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Abstract

It is shown that there are finitely many formulas which define the structure of the subframe

of maximal points underlying a given finite transitive and refined model. Using this

definability result we obtain a constructive proof of a theorem of Fine [85] that all subframe

logics have the finite model property.
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1 Preliminaries

If g is a frame and X a set of variables, β : X −→ 2g is called a valuation. Throughout

this paper it will be assumed that X = {p1, . . . , p`}, ` ∈ ω. The pair 〈g, β〉 is refined for

finite g iff ∀s, t, : s 6= t ⇔ (∃P )(〈g, β, s〉 |= P & 〈g, β, t〉 |= ¬P ). If 〈g, β〉 is not refined there

is a map pβ : g � g/β defined by pβ(s) = pβ(t) iff (∀P )(〈g, β, s〉 |= P ⇔ 〈g, β, t〉 |= P ).

g/β is called the refinement of g with respect to β. β induces a valuation γ : X −→ 2g/β

by γ(p) = pβ[β(p)]. We will write β instead of γ as we will write β for the valuation

γ : X −→ 2f for a subframe f ⊆ g defined by γ(p) = β(p)∩f . Note that if 〈g, β〉 is refined,

this might not be the case for 〈f, β〉. If 〈g, β〉 is a valuation and q : g � h a p-morphism,

q is called admissible for β iff (∀p ∈ X)(∀s ∈ h)(q−1(s) ⊆ β(p) or q−1(s) ∩ β(p) = ∅).

Equivalently, q is admissible for β iff q factors through pβ.

If P is a formula, dg(P ) denotes the maximal number of nestings of modal operators,

the degree of P. We will always assume that var(P ) ⊆ {p1, . . . , p`}. We write F l
n for the

set of all such formulas of degree ≤ n. F `
n is finite and hence atomic as a boolean algebra

with set of atoms A`
n. ]F `

n = 2a(`,n), a(`, n) := ]A`
n.

If g is a K4-frame and s, t ∈ g then t is called a weak successor of s, in symbols s/t, if

s� t or s = t. Call t ∈ g maximal with respect to P in 〈g, β〉 if (∀s ∈ g)(t�s & 〈g, β, s〉 |=

P ⇒ s � t). Letting At(t) ∈ A`
n denote the unique atom with 〈g, β, t〉 |= At(t) we say

that t is n-maximal or simply maximal if t is maximal with respect to At(t). (In Fine

[74], s is called noneliminable iff s is maximal with respect to some P .) The subframe of

all maximal points of 〈g, β〉 is denoted by gµ. For t ∈ g we use the symbol tµ to denote
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a weak successor of t maximal w.r.t. At(t). Then t = tµ iff t is maximal. It is useful to

observe that if s� tµ and s |= 3At(tµ) then there is a weak successor sµ such that sµ � tµ.

We now have the following

Fact 1 For all s ∈ gµ, P ∈ F `
n : 〈g, β, s〉 |= P ⇔ 〈gµ, β, s〉 |= P .

This is proved by induction on P . The nontrivial case is P = 3Q. But observe that if

〈g, β, s〉 |= 3Q then for some t � s : 〈g, β, t〉 |= Q. Thus, 〈g, β, tµ〉 |= Q and, by IH,

〈gµ, β, tµ〉 |= Q showing 〈gµ, β, s〉 |= 3Q, since s � t / tµ and so s � tµ.

This can be stated more generally as follows:

Fact 2 Let gµ ⊆ h ⊆ g and s ∈ h. Then for all P ∈ F `
n : 〈g, β, s〉 |= P ⇔ 〈h, β, s〉 |= P .

As a consequence, if t ∈ h, then any successor maximal w.r.t. At(t) of t in h is a successor of

t maximal w.r.t. At(t) in g, and so tµ does not depend on h as long as h ⊇ gµ. If the depth of

a point t in g, dg(t), is defined by dg(t) = d+1 ⇔ dg(t) � d&(∀u)(t�u → u�t∨dg(u) ≤ d)

and dg(t) = 1 ⇔ (∀u)(t � u ⇒ u � t), then with r := gµ/β and dµ(t) := dr(tµ) we have

Fact 3 For all t ∈ g, dµ(t) is the maximum number n such that there is a chain 〈xi | i ∈ n〉

with xi+1 |= ¬At(xi) ∧ ¬3At(xi), i ∈ n− 1. By consequence, dµ(t) ≤ a(`, n).

This is seen by first noting that if there is a chain 〈xi | i ∈ n〉 such that xi+1 |= ¬At(xi)∧

¬3At(xi), then xi+1 6 xi, and, starting with xn−1, one can successively replace the xi

by a maximal weak successor xµ
i so that xµ

i � xµ
i+1 6 xµ

i . Reversely, if there is a chain

〈xi | i ∈ n〉 of maximal points such that xi � xi+1 6 xi then xi+1 |= ¬At(xi) ∧ ¬3At(xi).
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So there is a chain of points with xi+1 |= ¬At(xi)∧¬3At(xi) iff there is a chain of maximal

points of the same length satisfying xi � xi+1 6 xi iff dµ(x0) ≥ n.

For notational purposes we need the frame f<ω which we get as follows: let f be the

frame of ultrafilters of the freely `-generated K4-algebra. Then f<ω := {s ∈ f | df (s) < ω}.

The canonical valuation β : X −→ 2f , p 7→ {U | p ∈ U}, induces a valuation β on f<ω.

f<ω is a generated subframe of f and for every finite frame g and any valuation γ on g such

that 〈g, γ〉 is refined there is a p-morphic embedding g � f<ω such that γ(p) = f<ω∩β(p),

i.e. γ = β in our notation.

Let g = 〈g,�〉 be a frame and h ⊆ g. Then 〈h, �h〉 is called a subframe of g if

�h = � ∩ h2. In that case we write � for �h. Say that f subreduces to g if there is

a subframe h ⊆ g and a surjective p-morphism h � g. A logic Λ ⊇ K4 is a subframe

logic if its class of frames is closed under the formation of subframes. Furthermore, if

Λ ⊇ K4 is any logic and g a one-generated finite frame, then let Λg denote the smallest

subframe logic containing Λ such that no Λg-frame is subreducible to g, and call Λg the

FINE-splitting of Λ by g. (Actually, this is not quite correct. A strict definition needs

a notion of a subframe for a generalized frame. Then Λg is the smallest extension of Λ

such that no subframe of a generalized frame for Λg can be mapped p-morphically onto

〈g, 2g〉.) It turns out that Λg = Λ(Cg) where Cg = SF (g) ∧2SF (g). → .¬ps with

SF (g) =
∧
〈pt → ¬pu | t 6= u〉

∧
∧
〈pt → 3pu | t � u〉

∧
∧
〈pt → ¬3pu | t 6 u〉

Here, t and u range over g and s is a point which generates g. Fine [85] has shown that any



That FINE-Splittings Are Definable 5

subframe logic Λ is a FINE-splitting K4G with G = {g | g 6∈ Fr(Λ), g one-generated} and

that all subframe logics have the finite model property (f.m.p.). His proof consisted in first

showing that given any pair 〈f, β〉 one may drop all eliminable points from f to obtain the

reduced pair 〈f r, β〉 and that 〈f r, β〉 2 P ⇔ 〈f, β〉 2 P . He then proved that in canonical

frames based on finitely many sentence letters the property “the reduced subframe does

not subreduce to g” is definable by an infinite set of modal formulas; or, equivalently, if

the reduced subframe subreduces to g there is a substitution s : pt 7→ Qt, t ∈ g such that

w 6|= s(Cg). Here we prove a result which is different from the original one; namely, we

prove that there is a number σ(`, n) ∈ ω and finitely many substitutions si, i ∈ σ(`, n),

such that for every finite, `-generated model 〈f, β〉, 〈f, β, w〉 6|= sj(Cg) for some j ∈ σ(`, n)

iff the refinement of the submodel of n-maximal points is subreducible to g.
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2 Defining the Maximal Subframe

For s ∈ f<ω define suc+(s) = {t ∈ (f<ω)µ | s � t 6 s}, cl(s) = {t ∈ (f<ω)µ | s � t � s}

as well as CL(s) = {At(t) | t ∈ cl(s)}. By induction on dµ(s) we will now define formulas

Es, Ls. The formulas Es will encode the structure of the refined submodel of maximal

points. The formulas Ls define the layers of that model, that is, the set of all points t in

the submodel of maximal points with dµ(t) < dµ(s). The induction starts with dµ(s) = 0,

where there is nothing to do, except to let L0 = ⊥. Now let dµ(s) = d + 1 with d ≥ 0:

Ls := Ld

As := At(s) ∧ ¬Ls ∧2(Ls → ¬3At(s) ∧ ¬At(s))

Bs := 2¬At(s), if cl(s) = ∅

Bs :=
∧
〈3A | A ∈ CL(s)〉

∧
∧
〈2(A → 3B) | A,B ∈ CL(s)〉

∧
∧
〈2(A → (Ls ∨3(A ∧ Ls))) | A ∈ A`

n − CL(s)〉, else

Cs :=
∧
〈3Et ∧2(At(s) ∨3At(s). → .3Et) | t ∈ suc+(s)〉

∧
∧
〈2¬Et | t 6∈ suc+(s), dµ(t) ≤ d〉

∧
∧
〈2(2¬Et → (Ls ∨

∨
〈A ∧3(A ∧ Ls) | A ∈ A`

n〉)) | t ∈ suc+(s)〉

Es := As ∧Bs ∧ Cs

Ld+1 := Ld ∨
∨
〈Eu | dµ(u) = d + 1〉

Define SUC+(s) = {Et | t ∈ suc+(s)}. Then if A ≡ B denotes equivalence in K it is

clear that Es ≡ Et iff SUC+(s) = SUC+(t), CL(s) = CL(t) and At(s) = At(t). Define

the frame r = 〈r, �〉 with r = {Es/ ≡| s ∈ f} and Es � Et iff either Et ∈ SUC+(s)

or SUC+(s) = SUC+(t), CL(s) = CL(t) and At(t) ∈ CL(s). (Henceforth we will not
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distinguish between Es and its equivalence class Es/≡.) The first lemma shows that the

definition of the Es is sound for the maximal points:

Lemma 4 Let fµ ⊆ g ⊆ f and s ∈ gµ. Then s ∈ fµ and 〈g, β, s〉 |= Es.

Proof. If s ∈ gµ, then its maximal successor sµ is in g, since g ⊆ fµ. Hence, s = sµ, since

s is maximal in g and it follows that s is maximal in f as well. By induction on d := dµ(s)

we show

(‡) 〈g, β, s〉 |= Es and if 〈g, β, t〉 |= Ld then dµ(t) ≤ d.

To begin with dµ(s) = 0, there is nothing to show. Thus let dµ(s) = d + 1. The proof

is broken down into four parts:

(i) s |= As

This is so because of Fact 2 and t |= Ls implies tµ |= Ls = Ld from which dµ(tµ) ≤ d.

But no maximal successor of s of depth ≤ d can satisfy At(s) or 3At(s).

(ii) s |= Bs.

The case CL(s) = ∅ is straightforward. Let therefore CL(s) 6= ∅. By definition of

CL(s) and the fact that g ⊇ fµ we get s |= 3A,2(A → 3B) for all A,B ∈ CL(s).

Also s |= 2(C. → .Ls ∨ 3(C ∧ Ls)) for C 6∈ CL(s), for if for a successor t: t |= C, then

tµ |= C and by IH and the fact that dµ(tµ) ≤ d, tµ |= Ls. Thus if t = tµ : t |= Ls and if

t � tµ : tµ |= 3(C ∧ Ls).

(iii) s |= Cs.
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s |= 3Et ∧ 2(At(s) ∨ 3At(s). → .3Et) for all Et ∈ SUC+(s) by the fact that s

is At(s)-maximal and s |= 3Et for all Et ∈ SUC+(s). Furthermore, s |= ¬3Et for all

t 6∈ suc+(s) and dµ(t) ≤ d. Finally, suppose for s�u that u |= ¬3Et for some t ∈ suc+(s).

By definition of depth, dµ(uµ) ≤ d. Hence, by IH, uµ |= Ls. If u = uµ : u |= Ls, if u � uµ :

u |= A∧3(A∧Ls) for A = At(u) ∈ A`
n. And so u |= Z := Ls∨

∨
〈A∧3(A∧Ls) | A ∈ A`

n〉))

and so s |= 2(2¬Et → Z) showing (C).

(iv) Now suppose t |= Ld+1. If also t |= Ld then dµ(t) ≤ d, by IH. Hence let t |= ¬Ld.

Then t |= Eu for some maximal u with dµ(u) = d + 1 and so t |= 3Ex for some maximal

x with dµ(x) = d. So, dµ(t) > d. But t |= Bu, implying that if t � v |= ¬At(t) ∧2¬At(t),

then At(v) 6∈ CL(u) and so v |= Ld ∨ 3(At(v) ∧ Ld). If v |= Ld, dµ(v) ≤ d; but if

v |= 3(At(v) ∧ Ld) then vµ |= Ld and so dµ(v) = dµ(vµ) ≤ d as well. This proves

dµ(t) = d + 1. J

Lemma 5 For all s, t:

(a) Es ≡ Et ⇔ `K4 Es ↔ Et

(b) Es 6≡ Et ⇔ `K4 Es → ¬Et

(c) Es � Et ⇔ `K4 Es → 3Et

(d) Es 6 Et ⇔ `K4 Es → ¬3Et

Proof. Since 0K4 ¬Es for all s it is enough to show only (⇒) in each case. (a) is then

trivial.

(b) If SUC+(s) 6= SUC+(t), for example Ew ∈ SUC+(s)− SUC+(t), then `K4 Es →

3Ew, Et → ¬3Ew, whence `K4 Es → ¬Et; likewise for Ew ∈ SUC+(t) − SUC+(s).
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Let us now suppose SUC+(s) = SUC+(t). If At(s) 6= At(t), the case is clear. Thus, if

At(s) = At(t), we must have CL(s) 6= CL(t). Without losing generality we can assume

that A ∈ CL(s) − CL(t). Since `K4 Es → 3A,Es → 2(3At(s) → ¬Ls) (by `K4 As →

2(At(s)∨3At(s). → .¬Ls) and `K4 Es → As) and `K4 Es → 2(A → 3At(s)) we get `K4

Es → 3(A∧¬Ls). But `K4 Et → 2(A → .Lt∨3(A∧Lt)) and since SUC+(s) = SUC+(t)

we have Ls ≡ Lt and consequently `K4 Et → 2(A → .Ls ∨3(A ∧ Ls)). If `K4 Es → Et,

then `K4 Es → 3(A∧¬Ls)∧2(A → .Ls ∨3(A∧Ls). But since `K4 Es → 2(A → ¬Ls),

we get a contradiction. Thus `K4 Es → ¬Et.

(c) If Et ∈ SUC+(s), the case is trivial. So let us suppose the contrary. Then

SUC+(s) = SUC+(t) and CL(s) = CL(t) 6= ∅. Since Et is of the form Q ∧ 2P we

succeeded in showing `K4 Es → 3Et if only we prove `K4 Es → 3Q. Thus it remains to

be shown that

(†) `K4 Es → 3(At(t) ∧ ¬Lt ∧
∧
〈3B | B ∈ CL(t)〉 ∧

∧
〈3Eu | u ∈ suc+(t)〉)

(i) `K4 Es → 3At(t).

(ii) `K4 Es → 2(At(t) → ¬Lt) follows from `K4 Es → 2(At(t) → 3At(s)), `K4 Es →

2(3At(s) → ¬Ls) and Ls ≡ Lt.

(iii) `K4 Es → 2(At(t) → 3B) for all B ∈ CL(t), since CL(s) = CL(t).

(iv) `K4 Es → 2(At(t) → 3Eu) for all Eu ∈ SUC+(t) since `K4 Es → 2(At(t) →

3At(s)) and `K4 Es → 2(3At(s) → 3Eu). Taking (i) together with (ii), (iii) and (iv)

yields (†).
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(d) Case 1: If dµ(t) < dµ(s), then ¬3Et is a conjunct of Es.

Case 2: dµ(s) = dµ(t). Then Ls ≡ Lt. Suppose Eu ∈ SUC+(s) − SUC+(t) for some

Eu. If `K4 Es → 3Et then since we have `K4 Et → .(¬3Eu)∧¬Ls∧
∧
〈A → ¬3(A∧Ls) |

A ∈ Al
n〉, we get `K4 Es → 3(2¬Eu.∧.¬Ls∧

∧
〈A → 3(A∧Ls) | A ∈ Al

n〉, a contradiction

to `K4 Es → Cs. Now suppose Eu ∈ SUC+(t) − SUC+(s). Then `K4 Es → 3Et yields

`K4 Es → 3Eu in contradiction to `K4 Es → 2¬Eu. Thus the case SUC+(s) = SUC+(t)

is left. Then we must have CL(s) 6= CL(t) or CL(s) = CL(t) = ∅. The latter case is dealt

with as follows. `K4 Es → 3Et implies `K4 Es → 3At(t); and since Es `K4 2(At(t) →

Ls ∨ 3(At(t) ∧ Ls) (for At(t) 6∈ CL(s)) we have `K4 Es → 3(Et ∧ (Lt ∨ 3(At(t) ∧ Lt))

in contradiction to Et `K4 ¬Lt ∧ 2(Lt → ¬At(t)). Thus CL(s) 6= CL(t). Now let

B ∈ CL(t) − CL(s). Then `K4 Es → 2(B. → .Ls ∨ 3(B ∧ Ls)) and `K4 Et → 2(B →

¬Ls) and if `K4 Es → 3Et we get `K4 Es → 3(B ∧ Ls) ∧ 2(B → ¬Ls), again a

contradiction. Assume finally C ∈ CL(s)− CL(t). Then `K4 Es → 2(At(t) → 3C) and

`K4 Et → 2(C → .Ls ∨ 3(C ∧ Ls))) we arrive at a contradiction with `K4 Es → 3Et

since `K4 Es → 2(C → ¬Ls).

Case 3: dµ(t) > dµ(s). If there is a x with dµ(x) = dµ(s) and Ex 6 Es 6 Ex, then

`K4 Es → 3Et would imply `K4 Es → 3Ex, which is contradiction because of Case 2.

But in the other case Et � Es and since `K4 Et → 2(Lt → 2¬At(t)) and `K4 Es → Lt

we get `K4 Et → 2(Es → 2¬At(t)) showing `K4 Es → ¬3Et. J

Since dµ(t) ≤ a(`, n) we immediately have the

Fact 6 ]r ≤ e(`, n) := a(`, n + 2a(`, n)).
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This is so because dg(Es) = n + 2dµ(s) and dµ(s) ≤ a(`, n) and the fact that the Es are

incompatible. Another consequence of Lemma 5 is

Proposition 7 Let g be a finite frame and fµ be subreducible to g, that is, fµ ⊇ h
p
� g,

and let Qt :=
∨
〈Ew | w ∈ h, p(w) = t〉, for t ∈ g. Then

`K4 SF (g)[Qt/pt],

where A[Qt/pt] is the result of replacing Qt for all occurrences of pt for all t in A.

Proof. It is easily seen that `K4 Qv → ¬Qw if v 6= w, `K4 Qv → 3Qw if v � w and

`K4 Qv → ¬3Qw if v 6 w. J

Proposition 8 The map ρ : fµ � r given by ρ : t 7→ Et is a p-morphism admissible for

β. In addition, 〈r, β〉 is refined.

Proof. Let s � t. Then either t � s or t 6 s. t 6 s implies Es � Et by definition, since

3Et is a conjunct of Es; if t � s then we have SUC+(s) = SUC+(t), CL(s) = CL(t) and

At(t) ∈ CL(s). Thus Es �Et as in the proof for Lemma 5(c). Hence s� t implies Es �Et.

Furthermore, if ρ(s) � Et then since 〈fµ, β, s〉 |= Es and `K4 Es → 3Et, 〈fµ, β, x〉 |= Et

for some s � x. Then Et ≡ Ex, that is, ρ(x) = Et. This shows that ρ is a p-morphism.

ρ is clearly admissible and since 〈fµ, β, x〉 |= Es, we have 〈r, β, ρ(x)〉 |= Es but

〈r, β, ρ(x)〉 |= ¬Et for Es 6= Et and consequently 〈r, β〉 is refined. J

We have now constructed formulas Es which completely describe the structure of the

refined submodel of maximal points of any given finite model. Using the fact that refined
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models are top-heavy (see Fine [85]) it might be possible to show that these formulas

describe the structure of the refined submodel of maximal points of any refined model.

But we have not attempted a proof so far. In any case, the established result suffices to

prove the subframe theorem in a new way using a technique first applied in Kracht [90] to

ordinary splittings. There it was shown that certain frames g preserve f.m.p. beyond K4

in the following sense: if Λ ⊇ K4 has f.m.p., so does Λ/g, the splitting of Λ by g. Here, we

will show that all finite, one-generated frames preserve f.m.p. for FINE-splittings beyond

K4 on the condition that Λ is a subframe logic.
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3 The Subframe Theorem

Theorem 9 Let Λ ⊇ K4 be a subframe logic, g a finite, one-generated frame. If Λ has

f.m.p., Λg has f.m.p. as well. Moreover, if P is Λg-consistent then it has a model of size

≤ e(]var(P ), dg(P )).

Proof. Suppose P is Λg-consistent. Then define

P ] := {Cg ∧2Cg[ES(x)/px] | S : g −→ 2r}, ES(x) :=
∨
〈Ew | w ∈ S(x)〉.

Then P ;P ] is Λg-consistent and a fortiori Λ-consistent and thus 〈z, ζ, w〉 |= P ;P ] for

some Λ-frame z. Now we can assume that z is a generated subframe of f<ω and ζ = β

and therefore 〈f<ω, β, w〉 |= P ;P ]. Moreover we can have w = wµ. Let rw denote the

subframe of r generated by Ew. Since 〈(f<ω)µ, β, w〉 |= P we also have 〈rw, β, Ew〉 |= P ,

by Proposition 8. Now suppose rw ⊇ h
p
� g. Then let S : t 7→ p−1(t). Now if v ∈

p−1(s) with s generating g then 〈(f<ω)µ, β, v〉 |= ¬Cg[ES(t)/pt] since 〈(f<ω)µ, β, v〉 |= ES(s)

and 〈(f<ω)µ, β〉 |= SF (g)[ES(x)/px], by Proposition 7. Thus v 6∈ z, that is, w 6 v.

Consequently, rw is not subreducible to g. 〈rw, β, w〉 is a Λg-model for P and ]rw ≤ e(`, n)

by Fact 6. J

By induction one can now show that all FINE-splittings K4G for finite G have f.m.p.

But this is all we need to show the full subframe theorem:

Theorem 10 All FINE-splittings K4G of K4 have f.m.p. and if P is K4G-consistent it

has a model of size ≤ e(]var(P ), dg(P )).
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Proof. Let P be K4G-consistent. Define GP := {g ∈ G | ]g ≤ e(`, n)}, ` = ]var(P ), n =

dg(P ). Then P is K4GP -consistent and has a finite model of size ≤ e(`, n) by the preceding

theorem. But this already is a K4G-model. J

The number e(`, n) can be computed recursively via e(`, n) = a(`, n+2a(`, n)) and a(`, 0) =

22`
and a(`, k + 1) = 22` × 2a(`,k). It is tempting to conclude that since we can give an

a priori bound to the size of a model therefore all subframe logics are decidable. Such a

conclusion is not immediate as is shown in Urquhart [81]. On the other hand, the proof

given in Fine [85] that there are 2ℵ0 subframe logics is also incorrect. It is therefore still

an open question whether all subframe logics are decidable. We believe that the answer

is positive but have found no means of proving it. We will conclude this paper with some

partial solutions to this question. Following Kruskal [60] we say that a relation 4 is a well-

partial order (wpo) if it is a partial order without infinite, strictly descending chains

such that every set N of mutually incomparable elements is finite. On the set of finite

rooted and transitive Kripke-frames we define 4 by f 4 g ⇔ g subreduces to f . Clearly,

4 is a partial order without infinite strictly descending chains. If we can prove that 4 is

a wpo we can show that every FINE-splitting ΛM can be finitely axiomatized over Λ. It

follows that all subframe logics are finitely axiomatizable and thus decidable. For if ΛM

is a FINE-splitting of Λ then letting N ⊆ M to be the set of 4-minimal elements of M

it is easily seen that ΛM = ΛN . Moreover, all frames of N are mutually incomparable.

Therefore, N is finite and ΛM finitely axiomatizable over Λ. Furthermore, if all subframe

logics are decidable then 4 is a well partial-order. For if not, there is an infinite set N of

mutually incomparable frames and therefore 2ℵ0 subframe logics.
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Theorem 11 The following are equivalent

(i) 4 is a well partial order.

(ii) All subframe logics are finitely axiomatizable.

(iii) All subframe logics are decidable. J

We can show for a restricted class of frames that 4 is wpo. With every transitive frame

g we can associate a partial order g[ = 〈g[,≤〉 by letting g[ to be the set of clusters

of g and C ≤ D iff C = D or (∀s ∈ C)(∀t ∈ D)(s � t). Next we define an indexing

function ι : g[ → ω by letting ι(C) = ]{s|(∃t ∈ C)(s � t � s)}. Finally, define a partial

order 4 on the natural numbers by m 4 n ⇔ m = n = 0 or 1 ≤ m ≤ n and define

τ(g) = 〈g[, ι〉. It is not hard to see that ε : g � h iff τ(g) can be embedded in τ(h) as a

partial-order-over-〈ω, 4〉, that is, such that ι(C) ≤ ι(ε(C)). Say that g is a quasi-tree if

g[ is a tree. Denote the set of finite quasi-trees by Q. Qausi-trees are equivalent to trees-

over-〈ω, 4〉 in the sense of Kruskal [60]. Now, by the famous result of Kruskal obtained

in Kruskal [60], since 〈ω, 4〉 is wpo, so is 〈Q,⊆〉, the space of trees-over-〈ω, 4〉. Therefore

any subframe logics axiomatized by a set of finite quasi-trees is finitely axiomatizable.

Since linear frames are quasi-trees, we get an interesting corollary, first noted in Fine [71].

If Λ = S4.3/g is a splitting of S4.3 by g then Λ = S4.3g – and is therefore a subframe

logic, since g ⊆ h iff there is a p-morphism p : h � g onto g. So, for any Λ ⊇ S4.3 and

any rooted frame Λ/g = Λg. Therefore, all splittings S4.3/N of S4.3 by a set N of finite

frames have f.m.p. since they are FINE-splittings. Now if Λ ⊇ S4.3, let Λo = S4.3/N

with N = {g | g 6∈ Fr(Λ), g one-generated and finite}. Then since Λo ⊆ Λ and Λo has
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f.m.p. and shares all the finite models with Λ, Λ = Λo. Thus, together with Theorem 10

we have the

Theorem 12 All logics containing S4.3 have f.m.p., are finitely axiomatizable and decid-

able.
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