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Abstract

An old and conjecture of modal logics states that every splitting of the
major systems K4, S4 and Grz has the finite model property. In this paper
we will prove that all iterated splittings of G have fmp, whereas in the other
cases we will give explicit counterexamples. We also introduce a proof tech-
nique which will give a positive answer for large classes of splitting frames.
The proof works by establishing a rather strong property of these splitting
frames namely that they preserve the finite model property in the following
sense. Whenever an extension A has fmp so does the splitting A/ f of A by
f. Although we will also see that this method has its limitations because
there are frames lacking this property, it has several desirable side effects.
For example, properties such as compactness, decidability and others can be
shown to be preserved in a similar way and effective bounds for the size of
models can be given. Moreover, all methods and proofs are constructive.



Splittings and the finite model property 2

Introduction

An old problem of modal logic is to prove that all splittings of K4 or other im-
portant systems have the finite model property (fmp). Up to now this problem
has withstood all attempts to prove or disprove it. The only general result to my
knowledge is [Blok, 1978] where it is shown that all logics which are iterated
splittings of K have fmp. Unfortunately, this result does not cover any significant
logics and is therefore only of theoretical value.

The problem as stated is ambiguous in three ways. There are weaker and
stronger readings of it and the stronger versions of this problem will be solved
here. There is one reading that says that given a major system A (K4, S4, G,
Grz) any splitting A/f has fmp. A slightly more interesting conjecture is that
all iterated splittings A/F = | |[(A/f : f € F) have fmp. These are, I guess, the
most popular interpretations. But there is a natural question as to whether the base
system A plays a significant role. Of course it is in general false that A/ f has fmp
(just take A without fmp and f ¢ Fr(A)); but suppose that A itself had fmp, does
it then hold for A/f as well? If so, f is said to preserve fmp. We will see that
the conjecture that all frames preserve fmp is false, but that a significant class of
frames do preserve fmp—though only on the condition that A contains either of the
above mentioned logics. We will also see that there is a splitting Grz/N of Grz
by finitely many frames lacking fmp.

The results proved are obtained by a method that is of considerable interest
since it allows to show much more than just preservation of fmp. It can with mi-
nor modifications be used to show preservation results for other properties such
as compactness, completeness and decidability. Moreover, as the method is con-
structive it not only proves fmp constructively for a lot of extensions of K4 but
it also allows to give a priori bounds for the size of models and thus allows to
generate complexity results for the logics as well. Hitherto, only tableau meth-
ods had all these properties, but they existed only for a few standard logics (see
[Rautenberg, 1983]). Now it seems at least in principle possible to redo all com-
pleteness proofs in modal logic by using this method. In fact, in [Kracht, 2001] it
is shown that subframe logics can be handled in this way and that the splitting log-
ics S4.Dum and Grz also preserve fmp. Recently, in [Kracht and Wolter, 1991]
the same methods were successfully applied to polymodal logics.

I am grateful to Kit Fine for spending a lot of time discussing this essay with
me and for providing me with counterexamples. In addition, I want to thank the
Studienstiftung des deutschen Volkes for funding while I was at the Centre for
Cognitive Science in Edinburgh in 87 as well as Prof. Rautenberg for awakening
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my interest in splittings and for his support.

1 Basic definitions

1.1 Frames and models

The language £ of modal logic consists of a denumerable set Var of variables,
whose elements are denoted by lower case Latin letters, the classical connectives
A,V,—,— and O,<¢. Formulas are denoted by upper case Latin letters such as
P, Q,.... A (normal) modal logic is a subset ® of £ which contains all classical
truths, BD : O(p — ¢) — (Op — 0Og) and which is closed under substitution,
modus ponens and MN : p/Op. We reserve upper case Greek letters for logics. A
substitution is a mapping S : ¥ — L, Y C Var. The effect of S on a formula Q is
denoted by Q[S(p)/p : p € Y] or simply by Q[S]. A frame is a pair f = (f, <)
where f is a set and < is a relation on f. A frame is not assumed to be generated
by a single point (or rooted) unless explicitly stated. A p-morphism is a mapping
nm:f — gsuchthatVs,t € f:s<t= n(s)<n(t)and Vs € fVt € gdu € f :
n(s) <t = t = m(u). In writing 7 : f — g from now on we imply that r is a p-
morphism. If 7 is injective we write  : f > g and call f a generated subframe
of g. If & is surjective, g is called a contraction of f, in symbols 7 : f - g. For a
finite frame g we say that g omits f if f is not the contraction image of a generated
subframe of g. A valuation on f is a mapping 8 : ¥ — 2/, Y C Var. 3 uniquely
extends to B : L(Y) — 2/. The pair (f, ) is called a model. It is said to be finite if
f is finite and finitely generated if Y is finite. Generally, frames are assumed to be
finite throughout this paper. If s € f then (f,8, s) E Qiff s € B(Q) and (f,8) = Q
iff B(Q) = f. Finally, f £ Qiff VB : Y — 2/ : (f,8) E Q. The logic Lf of f
is the set of all Q such that f = Q. fis a O-frame if Lf D ©. Fr(®) (Fr/(0))
denotes the collection of all (finite) ®-frames, and Md(®) (Md/(®)) the collection
of all (finite) ®-models i.e. models (f,) where f is a (finite) ®@-frame. (f,f) is
called refined if Vr,s € fA0 € L : r # s = (f,B,r) E Qand (f,B,s) £ Q.
This can be reformulated as follows: call a p-morphism 7 : f — g admissible
for Bif Vt € g¥r,s e i\ (O)p € Y : {f,B,r) E piff {(f,B,s) E p. Then (f,B) is
refined iff every admissible 7 : f — g is injective. If (f, 5) is not refined, there is
a uniquely defined p-morphism p : f — f/B which makes the structure (f /B, y)
with 8(q) = p~'(y(g)) refined. We call it the refined equivalent of f.

We say, (f,5)is amodel for X, X C Liff ds e f: (f,B,s) E Qforall Q € X.
We also call (f, 8, s) a model for X, where (f,, s) E Q for all Q € X. As f does



Splittings and the finite model property 4

not have to be one generated, s does not need to generate f, nor does s need to be
initial in f. A model for X is called minimal if it is refined, S : var(X) — 2/ and
no model for X is based on a p-morphic image of a generated subframe of f. If
(f, ) 1s a minimal model for X, then f is generated by a single point s for which

(f., sy E Qforall Q € X.

1.2 The proof method

Definition 1 Ler A be a modal logic. ©, is said to split A if a logic ®, exists
such that for allT" 2 A either I' C Oy orI' 2 ©,. If Oy splits A, ©®, is uniquely
determined and denoted by A/®;.

If A has fmp then O splits A only if it is the logic of a finite frame generated by a
single point, or, equivalently, if it is the logic of a finite, subdirect irreducible (fsi)
algebra. It has been shown by [Blok, 1978] that this is not a sufficient condition.
For example, the logic of the frame consisting of a single reflexive point meets
that condition but does not split K. For a general investigation into splittings see
[Kracht, 1989].

Definition 2 Let © be a logic. f is called a splitting frame if its logic Lf splits
©. We write O/ f instead of O/Lf. If f is finite and generated by s, O/ f = O(Zy)
where £y = O™WA(f) — —p, for some n € w and
A(f) = /\(pu - p, i UEY)
AA<pu—><>pv Puv)
A /\(pu - _'<>pv Tu A V>
AP ue £y

)

where u,v range over f. We used the convention O™ p := A\(Q'p : 0 < i < n). In
case ® 2 K4 n can be chosen to be 1.

We give a sketch why a finite frame for ©(X,) omits f. For if g is such that a
generated subframe / of g maps p-morphically onto f, a valuation S into g can be
found such that g, g, 7 = O™A(f) A =p; for some 7 € g and thus =/ ¢ Lg.

Definition 3 Let © be a logic and f be a splitting frame for ©. f is said to
preserve the finite model property beyond © if for all A2 ® A/f = AU®O/f has
fmp whenever A has fmp.
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The way we prove preservation of fmp for a frame is shown in the following
scheme: Suppose X is finite and consistent with A/f. Then a finite set X* of
formulas of type o™X /[Q,/p, : s € f]is added to X. Since X* C A/f, X; X* :=
X U X* is consistent with A/f and hence with A. Thus there is a finite A-model
(g, B, s) for X; X*. If it is minimal, g is a A/f-frame. Thus we have reduced the
problem to finding appropriate constraints X* or to finding suitable substitutions
Q : f — L, which we call nets for f. For suppose that g does not omit f. Then
we have a subframe i : h >> g and a contraction p : h - f and if all models
B, <g, ), (h,m), n(p) = v(p) N h, are refined, there is a set {Q, : s € f} of
formulas such that (h,n, ) | Q, iff p(¢) = 5. Thus if 1, generates h then sy = p(;)
generates f and so (1,1, 1) E O™A(f) A py,[Q1(= =Z;[Q]). Hence, for a suitable
m, (g, 7, ro) E O"™—=%,[Q], where ry generates g and so, if we include O™X [Q]
in X*, (g,7y) can no longer be a model for X; X*.

2 Contexts and Recognizable Frames

2.1 Nets and Contexts

As usual, the modal degree dg(P) is defined as the maximal nesting of modalities
in P. We summarize the last section in the following definition.

Definition 4 A pair (p, i) of p-morphisms is a context for f in g iffi : h > g and
p : h - f for some h. An indexed set of formulas Q : f — L is a net for f.
Q recognizes f in the context {p,i) if for all B such that {g,p) is refined and for
allt € h: (g,B,i(t)) E Qs iff p(t) = s. We define the degree of Q by dg(Q) :=
max{dg(Q,) : s € f} and var(Q) := | J(var(Qy) : s € f). Also we define the
substitution of a net for f in a diagram A(f) by A(f)[Q] := A(H)Qy/ps : s € f]
and similarly for the splitting formula. A set of nets for fis a trawl for f. If T is
a trawl then dg(T) := max{dg(Q) : Q € T}. T is called finite if dg(T) is finite. T
recognizes f in the context if one of its nets recognize f in that context.

Thus a finite frame g omits f if there is no context for f in g.

Definition 5 f is strongly recognizable (= s.1.) in a class of frames X if there is a
finite trawl which recognizes f in every context out of X. f is weakly recognizable
(= w.r.) in X if there is a finite trawl such that for every model {g,3) with g in X
such that g does not omit f there is a context for f in g in which f is recognized
by that trawl.
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® is m-transitive if 1™ ¢ — 0”*Vq € O.

Theorem 6 If f is w.r. in Md¢(0®) and O is m-transitive then f preserves fmp
beyond ©.

Proof. Let T be a finite trawl that recognizes f in Md(®). Let X be A/f-
consistent. Following our proof scheme we have to design an appropriate X*,
We define X¥ := {O™X(A)[Q] : Q € T,var(Q) C var(X)}. X* is finite since the
trawl of nets based on the variables of X is finite. Clearly this trawl recognizes f
in Md/(0®). Now let (g, 5) be a minimal model for X; X* and let s generate g. Then
if g does not omit f there is a context (p, i) such that YVt € h : (g,3,i(?)) F QO iff
p() = sand Q € T is based on var(X). Now if 7y generates & and p(f)) = sy we
have (g, B, i(to)) E OPA(f) A Q,,(= =Z(f)[Q]); but on the other hand, since g is
generated by s and (g, 3, s) £ O™Z(f)[Q] we have (g, B, i(ty)) E Z(f)[Q] which
is a contradiction. Therefore g omits f and f preserves fmp beyond ©. m

Finally we present a class of frames which preserve fmp for every weakly
transitive ®, namely the cycle free frames. A frame f is called cycle free iff
—ds € f: s <* s, where <* is the transitive closure of <.

Theorem 7 Let © be any logic and f € Fry(0) be finite and cycle free then f is
s.r. in Fry(®). In addition, if © is weakly transitive, f preserves fmp.

Proof. We only have to show the first part. Let (p,i) be a context for f in g.
Since f is cycle free there is a number n € w such that f E O™0. dp(f) is
defined to be the least number with that property. Since p : h = f is surjective
dp(h) = dp(f) < w. Thus the trawl of nets of degree less or equal to dp(f)
recognizes f in (p,i). ®

2.2 State Descriptions

LetfB : Y — 28 be a valuation from a finite set Y into g. Then the state description
at; of s € gisdefined by at; := A(p: pe Y,s€B(p) ANN{(-p:peY,sé&p(p)).
For a finite subset N of g the state description is defined by aty := \/(at, : s € N).
In addition, let aty denote the set of all possible state descriptions from Y, i.e.
aty = {Pc : C C Y} with Pc = AN(p: pe C)ANN(-p : peY—-C). Given
a finite set X of formulas, the extended state description Az, of s is defined by
Aty := N(Q : Q € sf(X), 5,8 E O) AN N(=Q : Q € sf(X),s,B ¥ Q) where sf(X) is

the set of subformulas of the formulas in X.
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2.3 Definable sets and properties

Our method for proving preservation crucially depends on definability in ®-frames.
Let us therefore investigate some questions on definability in K4-frames before
we prove conservation property for K4-frames. However, let us first recall some
notions and facts about K4-frames. A set C of points in a K4-frame is called a
cluster if either C = {¢t} and ¢t 4 ¢ or C is maximal such that C X C C «. In
the former case C is called improper. In a K4-frame clusters behave exactly like
points and so we write C <« D or C < t whenever C sees D or t. A point is called
terminal or of depth 1 if V¢’ : t <t = ¢ <t. Likewise a cluster is called terminal
if all of its points are terminals. A points ¢ or cluster is of depth n + 1 iff for all ¢’
withz <t 4t, ¢ is of depth < n and there is at least one such " of depth = n.

Let f be a frame, N C f a subset. N is called definable if there is a number n
such that for every valuation 8 : X — 2/ such that X is finite and (f, ) is refined
a formula O of degree < n exists satisfying (s, f,8) E QP iff s € N. In this case
we also say that N is n-definable and that Qf defines N in f with respect to 3.
A property is (n)—definable in a class & of frames if for every f € K the set of
points which have that property is (n)—definable. It is easy to see that the class
of n-definable properties is closed under all boolean operations and likewise the
class of n-definable subsets. A first nontrivial result is that the property ‘terminal’
(= ‘of depth 17) is 2-definable in the class of K4-frames and thus also the property
‘nonterminal’. To see this, let 8 : X — 2/ be such that (£, 8) is refined and let ¢ be
a point of depth 1. Then ¢ lives in a terminal cluster C. Now define Q, by

2)

at, AOO ifrsat
at, AOL ADO(atc A A(Caty : ¢ € C)) else

Q, defines exactly {¢t}. Consequently, any finite set of points of depth 1 is 2-
definable. But as X is finite, there are only finitely many of them and so all sets
of terminals are 2-definable. Thus, ‘terminal’, which corresponds to the set of all
terminal points, is 2-definable; and so is its complement. To be explicit, if D,
denotes the defining formula for the set of points of depth n, then we have

D, :\/(A/\DO:Aeaty)
VV(B/\D(\/C/\/\OD:S Caty,BeS)

CeS DeS

3)

To show that all points of depth k, k& > 1, are also definable, we will make use
of the fact that if N is an m-definable subset and ¥ an n-definable property, the
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set of points which have  within N is m + n-definable. In order to state this
properly, let f be a frame and g C f a subset of points, not necessarily generated.
Then call (g, <; N g*) a subframe of f (cf. [Fine, 1985]). If 3 : X — 2/ isa
valuation, then a unique valuation onto g is defined by restricting the values to g,
which we denote by S as well. Now suppose that there is a formula Q such that
Yee f:(f,B,1) E QO © t €g. Then define the localization of a formula P onto
g, in symbols P | Q, via

Pl O = PAQ if P is nonmodal
(PrAP)LQ = (PLLOAWPLO)

=Pl Q0 = OA=(PLO) “4)
@pP) | 0 = oAD(Q.-— Pl O)

©opP) 1o = OAXQ.APlO)

By induction one can show

Proposition 8 (Localization) If g C f is a subframe and Q a formula such that
(f,B,s) E QO © s € g for some valuation B, then (f,B,t) E P | Qifft € g and
(g,B,t) E P. In addition dg(P | Q) = dg(Q) + dg(P).

We include the warning here that even if (f, 5) is refined, (g, 8) need not be refined.
This generally happens only when g is a generated subframe of f.

Now we will construct formulas defining the singletons {¢} for each ¢ of finite
depth. We will do this by induction on the depth of ¢ and in addition we will get
the formulas Dy. Let us therefore suppose that such formulas have been built for
dp(t),k < n. Let then ¢ be any point of depth > n. Following [Fine, 1985] we
define the width wd(7) of t by wd(¢) = {at, : dp(s) > n, t < s} and the span sp(¢) of
t by sp(t) = {s : dp(s) < n,t < s}. Say that ¢ is of minimal width if no successor
of depth > n has lesser width, and say that ¢ is of minimal span if no successor
of depth > n has lesser span. Then in a refined frame, ¢ is of depth n exactly if
it is of minimal width and minimal span. This characterization allows a stepwise
construction of Q;. Using localization, we can define the property ‘is of minimal
width w” with w C aty by

W, = u(\/(A A €w)) A /\<u<>B :Bew). | [/\<_'Di ciem)] (5

To define the property ‘is of minimal span t’, with t any set of points of depth < n,
note that in general if s C f is a set of points and Q, defines {x} for x € s with
respect to B, then fort C s P; := A(QQ, : x € 1) A A(—=<CQ, : x ¢ t) defines the
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setAy:={te f:Vxes:t<x & x et} So, P;defines ‘is of span t’, if s is the set
of points of depth < n. And the formula

S;= P, AOOP:. | [/\(—-Di Lien)] (6)
defines ‘is of minimal span t’. Thus
Or = at; AWyaiy A S spir) (N

defines exactly {¢t}. Then D, is the disjunction of all possible formulas of this type.

3 Extensions of K4

3.1 Classifying the extensions of K4

n n
D O
o —— 0 —0 - - - 0 X—X—>X - - - X
chy, ch,
n
D
e —X—>X - - X . X— 0
ch;, i
n m I n
cl, * Ln * *
° n
./' n [ J [ ]
\.
J ky
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axiom name rep. over K4
LS PD. splittings | subframes
Op — Op D D4 chy none
Op —p T S4 chy, i chy
o@p — p) — Op \u4 G none chy
OpNANOGg—=O(pAg).V.
O(p AOGg). V. O(OpAQq) H K4.3 | none Ve
I, K4.I, | none i
J K4.J, | none ch]
over G
o0 \Y ch} ch}
0”0 ch;, ch,
over §4
p < ap Tr chy,cly chy,cly
p — Odp B S5 chy chy
oop — <oOp M S4.1 | clh none
oOp — Odp G S42 | f none
OpANOGg—O(pAg). V.
(P ACG).V.OOpAQg) H S4.3 fr ko b
o@(p —0p) = p)—p Grz | Grz cly, by, cly
o(@(p — ap) » p)A<SOp — p | Dum | S4.4 | [, none
J. S4, ch, ch,

The above list contains almost all important axioms for logics beyond K4. The
axioms [, and J, are somewhat more complex but their geometrical meaning is
rather easy to state. I, excludes that a point has n + 1 distinct incomparable suc-
cessors and J, excludes that there is a strictly ascending chain of more than n
points. We will see that 7, has a splitting representation over S4. There are two
main ways of naming logics. The column L/S gives the name of the axiom as
proposed by Lemmon and Scott. The column P.D. gives the ‘trivial’ name for the
extension defined by the axiom in question. (As in chemistry, there is a systematic
catalogue of names and some small number of trivial names for logics which are
commonly used. The L/S notation is now becoming more popular for obvious
reasons.) A splitting representation of an axiom Q over a logic O is a finite set N
of frames such that A(Q) = A/N whenever A 2 ©. A subframe representation of
0O over O is a finite set N such that A(Q) = Ay for A 2 O. For the latter we refer
to [Fine, 1985]. If f = (f, <) is a frame f" is the set of all frames g = (f, <) such
that < U id; = 9 U id;.
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3.2 Frames Preserving fmp beyond K4

Call a cluster C meager if card(C) = 1 and call a frame meager iff every cluster
is meager.

Definition 9 Let f be a frame and T the set of terminal clusters of f. f is called
solid if for all clusters C,D C = D iff VS € T: C < S & D <S). In other words,
points that see the same set of terminals belong to the same cluster.

Lemma 10 A meager and solid frame is strongly recognizable in Md ;(K4).

Proof. Let (p, i) be a context for f and T the set of terminal clusters (=points) of
f.For{t}e Tput Q, := p, AO0ift A ¢tand Q, := p, AOp, if t <t. We then define
O = NRO {1 e, sat) ANNCCO, | {t} €T, s At). Q: s — Oy isanet
for f. Now p is completely determined by the value of the terminals in h. Thus
if n : Y — 2" is a finite valuation we have to look for formulas based on Y which
are exactly true at a given set of terminal clusters of A. If C is a terminal cluster
pc = atc A Oatc A \{OQat, | t € C)) if C is proper and p¢c := atc A 00 if C is
improper is exactly true at C since we assume (h, 17) to be refined. If X; is the set
of terminal clusters mapped to s then p; := \/{oc | C € X;) is true exactly at Xj.
Thus Qlps/ps] is a net of degree 4 which recognizes f in the context (p,i). We
have shown that f is strongly recognizable in Md/(K4). m

Corollary 11 All f,,n > 1, preserve fmp beyond K4. m
Lemma 12 cl, is weakly recognizable for n > 1 in Md ((K4).

Proof. cl, = (n,<),< = n X n. Define Q; := p; A OOp;. A context for cl, can
always be chosen for a given g such that p = id,. Then clearly T := {Q[«a;/pi] |
Vien:a,=ANplpeS)ANCp|p¢sS),S CVY,Y finite} is a trawl for cl,
which recognizes it in every context of type (idj, 7). Thus cl, is w.r. in Md/(K4).
|

Lemma 13 Let e be strongly recognizable in Md¢(K4) and q : f —» e a p-
morphism such that every fibre is a cluster of f. Then f is weakly recognizable in
Md/(K4).

Proof. Let (p,i) be a context for f in g, let (g,B) be refined. Then (g o p, i)
is a context for e in g and thus there is a net N : ¢ — L of bounded degree
which recognizes e in that context. Now let s € e and define f, := ¢~'(s) and
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hy := p~'[f;]. Then f; is a cluster and the restrictions p, := p | hyand g, := g | f;
are p-morphisms. Moreover, if p is such that all p : hy — f; are p-morphisms and
gop is a p-morphism, then p is a p-morphism. For if x<y in / then go p(x)<gqop(y)
and thus p(x) < p(y) since all the fibres of g are clusters. And if p(x) < y then
q o p(x) < g(y); whence there is a u € h with g o p(x) < g o p(u) and again we have
p(x) < p(u). This fact allows a piecemeal construction of a p such that (p, i) is a
context in which f can be recognized.

First we let p be such that ¢ o p = g o p and hence we only have to specify
p, for every s € e. Now take (h,, ). This frame need not be refined. However,
as ps : hy » fyand f; = cl, for some n € w, all terminal clusters of A, are of
size > n and this is true also for the refined equivalent of A, h;/B. Hence there
is a py which factors through iy - hy/B. Moreover, it can be chosen so that all
nonterminal points of 4,/ are mapped onto a single point. This concludes the
definition of p;. All the fibres can be defined by formulas of degree < 2. Thus if
t € f, and Q; defines p;!(¢) in hy, then Qf | N, defines p~'(¢) in h, by localization.
Thus if T is a trawl of degree k recognizing e in every context, then the trawl of all
nets of type Q; | N, is a trawl of degree k + 2 weakly recognizing f in Md((K4).
[

Corollary 14 A solid frame preserves fmp beyond K4. m

For the formulation of the next theorem, let g € f be a subframe; then f — g
denotes the complement subframe of g in f consisting of all points not in g.

Theorem 15 Let f be a frame, r = f a (generated) subframe which is cycle free.
If f — ris solid then f is weakly recognizable in Md ((K4).

Proof. Due to Lemma 13 it suffices to show that f is strongly recognizable if f is
meager and f — r solid. Let therefore be (p, i) be a context for f in g and f be a
meager and f — r solid frame. Let (g, 3) be refined. Now if s € r, then p~!(s) is
of depth < card(r), and so there is a number k such that every point of p~![r] is
k—definable. Consequently, the terminal points of 2 — p~![r] are k + 2-definable.
Define a valuation y : ¥ — 2" where Y = {p, | tis terminal in h — p~'[r]} by
y¥(p,) = {t}. (h—p~'[r],y) is refined and thus there is anet N : f — L recognizing
f—rin{h—p'[r],y) in the context {p 1 h—r,i 1 g — r). Then if Q, defines {1}
in h, R with R; = N[ Q,/p,] recognizes f in (p,i). m
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3.3 Application of the results
3.3.1 Extensions of G

Corollary 16 Every G-frame preserves fmp beyond K4 and in particular also
beyond G. Hence all G, = G/ch; have fmp. m

This result follows from Theorem 7. It is worth noting that since this theorem
was comparatively easy to prove we cannot expect it to be very powerful. In
fact, splitting out f in the lattice of extensions of G yields a weaker logic than
splitting out f*, the reflexive counterpart of f, in the extension lattice of S4. For
example S4.3 results from S4 by splitting out two frames but G.3 is not a splitting
logic of G. It can be shown that G.3 cannot even be obtained by splitting out
infinitely many frames of G even though G.3 is a subframe logic. From the fact
that ch; all preserve fmp we deduce that there is an ascending chain of logics
K4, := K4/{ch; | k € n} which have fmp. It is easily seen that K4, := lim{K4, :
n € w} has the same finite models as G (cf. [Rautenberg, 1979]) but since K4,
is not finitely axiomatisable, K4, # G. Consequently, K4, does not have fmp.
It is thus disproved that all splittings K4/F with F a set of transitive frames has
fmp. However, if we want to have an answer for finite F, we have to be more
sophisticated (see below). Using the fact that the algebras of ch;, are 0-generated
algebras we can deduce with the help of the splitting theorem in [Kracht, 1990]
that K4, is a constant extension of K4 and likewise that K4,,.3 is a constant
extension of K4.3; moreover, it can be shown that K4,.3 has the same constant
theorems as G.3 and that K4,,.3 is meet irreducible in the lattice of normal modal
logics with cover G.3 ([Kracht, 1991]).

3.3.2 Extensions of S4

As we will see in the next section a result as strong as the one for G cannot hold
for S4. But collecting what we have proved so far we get

Corollary 17 Every S4-frame of depth < 2 with the exception of l,,,, preserves
fmp beyond K4 and consequently also beyond S4. m

We can do a little bit better than that:
Lemma 18 [, , preserves fmp beyond S4.

Sketch of Proof. A S4-context (p, i) for [, can always be chosen so that p~'(/;,,)
is of depth 2 and generated by a point. We know that there is a formula Q of
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degree 3 which is true exactly at the terminals of p~!(/;,) and thus =Q is true
exactly at the nonterminals. But the nonterminals are exactly the points that are
mapped onto the generating point of /;,. ®

Given that we know that S4 and Grz have fmp (and that this is even constructively
shown via tableau methods) we have the following results which incidentally are
now also constructively proved (we will return to the issue of constructivity at the
end of this essay).

Corollary 19 S4.1, S4.2 and S5 have fmp. m
Corollary 20 Grz.1 and Grz.2 have fmp.

It is perhaps instructive to see a concrete example which might show how easy
completeness proofs are using our method.

Proposition 21 ©; := O/ch; has fmp if ® has fmp, for ® 2 S4. In particular
since 84 has fmp, S5 has fmp, too.

Proof. Let P be consistent with ®,. Since P — O¢OP € O, P; 0P is consistent
with ®; and a fortiori consistent with ® and hence it has a finite model. A minimal
model for P; OOP is easily seen to be a cluster and hence omits ch;. It is therefore
a ®;-model. m

With the exception of the kites k,, the [,,,, for m > 1 and the chains ch, we
have proved the preservation property for all the frames mentioned in the begin-
ning. But for the chains there is nothing to show for Maximova has proved in
[Maksimova, 1975] that any logic containing S4, = S4/ch, has fmp and conse-
quently all chains have the preservation property. However, it also follows easily
from the fact that points of depth < n are k-definable for some k. The rest of
the frames still remain a problem. As regards /,,,, they can be shown to preserve
fmp using a more sophisticated proof method involving extended state descrip-
tions, which we will not describe here. Instead we refer to [Kracht, 1990]. The
same applies to the kite k,. For the other kites we have found no way to prove
the conservation property. Our personal guess is that &, fails to preserve fmp for
n>?2.

3.4 Some counterexamples

We have already seen that there are logics K4/F lacking fmp. Now we are giving
counterexamples to show that not all frames preserve fmp beyond K4. The first
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example was pointed out to me by Kit Fine. Take © := S4.I5.2. S4.I; is the logic
of S4-frames of width 3. As is known from [Fine, 1985], S4.I5 has fmp and the
results of the previous section then show fmp for ®. Now in [Kracht, 1990] it is
shown that A := ®/{d,, d,, fi, f>} does not have fmp.

d, o— +r0— >0 d °

/.\ /
S~
\./ \

. °\ . ™
f <§7 £ H< -

Thus at least one of the above frames fails to preserve fmp beyond S4. We have
not investigated the question which of these frames is the culprit. However, it is
possible to give an even better example and thereby disprove a conjecture that was
given to me by A. Wronski that all iterated splittings of Grz have fmp. This is
then a direct counterexample for S4 and K4 as Grz and S4 are splittings of K4. Of
course, no such example can exist for G as we have proved. The counterexample
is the logic of the following frame.

R
Let me quote from [Kracht, 1991] that this logic is axiomatized over Grz.2 by
adding two more splitting axioms and the subframe axioms for the frames given
below. Moreover, it lacks fmp while all proper extensions have fmp. All that needs
to be done here is to show that the subframe axioms can be replaced by finitely
many splitting axioms. We risk a conjecture here that for extensions of S4 and
especially of Grz this is always possible. Thus any axiomatization of extensions
of S4 by means of subframe axioms could be seen as shorthand for some more

complicated splitting axiomatization. The relevant special cases of this conjecture
will be proved here (though not in all detail).
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wd(2) p ti(3)

Proposition 22 S4.1, = S4/N where N is the set of all frames of cardinality
< 2! which are not of width n.

Proof. It is clear that S4/N < S4.1,,. The converse remains to be established. We
prove this in the particular case n = 2 but nothing depends on that. We look at
the weak canonical model € for S4/N and show that it is of width 2, by which the
claim follows. (Recall [Fine, 1974] for the necessary details.) Suppose that in €
there is a point a with three incomparable successors ¢, u,v. At first we have to
distinguish whether or not ¢ resp. u or v are of depth 1 or not. This opens eight
possibilities which can be treated alike. Let us assume that ¢ is of depth 1 while u
and v are not. There are then formulae 7, U,V such thatt € T,u € U and v € V.
(To save ink we confuse formulae with their value in €.) Moreover, we can arrange
it that if x is a strict successor of u (i.e. u < x but x ¢ u) then x ¢ U and likewise
that x ¢ V if x is a strict successor of v. Now set Z = =0T A =OU A =<V, Then
Z contains all strict successors of U and V and some more points incomparable to
t,u and v. If we allow ourselves to write U < Z for (Yu € U)(dz € Z)(u < z) then
we have U< Z, V<Z. Now wedefine A = OT AQUAOV, B=OT AOUA=OV,
C=0T AN=-OUAOVand D = =0T A QU A OV. We then have the following
frame B T

Here X — Y iff X <« Y. If no arrow exists from X to ¥ we have (Vx € X)(Vy €
Y)(x 4 y). It may be the case that some of the sets depicted above are empty
in which case they are dropped from the picture. Now if we take the subframe
generated by a € A then the picture shows a p-morphism from this frame onto a
frame with at most eight points violating I;. m

Using similar arguments we can prove the following proposition. To state it we
use the convention f S g to denote the frame (f U g, <y U <, < f X g). Intuitively,
this frame results from placing f before g.
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Proposition 23 S4,5) = S4/{1i(3),1i(3) S o). S4us, = S4/{p.p S o). W

4 Preservation of fmp and constructive reduction

It should be stressed that weak or strong recognizability in some classes of models
establishes much more than just preservation of fmp. It can be seen as a semantic
tool to derive a general property which I will call constructive reduction for +-. The
idea is the following. Given a logic A and an axiom P we know that () Fop) QO ©
(30* Cpin A(P)QF +5 O, or equivalently, oy Q & (AQF € A(P)) o OF — Q.
However, we know of this equivalence only via classical logic because it is only
after having given a proof for Q in A(P) we can name this formula (or finite set)
Q. Thus this equivalence is not constructively valid because we have no means
to establish QF beforehand. And so, an effective reduction of provability in A(P)
to provability in A via (f) is impossible unless we have a computable function
(=) : Q — Q" Thus we can in some sense say that we property of P that
we desire is that (I) is constructively true. Whenever it is we say that P admits
constructive reduction for + with respect to A. It is immediate that constructive
reduction for F is equivalent to preservation of decidability.

Weak recognizability is one way to establish for a splitting logic ®/f that it
allows for constructive reduction from A/ f to A for every A 2 ©. Unfortunately,
it works on two conditions, namely that ® is weakly transitive and that A is com-
plete for the class of frames X in which f is weakly recognizable. Let us state this
explicitly.

Proposition 24 Suppose that f is weakly recognizable in a class X of (general-
ized) frames which is closed under taking generated subframes and contractions.
Then a constructive reduction from AN/ f to f is possible if A is X-complete and
weakly transitive.

Proof. Define () as in the proof of Theorem 6. Then ka;r P ©Fpman)fnx Pt -
P oEyinnx PP > P oty PP > P.m

In brackets we have deliberately added the qualification ‘generalized’ because
nothing changes if we replace Kripke-frames by generalized frames; and in order
to be truly general one has to include generalized frames at this point. It is clear
that Fr(A) is then taken to be the class of generalized frames of A. The first and
the last of the equivalences is conditional on completeness whereas the middle
equivalence holds only for weakly transitive logics. In order to get the best pos-
sible reduction result for f one has to find the largest class in which it is weakly
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recognizable. To name just one example, it is possible to show that cycle-free
frames are weakly recognizable in the class of differentiated generalized frames,
whence a constructive reduction via (%) is possible if only weak transitivity holds.
A last point concerns the closure under generated subframes and contractions. Of
course, by the way things are proved we expect such a condition because we could
not conclude X-completeness of A/ f. But there are also specific examples to show
this, namely the axiom .2 which preserves fmp beyond Grz but not completeness
with respect to finite trees.

The assumption of weak transitivity still is a limitation that has to be over-
come. Define a new consequence relation I- which extends + by the rule ¢ I
W/¢ - Oy. It is straightforward to see that ¢ I & {0%¢ : k € w} + . Say that
A has the global fmp if every consistent set of the type {T*¢ : k € w} U {i} has
a finite model; and say that A is globally decidable if the problem ‘¢ I ’, or
equivalently, the problem ‘{0%¢ : k € w} o Y’ is decidable. Then it is pos-
sible to show that weak recognizability in X shows that a constructive reduc-
tion for I is possible. For suppose that f is weakly recognizable in X. Then
Fajr Q © {OF0 1 k € W) Epaanx Q © {O0FQ : k € w} -5 Q; which holds with-
out assuming weak transitivity, P being some theorem of A/f. Now we know that
P depends only on the variables of Q and var(Q%) C var(Q). Thus if we want
to reduce the problem R I-5,r Q the fact that we are faced with infinitely many
formulae for which to define some reducing conditions is of no significance. It is
easy to see that we have the following reduction: () : R Ikp;r O & {O'R : k €
whkap Q@ {OR ke wUIDNQO AR : ke wh+p Q © R;(RA Q) IF Q. By
consequence, if A is globally decidable then A/ f is globally decidable as well.

Proposition 25 Suppose that f is weakly recognizable in a class X which is closed
under generated subframes and contractions. Then f admits a constructive reduc-
tion for v for all A which are X-complete. m

So much about the connection between weak recognizability and constructive re-
duction. A lot of preservation results now follow immediately. We have men-
tioned decidability and X-completeness. We may add that there is also a preser-
vation for 9)-completeness for all classes 9 € X which are closed under generated
subframes and contractions. But there are also stronger notions of completeness
namely compactness and weak compactness (see [Fine, 1974]). These notions
are suitably relativised to classes of frames. Say that A is X-compact if every
consistent set has a model based on a A-frame from X and say that A is weakly X-
compact if this holds for all sets based on a finite set of variables. We just have to
convince ourselves of the fact that the transition from finite sets to infinite sets is
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harmless and that the restriction to finite variables is also of no significance. The
latter rests on the fact that (—)* maps formulae with variables from a set Y into for-
mulae with variables from Y. Thus X is A/ f-consistent iff X; X* is A-consistent
and moreover var(X) = var(X*). That this behaviour of (-)* is essential is shown
by some negative example in [Kracht and Wolter, 1991] where weak compactness
is lost under constructive reduction.

Proposition 26 Suppose that f is weakly recognizable in a class X closed under
generated subframes and contractions. Then f preserves weak X-compactness
and X-compactness. &

The same type of investigation could be carried out for yet another consequence
relation I which extends I- by the rule ¢ I- ¥//¢ IF sy where s is any substitution.
Then P -, Q iff A(Q) € A(P). The question of constructive reduction does not
arise here since P I-y,;r Q & P;Xf ko Q. But nevertheless weak recognizability
has an effect on the decidability of this consequence which is in general rather
strongly undecidable. For if we take P I, Q and let either P or Q be a split-
ting axiom X, with f weakly recognizable, then the problem ‘P I+, O’ becomes
decidable. The argument is rather easy. It is known ([Rautenberg, 1980]) that
O Ikp Xf exactly if Q ¢ Lf which is decidable since f is finite. And if f is weakly
recognizable in X then X, I+ Q is also decidable given that A is X-complete and
decidable. Finally and most importantly, axiomatization problems ‘A(P) = A(Q)’
are decidable if, say, A(P) = A/ f is known.

As a final point I want to mention iterated splittings. The fact that we can
in some sense push up properties once of course implies that we can push it
up any number of times. For theoretical results this is enough. However, since
this method also allows to give effective bounds for models for A/f in case
such bounds are known for A there is then the concern as to how fast these
bounds develop by iteration. For suppose that N = {f; : i € n} is a set of
weakly recognizable frames and that (-)* is the reduction function associated
with f;; then by iterated reduction we get ko,;r Q & (. ..(Qﬁ")ﬁl S L N 0.
This could in principle be a rather large set, but since all these functions de-
pend on the variables of the formula only, we have (0% Q% A 0% and so
Fay QO © Qb QM & ... O 1, Q. Consequently, if the original function ¢
bounding the size of models in A was exponential in Q we expect a multiplicative
behaviour of the iterated splittings in the sense that the bounding function ¢y for
A/N is bounded by the product of the bounding functions ¢; for the A/ f; for we
have £y(Q) < £(Q; Q%;...; OF1) < Hg“ LQQ%; Q) = g—‘ £;(Q) — assuming that
¢ depends only on the number of subformulae.
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