
Argument Structure as an Interface Between Form and Meaning

MARCUS KRACHT

A. In this paper we argue for a specific form of semantic rep-
resentations, which pair together a DRS with a list of statements that
declare how the variables occurring in the DRS are to be handled un-
der merge. This eliminates the need for an external accounting device.
Additionally, it greatly simplifies the amount of structure needed to ac-
count for the behaviour of contextually determined variables as well as
argument identification in general. Factoring out structural from seman-
tic information greatly simplifies the representations, and therefore it is
expected to also simplifiy learning these structures.

1. I

Learning from corpora has been a major domain in computational lin-
guistics. Its use is twofold: the practical use is that it eliminates the need to
design actual systems, say grammars, in favour of letting the machine cre-
ate them by itself. The second, theoretical use is that it may show us how
humans may learn languages. Largely, the contention has been that it is
not feasible to learn structural properties of languages without prior, inborn
knowledge of their basic structural traits. This theory has been supported
by formal proofs that languages are virtually unlearnable (see [5] and refer-
ences therein). The study of learning algorithms may be able to refute that
claim if it can come up with an algorithm that learns language from scratch.

In this paper I shall suggest that the standard view of the matter is too
simplistic in that it focuses exclusively onsyntacticproperties. If other
kind of input was available, in particular semantic input, the situation might
change significantly. At present, however, it is unclear what it is that should
be learned and how it can be learned from the available data. To remedy
this, I propose a particular theory of argument structure, which provides
an interface between syntax and semantics. Argument structure associates
basic morphological, syntactic and semantic properties with arguments and
relates them to each other. In this way, the structures are built up simulta-
neously, using input from all three sources at once. This simplifies the task
at many levels:

1

2 MARCUS KRACHT

➀ The burden of structural description is not put on one level alone.
Thus syntax is not responsible for interpretation, and semantics is
not responsible for structure building.

➁ Each of the descriptions (morphological, syntactic, semantic) are
relatively simple; the complications arise mainly from their interac-
tion.

➂ Learning these structures is simplified, since at each level the infor-
mation needed to fix their behaviour is relatively small.

To see the advantage, just look at a full specification of lexical items in cat-
egorial grammar, or at the sentential structures in the Minimalist Program.
In both instances the syntactic structure is everything: once it is built, the
interpretation is a trivial matter. The syntactic structures are however very
intricate and so are the individual lexical entries.

There is even a fundamental philosophy behind this, calledbootstrap-
ping. It says in this case that once the fundamental properties of syntactic
structures are uncovered, semantics becomes trivial. It is, so to speak, a
mere epiphenomenon of syntax. Even if that were true, there are several
problems with that approach: for one, the structures that need to be learned
are largely invisible (LF) so the language learner needs to know which of
the hidden structures he has to associate with a given overt sentence. Sec-
ond, the current structures are very complex, it is unclear how they can
actually be learned. Third, the association between LFs and semantic rep-
resentations is still not determined (assuming here that LF does not do any
semantics). Fourth, in actual fact the many categories assumed in syntactic
theory do have semantic labels (virtually all of them), and the association
between these labels and semantic categories is not random. It is claimed
that the positions are completely formal, but I am not sure that this is factu-
ally the case.

2. F T P: A B L

Learning grammars from corpora is a delicate affair. The standard prac-
tice in Data Oriented Parsing, for example, has been to start with an already
existing analysis, that is, a set of sentences already parsed according to some
grammar of the language. The system is trained on that set and is expected
to learn weights for the rules, and may also come up with refinements of the
grammar. (See, for example, the collection [1].) But it cannot change the
fundamental assumptions on which the corpus is based.

The problem with this approach is evident: the corpora are not the actual
input for the human learner, but they have been manufactured to ease the
learning task. In doing so, the system is made dependent on certain arbitrary
choices on the part of the designers of the corpus. This is not a small affair.

Argument Structure as an Interface Between Form and Meaning 3

Linguists have battled for decades over the structures of sentences, so it
is not clear that the issue of sentence structure has been settled for good.
Additionally, even if the structures proposed seem uncontroversial, there
may evidence that they are incorrect or insufficient.

Alignment Based Learning (ABL, see for example [7]) has come to res-
cue here. Its aim is to propose learning methods from the raw input, the
string. The theoretical underpinnings are the theory by Harris on distribu-
tion classes. This is a very interesting development since it puts the struc-
turalist dogma to test. Whether or not we are right in teaching our students
that constituent classes are derived from distributional data is finally as-
sessed experimentally rather than theoretically. As much as I favour the
pursuit of this paradigm, I have doubts as to whether this can ever be effec-
tively used in establishing the structure of sentences.

My basic worry is this: there is overwhelming evidence that structure
determines meaning. Chomsky himself has provided support for this. This
means that the same sentence can have several concurrent structures. Mostly,
the choice between them is arbitrary, and it means that the sentence is am-
biguous. However, purely alignment based strategies may see constituents
where there aren’t any. Consider the infamous cross-serial dependencies
of Dutch. On the face of it, we can assign them the same structure as the
German counterparts, namely a nesting order. This would violate the asso-
ciation of verbs and their subject but distributionally I see nothing wrong
with it. Thus, if the crossing versus nesting order is a matter of semantics
and not syntax there is no way it can be unambiguously learned. Basically,
the system will generate endless concurrent analyses with no means to dis-
criminate between them. I have argued at length in [4] that with a notion of
semantics as encoding truth conditions only the sentence structure of Dutch
is provably crossing and not nesting.

The remedy for this, I claim, cannot and should not be looked for in
refining the strategy. Rather, we should seriously start looking around for
extraneous sources of learning. In particular, I claim, adding a modicum of
semantic information will actually make a big difference.

3. R S

Referent systems were developed by Kees Vermeulen in [8] to overcome
a difficulty in dynamic semantics, namely the “outsourcing” of the choice
of variable names. DRT and Dynamic Semantics both operate with free
variables but have no means to assign them. In both frameworks, variables
names are global, and if two DRSs use the same variable name, they are
talking about the same object. This has many drawbacks. In Referent Sys-
tems, by contrast, variable names are local and needed only during merge.

4 MARCUS KRACHT

Internally, the DRT may use variables names that are different (“anonymous
variables” or “referents”) but they are hidden to the outside world. When
two systems merge, variables are made disjoint by default. However, during
merge the systems may negotiate identity for two of their referents in which
case they will end up being the same (anonymous) variable. In program-
ming languages, this is a known scenario. Procedures are defined using
variables whose scope is unless otherwise declared, local. A procedure is
invoked by plugging in values, and the position of the values indicates with
which variables of the procedure they are to be associated.

We shall first give a reduced picture. Anidentifier string is a binary
string preceded by a letter. Identifier strings are used to identify variables.
We shall use Roman font for them; a variable in italics is actually a metavari-
able, it is only proxy for an identifier string. This is in order to stress that
there is no additional substitutional device necessary. Areferent systemis
a set of pairs〈x : N〉 such that (a)〈x : N〉, 〈x : N′〉 ∈ S impliesN = N′, and
(b) 〈x : N〉, 〈x′ : N〉 ∈ S implies x = x′. The merge of referent systems is
defined as follows.

SrT := {〈x0 : N〉 : 〈x : N〉 ∈ S}

∪ {〈x1 : N〉 : 〈x : N〉 ∈ T and for noy : 〈y : N〉 ∈ S}
(1)

This definition does not reveal enough of what is going on. Let us therefore
define the followingsubstitution:

σS;T := {〈x, x0〉 : there isN:〈x : N〉 ∈ S}

∪ {〈x, y0〉 : there isN:〈x : N〉 ∈ T, 〈y : N〉 ∈ S}

∪ {〈x, x1〉 : there isN:〈x : N〉 ∈ T,but noy:〈y : N〉 ∈ S}
(2)

Letσ be a substitution; write

(3) σ(S) := {〈σ(x) : N〉 : 〈x : N〉 ∈ S}

Then we can write

(4) SrT := σS;T(S) ∪ σS;T(T)

With S a referent system, we sayN is thenameof x iff 〈x : N〉 ∈ S. By
the definition of referent systems, names are unique for a variable, but not
every variable needs to have a name. Also, variables are unique for names,
but not every name needs to be assigned to some variable.

Referent systems can be used in connection with DRT or Dynamic Se-
mantics as follows. Asemantic structure is a pair〈S,∆〉, whereS is a
referent system and∆ is a DRS. It is not required thatS gives a name to
every variable of∆ nor do we ban names for variables that do not occur in

Argument Structure as an Interface Between Form and Meaning 5

∆. Lets provide a realistic example, an entry for the Latin verbvidere.

(5)

/videt/
〈x : 3..〉, 〈y : 〉

e
see′(e); exp′(e, x);
thm′(e, y).

The lower part is a DRS, whose content is that there is an evente of seeing
whose experiencer is x and whose theme is y. The upper part is a referent
system which declares that the name of x is 3.., while the name of y
is . The upper part is what we callargument structure; it consists in
turn of one or severalargument identifier statements. If this structure is
merged with another structure the outcome will depend on whether or the
variables share names. By way of example, let us consider the following
three entries:

(6)

/senator/
〈x : 3..〉

x
senator′(x).

/rosam/
〈x : 〉

x
rose′(x).

/consuli/
〈x : 〉

x
consul′(x).

Then we have

(7)

/senator/
〈x : 3..〉

x
senator′(x).

•

/videt/
〈x : 3..〉, 〈y : 〉

e
see′(e); exp′(e, x);
thm′(e, y).

=

/senator videt/
〈x0 : 3..〉, 〈y1 : 〉

e1, x0
see′(e1); exp′(e1, x0);
thm′(e1, y1); senator′(x0).

The sentencesenator videt rosam can be built in two different ways;
first by mergingsenator andvidet (as shown above) and then merging
the result withrosam, or by first forming the constituentvidet rosam.

6 MARCUS KRACHT

The result is slightly different:

(8)

/((senator videt) rosam)/
〈x00 : 3..〉, 〈y10 : 〉

e10, x00, y01
see′(e10); exp′(e10, x00);
thm′(e10, y10); senator′(x00);
rose′(y10).

/(senator (videt rosam))/
〈x0 : 3..〉, 〈y01 : 〉

e01, y01, x0
see′(e01); exp′(e01, x0);
thm′(e01, y01); senator′(x0);
rose′(y01).

Since the identifier string (what we have called the variable) is unimportant,
it is allowed to perform a substitution as long as it is bijective. Thus the
two structures are equivalent. To be more precise, a representation〈S,∆〉
is satisfied in a first-order structure〈M,I〉 iff there is an assignmentβ from
variables to objects inM such that〈M,I, β〉 � ∆. The triple〈M,I, β〉 is
also called amodel. This is different from the standard DRT approach
which assumes that DRSs are not evaluated in structures but in models; a
DRS places restrictions on valuations, whence its dependence on the actual
identifier string. (Actually, since that is so we can dispense with putting the
variables into the head section of the box. This move requires care, however,
since at some point it will become necessary to do so, for example when the
DRS is embedded. But the added flexibility may actually be welcome. In
this paper we shall continue the standard practice, though.)

However, look what happens if the names of the variables do not match.

(9)

/consuli/
〈x : 〉

x
consul′(x).

•

/videt/
〈x : 3..〉, 〈y : 〉

e
see′(e); exp′(e, x);
thm′(e, y).

=

/consuli videt/
〈x1 : 3..〉, 〈y1 : 〉

〈x0 : 〉
e1, x0

see′(e1); exp′(e1, x1);
thm′(e1, y1); consul′(x0).

Argument Structure as an Interface Between Form and Meaning 7

This is a representation that is true in a structure iff there is an event of
seeing (with an experiencer and a theme) and if there is a consul.

4. A F S

The previous section has shown that the merger of two structures does not
need any external source for choosing the identifier strings (= variables);
they can be negotiated between the referent systems. However, this needs
to be fine tuned. The first problem is that names cannot be changed or elimi-
nated one assigned. To remedy this, I have introduced a system of so-called
vertical diacritics . Each variable is associated with one of the following
diacritics:−, M, O and♦. If the diacritic isO we say that the variable isim-
ported, and if it isM we say that it is exported.♦ is actually an abbreviation
of {M,O}, and so the variable is both imported and exported;− likewise is the
abbreviation of the empty set of vertical diacritics. The variable is neither
imported nor exported (and therefore what we callnameless). Syntactic
arguments belong to variables that are just imported, adjuncts to variables
that are both imported and exported. At most one variable may be exported.
You may think of it as specifying the result.

If two referent systems meet, a variable must be argument in one of them
and result in the other. So, in the merge aM of one structure is cancelled
together with aO of the other. If no such pair exist, the merge is undefined.
Here is a ‘multiplication table’ for these diacritics (∗ means: not defined):

(10)

− O M ♦
− ∗ ∗ ∗ ∗

O ∗ ∗ − O
M ∗ − ∗ M
♦ ∗ O M ♦

We say the variable is ahead if the diacritic isO, it is anargument if the
diacritic isM; the variables is anadjunct if the diacritic is♦. The remaining
case of− is factually unimportant and will be omitted below.

Further, if a variable is argument or adjunct, ahorizontal diacritic may
be added. The horizontal diacritic is one of5, 4 and�. 5 means that the
other referent system must be to the right;4 means that the referent system
must be to the left;� means that it may be both to the right or to the left.

8 MARCUS KRACHT

The table above is now extended as follows.

(11)

O5 O4 M ♦5 ♦4
O5 ∗ ∗ − O5 O�
O4 ∗ ∗ ∗ ∗ ∗

M ∗ − ∗ ∗ M
♦5 ∗ O� M ♦5 ♦�
♦4 ∗ O4 ∗ ∗ ♦4

For� take the union of the results with5 and4. Some of the combinations
with ♦ are actually tricky; we shall not go into the complications here.

We allow names to be drawn from an attribute value matrix, with under-
specified values. This allows names to match despite being nonidentical;
all that is required is that they can be unified. For example,videt expects
its object under the name. The entrysenatorem will list it as 3..,
which means it is accusative, 3rd, singular. The two unify, and so the vari-
ables can be identified.

Names can be lost or changed. If the diacritic isO this means that the
name associated with the variable is lost after merge. This option is very
useful. It means that one does not accumulate names ad infinitum. However,
if the diacritic is♦ there is an option of changing the name. The notation is
A 7→ B, which means that the name of the variable isA before merge and
B thereafter. For example, a nominative case suffix will change the name of
the variable from one that has no case to one that has nominative case. In
this way, morphology connects with referent systems in adding detail to the
argument structure.

There is a general requirement that argument structures must be com-
plete when they are merged. This means that they do not need an argument
themselves. Say that a an argument structure is aphrase if it contains only
one argument identification statement. Notice that this treats adjectives and
adverbs differently from verbs. Adjectives, adverbs and adjuncts in general
can be phrases despite the fact that they still need an argument. However,
there is a distinction betweenaware andblue in that the latter is not a
phrase because it needs an argument, a PP headed byof. This mirrors ob-
servations in GB that heads takes as arguments and specifiers. This rule
does have exceptions, though. We allow heads to have one of the diacritics
H, �; they signal that the head may take another headH′ as its argument
regardless of whetherH′ head needs further arguments. However, there is
a proviso thatH′ has not combined yet with anything. (This requires track-
ing the derivation; ideally, I would like to put some diacritic here that says
whether the object counts as complex but I am unsure as to what the exact
conditions are to be placed on being ‘simple’.) Merge with this diacritic is
calledfusion. Fusion allows for clause union. It allows for example raising

Argument Structure as an Interface Between Form and Meaning 9

infinitives to combine with each other to form a complex verb that takes an
unlimited number of arguments. Their order is controlled by the argument
structure, so no confusion arises. At the moment of merge it needs to be
decided where the argument ofH′ should be placed within the argument
structure of the selecting head. They could be placed at the beginning or
at the end, and this will result in basically either nesting or crossing depen-
dencies. German and Dutch raising infinitives are built using fusion. (This
is the standard analysis which creates a verb cluster.)

The last piece to be added is that the referent systems are not sets but lists
and that merge typically proceeds by identifying one and only one variable
in each of the referent systems. Here is how an entry looks like. The exam-
ple is the verb formlets.

(12)

/lets/〈
e0 :M:

[
cat : ev
agr : fin

]〉
〈
x : O4 :

[
num : sg
cat : ob

]〉
〈
e :O5 :

[
cat : ev
agr : inf

]〉
〈
y : O5 :

[
cat : ob

]〉
e

thm′(e, f); let′(e0);
ben′(e, y); agt′(f, y);
agt′(e, x).

It takes two kinds of arguments: objects (x, y) and events (f), and it itself
passes up an event (e). The first argument is y, which is the object oflets;
the next argument is the event f. Notice that by having the clauseagt′(f, y)
the semantics sees to it that y is automatically the subject of the embedded
clause. The last argument is the subject, x. It is the one that is found to the
left (whence the diacritic4). No directionality is specific for e because it is
not argument, so the directionality is specified only in the head that selects
it as argument.

The part above the DRS is from now on calledargument structure. It is
a list of argument identification statements (AISs). The first part of such an
AIS is called itsmain variable; the other variables are parameters. There
are two kinds of access rules for argument structures. Theconfigurational
accessdetermines that merge can use only the last member of the argument
structure. If access is configurational, the order in which the elements ap-
pear in the argument structure projects into the phrase in perfect mirror: the
least element is the closest in the tree. If access isnonconfigurational then

10 MARCUS KRACHT

merge can jump over an identification statement (counting from the end)
provided merge of the AISs would not succeed. The first succeeding match
is taken. Thus the way in which the order projects into a tree may well be
different from the way they appear in the list. English uses configurational
access, German nonconfigurational access. Thus, English verbs are strict
in their order requirements, while German verbs may take their arguments
in any order they please. However, notice that a sentence in which two ar-
guments are ambiguous between nominative and accusative turn out to be
ambiguous.

..., dass die Mutter eine Maus sieht.(13)

... that the mother a mouse sees

This is predicted as follows. The wordsdie, eine, Mutter andMaus all
have two argument structures: one where the argument is nominative, and
one where it is accusative. The verb is looking for two arguments, the first
nominative and the second accusative. The accusative, being second in the
list, is to be consumed first. The next item to the left may be accusative or
nominative. If the first, it merges with the last entry; if the second, it merges
with the first entry. The remaining complex is now looking for a nominative
in the first case and an accusative in the second case. If the next argument
satisfies this requirement, it is taken in. In the present case, this is the case.
There is another type of sentence which is unambiguous:

..., dass den Kater die Mutter sieht.(14)

..., that the. tomcat the mother sees

Notice that this requires nonconfigurational merge, since both arguments
are on the left hand side. English is a rather tricky case. In a normal declar-
ative sentence the arguments are on opposite sides of the verb so this offers
no decisive evidence for or against configurational merge. (In fact, quanti-
fier raising would be evidence against it.) Yet, a topicalised structure will
not allow the nominative to precede the accusative, indication the English
might after all use configurational merge. The decision must be based on
looking at further arguments of the verb.

5. I

The referent systems have been implemented in OCaML. At present,
only the basic system has been installed, with no recursive structure on
the DRSs, and no variables for them. All the phenomena talked about in
this paper are however fully covered. In particular, it is possible to im-
plement the behaviour of parameters. The system can be downloaded from

Argument Structure as an Interface Between Form and Meaning 11

http://kracht.humnet.ucla.edu/marcus/referent. Rudimentary dic-
tionaries of German and English can be downloaded as well, which illus-
trate the basic features of the system. Instructions (as well as an online
demo) can be found on the site. I plan a next phase where full DRSs can
be included and thus logical connectives may be modeled. At present it is
built mainly for testing the theory, so the main design criterion is faithful-
ness to the theory. At present it uses a chart parser that computes a forest
of representations, which are alphabetically compressed and reduced mod-
ulo equivalence at each stage. The compression is perhaps a rather time
consuming part, but considering the small size of sentences this does af-
fect performance very much; it greatly enhances readability, though. To
gain efficiency, one may consider to just compute the derivation terms be-
fore evaluating the DRSs, but for testing purposes this will not significantly
reduce the computations.

6. P

One advantage of the system comes with the introduction of parameters.
While during merge there is exactly one variable that is officially being
shared via handshake, each of the variables may drag along an unlimited
number of parameters with them that are shared during merge as well. The
way it works is as follows. There is a set of so-calledparameter roles.
Any variable can fill in any parameter role as long as it has the correct sort.
For time, for example, we assume three roles:reference time, story time
andpredication time. In the present tense, all three are equal (and may
therefore be filled by the same variable). In the past, only story time and
predication time coincide, and they precede reference time. In the pluper-
fect, all three are different. A variable that has diacritic♦ may associate
two variables with each parameter role; one for the value it imports and one
which it exports to its head. This allows for sequence of tense phenomena
to be accounted for. We attribute different characteristics of the comple-
mentizer in English and Russian. In Russian, the complementizer passes on
the story time variable of the superordinate clause as the reference time of
the subordinate clause. In this way, subordinate clause tenses are as if seen
from the perspective of the main event. In English, subordinate reference
time equals main reference time, so past tense is mandatory even when the
two events happen at the same time.

(15) I said that I read the book.

The mechanics of tenses is quite subtle, but the parameters can accommo-
date quite a number of different schemata. For example, in the subordinate
clause the use of past tense signals ‘predication time same as main clause

12 MARCUS KRACHT

reference time’ or even, more simply, ‘predication time is now’. For sub-
sequent events, the subjunctive is mandatory and for anterior events the
pluperfect.

I said that I would read the book.(16)

I said that I had read the book.(17)

A semantic solution to this is to make the choice of tenses conditional on
the relative position of reference time and story time of the superordinate
structure.

The way parameter handling is implemented is as follows. For every pa-
rameter role one may add a statement that declares which variable assumes
that role. If the diacritic isM this statement takes the form [R : x], where
R is a role andx a variable identifier. If the diacritic isO it also takes this
form. For example, assume we merge the following two referent systems:

(18) 〈u : O5 : [: ev] :: [: t]〉s〈v :M: [: ev] :: [: t1]〉

Then u and v will both be mapped to u0 because they match; additionally,
both have an entry for the role ‘’, and thus additionally the following
substitution is made: t is mapped to t0, and t1 is also mapped to t0. Thus,
upon succesful merge, the substitution mechanism is extended to the param-
eters that have the same role. If for example the argument had a parameter
 with value t01, this variable would be mapped t011, if the head does
not contain any statement of the form [: w] for anyw. If it did, thenw
would be sent tow0, as would be t01. Thus, in addition to the main variable
any number of parameters can be mapped to each other. Finally, note that if
the diacritic is♦ the parameter statements take the form [R : x 7→ y], which
means thatx has roleR when imported from an argument, but it isy which
is Rwhen exported (upstairs). For example, look at the entry ofdamalig.

(19)

/damaliger/〈
x : ♦5 :

num : sg
gen : m
cat : ob
case : nom

 ::

[
stm : 7→ t
ptm : t7→t0

]〉

This says the following: the adjective takes its argument to the right and
imports t as the predication time. It passes up that value as the story time.
The verb has a story time, but it may be different from the reference time.
So, the net effect is that whatever is predicated of the individual denoted
by x is valid at the time of the story. Actually, I am not certain whether

Argument Structure as an Interface Between Form and Meaning 13

damalig connects only to the story time. I suspect it can also connect to
the predication time. This creates subtle ambiguities, as in

Der Senator hatte dem damaligen Minister Geld(20)

geliehen.

the senator had lent money to the then minister

The sentence may be saying that the person the senator had given money
to was a minister at the time of giving the money or at the time the story
is evolving. If that is so, then an additional entry must be entered into the
lexicon:

(21)

/damaliger/〈
x : ♦5 :

num : sg
gen : m
cat : ob
case : nom

 ::
[

ptm : t7→t
]〉

Without the worddamalig it would be unclear which time point we are
actually speaking about. This means that the noun phrase does not export
its predication time in general; it only does so when a specific temporal
modifier is present that relates it to time points set by the verb. Others set the
time relative to external clocks (heutig ‘today’s’, gestrig ‘yesterday’s’,
ehemalig ‘ex-’). These can be dealt with assuming that we have anchoring
devices. This is not the point to discuss them, however.

7. M

The other important trait of referent systems is that they allow to capture
the contribution that morphology makes. Morphology sometimes makes
clear semantic contributions (plural, causatives, ‘semantic’ cases) but more
often than not it simply provides clues for the structure of a sentence. We
have seen above how cases can help in working out the meaning of a sen-
tence in German. But there is more. In many languages we findagreement,
and its nature from a semantic and syntactic point of view is not always
clear. Negation markers, for example, may either signal negation or they
may signal agreement with an already present negation marker. The differ-
ence is that an agreement marker for negation does not invert the polarity
of the sentence, whereas a negation marker does. Agreement is treated here
on the line of GPSG/HPSG as sharing of certain features. Basically, the
default is that all features must be shared, but that need not always be the

14 MARCUS KRACHT

case. We shall not discuss the ramifications. Basically, an adjunct that ap-
pears obligatorily to the left contains the following argument identification
statement:

(22)

〈
x : ♦5 :

1 : val1
2 : val2
· · ·

 : valn

〉

(We ignore parameters for this discussion.) This says that what it modifies
has to have certain features, and after modification they remain the same.
Now, the stem of an adjective, say Latinmagn ‘big’ will be drawn from the
lexicon like this:

(23)

/magn/

〈
x : ♦� :

 : ob
 : 3
 : ∗
 : ∗
 : ∗

〉

∅
big′(x).

∗ is a special value. It is not to be confused with underspecified.∗ does not
match anything but∗. Gender is installed with a particular morpheme, like
this one.

(24)

//

〈
x : �4 :

 : ob
 : 3
 : ∗ 7→ fem
 : ∗

 : ∗

〉

∅
∅

Apply this tomagn and one gets

(25)

/magna/

〈
x : ♦� :

 : ob
 : 3
 : fem
 : ∗

 : ∗

〉

∅
big′(x).

Argument Structure as an Interface Between Form and Meaning 15

(The fact thatmagn plus yieldsmagna is no analytical statement, only
illustrative. We are not concerned with the actual form of these entries.)
The next morpheme that is added is:

(26)

//

〈
x : �4 :

 : ob
 : 3
 : >

 : ∗ 7→ pl
 : ∗

〉

∅
∅

Notice that this morpheme has gender value>, which means that it can be
added only after gender was installed.

This system therefore allows each individual morpheme to contribute to
the semantic representation. Each adjective in Latin shows agreement, and
this is reflected in the fact that the argument structures are as given above.
Notice however that the morphemes all operate via fusion, so they require
the argument to be a simple word. This forces the repetition of agreement at
every word. If we had placed♦ instead, a different behaviour would emerge.
In that case the morpheme would have to attach to the entire phrase rather
than the word. This is the case in Hungarian. In Hungarian, prenominal
adjectives do not agree with the noun. Rather, agreement (in number and
case) is signaled only once at the end.

a nagy fehér ház-ok-ban(27)

det big white house--

So, the plural suffix in Hungarian is rather as follows (there is no morpho-
logical gender in Hungarian).

(28)

/k/〈
x : ♦4 :

 : ob
 : 3
 : ∗ 7→ pl
 : ∗

〉

∅
∅

This suffix can be added toház alone, but after having been added the
adjective is no longer in a position to modify it. Here I assume basically
that Hungarian adjectives do not inflect, and that their entries are like Latin
roots, seemagn above. But there is an alternative structure, namely adding

16 MARCUS KRACHT

the plural and the case suffix to the entire phrase:

(29) ((a nagy fehér ház)ok)ban

The present analysis can extended to many more phenomena of agree-
ment. Notice that it is typical of agreement that the semantics proper is
actually void. The agreement maker contributes no further information be-
yond the fact that the element is considered to be of a particular category.
This ensures that a particular feature, say plural, does get to contribute its
meaning over and over again. This is also dangerous. There are plenty
of pluralia tanta whose meaning is not necessarily plural (Latinlitterae
‘letter’ is a case in point). Adjectives will show plural agreement but the
plural morpheme must be barred from contributing its original meaning.

This is a pervasive phenomenon. A morpheme may either function as a
content word or as a grammatical word. The distinction is that in the latter
case it ceases to contribute any meaning. I have shown for example in [3]
that the same noun phrase, here the ablative of Finnishlaiva ‘ship’ can
have three different meanings depending on whether the morpheme that is
added is considered a grammatical or a contentful element. The grammat-
ical use of an element is that use which manipulates the feature structure.
The negation marker, for example, if used grammatically, simply changes
the polarity.

8. C

Some words on the overall performance of the system. Though I have
not done any large scale implementation of it, it is not hard to show that
the complexity of these structures is very low. This is in sharp contrast
with λ-calculus, where normalisation is at least exponential unless the type
structure flat, that is, of the formb1 → b2 → · · · → bn → a for basic types
a andb1, . . ., bn (see [6] for upper bounds on the lengths of normalisation
sequences). In the latter case, functions are directly applied to their argu-
ments. Still, there are substitutions to be made. With referent systems, the
result of a merge is computed as follows.

(1) It needs to be seen which of the variables in the two referent systems
can be identified. In configurational merge this is a matter of looking up
the last element in the two systems and see if they match the first one of
the other. This is a matter of unifying two AVSs. Given that AVSs are of
bounded size, this takes constant time. The substitution is then computed,
taking time linear in the length of the argument identification statements.
Execution of the substitution is linear in length of the DRSs. Thus, a struc-
ture (or parse) term is evaluated in quadratic time.

(2) When doing a parse, each merge can increase the length of the in-
volved DRSs. Basically, an upper bound for the merge is the sum of the

Argument Structure as an Interface Between Form and Meaning 17

individual DRSs (we ignore the lengths of the variable identifiers, which is
legitimate). Thus, each merge step can take at most the time linear in the
sum of all involved structures.

Thus, letL be a lexicon, withq the maximal length of an entry inL. Let
~x be a string of lengthn. Each parse will taken− 1 steps, with overall cost
O(q(n− 1)n/2) = O(n2). This is for the computation of a single parse. For
a forest, matters are slightly differently.

Two cases have to be considered. (Case A) There is no fusion. Then the
grammar is basically context free. Then parsing takesO(n3) steps, and it
turns out that the entire forest is computed inO(n4) time (notO(n5), as one
might expect). (Case B) There is fusion. Then matters are more difficult.
The fusion itself is straightforward. The only possibility is to take the head
that is available for fusion right away. There is a theoretical possibility
that arguments appear at alternating sides of the head and that can create
an exponential search space. Similarly, with noncofigurational access the
complex head as exponentially many possibilities for creating constituents.
This explosion is not only rare, it actually can be eliminated. We shall not
go into detail here, though.

Finally, complexity of parsing can be further reduced by noting that it
is not necessary to actually compute the value of the parse term. All that
is needed is to record the argument structure without the actual variable
identifiers or parameter statements. There is only a finite array of these
structures in the nonfusional case, which essentially reduced to a context
free grammar. In the case with fusion we get a linear indexed grammar.
Once it is established that there is a termt for the entire string, it can be
evaluated in quadratic time. Thus parsing isO(n3) without fusion andO(n6)
with fusion.

9. C

Referent systems allow to do the administration of variables completely
locally. This eliminates the need to have parsers come up with indexing;
also, they do not useλ-abstraction, which generally introduces a lot of
costly computations. The administration is flexible, and we have shown
above some ways of handling it. There certainly are more; it is beyond the
scope of this paper to discuss them all. Instead I refer to [2]. A very im-
portant addition to the referent systems designed by Kees Vermeulen is the
notion of a parameter. This powerful device allows to mimic the handling
of indices and context parameters.

The present approach has various shortcomings, though. One is that it
is basically centered around the idea of continuous constituents. It there-
fore has a hard time coping with phenomena such as verb second and split

18 MARCUS KRACHT

DP not to mention the massive discontinuity found in Australian languages.
Some of this can be made up for by assuming somewhat stronger string
handling devices. Suppose, for example, constituents can consist of two
parts. Then it is possible to generate verb second simply by listing verbs
as constituents consisting of a part that moves plus a (possibly empty) rem-
nant. The directionality is then set from the point of view of the righthand
position of the remnant. This solution approaches syntax more in the style
of morphology: the verb in German is considered a transfix, which inserts
one part into second place and another at the end.

R

[1] Rens Bod, Remko Scha, and Khalil Sima’an, editors.Data-Oriented Parsing. Studies
in Computational Linguistics. CSLI, 2003.

[2] Marcus Kracht. Agreement Morphology, Argument Structure and Syntax. Manuscript,
1999.

[3] Marcus Kracht. Against the Feature Bundle Theory of Case. In Ellen Brandner and
Heike Zinsmeister, editors,New Perspectives on Case Theory, pages 165 – 190. CSLI,
2003.

[4] Marcus Kracht. The Emergence of Syntactic Structure. Manuscript, UCLA, 2005.
[5] D. Osherson, D. de Jongh, E. Martin, and S. Weinstein. Formal learning theory. In

Johan van Benthem and Alice ter Meulen, editors,Handbook of Logic and Language,
pages 737 – 775. North-Holland, Amsterdam, 1997.

[6] Helmut Schwichtenberg. An upper bound for reduction sequences in the typedλ-
calculus.Archive for Mathematical Logic, 30:405–408, 1991.

[7] Menno van Zaanen. Alignment Based Learning versus Data Oriented Parsing. In Rens
Bod, Remko Scha, and Khalil Sima’an, editors,Data-Oriented Parsing, Studies in
Computational Linguistics. CSLI, 2003.

[8] Kees F. M. Vermeulen. Merging without mystery or: Variables in dynamic semantics.
Journal of Philosophical Logic, 24:405 – 450, 1995.

D L, UCLA, 3125 C H, PO B 951543, L A-
, CA 90095-1543,kracht@humnet.ucla.edu

