
1

Notes on the Space Requirements for
Checking Satisfiability in Modal Logics
Marcus Kracht

abstract. Recently, there has been growing attention to the space
requirements of tableau methods (see for example [7], [1], [12]). We
have proposed in [10] a method of reducing modal consequence rela-
tions to the global and local consequence relation of (polymodal) K.
The reductions used there did however not establish good time com-
plexity bounds. In this note we shall use reduction functions to obtain
rather sharp space bounds. These bounds can also be applied to show
completeness of ordinary tableau systems, which in turn yield space
bounds that are slightly different from the ones derived by applying
the reduction functions alone.

It has been shown by Hudelmaier ([7]) that satisfiability in S4 is O(n2 log n)–
space computable, while satisfiability in K and KT are O(n log n)–space
computable. AnO(n log n)–space bound for KD has been obtained by Basin,
Matthews and Viganò ([1]). Viganò ([15]) has shown that satisfiability in
K4, KD4 and S4 is in O(n2 log n)–space. Nguyen has reduced these bounds
to O(n log n) for K4, K4D and S4 in [12]. The bound for K has been improved
to O(n) by Hemaspaandra in [5].

We shall deal here with an abstract method for obtaining space bounds,
using reduction functions. Reduction functions have been introduced in
[9] and further developed in [10]. These functions were used to obtain a
number of folklore results on standard modal systems in a uniform way.
Examples were the finite model property and interpolation, but also com-
plexity. However, the bounds for local satisfiability obtained there were not
good enough. Here we shall improve these results rather drastically. In
some cases we shall obtain linear bounds (namely for K.D, K.alt1), while
in other cases we shall obtain a bound which is a product of the number
of subformulae and the modal depth. In some cases this is somewhat less
than the best known result (it can be quadratic in the length), in others it
is better. Typically, with the help of tableau methods we can also establish
the O(n log n) space bound for most systems.

The research for this paper has been made possible by a Heisenberg–
grant by the Deutsche Forschungsgemeinschaft. I wish to express my thanks

Advances in Modal Logic, Volume 4, 1–22.
c© 2002, by World Scientific Publishing Co. Pte. Ltd.

2 Marcus Kracht

to Rajeev Goré, Edith Hemaspaandra, Fabio Massaci and two anonymous
referees for useful discussions. Special thanks go to Frank Wolter for his
help. The responsibility for errors and omissions is solely mine.

1 Preliminaries

We refer to [9] for details concerning modal logic. The language consists
of the set {pi : i ∈ ω} of variables and the symbols ⊥, ¬, ∧ and, finally,
the modal operators �i, i < q. (The letter ‘q’ will be reserved throughout
this paper for the number of basic operators.) The symbols ∨ and → are
used here, but they are only abbreviations. For sets of formulae we use
the following shorthand notation. For a formula ϕ, dg(ϕ) is the maximum
nesting of modal operators. It is called the modal degree of ϕ. For a
finite set ∆, dg(∆) is the maximum of the modal degrees of its members.

As usual, ϕ;ψ denotes {ϕ,ψ}, ∆;ϕ denotes ∆ ∪ {ϕ} and ∆; Θ denotes
∆∪Θ. Thus ∆;ϕ;ϕ is the same set as ∆;ϕ. For a formula ϕ, sf(ϕ) denotes
the set of subformulae of ϕ, sf¬(ϕ) := sf(ϕ) ∪ {¬δ : δ ∈ sf(ϕ)}, var(ϕ) the
set of variables occurring in ϕ. For a set ∆ of formulae we put

sf(∆) :=
⋃
{sf(δ) : δ ∈ ∆}(1)

sf¬(∆) :=
⋃
{sf¬(δ) : δ ∈ ∆}(2)

var(∆) :=
⋃
{var(δ) : δ ∈ ∆}(3)

A modal logic is identified here with its set of theorems. The least monomodal
logic is called K. With q the number of basic operators, the least q–modal
logic is denoted by Kq. (So, K0 is PC, and K1 = K.) With a modal logic
L, two consequence relations are associated: `L and L. The first is called
the local consequence relation and is defined as follows. ∆ `L ϕ iff ϕ
can be proved from ∆ ∪ L using only Modus Ponens. The second is called
the global consequence relation and defined as follows. ∆ L ϕ iff ϕ
can be derived from ∆ ∪ L using Modus Ponens and Necessitation.

Problems are functions f : A∗ → {0, 1}, where A is a finite set of so–
called letters. We shall study the problems ‘∆ `L ϕ’ and ‘∆ L ϕ’ for
various logics L, which are the following. Given a finite set ∆ and a formula
ϕ, determine whether ∆ `L ϕ (∆ L ϕ) and if so, output 1, and if not,
output 0. Given a complexity class C, a problem f is said to be in C if f is
computable in C; f is C–hard, if for any problem g in C there is a function
h in C such that f ◦ h = g; and f is C–complete if it is both in C and
C–hard. We assume that C is closed under composition.

Definition 1.1 Let L be a modal logic and C a complexity class. We say
that L is locally in C (is locally C–hard, is locally C–complete) if the

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 3

problem ‘∆ `L ϕ’ is in C (is C–hard, is C–complete). Likewise, L is globally
in C (is globally C–hard, is globally C–complete) if the problem ‘∆ L ϕ’
is in C (is C–hard, is C–complete).

Recall the following. First, let �kϕ be defined by induction as usual.

�<1ϕ := ϕ(4)

�<k+1ϕ := ϕ ∧��<kϕ(5)

Also,

�k∆ := {�kδ : δ ∈ ∆}(6)

�<k∆ := {�<kδ : δ ∈ ∆}(7)

Lemma 1.2 (a) ∆ L ϕ iff for some k: �<k∆ `L ϕ. (b) L ϕ iff `L ϕ.

Given a finite set ∆ and a formula ϕ, we have ∆ `L ϕ iff `L

∧
∆ →

ϕ iff L

∧
∆ → ϕ. Thus, local derivability problems are equivalent to

local satisfiability problems, which are subproblems of global derivability
problems. (Moreover, the transformation is log–space computable.)

Proposition 1.3 Let C be a complexity class and L a modal logic. If L
is locally C–hard, it is also globally C–hard. If it is globally in C, it is also
locally in C.

Since satisfiability in consistent modal logics is at least NP–hard, the
complexity of satisfiability in modal logics does not change under linear
reductions. (For the inconsistent logic the satisfiability and derivability
problems are of course trivial.)

2 Reduction Functions

Definition 2.1 (Local Reduction Function) Let L ⊆ M be two logics.
Let Y be a function defined on the set of finite sets of formulae, with range
the set of finite sets of formulae. Y is called a local reduction func-
tion from M to L if ∆ `M ϕ iff (1) ∆;Y (∆;ϕ) `L ϕ, and (2) for all ∆
var(Y (∆)) ⊆ var(∆).

The condition on variables will not be needed here but is essential in
proofs concerning interpolation (see [9]).

Definition 2.2 (Global Reduction Function) Let L ⊆ M be two log-
ics. Let X be a function defined on the set of finite sets of formulae, with
range the set of finite sets of formulae. X is called a global reduction

4 Marcus Kracht

function from M to L if ∆ M ϕ iff (1) ∆;X(∆;ϕ) L ϕ and (2) for all
∆ var(X(∆)) ⊆ var(∆).

These definitions are as given in [10], where the following were established
to be global reduction functions:

X4(∆) := {�χ→ ��χ : �χ ∈ sf(∆)}(8)
XT(∆) := {�χ→ χ : �χ ∈ sf(∆)}(9)
XB(∆) := {¬χ→ �¬�χ : �χ ∈ sf(∆)}(10)
XG(∆) := {¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf(∆)}(11)
XGrz(∆) := {¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf(∆)}(12)
Xalt1(∆) := {¬�χ→ �¬χ : �χ ∈ sf(∆)}(13)

Additional reduction functions for K.D and K.5 are

XD(∆) := {¬�⊥}(14)
X5(∆) := {¬�χ→ �¬�χ : �χ ∈ sf(∆)}(15)

The functions XG, X5, are reduction functions to K4, XGrz is a reduction to
S4. All others are to K.

The results of this paper could be slightly improved if we define a function
on the basis of the pair 〈∆, ϕ〉 rather than the set ∆;ϕ. However, this gives
no improvement on the theoretical complexity of the algorithms. Hence we
have ignored this finesse here.

3 Local and Global Tableaux

We shall first sketch a method for obtaining space bounds for (polymodal)
K. The first calculus, basically folklore (see [13]), shall be called the local
tableau calculus, to distinguish it from the second, the so–called global
tableau calculus.

The calculi as presented below operate on sets of formulae, while they
should be thought of as operating on strings. This is just a matter of
presentation. The space estimates will be always given in terms of the
input string, which is an ordered sequence of formulae. For the purpose of
the calculus, let ∆�j

:= {χ : �jχ ∈ ∆}. The rules are as follows.

(¬E)
∆;¬¬ϕ

∆;ϕ
(∧E)

∆;ϕ ∧ ψ
∆;ϕ;ψ

(∨E)
∆;¬(ϕ ∧ ψ)
∆;¬ϕ|∆;¬ψ

(�jE)
∆;¬�jϕ

∆�j
;¬ϕ

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 5

A tableau for ∆ is a maximally 2–branching tree with nodes labeled by
finite sets of formulae and a name of a rule (except for leaves) such that the
root is labeled ∆, and the following holds.

1. If x has label (¬E), (∧E) or (�jE), then it has a unique daughter and
the daughter carries the appropriate label.

2. If x has label (∨E) then it has exactly two daughters, one for each set
mentioned by the rule.

A tableau is closed if all leaves carry a ∆ such that ⊥ ∈ ∆ or both ϕ ∈ ∆
and ¬ϕ ∈ ∆ for some ϕ. ∆ is rejected by the tableau calculus if it has
a closed tableau. We remark without proof that this calculus is sound
and complete for K in the sense that a set of formulae is rejected iff it is
inconsistent. For the purpose of computing with tableaux we shall think of
the sets of formulae as sequences possibly containing multiple occurrences of
formulae. The semicolon is then to be thought of as sequence concatenation.
It is possible to remove double occurrences of formulae (to save space). In
this case we agree to keep the first occurrence of a formula in the sequence.

The local calculus is just part of the global calculus, which is as follows
(see also [3]). It runs on pairs of sets of formulae, separated by †. We
interpret Θ†∆ as a set of formulae of which the members of Θ hold globally
and the members of ∆ hold only locally. The rules are as follows.

(¬E)
Θ †∆;¬¬ϕ

Θ †∆;ϕ
(∧E)

Θ †∆;ϕ ∧ ψ
Θ †∆;ϕ;ψ

(∨E)
Θ †∆;¬(ϕ ∧ ψ)

Θ †∆;¬ϕ|Θ †∆;¬ψ
(�jE)

Θ †∆;¬�jϕ

Θ †Θ;∆�j
;¬ϕ

This calculus is also sound and complete in the following sense. Θ † Θ;∆
has a closed tableau iff ¬

∧
∆ globally follows in K from Θ. This is easily

seen. If we put Θ := ∅ we obtain the local calculus.
Notice that both tableau calculi use a somewhat larger set than the set

of subformulae. Namely, if the starting set is ∆ (or Θ †∆), then the sets in
the tableau remain within the set sf¬(∆) (sf¬(Θ;∆)).

4 Space Requirements of the Tableaux

We shall deal now with the space requirement for these tableau calculi.

Definition 4.1 (Syntax) Let q be the number of basic modal operators.
A := {p, 0, 1,∧,¬,⊥,�}, S := {; , †}. Members of A are called logical
symbols. The set of q–modal fomulae is a subset of A∗, which is defined as
follows.

6 Marcus Kracht

1. ⊥ is a formula.

2. If α ∈ {0, 1}∗, then pα is a variable. A variable is a formula.

3. If ϕ is a formula, so is ¬ϕ.

4. If ϕ is a formula, and α the binary code of a number < q then �αϕ
is a formula.

5. If ϕ and χ are formulae, so is ∧ϕχ.

If q = 1, we use � in place of �0 in Item 4. Sequences of formulae (and
pairs thereof) are elements of (A ∪ S)∗, which are defined as follows.

1. Every formula is a sequence of formulae.

2. If ∆ and ∆′ are sequences of formulae, so is ∆; ∆′.

3. If Θ and ∆ are sequences of formulae, Θ †∆ is a pair of sequences of
formulae.

Unique readability can be shown for this notation. Notice that formulae are
coded in Polish Notation, but quoted in running text in the usual way. The
length of a formula, sequence or pair of sequences of formulae is its length
as a string, denoted by |∆|. To eliminate dependency on variable names,
one defines the modified length, ||∆||, as follows.

1. ||⊥|| := ||pα|| := 1.

2. ||¬ϕ|| := ||�ϕ|| := ||�αϕ|| := ||ϕ||+ 1.

3. ||ϕ ∧ ψ|| := ||ϕ||+ ||ψ||+ 1.

4. ||∆; ∆′|| := ||∆||+ ||∆′||.

In general, ||∆|| ≤ |∆|. The most common length count is actually ||∆||,
which works however only if the number of operators is finite. (Otherwise,
the length of α must be counted as well in the second clause above, but not
in the first.) For details see [14].

It is worthwhile to explain here a measure of length that is used in [10].
Suppose that ∆ is given. Then let]∆ := card(sf(∆)) be the number of
subformulae of ∆. We remark here that ||�<kϕ|| = k(||ϕ|| + 1) − 1 and
](�<kϕ) ≤ (]ϕ) + 2(k − 1). For sets we have

||�<k∆|| ≤ k(||∆||)− card(∆)(16)

](�<k∆) ≤ 2(k − 1) card(∆) +]∆(17)

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 7

Most complexity results could be stated alternatively with this length func-
tion, though it is somewhat different from |∆|. Notice that the space needed
to code ∆ is not predictable from]∆ alone, since ∆ contains variable names
of unpredictable length.

Proposition 4.2 log2 ||∆|| ≤]∆ ≤ ||∆||.
None of the bounds can be improved. Let ∆ be a set of formulae without

⊥ in which every variable occurs at most once. Then]∆ = ||∆||. For the
other inequality, define

(18) χ0 := p0, χn+1 := ∧χnχn

χn has n+ 1 distinct subformulae and is of length 2n+1 + 2n−1 − 1. Thus,
log2 ||χn|| is asymptotically equal to]χn. (This shows that log2 ||∆|| ≤]∆
can in general not be improved.)

Computations considered here are implemented as computations over
strings of formulae, which however represent sets of formulae. Since in sets
we do not count repeated items, this leads to a slight improvement of the
space complexity bounds.

Lemma 4.3 A member of sf(∆) needs O(log]∆) space to code.

To that effect, think of ∆ as written onto a tape. A set of subformulae of
∆ can be coded by marking on ∆ all positions where a subformula belonging
to that set begins. This explains the bound log2 |∆|. However, notice that
(a) there are positions where no subformula begins (so the bound may be
log2 ||∆||), and (b) ∆ may contain the same subformula several times (which
reduces the bound to log2]∆). So we do the following. We use a second
tape, where cell number j contains ◦ iff cell number j on the input tape
begins a subformula, and moreover, no cell number i < j on the input tape
begins the same subformula. All other cells are marked by •. Evidently,
since the rules manipulate effectively only sets of subformulae, we need to
deal exclusively with those cells marked ◦ in place of all cells. The auxiliary
tape has length |∆| but only]∆ many cells marked ◦. Hence, the binary code
of these cells (counted ignoring the • cells) consumes only log2]∆ space. To
generate that tape, a few read heads are needed to scan the input. Hence we
can eliminate the auxiliary tape by introducing several read heads on the
input tape (equivalently, consuming additional O(log2 |∆|) space). Since
the initial sequence, ∆, is on the input tape, its space requirement is not
counted for the space complexity.

A binary tree domain is a subset T of {0, 1} such that (a) if ~saj ∈ T
then ~s ∈ T , (b) if ~sa1 ∈ T then ~sa0 ∈ T . A binary branching tree can

8 Marcus Kracht

be coded by a binary tree domain. A tableau can be coded as a set T of
quadruples of the form w = 〈~s, ρ, ~u,∆〉, where ~s is a binary sequence, ρ the
name of a rule, ~u a binary sequence, and ∆ a sequence of formulae. More-
over, the set of ~s such that there is 〈~s, ρ, ~u,∆〉 shall form a tree domain, such
that the following holds: for each w = 〈~saj, ρ, ~u,∆〉 and w′ = 〈~s, σ,~v,∆′〉
in T , ∆ is obtained from ∆′ by applying rule ρ to the nth formula of ∆′,
where ~u is the binary code of n. Moreover, if ρ = (E∨), the nth formula is
¬(ϕ ∧ ψ) and j = 0, then ¬ϕ is chosen to form ∆, and if j = 1, then ¬ψ
is chosen. (Notice that if ~s = ε, the empty word, ρ and ~u can be anything,
for example 0.) ~s is called the name of w, and ∆ its label. The pair ρ, ~u
is called the transition code. Notice immediately that ρ is redundant in
presence of ~u. If v has label ~saj, j ∈ {0, 1}, then v is called a daughter of
w.

We shall first deal with the local tableau calculus.

Lemma 4.4 Let ∆′ be the label of a daughter of w in a local tableau, and
∆ the label of w. Then |∆′| ≤ |∆|. Moreover, ||∆′|| < ||∆||.

It follows that the length of a branch is linearly bounded in the number of
logical symbols of ∆0, the starting sequence. Now notice the following. Each
daughter node is uniquely determined from its mother node by naming: (a)
which formula the rule has been applied on, (b) whether we choose the left
hand branch in case the formula is of the form ¬(ϕ ∧ ψ), or the right hand
branch. The information (b) is actually present in the name of the node and
need not be given, since for the leftmost formula the node named ~s0 is chosen
and for the rightmost formula the node named ~s1. All other information
can be recomputed. So we may store the tableau as follows. Instead of
〈~s, ρ, ~u,∆〉 for ~s 6= ε we only store 〈~s, ~u〉. We have |~s| ≤ log2 ||∆||, as we
need to perform tableaux rules only once per occurrence of a subformula.
Also, |~u| ≤ log2 |∆|. By Lemma 4.3, ~u has length ≤ log2]∆. Finally, if
we code only branches, ~s can be reduced to its last member, so is in effect
constant. So, a branch for ∆ in a local tableau needs O(||∆|| log2]∆) space
to code.

Here is an algorithm that computes only a single branch at a time. Start
with the tableau consisting of just one node and the opening sequence, and
call x unfinished.

1. If x is unfinished and (¬E), (∧E) or (∨E) is applicable on a formula
then: x remains unfinished. Apply the rules once to the leftmost
possible formula. In case of (∨E), choose the leftmost disjunct. This
creates y. y is unfinished. Continue with y.

2. If x is unfinished, and only (�E) is applicable at x then: apply (�E)

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 9

to the leftmost possible formula, create a successor y. y is unfinished.
Continue with y.

3. If x is unfinished and no rule is applicable then: if it contains a formula
and its negation, x becomes closed. If not, x becomes open. Continue
with x.

4. If x is closed and has no parent node: exit. ‘There is a closing tableau.’

5. If x is closed and has parent y:

(a) If y is a (∨E)–node and x is the left hand daughter of y then:
create right hand daughter z. z is unfinished. Continue with z.

(b) Else: y becomes closed. Continue with y.

6. If x is open and has no parent: exit. ‘There is no closing tableau.’

7. If x is open and has parent y:

(a) If y is a (∨E)–node, a (∧E)–node or a (¬E)–node then: y becomes
open. Continue with y.

(b) If y is a (�E)–node then: take the next suitable formula to apply
(�E). If it does not exist, y becomes open. If it exists, y becomes
unfinished. Continue with y.

Since branches are bounded in length by ||∆|| we get the following.

Theorem 4.5 It can be checked in O(||∆|| log2]∆) space whether a given
set ∆ of fomulae is satisfiable in (polymodal) K.

Since]∆ ≤ ||∆|| ≤ |∆| this trivially implies that also O(||∆|| log2 ||∆||)
is also sufficient. Since complexity is typically measured in terms of ||∆||,
Theorem 4.5 is slightly better than the standard ones.

The tableau method can be applied also to other logics. For example,
[13] has shown that if one adds the following rule

(19) (�T)
∆; �ϕ
∆;ϕ

the resulting calculus is sound and complete for K.T. (This can be proved
also using reduction functions on the basis of the completeness of the cal-
culus for K.) Evidently, no branch needs to be longer than]∆, so we can
restrict the space to O(||∆|| log]∆).

Recently, Hemaspaandra [5] has observed that the space bounds can be
improved even further. First, observe the following.

10 Marcus Kracht

Lemma 4.6 A subset of sf(∆) needs O(]∆) space to code.

Namely, just note that a subset can be coded as a set of cells on the
auxiliary tape (see the remarks following Lemma 4.3). Hemaspaandra steps
directly from a downward saturated set to another downward saturated set
using the following single rule:

(�H)
∆;¬�jχ

(∆�j
;¬χ)?

Here, Θ? denotes a saturated closure of Θ. This rule eliminates the rules
(¬E), (∧E) and (∨E). A downward saturated set is simply a subset of
]∆. However, Hemaspaandra makes the following crucial observation. Let
sf(d,∆) be the set of occurrences of subformulae that are exactly inside
the scope of d many �. It is clear that sf(d,∆) ∩ sf(d′,∆) = ∅ whenever
d 6= d′. (Think of occurrences as cells of the input string.) Now, if the set
of occurrences above the line of (�H) was within sf¬(d,∆), then the set
of occurrences below the line is within sf¬(d + 1,∆). Therefore the entire
tableau can be coded inside sf¬(∆). Namely, a tableau is a sequence of
the form 〈〈∆i, χi〉 : i < n〉, where ∆i is a downward saturated subset of
sf¬(i,∆) and χi ∈ ∆i the formula on which the rule is operated next. It is
checked in linear space whether a set is downward saturated. The nondeter-
minism in choosing a successor set does not affect the space complexity. We
can backtrack on the saturation (the saturated closures can be effectively
enumerated), and we can backtrack on the formulae on which the rules have
operated.

Now put

(20)]δ(∆) := card(
⋃
n∈ω

sf(n,∆))

(So, in]δ∆ we count two occurrences of a subformula as different just in
case their degree of embedding is different.) Hemaspaandra’s result can
be improved to O(]δ∆). It can be seen that]δ(∆) ≤ dg(∆)]∆ ≤ (]∆)2.
Namely, the degree of embedding is bounded from above by the number
of subformulae. Hence there are at most]∆ occurrences of a subformula
that have pairwise different degree of modal embedding. This bound can,
however, not be improved. Define

(21) σ0 := p0, σn+1 := ∧σn�σn

Then]{σn} = 2n+1, dg(σn) = n,]δ({σn}) = (n+1)2. With badly designed
formulae, therefore, Hemaspaandra’s result gives us only O((]∆)2). It is
such type of formulae that occur a lot with the reduction functions.

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 11

In order to boost this up for the minimal q–modal logic Kq we just have
to replace the number d by a sequence of numbers < q. Thus, we define the
following sets. Let ∆ be given. Then for each occurrence of a subformula
we define the following.

1. For all δ ∈ ∆: δ ∈ sf(ε,∆).

2. If ¬χ ∈ sf(~α,∆), then χ ∈ sf(~α,∆).

3. If ϕ ∧ χ ∈ sf(~α,∆), then ϕ, χ ∈ sf(~α,∆).

4. If �jχ ∈ sf(~α,∆), then χ ∈ sf(~αaj,∆).

Thus for each occurrence of a subformula χ there exists a unique sequence ~α
such that χ ∈ sf(~α,∆). (The reader should not be mislead by the notation
‘χ’ to think of a formula; rather, one should think of it as an occurrence of
a subformula. Otherwise, ~α is not unique.)

Theorem 4.7 (Hemaspaandra) It can be checked in O(||∆||) space whe-
ther a given set ∆ of formulae is satisfiable in (polymodal) K.

Now we shall deal with global tableaux. In a global tableau for Θ †∆, a
node contains only members from sf(∆;Θ). Let n be the cardinality of this
set. As remarked earlier, we can design the calculus in such a way that no
formula occurs twice in a sequence. Now, a formula may or may not occur
in a set, and it may occur negated or unnegated. Hence there are at most
3n different labels. If this is so, then we immediately see that if a branch is
of length ≥ 3n and closed, then there is a branch of length < 3n that is also
closed. This means that a branch of length ≥ 3n may simply be regarded
as open. This bound can be sharpened. We let p :=]Θ and q :=]∆. Then
branches need only be 3p +q deep. This is immediately lowered to 2p +q by
noting that if a branch closes with ∆, it closes with any superset ∆′ ⊇ ∆.
In other words, partiality may help to keep branches short, but it does not
increase the length. This is cognate to the following theorem, which is a
refinement of Lemma 3.1.9 of [9] (for which almost literally the same proof
can be used).

Theorem 4.8 Let ∆ be a set of formulae and ϕ a formula. Then put
p :=]∆ and q :=]ϕ. Then ∆ K ϕ ⇔ �<2p+q+1∆ `K ϕ.

Corollary 4.9 Let q < ω and K := Kq. It can be checked in O(2n log n)–
space whether or not ∆ K ϕ, where n :=](∆;ϕ).

This follows from the fact that the length of branches has an exponential
upper bound. Notice that this length bound cannot be significantly reduced.

12 Marcus Kracht

In [10] we have shown that the number of (�E)–steps is in some cases
O(2c

√
n) for some c > 0, and this means that it is unlikely that one can

do with less than exponential space. It can be shown on the other hand
that there is an exponential time algorithm checking global satisfiability.
Moreover, the following is also known (see [14]).

Theorem 4.10 (Spaan) K is globally EXPTIME–complete.

Notice that this result holds also if a different measure of length is taken,
namely the number of subformulae. This is of some importance later on.
From this we shall obtain upper bounds for the global time complexity for
many modal logics.

5 Space Bounds via Reduction Functions

Lemma 5.1 Let L ⊇ K. Then the following holds with respect to the num-
ber of subformulae, with respect to the length, and the modified length. Let
X be a global reduction function from L to K. If X is polynomial, L is
globally EXPTIME.

The global reduction functions defined above are quadratic in the (mod-
ified) length. Hence it is established that the logics discussed here are
generally globally in EXPTIME. This follows from the following observa-
tion. Suppose that L = K ⊕ Ξ. It is easy to see that X(∆) consists of
substitution instances of some members of Ξ. Thus, all we need to know is
what to substitute for the variables. The functions given earlier have the
property that the formulae that are substituted for the variables are from
sf¬(∆). For example, XB(∆) = {¬�χ→ �¬�χ : �χ ∈ sf(∆)} is obtained
by substituting ¬�χ for p in p → �¬�¬p, and B = K ⊕ p → �♦p. Of
course, ♦ abbreviates ¬�¬; and we have replaced ¬¬�χ by �χ, but this is
harmless cosmetics. This motivates the following.

Definition 5.2 Let X be a reduction function. Suppose that there is a
finite set Θ such that X(∆) consists of some or all substitution instances of
Θ by members of sf¬(∆) for its variables. Further, let n be the number of
variables in Θ. Then we call X an n–analytic global reduction function
with skeletal set Θ.

It is checked that all reduction functions defined above are 1–analytic.

Lemma 5.3 Let X be n–analytic with skeletal set Θ. Then]X(∆) ≤]Θ ·
(]∆)n.

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 13

Theorem 5.4 Let L and M be modal logic. Suppose that X is an n–
analytic skeletal global reduction function from M to L. Then if L is globally
in EXPTIME with respect to any of the measures, then so is M .

Clearly, this theorem can be generalized in the following way. If X is a
global reduction function from L to M satisfying the analogous conditions,
and if M is in C, then so is L given that X is C–computable. Notice that
if X reduces L to M and Y reduces M to N , then Y ◦X reduces L to N .
Moreover, the property required in the previous theorem is also preserved.
So, the reductions can be cascaded. This is needed when we want to reduce
G to K, for example. The reduction functions given are only from G to K4.
However, we also have reduction functions from K4 to K. We shall refrain
in the sequel from noting these obvious generalizations.

The local satisfiability problem still needs discussion. It will be treated
by factoring the local reduction functions into a global reduction function
plus a function bounding the depth of the tableau. The reduction functions
given above are 1–analytic. This is not always so, for example with K4.3.
The following is a global reduction function for K4.3 to K4:

(22) X3(∆) := {¬�χ ∧ ¬�χ′ → ¬�(χ ∨�χ′) ∨ ¬�(χ′ ∨�χ)
∨ ¬�(χ ∨ χ′) : �χ,�χ′ ∈ sf(∆)}

Of course it requires proof that this is a reduction function. Notice however
that these formulae are instances of the characteristic axiom: replace p by
¬χ and q by ¬χ′ in

(23) ♦p ∧ ♦q → ♦(p ∧ ♦q) ∨ ♦(p ∧ ♦p) ∨ ♦(p ∧ q)

X3 is skeletal but only 2–analytic. (In fact, there does not exist a 1–analytic
reduction function; otherwise S4.3 would have interpolation, contrary to
fact.)

Lemma 5.5 Let X be a global reduction function from M to L. Then there
exists a function ρ from sets of formulae to natural numbers such that

(24) Y (∆) := {�<ρ(∆)+1ϑ : ϑ ∈ X(
∧

∆ → ϕ)}

is a local reduction function from M to L.

Proof. ∆ `M ϕ implies M

∧
∆ → ϕ, which in turn implies X(

∧
∆ →

ϕ) L

∧
∆ → ϕ and so �<µX(∆;ϕ) `L

∧
∆ → ϕ for some number µ de-

pending only on
∧

∆ → ϕ. Put ρ(
∧

∆ → ϕ) := µ. Then ∆; �<µX(
∧

∆ →
ϕ) `L ϕ, as promised. �

14 Marcus Kracht

There is a slight problem in the definition of ρ. We have defined ρ such
that ρ(

∧
∆ → ϕ) := µ, while technically ρ should depend only on ∆;ϕ

(that is, not knowing what is premiss and what is conclusion). This can be
dealt with in two ways: (a) We make the reduction functions sensitive to
this distinction (which gives more subtle bounds), (b) we take the maximum
over all numbers for partitions of ∆;ϕ into a conclusion and a premiss set.
(b) is less optimal but asymptotically the difference can usually (and in the
present cases definitely) be ignored.

Definition 5.6 Let M and L be modal logics, X, Y and p as in the previous
lemma. If X is n–analytic with skeletal set Θ Y is also called n–analytic
and depth reduction function ρ.

Notice that the local reduction need not be skeletal even ifX is. However,
there is an important case in which Y is once again skeletal.

Definition 5.7 A reduction function X splits if

(25) X(∆;ϕ ∧ ψ) = X(∆;ϕ→ ψ) = X(∆;ϕ;ψ)

The following is shown in [9] and establishes the relevance of this concept.

Theorem 5.8 Suppose that X is a splitting global reduction function from
M to L. Then if L has interpolation, so does M .

If X is splitting, X(
∧

∆ → ϕ) = X(∆;ϕ). All reduction functions
defined above are in fact splitting and skeletal.

Proposition 5.9 Suppose that X is a splitting n–analytic global reduction
function with skeletal set Θ. Further assume that ρ is a function from sets
of formulae to numbers such that

(26) Y (∆) := {�<ρ(∆)+1ϑ : ϑ ∈ X(∆)}

is a local reduction function from M to L. Then Y is n–analytic with skeletal
set Θ, and splitting. Moreover,

]Y (∆) ≤ 2ρ(∆) card(X(∆)) +]X(∆)(27)
≤ 2ρ(∆)(]∆)n + (]∆)n]Θ

Notice that for the logics discussed in this paper, ρ(∆) ≤]∆. So, if
n > 0, the second term wins for large]∆. This is still suboptimal. Define

(28) Y ′(∆) := �<ρ(∆)+1
∧
X(∆)

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 15

Then

(29)]Y ′(∆) ≤ 2ρ(∆) +](
∧
X(∆)) ≤ 2ρ(∆) + 2]Θ(]∆)n

In order to use Hemaspaandra’s results we need to bound the number
]δ(Y (∆)). However, notice that for any set Γ of formulae]δ(Γ) ≤]Γ ·dg(Γ).

Theorem 5.10 Let n > 0. Suppose that Y is an n–analytic local reduction
function from M to K with skeletal set Θ and depth reduction function ρ.
Assume that ρ(∆) ≤]∆. Then for given ∆ a tableau can be computed using
O((]∆)n · dg(∆)) space.

Proof. For checking satisfiability, we check whether ∆ `L ⊥. We construct
a tableau for Σ := ∆;Y ′(∆;⊥) in place of ∆.]δ(Σ) ≤ dg(Σ) ·]Σ, which
is asymptotically of the magnitude O(dg(∆)(]∆)n). This is also the space
bound. �

In certain cases we can eliminate the additional factor dg(∆). XD for
example is 0–analytic. Here, Y (∆) := �<dg(∆)+1¬�⊥, which has length
O(dg(∆)). Hence the reduction function adds sublinear material.

Corollary 5.11 Satisfiability of ∆ in K.D is in O(||∆||) space.

This can be sharpened to O(]δ∆). For other logics Hemaspaandra’s
method gives O(]∆ ·dg(∆)). A second case is reduction functions which are
degree homogeneous, such as Xalt1 . Here the following is a local reduction
function:

(30) Yalt1(∆) := {�d(¬�χ→ �¬χ) : �χ ∈ sf(d,∆), d ≤ dg(∆)}

Also here we can apply a little bit of cosmetics. Put

Y ∗alt1(∆) :=
∧
Xalt1(sf(0,∆))(31)

∧ (�
∧
Xalt1(sf(1,∆))

∧ (�
∧
Xalt1(sf(2,∆))

∧ . . .))

Here, every member of sf(d,∆) is multiplied by two occurrences, and both
have the same depth of embedding. In addition, there are O(]∆) new oc-
currences of subformulae. Thus,]δY ∗alt1(∆) is linear in]δ∆. Thus we have
shown the following result (which can also easily be shown by adapting
Hemaspaandra’s calculus).

16 Marcus Kracht

Theorem 5.12 K.alt1 is locally in O(||∆||)–space.

Corollary 5.13 Let M be any union of the following logics: K, K.T, K.B,
K.alt1, K.D. Then M is locally in O(]∆ dg(∆))–space.

For a proof we only need to show that the depth reduction function is
linear in]∆. This in turn means that the length of a maximal path in a
minimal model for a consistent formula set must be linear in]∆. For the
model is basically created in all these cases from bundling open paths in
open K–tableaux into a model (and defining the relation suitably). Clearly,
for the postulates T, B, D, and alt1 this is satisfied. A model needs to be only
as deep as the modal depth of the formula set. (See the model construction
procedure of [9].) By way of example, we give a proof of the fact that XB

is a skeletal reduction function with linear depth reduction function.

Theorem 5.14 Let L be a subframe logic whose class of frames is closed
under passing from the relation to its symmetric closure. Then XB is a 1–
analytic skeletal global reduction function of L.B to L. Moreover, YB(∆) :=
�<dg(∆)+1XB(∆) is a local reduction function.

Proof. The skeletality of XB is easy to see. We prove that YB is a local
reduction function; it follows directly that XB is a global reduction function.
Assume that ∆;�≤qXB(∆;ϕ) is L–consistent, where q :=]∆. We will show
that ∆ is L.B–consistent, the converse being easy. Pick an L–frame F =
〈F,�〉, a valuation β and a world x such that 〈F, β, x〉 � ∆; �≤qXB(∆;ϕ).

Let FB be obtained by replacing � by its symmetric closure, J. FB � L.B,
by assumption on L. By induction on χ we show that for all w reachable
in at most q − dg(χ) steps from x:

(32) 〈FB , β, w〉 � χ ⇔ 〈F, β, w〉 � χ

The only critical step is χ = �τ . From left to right this follows from the
fact that if x� y then also x J y. For the other direction, assume we have
〈FB , β, w〉 2 �τ . Then there is a v such that w J v and 〈FB , β, v〉 � ¬τ . If
w � v, we are done. Otherwise, v � w. However, we have 〈F, β, v〉 � ¬τ →
�¬�¬τ . (For x � �≤q(¬τ → �¬�¬τ), and v is reachable in at most q
steps from x.) So, if 〈F, β, v〉 � ¬τ , we have 〈F, β, w〉 � ¬�τ . This means
that 〈F, β, w〉 2 �τ , as promised.

Now let G be the set of all points reachable from x in at most q steps;
let G be the induced subframe of FB and let γ(p) := β(p) ∩ G. Since L is
a subframe logic, G is a frame for L. It is symmetric, therefore a frame for
L.B. We claim 〈G, γ, x〉 � ∆. Namely, the following is established by an
easy induction: for all points y reachable in at most p steps from x and all

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 17

subformulae χ of ∆ of depth ≤ q − p, 〈G, γ, y〉 � χ iff 〈FB , γ, y〉 � χ. The
claim now follows since ∆ has degree q and therefore every member of it is
true at w. Hence ∆ is L.B–consistent. �

We remark that in the definition of YB we could have dropped all formulae
of degree > dg(∆). This gives an improvement by a factor 1/2, which is
however ignored in the O–notation.

6 Transitive Logics

A logic L is transitive if it contains the axiom 4: �p→ ��p. It is imme-
diate that for transitive logics ∆ L ϕ iff ∆; �∆ `L ϕ. This transformation
of problems is linear. Hence, a transitive logic is globally C–hard (globally
in C, globally C–complete) if and only if it is locally C–hard (locally in C,
locally C–complete). Also, if X is a global reduction function from M to
L ⊇ K4, Y (∆) := �<2X(∆) is a local reduction function from M to L. One
immediate consequence is the following.

Corollary 6.1 Let C be closed under linear transforms. Then if K4 is lo-
cally in C, so is G, S4, K4.D, and Grz.

Thus, we only need to establish the local complexity of K4. We can
try Hemaspaandra’s methods again. In place of the rule (�H) we take the
following rule:

(33) (�H4)
Γ;�∆;¬�Σ;¬�χ

(∆; �∆;¬χ)∗

where Γ is a set of formulae of degree 0. Once again the calculus steps
from downward saturated sets to downward saturated sets. A downward
saturated set takes O(]∆) space to code. The formula on which the rule
operates takes O(log ||∆||) space. Now observe the following. (a) If �δ
appears above the line, it also appears below. (b) If ¬�δ appears below
the line, it also appears above. So, the set below the line is characterized
uniquely by the set of �δ that occur in it in addition to those that are
above the line. Further, we we shall show it is not necessary to use the rule
twice on the same formula ¬�χ. Thus, for backtracking, we need a record
only of (a) the variables occurring in the set, (b) the formulae �δ that are
being added, (c) the formulae ¬�δ that are being retracted, (d) the formula
¬�χ. So the tableau is stored as a sequence 〈〈Ai, Bi, Ci, δi〉 : i < n〉, where
Ai is a set of variables, Bi a set of subformulae of the form �δ, Ci a set
of subformulae or their negations of the form ¬�δ, and δi a subformula.
Then a variable is true at node i iff it is in Ai; a subformula �δ is true at

18 Marcus Kracht

i iff it is in some Bj , j < i; finally, ¬�δ is true iff it is not in any Cj for
j < i, and not equal to any of the δj , j < i. Clearly, since the Bi and the
Ci are pairwise disjoint but otherwise of any size, they can only be globally
estimated. The bound is]∆ · log]∆. Given that the length of a branch is
bounded by]∆, the overall bound is]∆ ·card(var(∆))+3]∆ log]∆. Finally,
look at the transition

(34)
Γ;�∆;¬�Σ;¬�χ

(∆; �∆;¬χ)∗

The set Γ of nonmodal formulae does not influence the formula set below
the line. So, Aj , j < i, is not needed in backtracking. In other words, we do
not backtrack to another choice of the values for the variables. This means
that all we need to do is to keep a record of 〈〈Bj , Cj , δj〉 : j < i〉, which is
of size O(]∆ log]∆).

Theorem 6.2 (Nguyen) Satisfiability in K4 can be checked using only
O(]∆ · log]∆) space.

Corollary 6.3 Satisfiability in G, S4, Grz is in O(]∆ · log]∆)–space.

There is also a proof using global tableaux. This proceeds by bounding
the number of applications of the rule (�E). We shall start with a global
K–tableau for

(35) X4(∆); {p ∨ ¬p : p ∈ var(∆)} †∆

Suppose that no closed tableau exists. (This is the same as to say that ∆
does not globally follow from X4(∆) and {p ∨ ¬p : p ∈ var(∆)}.) Then we
construct a model as follows. The nodes are all downward saturated sets
occurring in any open branch of a tableau that has the form Σ † Θ such
that Σ did not appear in a previous node of that branch. By the fact that
we have a tableau in which p ∨ ¬p is contained everywhere in Θ for each
variable occurring in ∆, downward saturated sets will either contain p or
¬p for these variables.

We put Θ †Σ1 � Θ †Σ2 iff Θ †Σ1 appeared above Θ †Σ2 in that branch.
Then we put J := �+, the transitive closure. This defines a frame. We
define β(p) := {Θ † Σ : p ∈ Σ}. It can be checked that in this model, χ
holds at Θ † Σ iff it is in Σ. The model is transitive, and therefore we have
a K4–model for ∆.

Lemma 6.4 Suppose that b is a branch in a global K–tableau for

(36) X4(∆); {p ∨ ¬p : p ∈ var(∆)} †∆

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 19

Suppose further that (�E) has least priority and that there exist no two
downward saturated nodes Θ†Σ1 and Θ†Σ2 such that Σ1 = Σ2. Then (�E)
has been applied at most 3 · 2n]∆ times, where n is the number of variables
occurring in ∆.

Proof. In a local tableau, the number of applications of (�E) within a
branch is bounded by the modal depth of the formula. More precisely,
it is bounded by the number of nested negative occurrences of �. In a
global tableau, the left hand set feeds the right hand side each time (�E)
is executed. However, the set that is being added is always the same. We
have

(37) X4(∆) = {¬(�χ ∧ ¬��χ) : �χ ∈ sf(∆)}

A downward saturated set is of the form O;P ;N , where O ⊆ {p,¬p : p ∈
var(∆)}, P ⊆ {�χ,��χ : �χ ∈ sf(∆)} and N ⊆ {¬�χ : �χ ∈ sf(∆)}.
Suppose that some set contains �χ for some �χ ∈ sf(∆). Then, since it
is the saturation of a set containing ¬(�χ ∧ ¬��χ), it also contains ��χ.
Thus, after one application of (�E) we have that �χ is contained in the
set below the line as well, and after saturation also ��χ. Hence, the set P
cannot shrink, while the set N cannot grow. So, in passing from O;P ;N to
O′;P ′;N ′ we must have either N) N ′, or P (P ′, or O′ 6= O. Moreover,
as long as N = N ′ and P = P ′, O may never occur again. This yields the
bound. �

The bound obtained in this way is too rough for our purposes. However,
notice that downward saturated sets correspond to nodes in a model. More-
over, if N ′ = N and P ′ = P , this means that we move inside a cluster. The
cluster size is at most 2n. However, it is not necessary to form big clusters
all the time. We can avoid forming nontrivial clusters in most cases. In
effect, one can show that if there exists a closed tableau then there exists
a closed tableau with the following property. If at some step N = N ′ and
P = P ′, then there is a formula ¬�χ for which (�E) is applied, and this
formula will never appear in a successor cluster again. In terms of models
this means that if there exists a model then there exists a model such that
if we have a nontrivial cluster where ¬�χ is true, then this formula will be
false in all clusters succeeding that cluster. This is what we shall show now.

Let F = 〈F,�〉 be a frame. A path of length n is a sequence Π = 〈wi :
i < n + 1〉 such that wi � wi+1 for all i < n. Π is nonrepeating if for
no i < j, wi = wj . We shall show that the size of nonrepeating paths in a
minimal model is linear in]∆. The following proof is an adaptation of the
proof methods in [10].

20 Marcus Kracht

Lemma 6.5 Let M ⊇ K4 be a cofinal subframe logic. Then a consistent
formula set ∆ has a model in which every nonrepeating path has length
≤]∆.

Proof. Take a model 〈F, β, x〉 � ∆. Let ψ ∈ sf(∆). Call a point y χ–
critical, if (a) 〈F, β, y〉 � χ and (b) from 〈F, β, z〉 � χ and y � z follows
z � y. Evidently, if y and y′ are χ–critical and y � y′ then y′ � y as well.
Moreover, if y satisfies ♦χ, then there is a critical z such that y � z and
z satisfies χ. Take a cluster C(u) = {v : u � v � u}. If |C(u)| = 1, we
remove C(u) if it is not critical. If |C(u)| > 1, and it contains critical
points, then we keep for each χ ∈ sf(∆) exactly one χ–critical point, if the
cluster contains one. If |C(u)| > 1 and C(u) contains no critical points, we
remove all points. Let G be the set of remaining points. Call the induced
subframe G. Denote by γ the valuation induced by β on G. We claim that
〈G, γ, x〉 � ∆. In fact, we show that for each formula χ ∈ sf(∆) and each
y ∈ G:

(38) 〈G, γ, y〉 � χ ⇔ 〈F, β, y〉 � χ

Indeed, if χ is a variable, this holds by definition of γ. The only nonobvious
step is χ = ♦χ′. Assume that 〈G, γ, y〉 � ♦χ′. Then there exists a z ∈ G
such that y � z and 〈G, γ, z〉 � χ′. By induction hypothesis, 〈F, β, z〉 � χ′

and so 〈F, β, y〉 � ♦χ′ = χ. Now assume that the latter holds. Then there is
a χ′–critical successor z of y. Therefore, 〈F, β, z〉 � χ′ and since z ∈ G, we
have 〈G, γ, z〉 � χ′ by inductive hypothesis. Therefore 〈G, γ, y〉 � ♦χ′ = χ.

It is clear that a point is χ–critical in 〈F, β〉 iff it is χ–critical in 〈G, γ〉.
Finally, we count the number of points in a nonrepeating path. Let y, y′ ∈ G,
and y � y′. Since y and y′ are critical they must be critical for different
formulae. Hence we have at most]∆ points in a nonrepeating path. �

This gives the following.

Theorem 6.6

(39) ∆ `K4 ϕ ⇔ ∆; �<](∆;ϕ)+1X4(∆;ϕ) `K ϕ

Using Theorem 5.10 we get

Corollary 6.7 K4 is in O(]∆ dg(∆))–space.

It follows with the help of the previous results that also G, Grz, and
S4 are in O(]∆ dg(∆))–space. This is somewhat different from the bound
O(||∆|| log ||∆||).

Notes on the Space Requirements for Checking Satisfiability in Modal Logics 21

Using the formulae of [10] polynomial space bounds can be obtained for
all subframe logics, the degree of the polynomial equal to the number of vari-
ables needed to axiomatize that logic. This is not entirely straightforward
as they result from substituting into the skeletal set some complex formulae
built essentially from maximal consistent subsets sf¬(∆). However, with a
set ∆ given, a subset is linearly codable, and so the substitution instances
need only O((]∆)n)–space to code.

It is known that extensions of S4.3 are cofinal subframe logics (see [2]).
For an extension of S4.3 only a single tableau needs to be computed. Hence,
such an extension is in NP and therefore NP–complete if consistent (see
[14]). The space bounds established here are O((]∆)k log]∆), where k is
the number of variables needed to axiomatize the logic. Hence k = 2 for
S4.3 itself. This may in many cases be suboptimal.

In a similar fashion, a lot more results can be shown. We can prove
that satisfiability in tense logic is in O(||∆|| log]∆), and that PDL with
converse is EXPTIME–complete (see [4]). Furthermore, the technique of
[8] shows that many splitting axioms preserve complexity bounds above
K4 and S4. This applies in particular (above K4) to .1, .2 and (above
S4) .Dum, to name a few. Using the standard Gödel–translation, which is
linear, we get from Corollary 6.3 the space bound O(||∆|| log ||∆||) not only
for intuitionistic propositional logic, obtained in [6], but also for extensions
of Int (for example, KC = Int + ¬p ∨ ¬¬p, the logic corresponding to S4.2,
or LC = Int + p→ q ∨ q → p, the logic corresponding to S4.3).

7 Conclusion

Although there exist quite sophisticated tableau calculi specially adapted
for logics extending K, the known (worst case) complexity bounds can typi-
cally be established using a purely combinatorial method based on reduction
functions. The method may not be as useful in actual applications; how-
ever, it has the advantage of being uniform, and it can be generalized in
various ways. A straightforward application of the method typically yields
only O(]∆ · dg(∆)), but this latter bound is not necessarily worse than
the standardly proved O(||∆|| log ||∆||) (which typically can be improved to
O(]∆ log]∆) at no cost). Also, based on tableau methods, the latter can
typically easily be established. Moreover, in the transitive case we obtain
the latter bound directly as well, using a modification of Hemaspaandra’s
calculus adapted for K4.

BIBLIOGRAPHY
[1] D. Basin, S. Matthews, and L. Viganò. A new method for bounding the complexity

of modal logic. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Proceedings of
the 5th Kurt Gödel Colloquium on Computational Logic and Proof Theory (KGC’97),

22 Marcus Kracht

number 1289 in Lecture Notes in Computer Science, pages 89 – 102, Heidelberg, 1997.
Springer.

[2] Alexander Chagrov and Michael Zakharyaschev. Modal Logic. Oxford University
Press, Oxford, 1997.

[3] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic. Number 169 in
Synthese Library. Reidel, Dordrecht, 1983.

[4] Giuseppe de Giacomo. Eliminating “Converse” from Converse PDL. Journal of Logic,
Language and Information, 5:193 – 208, 1996.

[5] Edith Hemaspandra. Modal Satisfiability is in Deterministic Linear Space. In Com-
puter Science Logic, number 1786 in Lecture Notes in Computer Science, pages 332 –
343, Heidelberg, 2000. Springer Verlag.

[6] Jörg Hudelmaier. An O(n log n)–Space Decision Procedure for Intuitionistic Proposi-
tional Logic. Journal of Logic and Computation, 3:63 – 75, 1993.

[7] Jörg Hudelmaier. Improved Decision Procedures for the Modal Logics K, T and S4.
In H. Kleine Büning, editor, Proceedings of CSL ’95, number 1092 in Lecture Notes
in Computer Science, pages 320 – 334, 1996.

[8] Marcus Kracht. Splittings and the finite model property. Journal of Symbolic Logic,
58:139 – 157, 1993.

[9] Marcus Kracht. Tools and Techniques in Modal Logic. Number 142 in Studies in
Logic. Elsevier, Amsterdam, 1999.

[10] Marcus Kracht. Reducing Modal Consequence Relations. Journal of Logic and Com-
putation, 11:879 – 907, 2001.

[11] R. E. Ladner. The computational complexity of provability in systems of modal logic.
SIAM Journal of Computing, 6:467 – 480, 1977.

[12] Linh Anh Nguyen. A New Space Bound for the Logics K4, KD4, and S4. In
M. Kuty lowski, L. Pacholski, and T. Wierzbicky, editors, Proceedings of MFCS’99,
LNCS 1675, pages 321 – 331, 1999.

[13] Wolfgang Rautenberg. Modal tableau calculi and interpolation. Journal of Philosoph-
ical Logic, 12:403 – 423, 1983.

[14] Edith Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics
and Computer Science, University of Amsterdam, 1993.

[15] L. Viganò. A framework for non–classical logics. PhD thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1997.

