Thue–process is called trivial if ~x ≈ ε is derivable for all
~x ∈ A∗ iff a ≈ ε is derivable for all a ∈ A. The following facts will be used in sequel.

T 9.4.1 (Post, Markov, Rabin). Let A contain at least two symbols.

1. There exists undecidable Thue–processes.
2. The set of decidable Thue–processes is undecidable.
3. The set of trivial Thue–processes is undecidable.

These statements were shown in [163], [156] and [167], respectively. Proofs of
these fact can also be found in many textbooks. A Thue–process can be seen as a
presentation of a semigroup. Recall from Section 1.3 the notion of a presentation.
Let S G the theory of semigroups in the language 1, ·. For example, S G = {x ≈
x ·1, x ≈ 1 · x, (x ·y) · z ≈ x · (y · z)}. The free semigroup over A, FrS G(A) is isomorphic
to 〈A∗, ε, ·〉. Given a Thue–Process P, 〈A,P〉 is a presentation of a semigroup denoted
by FrS G(A)/P, and we have ~x ≈P ~y iff ~x and ~y are identical elements of FrS G(A)/P.
This is the most standard way of thinking about Thue–processes. We can derive two
rather useful results. First, take the first–order theory of two unary functions, f0 and
f1. These functions are interpreted on a semigroup generated by two elements, say
0 and 1, as concatenating a word with one of the two generators. Namely, we put
f0(x) := x · 0 and f1(x) := x · 1. Since 0 and 1 generate this group, for any word ~u
the function f~u : x 7→ x · ~u can be composed from these two functions. Hence an
equation ~u ≈ ~v can be rewritten into the statement

(‡) (∀x)( f~u(x) � f~v(x))

Now, a semigroup satisfies the equation ~u ≈ ~v iff it satisfies the first–order condition
(∀x)( f~u(x) � f~v(x)). Thus, the first–order theory of the semigroup generated by a
Thue–process P is exactly axiomatized by the the axioms (‡) for 〈~u,~v〉 ∈ P. So,
we can encode the derivability of the Thue–process into first–order logic over two
unary functions. The unary function f0, on the other hand, can be viewed as a binary
relation C0 which satisfies two postulates. (i) (∀xyz)(x C0 y ∧ x C0 z. → .y � z)
and (ii) (∀x)(∃y)(x C0 y). Similarly with f1. Hence we conclude that the ∀∃–theory
(i. e. the set of sentences of that theory which are of complexity at most ∀∃) of two
binary relations is undecidable. Given a Thue–process we build a canonical process–
frame cP as follows. ≈P is a congruence on A∗. The equivalence class of ~x in this
congruence is denoted by [~x]. So, [~x] = {~y : ~y ≈P ~x}. Then cP := {[~x] : ~x ∈ A∗}. We
put A := {w, b} (w stands for white and b for black.)

A∗/P := {[~x] : ~x ∈ A∗}
C := {〈[~z], [~z · w]〉 : ~z ∈ A∗}
J := {〈[~z], [~z · b]〉 : ~z ∈ A∗}
cP := 〈A∗/P,C,J〉
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In what is to follow we will not always distinguish between sequences and the equiv-
alence classes of these sequences modulo P. Fix a sequence ~x. The map π : [~y] 7→
[~x] · [~y] is a p–morphism of cP onto the transit of [~x]. For if [~y]C [~z] then [~z] = [~y ·w],
and then also [~x] · [~z] = [~x] · [~y · w], from which π([~y]) = [~x] · [~y] C [~x] · [~z] = π([~z]).
Next, if π([~y]) = [~x] · [~y] C [~u], then [~u] = [~x] · [~y · w]. So, let [~v] := [~y · w]. Then
π([~v]) = [~x] · [~y · w] = [~u]. And [~y] C [~v]. Similarly for J.

With a Thue process we associate two logics, namely

ΣP = K.alt1 ⊗K.alt1 ⊕ {♦
~v p↔ �~w p : ~v ≈ ~w ∈ P}

ΛP = K.alt1.D ⊗K.alt1.D ⊕ {♦~v p↔ �~w p : ~v ≈ ~w ∈ P}
= ΣP ⊕ ♦> ⊕ �>

The following theorem is easy to prove with the help of Theorem 3.5.3.

P 9.4.2. Let P be a Thue–process. ΣP is a subframe logic. It is of
(pure) Sahlqvist rank 0 and its frames are characterized by the properties

(∀x)(∀y B~v x)(∀z B~w x)(y � z), 〈~v, ~w〉 ∈ P

ΣP has the finite model property and is locally decidable.

P 9.4.3. Let g be a rooted Kripke–frame for ΛP. Then there exists a
contraction cP � g.

P. Let w0 be the root of g. Then let s : A∗ → g be defined by s(ε) := w0.
Further, s(~x · w) is the unique element y such that s(~x) C y. Similarly, s(~x · b) is the
unique element y′ such that s(~x) J y′. It is checked that if ~x ≈P ~y then s(~x) = s(~y).
Hence, the function defines a function t([~x]) := s[([~x])]. It is readily verified that t is
a p–morphism. It is onto by the fact that g is rooted at w0. �

P 9.4.4. Th 〈cP, [ε]〉 = Th cP = ΛP.

P. We know that Th 〈cP, [~x]〉 ⊇ Th 〈cP, [ε]〉 from the fact that the transit of
[~x] is the p–morphic image of cP. Hence Th 〈cP, [ε]〉 is normal and identical to Th cP.
Now, ΛP and Th cP are extensions of K.alt1.D ⊗ K.alt1.D. First of all, cP is a frame
for ΛP. Hence Th cP ⊇ ΛP. Also, let g be a rooted Kripke–frame for ΛP. Then g is a
contractum of cP. So, Th cP and ΛP have the same rooted Kripke–frames. Hence —
being complete — they are identical. �

T 9.4.5. ΛP is decidable iff P is decidable.

P. Suppose that P is undecidable. Then the problem ‘~x ≈P ~y’ is undecid-
able. Hence the problem ‘♦~x p ↔ ♦~y p ∈ ΛP’ is undecidable (since it is equivalent to
‘~x ≈P ~y’). Now suppose that P is decidable. Given a formula ϕ, we want to be able
to decide whether it is satisfiable in a ΛP–frame. By Proposition 9.4.4, it suffices
to be able to decide whether ϕ is satisfiable in 〈cP, [ε]〉. It is possible to convert ϕ
algorithmically into a disjunction of formulae χ which have the form∧

i<n

♦~xiµi
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where ~xi ∈ A∗ and µi a conjunction of variables or negated variables. (Moreover,
no variable occurs both simply and negated.) It is enough if we are able to decide
whether χ is satisfiable in 〈cP, [ε]〉. Now consider a valuation γ such that 〈cP, γ, [ε]〉 �
χ. Then 〈cP, γ, [~xi]〉 � µi, for all i < n. And conversely. γ exists iff there do not exist
i and j and a variable p such that [~xi] = [~x j] and p is a conjunct of µi, ¬p a conjunct
of µ j. Since P is decidable, the problem ‘[~xi] = [~x j]’ is decidable. Hence we can
decide whether γ exists. �

We can extract the following characterization of Halldén–completeness.

T 9.4.6 (Grefe). An extension Λ of bimodal K.alt1 is Halldén–complete
iff

1. Λ = K(�⊥) ⊗K(�⊥) or
2. there are s, t ∈ ω such thatΛ = K(�⊥)⊗Th cycs,t orΛ = Th cycs,t⊗K(�⊥)

or
3. Λ = ΛP for some (possibly infinite) Thue–process.

P. Since Halldén–completeness transfers under fusion the logics of the first
two types are Halldén–complete. The logics of the third kind, however, are also
Halldén–complete since they are determined by a single matrix by Theorem 1.6.5.
This matrix corresponds to 〈cP, [ε]〉. Now let Λ be a logic containing bimodal K.alt1.
If it contains the axiom �⊥, then it is of the form K.alt1(�⊥) ⊗ Θ with Θ Halldén–
complete. Hence, it is of the first or the second type. Likewise if it contains the
axiom �⊥. If neither is the case, Λ is an extension of bimodal K.alt1.D. Let ϕ be an
axiom for Λ. We can put it into canonical form; it is then a disjunction of formulae
disjoint in variables. Hence, by Halldén–completeness the disjunction is trivial, and
so ϕ is actually a conjunction of path–equations. And so Λ is of the form ΛP for
some possibly infinite P. �

ΛP extends ΣP by two constant axioms, ΣP does not have the global finite model
property, by constructive reduction. Similarly for decidability.

P 9.4.7. Let P be a Thue–process. (i) If P presents an infinite semi-
group then ΣP fails to have the global finite model property. (ii) If P is undecidable
then ΣP is globally undecidable.

Exercise 338. Show that it is undecidable whether or not given a Thue–process P
the semigroup presented by P is finite.

Exercise 339. Show that it is undecidable for every n whether the semigroup pre-
sented by P has ≤ n (exactly n) elements.

Exercise 340. Generalize Theorem 9.4.6 to arbitrarily many operators.
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Exercise 341. Show that the first–order theory of a single binary relation is undecid-
able. Hint. Use the modal simulation theorem.

Exercise 342. Let P be a Thue–process. Show that ΣP is in NEXPTIME.

9.5. Decidability of Properties of Logics I

In the remaining sections of this chapter we will discuss questions of decidabil-
ity of properties of logics. Recall that we study these questions in the following
general setting.

D 9.5.1. Let P be a subset of E Kκ. P is decidable if for every finite
set ∆ of formulae in Pκ the problem ‘Kκ ⊕ ∆ ∈ P’ is decidable.

In general sets P will be determined by certain properties. So, we will say that
a property of logics is undecidable if the corresponding subset of the lattices have
that property. It will turn out that properties of logics are undecidable in the over-
whelming number of cases. There might be a general reason for this, but right now
we will just walk through a number of properties and discuss their decidability. The
first property we will discuss is identity to a given logic, and related to it inclusion in
a given logic. Recall from Section 7.1 the following theorem.

P 9.5.2. Λ is decidable iff the problem ‘Kκ ⊕ ϕ ⊆ Λ’ is decidable. In
other words, Λ is decidable iff the set ↓Λ is a decidable subset of EKκ.

T 9.5.3. For monomodal logics, consistency is decidable.

P. By Makinson’s Theorem, Λ = K⊕⊥ iff Λ * Th • and Λ * Th ◦ . The
latter is decidable. �

This is an exceptional fact of monomodal logic, just in the same way as Makinson’s
Theorem is unique for monomodal logics. Consistency is undecidable as soon as we
have two modal operators. The way to see this is as follows. First, by the results of
the previous section it is undecidable whether a bimodal logic is equal to Th ◦|◦ ,

where ◦|◦ is the one–point bimodal frame which is reflexive in both relations. For
example, take the logics ΣP corresponding to Thue–systems. The logics ΣP can have
the following one–point frames as models, •|• , •|◦ , ◦|• , ◦|◦ , standing for
the one point frame with the two relations being either reflexive or irreflexive. Now,
P � w ≈ ε iff neither •|• nor •|◦ is a frame for ΣP. Define

Θ := Th •|• u Th •|◦ .

Θ is a subframe logic. Then P � w ≈ ε iff Θ t ΣP is inconsistent. It is not decidable
whether P � w ≈ ε, otherwise it is decidable whether a Thue–process is trivial.
Notice that Θ t ΣP is a subframe logic.
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T 9.5.4. (κ ≥ 2.) Decidability is undecidable. Moreover, consistency of
elementary subframe logics is undecidable. (κ = 1.) {Th • } is undecidable.

This theorem has a number of consequences. The first concerns the property of
being a subframe logic. The argument is shown for κ = 1, but can easily be lifted to
a logics with several operators.

C 9.5.5. It is undecidable whether a given logic is a subframe logic.

P. (Version 1.) Let Θ be a bimodal logic. Consider Θs. We show that it is
closed under subframes iff Θ is inconsistent. This is undecidable. Suppose that Θs is
a subframe logic. Let F be a Θ–frame. Then let G be the subframe over the points
satisfying α∨β. This is not a frame for Sim unlessG is empty. So, F is either empty
or F � • . Hence Θ is inconsistent. Now suppose that Θ is inconsistent. Then the
frames of Θs are the empty frame and • . So, Θs is a subframe logic. �

P. (Version 2. (κ > 1.)) Consider the logics ΛP. They are complete and
elementary. Now, ΛP is a subframe logic iff cP contains only a single point. Namely,
consider the subframe e based on [ε]. Either for all C j, [ε]C j [ε] and then cP has only
one point, or [ε] 6 j [ε] for some j, and then e 2 ♦ j> while cP � ♦ j>. �

Furthermore, tabularity and weak transitivity are undecidable. For notice that
the two are equivalent in logics of bounded alternativity. So suppose that weak tran-
sitivity is decidable. First we decide whether or not ΛP is weakly transitive. If not, it
P unequal to the trivial process. But if ΣP is weakly transitive, the canonical Thue–
frame cP is finite, and ΛP is decidable, and we can check whether it contains the
equations ε ≈ a, a ∈ A. So we can decide of P whether it is identical to the trivial
process. Contradiction.

T 9.5.6. Tabularity and weak transitivity are undecidable.

T 9.5.7. It is undecidable whether or not a monomodal logic contains
K4.

P. Consider the logic (ΣP tΘ)s, the simulation of ΣP tΘ. It is transitive iff
P is trivial. �

Now let us deal with decidability. If we have more than one operator, then local
decidability is undecidable, because ΛP is decidable iff P is (Theorem 9.4.5). Now,
ΣP is locally decidable. Let us assume we can decide whether or not ΣP is globally
decidable. Then we can actually decide whether P is trivial. This goes as follows.
Take P and check first whether ΣP is globally decidable. If not, P is not trivial. If ΣP
is globally decidable, then decide whether or not ♦>; �> 
ΣP p↔ ♦p; p↔ �p. P is
trivial iff both formulae are derivable. This is decidable. Similarly we can show that
it is undecidable whether ΣP has the global finite model property. Namely, assume
it is decidable whether or not ΣP has the global finite model property. Take a Thue–
process P and check whether ΣP has the global finite model property. If not, P cannot
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be trivial. If it does, however, ΛP is decidable, and we can then decide whether P is
trivial. We leave it to the reader to supply the argument that it is undecidable whether
ΛP has the local finite model property.

T 9.5.8. (κ ≥ 2.) It is undecidable whether or not a logic is locally
decidable. Moreover, it is undecidable whether or not a logic is globally decidable
even when it is known that it is locally decidable.

T 9.5.9. (κ ≥ 2.) It is undecidable whether or not a logic has the local
finite model property. Moreover, it is undecidable whether or not a logic has the
global finite model property even when it is known that it has the local finite model
property.

The next result has first been obtained by L C in [44]. The present
proof appeared first in C G [91].

T 9.5.10. (κ ≥ 2.) It is undecidable whether a first–order condition is
modally definable.

P. Let T1 be the elementary theory of two binary relations. T1 is universal
and undecidable. The formula

α0 := (∀x)[(∀y B x)(y 6� x) ∧ (∀y I x)(y 6� x)]

expresses irreflexivity and is not modally definable, because it is not positive. Now
consider the formula β := α0 ∨ γ, where γ is arbitrary. Then if for a Kripke frame
f we have f � α0, then also f � β. Now suppose that β is modally definable. Then
it must hold in all Kripke frames for K.alt1 ⊗ K.alt1 by the fact that every frame is
the p–morphic image of an irreflexive frame (using unravellings). Thus T1 ` α0 ∨ γ,
whence T1;¬α0 ` γ. Suppose now that β is not modally definable. Then T1 0 β,
that is, T1;¬α0 0 γ, for otherwise β holds in all frames and is therefore modally
definable (for example by the true constant). Hence if we are able to show that T2 :=
T1 ∪ {¬α0} is undecidable, we have succeeded in showing that modal definability (of
β) is undecidable.

Now consider the theory T3 := T1 ∪ {α1} with

α1 := (∃x) [(∀y B x)(y � x) ∧ (∀y I x)(y � x)
∧ (∀z){(∀y B z)(y 6� x) ∧ (∀y I z)(y 6� x)}]

Since ` α1 → ¬α0 we have that if T2 is decidable, so is {ζ : T2 ` α1 → ζ} = {ζ :
T1;¬α0;α1 ` ζ} = {ζ : T1;α1 ` ζ} = {ζ : T3 ` ζ}. So we are done if we have shown
that T3 is undecidable. Now, consider a frame f for T1. If we add an inaccessible,
reflexive point, that is, if we form the disjoint union f ⊕ r, where r is the one–point,
reflexive frame, then we have a T3–frame. And a T3–frame is a T1–frame. Denote
by T∀ the set of sentences of T which have the complexity ∀. By standard model
theory, T∀3 = T∀1 = T1. Hence, since T1 is undecidable, so is T∀3 and a fortiori T3. �
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C 9.5.11. (κ ≥ 2.) It is undecidable for Sahlqvist logics of rank 0
whether they are of pure rank 0.

T 9.5.12. (κ ≥ 2.) It is undecidable whether a logic is a fusion of
monomodal logics.

P. Suppose it is decidable whether a κ–modal logic is fusion of monomodal
logics. Let P be a Thue–process over κ. Then it is decidable whetherΛP is a fusion of
monomodal logics. We show that it is decidable whether P is trivial. For assume that
ΛP is in fact a fusion of monomodal logics. Then by Theorem 9.1.3 it has the finite
model property and is decidable. So, it is decidable whether or not ΛP is the logic of
a one–point frame. Therefore it is decidable whether P is trivial. Now assume that
ΛP is not the fusion of monomodal logics. Then P is not trivial. �

Finally, by invoking the Simulation Theorem, the following is proved without
any condition on the number of operators.

T 9.5.13. The following properties of finitely axiomatizable logics are
generally undecidable on the basis of a finite axiomatization

∗ identity to and inclusion in a given tabular logic,
∗ independent axiomatizability (for κ > 1),
∗ tabularity, weak transitivity,
∗ local decidability,
∗ global decidability, with local decidability given,
∗ local finite model property,
∗ global finite model property, with local finite model property given,
∗ modal definability for elementary conditions,
∗ being a subframe logic.

The first claim should be read as follows. There is no general algorithm that
decides, given a tabular logic Λ and a formula ϕ, whether or not K ⊕ ϕ ⊆ Λ, and
whether or not K⊕ϕ = Λ. In particular, there is no algorithm deciding these problems
for Λ = Th • in case κ = 1 and Λ = Kκ ⊕ ⊥ for κ > 1. The application of the
Simulation Theorem is in each cases straightforward. Notice that the simulation of
a subframe logic is not a subframe logic, so in this case nothing follows for κ = 1.
Likewise, Corollary 9.5.11 has no analogue, even though a somewhat less interesting
variant could be formulated. The reader may find it useful to describe the fact about
monomodal logics that this theorem gives rise to.

Notes on this section. Many results of this section have been obtained by A
C, L C, and M Z, see for example [44], [41].
The method in these papers is mainly simulating the action of a Minsky machine in
a logical frame. This construction is rather complicated compared to the methods of
this section. However, it achieves stronger results (whenever applicable) namely for
extensions of K4 and for intermediate logics.
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Exercise 343. Show that being n–transitive is undecidable for any n ≥ 1.

Exercise 344. Show that an extension of G is canonical iff it contains an axiom of
the form �n⊥. Show that the latter is equivalent to the logic being contained in G.3.

Exercise 345. Show that being of codimension n is undecidable for any given n, with
the exception of κ = 1 and n = 0.

9.6. Decidability of Properties of Logics II

The previous results have been more or less straightforward consequences of
the classical theorems on Thue–processes. For many properties, however, there is
a rather effective tool for establishing their undecidability. It is due to S. T
[212]. Suppose we are interested in the decidability of a propertyP. Suppose further
that the inconsistent polymodal logics have P and that we have found a finitely ax-
iomatizable logic Λ which lacks P. If P transfers under fusion, then undecidability
ofP follows simply from the fact that consistency is undecidable for bimodal logics.
For consider logics of the form Λ ⊗ Θ, Θ finitely axiomatized. This logic has P iff
Θ is inconsistent. For if Θ is consistent, so is Λ ⊗ Θ, and since Λ fails to have P,
Λ ⊗ Θ fails to have P, too. If, however, Θ is inconsistent, so is Λ ⊗ Θ and has P
by assumption. We refer to this argument as Thomason’s Trick. Clearly, if P also
transfers under simulation, then undecidability of P can be shown for monomodal
logics. An impressive list of properties can be treated in this way. The following list
is by no means exhaustive.

T 9.6.1. The following properties of logics are undecidable.
1. Krp–elementarity,
2. α–compactness,
3. α–canonicity,
4. global completeness given local finite model property,
5. (local/global) interpolation,
6. (local/global) Halldén–completeness.

P. Using Thomason’s Trick. The inconsistent logic is Krp–elementary, α–
compact, α–canonical, has the global finite model property, is Halldén–complete and
has interpolation. Hence, single negative examples must be found for all of these
properties. G is a logic that is not Krp–elementary (1.), G ⊗ K is not 1–compact
(see Section 6.5) (2.) and therefore not 1–canonical (3.). (4.) follows from the con-
junction of Theorem 9.6.3 and 9.6.4. For interpolation and Halldén–completeness
we need to ensure that a Λ exists not having these properties which is also complete
with respect to atomic frames. For (local/global) Halldén–completeness take K. For
interpolation take S4.3. �

This method can be adapted to bounded properties as well. Notice that bounded
properties generally fail to transfer under fusion. For example, if Λ is pre–tabular,
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then Λ ⊗ Θ need not be pre–tabular even if Θ is tabular. However, if Θ = Th • ,
or Θ = Th ◦ , pre–tabularity is preserved and reflected. Moreover, for any other
logic Λ⊗Θ is not pre–tabular, by Makinson’s Theorem. To show that pre–tabularity
is undecidable it just remains to show that the set {Th • ,Th ◦ } is an undecidable
subset of E K. This is relatively straightforward given the results of the previous
section and is therefore given as an exercise.

We still have to show that there exist logics which have the local finite model
property but are globally incomplete. Here is such an example, the logic Θ. It is a
3–modal logic based on �i, i < 3. We write � for �0, � for �1 and � for �2.

Θo := K4.3 ⊗K.alt1 ⊗K.alt1

⊕ p→ �♦p
⊕ ♦�q ∨ �♦q→ q ∨ ♦q
⊕ ♦ p→ ♦p
⊕ � � ⊥

⊕ �� � ⊥

⊕ ♦♦ p ∧ ♦q→ ♦♦ (p ∧ ♦q)
Θ := Θo ⊕ ♦p→ ♦(p ∧ ¬♦p)

Θo is Sahlqvist and therefore Krp∪D–elementary. Θ contains in addition the axiom
G for �. A Kripke–frame 〈 f ,C,J,6〉 satisfies the axioms of Θ iff the following
conditions are met.

(a) C is a linear irreflexive order such that there are no infinite ascending
chains.

(b) If x J y1, y2 then y1 = y2.
(c) C contains the converse of J.
(d) If x C y J z or if x J y C z then either x = z or x C z.
(e) If x 6 y1 and x 6 y2 then y1 = y2.
(f) If x 6 y then x C y.
(g) If x 6 z and z = y or z C y then y has no 6–successor.
(h) If x C y, x 6 x+ and y 6 y+, then y+ 6 x+.

The following is easily checked by inspection of all axioms.

P 9.6.2. Θo and Θ are subframe logics.

Now suppose we have a formula ϕ and a global model 〈F, β〉. Put X := sf (ϕ).
The ϕ–span of a point x ∈ f is the set of all subformulae ♦ψ of ϕ such that 〈F, β, x〉 �
♦ψ. If 〈F, β, x〉 � τ for some τ ∈ X then there exists a point y such that x = y or
x C y and y has least ϕ–span among all points satisfying τ. This point is necessarily
irreflexive. (For if it is reflexive, then it also satisfies ♦τ, and so it satisfies ♦(τ∧¬♦τ).
Thus, it has a successor z satisfying τ and τ is not in the ϕ–span of z. Since τ is in
the ϕ–span of y, y has not been chosen minimal. Contradiction.)
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We now assume that ϕ is in normal form and that 〈F, β,w0〉 � ϕ. We can actually
assume that ϕ is not in the ϕ–span of w0. Moreover, we assume F to be descriptive;
hence its underlying Kripke–frame is a Θo–frame. We now define a selection pro-
cedure on points as follows. In each step a point is selected by a so–called request.
A request is a pair 〈y, ψ〉 where 〈F, β, y〉 � ψ and ψ ∈ X. In the selection step we
answer the request by selecting for 〈y, ψ〉 a point z. Depending on ψ, this may give
rise to new requests. After the selection, 〈y, ψ〉 is removed from the list of requests.
The starting set of requests is {〈w0, ϕ〉}. The answers on the request 〈y, ψ〉 are as
follows. If ψ = τ1 ∧ τ2, then the request is answered by adding the requests 〈y, τ1〉

and 〈y, τ2〉. (y is then said to be selected for τ1 and τ2 from y.) If ψ = τ1 ∨ τ2, then if
τ1 holds at y the answer is 〈y, τ1〉 and y is selected for τ1 from y. Otherwise τ2 holds
at y, and we answer with 〈y, τ2〉. If ψ = ♦τ1, then a z is chosen such that y C z and
〈F, β, z〉 � τ1, and the request is answered with 〈z, τ1〉. z is said to be selected for τ1

from y. Analogously with ψ = �τ1 and ψ = ♦τ1. If ψ = �τ1 or = �τ1 or = �τ1, then
the request is answered by dropping it, i. e. no new request is being made. Similarly
if ψ = p, a variable. We take g the set of all points that have been selected. It is easy
to see that g is finite. g is not necessarily an internal set. However, Θo is a subframe
logic and F is a descriptive Θ frame. Hence its underlying Kripke–frame, f, is a
Θo–frame, and so the subframe g defined by g is actually a Θo–frame. Moreover, if
we let γ(p) := β(p)∩g it is established by easy induction that each point satisfies the
formulae it has been selected for. In particular, 〈g, γ, x〉 � ϕ.

We now massage g into a Θ–frame. To do this, we first analyse what could have
gone wrong in case g 2 Θ. In that case g may contain C–self–accessible points (that
is a point x such that x C x). Let us call them improper points. Improper points
can be avoided as an answer to a request of the form 〈y, ♦τ〉 as we have seen above.
Moreover, if x 6 x and x J y then y 6 y, so improper points are not selected from
proper points by answering a request of the form �τ. (To see this, notice that by (d),
if x is proper, and x J y then y is the immediate C–predecessor of x. It is not difficult
to verify that in that case y is also proper.) Therefore, improper points can only arise
through a request of the form ♦τ. Thus, let y be selected to answer a request 〈x, ♦τ〉.
Then we claim that in the frame generated by y in F, no point has a 6–successor.
This holds for all C–successors of y, by (f). Now let y J z. Then z = y or z C y, by
(d). Hence, z is already in the transit of y. Moreover, z C z, and the same argument
can be repeated with z. (To see this, notice that z C y. since y J z, by (c). Second,
y C y J z, and so y = z or y C z. In the first case z C z since y C y. In the second case,
z C z follows from z C y and y C z, by transitivity of C.)

Now take an improper point x ∈ g. Let C(x) := {y ∈ g : x C y C x}. We can
assume that (i) C(x) = {xi : i < n} and xi J x j iff j ≡ i (mod n) and that (ii) y 6 x for
some y ∈ g. We let Ωn := 〈Z,CΩ,JΩ,6Ω〉, where CΩ := >, JΩ := {〈i, i + 1〉 : i ∈ Z}
and 6Ω := ∅. This is a Θo–frame. We assume its set of points to be disjoint from
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that of g. Now define the cluster substitution for C(x) with respect to y by

g+ := (g −C(x)) ∪ Z

C+ :=


C ∩ (g −C(x))2 ∪ CΩ

∪ {〈u, v〉 : u ∈ g, v ∈ Z, u C x}
∪ {〈v, u〉 : u ∈ g, v ∈ Z, x C u}

J+ := J ∩(g −C(x))2 ∪ JΩ

6+ := 6 ∩(g −C(x))2 ∪ {〈y, 0〉}

This defines the frame g+. As is easily checked, it is a Θo–frame. Furthermore, the
map π : x 7→ x for x < Z, π : k · n + i 7→ xi is a p–morphism π : g+ � g. (This
is clear for the relation C, and easy to check for the relation 6. In the case of J,
one only has to observe that the cluster C(x) is a connected, isolated component
of the graph 〈g,J〉. This, however, follows from (c).) Put γ+(p) := π−1[γ(p)].
Then 〈g+, γ+,w0〉 � ϕ. We perform this substitution successively for all clusters
of g containing an improper point. This yields a frame h and a valuation δ such that
〈h, δ,w0〉 � ϕ. It is a Kripke–frame for Θo. On the basis of our original selection
procedure we define a new selection procedure on 〈h, δ〉 that will yield a finite model
on a frame for Θ.

Assume that the selection procedure began with 〈w0, ϕ〉. w0 is proper. Let y be
the first improper point selected. Then y is in a cluster which gets replaced by Ωn.
We select 0 in the new model, instead of y. Now we consider the effect this can
have on our future selection. For each point we define the selection history to be a
sequence of subformulae of ϕ by induction on the selection process as follows. x is
assigned 〈ϕ〉. If y is assigned 〈ψi : i < n〉 and z is selected by 〈y, ψn−1〉 with answer
〈z, τ1〉 ({〈z, τ1〉, 〈z, τ2〉}), then z is assigned 〈ψ0, . . . , ψn−1, τ1〉 (〈ψ0, . . . , ψn−1, τ1〉 and
〈ψ0, . . . , ψn−1, τ2〉). z may of course be identical to y, so that points may have several
histories; but each history σ is assigned to only one point, denoted by a(σ). Now we
define a function b from selection histories into h as follows. If a(σ) is proper, then
b(σ) := a(σ). Otherwise, consider the shortest historyσ leading to an improper point
z. Then b(σ) := 0, where 0 is the distinguished in the frame replacing the cluster of
a(σ). We claim that any history such that a(σ) is improper extends a shortest history
of this kind only by ∧, ∨ and � moves. To show this claim, assume that u0 is the
first improper point in a history σ. We have to show that all improper points of σ
are obtained by a series of ∧, ∨ and �–moves from u0. Let us observe the following.
The last move in a history that leads to an improper point is not a ♦–move. For they
select (by our choice) proper points. Moreover, if x is proper and x J y then y is also
proper. Hence, an improper point arises either by making a 6–move (A), or from an
improper point by making a J–move (B). Consider (B) first. We have the situation
that x is improper and that x J y. Then by (d), since x C x we deduce that x C y or
x = y (and then also x C y). Moreover, by (c), y C x. Hence, x and y are contained
in the same C–cluster. So y is improper, too. This finishes the case (B). Now let (A)
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be the case. We show that once (A) has occurred in a selection sequence it will not
happen again. To that end let us take u0 and a sequence 〈ui : i < n+ 1〉 such that ui+1
is a successor via one of the relations. Assume that no C–successor is improper. First
of all, note that u0 C ui for all i < n + 1. For u0 is improper, and so u0 J u1 implies
u0 C u1, as we have seen. Furthermore, u0 6 u1 implies u0 C u1, by (f). Now consider
the a point uk+1. Assume that u0Cuk. Then uk 6 uk+1 cannot occur, by (g). If ukCuk+1
then u0 C uk+1 by transitivity of C. Finally, let uk J uk+1. Then u0 C uk J uk+1 yield
u0 = uk+1 or u0 C uk+1. Since u0 is improper, u0 C uk+1 in both cases. This shows, by
(g), that no uk has a 6–successor. It follows that if uk+1 is improper, uk J uk+1 and uk

is improper too. And this proves our claim that an improper point is in the J–transit
of u0, the first improper point in a history.

Thus, let τ be improper and σ the shortest subhistory such that a(τ) is improper.
We have defined b(τ). b(σ) is now defined by induction on its length. (In each of the
steps the choice of value under b is unique.) Finally, let k be the set of points selected
by the new procedure. k is finite, and defines a subframe of h, k. Let ε(p) := k∩ δ(p).
Then as before we conclude that 〈k, ε,w0〉 � ϕ. Moreover, k is a frame for Θ. We have
shown the following.

T 9.6.3. Θ has the local finite model property.

Now we show

T 9.6.4. Θ is not globally complete.

P. We claim that (i) ♦> → �♦> 1Θ ¬♦> and (ii) no model in which
♦> → �♦> holds globally but ♦> is locally satisfied is based on a Kripke–frame
for Θ. That (ii) is the case is rather easy to see. Suppose we have a Θ–frame F such
that F � ♦> → �♦> and that there exists a point x such that 〈F, x〉 � ♦>. Then
x � �♦> and so there exists a x1 such that x J x1 and x1 � ♦>. Inductively one
can show that there exists a chain 〈xi : i ∈ ω〉 such that x0 = x and xi J xi+1 for
all i. Moreover, there exist points yi such that xi 6 yi, by (h). By the postulates
of Θ we have yi C yi+1 for all i. This means that F contains an ascending chain
with respect to C. Hence, the underlying Kripke–frame violates the axiom G for C,
thus is not a Θ–frame. Now we still have to show (i). Take a copy of the natural
numbers N, members of which we denote by underlining, e. g. 5; and a (disjoint)
copy of Z, members of which are denoted by overstriking, e. g. −5. We put k C `
for all k ∈ Z and ` ∈ N; k C ` iff k < `; and k C ` iff k > `. So, with respect to
C we have placed Z ‘before’ Nop. We put k J ` iff ` = k + 1; k J ` iff ` = k − 1
and no other points are related with respect to J. Finally, for k > 0 we put for
−k 6 k, and no other relations shall hold. We take as the algebra O of sets the 0–
generated algebra of sets. This defines the frameΩ. Now observe thatΩ] satisfies all
postulates except for G. Hence everything depends on finding a set of internal sets
such that G is also valid. To show that Ω fulfills G, let us prove that O is nothing
but finite unions of intervals with respect to C, where an interval is a set of the form
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[x, y] := {z : xCzCy}∪{x, y}, x, y ∈ f , or of the form [∞, x] := {y : yC x}∪{x}, where
∞ is just an artificial symbol. We claim that these sets are 0–definable. (A set c is 0–
definable in F if there exists a variable free formula C such that 〈F, x〉 � C iff x ∈ c.
It is easy to see that c is 0–definable iff it is contained in the 0–generated subalgebra
of F+.) To that end, observe that [∞, k] is 0–definable, by the fact that [∞, 0] is
defined by > and ♦[∞, k] = [∞, k + 1]. Furthermore, we have [∞,−1] = ♦ [∞, 0],
[∞, k + 1] = �[∞, k], and [∞, k − 1] = ♦[∞, k]. Thus all sets of the form [∞, x] are
0–definable, and from that follows that all finite unions of intervals are 0–definable.
Secondly, we show that this algebra is already closed under all operations. The set
operations are clear. Now ♦[x, y] = [∞, y+], where y J y+, and �[x, y] = [x−, y−],
where x− J x, y− J y, if these points exist. (The other cases are also straightforward.)
Next �. If x = y = 0 then �[x, y] = ∅. Otherwise, �[∞, y] = [∞, y−]. Now finally ♦ .
Consider [x, y]. If x = k then ♦ [x, y] = ∅. Hence let x = k. We may assume k > 0,
otherwise ♦ [x, y] = ♦ [1, y]. If y = `, then ♦ [x, y] = ♦ [k, `] = [+∞,−k]. If y = `
then we can assume y > x and so ♦ [x, y] = ♦ [k, `] = [−`,−k]. Indeed, the set of
sets is closed under all operations. We have to show now that Ω � ♦p→ ♦(p∧¬♦p).
Take a valuation assigning an internal set c to p. Then this set has a largest element
with respect to C. For it is a union of intervals [xi, yi]. Among the yi there is a
largest with respect to C, say y0. Then if 〈Ω, β, x〉 � ♦p we have x C y0 and so
〈Ω, β, x〉 � ♦(p ∧ ¬♦p), since 〈Ω, β, y0〉 � p ∧ ¬♦p by choice of y0. To end the proof,
we notice that Ω � ♦> → �♦> but Ω 2 ¬♦>. For the first note that 〈Ω, x〉 � ♦> iff
x = k for some k < 0. Then k J k − 1, and 〈Ω, k − 1〉 � ♦>. For the second notice
that 〈Ω,−1〉 2 ¬♦>. �

C 9.6.5. Θ is locally complete. Its extension by a universal modality,
Θ�, is not locally complete.

This follows immediately with Theorem 3.1.13.

Exercise 346. This is another set of exercises that deal with Blok’s Alternative. This
time we deal with incompleteness phenomena. Show that any of the logics of Sec-
tion 9.2 based on sequences of bounded index could have been taken. Show based
on these considerations that the lattice of 3–modal logics has 2ℵ0 co–atoms, which
are incomplete.

Exercise 347. Show that in the lattice of 3–modal logics any logic of finite codimen-
sion has degree of incompleteness 2ℵ0 .

Exercise 348. Show that in the lattices of κ–modal logics, κ , 0, any consistent
logic of finite codimension has degree of incompleteness 2ℵ0 . What if the logic is
inconsistent?

Exercise 349. Show based on the preceding considerations that no consistent modal
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logic of finite codimension can be obtained by iterated splittings of Kκ. Hint. Other-
wise, show that it can be co–covered by at most countably many logics.

Exercise 350. Let C be any of the following complexity classes: NP, PSPACE, EX-
PTIME. Show that given a monomodal formula ϕ it is undecidable whether or not
K1⊕ϕ is C–computable. Likewise, show that it is undecidable whether or not K1⊕ϕ
is C–hard (C–complete).

Exercise 351. Show that {Th • ,Th ◦ } is an undecidable subset of E K.

Exercise 352. (Continuing the previous exercise.) Show that pre–tabularity, pre–
finite model property and pre–completeness are undecidable.

Exercise 353. Show that the set of pre–tabular logics of E S4 is decidable.



CHAPTER 10

Dynamic Logic

10.1. PDL — A Calculus of Compound Modalities

Propositional Dynamic Logic, PDL for short, can be seen as a special kind
of polymodal logic and this is — at least implicitly — the way we will handle it
here. This has the advantage that we can use the results of the previous chapters
to a large extent. Nevertheless, PDL has a different syntax. PDL concentrates on
compound modalities; the idea is that it is worthwile to investigate the structure of
compound modalities separately, because many compound modalities arise naturally
from the relational interpretation. For example, if we have an operator � based on
the relation C and an operator � based on the relation J, then the compound modality
�p ∧ �p is based on the union C∪ J of the two, and ��p is based on J ◦C. The
perspective from which PDL views these things is from the perspective of relations.
To be able to define an operator based on the union or composition of two relations
is important. For the main interest for doing PDL is in reasoning about computer
programs, or more generally, about actions. A computer program can be seen simply
as a relation between memory states of a computer. For example, if our computer
has three memory cells, x, y and z, storing integer numbers, the program z := x + y
is a relation between triples of integer numbers. In order not to confuse a program
with the relation we call the latter the extension of a program on a given computer.
Thus, 〈〈3,−4, 7〉, 〈3,−4,−1〉〉 is in the extension of the program z := x + y, but
〈〈1, 1, 0〉, 〈0, 1, 2〉〉 is not. The particular power of programming languages comes
from the fact that programs can be combined. We can namely

Compose Programs: From two programs α and β we form the composition
α; β which is the program defined by executing first α and then β.

Test: We can ask whether certain facts hold such as ‘x = y?’, by means of
which we can ask whether the number assigned to x is identical to the
number assigned to y.

Combine Tests: We can use standard boolean connectives such as true, not
and and to build more complex tests.

469
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Combine Programs Logically: That is, we can use logical gates such as

if ϕ then α else β fi1

where ϕ is a statement and α and β programs. This means that we execute
first a test for ϕ. If ϕ holds, α is executed; and if not, β is executed.

Iterate Programs: For a statement ϕ and a program α, the program

while ϕ do α od

will execute α and continue to do so as long as the condition ϕ is momen-
tarily satisfied, and the program

until ϕ do α od

will execute α as long as ϕ is momentarily not satisfied.
This is the basic inventory of standard programming languages like Algol, Pascal
and their derivatives, with those parts stripped away which belong to specific inter-
pretations of the symbols (such as real or integer numbers, or sets, or lists) and the
usual input/output routines. They can be reintroduced as a set of basic (or elemen-
tary) programs, from which the complicated routines are built up. To be realistic, we
would need to talk at this point about memory cells and assignments. So in fact, a
real model of a computer would have to use some first–order logic. But the purely
propositional part is not only interesting (and decidable), but already very powerful.

Now a program is in some sense a relation of states in a computer, and the list of
constructions we have just given can be produced from a small list of basic construc-
tions. PDL starts with two different sorts of symbols, propositions and programs.
There are at the basic level propositional variables, propositional constants and pro-
gram constants. The set of basic program constants is denoted by Π0 and consists of
α0, α1, . . .. The number of these constants varies. There are no program variables.
Propositions can be composed as before with the boolean connectives. Programs are
combined using the connectives

α ∪ β set theoretic union
α; β relational composition
α∗ reflexive transitive closure

Any proposition ϕ can be converted into a program, by using the question mark ‘?’,
called test. If we test for ϕ, we write ‘ϕ?’ and read that ϕ test. The program ϕ?
operates as follows. If ϕ is the case — we say then that the program ϕ? succeeds —
the next clause is carried out. If ϕ is not the case — we say the program ϕ? fails —
then no subsequent programs will be carried out. For example, the program (ϕ?;α)∪
(¬ϕ?; β) performs α if ϕ is the case and β if ϕ is not the case. Thus it is identical
to if ϕ then α else β fi. Notice that because we use the union, we save the entire

1To write an if–then–else–clause with the help of fi is standard practice, though not always explained.
The word fi has actually no meaning. It is used simply to mark the end of the clause. This saves brackets
while writing and makes a program optically perspicuous. The same applies to the pair do ... od below.
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program from failing, even though some of its parts may fail individually. Thus,
PDL makes crucial use of the fact that programs are allowed to be nondeterministic.
This sounds absurd if we think of numerical calculations, where a correct program
should yield a definite result, but is really rather useful in connection with inbuilt
choices, as we have in fact just seen. Finally, any program α defines a modality [α]
and its dual 〈α〉. Basically, the extension of the program is the relation on which
the modality is based. The statement [α]ϕ can be read as at the end of all possible
computations of α, ϕ holds. Dually, the statement 〈α〉ϕ means there is a computation
for α at the end of which ϕ holds.

One can think of various fragments, extensions and refinements of PDL. The
fragment of PDL that does not use the star, is called EPDL, which is short for el-
ementary PDL. It turns out to be a notational variant of polymodal logic. Second,
there is test free PDL, of which we will make certain use. A particularly interest-
ing extension is the addition of the converse operator. Given a program α, α` will
denote the converse program, i. e. the backward execution of α. Although for the
standard interpretation this makes little sense, because standard computer languages
do not need such an operation, it makes sense in reasoning about the behaviour of
programs and actions. Also, dynamic logic is increasingly used in the semantics of
natural language (see for example JG and M S [92], J
 E and F–J  V [218]), and in reasoning about actions (see V
P [165] and B P [160]), to name just a few. Many connectives in
natural languages make reference to the converse, such as until, since etc., though
mostly in connection with tense only.

10.2. Axiomatizing PDL

In this section we are going to axiomatize PDL and prove the correctness of
this axiomatization. As it turns out, the newly added program constructors are pretty
harmless, with the exception of the Kleene Star. The latter, however, is a relatively
difficult operator. We will see that there is no axiom system that can guarantee that
α∗ is in all cases the reflexive transitive closure of α. However, it is possible to give
an axiomatization such that at least in Kripke–frames α∗ has this property. Thus
let us start with the latter. Let Π0 be given; a member of Π0 is denoted by ζ or
η. A dynamic Kripke–frame over Π0 is a pair f = 〈 f , σ〉, where σ : Π0 → 2 f× f

assigns to each basic program a binary relation on f . A valuation is a function
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γ : var ∪ cons→ 2 f and the satisfaction clauses are as follows.

〈f, γ, x〉 � pi ⇔ x ∈ β(pi)
〈f, γ, x〉 � ¬ϕ ⇔ 〈f, γ, x〉 2 ϕ
〈f, γ, x〉 � ϕ ∧ ψ ⇔ 〈f, γ, x〉 � ϕ, ψ
〈f, γ, x〉 � [ϕ?]ψ ⇔ 〈f, γ, x〉 � ϕ→ ψ

〈f, γ, x〉 � [ζ]ϕ ⇔ for all y such that 〈x, y〉 ∈ σ(ζ) 〈f, γ, y〉 � ϕ
〈f, γ, x〉 � [α; β]ϕ ⇔ 〈f, γ, x〉 � [α][β]ϕ
〈f, γ, x〉 � [α ∪ β]ϕ ⇔ 〈f, γ, x〉 � [α]ϕ; [β]ϕ
〈f, γ, x〉 � [α∗]ϕ ⇔ 〈f, γ, x〉 � ϕ; [α]ϕ; [α2]ϕ; [α3]ϕ; . . .

Alternatively, given β and σ, we can extend σ to a map σ from all programs to binary
relations over f and β to a map β from all propositions to subsets of f .

β(pi) := β(pi)
β(¬ϕ) := f − β(ϕ)
β(ϕ ∧ ψ) := β(ϕ) ∩ β(ψ)
β([α]ϕ) := {x : (∀y)(〈x, y〉 ∈ σ(α)⇒ y ∈ β(ϕ))}

σ(ζ) := σ(ζ)
σ(ϕ?) := {〈x, x〉 : x ∈ β(ϕ)}
σ(α ∪ β) := σ(α) ∪ σ(β)
σ(α; β) := σ(α) ◦ σ(β)
σ(α∗) := σ(α)∗

In order to make the notation perspicuous we often write x
α
→ y if 〈x, y〉 ∈ σ(α);

in other words, we write x
α
→ y to state that from x there exists an α–transition to

y. This is a popular notation in computer science. The reader may verify that the
two definitions of acceptance of formulae are one and the same, that is, we have
〈f, β, x〉 � ϕ iff x ∈ β(ϕ) for all propositions. Now we proceed to the promised
axiomatization. As usual, the only rule of inference is modus ponens (in the local
case), and the rules of substitution and necessitation are admissible. The axioms are
in addition to those of boolean logic the following.

(bd.) ` [α](p→ q).→ .[α]p→ [α]q
(df?.) ` [p?]q.↔ .p→ q
(df ∪ .) ` [α ∪ β]p.↔ .[α]p ∧ [β]p
(df; .) ` [α; β]p.↔ .[α][β]p
(cls.) ` [α∗]p.↔ .p ∧ [α][α∗]p
(ind.) ` [α∗](p→ [α]p).→ .p→ [α∗]p
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This logic is standardly known as PDL. These axioms are due to K S,
see for example [195]. Notice that α and β are not variables of the logic, but meta–
variabes for programs. Hence the above postulates are not axioms but schemes of
axioms. PDL is in general not finitely axiomatizable; the axiom system is recursive
(i. e. decidable). Our first theorem concerns the correctness of this axiomatization.
This means in informal terms that if we view the programs of PDL as separate and
consider the above axioms as restrictions on the definition of these programs, then
it will turn out that any Kripke–frame for the above axioms reduces to a dynamic
Kripke–frame. To state this precisely, let us introduce the notion of a PDL–Kripke–
frame. This is a pair 〈 f , τ〉 which satisfies the axioms of PDL not involving test. A
PDL–Kripke–model is a triple 〈 f , τ, β〉 such that 〈 f , τ〉 is a PDL–Kripke–frame and
the axioms (df?.) are satisfied. (In this case we say that τ and β are compatible.)

T 10.2.1. Let 〈 f , τ〉 be a PDL–Kripke–frame. Then

1. τ(α ∪ β) = τ(α) ∪ τ(β).
2. τ(α; β) = τ(α) ◦ τ(β).
3. τ(α∗) = τ(α)∗.

P. Suppose, 〈 f , τ〉 � [α ∪ β]p ↔ [α]p ∧ [β]p. We know that this axiom is
Sahlqvist, and it is easily checked that it corresponds to the following property.

(∀x)(∀y)(x
α∪β
→ y↔ x

α
→ y ∨ x

β
→ y)

Thus, (df∪.) holds iff τ(α ∪ β) = τ(α) ∪ τ(β). Similarly it is shown that (df;.) holds
iff τ(α; β) = τ(α) ◦ τ(β). The axiom (cls.)

[α∗]p→ p ∧ [α][α∗]p

has as its dual
p ∨ 〈α;α∗〉p.→ .〈α∗〉p

which is a conjunction of p → 〈α∗〉p, corresponding to the reflexivity of α∗, and
〈α;α∗〉p.→ .〈α∗〉p. The latter is also Sahlqvist and corresponds to the condition

(∀x)(∀y
α
← x)(∀z

α∗

← y)(x
α
→ z)

In other words, the relation τ(α∗) is reflexive and successor closed with respect to
τ(α). It therefore contains the reflexive transitive closure of τ(α). That it is exactly
the closure is the effect of the induction axiom (ind.). Namely, let x be given. Assume

〈f, x〉 � [α∗](p→ [α]p).→ .p→ [α∗]p

Put β(p) := {y : (∃n ∈ ω)(x
αn

→ y)}. Then

〈f, β, x〉 � p; [α∗](p→ [α]p)

and so 〈f, β, x〉 � [α∗]p. Hence x
α∗

→ y implies x
αn

→ y for some n ∈ ω. �
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The last theorem established that 〈 f , τ〉 is effectively a dynamic frame if we
concentrate on test–free propositions. The test presents a problem, not so much for
the axiomatization as for a proper formulation of the result. For suppose that in the
last theorem we had stated that 〈 f , τ〉 satisfies (df?.). Then since τ is given, β is
actually fixed. For we have

〈 f , τ〉 � [p?]⊥.↔ .p→ ⊥

which is the same as
〈 f , τ〉 � 〈p?〉>.↔ .p

Thus β(p?) = {x : (∃y)(〈x, y〉 ∈ τ(p?))}. However, intuitively we want the assignment
of relations to tests be regulated by β and not by τ. This problem can be solved as
follows. We abandon β and define it as above. Therefore, the whole information is
already in the map τ. Then the pair 〈 f , τ〉 can serve both as a frame and as a model.
The variability of β as opposed to that of σ will be accounted for by the notion of
variants. Given 〈 f , τ〉 we call 〈 f , τ̂〉 a variant if τ̂ � Π0 = τ � Π0. We now say
that the frame 〈f, τ〉 satisfies ϕ iff for all variants τ̂ of 〈f, τ〉 we have 〈f, τ̂〉 � ϕ. Now
what happens if the frame 〈 f , τ〉 satisfies (df?.)? Take any point x, and assume that
there is a y such that 〈x, y〉 ∈ τ̂(p?) for some variant τ̂. Then β(p) contains x, so p
is true at x. Assume furthermore β(q) = {x} (that is to say, τ̂(q?) = {〈x, x〉}). Then
〈 f , τ̂, x〉 � p → q and so 〈 f , τ̂, x〉 � [p?]q, so that 〈 f , τ̂, y〉 � q, which is to say,
y = x. Hence if the frame 〈 f , τ〉 satisfies (df?.) then τ(p?) ⊆ ∆ f , the diagonal on f .
Moreover, given the definition of β we get that 〈x, x〉 ∈ τ(p?) iff x ∈ β(p), since x has
a p?–successor iff x ∈ β(p). This finally justifies to restrict the attention to dynamic
frames. To recapitulate, the problem lies in the fact that the basic programs are
actually constants and so are all test–free programs. The test p?, however, behaves
like a variable, though not induced by the assignment σ : Π0 → 2 f× f but by the
basic assignment β.

Let us turn now to generalized frames. In principle, they are defined in full
analogy to the modal case, if we just take dynamic logic to be a particular case
of modal logic, where we have an infinite stock of operators with the postulates as
above. This is not so straightforward for reasons mentioned earlier. Nevertheless, we
can form the canonical structure CanPDL(var) in the following way. The worlds are
as usual maximally consistent sets, and the accessibility relation is as in Section 2.8,
namely U

α
→ V iff for all [α]ϕ ∈ U we have ϕ ∈ V .

P 10.2.2. In the canonical structure, CanPDL(var), τ(α ∪ β) = τ(α) ∪
τ(β), τ(α; β) = τ(α) ◦ τ(β), and τ(ϕ?) = {〈U,U〉 : ϕ ∈ U}. Moreover, τ(α∗) ⊇ τ(α)∗.

P. The first two and the last are straightforward from the fact that the pos-
tulates (df∪.) and (df;.) are elementary and correspond to the fact that the relation
for α∪ β (α; β) is the union (composition) of the relations for α and β. Similarly, the

last claim follows from (cls.). For ϕ? observe that U
ϕ?
→ V iff for all ζ if [ϕ?]ζ ∈ U

we have ζ ∈ V iff for all ζ if ϕ → ζ ∈ U we have ζ ∈ V . Now two cases arise. First,



10.2. Axiomatizing PDL 475

if ϕ ∈ U, then ϕ→ ζ ∈ U iff ζ ∈ U, so that we get U
ϕ?
→ V iff V ⊇ U iff U = V , since

both are maximally consistent. The second case is ϕ < U. Then [ϕ?]⊥ ∈ U, and so
no world is ϕ?–accessible. �

The problem with the canonical structure is the bad behaviour of the star. We
only know that the relation for α∗ is at least the transitive closure of the relation
for α, and is successor closed, but we really cannot say more. This is no accident,
for PDL fails to be frame–compact. Hence, a completeness proof for PDL is not
straightforward. In fact, many authors have overlooked this rather subtle fact, and
it took some time until a correct proof appeared that did not make the assumption
that the canonical model has an underlying Kripke–frame which also satisfies PDL.
We add here that PDL is also not compact. It is in fact not even 1–compact, which
means that there is a set of constant formulae that have no model based on a PDL–
Kripke–frame. This is left to the reader as an exercise.

Standardly, PDL has infinitely many variables and infinitely many programs.
However, as in the modal case we can restrict ourselves as well as to finite variable
fragments as well as to finitely many basic operators. Let us fix the set of variables
pi, i ∈ ω, and ζi, i ∈ ω. Let us denote by PDL(m, n) the restriction of PDL to
the subset of variables pi, i < m, and programs ζi, i < n. Similarly, the notation
PDL(ω, n) and PDL(m, ω) is used. Then PDL = PDL(ω,ω) and

PDL =
⋃

m,n∈ω

PDL(m, n)

It turns out that PDL(ω, n) is weakly transitive for n < ω, while PDL is not. The
master modality of PDL(ω, n) is γ∗ with γ :=

⋃
i<n ζi.

Let us now turn to PDL`, the extension of PDL by the converse. There is an
axiomatization of the converse as follows.

(df`+.) ` p ∧ 〈α〉q.→ .〈α〉(q ∧ 〈α`〉p)
(df`−.) ` p ∧ 〈α`〉q.→ .〈α`〉(q ∧ 〈α〉p)

This is not exactly the way in which the converse is standardly axiomatized. In tense
logic, the postulates p → [α]〈α`〉p and p → [α`]〈α〉p are normally used. This
is a matter of convenience. It is also possible to replace the second postulate by
〈α``〉p ↔ 〈α〉p. All these boil down to the same. For notice that the postulates
(df`±.) are r–persistent, so that in the canonical frame we do have τ(α`) = τ(α)`. The
other postulates have the same effect on the canonical structure.

Finally, there are important program constants that we can define, namely skip
and fail, defined by >? and ⊥?, respectively. skip is interpreted by the diagonal,
and fail by the empty relation. There are many more operators that get studied with
respect to computer application, such as since and until, both binary connectives for
formulas, nominals (see S P and T T [159]) and many more.
An overview of some of these different logics is given in R G [81]. We
will study some of these in detail. A very important logic from a practical point of
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view is the logic DPDL, which in addition to PDL contains the axiom 〈ζ〉p → [ζ]p
for all basic programs ζ. This codifies the fact that an execution of a program yields
at most one outcome. We say that the program is deterministic, and this is why
DPDL contains the additional letter ‘D’. Notice that it is only the basic programs
which are required to be deterministic; for even if α is deterministic, α∗ as well as
α ∪ (α;α) need not be.

Exercise 354. Formulate PDL instead of ∗ with the operator + of transitive closure.

Exercise 355. Show that the boolean connectives can all be dropped from PDL
without loss of expressivity, retaining only the propositional variables and constants,
including > and ⊥.

Exercise 356. Show that the postulates

p→ 〈α∗〉p,
〈α;α∗〉p→ 〈α∗〉p,
[α∗](p→ [α]p)→ (p→ [α∗]p)

are all independent. That means, show that no logic axiomatized by two together
contains the third.

Exercise 357. Show that PDL is not 1–compact. Hint. The only source for failure
of 1–compactness can be the induction axiom.

Exercise 358. Recall that EPDL is the fragment of PDL without the star. Show
that in EPDL every formula is deductively equivalent to a formula without program
connectives, that is, without ∪, ;, ∗, and ?.

Exercise 359. Show that PDL =
⋃

m,n∈ω PDL(m, n). Hint. Use the compactness of
the derivability in PDL.

10.3. The Finite Model Property

One of the earliest results on PDL was the proof by F and L [69]
that PDL has the finite model property. The proof is interesting in two respects;
first of course for the result itself, and second for the notion of downward closure
that it uses. Notice that one of the first problems that one has to solve is that of
defining a good notion of subformula. Of course, there is a syntactic notion of a
subformula, but it is of no help in proofs by induction on subformulae. For what we
need is a notion that allows us to assess the truth of formula in a model by induction
on its subformulas. Consider, for example, the formula 〈α; β〉p. The only proper
subformula, syntactically speaking, is p. So, all we can say is that 〈α; β〉p is true at a
point iff there is a α; β–successor at which p holds — period. But α; β is a complex
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program and we would like to do an induction using only the basic programs to start
with. Hence, let us take 〈α〉〈β〉p also as a subformula. Then we can break down the
truth definition of 〈α; β〉p into two parts. 〈α; β〉p is true at a node x if there is a α–
successor y at which 〈β〉p holds. The latter is the case if there is a β–successor z of y
such that p holds at z. It is these considerations that lead to the following definition,
taken from [69].

D 10.3.1. Let X be a set of PDL–formulas. The Fischer–Ladner
closure of X, denoted by FL(X), is the smallest set containing X such that

(fld.) FL(X) is closed under subformulae.
(fl?.) If [ϕ?]ψ ∈ FL(X) then also ϕ, ψ ∈ FL(X).
(fl;.) If [α; β]ϕ ∈ FL(X) then also [α][β]ϕ ∈ FL(X).
(fl∪.) If [α ∪ β]ϕ ∈ FL(X) then also [α]ϕ, [β]ϕ ∈ FL(X).
(fl∗.) If [α∗]ϕ ∈ FL(X) then also [α][α∗]ϕ ∈ FL(X).

L 10.3.2. If X is finite, so is FL(X).

The proof of this theorem is left to the reader. An effective bound on FL(X) a
priori can also be given (namely, the sum of the lengths of the formulae contained in
X). The following proof of the finite model property of PDL is due to R P
and D K. The original proof of M. J. F and R. E. L procedes
from the tacit assumption that PDL is complete (and therefore that the interpretation
of α∗ is the reflexive transitive closure of the interpretation of α).

T 10.3.3 (Fischer & Ladner, Kozen & Parikh). PDL has the local finite
model property.

P. Take a formula ϕ and let S (ϕ) be the collection of all those atoms in
the boolean algebra generated by FL(ϕ) which are PDL–consistent. These can be
represented as subsets of FL¬(ϕ), which is defined by FL(ϕ)∪ {¬χ : χ ∈ FL(ϕ)}. We
write W both for the set and the conjunction over its members. A dynamic Kripke–
frame is based on S (ϕ) via

V
α
→ W ⇔ ConPDLV ∧ 〈α〉W

Moreover, we put β(p) := {W : p ∈ W}. If ϕ is consistent there is a W ∈ S (ϕ) such
that ϕ ∈ W. This concludes the definition of the dynamic frame, which we denote by
S(ϕ), and the valuation β. That 〈S(ϕ), β,W〉 � ϕ is a consequence of the next three
lemmas. �

L 10.3.4. For any program α, if ConPDLV∧〈α〉W then V
α
→ W in 〈S(ϕ), β〉.

P. We do an induction on α. The basic case is covered by the definition.
Also, if α = ψ? and V ∧ 〈ψ?〉W is consistent, then by the axiom (df?.) we have
that V ∧W is consistent. V and W, being atoms, must be equal, and ψ ∈ V , and so

V
ψ?
→ W, as required. Next, let α = β ∪ γ. Let V ∧ 〈β ∪ γ〉W be consistent. Then by
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(df∪.) V ∧ (〈β〉W ∨ 〈γ〉W) is consistent. By induction hypothesis therefore V
β
→ W

oder V
γ
→ W. Third, assume α = β; γ and V ∧ 〈β; γ〉W is consistent. Then by (df;.),

V∧〈β〉〈γ〉W is consistent, which is to say, V∧〈β〉(>∧〈γ〉W. Now, > ≡
∨

Z∈S (ϕ) Z, so
that we can rewrite the latter into the disjunction of all V ∧ 〈β〉(Z ∧ 〈γ〉W), Z ∈ S (ϕ).

Thus, by induction hypothesis there exists a Z ∈ S (ϕ) such that V
β
→ Z and Z

γ
→ W.

Finally, let α = β∗. Assume that V ∧ 〈β∗〉W is consistent. Let B be the closure of
{V} under β–successors. We wish to show that W ∈ B. To see that put χ :=

∨
Z∈B Z.

Then χ ∧ 〈β〉¬χ is equivalent to the disjunction of all T ∧ 〈β〉U, where T ∈ B
but U < B. Each disjunct is individually inconsistent by induction hypothesis, for

T
β
→ U does not hold. Thus, χ ∧ 〈β〉¬χ is inconsistent, from which `PDL χ → [β]χ.

By necessitation, `PDL [β∗](χ→ [β]χ), and so

`PDL V → [β∗](χ→ [β]χ).

By V ∈ B we also have `PDL V → χ, and thus finally `PDL V → [β∗]χ. This shows
that V ∧ 〈β∗〉¬χ is inconsistent, thus W ∈ B, since we have assumed that V ∧ 〈β∗〉W
is consistent. �

L 10.3.5. For every 〈α〉χ ∈ FL(ϕ) and V ∈ S (ϕ), 〈α〉χ ∈ V iff there exists
a W ∈ S (ϕ) such that V

α
→ W and χ ∈ W.

P. From left to right follows from the previous theorem. Now for the other
direction. Again, we do induction on α. If α is basic, and V

α
→ W with χ ∈ W, then

〈α〉W ` 〈α〉χ. Since V ∧ 〈α〉W is consistent by definition of α, so is V ∧ 〈α〉χ. By

definition of S (ϕ), 〈α〉χ ∈ V . The case of test is easy. Now let α = β ∪ γ. If V
β∪γ
→ W

then either V
β
→ W or V

γ
→ W, from which by induction hypothesis and the fact that

〈β〉χ ∈ FL(ϕ) and 〈γ〉χ ∈ FL(ϕ) we have 〈β〉χ ∈ W or 〈γ〉χ ∈ W. By (df∪.) we have

in either case 〈β ∪ γ〉χ ∈ W. Next let α = β; γ. If V
β;γ
→ W and 〈β; γ〉χ ∈ FL(ϕ) then

〈γ〉χ ∈ FL(ϕ) as well as χ ∈ FL(ϕ). Assume χ ∈ W. By assumption on the model

there is a Z such that V
β
→ Z

γ
→ W. Then by induction hypothesis 〈γ〉χ ∈ Z and

〈β〉〈γ〉χ ∈ V from which by use of (df;.) we get 〈β; γ〉χ ∈ V . Finally, let α = β∗. If

V
β∗

→ W there exists a chain

V = V0
β
→ V1

β
→ V2

β
→ . . .

β
→ Vn = W.

Now, assuming χ ∈ Vn we get 〈β∗〉χ ∈ Vn by (cls.) and so 〈β〉〈β∗〉χ ∈ Vn−1, since the
latter formula is in FL¬(ϕ). By (cls.), 〈β∗〉χ ∈ Vn−1. Inductively, we get 〈β∗〉χ ∈ Vi

for all i, and so 〈β∗〉χ ∈ V . �

L 10.3.6. For all χ ∈ FL¬(ϕ) and all V ∈ S (ϕ), 〈S(ϕ), β,V〉 � χ iff χ ∈ V.

P. By induction on χ. If it is a variable, then this is true by definition
of β. The induction steps for the boolean connectives are straightforward. There
remains the case χ = 〈α〉ψ. 〈S(ψ), β,V〉 � 〈α〉ψ iff V

α
→ W for some W such that
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〈S(ϕ), β,W〉 � ψ. By induction hypothesis, this is the case iff ψ ∈ W, and by the
previous lemma the latter holds iff 〈α〉ψ ∈ V . �

C 10.3.7. PDL has the global finite model property.

P. Assume ϕ 1PDL ψ. Take Π′ to be the set of basic programs occurring
in ϕ or ψ and put γ :=

⋃
α∈Π′ α. Then [γ∗]ϕ 0PDL ψ. By Theorem 10.3.3 there is a

finite model 〈f, β, x〉 � [γ∗]ψ;¬ψ based on a dynamic frame f for PDL(Π′). We may
assume that f is rooted at x and that every node is a γ∗–successor of x. Now interpret
the programs of Π0−Π

′ arbitrarily. This gives a dynamic frame f+ for PDL(Π0) such
that 〈f+, β, x〉 � [γ∗]ϕ;¬ψ. However, by construction this means 〈f+, β〉 � ϕ and so
we have found a countermodel. �

Now let us turn to PDL`. Start with the same definition of V
α
→ W. We have to

show only that V
α`

→ W iffW
α
→ V . Assume the first. Then V ∧ 〈α`〉W is consistent.

From this follows with (df`−.)

V ∧ 〈α`〉(W ∧ 〈α〉V)

This last formula must be consistent too, and so must be W ∧ 〈α〉V . Hence W
α
→ V .

Conversely, assume that W
α
→ V . Then W ∧ 〈α〉V is consistent and so is

W ∧ 〈α〉(V ∧ 〈α`〉W)

by (df`+.). Hence, V ∧ 〈α`〉W is consistent and so W
α`

→ V . The following is due to
D V [217].

T 10.3.8 (Vakarelov). PDL` has the (global) finite model property.

Notes on this section. It is known that PDL is EXPTIME–complete. That it is
EXPTIME–hard has been shown by in M. J. F and R. E. L [69]); this
follows however also immediately from the fact that the problem ‘ϕ 
K ψ?’ is equiv-
alent to ‘[α∗]ϕ → ψ ∈ PDL?’. The EXPTIME upper bound has been shown in
V P [164]. G  G [75] has shown that PDL` can be con-
structively reduced to PDL. This can be used to show that if PDL has interpolation,
so does PDL`. This is given here as an exercise. It was shown by M V and
P. W in [219] that satisfiability in PDL` can be computed in O(2n2

)–time. This
bound is also easily established using constructive reduction.

Exercise 360. Show Lemma 10.3.2.

Exercise 361. Give a model theoretic proof of the fact that PDL =
⋃

m,n∈ω PDL(m, n).

Exercise 362. Show that PDL` has interpolation if PDL has interpolation.

Exercise 363. Let α(n) denote the union of the programs αi for i ≤ n. Let PDLn be
the extension of PDL by all axioms of the form 〈α∗〉p ↔ 〈α(n)〉p. Show that PDLn
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has the finite model property without using the the finite model property of PDL.
Show furthermore that from the fact that PDL has the finite model property one can
deduce that

PDL =
⋂
n∈ω

PDLn

10.4. Regular Languages

The specific power that PDL has is that of the star. Without it, no gain in ex-
pressive power is reached, and we just have a definitional extension. It is useful to
know some basic facts about the star when dealing with PDL. There is a well–known
theorem by S K saying that a language is regular iff it can be evaluated
using a finite state automaton. Since this result is of great significance, we will prove
it now, in full generality. For general literature on languages and automata see [99],
[105] or [176]. First, let us be given a finite alphabet A, consisting of symbols, de-
noted here by lower case letters such as a, b etc. A language is simply a set of
strings over A. An alternative formulation is as follows. Consider the free semigroup
generated by A, denoted by FrS G(A). A language is a subset of this semigroup; al-
ternatively, it is a set of terms in the language · (standing for concatenation) and ε
(standing for empty word) modulo the following equations.

~x · ε ≈ ~x
ε · ~x ≈ ~x
(~x · ~y) ·~z ≈ ~x · (~y ·~z)

We consider the following operations on languages. For two languages L and M,
we use the set union L ∪ M, the composition L · M = {~x · ~y : ~x ∈ L, ~y ∈ M}, and
the Kleene–star L∗ =

⋃
n∈ω Ln, where Ln is defined inductively by L0 = {ε} and

Ln+1 = L · Ln. A language is called regular if it can be obtained from the languages
∅, {a}, where a ∈ A, by use of the operations union, concatenation and star. Another
way to express this is as follows. Take the language with the function symbols ∅, ε,
∪, · and ∗. A regular expression is an expression of that language. With each regular
expression R over A we associate a language L(R) as follows.

L(∅) := ∅

L(ε) := {ε}

L(a) := {a}
L(R ∪ S ) := L(R) ∪ L(S )
L(R · S ) := L(R) · L(S )
L(R∗) := L(R)∗

We will not always distinguish in the sequel between a regular expression and the
language associated with it.
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A finite automaton is a quadruple A = 〈S, S 0, F, τ〉, where S is a finite set,
the set of states, S 0 ∈ S the initial state, F ⊆ S the set of accepting states, and
τ : S×A→ 2S a function, the (nondeterministic) transition function. We define the
transition function inductively by

τ(S , ε) := S
τ(S , a) := τ(S , a)
τ(S , ~x · ~y) := τ(τ(S , ~x), ~y)

A accepts ~x if τ(S 0, ~x)∩F , ∅, otherwise A rejects ~x. Obviously, the set of accepted
words of A is a language, denoted by L(A). If τ(S , ~x) is a singleton set for any input
~x and state S , then the automaton is called deterministic. In that case the transition
function can be constructed as a function from pairs of states and letters (or words)
to states. A triple 〈S , a,T 〉, also written S

a
→ T , such that T ∈ τ(S , a) is called a

transition of the automaton. τ is completely determined by its transitions.

L 10.4.1. For every finite state automaton A there exists a deterministic
automaton B such that L(B) = L(A).

P. Let A = 〈S, S 0, F, τ〉 be given. Let T := 2S, T0 := {S 0}, G := {H ⊆ S :
H ∩ F , ∅} and for Σ ⊆ S and a ∈ A let σ(Σ, a) :=

⋃
〈τ(S , a) : S ∈ Σ〉. It is verified

by induction that for every word ~x ∈ L∗ also

σ(Σ, ~x) =
⋃
S∈Σ

τ(S , ~x)

Put B := 〈T,T0,G, σ〉. It is then clear by the definitions that L(B) = L(A). �

For any regular language L an automaton A can be constructed such that L =
L(A). Namely, for the one–letter languages {a} construct a three–state automaton
based on S = {S 0, S 1, S 2}, where F := {S 1} and such that τ(S 0, a) := S 1, but
τ(S i, `) := S 2 if ` , a or S i , S 0. For the union assume that Ai = 〈Si, S i, F i, τi〉 are
automata such that L(Ai) = Li, i = 1, 2. Then construct the automaton

B := 〈S1 × S2, 〈S 1
0, S

2
0〉, F

1 × S2 ∪ S1 × F2, τ1 × τ2〉

where τ1×τ2(〈S ,T 〉, a) := 〈τ1(S , a), τ2(T, a)〉. It is easy to check that L(B) = L1∪L2.
For the composition L1 ·L2 of the two languages perform the following construction.
For each T ∈ F1 add a copy A2

T of A2 to the automaton, identifying the state T
with (S 0)T as follows. For every transition into T add a transition into (S 0)T and
finally remove T . The initial state is S 1

0 and the new accepting states are all states

from F2
T , T ∈ F1. Finally, for the star just add for each transition S

a
→ T where

T ∈ F a transition S
a
→ S 0, and remove all T ∈ F different from S 0. The new set

of accepting states is {S 0}. This new automaton accepts (L1)∗. This shows that all
regular languages are languages accepted by some finite state automaton.

T 10.4.2 (Kleene). Let A be a finite alphabet. A language L ⊆ A∗ is
regular iff there exists a finite state automaton A such that L = L(A).
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P. Let A = 〈S, S 0, F, τ〉 be a finite state automaton. We can assume that it
is deterministic. Let for simplicity be S = {0, 1, . . . , n − 1}, and S 0 = 0. Take a set
Xi of variables ranging over subsets of A∗. The intended interpretation of Xi is that
it denotes the set of words ~x such that τ(0, ~x) = i. The automaton is determined by a
set of equations over these variables of the following form. For each i < n and j < n
let ai j = {a : i

a
→ j, a ∈ A}. Each ai j is a regular language, being a (possibly empty)

union of one–letter languages. We then have

X0 = ε ∪ X0 · a00 ∪ X1 · a10 ∪ . . .∪ Xn−1 · an−1,0

X1 = X0 · a01 ∪ X1 · a11 ∪ . . .∪ Xn−1 · an−1,1
...

...
...

...

Xn−1 = X0 · a0,n−1 ∪ X1 · a1,n−1 ∪ . . .∪ Xn−1 · an−1,n−1

It is easy to see that any solution L0, L1 etc. for this system of equations has the
property that the set of words ~x such that τ(0, ~x) = i is exactly the solution for Xi.
Furthermore, there can be only one such solution. To see this suppose that we have
an equation of the form

X = X · R ∪ Y

where R is a regular expression over A containing no variables and Y a regular ex-
pression not containing X. This equation has the same solutions as

X = Y · R∗

Namely, take a word from Y ·R∗. It is of the form ~y ·~r0 ·~r1 ·~r2 . . .~rn−1, ~ri ∈ R and ~y ∈ Y .
Then by the first equation ~y ∈ X, since Y ⊆ X, and then ~y · ~r0 ∈ X, since X · R ⊆ X.
So ~y · ~r0 · ~r1 ∈ X, and so on. Hence ~x ∈ X. Conversely, let ~x ∈ X. Then either ~x ∈ Y ,
or ~x ∈ X · R, that is to say, ~x = ~x′ ·~r0 for some ~r0 ∈ R and some ~x′ ∈ X. Again, either
~x′ ∈ Y or it is of the form ~x′′ · ~r1, ~r1 ∈ R and ~x′′ ∈ X. This process must come to a
halt, and this is when we have a decomposition of ~x into ~y ·~rn−1 ·~rn−2 · . . . ·~r0, ~ri ∈ R
and ~y ∈ Y . Thus ~x ∈ Y · R∗.

Armed with this reduction we can solve this system of equations in the usual
way. We start with Xn−1 and solve the equation for this variable. We insert this solu-
tion for Xn−1 into the remaining equations, obtaining a new system of equations with
less variables. We continue this with Xn−2 and forth until we have an explicit solution
for X0, containing no variables. This we now insert back again for X1 obtaining a
regular expression for X1, and so on. Finally, we have L(A) =

⋃
i∈F Xi, and insert-

ing the concrete solutions gives us a regular expression for the language accepted by
A. �

This theorem has numerous consequences. Let us list a few. Given a word
~x = a(0) · a(1) · . . . · a(n − 1), we put ~x` := a(n − 1) · . . . · a(1) · a(0) and call it
the transpose of ~x. For a language L we write L` := {~x` : ~x ∈ L} and call that the
transpose of L.
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T 10.4.3. The intersection of two regular languages is a regular lan-
guage. The transpose of a regular language is a regular language.

The proof is left as an exercise. Given a finite automaton, and two states i and
j, let L[i, j] := {~x : τ(~x, i) = j}. Then the proof method establishes that all L[i, j] are
regular. The languages L[i, j] satisfy the equations

L[i, j] =
⋃

k

L[i, k] · L[k, j] .

Thus L[i, k] · L[k, j] ⊆ L[i, j]. For a deterministic automaton L[i, j] ∩ L[i, j′] = ∅
whenever j , j′. Now, define the prefix closure Lp of a language L to be the set
{~x : (∃~y)(~x ·~y ∈ L)} and the suffix closure Ls to be the set {~x : (∃~y)(~y · ~x ∈ L)}. If L is
regular, so are Lp and Ls. Namely, take an automaton A = 〈S, S 0, F, τ〉 recognizing
L. Lp is the union of all L[S 0, i] such that L[i, j] is not empty for some j ∈ F. This
is regular. For Ls, observe that Ls is the union of L[i, j] such that j ∈ F. All of the
latter are regular, and so is Ls. There is an explicit way to compute the suffix closure
of a regular expression, which runs as follows.

as := ε ∪ a
(R · S )s := Rs · S ∪ S s

(R ∪ S )s := Rs ∪ S s

(R∗)s := Rs · R∗

The correctness of this definition is seen by induction on the definition of the regular
expression. Clearly, a suffix of a, a ∈ A, is either a itself or the empty word, so as is
correctly defined. Now let ~w be suffix of a word ~v of L ∪ M. Then if ~v ∈ L, ~w ∈ Ls,
and if ~v ∈ M then ~w ∈ Ms. Next let ~w ∈ (L · M)s, that is, for some ~v, ~v · ~w ∈ L · M.
There exist ~x ∈ L and ~y ∈ M such that ~v · ~w = ~x · ~y. Then either ~v is a prefix of ~x or
~x is a prefix of ~v. If the first is the case we have a decomposition ~x = ~v · ~x′ and so
~v · ~w = ~v · ~x′ · ~y from which ~w = ~x′ · ~y. This means that ~w ∈ Ls · M. Now let ~x be
a prefix of ~v. Then we have a decomposition ~v = ~x · ~v′ and so ~x · ~v′ · ~w = ~x · ~y from
which ~v′ · ~w = ~y. Thus ~w ∈ Ms.

Recall from the previous section the definition of the Fischer–Ladner closure.
Apart from the usual syntactic closure it involves a certain kind of closure under
subprograms. In a sense to be made precise now, the Fischer–Ladner closure of a
formula ϕ involves the closure under suffixes of each program α occurring in ϕ.

P 10.4.4. Let 〈α〉p be a PDL–formula. Then 〈αs〉p is deductively
equivalent to the disjunction of all formulae in FL(〈α〉p).

P. We do induction on α. Suppose α is elementary. Then by (fld.) we have∨
FL(〈α〉p) = 〈α〉p ∨ p = 〈αs〉p. Next suppose that α = β; γ. Then

∨
FL(〈α〉p) is

equivalent to
∨

FL(〈β〉〈γ〉p). Furthermore, FL(〈β〉〈γ〉p) = (FL(〈β〉q))[〈γ〉p/q] ∪
FL(〈γ〉p). By induction hypothesis, the disjunction over the first is nothing but
(〈βs〉q)[〈γ〉p/q] = 〈βs〉〈γ〉p, which is equivalent in PDL to 〈βs; γ〉p. The second
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is nothing but 〈γs〉p. The disjunction is equivalent to 〈(βs; γ) ∪ γs〉p and that had to
be shown. Next consider α = β∪ γ. Then

∨
FL(〈α〉p) is equivalent to

∨
FL(〈β〉p)∨∨

FL(〈γ〉p). By induction hypothesis the latter is equivalent to 〈βs〉p ∨ 〈γs〉p, and
so equivalent to 〈αs〉p, as promised. Finally, we turn to α = β∗. We have that∨

FL(〈β∗〉p) is equivalent to the disjunction of FL(〈β∗〉p) and FL(〈β〉〈β∗〉p). The first
does not reduce again except with the rule (fl∗.) so that this disjunction is equivalent
to 〈β∗〉p∨

∨
FL(〈β〉〈β∗〉p). Now notice that FL(〈β〉〈β∗〉p) = FL(〈β〉q)[〈β∗〉p/q]∪{p}.

Therefore, the last of the two is equivalent by induction hypothesis to the disjunc-
tion of 〈βs〉〈β∗〉p and 〈β∗〉p. Thus the whole disjunction is equivalent to the formula
〈(βs; β∗) ∪ β∗〉p, which is nothing but 〈αs〉p. �

Exercise 364. Show that the reduction algorithm in the proof of Kleene’s Theo-
rem does not depend on the assumption that A is deterministic. Thus, another proof
is found that languages accepted by nondeterministic finite state automata are the
same as those accepted by a finite state deterministic automaton.

Exercise 365. A regular automaton is said to be an automaton with ε–transitions if
there are transitions of the form S

ε
→ T . Show that any language accepted by a finite

state automaton with ε–transitions is regular.

Exercise 366. Spell out in detail the constructions to show that L1 · L2 and L∗1 are
languages accepted by a finite state automaton whenever L1 and L2 are.

Exercise 367. Use the method of solving equations to show that all regular expres-
sions define languages accepted by some finite state automaton. Hint. Let R be a
regular language and R the term. Then start with the equations X1 = X0 · R, X0 = ε.
Now reduce the regular expression R by introducing new variables. For example, if
R = R′ · R′′, then Xi = R′ · R′′ · X j ∪ Y . Introduce a variable X′j and add instead the
equations Xi = R′ · X′j ∪ Y , X′j = R′′ · X j. Finally, if the system of equations is such
that the expressions Xi · R are of the form where R is simply of the form a, a ∈ A, or
a union thereof, see how you can define a finite state automaton accepting R.

Exercise 368. Show Theorem 10.4.3.

Exercise 369. Try to define the intersection and transpose of a language explicitly
on the regular expression. Hint. This is complicated for the intersection, but should
be relatively easy for the transpose.

10.5. An Evaluation Procedure

The problem that we are now going to attack is that of evaluation of PDL–
formulae in a given model. This will provide the basis for some interesting theorems
in dynamic logic. Before we start let us see how we can simplify PDL–formulae.
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What is particularly interesting is to obtain some canonical form for the programs.
First, we define the dynamic complexity of a formula as follows.

D 10.5.1. A formula ϕ is of dynamic complexity 0 if it is a boolean
combination of variables. ϕ is of dynamic complexity d+1 if it is not of dynamic
complexity ≤ d and a boolean combination of formulae of the form 〈α〉ψ, where ψ is
of dynamic complexity ≤ d, and α is composed from basic programs and tests over
formulae of dynamic complexity ≤ d using program union, composition and star. We
denote the dynamic complexity of a formula ϕ by dc(ϕ).

Call a program γ a chain if it is composed from basic programs and tests using
only composition. A chain is semiregular if it is of the form ζ or α; γ′, where γ′ is
a chain and where ζ is a basic program, not a test. A chain is called regular if it is
of the form ζ;ϕ? for some basic program ζ, or of the form ζ;ϕ?; γ′ for some regular
chain γ′. (This is obviously well–defined, since γ′ is a chain of smaller length than
γ.) The first lemma concerns the reduction of star–free programs to regular chains.

L 10.5.2. Suppose χ = 〈α〉ϕ is a formula where α is free of star. (1.) There
exist semiregular chains γi, i < n, such that χ is equivalent to a disjunction of the
formulae 〈γi〉ϕ. (2.) There exist regular chains δi, i < m, and formulae ψi of dynamic
complexity less than dc(χ), such that χ is equivalent in PDL to the disjunction of
ψi ∧ 〈δi〉ϕ.

P. First, by (df∪.) and (df;.) we are allowed to convert 〈α; (β1 ∪ β2); γ〉ϕ
into the disjunction of 〈α; β1; γ〉ϕ and 〈α; β2; γ〉ϕ. Thus, we can replace a star–free
program by the disjunction of chains. Next, we can replace 〈α;ψ1?;ψ2?; β〉ϕ by
〈α; (ψ1 ∧ ψ2)?; β〉ϕ. Finally, we can rewrite 〈ψ?;α〉ϕ by ψ ∧ 〈α〉ϕ. Perform these
reductions in succession and this gives the desired disjunction into formulae using
regular chains. �

The star operator introduces some complications. First of all, however, notice
the following identities. (Recall that skip := >?.)

L 10.5.3. The following holds.
1. (α ∪ β)∗ = (α∗; β∗)∗.
2. (α; β)∗ = skip ∪ α; (β;α)∗; β.
3. (ϕ?)∗ = skip.

Using these identities we can do the following. Take the smallest subformula of
the form α∗. Then α can be assumed to be a disjunction of semiregular chains. By
(1.) of the above proposition, we can remove the disjunction in α∗, so that we are
down to the case where α contains a single semiregular chain. If it is not already
regular, then it is of the form ψ?; γ or it the form ψ?. The latter is dealt with using
(3.). It can be replaced by skip. Now consider the first case. Use (2.) to rewrite
(ψ?; γ)∗ into skip ∪ ψ?; (γ;ψ?)∗; γ. γ begins with a basic program, so it is a regular
chain. After these manipulations we have that the smallest starred subformulae are
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of the form α∗ with α a regular chain. This we rewrite again into skip∪ α+. Now we
continue with the smallest subprogram of the form α∗ in the formula thus obtained.
It may now contain a program of the form β+. However, the same manipulations can
be performed. Iterating this we get a formula which we call proper. A definition
recursive in the dynamic complexity runs as follows.

D 10.5.4. A program α is called proper if it is composed from regular
chains using tests on proper formulae, with the help of composition, union, and +.
A formula is proper if it is a boolean combination of formulae 〈α〉ψ, where α and ψ
are proper.

P 10.5.5. Every formula of PDL is PDL–equivalent to a proper
formula.

The use of proper formulae is explained by taking a look at path sets defined by
programs. First, notice that programs do not simply define paths in a model, but they
define path sets since they are regular expressions. We give a syntactic description
in terms of chains.

ch(γ) := {γ} if γ is a chain
ch(γ ∪ δ) := ch(γ) ∪ ch(δ)
ch(γ+) :=

⋃
0<i<ω ch(γi)

To simplify the notation, we can assume that a regular chain is a composition of
programs of the form γi;ϕi?. If not, then add suitable tests >? in between basic
programs. With such simplification, take a model 〈 f , σ, β〉 and a point x0. A path
of length n starting at x0 is a sequence π = 〈xi : i < n + 1〉 such that π(0) = x0 and
for all i < n there exists a basic γi such that xi

γi
→ xi+1. Now, a path π is said to fall

under a regular chain δ, where δ is of the form

δ = γ0;ψ0?; γ1;ψ1?; . . . ; γn;ψn? ,

if xi
γi
→ xi+1 for all i < n, and 〈 f , σ, β, xi+1〉 � ψi. If π falls under δ we also say that

π is a computation trace of δ. (This is called a computation sequence in [119].)
This notion is extended to all proper programs as follows. A path falls under or is a
computation trace of a proper program α if it falls under any one of ch(α). Finally,
if one wishes, the notion can also be extended to arbitrary α, by saying that π falls
under α if it falls under any β which is proper and equivalent to α.

A first application is the proof that DPDL has the finite model property. We
will show that DPDL is constructively reducible to PDL using the following global
reduction function

XD(∆) := {¬[ζ]χ→ [ζ]¬χ : [ζ]χ ∈ FL[∆], ζ ∈ Π0}.

These reduction sets split. Now assume that we have a finite model 〈f,w0〉 such that
XD(ϕ) holds globally while ϕ holds at w0. Starting with this configuration, we will
produce a finite DPDL–model for ϕ, based on the basic programs occurring in ϕ.
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(So, we assume Π0 to be finite.) Moreover, we will assume that ϕ to be proper.
To see that this is harmless even for a proof of interpolation observe that by Proposi-
tion 10.5.5 we can turn α into a proper program by some equivalence transformations
and insertion of some tests >?. The construction is essentially due to M
B–A, J H and A P [7]. First, we will unravel f at x. The
resulting frame is called n. The unravelling is strictly speaking unnecessary, we do
it only for technical convenience. The construction of the actual model is inductive.
The intermediate objects are not models, however, but what we call pseudomodels.
A pseudomodel is a pair 〈f, b〉 where b assigns a set of formulae to each x ∈ f .
〈f, b, x〉 � ϕ is defined inductively. However, it is a priori not excluded that the val-
uation is inconsistent. So, we work with sets of truth values. Given M := 〈f, b〉 we
define vM(χ, x) ⊆ {0, 1, ∗} inductively.

1 ∈ vM(p, x) ⇔ p ∈ b(x),
0 ∈ vM(p, x) ⇔ ¬p ∈ b(x)

For χ = ¬χ′, let 1 ∈ vM(χ, x) iff 0 ∈ vM(χ′, x) and 0 ∈ vM(χ, x) iff 1 ∈ vM(χ′, x). For
χ = χ1∧χ2 put vM(χ, x) := {[∩] : [ ∈ vM(χ1, x), ] ∈ vM(χ2, x)}. Finally, let χ = 〈α〉χ′.
We put 1 ∈ vM(χ, x) iff there exists β and γ such that 〈β; γ〉p → 〈α〉p ∈ PDL and
a path from x to y falling under β, such that 〈γ〉χ′ ∈ b(y). Otherwise, 0 ∈ vM(χ, x).
(Clearly, for [α]χ′ the dual of this condition is chosen.) Finally, we write M � χ if
1 ∈ vM(χ, x). Call a formula a strict diamond formula if it is not of the form ¬¬ϕ,
ϕ∧ψ, ϕ∨ψ, 〈ϕ?〉ψ or [α]ψ. Say that a pseudomodel is proper if b(x) always is a set
of strict diamond formulae.

L 10.5.6. LetM = 〈f, b〉 be proper. Then the sets ∆(x) := {χ : vM(χ, x) = 1}
are consistent.

For a proof of this lemma notice that a strict diamond formula never gets the
value {0, 1}, by definition. So ∆(x) can be inconsistent iff there exists a variable
p such that p,¬p ∈ b(x). If b(x) only contains variables for each x ∈ f , define
β(p) := {x : p ∈ b(x)}. Then 〈f, b, x〉 � ϕ iff 〈f, β, x〉 � ϕ, as is easily verified.

Now we start the construction. Put P0 := {w0}, where w0 is the root of n.
Furthermore, let p0 be the subframe based on P0 (that is, all relations are empty);
and finally,

b0(w0) := {χ ∈ FL¬(ϕ) : χ a variable or strict diamond formula
and 〈n, β, 〈w0〉〉 � χ} .

Starting with 〈p0, b0〉 we will construct a sequence of pseudomodels 〈pn, bn〉 and sets
Ln such that

1. pn is based on a finite subset Pn of n.
2. bn(x) ⊆ FL(ϕ) for all x ∈ Pn.
3. Ln is the set of all x for which there exists i ≤ n such that x is a leaf of pi.



488 10. Dynamic Logic

4. 〈pn, bn〉 is proper. Moreover, bn(x) contains formulae which are not vari-
ables only if x has no successors.

5. For χ ∈ FL(ϕ) we have 〈pn, bn, x〉 � χ iff 〈n, β, x〉 � χ.
6. pn is a DPDL–frame.

These claims are immediate for 〈p0, b0〉. We will also construct auxiliary sets Ln.
L0 := {w0}. Now let 〈pn, bn〉 and Ln already be constructed. Pick a node x in Pn

without successors. Case 1. Along a path from w0 to x there exists a y ∈ Ln and
y , x such that 〈pn, bn, y〉 � χ iff 〈pn, bn, x〉 � χ for all χ ∈ FL(ϕ). Then y ∈ Ln−1. Put

Pn+1 := Pn − {x}. For ζ ∈ Π0 put z
ζ
→ z′ in the new frame if either z

ζ
→ z′ in the old

frame, or z′ = y and z
ζ
→ x in the old frame. bn+1 := bn � Pn+1. Ln+1 := Ln − {x}.

In this case, the properties (1.) – (4.) and (6.) are immediate. We will verify (5.) in
Lemma 10.5.8. Case 2. Along no path from w0 to x there is a y ∈ Ln different from
x such that y satisfies the same set of formulae in FL(ϕ) as does x. Pick a formula
¬[α]ψ in bn(x). There exist points si in n, i < k + 1, and a computation trace

τ0?; γ0; τ1?; γ1; . . . τk−1?; γk−1

falling under α;¬ψ? such that s0 = x, si
γi
→ si+1 in n, 〈n, β, si〉 � τi for all i < k,

and 〈n, β, sk〉 � ψ. (It is here that we need ϕ to be proper. This assumption is not
essential, but allows for simpler statement of the facts. If ϕ is not proper there might
not be a τi? for certain i, but the proof does in no way depend on that.) For each i < k

and each basic ζ we let t(i, ζ) be a point of n such that si
ζ
→ t(i, ζ). If ζ = γi, then

t(i, ζ) := si+1. Put

T (x,¬[α]ψ) := {si : i < k + 1} ∪ {t(i, ζ) : i < k, ζ ∈ Π0} .

We call T (x,¬[α]ψ) the thorn sprouting at x for ¬[α]ψ. We let pn(x,¬[α]ψ) be the
result of adding the thorn sprouting at x for ¬[α]ψ to pn. A map c is defined by
c(x) := bn(x)− {¬[α]ψ}, c(z) := bn(z) if z ∈ Pn − {x}, and c(z) = {¬[α′]ψ′ : ¬[α′]ψ′ ∈
FL(ϕ), 〈n, β, z〉 � ϕ} for z ∈ T (x,¬[α]ψ) a leaf, c(z) := {p : p ∈ var(ϕ), z ∈ β(p)}, z
not a leaf. As one can show, the new pseudomodel satisfies all properties but (4.) in
the above list. Therefore, we would like to add all thorns sprouting at x for a (strict
diamond) formula of the form ¬[α]ψ. However, the resulting frame will not be a
DPDL–frame. Therefore, some care has to be exercised in defining the thorns.

L 10.5.7. Let ϕ be a formula, and

〈f, β〉 � {¬[ζ]χ→ [ζ]¬χ : [ζ]χ ∈ FL(ϕ), ζ ∈ Π0} .

Let ¬[α]ψ be in FL¬(ϕ) and 〈f, β, x〉 � ¬[α]ψ, x
ζ
→ y. If there is a path starting with

x
ζ
→ z falling under a computation trace for α;¬ψ?, then there is a formula ¬[α′]ψ

in FL¬(ϕ) such that for any path π starting at z falling under a computation trace
for α′;¬ψ?, the path xaπ falls under a computation trace for α;¬ψ?. Furthermore,
〈f, β, y〉 � ¬[α′]ψ and there is a path falling under a computation trace for α;¬ψ?
starting at x leading through y.
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Thus, let ¬[α′]ψ′ be a formula that holds at x in n. By repeated use of the
lemma one can show that there exists a path falling under a computation trace for
α;¬ψ? that is either fully contained in (i) T (x,¬[α]ψ) or (ii) leads through a leaf y of
T (x,¬[α]ψ). In case (i), we do nothing. In case (ii), rather than sprouting a thorn for
¬[α′]ψ′ at x in pn, we sprout a thorn at y for some suitable ¬[α′′]ψ′′ in pn(x,¬[α]ψ).
We perform this sprouting for all formulae ¬[α′]ψ′ in bn(x). Let T (x) be the union

of the thorns. Let y
ζ
→ z in T (x) iff y

ζ
→ z in n. This defines the frame t(x). It is a

DPDL–frame; it is a tree. We put Pn+1 := Pn ∪ T (x), and y
ζ
→ z iff y, z ∈ Pn and

y
ζ
→ z in pn or y, z ∈ T (x) and y

ζ
→ z in t(x). Finally, bn+1(y) := bn(y) if y ∈ Pn − {x},

bn+1(x) := {p : p ∈ bn(x)}, bn+1(y) := {p : 〈n, β, y〉 � p} if y is in T (x) but not a leaf
of t(x), and finally bn+1(y) := {¬[α]ψ ∈ FL¬(ϕ) : 〈n, β, y〉 � ¬[α]ψ} if y is a leaf of
t(x). Finally, Ln+1 := Ln ∪ {y : y a leaf of t(x)}.

Now, pn+1 is finite. Moreover, one can estimate the size of T (x) in the following
way. For each ¬[α]ψ we have added a computation trace. Since n is the unravelling
of f, a bound on a computation trace for α;ψ? can be given that depends only on the
size of f and ¬[α]ψ. bn+1(y) is a subset of FL¬(ϕ) by construction; moreover, if y is
not a leaf, then bn+1(y) only contains variables. bn+1(y) contains by construction only
formulae of the form ¬[α]ψ. Furthermore, pn+1 is a DPDL–frame, as is straightfor-
ward to verify. It remains to be seen that 〈pn+1, bn+1, y〉 � χ iff 〈n, β, y〉 � χ for all χ
in FL¬(ϕ). This follows from the lemma below.

L 10.5.8. For all n, all χ ∈ FL¬(ϕ) and all y ∈ Pn:

(‡) 〈pn+1, bn+1, y〉 � χ ⇔ 〈pn, bn, y〉 � χ

P. By induction on the dynamic complexity of χ. For variables this holds
by construction, and the only problematic step is for the strict diamond formulae.
Let c be the dynamic complexity of ¬[α]χ, c > 0, and let the claim have been
shown for formulae of complexity < c. In the definition of pn+1 two cases have been
distinguished. Case 1. pn+1 is obtained by removing a point (and adding a transition).
Let 〈pn+1, bn+1, y〉 � ¬[α]χ. And assume that Pn+1 = Pn − {x} and that the transition

v
ζ
→ w has been added for some w. Then in pn, v

ζ
→ x, and x and w satisfy the same

strict diamond formulae and the same variables. Then y , x. Consider a path from y
falling under a computation trace for α;¬χ?.

Case 1a. The path does not go through v. Then it is a path in pn, by con-
struction. By inductive hypothesis, since the computation trace involves tests for
formulae of dynamic complexity < c, the path falls under the same computation
trace in 〈pn, bn〉. In this case we are done, for then clearly 〈pn, bn, y〉 � ¬[α]χ. Now
assume 〈pn, bn, y〉 � ¬[α]χ. Consider a path π falling under a computation trace in
〈pn, bn〉. Then it is a path in pn+1, except if the path ends in x. In that case, let π′

differ from π only in that the endpoint (which is x) is replaced by w. Otherwise,
π′ := π. By inductive hypothesis, the path falls under a computation trace for α;¬χ?
in 〈pn+1, bn+1〉.
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Case 1b. Suppose that the path goes through v. Then 〈pn+1, bn+1, y〉 � ¬[α]χ by
virtue of the fact that either we have (i) 〈pn+1, bn+1, v〉 � ¬χ or (ii) 〈pn+1, bn+1, v〉 �
¬[α′]χ for some strict diamond formula ¬[α′]χ in FL¬(ϕ). Here as in sequel, α′ is
such that there exists a computation trace σ such that (i) the path from y to v falls
under σ and (ii) for every computation trace τ for α′ σ; τ is a computation trace for
α. In case (i) we are done by inductive hypothesis. In case (ii) observe that then
〈pn+1, bn+1,w〉 � ψ;¬[α′′]χ, for some ψ of dynamic complexity < c and some α′′

such that for every computation trace τ for α′′ the trace ζ;ψ?; τ is a computation
trace for α′. (α′′ may be identical to skip). w ∈ Ln−1. Therefore, by construction
of the sequence 〈pi, bi〉, there exists a path falling under a computation trace for
α′′;¬χ? inside pn. By inductive hypothesis, since it involves tests of degree < c
and the fact that the path is a path in pn, this is a path falling under a computation
trace in pn. So, 〈pn, bn,w〉 � ¬[α′′]χ. Furthermore, 〈pn, bn,w〉 � ψ. It follows that
〈pn, bn, x〉 � ψ;¬[α′′]χ, by construction of 〈pn+1, bn+1〉. Hence 〈pn, bn, v〉 � ¬[α′]χ,

since v
ζ
→ x. From this follows finally that 〈pn, bn, y〉 � ¬[α]χ.

Case 2. Let 〈pn+1, bn+1, y〉 � ¬[α]χ. Consider a path π falling under a com-
putation trace for α; χ?. If that path is inside pn then by inductive hypothesis,
〈pn, bn, y〉 � ¬[α]χ. Otherwise, if the path is inside t(x), then 〈pn, bn, y〉 � ¬[α]χ
be definition, using the previous lemma. Finally, if the path is not properly contained
in either, then it leads through x. So, 〈pn+1, bn+1, y〉 � ¬[α]χ holds by virtue of the
fact that 〈pn+1, bn+1, x〉 � ¬[α′]χ for some ¬[α′]χ in FL¬(ϕ). The latter is equivalent
to 〈t(x), bn+1 � T (x), y〉 � ¬[α′]χ which in turn means that ¬[α′]χ ∈ bn(x). By (5.)
since 〈pn, bn, x〉 � ¬[α′]χ, we have 〈pn, bn, y〉 � ¬[α]χ. (Induction on the length of
the path leading from y to x.) Now, assume that 〈pn, bn, y〉 � ¬[α]χ. Then if y is
not a leaf, there is a path in pn falling under a computation trace for α;¬χ?. This
path falls under the same computation trace for α;¬χ? in 〈pn+1, bn+1〉. By inductive
hypothesis, therefore, 〈pn+1, bn+1, y〉 � ¬[α]χ. If y is a leaf different from x, then
¬[α]χ ∈ bn(y) and so also ¬[α]χ ∈ bn+1(y). Finally, if y = x the claim holds by
construction of t(x) and pn+1. �

T 10.5.9 (Ben–Ari & Halpern & Pnueli). DPDL has the finite model
property.

Now let us return to the question of evaluating a formula in a model. We will
propose a special procedure, which we will use in Section 10.7. It is effective, but
we make no claims about its efficiency. We may assume that the formula is proper.
Thus take a formula ϕ and a modelM = 〈 f , σ, β〉. First, put ϕ into the form

ϕ =
∨
i<k

∧
j<ki

ψ(i, j)

where each ψ(i, j) is of the form 〈α(i, j)〉χ(i, j), or [α(i, j)]χ(i, j). Moreover, we can
rewrite these formulae into 〈α(i, j); χ(i, j)?〉> and [α(i, j);¬χ(i, j)?]⊥. Without loss
of generality, we can assume that ψ(i, j) = 〈α(i, j)〉> or ψ(i, j) = ¬〈α(i, j)〉>. Thus,
ϕ turns into a boolean combination of existence statements for paths. The strategy
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we are going to use is simply put the following. Enumerate all possible paths in
the model, and see whether they fall under one of the descriptions. To make this
work, several things have to be assured. First, that we can in principle enumerate
all the paths, second that we are able to see whether they fall under one of these
descriptions, that is, whether they are of the form α(i, j); and third, since the α(i, j)
might use the star, we must find a way to make the procedure finite if the model is
finite as well.

We will deal with these problems in the following way. Suppose that we have

a path π of length n. Then there are basic programs ζ(i) such that xi
ζ(i)
→ xi+1. Given

α(i, j), under what condition does π fall under α(i, j)? If α(i, j) is free of stars,
this is easy. For then α(i, j) is a disjunction of chains, each chain being composed
from basic programs and tests. Moroever, we can assume that it is a composition

of programs of the form ζi;ψi?, where ζi is basic. Then check whether xi
ζi
→ xi+1

for all i < n, and whether or not 〈 f , σ, β, xi+1〉 � ψi. The latter is a task similar
to the evaluation of the main formula ϕ; however, ψi has dynamic complexity less
than the complexity of ϕ. Assuming that the latter task can be achieved by the same
method as we describe now at least for formulae of lesser dynamic complexity that
ϕ, we have succeeded. Of course, the case that the ψi have dynamic complexity 0 is
granted to us. We just need to see whether a boolean combination of variables holds
at a node. We use β to tell us so. Now, if the program contains stars, we can do
the following. Let us assume that the frame has at most p points. Then any pair of
points related via α∗ can be related via α≤p, which is the union of all αn such that
n ≤ p. For any sequence of length > p must contain a repetition, which we could
have avoided. Thus, we can simply replace the star by a suitable disjunction. This
solves the problem of deciding whether a path falls under a path description.

The next problem is that of enumerating the paths. Recall that we were able
to replace the star, so we are down to a finite disjunction of chains. This problem
is therefore solved if for given maximum length c of a chain we can successfully
enumerate all possible paths of length ≤ c. The choice of c makes sure we really
enumerate all paths that possibly stand a chance of falling under a description α(i, j).
Now to enumerate these paths starting at a given point x0, let us first of all assume that
given a node w and a basic program ζ, the ζ–successors of w are ordered, or ranked.
Moreover, we consider the basic programs ordered, say by their enumeration as ζ0,
ζ1 etc. Then, the first degree successors of w are ordered as follows. y precedes z if

either w
ζi
→ y and there is no j ≤ i such that w

ζ j
→ z, or else w

ζi
→ y, z and y is ranked

higher than z as a ζi–successor. Finally, we rank the paths starting at x0 as follows.
π � ρ if either (i) ρ is a prefix of π or (ii) there exists a largest i such that π(i) = ρ(i)
and π(i+ 1) precedes ρ(i+ 1) as a first degree successor of π(i) (= ρ(i)). This ranking
corresponds to a depth–first search. Starting at x0 we always pick the successors of
highest priority, going as deep as we can, but at most c steps deep. After that we do
what is known as backtracking. To get the next path we go back to the last point π(i)
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(in the numeration of the path, i. e. we choose the highest i with this property) where
we could have chosen a successor of lower priority rather than π(i + 1) and there we
go instead to the point immediately lower in priority than π(i + 1). After this choice
we start picking successors of highest rank again, up to depth c, or as deep as we can
otherwise. If there exists no point lower in priority that π(i+ 1), the new path ends at
π(i), that is, has length i. In this way we really enumerate all paths starting at x0 of
length ≤ c.

The problem of deciding whether ϕ is accepted at x0 in a model of size p is now
solved as follows. Replace all programs α∗ by α≤p. Compute the constant c, the max-
imum nesting of basic programs in ϕ. Now open a table for ϕ. We understand a table
for ϕ to be a bit–vector consisting of one bit per subformula ψ(i, j) = (¬)〈α(i, j)〉>.
The table is initialized by putting t(i, j) = 0, if ψ(i, j) is of the form 〈α(i, j)〉>, and by
putting t(i, j) = 1 if ψ(i, j) is of the form ¬〈α(i, j)〉>. Now start generating all paths
of length ≤ c and check whether they fall under one of the α(i, j). This may require
a recursive step, that is, opening up tables for formulae of lower rank, but this is
immaterial. Now suppose we have generated a new path π. Then for each index (i, j)
we check whether or not the path falls under α(i, j). If so, we overwrite the entry
t(i, j) to 1; if not, t(i, j) remains untouched. At the end of this procedure, 〈α(i, j)〉>
comes out true if t(i, j) = 1, because the latter means t(i, j) has been overwritten
at least once, so must have found a path falling under α(i, j). It comes out false if
t(i, j) = 0, because that means we have never touched t(i, j), which in turn means
that no path has been found. Then for ¬〈α(i, j)〉> we also know whether or not it is
accepted. The number of tables that we need to keep at a given moment of time is
bounded by the dynamic complexity of ϕ. This means that apart from the procedure
that generates paths we only need a finite memory to do the bookkeeping.

If ϕ is proper we can deduce a number of useful properties of the computation
procedure. Suppose that we want to evaluate ϕ at x0. The path generator starts with
generating paths going through the successor of ϕ with highest priority. Call it x1.
Then it chooses a successor of highest priority, x2. And so on. This defines first of all
a linear order of the paths generated, which we can also represent as an enumeration
function ` : j → f , j some natural number. Say that the computation exits u at i,
i < j, if the end point of `(i) is u, and for no larger i′ u is the endpoint of `(i′). Now,
define a priority @ over the transit of x0 by saying that v @ w if the computation exits
v at i and the computation exits w at i′ and i < i′. This is defined only for the main
computation, generating paths from the point x0, at which we want to evaluate the
main formula ϕ. However, in the course of evaluating ϕ the procedure generates a
path with intermediate points and calls on subroutines to check certain subformulae
of lower dynamic complexity at certain nodes u. This procedure may by itself also
start generating paths. The set of active nodes of a computation at time t is the set
of nodes at the main path active at t, together with the set of nodes active in the
subroutine just at work at time t, plus whatever subroutines are called at t. The set of
active nodes is a union of at most d paths, d the dynamic complexity of ϕ. Now say
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— finally — that the overall computation totally exits x at t if x is active in it at t,
but for no point of time t′ > t, x is active at t′.

Notes on this section. Already in the abovementioned paper, B–A, H
and P have shown that DPDL is EXPTIME–complete. This can be established
using constructive reduction. The procedure described at the end of this section is
called a model checking procedure. Model checking, especially its complexity, is an
important topic in temporal logic (see E. A. E [54]). In general, the model
checking problem is as follows: given a finite model M and a formula ϕ, is M a
model for ϕ? Of course, this is in general a decidable problem, so one is interested in
the number of steps needed to compute the answer, or alternatively, in the amount of
storage space. This number may depend both on the size ofM as well as the length
of ϕ. The procedure described above is not very efficient. If we want to save space,
we should precompute the relations corresponding to the programs occurring in ϕ.
This can be done iteratively, by induction on FL(ϕ). In tandem, we shall evaluate
the assignments of the subformulae. All this needs space quadratic in the size of the
model and linear in the size of FL(ϕ). It is easy to see that card(FL(ϕ)) is linear in
the length of ϕ. The time is a polynomial in the sum of the size of the model and the
length of the formula (this was already observed in the paper by M. J. F and R.
E. L [69]). Notice that despite these low bounds, satisfiability of formulae in
PDL takes exponentially many steps to compute (see Section 10.3). For the models
to be built are in the worst case exponential in the length of ϕ.

Exercise 370. Show Lemma 10.5.3.

Exercise 371. Show Lemma 10.5.7.

Exercise 372. Show that DPDL with converse does not possess the finite model
property. (This is due to J H.)

10.6. The Unanswered Question

The remaining two sections will deal mainly with the problem of interpolation
for PDL. This is one of the major open problems in this area. Twice a solution has
been announced, in [138] and in [33], but in neither case was it possible to verify
the argument. The argument of L makes use of the fact that if ϕ `PDL ψ then
we can bound the size of a possible countermodel so that the star α∗ only needs
to search up to a depth d which depends on ϕ and ψ. Once that is done, we have
reduced PDL to EPDL, which definitely has interpolation because it is a notational
variant of polymodal K. However, this is tantamount to the following. Abbreviate
by PDLn the strengthening of PDL by axioms of the form [α∗]p ↔ [α≤n]p for all
α. Then, by the finite model property of PDL, PDL is the intersection of the logics
PDLn. Unfortunately, it is not so that interpolation is preserved under intersection.
A counterexample is the logic G.3, which fails to have interpolation while all proper
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extensions have interpolation, since they have all constants, by Theorem 1.6.4. We
have not been able to decide the question of interpolation for PDL. But some answers
can be given that point to the fact that PDL does indeed have interpolation. Also, we
wish to show that no significant fragment of PDL has interpolation. The picture that
emerges is this. If we start with a polymodal language Kn, then interpolation obtains,
because the language is not so strong. As soon as we add just one more operator, the
star closure of the basic programs, we can regain interpolation only if we add at least
all test–free programs of PDL. We believe that this latter fragment of PDL does in
fact have interpolation, and show moreover that if it does, PDL must as well have
interpolation.

Let us have the basic programs ζ0, ζ1, . . ., ζn−1. Put γ := ζ0 ∪ ζ1 ∪ . . . ∪ ζn−1.
We will show first that if a fragment of PDL contains at least the program γ∗, then
it has interpolation only if it is closed under union, composition and star. This gen-
eralizes an observation of M in [152]. To understand this result, let us call
a fragment of PDL a modal logic which contains some subset of the programs de-
finable from Π0 plus the relevant axioms. There are various interesting fragments of
PDL. One is the fragment consisting of the basic programs and the star closure of
the basic programs, another is test–free PDL, where we close Π0 only under union,
composition and star.

T 10.6.1. Let PDL− be a fragment of PDL containing at least the star
closure of the basic programs. Then it has interpolation only if it is at least the
fragment of test–free PDL.

P. We show that it is possible to give an implicit definition of any given reg-
ular language, so that PDL− can have the global Beth–property only if it contains the
closure of the basic programs under union, composition and star. For the proof, let L
be a regular language, definable by a regular expression β over the basic modalities,
ζi, i < m. There is a finite automaton with m states recognizing L`. As in the proof
of Kleene’s Theorem we can describe the automaton recognizing L with a system of
equations.

X0 = ε ∪ X0 · a00 ∪ X1 · a10 ∪ . . .∪ Xn−1 · an−1,0

X1 = X0 · a01 ∪ X1 · a11 ∪ . . .∪ Xn−1 · an−1,1
...

...
...

...

Xn−1 = X0 · a0,n−1 ∪ X1 · a1,n−1 ∪ . . .∪ Xn−1 · an−1,n−1

If F is the set of accepting states, L =
⋃

i∈F Xi. Now, take a propositional letter qi for
each state i, and one more letter, q∗. Let A(~q, q∗) be the conjunction of the following
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set of formulae.

q0 ↔ b0 ∨ 〈a00〉q0 ∨ 〈a10〉q1 ∨ . . .∨ 〈an−1,0〉qn−1

q1 ↔ b1 ∨ 〈a01〉q0 ∨ 〈a11〉q1 ∨ . . .∨ 〈an−1,1〉qn−1
...

...
...

...

qn−1 ↔ bn−1 ∨ 〈a0,n−1〉q0 ∨ 〈a1,n−1〉q1 ∨ . . .∨ 〈an−1,n−1〉qn−1

Here, bi := q∗ if i ∈ F and bi := ⊥ else. In addition, let B(~q, q∗) be the conjunction
of

qi →
∧
i, j

¬q j,
∨
i<n

qi, q∗ →
∧
j<m

[ζ j]q∗, [γ∗]〈γ∗〉q∗,
∧
i<n

(〈γ〉qi → [γ]qi) .

Put C(~q, q∗) := A(~q, q∗) ∧ B(~q, q∗). The proof is complete if we prove the following
three things. (i) C(~q, q∗) is a global implicit definition of q0, (ii) An explicit definition
is q0 ↔ 〈β〉q∗, (iii) No explicit definition can be found if β is not definable by a
formula in PDL−. For (i), notice that since PDL has the finite model property, so
does PDL−. Now take a finite model for C(~q, q∗). We show that the values of the qi

are completely determined by the values of q∗. First of all, B(~q, q∗) is chosen so that
if q∗ is true at a point, it remains true throughout the transit of that point. Second,
if there is a point x and a one–step ζi–successor y satisfying qi, then all one–step
successors satisfy qi. Now we show the following. x � qi iff there exists a path w
from x to y where y � q∗, and ~w ∈ L[ j, i]` for some accepting state j. First of all,
observe that for each x there exists a i such that x � qi, and this qi is unique. Now
we do induction of the smallest path ~w from x to a point y � q∗. Suppose, ~w is of
length 0. Then x = y and so x � q∗ iff y � q∗, and ε ∈ L[ j, j]` for an accepting state

j. Now let ~w = ζk · ~w′ and assume x
ζk
→ x′

~w′
→ y for some y � q∗. Then x′ � qs for

some s. Then any ζk–successor of x satisfies qs, and among them we choose the one
through which the minimal path ~w′ goes. By induction hypothesis there exists a path
~v to a point y′ such that y′ � q∗ and ~v ∈ L[ j, s]` for some accepting state j. Then

ζk · ~v ∈ L[i, s]`, by the fact that the automaton has a transition s
k
→ i. Hence, the

qi are implicitly defined, and equivalent to 〈βi〉q∗, where β is the regular expression
belonging to

⋃
j∈F L[i, j]`. The claim follows in the particular case of i = 0. Finally,

for (iii) notice that there exist the following models. Take any word w in the alphabet

A = {ζi : i < n}. Let the frame consist of the prefixes of ~w and put~v
ζi
→ ~v′ iff~v = ~v′ ·ζi.

The frame codes nothing but ~w in reverse order. On this frame, put β(q∗) := {ε}, ε
the empty word. Then there is a unique valuation β+ making C(~q, q∗) globally true.
At any point ~v in this frame, ~v � qi exactly if ~v` ∈ L[ j, i] for some accepting state j.
Therefore, no simpler definition for q0 can be given. �

On other hand, if test–free PDL has interpolation, then full PDL also has inter-
polation. This is the content of the next theorem.

T 10.6.2. PDL has interpolation if test–free PDL has interpolation.
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P. We use constructive reduction. The argument is therefore of a more
general character. First of all, we can restrict ourselves to finite Π0, so that we have
weak transitivity. Then global reduction sets can be reduced to local reduction sets.
Take a set ∆ and let

X?(∆) := {〈ψ?〉χ.↔ .ψ ∧ χ : 〈ψ?〉χ ∈ FL(∆)} .

It is enough to show that these sets are global reduction sets. For they split, and
therefore interpolation can be deduced for PDL as follows. Full PDL is the logic
which is obtained from test–free PDL with infinitely many basic programs by adding
the test axioms for all programs [ϕ?]. (This is to say, from the basic modalities we
select some to play the role of tests, and call them [ϕ?]. For exactly those modalities,
the test axioms are added.) Now take a model 〈f, β〉 for ϕ in which the reduction
formulae hold globally. We can assume f to be a dynamic frame. The only problem
with that frame is that the test–programs are interpreted freely. Let g differ from f in

that x
ψ?
→ y iff x = y and 〈f, β〉 � ψ, for all ψ ∈ FL(ϕ). We show that for all formulae

χ ∈ FL(ϕ), and all x,

(‡) 〈f, β, x〉 � χ iff 〈g, β, x〉 � χ

After that we can actually drop the assignment of the test programs, and obtain a
full dynamic model for ϕ. But now for the proof of (‡). Clearly, for variables and
boolean junctors there is nothing to show. So, let us take the case of a formula 〈α〉ω.
If α = β ∪ γ, or α = β; γ or α = β∗, then we can also use the induction hypothesis
in a straightforward way. There remain the cases α = ζi and α = ψ?. The first
is also straightforward since the interpretation of the ζi has not changed. So let us
proceed to the really critical case, χ = 〈ψ?〉ω. Here, if 〈f, β, x〉 � 〈ψ?〉ω then also
〈f, β, x〉 � ψ;ω. By induction hypothesis, 〈g, β, x〉 � ψ;ω and so 〈g, β, x〉 � 〈ψ?〉ω.
And conversely. �

We will now present some particular cases of formulas where interpolants can
be found. In view of the preceding result it is enough to consider test–free formulae,
and this is what we will do now. The method is a rather explicit construction of the
interpolant, using a method analogous to the one described at the end of Chapter 3.8.
We will illustrate it with the case where ϕ ` ψ and ϕ is of dynamic complexity 1, that
is, of the form

∨
ϕi, each ϕi a conjunction of fomulas of the form 〈β〉χ, [β]χ, where χ

is nonmodal. In this case we must have ϕi ` ψ for all i, so it is enough if interpolants
can be produced for each ϕi individually. Now recall the strategy of the Chapter 3.8.
Let us define ϕ> to be the result of replacing p by > where it occurs positively, and
by ⊥ where it occurs negatively. Then we have ϕ ` ϕ> by construction. It remains
to be verified that ϕ> ` ψ. To have that it is enough to show that if we have a model
for ϕ>;¬ψ then we can also produce a model for ϕ;¬ψ. Since the latter does not
obtain, ϕ> ` ψ is proved. To make that work, ϕ has to be carefully prepared before
the elimination of the variable p takes place. The reason is that forgetting p can lead
to a failure in the strategy, because ϕ> now allows for essentially more models than
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ϕ itself. A case in point is when we have subformulae of the form ♦p ∧ �¬p, or
�p ∧ �¬p. In the first case we have (♦p ∧ �¬p)> = ♦> ∧ �>, which is equivalent
to ♦>. On the other hand, the original formula is simply false, that is, deductively
equivalent to ⊥. It is the latter formula that must be chosen as an interpolant, and not
♦>. This problem does not arise with the formula ♦p ∧ ♦¬p. Why is this so? The
reason is that in the first two cases we have a formula that speaks over all successors
of a point. Hence, if another formula also speaks about successors, then the valuation
on the successors must be matched with the requirements of the first formula. If a
point accepts �p, then all successors must satisfy p, and so ♦¬p cannot hold at that
point. However, if we have formulas ♦p ∧ ♦¬p then no conflict arises, because we
can always arrange it that a point has two different successors, one satisfying p, the
other satisfying ¬p.

Now return to the case where ϕ is a conjunction of formulae of the form 〈β〉χ
or [β]χ, χ nonmodal, β test–free. We want to rewrite β in a similar way as we have
done with polymodal formulae. However, this time matters are even more complex.
For example, the programs (α2)+ and (α3)+, although different, give rise to subtle
interactions. From [(α2)+]p and 〈(α3)+〉¬p we can deduce that ¬〈α6〉>. Hence we
must reckon beforehand with a new operator, α6. To care for this, we analyse the
possible intersections of programs. Recall that the regular languages over a finite
alphabet are closed under intersection. Therefore, let us take a second look at ϕ.
Suppose that the regular expressions occurring in ϕ are βi, i < n. Then for each
subset S ⊆ n we let γS be the regular expression corresponding to⋂

i∈S

βi ∩
⋂
i<S

−βi

γS exists by the results of Section 9.4. The following is then clear. The languages
corresponding to the γS are mutually disjoint, and

βi =
⋃
i∈S

γS

We now change the ‘program basis’ in ϕ by replacing talk of βi by talk of γS . Hence,
we can assume that ϕ is a conjunction of formulae of the form 〈γi〉χ, [γi]χ, χ non-
modal, γi test–free and mutually disjoint. Moreover, we assume that for no i, ε falls
under γi, that is, we assume that the programs are proper. With this given, we can
compute the interpolant in the same way as for polymodal K. In fact, let us make the
reduction as follows. Each [γi] is regarded now as a primitive modality, with dual
operator 〈γi〉. Then compute the interpolant ϕ> as if working in polymodal K, letting
♦i replace 〈γi〉. This is possible for the following reason.

L 10.6.3. Let Π0 be finite, and γi, i < n, be regular test–free programs
over Π0 such that (i.) no path falls under both γi and γ j, i , j, (ii.) ε does not fall
under any γ j, j < n. Let ϕ ∈ Kn be a formula of degree 1, and p(ϕ) be the result of
replacing each occurrence of �i by [γi], for all i < n. Then ϕ ∈ Kn iff p(ϕ) ∈ PDL.



498 10. Dynamic Logic

P. Assume that ϕ < Kn; then there is a finite Kripke–frame f and β and w0
such that 〈f, β,w0〉 � ¬ϕ. Since ϕ is of degree 1, it is enough to assume that f consists
of the 1–transit of w0. Now fix for every i < n a finite sequence σ(i) ⊆ Π∗0 falling
under γi. Let σ(i) have length `(i). Now define

f p := {w0} ∪ {〈τ, i, x〉 : τ a prefix of σ(i),w0 Ci x} .

Further, let 〈ε, i, x〉 := w0. Then

〈τ, i, x〉
ζ
→ 〈τ′, i′, x′〉 iff

 x = x′, i = i′, τ′ = τaα
or τ = ε, τ′ = ζ

(Here, ζ denotes as usual an elementary program.) Fix for i < n a world y(i) such
that w0 Ci y(i). This defines the dynamic Kripke–frame fp. Now

γ(p) := {〈σ(i), i, x〉 : x ∈ β(p)}
∪ {〈ε, i, x〉 : w0 ∈ β(p)}
∪ {〈τ, i, x〉 : τ falls under γi, τ , σ(i), y(i) ∈ β(p)}

This is well–defined since the i such that τ falls under γi is unique if it exists. More-
over, ε does not fall under any γi. We claim that 〈fp, γ,w0〉 � p(ϕ). To that end, we
prove that (1.) for a formula �iµ, µ nonmodal, 〈fp, γ,w0〉 � �iµ iff 〈f, β,w0〉 � [γi]µ;
that (2.) for a nonmodal formula µ, 〈fp, γ,w0〉 � µ iff 〈f, β,w0〉 � µ. (2.) is immediate
from the definition of γ. For (1.) let 〈fp, γ,w0〉 � �iµ. Take a x such that w0Ci x. Then
〈σ(i), i, x〉 ∈ γ(µ) and so, by definition of γ, x ∈ β(µ). Hence 〈f, β,w0〉 � �iµ. Assume
〈f, β,w0〉 � �iµ. Take a point 〈τ, i, x〉 such that w0

γi
→ 〈τ, i, x〉. Then τ , ε. Case 1.

τ = σ(i). Then w0 Ci x and by definition of γ, 〈σ, i, x〉 ∈ γ(µ). Case 2. τ , σ(i). Let
τ fall under γ j. Then 〈τ, i, x〉 ∈ γ(µ) iff 〈σ( j), j, x〉 ∈ γ(µ) iff y( j) ∈ β(µ). By choice
of y( j), w0 C j y( j). Hence y( j) ∈ β(µ) and therefore 〈σ( j), j, x〉 ∈ γ(µ) and this shows
that 〈τ, i, x〉 ∈ γ(µ). Hence, 〈fp, γ,w0〉 � ¬p(ϕ) and so p(ϕ) < PDL. Conversely,
assume that p(ϕ) < PDL. Then there exists a finite dynamic Kripke–frame g and a
model 〈g, γ,w0〉 � ¬p(ϕ). Put y Ci z iff y = w0 and w0

γi
→ z. This defines f. Let

β(p) := γ(p). We claim that 〈f, β,w0〉 � ¬ϕ. To that end, observe that for a nonmodal
formula µ, 〈f, β,w0〉 � µ iff 〈g, γ,w0〉 � µ. Moreover, for a formula �iµ, µ nonmodal,
〈f, β,w0〉 � �iµ iff 〈g, γ,w0〉 � [γi]µ. For w0 Ci x iff w0

γi
→ x. �

P 10.6.4. PDL has interpolants for ϕ ` ψ if ϕ and ψ are dynamic
complexity ≤ 1.

P. It is enough to show this for formulae without test, by Theorem 10.6.2.
Let ϕ ` ψ and let ϕ and ψ be of dynamic complexity ≤ 1. Then ϕ and ψ are locally
equivalent to formulae ϕ̂ and ψ̂ which are of dynamic complexity ≤ 1 and a boolean
combination of nonmodal formulae and formulae [γi]µ, i < n, such that µ is non-
modal; moreover, the γi do not contain the empty path, and the path sets of γi and
γ j are disjoint for i , j. Then ϕ̂ = p(τ) and ψ̂ = p(υ) for some τ, υ ∈ Kn. By the
previous lemma τ ` υ. Both τ and υ are of degree ≤ 1. There exists an interpolant
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ρ in Kn of modal degree ≤ 1. Then, again by the previous lemma, p(τ) ` p(ρ) and
p(ρ) ` p(υ). So, p(τ) is an interpolant of ϕ and ψ, since var(p(ρ)) = var(ρ); for the
γi are free of tests. �

Notice that the same argument does not work if we iterate the programs. There
are interactions between the γi, but they are not noticeable in the first iteration. For
example, if we have a single program, α∗, then taking this as a primitive program is
fine unless we study iterations, such as α∗;α∗, which is — namely — the same as α∗.

Exercise 373. Show that PDL(ω,ω) has interpolation if it holds for every n that
PDL(ω, n) has interpolation.

10.7. The Logic of Finite Computations

Finally, we want to study the logic of finite computations, which we call PDL.f.
It is the logic of all those structures in which no computation can run forever. We
have encountered in the monomodal case an axiom that ensures such a property, the
axiom G. Suppose that we have finitely many basic programs, Π0 := {ζi : i < n},
then putting γ :=

⋃
i<n ζi we obtain PDL.f(ω, n) by adding to PDL(ω, n) the axiom

[γ+]([γ+]p→ p)→ [γ+]p .

If we have infinitely many basic programs, PDL.f is obtained by adding all postulates
of its weak fragments. Thus, PDL.f :=

⋃
n∈ω PDL.f(ω, n). We will prove two facts

in this section. First, that PDL.f has the finite model property, from which it follows
by constructive reduction that DPDL.f has the finite model property as well. Second,
that DPDL.f does not have the global Beth–property, from which the same follows
for PDL.f. The argument will be a constructive reduction to plain PDL. It does
not use splitting reduction sets, and so the negative example on the Beth–property
does not transfer to PDL. It follows from the fact that PDL.f has the finite model
property that it is the logic of finite computations, whence the title of this section.
It also follows that DPDL.f is the logic of finite computations of deterministic basic
programs.

Before we enter the first proof, let us get some intuition about PDL.f. Clearly,
if [γ+] satisfies the G–postulate, then the γ+–transitions in a Kripke–frame must be
without circles. Since γ is the union of all ζi, it follows that the ζi must be irreflexive.
The converse does not hold, however. Now, take a formula ϕ. Let Fl(ϕ) be the
collection of all atoms in the boolean algebra generated by FL(ϕ). We propose as
reduction sets the set of all formulae

[γ∗](〈γ+〉A→ 〈γ+〉(A ∧ ¬〈γ+〉A))

where A ∈ Fl(ϕ). Now let 〈f, β, x〉 be a finite PDL–model for ϕ and the reduction
formulas above. Define a new model in as follows. Call a point x maximal if there
exists an atom A such that x � A ∧ ¬〈γ+〉A. Then g is defined to be the set of all

maximal points. Moreover, we put x
ζi
→ y for two maximal points if there exists
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a y− in the original model such that x
ζi
→ y−

γ∗

→ y and y− and y satisfy the same
atom in Fl(ϕ). This defines the frame g. This new frame contains no cycles. For
each point has been chosen to satisfy a formula A ∧ ¬〈γ+〉A in f, so each chain

y0
γ+

→ y1
γ+

→ y2 . . . yn−1
γ+

→ yn is without cycles.
Now g is based on a subset of f , so we take the valuation β restricted to g,

denoted also by β. We show now

(†) 〈g, β, y〉 � χ iff 〈f, β, y〉 � χ

for all χ ∈ FL(ϕ) and y ∈ g. The proof is by induction on the number of γ+–
successors of x in g. Assume x has no γ+–successors in g. Then it actually has no
γ+–successors in f either. Namely, if x has a successor in f, y, then y satisfies an atom
A that x does not satisfy (by choice of x) and has a maximal successor y+ satisfying

A, and so x
γ+

→ y+ in f and so x
γ+

→ y+ in g. Thus, the generated subframe of x in g
is isomorphic to the generated subframe generated in f; the models defined on them
are as well. Hence, the two models satisfy the same formulae. Now let us assume
that all successors of x satisfy (†). Then (†) holds for x and χ = p, p a variable. The
induction steps for ∧ and ¬ are straightforward. The only critical step is χ = 〈α〉ψ.
Again, many cases are easy. If α = β ∪ γ, α = ψ?, α = β; γ or α = β∗ then we can
reduce the problem once more. The case α = ζi ∈ Π0 remains. From left to right let
〈g, β, x〉 � 〈ζi〉χ. Then there is a ζi–successor y of x in g such that 〈g, β, y〉 � χ. By
induction hypothesis, since y has less γ+–successors, 〈f, β, y〉 � χ. By construction,

there exists a y− such that in f x
ζi
→ y−

γ∗

→ y, and y and y− satisfy the same atom.
Hence 〈f, β, y−〉 � χ and so 〈f, β, x〉 � 〈ζi〉χ. This shows one direction. For the other,

assume that 〈f, β, x〉 � 〈ζi〉χ. Thus there exists a y such that x
ζi
→ y and 〈f, β, y〉 � χ.

Either y is already maximal for its atom A or else — by choice of the reduction sets

— 〈f, β, y〉 � 〈γ+〉(A ∧ ¬〈γ+〉A). Hence we can find a y+ such that y
γ∗

→ y+ satisfying

A and being maximal for A. By construction of g we have x
ζi
→ y+ in g. By induction

hypothesis, since y+ has less sucessors than x, 〈g, β, y+〉 � A, and so 〈g, β, y+〉 � χ.
From this we deduce 〈g, β, x〉 � 〈ζi〉χ, as desired.

T 10.7.1. The logic PDL.f has the finite model property.

This proof method is basically the same as in the monomodal case for G, and so
the expectation is that it can be generalized. In the exercises, some of these general-
ization are considered. One consequence is

C 10.7.2. The logic DPDL.f has the finite model property.

The proof is by constructive reduction. Use the formulae as described in the last
section. The proof procedure works exactly in the same way. This last result will be
used in the remaining part, where we show that PDL.f fails to have the Beth property.
For notice that the reduction sets for DPDL split, so that the failure of DPDL.f is
passed down to PDL.f.
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Now we proceed to the demonstration that the Beth–property fails for the log-
ics of finite computation. The formula we consider is the following. It uses three
elementary programs, ζ0, ζ1 and ζ2, and γ := ζ0 ∪ ζ1 ∪ ζ2.

A(p, q) := p.↔ .(q ∧ [γ]⊥) ∨


〈ζ0〉p ∧ 〈ζ1〉p

∨ 〈ζ1〉p ∧ 〈ζ2〉p
∨ 〈ζ2〉p ∧ 〈ζ0〉p


L 10.7.3. A(p, q) is an implicit global definition of p in DPDL.f.

P. We have to show that

A(p, q); A(r, q) 
 p↔ r

To see that, we have to check only the finite models of DPDL.f. Now, suppose
that we have a global model for A(p, q) rooted at x0. We show the uniqueness of
the valuation for p, given the valuation on q. Namely, the valuation of p can be
reconstructed by induction on the number of γ+–successors as follows. At points
without γ+–successors, p is true if and only if q is true. Now at a point x with γ+–
successors, p is true iff it is true at exactly two immediate successors. Since the
immediate successors of x have less γ+–successors, this is actually well–defined and
unique. Therefore we have an implicit definition. �

T 10.7.4. The logic DPDL.f fails to have the global Beth–property.

P. We aim to show that there is no explicit definition for p in A(p, q). In
view of the results of Section 10.5 it is enough if we show that there exists no eval-
uation procedure using finite memory which can tell us whether or not p holds at a
given point. For any formula B(q) can be evaluated with such a procedure. We work
on special frames, which are ternary branching trees of depth δ, coded as sequences
of numbers 0, 1, 2 of length ≤ δ. The root is the empty sequence, ε. Moreover, for

sequences s1 and s2 we put s1
ζi
→ s2 iff s2 = s1 · i. An evaluation procedure for

a formula B(q) will start enumerating the paths giving priority to 0 over 1 and to
1 over 2. It generates the path 〈ε, 0, 00, . . .〉 up to length δ. Let δ = 3. Then af-
ter 〈ε, 0, 00, 000〉 the next path is 〈ε, 0, 00, 001〉 and then 〈ε, 0, 00, 002〉 after which
comes 〈ε, 0, 01, 010〉. And so on. Recall that in addition B(q) calls subroutines which
themselves generate paths. The set of active nodes, however, is connected. Consider
now what happens if the main subroutine exits the point 0. Then it next goes to
〈ε, 1, 10, 100〉 and starts working there. No subroutines will ever look into the struc-
ture generated by 0. So the computation totally exits that structure. Therefore, since
the valuation of p at the root (= the truth value of B(q) at ε) depends on the value of
p at 0, we need to remember this value. Thus we need a memory of bit–size at least
1. Next consider the point 10. When the computation exits 10 it needs to store the
result that it computed for p at 10 to correctly compute the value of p at 1. Hence
we need an additional bit of memory, raising the size to 2. Likewise, for the points
110, 1110 and so on. Since the size of the tree is not bounded a priori, we cannot say
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how large the memory is that we need. To put it differently, if we have a memory of
µ states, then the computation will give wrong results for trees whose depth exceeds
log2 µ. �

The argument actually has an information theoretic flavour. It does not really
matter whether the memory encodes exactly the fact that the computation yielded
the value ‘yes’ or ‘no’ at the node 0. What is important is how many computation
histories the memory can discriminate. If we have a memory of size µ then at most
µ histories can be discriminated. We have shown, however, that in the case at hand
no upper bound can be given on the number of computation histories that must be
distinguished. This proves the theorem. We can note a number of consequences.
First of all, A(p, q) is of the form p ↔ D(p, q) where p occurs inside a modal op-
erator. Thus, we have no analogue of the fixed–point theorems of Chapter 3.7 for
PDL.f. The strategy of this example is interesting in many respects. It has been
shown by H F in [71] that an unbounded memory really increases the
power of algorithmic procedures. One example is the task of generating uniform
two–branching trees, which cannot be achieved with bounded memory. This has
been used by J T [213] to show that the expressive power of programming
languages is increased if an unbounded program memory is allowed. The example
that we have produced here uses only propositional dynamic logic, not first–order
dynamic logic, but the same result is obtained, using a variable q. The property is
true at a binary branching subtree whose leaves are q cannot be checked using finite
memory. However, as the proof indicated, there is way to check this property using
a memory stack of numbers from 0 to 2.

Exercise 374. Let PDL.f` be the extension of PDL.f by the axiom of finite compu-
tations in one direction. Show that PDL.f` fails to have the finite model property.

Exercise 375. Let PDL`.f± be the extension of PDL.f with converse operator, where
both the programs γ+ and γ`+ satisfy the G–axiom. Show that this logic fails to have
the finite model property.

Exercise 376. (Continuing the previous exercise.) Add to PDL`.f± the axiom
〈γ`〉p → [γ`]p. Show that this logic has the finite model property. What finite
frames does this logic describe?

Exercise 377. The example formula A(p, q) given above is not the most economi-
cal one. Name an implicit definition of p that uses only two basic modalities. This
reduces the failure to the case of binary branching trees. This seems to be the best
possible result. Unary branching trees are just strings, so here the argument must
break down.

Exercise 378. Let PDL`.f be the logic of finite computations, where programs are
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allowed to be executed forwards and backwards. Show that this logic is decidable.
Hint. Do not take this too seriously.
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κ– ◦∼, 121

path equation, 471
persistence, 240

c–, d–, df–, g–, r–, ti– ◦∼, 241
point, 192, 348

bad, 380
eliminable, 434
good, 380
improper, 492
maximal, 137, 411, 530
ϕ–maximal, 137, 358
quasi–maximal, 414

Polish Notation, 8
polynomial, 10
postfix, 7
precluster, 117
prefix, 7
prefix notation, 8
premiss, 20
presentation, 341
preservation, 310
primeness, 333

join ◦∼, 333
meet ◦∼, 333
strictly join ◦∼, 333

strictly meet ◦∼, 333
problem, 41

C–complete, 41
C–hard, 41
trivial, 41

process
Semi–Thue, 38
Thue– ◦∼, 482

product, 15, 214
subdirect, 167

projection, 214
proof tree, 20
property

bounded, 450
essential, 222
essentially bounded, 450
transfer of a ◦∼, 324

propositional language, 8
pseudomodel, 516

proper, 516
pseudo relevance property, 141
PSPACE, 41
pullback, 219
pushout, 219

quasi–maximal point, 414
quotient, 335

prime, 335

rank, 257
pure, 257
special, 257

reconstruction, 282
total, 282

ϕ–reduct, 414
reduction
◦
∼ set, 133
◦
∼ function, 133

reduction set, 133
splitting, 142

refinement map, 209
refutation pattern, 418

omission, 418
realization, 418

regular
◦
∼ language, 509
◦
∼ expression, 509

relation
closed, 202
continuous, 202
point closed, 203
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relation composition, 7
relativization, 124
replacement, 177
request, 491
residuation, 32
restrictor, 235
root, 117
rooted frame sequence, 457
rule, 20

admissible, 21, 162
derived, 20
instance, 20
n–ary, 20
proper, 20

rule base, 20

Sahlqvist Hierarchy, 256
Sahlqvist–van Benthem formula, 251
satisfiability, 20
saturated, 261

downward, 148
section, 388

partial, 388
selection history, 493
semigroup, 7
set

characteristic, 284
(co–)recursively enumerable, 76
clopen, 195
decidable, 332, 485
dense, 211
downward saturated, 148
external, 62
generating, 354
homogeneous, 287
independent, 225, 359
internal, 62
measure zero, 211
open, 64, 195
recursive, 76
reduction ◦∼, 133
semihomogeneous, 287
sf–founded, 284
simple, 436

signature, 8
computable, 43

simulation, 276, 304
atomic, 277

simulation transparency, 311
situation, 62
slice, 398

slotted formula, 240
span, 337, 404

minimal, 337, 404
molecular, 412
ϕ– ◦∼, 491

spectrum, 372
Fine– ◦∼, 372
prime, 374
T– ◦∼, 159

spine, 365, 446
splitting, 336
◦
∼ companion, 336
Fine– ◦∼, 420
Zakharyaschev– ◦∼, 421

spone, 247
standard simulation frame, 307
standard translation, 234
state

accepting, 509
initial, 509

Stone space, 196
strict diamond formula, 516
string, 7

length, 7
occurrence, 43

string handling machine, 38
deterministic, 40

subalgebra, 14
skew–free, 213

subformula, 9
subframe, 116
◦
∼ logic, 125
local, 118

subframe logic, 125
sublattice, 335
subreduction, 333
substitution, 13
substring, 7
◦
∼ occurrence, 38

successor
strong, 397
weak, 397

superamalgamation, 226
superfusion, 229
surrogate, 282
symbol count, 42

T–spectrum, 159
tableau, 147

closing, 147
good, 149
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tack, 408
tautology, 20
tense logic, 74
tensor product, 327
term, 8

discriminator, 183
equivalential, 181

term–function, 10
termalgebra, 10
theory, 22, 63

consistent, 25
equational, 177
maximally consistent, 25

Thomason
◦
∼’s Trick, 490

thorn, 518
Thue–process, 482

decidable, 482
trivial, 482

tightness, 401
topological space, 195

T0–space, 197, 349
T2–space, 197
TD–space, 352
basis, 195
compact, 195
discrete, 195
Hausdorff, 197
Sierpiński, 197
sober, 349
soberification, 353
zero–dimensional, 195

topology
Alexandrov– ◦∼, 351
weak, 351

trace algebra, 116
transit, 117, 211
transition, 61, 510
transition function, 509
transitivity

m– ◦∼, 74
weakly ◦∼, 74

translation, 10
transpose, 511
triangular identities, 200
trivial constants, 88
truth value, 23

designated, 23
Tukey’s Lemma, 36
type, 457
type regular, 458

ultrafilter, 34
ultrafilter extension, 265
ultraproduct, 172, 259
underlying set, 10
unit, 7
unital semantics, 25
universal modality, 74
unravelling, 120
unsimulation, 308, 309, 314

valuation, 23, 61, 62, 499
domain of a ◦∼, 284
natural, 92
partial, 61, 283

variable, 9
inherently existential, 252
inherently universal, 252

variant, 427, 502
immediate, 427
quasi–closed under ◦∼s, 427
quasi–closed under nonfinal ◦∼s, 430

variety, 15
◦
∼ with constructible free algebras, 79
congruence distributive, 170
congruence permutable, 170
discriminator ◦∼, 183
locally finite, 222
semisimple, 184

view, 416

wave, 117
weakening, 147
weight, 42
well–partial order (wpo), 356
width

molecular, 413
world, 60, 90

X–string, 8
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