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Abstract

This paper shows that non–normal modal logics can be simulated by certain
polymodal normal logics and that polymodal normal logics can be simulated by
monomodal (normal) logics. Many properties of logics are shown to be reflected
and preserved by such simulations. As a consequence many old and new results
in modal logic can be derived in a straightforward way, sheding new light on
the power of normal monomodal logic.
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§1. Introduction.

A simulation of a logic Λ by a logic Θ is a translation of the expressions of
the language for Λ into the language of Θ such that the consequence relation
defined by Λ is reflected under the translation by the consequence relation of
Θ. A well–known case is provided by the Gödel translation, which simulates
intuitionistic logic by Grzegorczyk’s logic (cf. [12] and [6]). Such simulations
not only yield technical results but may also provide a deeper understanding of
the simulated logic. This is certainly the case with Gödel’s translation which
in effect translates the intuitionistic connectives by a modal rendering of the
semantic acceptance clauses. In this paper we will use the simulation technique
to obtain two types of reductions. One is the reduction of normal logics with
several operators to mono–modal logics. The other is a reduction of non–normal
logics to normal bimodal logics.

The first results concerning simulations of modal logics were the results of
[29] and [30] where simulations are used to obtain substantial negative results
in modal logic. Thomason shows how to simulate polymodal logics — even
second order logic — in monomodal logic. Since counterexamples can be con-
structed much easier using several operators, this offers a rather easy method for
systematically creating counterexamples in monomodal logic. Unfortunately,
simulations were shown to preserve only negative properties of logics such as
incompleteness, lack of finite model property etc. There is an array of problems
raised in [15] and [14] which cannot be attacked this way because they require
completeness properties to be preserved as well. We show here that this is in
fact the case. We will apply this to solve some open problems in modal logic.
Moreover, using these techniques it is proved in [19] that there exist logics which
have finite model property locally but are globally incomplete. Other problems,
such as the decidability of finite model property or of decidability itself have a
straightforward solution in bimodal logics (using word problems). By appeal-
ing to the simulation method, the same is proved for monomodal logic. (See
also [18].) This shows quite clearly the usefulness of simulations as a tool in
modal logic. Moreover, we will show that the simulation defined by Thomason
gives rise to an isomorphism from the lattice of bimodal normal logics onto an
interval in the lattice of monomodal normal logics.

Not much is known about non–normal modal logics. Neighbourhood–semantics,
which is usually applied to investigate them, does not allow to analyse modal
formulas as first order properties. General completeness results, as for Sahlqvist–
logics in the case of normal polymodal logics, are not known so far. In this
situation it seems reasonable to investigate non–normal modal logics by simu-
lating them as polymodal normal ones. This paper defines simulations of this
type for all monotonic modal logics as well as a large class of classical modal
logics. By applying Sahlqvist’s Theorem to the bimodal interpretations we get
a general completeness result for monotonic modal logics. Applied to normal
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logics the simulation gives us new insights into the relation between Kripke–
semantics and neighbourhood–semantics. Conversely, undecidability results for
monotonic modal logics can be used to derive corresponding results for normal
bimodal systems. To obtain the required undecidability results for monotonic
modal logics equational theories of lattices are interpreted in them.

The positive results on simulations show that there is no essential differ-
ence between the classes of monomodal normal logics, monotonic logics, and
polymodal logics.

This paper is structured as follows. We begin by defining the notion of a
simulation of a consequence by another and prove some general results. After
that we define our notions and notation from modal logic. The paper then
splits into two parts. The first is dedicated to the reduction of non–normal
logics to bimodal normal logics. The second treats Thomason–type reductions
of polymodal logics.

Acknowledgments. The first to thank is an anonymous referee for a number
of helpful remarks and suggestions for improvement of the paper. We also wish
to express our thanks to Mark Brown and Timothy Surendonk for fruitful dis-
cussions.

§2. Simulations.

A propositional language consists of a (mostly) denumerable set of propo-
sitional variables p1, p2, . . . and a finite set of connectives f1, f2, . . . , fn. For
propositional languages L1,L2 over the same set of variables an interpreta-
tion of L1 in L2 is a map which assigns to the variables uniformly a formula
of L2 and to each formula f(P1, . . . , Pk) of L1 uniformly a formula of L2. More
precisely, an interpretation (−)F : L1 −→ L2 must satisfy

(f(P1, . . . , Pk))F = (f(p1, . . . , pk))F [PF
1 /p1, . . . , P

F
k /pk]

for all connectives f of L1, P1, . . . , Pk ∈ L1, and variables p1, . . . , pk. And it
must satisfy, for all variables p, q,

qF = pF [q/p].

These definitions have some noteworthy consequences. First of all, a variable p
is translated into an expression pF which contains at most the variable p, that
is, var(pF ) ⊆ {p}. For if q 6= p we have pF = qF [p/q], and so we find that
p ∈ var(pF ) iff q ∈ var(qF ). Moreover, for r 6∈ {p, q} we also have r ∈ var(pF )
iff r ∈ var(qF ). This can only hold if var(pF ) = {p} for all p. Likewise, for any
expression P we have var(PF ) ⊆ var(P ).

A consequence (relation) over a language L is a relation ` between sub-
sets of L and individual formulas satisfying the following postulates.
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(ax) If P ∈ X then X ` P .
(mon) If X ⊆ Y and X ` P then Y ` P .
(trs) If X ` P for all P ∈ Y and Y ` Q then X ` Q.
(str) If X ` P and σ is a substitution then σ(X) ` σ(P ).

The consequence ` satisfies replacement if

(rep) P1 a` P2 implies Q[P1/p] a` Q[P2/p].

(Here and in what follows P1 a` P2 abbreviates the conjunction of P1 ` P2 and
P2 ` P1.) Now consider a consequence `1 over L1, a consequence `2 over L2

and an interpretation F of L1 in L2. Then `2 simulates `1 with respect to F ,
if for all Γ ⊆ L1 and P ∈ L1,

Γ `1 P iff ΓF `2 P
F .

The following is a fundamental property of simulations.

Proposition 1 Suppose that `2 simulates `1 with respect to some interpreta-
tion F . Then if `2 is decidable, so is `1. Moreover, the complexity class of the
decision problem for `1 is at most that of `2.

For a proof just observe that by definition the problem Γ `1 P is equivalent to
ΓF `2 P

F . Since the translation is linear in the size and increases the length
only by a constant factor, the complexity class of the simulated problem is (at
most) that of `2.

A priori, any connective can be translated by an arbitary expression. However,
under mild conditions we can show that the interpretation of boolean connec-
tives must be an expression equivalent to that boolean connective. In the case
of modal logics this means that under these conditions only the modal operators
receive a nontrivial interpretation. Call an interpretation F atomic if pF = p
for all propositional variables p. In this case we will often write fF (P1, . . . Pk)
instead of the somewhat longwinded

f(p1, . . . , pk)F [P1/p1, . . . , Pk/pk]

Proposition 2 Suppose that ∧,¬ ∈ Li and that `i are consequences over Li,
for i ∈ {1, 2}. Assume that `i, i ∈ {1, 2}, restricted to the language with
connectives {∧,¬} both coincide with classical propositional logic, and that `2

simulates `1 with respect to an atomic interpretation F . Then (i) p∧q a`2 p∧F q
and (ii) ¬p a`2 ¬F p.

Proof. (i) We have p∧ q `2 {p, q} `2 p∧F q `2 {p, q} `2 p∧ q. (ii) It is readily
checked that P is `1–inconsistent iff PF is `2–inconsistent. Hence, {p,¬F p} is
`2–inconsistent, since {p,¬p} is `1–inconsistent. Hence ¬F p `2 ¬p. It remains
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to show that {¬¬F p,¬p} is `2–inconsistent. Using q `2 ((p ∧ q) ∨ (¬p ∧ q))F

and (i) we have

¬¬F p ∧ ¬p
`2 (p ∧F (¬¬F p ∧ ¬p)) ∨F (¬F p ∧F (¬¬F p ∧ ¬p))
`2 (p ∧F ¬p) ∨F (¬F p ∧F ¬¬F p).

But the last formula is `2–inconsistent since both p∧F¬p as well as ¬F p∧F¬¬F p
are `2–inconsistent. a

§3. Basic Facts and Terminology.

§3.1. Classical and Monotonic Logics.

The language Ln of n–modal propositional logic has the connectives ∧,¬ and
�i, i < n. The symbols ∨, →, >, and ⊥ have the usual meaning. Sometimes
we use fancy symbols such as �, � etc. instead of indexed boxes. A classical
(n–)modal logic is a subset of Ln which contains all classical tautologies and is
closed under substitutions, modus ponens and p↔ q/�ip↔ �iq (i < n). The
smallest classical n–modal logic is denoted by En. The smallest classical modal
logic containing a classical modal logic Λ and a set of formulas Γ is denoted by
Λ + Γ. Classical (n–)modal logics containing

�i(p ∧ q) → �iq, for i < n,

are called monotonic (n–)modal logics. The smallest (n–)monotonic logic is
denoted by Mn. Monotonic (n–)modal logics containing

�ip ∧�iq → �i(p ∧ q) and �i>, for i < n,

are called normal (n–)modal logics. The smallest n–modal logic is denoted
by Kn. We shall often write K for K1, E for E1 and M for M1. Recall that
normal modal logics are precisely those classical modal logics which contain
�i(p→ q) → (�ip→ �iq) and are closed under (mn): p/�ip, i < n.

The consequence relation associated with a classical modal logic Λ is defined
by

Γ `Λ P iff P is derivable from Λ ∪ Γ by modus ponens.

Clearly `Λ satisfies replacement and we can apply Proposition 2. A modal
logic Θ simulates a modal logic Λ with respect to an interpretation F if `Θ

simulates `Λ with respect to F .

We shall introduce neighbourhood semantics for monotonic 1–modal logics
(monotonic modal logics, for short). (For more detailed introductions into
neighbourhood semantics consult e.g. [8] and [9].) Let g be a set and N a map
with domain g which assigns to each x ∈ g a set of subsets of g. Then 〈g,N〉
is called a neighbourhood–frame (N–frame). The set of neighbourhoods
of 〈g,N〉 is defined by putting

C[〈g,N〉] := {a ⊆ g : (∃x ∈ g)(a = N(x))}.
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Now let G be a set of subsets of g with C[〈g,N〉] ⊆ G which is closed under
intersection, complement and

�ga := {y ∈ g|(∃b ∈ N(y))(b ⊆ a)}. (1)

Then G = 〈g,N,G〉 is called a general neighbourhood–frame (general N–
frame). (Clearly, N–frames are identified with general N–frames satisfying
G = 2g.) Valuations β in general N–frames are homomorphisms from the
algebra of formulas into the boolean algebra of sets, G, which satisfy V (�φ) =
�gV (φ). Mostly we shall consider general Nh–frames, i.e. general N–frames
satisfying

(∀a, b ∈ G)(∀y ∈ g)(a ∈ N(y) ∧ a ⊆ b⇒ b ∈ N(y)). (2)

Note that in Nh–frames we have the following equation, for all a ∈ G.

�ga = {y ∈ g|a ∈ N(y)}. (3)

Completeness of a classical modal logic with respect to general N–frames is
defined as usual and we have

Proposition 3 Each monotonic modal logic is determind by a class of general
Nh–frames. Conversely, each class of general N–frames determines a mono-
tonic modal logic.

As usual, a monotonic logic is called complete if it is determined by N–frames
(or, equivalently, by Nh–frames). It is readily checked that a monotonic modal
logic Λ is complete with respect to a class K of general N–frames iff for all finite
Γ ⊆ L1 and P ∈ L1: Γ `Λ P iff for all G ∈ K, for all valuations β and all x ∈ g:
〈G, β, x〉 |= Γ ⇒ 〈G, β, x〉 |= P .

§3.2. Normal Logics.

For normal modal logics the semantics reduces considerably in its complexity
as we can now have relations instead of neighbourhoods. A 1–frame is a
generalized monomodal frame, a 2–frame is a generalized bimodal frame. A
similar convention is used for 3–frames, polyframes. A kripke n–frame is
a pair f := 〈f, 〈Ci|i < n〉〉, where f is a set and Ci ⊆ f2 a binary relation over
f for each i < n. An n–frame is a pair 〈f,F〉 where f = 〈f, 〈Ci|i < n〉〉 is
an kripke n–frame, and F a system of subsets of f closed under intersection,
complements and the operations

�ia := {t|(∀u)(tCi u⇒ u ∈ a)}

A subset of f is called internal in F if it is a member of F. A valuation into
F is a function β assigning to each variable an internal set. In the usual way,
〈F, β, x〉 |= P is defined by induction over P . Furthermore, we write 〈F, x〉 |= P
if for all valuations β, 〈F, β, x〉 |= P , and F |= P if 〈F, x〉 |= P for all x ∈ f .
Given a point x ∈ f we call the transit of x in F the set of points y such
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that there exists a chain 〈xi|i < p〉 with x = x0, y = xp−1 and such that for
all i < p − 1 there exists a ji < n with xi Cji xi+1. If the transit of x is the
entire underlying set, f , then x is called a root of F and F is called rooted
at x; F is rooted if there exists a root. An n–morphism between n–frames
F and G is a map φ : f → g satisfying three conditions. (p1) If x Ci y for
x, y ∈ f then φ(x) Ci φ(y). (p2) If φ(x) Ci w for x ∈ f , w ∈ g there exists a
y ∈ f such that x Ci y and φ(y) = w. (p3) For each internal set b of G the
preimage φ−1[b] := {x|φ(x) ∈ b} is an internal set of F. An n–modal algebra
is a structure A = 〈A, 1,−,∩, 〈�i|i < n〉〉 for which the reduct to {∩,−, 1} is a
boolean algebra, and such that for every i < n and a, b ∈ A we have �i1 = 1
and �i(a∩ b) = �ia∩�ib. Valuations are functions β from the set of variables
into A. β can be naturally extended to a homomorphism from the free algebra
of formulae into A, which we also denote by β. If a formula P receives the
value 1 under β we write 〈A, β〉 |= P ; moreover, A |= P if for all β, 〈A, β〉 |= P .
We put ThA := {P |A |= P}; this is called the theory of A. For a class K of
algebras we put

ThK :=
⋂
A∈K

ThA

This is a normal n–modal logic. Conversely, given an n–modal logic Θ, we let
AlgΘ be the class of algebras A such that A |= P for all P ∈ Θ. AlgΘ is a
variety; in other words, it is closed under products, taking subalgebras, and
taking homomorphic images. The map Alg defines a dual isomorphism from
the lattice of n–modal logics onto the lattice of varieties of n–modal algebras;
its inverse is Th.

With an n–frame 〈f, 〈Ci : i < n〉,F〉 we associate a n–algebra F+ =
〈F, 1,−,∩, 〈�i|i < n〉〉 and a kripke (n–)frame F] = 〈f, 〈Ci : i < n〉〉. For
a kripke frame f, f] = 〈f, 2f 〉 is an n–frame. n–frames of this form are called
full. An n–algebra A defines a canonical n–frame over the set pt(A) of ultrafil-
ters (‘points’) by letting U Ci V ⇔ (∀�ia ∈ U)a ∈ V . Furthermore, the system
of sets is the system of all sets of the form â = {U ∈ pt(A)|a ∈ U}. This frame
is denoted by A+. This representation of algebras by frames is known as Stone
Representation. It is known that (f])]

∼= f and (A+)+ ∼= A. An n–frame is
differentiated if whenever x 6= y there exists an internal set a such that x ∈ a
but y 6∈ a. F is called tight if whenever x 6i y there exists an internal set a
such that x ∈ �ia but y 6∈ a; and F is compact if for every U ∈ pt(F+) we have⋂
U 6= ∅. An n–frame is refined if it is differentiated and tight, and descrip-

tive if it is refined and compact. As is well known, an n–frame is descriptive
iff it is isomorphic to a frame of the form A+. The classes of diffentiated, tight,
refined, full (=kripke), finite and descriptive n–frames are denoted by nDf, nTi,
nR, nKrp, nFin and nD. Finally, the class of all n–modal is denoted by nG. We
will drop the superscripts whenever possible.

A logic Λ is a subset of the set of formulae over a fixed set V of variables.
We can always take Vκ = {pi|i < κ}, κ some cardinal number. Defined in this
way, Λ depends on κ. It should be clear, however, that we can always choose
a presentation of Λ in the form K ⊕ X, for some X with var(X) ⊆ Vℵ0 . We
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call Λ n–axiomatizable if there exists a set X such that var(X) ⊆ Vn and
Λ = K ⊕ X. Λ is finitely (recursively) axiomatizable if X can be chosen
finite (recursive).

Definition 4 Let X be a class of n–frames and Λ an n–modal logic. Λ is called
compact (complete) with respect to X if for every (finite) set X and every
formula P , if X 0Λ P there exists a model 〈F, β, x〉 such that F ∈ X, and F |= Λ
and 〈F, β, x〉 |= X;¬P .

A logic is compact iff it is compact with respect to nKrp in the sense of the
definition above. Let us also discuss some other specializations of this definition.
Every logic is compact with respect to nD, the class of descriptive frames, by
Stone representation and the fact that for every consistent set X there exists a
Λ–algebra A, a valuation β and a point U such that β(X) ⊆ U . Hence every
logic is complete with respect to nD.

With a logic Λ we can associate another deducibility relation that also has Λ
as its set of theorems. It is denoted by Λ and called the global consequence
relation, as opposed to the local consequence relation, which is `Λ. We
put X Λ P if P can be deduced from X using the rules of modus ponens
and (mn): X  Q/X  �iQ, i < n. Thus, while (mn) is in general only an
admissible rule of normal modal logics, it is a derived rule of Λ. To understand
the meaning of the term global, let us note the following. Denote by X� the
closure of X under (mn). It consists of all formulae of the form αP , where α is
a sequence of modal operators and P ∈ X.

Proposition 5 Let Λ be a normal modal logic. Then X Λ P iff X� `Λ P .

A proof can be found in [25]. Now we say that X holds globally in a model
〈F, β, x〉 if 〈F, β, x〉 |= X�. This is the same as saying that X holds everywhere
in the submodel generated by x.

Definition 6 Let Λ be an n–modal normal logic and X a class of n–frames. Λ
is called globally compact (complete) with respect to X if for every (finite)
set X and every formula P the following holds. If X 1Λ P there exists a model
〈F, β, x〉 such that F ∈ X, F |= Λ and 〈F, β, x〉 |= X�;¬P .

In general, if a logic is globally complete with respect to a class X it is also
locally complete. This is easy to show. However, the converse may fail to hold.
For example, there exist logics which have the local finite model property but
not the global finite model property. (See [33].) However, the following has
been shown in [32].

Theorem 7 A logic is globally compact iff it is locally compact. a
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Further, a logic Λ is globally decidable if the problem ‘P Λ Q’ is decidable
for every pair P and Q of formulae. The notion of persistence with respect
to sets of formulas, which arises from correspondence theory, also allows to
distinguish global from local notions. A logic Λ is called locally X–persistent
if for every F = 〈f,F〉 from X if 〈F, x〉 |= Λ then 〈f, x〉 |= Λ. And Λ is called
globally X–persistent if 〈f,F〉 |= Λ implies f |= Λ for all 〈f,F〉 ∈ X. Here
the local property implies the global one. For if Λ is locally X–persistent and
〈f,F〉 |= Λ, then for every x 〈〈f,F〉, x〉 |= Λ, from which 〈f, x〉 |= Λ for every
x and so f |= Λ. A logic Λ is κ–canonical for κ a given cardinal number, if
for every λ < κ the frame underlying the Stone representation of the freely
λ–generated Λ–algebra satisfies the theorems of Λ. A logic is canonical if it
is κ–canonical for every κ. By a theorem of [27], a logic is canonical iff it is
D–persistent.

§ 4. Simulations of Monotonic Logics.

We call a monotonic modal logic Λ N–compact if, for all Γ ⊆ L1 and P ∈ L1:
Γ `Λ P iff, for all N–frames g for Λ and all valuations β and x ∈ g, 〈G, β, x〉 |= Γ
implies 〈G, β, x〉 |= P .

Proposition 8 Suppose that a monotonic modal logic Θ simulates a monotonic
modal logic Λ with respect to an atomic interpretation F and let P be one of
the following properties:

• decidability,
• completeness with respect to N–frames,
• finite model property,
• N–compactness.

Then Λ has P if Θ has P.

Proof. Decidability is clear. Let now Θ be complete. We may assume that
boolean connectives are interpreted as boolean connectives, by Proposition 2.
Suppose now that ¬P 6∈ Λ. Then ¬PF 6∈ Θ and there exists a Θ–frame 〈g,N ′〉
such that 〈〈g,N ′〉, β, x〉 |= PF . We define a function N on g as follows. For
y ∈ g and a ⊆ g let

a ∈ N(y) ⇔ 〈〈g,N ′〉, β′, y〉 |= �F p,

where β′ is a valuation such that β′(p) := a. It follows by induction that

〈〈g,N〉, γ, y〉 |= Q iff 〈〈g,N ′〉, γ, y〉 |= QF ,

for all valuations γ, all y ∈ g and all Q ∈ L1. Hence 〈〈g,N〉, β, x〉 |= P and
〈g,N〉 is a Λ–frame. The other statements can be proved analogously. a

Let D : L1 → L2 be the atomic interpretation defined by

(p ∧ q)D = p ∧ q, (¬p)D = ¬p, (�p)D = ♦1�2p.
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For a monotonic modal logic Λ let S(Λ) denote the set of normal bimodal logics
which simulate Λ with respect to D. The aim of the following investigation is to
get some insight into the structure of the map Λ 7→ S(Λ). We start with three
simulations of N–frames 〈g,N〉 as bimodal Kripke–frames, which we denote
by 〈g,N〉mni , for i = 1, 2, 3. The idea of the construction is as follows. Put
C = C[〈g,N〉]. The set of points of 〈g,N〉mn1 is g ∪ C and the relations are
defined by xR1y iff y ∈ N(x) and yR2x iff x ∈ y. Then each neighbourhood
C ∈ C is interpreted as a new point and the term x ∈ �a in 〈g,N〉 corresponds
to x ∈ ♦1�2a in 〈g,N〉mn1 , for a ⊆ g and x ∈ g. It follows that a point in g
satisfies a formula P in 〈g,N〉 iff it satisfies PD in 〈g,N〉mn1 . So everything
is fine with the points in g. There remains, however, a difficulty with the new
points in C. For suppose that we want to simulate Θ = M + �>. Then, for
a Θ–frame 〈g,N〉, the frame 〈g,N〉mn1 should satisfy �>D = ♦1�2>, which
is certainly not the case with the points in C in 〈g,N〉mn1 since they have no
R1–successors. For this reason we have to add new points in order to obtain
appropriate frames 〈g,N〉mni , i = 2, 3. In order to obtain those new successors
we will need the following result (see [25]).

Proposition 9 Each consistent monotonic logic is included in the theory of
one of the following N–frames:

F1 = 〈{0}, ∅〉, F2 = 〈{0}, 〈0, {∅}〉〉, F3 = 〈{0}, 〈0, {{0}}〉〉

We remark that two of these theories are well–known. Namely, the theory of F2

coincides with the theory of the irreflexive point (in relational semantics) and
the theory of F3 coincides with the theory of the reflexive point (in relational
semantics). So the only non normal logic among those theories is the theory of
F1 which coincides with M + ♦p. Now define

F1 = 〈{0}, ∅, ∅〉
F2 = 〈{0, 1, 2}, {〈0, 1〉, 〈1, 2〉, 〈2, 1〉}, ∅〉
F3 = 〈ω, {〈n, n+ 1〉|n ∈ ω}, {〈n+ 1, n〉|n ∈ ω}〉

Lemma 10 For all Γ ⊆ L1:

If F1 |= Γ then F1 |= ΓD.
If F2 |= Γ then F2 |= ΓD.
If F3 |= Γ then F3 |= ΓD.

We omit the simple proof. Of course, F3 has a finite simulation. We have
chosen this simulation because we will need the fact, that 0 has no predecessor
in the first relation and no successor in the second relation in Fi.

We now come to the exact definition of the simulating frames 〈g,N〉mni ,
i = 1, 2, 3. (〈g,N〉mn1 was defined above. In order to have a homogeneous
notation we shall introduce an isomorphic copy below.) Let 〈g,N〉 be an N–
frame and put C = C[〈g,N〉]. Take a Kripke–frame Fi = 〈f, S1, S2〉 from Lemma
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10 and define 〈⊗f,⊗S1,⊗S2〉 by

⊗f := C × f.

⊗S1 := {〈〈C, y〉, 〈C, z〉〉|C ∈ C, yS1z}.
⊗S2 := {〈〈C, y〉, 〈C, z〉〉|C ∈ C, yS2z}.

Now let 〈g,N〉mni = 〈h,R1, R2〉, where

h := g ∪ ⊗f.
R1 := {〈x, 〈C, 0〉〉|x ∈ g, C ∈ N(x)} ∪ ⊗S1.

R2 := {〈〈C, 0〉, x〉|C ∈ C, x ∈ C} ∪ ⊗S2.

For a frame h with valuation β and a subframe g of h we denote the valuation
γ(p) := β(p) ∩ g by β|g and call it the restriction of β to g.

Lemma 11 Let i ∈ {1, 2, 3}. For all valuations β in 〈g,N〉mni and Q ∈ L1 the
following holds:
(1) For all x ∈ g

〈〈g,N〉, β|g, x〉 |= Q iff 〈〈g,N〉mni , β, x〉 |= QD

(2) For all x ∈ ⊗f
〈〈⊗f,⊗S1,⊗S2〉, β|⊗f, x〉 |= QD iff 〈〈g,N〉mni , β, x〉 |= QD

Proof. Assume that 〈g,N〉mni = 〈h,R1, R2〉. (1) By induction on Q. The
interesting step is Q = �P . Suppose that 〈g, β|g, x〉 |= �P . Then there exists
a C ∈ N(x) with 〈g, β|g, y〉 |= P for all y ∈ C. Consider 〈C, 0〉 ∈ h. The R2–
successors of 〈C, 0〉 are precisely the points in C. By induction hypothesis we
have 〈h, β, y〉 |= PD for all y ∈ C. It follows that 〈h, β, 〈C, 0〉〉 |= �2P

D. Hence
〈h, β, x〉 |= ♦1�2P

D = QD. Conversely, assume that 〈h, β, x〉 |= ♦1�2P
D.

Then there exists C ∈ N(x) with 〈h, β, 〈C, 0〉〉 |= �2P
D. Then 〈h, β, y〉 |= PD

for all y ∈ C and, by induction hypothesis, 〈g, β|g, y〉 |= P for all y ∈ C. Thus
〈g, β|g, x〉 |= �P . (2) is proved analogously. One only has to use the fact that
〈C, 0〉 has no S1–predecessor. a

Theorem 12 For a monotonic modal logic Λ the following properties are equiv-
alent:
(i) Λ is complete with respect to neighbourhood–semantics.
(ii) S(Λ) contains a logic which is complete with respect to Kripke–semantics.
(iii) There is an atomic interpretation F and a logic Θ simulating Λ

with respect to F which is complete with respect to Kripke–semantics.

Proof. (i) ⇒ (ii) Choose an i such that Λ is included in the theory of Fi. Such
a frame exists, by Proposition 9. Now form the the class

K = {〈g,N〉mni : 〈g,N〉 |= Λ}.

We show that Θ ∈ S(Λ), for the theory Θ of K. Let 〈g,N〉mni = 〈g∪⊗f,R1, R2〉
and suppose that 〈〈g,N〉mni , β, x〉 6|= PD. If x ∈ g, then P 6∈ Λ, by Lemma 11
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(1). If x ∈ ⊗f , then P 6∈ Λ, by Lemma 11 (2) and Lemma 10. Thus, Θ ∈ S(Λ).
Θ is complete with respect to Kripke semantics, by the definition. (ii) ⇒ (iii)
is trivial and (iii) ⇒ (i) is Proposition 8. a

If we apply this result to a normal monomodal logic Λ it has the consequence
that Λ is complete with respect to neighbourhood–semantics iff a bimodal sim-
ulation is complete with respect to Kripke–semantics. Recall now that there
are normal modal logics which are complete with respect to neighbourhood–
semantics but incomplete with respect to Kripke semantics (consult [11]). Hence
there are Kripke–incomplete normal logics which have a bimodal simulation
which is Kripke–complete. The explanation of this phenomenon is simple: A
normal modal logic is complete with respect to neighbourhood–semantics iff the
corresponding variety of modal logics is generated by full modal algebras, that
is algebras 〈2g,∩,−,�〉, where �g = g and �(a ∩ b) = �a ∩ �b. But a logic
is complete with respect to Kripke–semantics iff the corresponding variety is
generated by full algebras which satisfy the continuity axiom

(Con) �
⋂
{ai|i ∈ I} =

⋂
{�ai|i ∈ I}

Now there are bimodal algebras 〈2g,∩,−,�1,�2〉 such that �1,�2 satisfy (Con)
while ♦1�2 does not satisfy (Con).

Our next step is to show that S(Λ) is always non–empty. To prove this we
simulate general Nh–frames. Let G = 〈g,N,G〉 be a general N–frame and take
〈g,N〉mni = 〈h,R1, R2〉, for some i ∈ {1, 2, 3}. It remains to define the internal
sets B on this frame. We shall need a set B such that

{b ∩ g : b ∈ B} = G. (4)

We start with the definition of the restriction of B to ⊗f . Define B1 ⊆ 2C×{0}

as follows: b ∈ B1 iff there exist finite subsets I1, . . . , Ik and J1, . . . , Jk of G
with b = b1 ∪ . . . ∪ bk, where

bj =
⋂
{{〈C, 0〉|C ⊆ a,C ∈ C}|a ∈ Ij}

∩
⋂
{{〈C, 0〉|C ∩ a 6= ∅, C ∈ C}|a ∈ Jj}.

Here C = C[〈g,N〉]. Now take the smallest set B2 ⊆ 2⊗f−(C×{0}) such that

⊗F := 〈⊗f,⊗S1,⊗S2, {b ∪ c|b ∈ B1, c ∈ B2}〉

is a general frame. (Clearly, B1 ∪B2 is the closure of B1 under the operations
�⊗f , intersection, and complement.) Finally define

B := {a ∪ b ∪ c|a ∈ G, b ∈ B1, c ∈ B2}.

and let Gmni := H = 〈h,R1, R2, B〉.

Lemma 13 If G is a general Nh–frame then H = Gmni is a general frame, for
all i ∈ {1, 2, 3}.
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Proof. Closure of B with respect to intersection and complement is obvious.
Suppose that a ∪ b ∪ c ∈ B with a ∈ G, b ∈ B1, c ∈ B2. We denote ♦H

j by ♦j ,
j = 1, 2.
(1) Closure under ♦2. We have

♦2(a ∪ b ∪ c) = ♦2a ∪ ♦2(b ∪ c)
♦2a = {〈C, 0〉|C ∈ C, C ∩ a 6= ∅} ∈ B1

♦2(b ∪ c) = ♦⊗F
2 (b ∪ c) ∈ {b ∪ c|b ∈ B1, c ∈ B2}.

(2) Closure under ♦1. Clearly ♦1a = ∅ and ♦1c = ♦⊗F
1 c. Let b = b1 ∪ . . . ∪ bk

with
bi =

⋂
{{〈C, 0〉|C ⊆ a,C ∈ C}|a ∈ Ii}

∩
⋂
{{〈C, 0〉|C ∩ a 6= ∅, C ∈ C}|a ∈ Ji}

Then
x ∈ ♦1bi

⇔ (∃C ∈ N(x))(∀a ∈ Ji)(C ⊆
⋂
Ii and C ∩ a 6= ∅)

⇔ (∀a ∈ Ji)(
⋂
Ii ∈ N(x) and

⋂
Ii ∩ a 6= ∅).

There are two cases.
Case 1. There is an a ∈ Ji with

⋂
Ii ∩ a = ∅. Then ♦1bi = ∅.

Case 2. Else. Then ♦1bi = {x ∈ g|
⋂
Ii ∈ N(x)} = �G ⋂

Ii ∈ G. a

Theorem 14 Let Λ = M + Γ be a monotonic logic. Then Θ = K2 + ΓD

simulates Λ with respect to D.

Proof. The implication P ∈ Λ ⇒ PF ∈ Θ follows immediately from the
fact that Θ is closed with respect to the rule p → q/♦1�2p → ♦1�2q. Now
suppose that ¬P 6∈ Λ. Then there is a general Nh–frame G = 〈g,N,G〉 for Λ,
a valuation β and x ∈ g with 〈G, β, x〉 |= P . Take an i ∈ {1, 2, 3} such that Fi

is a frame for Λ and consider the frame Gmni = 〈h,R1, R2, B〉. Then, by the
construction of B, β is a valuation of Gmni . By Lemma 11, 〈Gmni , β, x〉 |= PD.
So the theorem is shown if Gmni is a frame for Θ. Let Q ∈ Λ. By Lemma 10
and Lemma 11 (2), QD is valid in all new points (i.e., the points which are not
in g) in Gmni . QD holds in all points in g since each valuation of Gmni can be
restricted to G, by the definition of B, and we can apply Lemma 11 (1). a

Corollary 15 Let Γ ⊆ L1 be a set of formulas of the form P → Q, where P
is of the form

∧
〈�pi|i ≤ n〉 ∧

∧
〈qi|i ≤ m〉 and Q is built from propositional

variables by using ∧,∨,�,♦ only. Then M + Γ is N–compact. Also, M + Γ is
complete with respect to N–frames.

Proof. It follows from the proof in [17] that Sahlqvist’s Theorem [26] holds
for normal polymodal logics. For P → Q ∈ Γ the formula (P → Q)D is a
polymodal Sahlqvist–formula. Hence M + Γ is N–compact, by Proposition 8.
a

As examples of complete (and even N–compact) modal logics we get the stan-
dard systems M + �p→ ♦p, M + �p→ p, M + p→ �♦p, M + �p→ ��p.
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Corollary 16 Let Γ ⊆ L1 be a finite set of constant formulae. Then M + Γ
has the finite model property.

Proof. In this case ΓD is a finite set of constant formulae. It is shown in [18]
that K2 + ΓD has the finite model property. a

A simple observation allows us to improve Corollary 15. Let (−)d : L1 → L1 be
the atomic interpretation defined by (�p)d = ♦p. Then M+Γd simulates M+Γ,
for all Γ and M + Γ is complete iff M + Γd is complete. Now let Γ be a set of
formulas of the form P → Q, where P is of the form

∧
〈♦pi|i ≤ n〉∧

∧
〈qi|i ≤ m〉

and Q is built from propositional variables by using ∧,∨,�,♦ only. Then M+Γ
is complete with respect to N–frames, by Corollary 15.

§ 5. Simulations by Tense logics.

In general it is rather difficult to describe the set S(Λ). Here we show that
an interesting part of the lattice of monotonic logics can be simulated by tense
logics. (Consult e.g. [4], [13], or [34] for information on tense logics.) Recall
that the smallest tense logic is the normal bimodal logic K.t := K2 + {p →
�1♦2p, p → �2♦1p}. Clearly all monotonic modal logics which are simulated
by tense logics contain the axioms �p → p and �p → ��p. Our aim is to
prove that the converse holds as well. Define MT4 := M + {�p → p,�p →
��p}. All extensions of MT4 are complete with respect to general Nh–frames
G = 〈g,N,G〉 satisfying the following conditions:

(i) For all x ∈ g : C ∈ N(x) ⇒ x ∈ C.

(ii) For all x ∈ g : C ∈ N(x) ⇒ {y ∈ g|C ∈ N(y)} ∈ N(x).

Note that {y ∈ g|C ∈ N(y)} = �gC, for all C ∈ G, by equation (3). Put
C = C[〈g,N〉] and define Ct := {�gC|C ∈ C} and let Gt := 〈g,N t,G〉, where
D ∈ N t(x) iff D ∈ Ct and x ∈ D. Gt has the following properties.

(s1) For all x ∈ g : N t(x) ⊆ N(x)

(s2) For all x ∈ g, C ∈ N(x) there is a D ∈ N t(x) with D ⊆ C.

(s2) is clear. Now (s1). Suppose that D ∈ N t(x). Then there exists a y ∈ g
with C ∈ N(y) and D = �gC. We have x ∈ D. Hence

x ∈ �gC = �g�gC = {z ∈ g|�gC ∈ N(z)}.

Thus �gC ∈ N(x). It follows immediately from (s1) and (s2) that the theories
of G and Gt coincide. Note, however, that Gt is not a Nh–frame, in general. Let
us call a frame of the form Gt a special general frame. Then we get
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Proposition 17 All extensions of MT4 are complete with respect to special
general N–frames. If an extension of MT4 is complete with respect to N–
frames then it is complete with respect to special N–frames.

Theorem 18 Suppose that Λ is a monotonic modal logic above MT4 and that
Λ is complete with respect to N–frames. Then there is a Kripke–complete logic
containing K.t in S(Λ).

Proof. Let Λ ⊇ MT4 and take an i ∈ {1, 2, 3} such that Fi |= Λ. Clearly
i 6= 2 since �p→ p ∈ Λ. Now put

K = {〈g,N t〉mni : 〈g,N〉 |= Λ, 〈g,N〉 is a Nh–frame }.

Denote by Θ the theory of K. We have, as in the proof of Theorem 12, that
Θ ∈ S(Λ). Moreover, R1 = R−1

2 , for all 〈g,R1, R2〉 ∈ K since C ∈ N t(x) iff
x ∈ C and C ∈ Ct and since both F1 and F3 are tense frames. Hence Θ ⊇ K.t.
a

Theorem 19 Suppose that Λ = MT4 + Γ. Then K.t + ΓD simulates Λ with
respect to D.

Proof. The proof is completely analogous to the proof of Theorem 14. The
only difference is in the proof that 〈g,N t,G〉mni is a general frame whenever
〈g,N,G〉 is a Nh–frame satisfying (i) and (ii). The crucial step is to show that
♦1bi ∈ B for

bi =
⋂
{{〈C, 0〉|C ⊆ a,C ∈ Ct}|a ∈ Ii}

∩
⋂
{{〈C, 0〉|C ∩ a 6= ∅, C ∈ Ct}|a ∈ Ji}.

But we have x ∈ ♦1bi ⇔ ∃C ∈ N t(x) : C ⊆
⋂
Ii and C ∩ a 6= ∅ for all

a ∈ Ji ⇔ �g
⋂
Ii ∈ N(x) and �g

⋂
Ii ∩ a 6= ∅ for all a ∈ Ji.

Case 1. There is an a ∈ Ji with �g
⋂
Ii ∩ a = ∅. Then ♦1bi = ∅.

Case 2. Else. Then ♦1bi = {x|�g
⋂
Ii ∈ N(x)} = �g�g

⋂
Ii ∈ G. a

The frames of the form 〈g,N t,G〉mn1 are, in a certain sense, quite simple.
Suppose that 〈g,N t,G〉mn1 = 〈g,R1, R2, B〉. Then R1 = R−1

2 and y has no
R1–successor whenever xR1y, for some x. So we have 〈g,N t,G〉mn1 |= �1�1⊥.
Define

G.J1.t := K.t+ �1�1⊥.

Note that the monomodal fragments of G.J1.t are almost trivial: they have the
finite model property and all their proper extensions are determined by finite
frames (i.e. G.J1.t is pretabular), as is easily shown. We immediately get the
following corollary, which shows the complexity of the lattice of tense logics.

Theorem 20 Suppose that Λ = MT4 + Γ is a monotonic logic with Λ ⊆
M + ♦p. Then G.J1.t+ ΓD simulates Λ with respect to D. a



Normal monomodal logics can simulate all others 15

§ 6. Simulating equational theories of lattices.

Extensions of MT4 are suitable as modal descriptions of closure operators. Let
Cl be a closure operator on a set g. Then we have for ♦ := Cl that a ⊆ b implies
♦a ⊆ ♦b and a ⊆ ♦a and ♦♦a = ♦a. It follows that the theory of 〈2g,∩,−,♦〉 is
a monotonic logic above MT4. Conversely, if the theory of a neighbourhood–
frame 〈g,N〉 is above MT4, then 〈g, Cl〉 with Cl(a) := ♦a = {z ∈ g|a ∩ C 6= ∅
for all C ∈ N(z)} is a closure operator on g. We use this observation to get
some undecidability results for tense logics.

Define the following translation of the language of lattices L into the lan-
guage of modal logic:

pMod := ♦p
(P ∧Q)Mod := PMod ∧QMod

(P ∨Q)Mod := ♦(PMod ∨QMod)

For a closure operator Cl on a set g let LCl denote the lattice of Cl–closed
subsets of g. A simple induction proves

Lemma 21 Let Cl be a closure operator on g and χ1, χ2 ∈ L. Let ♦ := Cl.
Then LCl |= χ1 = χ2 iff 〈2g,∩,−,♦〉 |= χMod

1 ↔ χMod
2 .

Let L denote the equations in L defining lattices. For Φ a set of equations in
L and χ1, χ2 ∈ L we write L ∪ Φ |= χ1 = χ2 iff χ1 = χ2 follows from L ∪ Φ in
equational logic. The closure of L ∪ Φ under |= is denoted by L+ Φ. In order
to simulate equational theories of lattices as modal logics we need the following
observation.

Proposition 22 All varieties of lattices are generated by complete lattices.

Proof. It is readily checked that all varieties of lattices are generated by lattices
with maximal and minimal elements. Consider a lattice A with maximal and
minimal elements. There is an embedding of A into the complete lattice I(A)
of ideals of A. Hence the proposition is shown if A |= P = Q ⇒ I(A) |=
P = Q holds for all P,Q ∈ L. Assume A |= P = Q but I(A) 6|= P ≤ Q.
Then there exist I1, . . . , Ik ∈ I(A) with P [I1, . . . , Ik] 6⊆ Q[I1, . . . Ik]. Take an
a ∈ P [I1, . . . , Ik] which is not in Q[I1, . . . , Ik]. There exist ai ∈ Ii with a ≤
P [a1, . . . , ak]. But then a ≤ P [a1, . . . , ak] = Q[a1, . . . , ak] ∈ Q[I1, . . . , Ik] and
therefore a ∈ Q[I1, . . . , Ik]. We have a contradiction. a

Theorem 23 For all equational theories of lattices L + Φ the following prop-
erties are equivalent:
(i) χ1 = χ2 ∈ L+ Φ.
(ii) χMod

1 ↔ χMod
2 ∈ MT4 + {PMod ↔ QMod|P = Q ∈ Φ}.

(iii) (χMod
1 ↔ χMod

2 )D ∈ K.t+ {(PMod ↔ QMod)D|P = Q ∈ Φ}.
(iv) (χMod

1 ↔ χMod
2 )D ∈ G.J1.t+ {(PMod ↔ QMod)D|P = Q ∈ Φ}.
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Proof. It is easy to see that MT4+{PMod ↔ QMod|P = Q ∈ Φ} ⊆ MT4+♦p.
Hence (ii) ,(iii) and (iv) are equivalent. The implication from (i) to (ii) is clear.
Now suppose that χ1 = χ2 6∈ L+Φ. By Proposition 22, there exists a complete
lattice D satisfying Φ with D 6|= χ1 = χ2. Take a set g and a closure operator
Cl on g with D ' LCl. (Such a closure operator exists for complete lattices;
consult [3].) Let ♦ = Cl . Then 〈2g,∩,−,♦〉 6|= χMod

1 ↔ χMod
2 , by Lemma 21.

Hence (ii) implies (i). a

One can use this result in both directions. From the decidability of K.t
follows the decidability of the equational theory of lattices. Furthermore, the
finite model property of K.t implies that the variety of all lattices is generated
by finite lattices. But, of course, these results are well–known in lattice theory.
The above theorem together with the proof show however that in principle
we can investigate strong tense logics in order to analyse varieties of lattices.
Conversely, the theorem shows once more the complexity of tense logic. Recall
that there exist 2ℵ0 varieties of lattices. Hence there exist 2ℵ0 normal extensions
of G.J1.t.

Corollary 24 For all normal bimodal logics Λ with K2 ⊆ Λ ⊆ G.J1.t the logic
Λ + ((p ∧ (q ∨ (p ∧ r)))Mod)D ↔ (((p ∧ q) ∨ (p ∧ r))Mod)D is undecidable.

Proof. L+ {p ∧ (q ∨ (p ∧ r)) = (p ∧ q) ∨ (p ∧ r)} corresponds to the variety of
modular lattices. By a result of Freese [10] the equational theory of modular
lattices is undecidable. Now the corollary follows from Theorem 23. a

§ 7. Simulating classical modal logics.

We have shown that monotonic modal logics can be simulated by normal bi-
modal logics in a natural way. The question arises whether similar techniques
can be applied to classical systems. Here we have partial results only. To define
semantics for classical modal logics we just have to put

�a = {x ∈ g : a ∈ N(x)},

for any N–frame 〈g,N〉 and a ⊆ g. A valuation V is now a homomorphism
from the algebra of formulas into the boolean algebra of subsets of g such that
V (�φ) = �V (φ). Completeness of a classical modal logics with respect to N–
frames is defined as usual. E is the logic of all N–frames, as is well known.
We define an atomic interpretation F of L1 into the 3–modal language L3 with
�1,�2 and �3.

pF
i := pi

(P ∧Q)F := PF ∧QF

(¬P )F := ¬PF

(�P )F := ♦1(�2P
F ∧�3¬PF )

Theorem 25 (1) Let Λ be a classical logic contained in a monotonic modal
logic. Then the following properties are equivalent.
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(i) Λ is complete with respect to N–frames.
(ii) There is a 3–modal normal logic which simulates Λ with respect to F

and which is complete with respect to Kripke–semantics.
(2) Let Λ = E + Γ be complete with respect to N–frames. Further suppose that
Λ is a subset of a monotonic logic. Then K3 + ΓF simulates Λ with respect to
F .

Proof. Let 〈g,N〉 be a N–frame for Λ and C = C[〈g,N〉]. Take an i ∈ {1, 2, 3}
such that Fi |= Λ. Now construct F = 〈g,N〉mni = 〈g ∪⊗f,R1, R2〉. We define
a relation R3 on g ∪ ⊗f by putting xR3y iff x = 〈C, 0〉 and y ∈ g − C, for a
C ∈ C. It follows by induction that for all Q ∈ L1 and valuations β of h:

For all x ∈ g : 〈〈g,N〉, β, x〉 |= Q iff 〈〈h,R1, R2, R3〉, β|g, x〉 |= QF .

Now the proof is analogous to the proof in the monotonic case and left to the
reader. a

§ 8. The Thomason–Simulation.

In a series of papers, S. K. Thomason has shown how to simulate normal
polymodal logics by normal monomodal logics. We will present this construc-
tion and prove some very strong theorems about it. Take a bimodal frame
F = 〈f,C,J,F〉. Then put fsim := f × {w, b} ∪ {∗}, where w, b, ∗ are new
symbols. We write xw instead of 〈x,w〉 and xb instead of 〈x, b〉. We also put
f t := {∗} and use the notation xt for ∗. This will shorten a lot of casewise dis-
tinctions. The names are mnemonic; w for white, b for black and t for terminal.
We let α and β range over the set {w, b, t}. Also, for subsets a ⊆ f we write
aw for a× {w} and ab for a× {b}. at will on this convention be empty if a is,
and otherwise at = {∗}. (There is a small quirk concerning the possibility that
f is empty. In that case, fw and f b are empty as well, while f t = {∗}. This
exceptional case never causes any trouble in the theorems. So it will never be
excluded, although one has to take care with the notation here.) On fsim we
define the relation ≺ as the union of three relations, ≺∇, ≺◦ and ≺•.

≺ := ≺∇ ∪ ≺◦ ∪ ≺•

≺∇ := {〈xw, ∗〉|x ∈ f} ∪ {〈xw, xb〉|x ∈ f} ∪ {〈xb, xw〉|x ∈ f}
≺◦ := {〈xw, yw〉|xC y}
≺• := {〈xb, yb〉|x J y}

≺∇ provides a skeleton for the monomodal frame in which ≺◦ codes C and ≺•

codes J. Finally, we put Fsim to be all unions of sets of the form aw, ab, at

where a ∈ F. (If f is empty, the set of internal sets is simply ℘({∗}). Then
Fsim is a Kripke–frame.)

Proposition 26 Fsim = 〈fsim,≺,Fsim〉 is a (generalized) monomodal frame.
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Proof. Assume f 6= ∅. A set of Fsim can be written as a union

aw ∪ bb ∪ ct

where a, b, c ∈ F. Closure under union and complement is now straightforward.
For closure under ♦ observe that

♦aw = ab ∪ (♦a)w

♦bb = bw ∪ (�b)b

♦ct =
{
fw if c 6= ∅
∅ if c = ∅

Thus Fsim is closed under ♦. a

We call frames of the form Fsim simply simulation frames. It is worth remem-
bering that simulation frames are always connected via ≺, and so they are not
decomposable into a disjoint union. Moreover, any point in a simulation frame
sees a dead end (i. e. a point without successors) in at most two steps. The
sets fw, f b and f t are definable in any of the thus constructed frames by a
formula without variables, hence they are always internal. Consider, namely,
the following formulae.

t := �⊥
w := ♦t
b := ¬t ∧ ¬w

Notice that t ∨ w ∨ b ∈ K. It is not hard to verify that 〈Fsim, x〉 |= t iff x ∈ f t,
that 〈Fsim, x〉 |= w iff x ∈ fw and 〈Fsim, x〉 |= b iff x ∈ f b. Note that if
we have a 1–morphism φ : F → G and a constant formula d then 〈F, x〉 |= d
iff 〈G, φ(x)〉 |= d. It follows that if F and G are nonempty 2–frames and
φ : Fsim → Gsim then φ[fw] ⊆ gw, φ[f b] ⊆ gb and φ[f t] ⊆ gt. If φ : F → G is a
2–morphism, we define its simulation, φsim, via

φsim(xα) := φ(x)α

Theorem 27 (−)sim is a covariant functor from the category 2Frm of 2–frames
into the category 1Frm of 1–frames.

Proof. Let F and G be 2–frames and φ : F → G a 2–morphism. We have
to show that φsim : fsim → gsim as defined above is a 1–morphism. The
cases where F or G is empty are easily handled, so we assume now that they
are nonempty. To check (p1), let xα ≺ yβ for some x, y ∈ f . Then, by a
straightforward checking of cases we get φ(x)α ≺ φ(y)β, whence φsim(xα) ≺
φsim(yβ). Now for the second condition, (p2), let φsim(xα) ≺ uβ, that is,
φ(x)α ≺ uβ. We have to find a yγ such that xα ≺ yγ and φsim(yγ) = φ(y)γ = uβ.
Clearly, γ = β. By the construction of Fsim, α 6= t. Suppose that α = w. If
β = t, then we can put yβ := xt. For we have xw ≺ xt and φsim(xt) = uβ, as
required. Assume now β 6= t. If β = b, then u = φ(x), by construction of Gsim.
Let y := x. Since xw ≺ yb, that case is finished as well. Let finally be β = w.
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Then, by construction, φ(x)Cu. Since φ is a 2–morphism, there exists a y such
that φ(y) = u and xC y. Then xw ≺ yw, and φsim(yw) = uw, as required. The
case α = b is similar. Thus (p2) is proved. Now, finally we have to show (p3).
To that end, let d := aw ∪ bb ∪ ct be an internal set of Gsim. Then

(φsim)−1[d] = (φ−1[a])w ∪ (φ−1[b])b ∪ (φ−1[c])t ,

which is internal. For by assumption φ is a 2–morphism, and so φ−1[a] as well
as φ−1[b] are internal in F, and so (φ−1[a])w as well as (φ−1[b])b is internal in
Fsim. Moreover, (φ−1[c])t is internal in Fsim for any c. a

Theorem 28 Fsim is refined (compact, full) iff F is.

Proof. The case where F is empty is easily dealt with; thus we assume from
now on that it is not empty. Suppose that F is refined. We show that Fsim is
refined. (1.) Fsim is differentiated. Let xα, yβ ∈ fsim and xα 6= yβ. Then either
x 6= y or α 6= β. The case where α = t or β = t is easily dealt with. Assume
next α = β (6= t). Then x 6= y and so there exists a set c ∈ f such that x ∈ c,
y ∈ −c. Then xα ∈ cα, yα ∈ (−c)α ⊆ −cα. Thus the case α 6= β remains. Here
we may assume without loss of generality α = w. Then xα ∈ fw but y 6∈ fw,
and fw is internal. This shows that Fsim is differentiated. (2.) Fsim is refined.
Let xα Σ yβ. We have to find a set a such that xα ∈ �a but yβ ∈ −a. If α = t
then a := ∅ is a good choice, and if β = t and α = b then a := fw ∪ f b is a
good choice. Thus we are left with α, β 6= t. If α = β = w then we must have
x 6 y and so there exists a set c ∈ F such that x ∈ �c but y ∈ −c. Now put
a := cw ∪ f b ∪ f t. Then yw ∈ −a but xw ∈ �a. If α = β = b then not x J y
and so there exists a c such that y ∈ −c and x ∈ �c. Put a := fw ∪ cb. Then
xb ∈ �a but yb ∈ −a. The case α 6= β remains (and both are 6= t). Here we
have xα Σ yβ exactly when x 6= y. Assume that α = w and β = b; the other
case is analogous. Since F is differentiated we have a set c such that x ∈ c but
y ∈ −c. Put a := fw ∪ cb ∪ f t; we get xw ∈ �a and yb 6∈ a, as required. Hence
Fsim is tight, and thus refined. Now assume conversely that Fsim is refined.
Then F is refined as well. For if x 6= y, then in particular xw 6= yw and we get
by assumption a set c such that xw ∈ c but yw 6∈ c. Let c = aw

1 ∪ ab
2 ∪ at

3 for
some a1, a2, a3 ∈ F. It follows that x ∈ a1 but y 6∈ a1, and so F is differentiated.
Next, if x 6 y then xw Σ yw and we get a set c such that xw ∈ �c but yw 6∈ c.
Decompose c in the same way as before. Then it follows that x ∈ �a1 but
y 6∈ a1. The case of J is similar. Next we take compactness. Assume that F

is compact; let U ⊂ Fsim be an ultrafilter. Then three cases can arise. (1.)
f t ∈ U . In that case U = {a|∗ ∈ a}. Clearly,

⋂
U 6= ∅. (2.) fw ∈ U . Then

f t, f b 6∈ U , and so there exists an ultrafilter V on F such that c ∈ U exactly
if c = cw1 ∪ cb2 ∪ ct3 with c1 ∈ V , c2, c3 ∈ F. It is then clear that if x ∈

⋂
V we

must have xw ∈
⋂
U . Since F is compact, there exists such a x. (3.) f b ∈ U .

Reason as in the case (2.). Now assume conversely that Fsim is compact, and
take an ultrafilter V ⊂ F. Then U := {aw

1 ∪ ab
2 ∪ at

3|a1 ∈ V, a2, a3 ∈ F} is an
ultrafilter on Fsim. By assumption, there exists u ∈

⋂
U . It is not hard to see

that u = xw for some x ∈ f . Hence x ∈
⋂
V . Thus F is compact. It remains

the property of fullness. However, this is straightforward. a
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Now let A be a 2–algebra. Then we may define Asim by ((A+)sim)+. How-
ever, we can actually spell out this construction as follows. Assume that
A = 〈A, 1,−,∩,�,�〉; then we put Asim := A×A× 2 and

�〈a, b, c〉 :=
{
〈b ∩�a, a ∩�b, {1}〉 if c = {1}
〈0, a ∩�b, {1}〉 if c = ∅

Then let Asim := 〈Asim, 1,−,∩,�〉. That Asim as just defined is indeed iso-
morphic to ((A+)sim)+ is a matter of direct verification. Namely, A+ is based
on the set pt(A). (A+)sim contains the points Uw, U b for U ∈ pt(A), and an
additional point denoted by U t. (If A has one element only, A+ is empty. That
case is to be treated separately.) A general internal set is of the form âw∪ b̂b∪ ĉt,
where a, b, c ∈ B, by construction. Hence define h : 〈a, b, c〉 7→ âw ∪ b̂b∪ ĉt. This
map is an isomorphism between Asim and ((A+)sim)+. We will use w, b and t
and Aα, α ∈ {w, b, t}, in an analogous way for algebras.

Now we will axiomatize the modal theory of the simulation frames. To do
this, we introduce a shorthand notation. We write �wP for �(w → P ) as well
as ♦wP for ♦(w∧P ). A similar notation is used with respect to b and t. Since
w ∨ b ∨ t is a theorem of K we have in K the following theorems

�P ↔
∧

α∈{w,b,t}

�αP ♦P ↔
∨

α∈{w,b,t}

♦αP

Take the following formulae:

(a) w.→ .♦bp↔ �bp, b.→ .♦wp↔ �wp
(b) w ∧ p.→ .�b �wp, b ∧ p.→ .�w �bp

(c) ♦tp→ �tp, w ∧ ♦tp.→ .�w ♦tp

w ∧ ♦w♦tp.→ .♦tp, w ∧ ♦tp.→ .�b �b �w ♦tp

Denote by Sim the logic obtained by adding these formulae as normal axioms to
K. If F is a frame for Sim, we denote by fw (f b, f t) the set of points satisfying
w (b, t).

Proposition 29 Let F be a nonempty refined frame for Sim. Suppose that F

is rooted. Then there exists a bimodal frame G such that F is isomorphic to
Gsim. Moreover, G is unique up to isomorphism.

Proof. Since F is not empty, there exists a point x ∈ f . First we show that
for every point x in fw there exists a unique point y in f b such that x ≺ y, and
that then also y ≺ x. The existence of y is immediate from the first postulate
of (a) (e. g. by substituting > for p). However, assume there exists a y′ 6= y
such that x ≺ y′ and y′ ∈ f b. Then there is a set c such that y ∈ c but y′ 6∈ c.
Now put β(p) := c. Then 〈F, β, x〉 |= w ∧ ♦bp, but 〈F, β, x〉 |= ¬ �b p. This
violates the first axiom of (a). Now, given y there exists by the second axiom
of (a) a z such that y ≺ z and z ∈ fw. By the first axiom of (b) and the fact
that the frame is refined we obtain that z = x. Analogously we show that for
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every point y from f b there exists a unique x ∈ fw such that y ≺ x, and that
for this x we have x ≺ y as well.

Now we show that there is exactly one point in f t. Let us first prove f t 6= ∅.
If f t = f then f t is nonempty, since f is rooted. Now assume that there exists
a x ∈ f − f t. Then x ∈ fw ∪ f b. If x ∈ fw then x ≺ y for a y ∈ f t and if x ∈ f b

then there exists a y ∈ fw such that x ≺ y. Thus f t is nonempty.

We show that f t contains not more than one point. To that end, let r be
the root of F. If r ∈ f t, we have succeeded. For then F contains only one point.
If r ∈ f b then there exists z ∈ fw such that r ≺ z ≺ r, and so z is a root of F

as well. Thus let us assume that r ∈ fw. We will show that for all x ∈ fw, and
all z, z′ from f

(†) : If r ≺ z ∈ f t, x ≺ z′ ∈ f t, then z = z′.

From (†) we immediately obtain that f t contains only one point. To prove
(†) let x ∈ fw. Then by the fact that there is a path from r to x (and the
previous considerations concerning the constitution of F) there exists a sequence
〈yi|i ≤ n〉 such that y0 = r, yn = x and such that all yi are in fw, and
either yi ≺ yi+1 (a link of type (α)) or there exists zi, zi+1 ∈ f b such that
yi ≺ zi ≺ zi+1 ≺ yi+1 (a link of type (β)). We prove that for all i < n, the
points yi and yi+1 have the same successors in f t. Case 1. yi and yi+1 form a
link of type (α). Then yi ≺ yi+1. The axiom w. → .♦w♦tp → ♦tp forces that
each successor of yi+1 in f t is also a successor of yi and the second (c) postulate
shows that each successor of yi in f t is also a successor of yi+1. Case 2. yi and
yi+1 form a link of type (β). Then the axiom w∧ ♦tp.→ .�b �b �w ♦tp shows
that each successor of yi in f t is also a successor of yi+1. Hence yi and yi+1

have the same successors in f t since both have precisely one successor in f t,
by the first (c) postulate. It follows by induction that x and r have the same
successors in f t. (†) follows from the fact that all point in fw have not more
than one successor in f t.

Now put

g := fw

C := ≺ ∩(fw)2

J := {〈x, y〉|(∃x, y ∈ f b)(x ≺ x ≺ y ≺ y)} ∩ (fw)2

G := {a ∩ g|a ∈ F}

It is easy to verify that Gsim is isomorphic to F. a

§ 9. Unsimulation.

It is clear that there exist frames for Sim which are not simulation frames;
simply take the disjoint union of two simulation frames. However, this is in
some sense the only exception.
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Proposition 30 A refined Sim–frame F is a simulation frame iff t can be
satisfied at exactly one point iff F is not a disjoint union of two proper generated
subframes. A Sim–algebra A is a simulation algebra iff t is an atom iff A is
directly indecomposable.

Proof. If F is empty, or if the algebra is trivial, the above equivalences hold.
So this case will not be considered below. The interesting part is the following.
Assume that t is satisfiable at more than one point, say at x1 and x2, where
x1 6= x2. Since F is refined, there exists a set c such that x1 ∈ c but x2 6∈ c.
Put a := t ∩ c and b := t − c. Then a ∩ b = ∅ and a ∪ b = f t. Now put
g1 := a ∪ ♦a ∪ ♦♦a, g2 := b ∪ ♦b ∪ ♦♦b. g1 and g2 are internal. Both are
successor closed sets. Moreover, it is straightforwardly checked that g1∪g2 = f
as well as g1 ∩ g2 = ∅. (By duality, each point sees in at most two steps a point
in t. Moreover, each point can see at most one such point.) Hence we have a
decomposition of F into a disjoint union of two generated subframes. From this
the first equivalences follow. The assertion concerning the algebra A are proved
analogously. If t is not an atom there exists a set a such that 0 < a < t. Now
put b := t ∩ (−a). Next let d1 := a ∪ ♦a ∪ ♦♦a and d2 := b ∪ ♦b ∪ ♦♦b. The
maps h1 : x 7→ x∩ d1 and h2 : x 7→ x∩ d2 are boolean homomorphisms and can
be shown to be also homomorphisms of the modal algebras. Finally, x = y iff
h1(x) = h1(y) as well as h2(x) = h2(y), as can be verified. Hence, A is directly
decomposable. a

(A note on the proof. That A is directly decomposable is seen in some more
detail as follows. We have two homomorphisms, h1 and h2, with corresponding
congruences Θ1 and Θ2. We have Θ1 ∩ Θ2 = {〈x, x〉 : x ∈ A}, the least
congruence, and Θ1 ◦ Θ2 = A × A, the largest congruence. The congruences
permute, since the variety of modal algebras has permuting congruences. Thus
A is a direct product of A/Θ1 and A/Θ2.) The next proposition shows that the
defect of a Sim–frame is rather easily removed.

Proposition 31 Let F be a refined nonempty frame for Sim. The mapping
collapsing the set t into a single point is a p–morphism of F onto a simulation
frame.

Proof. t is a generated subset. Hence the mapping is a p–morphism on the
underlying kripke–frame. Moreover, since t is internal, the mapping is actually
a p–morphism of the frame. The image of the map is a simulation frame by
Proposition 30. a

We now define the unsimulation of a refined Sim–frame F as follows. We put

fsim := fw

C := ≺ ∩(fsim)2

J := {〈x, y〉|(∃x, y ∈ f b)(x ≺ x ≺ y ≺ y)} ∩ (fsim)2

Fsim := {a ∩ fsim|a ∈ F}
Fsim := 〈fsim,C,J,Fsim〉
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This is immediately verified to be a 2–frame. This is well–defined even if F is
empty. In that case the unsimulation is also empty. This case is exceptional
insofar as the simulation of Fsim is not isomorphic to F. So, that case has to be
taken care of independently. Next, if we have a 1–morphism φ : F → G, where
F and G are Sim–frames, we put φsim := φ � fsim. This is a 2–morphism. For
let xCy. Then x ≺ y, from which φ(x) ≺ φ(y), since φ is a 1–morphism. Hence,
by definition of φsim, φsim(x) C φsim(y). Likewise for x J y. Now assume that
φsim(x) C u. Then, as φ(x) ≺ u, we know that there exists a y ∈ f such that
x ≺ y and φ(y) = u. It is clear that y must be in fw, since u is in gw. Hence
xC y, and φsim(y) = u, as required. Similarly for J.

Proposition 32 The unsimulation map (−)sim is a covariant functor from the
category of nonempty refined Sim–frames onto the category of refined 2–frames.
Moreover, for every 2–frame we have (Fsim)sim

∼= F. a

Proposition 33 The category of nonempty simulation frames and the category
of 2–frames are isomorphic. a

This last proposition is not a direct consequence of Proposition 32; we can only
show that these categories are equivalent (which would be sufficient for our
purposes). But the construction of Fsim in set theoretic terms can be done in
such a way that (Fsim)sim is always the same as F.

In addition, if F is a simulation frame and ι : G � F, then G is a simulation
frame and there exists a 2–morphism φ such that ι = φsim; and if ι : F � G then
G is a simulation frame and there exists a 2–morphism φ such that ι = φsim.
(We employ the convention that � denotes an injective and � a surjective
map.)

In a similar fashion the unsimulation is defined for algebras. If A = 〈A, 1,−,∩,�〉
is a Sim–algebra, then letAsim := {a|a ≤ w}. Then Asim := 〈Asim, 1,−′,∩′,�,�〉,
where a ∩′ b := a ∩ b, −′a := w ∩ (−a) and

�a := �(w → a)
�a := �(b → �(b → �(w → a)))

It is not hard to see that for a Sim–algebra A, (Asim)+ ∼= (A+)sim, unless A ∼= 1.
It is also not hard to see that 1sim

∼= 1, while 1sim is the two–element algebra
of subsets of • . We denote this algebra by 2•. Using the duality between
descriptive frames and modal algebras we can prove analogous theorems for
algebras. One consequence is worth noting. Let Sub(A) denote the lattice of
subalgebras of A, and Con(A) the lattice of congruences of A. In Con(A) the
element ∆ := {〈a, a〉|a ∈ A} is the bottom element and ∇ := A × A the top
element. A is called subdirectly irreducible if in Con(A) the set of congruences
different from ∆ has a lowest element. This congruence is called the monolith
of A. Given a lattice L we denote by L + 1 the lattice obtained from L by
adjoining a new element as a top element.
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Theorem 34 Let A be a simulation algebra. Then Sub(Asim) ∼= Sub(A) and
Con(Asim)+1 ∼= Con(A). In particular, A is subdirectly irreducible iff Asim is.

Proof. Consider a homomorphism h : B � A based on the inclusion map
h : B ⊆ A. Then by definition of hsim, hsim : Bsim � Asim is the natural
inclusion. Conversely, assume that i : C � Asim is an inclusion map. We show
that C is a simulation algebra. For that we have to show that tC is an atom of
C. We certainly have i(tC) = tAsim because t is constant and tC and tAsim are
the respective values of t in the algebras. Now, since tAsim is an atom, tC must
be nonzero, and an atom too, since i is injective. So, C is a simulation algebra.
There exists a B such that C = Bsim. Furthermore, isim : Csim � (Asim)sim.
Let g : (Asim)sim → A : xw 7→ x. This is an isomorphism, and k := g �
(Bsim)sim : (Bsim)sim → B is an isomorphism as well. Then g ◦ isim ◦ k−1 :
Csim � A is an inclusion map. This shows that B 7→ Bsim induces a bijection
between subalgebras of A and subalgebras of Asim. For congruences it is actually
better to switch to the dual category of descriptive frames. Consider F := A+.
F is a descriptive Sim–frame. Now let φ : G � F. Then either G is empty
(and so not a simulation frame), or it contains f t (since the latter consists of
a single point). Then φsim : Gsim � Fsim. Conversely, let ψ : H � Fsim.
Then ψsim : Hsim � (Fsim)sim. Fix an isomorphism ι : (Fsim)sim → F. Then
ι ◦ ψsim : Hsim � F. Hence φ 7→ φsim induces an inclusion preserving bijection
between nonempty generated subframes of F and generated subframes of Fsim.
By duality (identifying (Fsim)+ with (F+)sim in a natural way) there exists an
inclusion preserving isomorphism from Con(A)− {∇} to Con(Asim). a

The next important step is to extend the simulation and unsimulation maps
to varieties. For a class K of 2–algebras put Ksim := {Asim|A ∈ K} and for a
class L of Sim–algebras put Lsim := {Asim|A ∈ L}.

Corollary 35 For a class L of 1–algebras, (HL)sim = H (Lsim) and (SS L)sim =
SS (Lsim). For a class K of 2–algebras, H(Ksim) = {1}∪(HK)sim and SS(Ksim) =
(SSK)sim. a

This immediately follows from the proof of the previous theorem, by duality.
Now, let V be a variety of 2–algebras. Then let Vv be the variety of 1–algebras
generated by Vsim. By a theorem of Birkhoff, Vv = HSP(Vsim). Likewise, for
a variety W of Sim–algebras we let Wv := HSP(Wsim). We want to show that
the maps (−)v and (−)v are inverses of each other. Since they are both order
preserving with respect to inclusion it follows from this fact that the lattice
of varieties of 2–algebras is isomorphic to the lattice of nontrivial varieties of
Sim–algebras. Here, a variety V is nontrivial if V contains an algebra different
from 1. As it turns out, this is equivalent to requiring that 2• is contained in
V.

Proposition 36 Let W be a class of 1–algebras. Then Wsim is a variety if W
is.
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Proof. We have to show that Wsim is closed under H, S and P. By Corol-
lary 35 Wsim is closed under H and S. Closure under products is also relatively
straightforward. If Bi, i ∈ I, is of the form (Ai)sim for some Ai, then

∏
i∈I Bi

is isomorphic to (
∏

i∈I Ai)sim, since unsimulation is basically a projection. a

So, if W is a variety then Wv = Wsim. The case of simulation is not as
simple. However, by a theorem of Birkhoff, two varieties are equal iff they
contain the same subdirectly irreducible algebras. Now denote by si(V) the
class of subdirectly irreducible members of V. The variety of n–modal algebras
is congruence distributive. Consequently, by Jónsson’s Lemma, for a class K of
n–modal algebras, si(K) ⊆ HSUp(K). It is not hard to verify that for Ai, i ∈ I,
2–algebras and F an ultrafilter on I we have

(
∏
F

Ai)sim ∼=
∏
F

(Ai)sim

Hence, Up(K)sim = Up(Ksim). So, if V is a variety,

HSUp(Vsim) = {1} ∪ (HSUp(V))sim = {1} ∪ Vsim

Hence
si(Vv) = si(HSUp(Vsim)) =

= si({1} ∪ Vsim) =
= si(Vsim) = (si(V))sim

Lemma 37 Let W be a variety of 1–algebras, and V be a variety of 2–algebras.
Then si((Vv)v) = si(V) and si((Wv)v) = si(W).

Proof. We have seen that si(Vv) = (si(V))sim. Furthermore, si(Wv) =
si(Wsim) by Proposition 36 and si(Wsim) = (si(W))sim, by Theorem 34.

si((Wv)v) = (si(Wv))sim = (si(Wsim))sim

= ((si(W))sim)sim = si(W)

si((Vv)v) = si((Vv)sim) = (si(Vv))sim

= ((si(V)sim)sim = si(V). a

The following can now be concluded.

Theorem 38 The map (−)v is a bijection between the varieties of 2–algebras
and the varieties of Sim–algebras containing the algebra 2•. a

Given a bimodal logic Λ we will write Λsim for the logic Th (AlgΛ)sim, and
given a monomodal logic Θ we write Θsim for the logic Th (AlgΘ)sim. We call
the map Λ 7→ Λsim the Thomason–Simulation.

Theorem 39 The Thomason–Simulation is an isomorphism from the lattice
EK2 onto the interval [Sim,Th2•] in the lattice EK1. a
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A lot of conclusions can be drawn. For example, if Λ is a bimodal logic, then
E Λsim ∼= E Λ + 1. Moreover, by the previous theorems, if Λ is complete with
respect to a class X of refined 2–frames then so is Λsim with respect to Xsim.
And conversely, if Λsim is complete with respect to a class Y of refined 1–
frames then Λ is complete with respect to Ysim. In the next two sections we
will improve these results drastically.

The simulation can be generalized in a straightforward way to obtain an
isomorphism from the lattice EKn onto the interval [Sim(n, 1),Th chn−1] in the
lattice EK1, where Sim(n, 1) is some monomodal logic and chn = 〈{0, 1, . . . , n−
1}, >〉 denotes the transitive, irreflexive n–element chain. The details will only
be sketched. Namely, given f = 〈f, 〈Ci|i < n〉〉, fsim will be defined thus. Each
point x will be multiplied into distinct copies xi, one per basic operator; a copy
of chn is added. The xi are kept distinct by the points in the chains that they
can see. Moreover, we let xi ≺ xj iff i 6= j. The sets f i are then definable by
constant formulae, as are the individual points of chn. Once this is done, we
can encode Ci into the set f i. This construction is lifted to general frames,
and the theorems proved so far are proved in the same way for this general
construction. One can also generalize the Thomason–Simulation to a map from
EKm+n, m,n > 0, onto an interval [Θ,Th • ] in EKm, where • is the one–
point m–frame in which all relations are empty.

§ 10. Properties of the Simulation.

The simulation has been established on an abstract level. We have shown that
for a bimodal logic Λ there exists a simulation Λsim and for every monomodal
logic Θ there exists an unsimulation Θsim. In this section and the next we will
show how to axiomatize the simulations and unsimulations, respectively, and
determine what properties are transferred back and forth under this simulation.
We start with the case of simulation. An axiomatization of Λsim can be given
on the basis of an axiomatization of Λ. Define the following translation.

pτ := p
(¬P )τ := ¬P τ

(P ∧Q)τ := P τ ∧Qτ

(�P )τ := �wP
τ

(�P )τ := �b �b �wP
τ

Lemma 40 Let F be a 2–frame, and P a bimodal formula. Let 〈F, β, x〉 |= P .
Assume that γ is a valuation on Fsim such that γ(p) ∩ fw = β(p)w. Then

〈F, β, x〉 |= P ⇔ 〈Fsim, γ, xw〉 |= P τ

Proof. By induction on the complexity of P . a

Let F be a bimodal frame, β a valuation on F. Then put βsim(p) := β(p)w.
This defines a valuation on Fsim. The following now holds for any set X of
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bimodal formulae. (Here, w → Xτ denotes the set {w → P τ |P ∈ X}.)

〈F, β, x〉|=X ⇔ 〈Fsim, βsim, xw〉|=Xτ

〈F, β〉|=X ⇔ 〈Fsim, βsim〉|=w → Xτ

F|=X ⇔ Fsim|=w → Xτ

The first is the content of the previous lemma. The second easily follows from
the first. For the third equivalence note that if γ1 and γ2 are valuations on a
1–frame G = Fsim such that γ1(p)∩ fw = γ2(p)∩ fw for all p then 〈G, γ1, x〉 |=
w ∧ P τ iff 〈G, γ2, x〉 |= w ∧ P τ , so that if there exists a model for w ∧ P τ it
can always be based on a valuation of the form βsim for some β on F. The
first equivalence asserts that local satisfiability in a frame is equivalent to local
satisfiability of Xτ in Fsim in the simulating frame at ‘white’ points, the second
asserts that global satisfiability of Xτ is equivalent to global satisfiability of
w → Xτ in the simulating frame. The third asserts that validity of X in a
frame is equivalent to validity of w → Xτ in its simulation.

Corollary 41 Let Λ = K2 ⊕ X. Then Λsim = Sim ⊕ {w → P τ |P ∈ X}. In
particular, if Λ is n–axiomatizable, so is Λsim.

Proof. Put Θ := Sim ⊕ {w → P τ |P ∈ X}. We show that the rooted refined
frames validating Θ coincide with the rooted refined frames validating Λsim.
This establishes the first part of the theorem. The second follows immediately.
Now let F be a rooted frame which is not a frame for Λsim. Let x be a root of
F. Then there exists a bimodal rooted frame G such that Gsim is isomorphic
to F. We then have that G is not a frame for Λ, and thus there exists a P ∈ X
such that G 2 P . By the lemma above, F 2 w → P τ . Hence F is not a frame
for Θ. The argument can be run backwards as well. Assume that F is a rooted
refined frame which is not a frame for Θ. Then F 2 w → P τ for some P ∈ X.
F is a simulation frame and so we may assume that for some G, F = Gsim. By
the previous lemma, 〈G, β, y〉 2 P . So G is not a frame for Λ. By definition of
Λsim, F (which is Gsim) is not a frame for Λsim. a

The next theorem provides one half of the simulation theorem. Before we can
state it, we have to provide some more definitions. An n–modal logic Λ is
elementary (∆–elementary) if the class of kripke–frames of Λ is elementary
(∆–elementary). Here, the language to speak about n–frames is first–order
predicate logic with equality ( .=) and binary relation symbols Ci, i < n, which
get interpreted by the corresponding relations in the frame. The following so–
called restricted quantifiers are defined.

(∀y Bj x)β := (∀y)(xCj y.→ .β)
(∃y Bj x)β := (∃y)(xCj y. ∧ .β)

For the elementary language, too, we can define a translation on formulae.

t(x) := (∀y � x)¬(y .= y)
w(x) := (∃y � x)t(x)
b(x) := ¬t(x) ∧ (∀y � x)¬t(x)
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These formulae define the sets f b, fw and f t in a Sim–frame. Now put

αe :=
∧

x∈fvar (α)

w(x).→ .αf

(x .= y)f := x
.= y

(xC y)f := x ≺ y
(x J y)f := (∃v � x)(∃w � y)(b(v) ∧ b(w) ∧ v ≺ w)
(α1 ∧ α2)f := αf

1 ∧ α
f
2

(¬α)f := ¬αf

((∃x)α)f := (∃x)(w(x) ∧ αf )

It is not difficult to show that for a sentence α,

F |= α ⇔ Fsim |= αe

It is not hard to see that the class of Sim–kripke frames is elementary. This
also follows from the fact that axioms for Sim are Sahlqvist.

An n–modal formula is Sahlqvist if it is of the form �(P → Q) where �
is a prefix of box–like operators, P is strongly positive and Q is positive. Here
a formula is positive if it is built from variable free formulae and variables
with the help of ∧, ∨ and the operators �i, ♦i, i < n. A formula is strongly
positive if it is positive and no formula of the form R1 ∨ R2, ♦iR1, i < n,
which contains a variable is contained in the scope of a �j , j < n. By a
well–known theorem of Sahlqvist, logics axiomatizable by a Sahlqvist formula
are locally D–persistent and elementary. Let us call a logic Sahlqvist if it is
axiomatizable by a set of Sahlqvist formulae. As is well–known, a Sahlqvist
logic is D–persistent and ∆–elementary. By a theorem of van Benthem [2], if
a modal axiom P determines an elementary condition δ on kripke–frames then
δ is equivalent to a formula of the form ∀x.α(x), where α(x) is obtained from
(positive) atomic formulae x .= y, xCi y, i < n, using ∧, ∨, and the restricted
quantifiers. In [2] the following class of formulae is defined. Call an n–modal
formula P a Sahlqvist–van Benthem formula if it is composed from variables
and constants using ¬, ∧, ∨, �j and ♦j (j < n) such that for all variables p
either (i) no positive occurrence of p is in a subformula of P of the form Q∧R
or �jQ, j < n, if that formula is in the scope of a ♦k, k < n, or (ii) no negative
occurrence of p in P is in a subformula of the form Q∧R or �jQ, i < n, if that
occurrence is in the scope of some ♦k, k < n. This describes a wider class of
formulae. However, for every Sahlqvist–van Benthem formula P there exists a
Sahlqvist–formula Q such that K⊕ P = K⊕Q. (See [19].)

Definition 42 An n–modal logic Λ has local interpolation if whenever P `Λ

Q there exists a formula R such that var(R) ⊆ var(P )∩var(Q) and P `Λ R `Λ

Q. Λ has global interpolation if whenever P Λ Q there exists a R such that
var(R) ⊆ var(P ) ∩ var(Q) and P Λ R Λ Q.

Theorem 43 The simulation map preserves the following properties of logics.
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• n–axiomatizability, finite axiomatizability, recursive axiomatizability,

• G–persistence, R–persistence, D–persistence,

• being Sahlqvist,

• elementarity, ∆–elementarity.

The simulation reflects the following properties of logics.

• local/ global completeness with respect to kripke frames (finite kripke frames),

• local/global interpolation.

Proof. The first set of properties is clear. For persistence only G–persistence is
not a direct consequence. However, by a theorem of van Benthem [2], a logic
is G–persistent iff it is 0–axiomatizable. So the claim follows from the first set.
For Sahlqvist logics, it is enough if we show that if P is a Sahlqvist–van Benthem
formula, so is w → P τ (viewed as a formula in the language with �, ♦). Now, it
is checked that the translation is such that occurrences of variables in P are in
one–to–one correspondence with occurrences of variables in w → P τ . Moreover,
if p occurs positively (negatively) in P , its related occurrence in w → P τ is also
positive (negative). Also, if p occurs in a subformula Q ∧ R (�Q, �Q) within
a formula ♦S (�S) then its related occurrence in w → P is in Qτ ∧ Rτ (�T
for T = w → Qτ , �T for T = b → �b �w Qτ ) within the subformula ♦U ,
where U = w∧Sτ (within the subformula ♦U , where U = b∧♦b♦wS

τ ). Hence
w → P τ is a Sahlqvist–van Benthem formula. Next assume that Λ is (∆–
)elementary. Then the class of kripke frames is determined by some condition
α (set Γ of conditions). Then the class of kripke frames for Λsim is determined
by some sentence characterizing the Sim–kripke frames plus αe (Γe). Now we
turn to interpolation. We make use of the following criteria.

Definition 44 A variety V of n–modal algebras has the amalgamation prop-
erty if for any three algebras A0,A1,A2 ∈ V and embeddings ι1 : A0 � A1 and
ι2 : A0 � A2 there exists an algebra A3 in V and embeddings ε1 : A1 � A3,
ε2 : A2 � A3 such that ε1 ◦ ι1 = ε2 ◦ ι2. V has the superamalgamation prop-
erty if under the same conditions the εi can be required to have the property
that whenever ε1(a1) ≤ ε2(a2) for a1 ∈ A1 and a2 ∈ A2 then there exists an
a0 ∈ A0 such that a1 ≤ ι1(a0) and ι2(a0) ≤ a2.

Theorem 45 (Maksimova) Λ has local interpolation iff it has the supera-
malgamation property. Λ has global interpolation iff it has the amalgamation
property.

The proof is an immediate generalization of [21]. Now assume that Λsim has
global interpolation. We have to show that Λ has global interpolation as well. It
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is enough to show that AlgΛ has the amalgamation property. Suppose that B0,
B1 and B2 are in the variety of Λ–algebras, and ι1 : B0 � B1, ι2 : B0 � B2.
Then (ιi)sim : (B0)sim � (B1)sim, i = 1, 2. By assumption on Λsim, there
exists a A3 and maps κ1 : (B1)sim � A3, κ2 : (B2)sim � A3 such that
κ1 ◦ (ι1)sim = κ2 ◦ (ι2)sim. Put B3 := (A3)sim and εi := (κi)sim, i = 1, 2.
Then εi : Bi � B3 and ε1 ◦ ι1 = (κ1)sim ◦ ((ι1)sim)sim = (κ1 ◦ (ι1)sim)sim =
(κ2◦(ι2)sim)sim = (κ2)sim◦((ι1)sim)sim = ε2◦ι2. Thus the variety of Λ–algebras
has the amalgamation property. Now assume that the variety of Λsim–algebras
has the superamalgamation property. Then in addition we can have A3 and
the embeddings in such a way that if κ1(a1) ≤ κ2(a2) then there exists a
a0 ∈ A0 such that a1 ≤ (ι1)sim(a0) and (ι2)sim(a0) ≤ a2. Now let b1 ∈ B1,
b2 ∈ B2 be such that ε1(b1) ≤ ε2(b2). Then put a1 := (b1)w and a2 := (b2)w.
Then κ1(a1) = (ε1(b1))w ≤ (ε2(b2))w = κ2(a2) and so there exists a0 ∈ A0

such that a1 ≤ (ι1)sim(a0) and (ι2)sim(a0) ≤ a2. Put b0 := w ∩ a0. Then
b1 = w∩a1 ≤ w∩ (ι1)sim(a0) = w∩ (ι1(b0))sim = ι1(b0), and likewise ι2(b0) ≤ b2
is proved. a

§ 11. Properties of the Unsimulation.

Now we will show how to axiomatize the unsimulation of a logic on the basis
of an axiomatization for it. The proof is rather longwinded. Before we enter it,
we need some terminology. Let P be a formula and Q a subformula of P . Fix
an occurrence of Q in P . A modal cover of that occurrence of Q is a minimal
subformula R of modal degree greater than Q containing that occurrence of Q.
We also say that that particular occurrence of R modally covers Q. If Q has
a modal cover, it is unique and a formula beginning with a modal operator.
(We will often speak of formulae rather than occurrences of formulae, whenever
the context allows this.) Now let P be a formula of the language with operators
�α, ♦α, α ∈ {w, b, t}. Let us agree to say that an occurrence of a formula Q in
P is α–covered if it modally covered by a formula of the form �αR or ♦αR.
Call P and Q white–equivalent if w `Sim P ↔ Q and black–equivalent if
b `Sim P ↔ Q. Given a formula, we say that a subformula occurs white if
it is not in the scope of a modal operator or else is w–covered. A subformula
occurs black if it is b–covered. If P occurs white (black) in R, and P is white–
equivalent (black–equivalent) to Q, then that occurrence of P may be replaced
in R by Q preserving white–equivalence. By axioms (a) of § 8, �bM is white–
equivalent to ♦bM and �wM is black–equivalent to ♦wM .

Lemma 46 Let P be a formula in the language with �α and ♦α, α ∈ {w, b, t}.
There exists a finite number n and formulae Qi and Ri, i < n, such that Qi is
nonmodal for all i < n, and Ri is in the language with �w,�b, ♦w and ♦b for
all i < n, and P is white–equivalent to the formula∨

i<n

(♦tQi) ∧Ri
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Proof. Let us consider now a maximal subformula R of P of the form �tQ.
Clearly, by some Sim–equivalences, �tQ can be transformed into a subformula
R′ = �tQ

′ where Q′ is nonmodal. So, let us assume that P contains only
subformulae �tQ, where Q is nonmodal. Now let S ⊆ var(P ). Put

χ(S) :=
∧
p∈S

p ∧
∧

p∈var (P )−S

¬p

Then
(‡) w `sim P ↔

∨
S⊆var (P )

P ∧ ♦tχ(S)

Consider a particular disjunct P ∧ ♦tχ(S) of the formula to the right in (‡),
corresponding to S. Consider a subformula R = �tQ in P . We are allowed to
replace Q by χ(S)∧Q. The latter reduces via some Sim–equivalences to either
χ(S) or to ⊥. (This is clear if one argues semantically.) So we may assume that
R = �t⊥ or R = �tχ(S). Several cases need to be distinguished now. (a) R is
w–covered. Then R can be replaced by ⊥ when R = �t⊥ and by > otherwise.
(b) R is b–covered. Then it can be replaced by >. (c) R is not in the scope of
an operator. Then it can be replaced by ⊥ when R = �t⊥ and by > otherwise.
All these replacements are white Sim–equivalences. This shows the lemma. a

Definition 47 A monomodal formula P is called simulation transparent if
it is of the form p, ¬p, ♦bp, ¬♦bp, ♦tp, ¬♦tp, p a variable, or of the form
Q ∧ R, Q ∨ R, ♦wQ, �wQ, ♦b♦b♦wQ or �b �b �wQ where Q and R are
simulation transparent.

Definition 48 Call a formula P white based if there do not exist occurrences
of subformulae Q, R, S and T such that Q b–covers R, R b–covers S, and S
b–covers T .

Lemma 49 For every formula P there exists a formula Q which is white–based
and white–equivalent to P .

Proof. Suppose that there is a quadruple 〈Q,R, S, T 〉 of occurrences of sub-
formulae such that Q b–covers R, R b–covers S, and S b–covers T . Then there
exists such a quadruple in which Q occurs white. Now replace the occurrence of
T by �w �bT . Since T is black equivalent with �w �bT , this replacement yields
a formula P ′ which is white equivalent to P . Now repeat this procedure with P ′.
It is not hard to see that this process terminates with a white based formula.
(For example, count the number of occurrences of quadruples 〈Q,R, S, T 〉 such
that Q b–covers R, R b–covers S, and S b–covers T . It decreases by at least
one in passing from P to P ′. If it is zero, the formula is white based.) a

Lemma 50 Let P be a monomodal formula. Then there exists a simulation
transparent formula S such that

w `Sim P ↔ S
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Proof. First we simplify the problem somewhat. Namely, by some standard
manipulations we can achieve it that no operator occurs in the scope of negation.
We call a formula in such a form basic. So, let us assume P to be basic. By
Lemma 46 we can assume P to be a disjunction of formulae of the form U ∧R,
where U = ♦tS, for a nonmodal S, and R contains only �w, ♦w, �b and ♦b.
In general, if the claim holds for P1 and P2, then it also holds for P1 ∨ P2 and
P1∧P2. Therefore, we have two cases to consider: (i) P contains no occurrences
of ♦w, �w, ♦b or �b, or (ii) P contains no occurrences of ♦t and �t. In case
(i), we know that ♦t distributes over ∨ and ∧, so that we can reduce P (modulo
white–equivalence) to the form ♦tp, and ♦t¬p. Now we have

w `Sim ♦t¬p↔ ¬♦tp

So in Case (i) P is white–equivalent to a simulation transparent formula. From
now on we can assume to be in Case (ii). Furthermore, by Lemma 49, we can
assume that P is white based, and (inspecting the proof of that lemma) that
P is built from variables and negated variables, using ∧, ∨, and the modal
operators ♦w, ♦b, �w and �b.

Let µb(P ) denote the maximum of nested black operators (♦b, �b) in P .
Call P thinner than Q if either µb(P ) < µb(Q) or P is a subformula of Q.
We will show that for given white based basic P there exists a simulation
transparent formula Q which is white–equivalent to P on the condition that
this holds already for all white based basic formulae P ′ thinner than P .

If P = p we are done; for P is simulation transparent. Likewise, if P = ¬p.
Suppose P = P1 ∧ P2. P1 and P2 are thinner than P . Therefore there exist
simulation transparent formulae Q1 and Q2 such that Qi is white–equivalent
to Pi, i ∈ {1, 2}. Then Q1 ∧ Q2 is white–equivalent to P1 ∧ P2. Similarly for
P = P1 ∨ P2. If P = ♦wP1 there exists a simulation transparent Q which is
white–equivalent to P1. So w → P1 a`Sim w → Q, and therefore ♦wP1 a`Sim

♦wQ; it follows that ♦wQ is white–equivalent to P . Similarly for P = �wP1.
We are left with the case that P is either ♦bR or �bR. By inductive hypothesis,
for every basic white based Q such that µb(Q) < µb(P ) there is a simulation
transparent S such that S is white–equivalent to Q. As P occurs white, we can
distribute �b and ♦b over ∧ and ∨, and so reduce R to the form p, ¬p or �αN
or ♦αN , with α ∈ {w, b} and N basic. This reduction does not alter µb(P ).
Case 1. R = p. Then P is simulation transparent. Case 2. R = ¬p. Observe
that ♦b¬p is white equivalent to ¬♦bp. So we are done. Case 3. R = �wN or
R = ♦wN . Then P is white–equivalent to N . The claim follows by induction
hypothesis for N . Case 4. R = �bN or R = ♦bN , N basic. Now let us
look at N . N occurs black. Furthermore, N is the result of applying a lattice
polynomial to formulae of the form p, ¬p, �bA, ♦bB, �wC, ♦wD. (Here, a
lattice polynomial is an expression formed from variables and constants using
only ∧ and ∨, but no other functions. It turns out that > and ⊥ can be
eliminated from this polynomial as long as it contains at least one variable.
If it does not contain a variable, it is equivalent to either > or ⊥. Finally,
> may be replaced by p ∨ ¬p and ⊥ by p ∧ ¬p, so we may assume that the
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polynomial does not contain any occurrences of > and ⊥.) However, as P is
white based, formulae of the form ♦bA or �bB do not occur. Furthermore, if
µb(N) > 0, we replace the occurrences of p by �w �b p, and the occurrences
of ¬p by �w �w ¬p. This replacement does not change µb(N). (The case
µb(N) = 0 needs some attention. Here we replace N by �w �b N . Then P is
white equivalent to either �b �b �w �bN or ♦b♦b♦w �bN , N nonmodal. Now
we are down to the case of a formula of the form �bN . �b commutes with ∧
and ∨, which leaves the cases �bp and �b¬p to consider. These are immediate.)
Now, after this replacement, N is a lattice polynomial over formulae of the form
�wC, ♦wD. The latter occur black, so �wC is intersubstitutable with ♦wC
and ♦wD is intersubstitutable with �wD. Finally, ♦w> is intersubstitutable
(modulo equivalence) with >. So N is without loss of generality of the form
f(〈�wEi|i < n〉) for some lattice polynomial f . Thus, N can be substituted
by the formula �wf(〈Ei|i < n〉). Therefore, N can be reduced to the form
�wE for some basic E. E is white based. Therefore, by induction hypothesis,
E is white–equivalent to a simulation transparent formula G. R has the form
�b �w E (Case A) or ♦b �w E (Case B), so P is white–equivalent to either
Q1 := �b �b �wG (Case A) or �b♦b �w G (Case B). The latter is white–
equivalent to Q2 := ♦b♦b♦wG. Both Q1 and Q2 are simulation transparent,
by assumption on G. a

Lemma 51 Let P be a monomodal formula in the variables {pi|i < n}. There
exists a bimodal formula Q in the variables {p◦i , p•i , p∗i |i < n} such that

(‡) : w `Sim P ↔ Qτ [pi/p
◦
i , ♦bpi/p

•
i , ♦tpi/p

∗
i |i < n]

Q is called an unsimulation of P . Moreover, if P is a Sahlqvist–van Benthem
formula, then Q can be chosen to be a Sahlqvist–van Benthem formula as well.

Proof. The first part of the proof is straightforward. There exists a simulation
transparent S which is white–equivalent to P . Q is obtained from S by applying
the following translation outside in.

(Q1 ∧Q2)τ := (Q1)τ ∧ (Q2)τ (Q1 ∨Q2)τ := (Q1)τ ∨ (Q2)τ

(♦wQ)τ := ♦Qτ (�wQ)τ := �Qτ

(♦b♦b♦wQ)τ := �Qτ (�b �b �wQ)τ := �Qτ

(♦tp)τ := p∗ (¬♦tp)τ := ¬p∗

(♦bp)τ := p• (¬♦bp)τ := ¬p•
pτ := p◦ (¬p)τ := ¬p◦

The formula S is of course not uniquely determined by P , but is unique only
up to equivalence. The proof of Lemma 50 is actually a construction of S, and
so let us denote by Pτ the particular formula that is obtained by performing
that construction.

For the second claim, assume that P is a Sahlqvist–van Benthem formula.
Then there exists a simulation transparent P δ which is white equivalent to P .
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Inspection of the actual construction shows that the transformation of P to P δ

preserves positive and negative occurrences of variables. Moreover, suppose that
(P δ)τ is not Sahlqvist–van Benthem. Then it contains a positive occurrence of a
variable p in a subformula of the form Q∧R, �Q or �Q in the scope of a ♦ or �,
and likewise a negative occurrence of that same variable in a subformula of such
kind. It is not hard to see that the corresponding occurrences of p in P δ are in a
similar configuration, and that — finally — there are corresponding occurrences
in P which are also in such a configuration. Thus P is not Sahlqvist–van
Benthem. (A remark. This last step is not straightforward to prove, the details
are cumbersome, since a lot of elementary transformations are being made to
pass from P to P δ. The interested reader may simply note that each of these
transformations takes a Sahlqvist–van Benthem formula into a Sahlqvist–van
Benthem formula (and back). Spelling out these details is rather unrevealing.)
a

Now take a set X of monomodal formulae; put Xτ := {Pτ |P ∈ X}. Assume
that F is a simulation frame and 〈F, β, x〉 |= w;X. Then we have

〈F, β, x〉 |= w;σ((Xτ )τ ),

where σ is a substitution satisfying σ(p◦) = p, σ(p•) = ♦bp, σ(p∗) = ♦tp. Now
define a valuation β� of the set {p◦, p•, p∗|p ∈ var(X)} by

β�(p◦) := β(p) ∩ fw, β�(p•) := ♦bβ(p) ∩ fw, β�(p∗) := ♦tβ(p) ∩ fw

By definition of β�,

〈F, β, x〉 |= w;σ(Q) ⇔ 〈F, β�, x〉 |= w;Q

Thus we conclude
〈F, β�, x〉 |= w; (Xτ )τ

Define a valuation βsim on Fsim by βsim(q) := β�(q). x is of the form yw for
some y ∈ fsim; in fact, by construction, yw = x. By the previous results,

〈F, β�, x〉 |= w; (Xτ )τ ⇔ 〈Fsim, βsim, x〉 |= Xτ .

It therefore turns out that the satisfaction of X in a simulation frame at a
white point is equivalent to the satisfaction of Xτ in the unsimulation of the
frame. The satisfaction of X at a black point is equivalent to the satisfaction of
�bX := {�bP |P ∈ X} at a white point. The satisfaction of X at f t is likewise
reducible to satisfaction of �tX, which is defined analogously.

Now let Λ be a monomodal logic contained in the interval [Sim,Th • ]. We
will show that it can be axiomatized by formulae of the form w → Q. To that
end, let Λ = K ⊕ X and let P ∈ X. For simplicity we may actually assume
that X = {P}. Then Λ = K ⊕ {t → P,w → P, b → P}. Since • is a frame
for Λ, t → P can only be a theorem if it becomes a boolean tautology after
substituting > for maximal subformulae of the form �Q (and ⊥ for maximal
subformulae of the form ♦Q). Hence, t → P is in Λ only if P is an instance
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of a boolean tautology. However, in that case P is a theorem of K. b → P is
Sim–equivalent to w → �bP . So, Λ = K ⊕ {w → P,w → �bP}, as promised.
So we can always assume that an axiom is of the form Q := w → P for some
P . (This follows independently from the surjectivity of the simulation map and
the fact that an axiomatization of this form for simulation logics has been given
above.) Now Q is rejected in a model based on F iff P is rejected at a white
point of F iff Pτ is rejected in a model based on Fsim.

We summarize our findings as follows. Given a monomodal rooted Sim–
frame G, a set X, a valuation β, we define βsim by βsim(q) := β�(q), where q is
a variable of the form p◦, p• or p∗.

〈G, β, x〉|=w ∧X ⇔ 〈Gsim, βsim, x〉|=Xτ

〈G, β〉|=X ⇔ 〈Gsim, βsim〉|=Xτ ; (�bX)τ ; (�tX)τ

G|=X ⇔ Gsim|=Xτ ; (�bX)τ ; (�tX)τ

Two cases may arise. Suppose that G contains only one point. Then Gsim

is empty, and no formula is satisfiable in it. This case has to be dealt with
separately. Else, let G have more than point, and be rooted. Then satisfiability
of X in G is reducible to satisfiability of either w;Xτ or w;�tXτ or w;�bXτ . All
problems are reducible to satisfiability of a set Y in Gsim. Global satisfiability
of X in 〈G, β〉 is equivalent to the global satisfiability of {w → P |P ∈ X+},
where X+ = X;�bX;�tX.

Theorem 52 Let Λ be a monomodal logic in the interval [Sim,Th • ]. Then
Λ is axiomatizable as Λ := Sim⊕ {w → P |P ∈ X} for some X. Furthermore,
Λsim = K2 ⊕Xτ . a

The case of unsimulating elementary properties is likewise more complex than
the simulating part. Take a formula φ in the first–order language for 1–modal
frames. We may assume (to save some notation) that the formula does not
contain ∀. Furthermore, we may assume that the formula is a sentence, that
is, contains no free variables. However, we do not assume that structures are
nonempty. We introduce new quantifiers ∃α, α ∈ {b, w, t}, which are defined by

(∃αx)φ(x) := (∃x)(α(x) ∧ φ(x))

Furthermore, for each variable x we introduce three new variables, xα, α ∈
{b, w, t}. Now define a translation (−)† as follows.

(φ ∧ ψ)† := φ† ∧ ψ†
(φ ∨ ψ)† := φ† ∨ ψ†
(¬φ)† := ¬φ†
((∃x)φ(x))† := (∃wxw)φ(xw)† ∨ (∃bxb)φ(xb)† ∨ (∃txt)φ(xt)†

It is clear that φ and φ† are deductively equivalent. In a next step replace
(∃bxb)φ(xb) by

(∃wxw)(∃bxb � xw)φ(xb)
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and (∃txt)φ(xt) by
(∃wxw)(∃txt � xw)φ(xt)

Call ψδ the result of applying this replacement to ψ. It turns out that (in the
first–order logic of simulation frames)

(∃x)w(x) ` ψδ ↔ ψ

That means, the two are equivalent on all frames Gsim where G is not empty.
In ψδ the variables xb and xt are bound by a restricted quantifier with restrictor
xw; xw in turn is bound by ∃w. To see whether such formulae are valid in a
frame we may restrict ourselves to assignments h of the variables in which xα

is in the α–region for each α and each x, and furthermore h(xw) � h(xb). In a
final step, translate as follows

(φ ∧ ψ)‡ := φ‡ ∧ ψ‡
(φ ∨ ψ)‡ := φ‡ ∨ ψ‡
(¬φ)‡ := ¬φ‡
((∃wxw)φ(xw))‡ := (∃x)φ(xw)‡

((∃bxb � xw)φ(xb))‡ := φ(xb)‡

((∃txt � xw)φ(xt))‡ := φ(xt)‡

For atomic formulae, φ‡ is computed as follows:

β →
xα ≺ yβ w b t

α w xC y x
.= y >

↓ b x
.= y x J y ⊥

t ⊥ ⊥ ⊥

β →
xα .= yβ w b t

α w x
.= y ⊥ ⊥

↓ b ⊥ x
.= y ⊥

t ⊥ ⊥ >

Let ψ be a subformula of φ†δ for some sentence φ. Let G be a 1–modal simulation
frame. Then G is isomorphic to Fsim for some bimodal frame F (for example,
F := Gsim) and therefore G has exactly one point in the t–region. Suppose
G |= ψ[h]. Then we may assume that h(xα) is in the α–region for each α, and
that h(xb) ≺ h(xw). Now put k(x) := h(xw). It is verified by induction on
ψ that G |= ψ[h] iff Gsim |= ψ‡[k]. On the other hand, if k is given, define
h as follows: h(xw) := k(x), h(xb) is the unique world u in the b–region such
that k(x) � u, and h(xt) is the unique world in the t–region. h is uniquely
determined by k, and again it is verified that G |= ψ[h] iff Gsim |= ψ‡[k]. In
particular, for ψ = φ†δ we get G |= ψ iff Gsim |= ψ‡. Now we return to φ. We
have φ ≡ φ∧ (∀x)t(x)∨ φ∧ (∃x)¬t(x). The first formula is either equivalent to
⊥ (Case 1) or to (∀x)t(x) (Case 2). Case 1. Put φe := (φ†δ)‡. Then G |= φ
iff Gsim |= φe. Case 2. Put ψe := ((∀x)¬(x .= x)) ∨ (φ†δ)‡.

Proposition 53 Let X be a class of simulation frames. If X is elementary
(∆–elementary) so is Xsim. a

Now say that a property P transfers under simulation if Λ has P iff Λsim

has P.
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Theorem 54 (Simulation Theorem) The following properties transfer un-
der simulation.

• 0–axiomatizability, finite axiomatizability, recursive axiomatizability,

• G–persistence, R–persistence, D–persistence,

• being Sahlqvist,

• elementarity, ∆–elementarity,

• local (global) completeness with respect to kripke frames (finite frames),

• local (global) interpolation.

Proof. In view of the results of the preceding section we only need to prove
one direction in each of the cases. Finite and recursive axiomatizability are
clear. Likewise R–persistence and D–persistence. For G–persistence note that
it is equivalent with 0–axiomatizability. For the property of being Sahlqvist,
we have established that if w → P is a Sahlqvist–van Benthem formula, so is
Pτ . Now suppose that Λsim is (∆–)elementary and let X be the class of kripke
frames for it. Then the class of simulation frames in X is elementary (since
such a frame is a simulation frame iff it satisfies (∀xy)(t(x) ∧ t(y) → x

.= y)).
Then Xsim is (∆–)elementary as well by Proposition 53, and it is the class
of Λ frames. Hence Λ is (∆–)elementary. The case of completeness is clear.
Now for the proof of interpolation. Assume that Λ has local interpolation.
Put ` := `Λsim . Assume P ` Q. Then we have (a) w → P ` w → Q.
Moreover, we also have (b) b → P ` b → Q and (c) t → P ` t → Q. (b)
can be reformulated into (d) w → ♦bP ` w → ♦bQ. The cases (a) and (d)
are now similar. Take (a). We have Pτ `Λ Qτ . There exists by assumption
on Λ an R such that var(R) ⊆ var(Pτ ) ∩ var(Qτ ) and Pτ `Λ R `Λ Rτ . Then
w → (Pτ )τ ` w → Rτ ` w → (Pτ )τ . Now take the substitution σ as defined
above. Then

w → σ((Pτ )τ ) ` w → σ(Rτ ) ` w → σ((Qτ )τ ).

while by Lemma 51
w → P a` w → σ((Pτ )τ )

as well as
w → Q a` w → σ((Qτ )τ )

Put A := σ(Rτ ). Then we have var(w → A) ⊆ var(P ) ∩ var(Q) and

w → P ` w → A ` w → Q

Similarly, we find a formula B such that

w → ♦bP ` w → B ` w → ♦bQ
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In case (c) we can appeal to the fact that classical logic has interpolation to
find a C such that

w → ♦tP ` w → ♦tC ` w → ♦tQ

(For by Lemma 46, in the scope of ♦t, P and Q reduce to nonmodal formulae.)
Then put

N := (w → A) ∧ (b → ♦wB) ∧ (t → C)

It follows that P ` N ` Q. Thus Λsim has interpolation. Exactly the same
proof can be used for global interpolation (no use of the deduction theorem has
been made). a

Not all properties are transferred under simulation. A case in point is Halldén–
completeness. Recall that a logic Λ is Halldén–complete if from P ∨Q ∈ Λ
and var(P )∩ var(Q) = ∅ we can infer that P ∈ Λ or Q ∈ Λ. For a monomodal
logic to be Halldén–complete it must be the case that either �⊥ ∈ Λ or ♦> ∈ Λ.
It follows that no logic Λsim is Halldén–complete except if Λ is inconsistent. For
since �⊥ ∨ ¬ �⊥ is a theorem of Λsim, Halldén–completeness of Λsim implies
that either �⊥ or ¬ � ⊥ is a theorem. But the latter cannot hold. Hence
�⊥ ∈ Λsim, and so Λ = K2⊕⊥. On the other hand, there are monomodal logics
which are both complete and Halldén–complete (e. g. S4). Denote by Λ ⊗ Θ
the bimodal logic whose first operator satisfies the postulates of Λ and whose
second operator satisfies the postulates of Θ. This is called the independent
join or fusion of Λ and Θ. Now let Λ be both Halldén–complete and complete.
Then, by a theorem of [20], Λ⊗Λ is Halldén–complete as well, while (Λ⊗Λ)sim

is not.

§12. Applications to Decidability Problems.

In [7] it is shown that a great many properties of logics are undecidable even for
logics containing K4. The results of that paper are proved using a technique
which is rather involved. Here we will present some results which can easily
be derived from known ones using the special simulations we have developed
here. The results are based on the fact that it is possible to encode word–
problems in modal logic. Let us review the basic facts. Given an alphabet
A, A∗ denotes the set of finite strings over A, a member of which we denote
by vector arrow, e. g. ~u. The empty string is denoted by ε the concatenation
of ~u and ~v by ~u · ~v. A Thue–process is a finite set of equations ~v ≈ ~w, where
~v, ~w ∈ A∗. A Thue–process T can be viewed as a finite presentation of a (finitely
generated) semigroup. Given an alphabet over two letters, Thue processes thus
are presentations of 2–generated semigroups. The word problem of T is the
problem to decide whether in the semigroup presented by T the equation ~x ≈ ~y
holds for arbitrary given ~x, ~y ∈ A∗. The following is known.

Theorem 55 Let A be a two–letter alphabet.
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1. ([23]) There exist Thue–processes over A with undecidable word problem.

2. ([22]) It is undecidable whether a Thue–process over A has a decidable
word problem.

3. It is undecidable whether two Thue–processes over A present the same
semigroup.

4. ([24]) It is undecidable whether a Thue–process over A is trivial, that is,
whether it presents the one–element semigroup.

5. It is undecidable whether a Thue–process over A presents a finite semi-
group.

The first actually follows from the second, and the third from the fourth as-
sertion. The fifth can be seen as follows. Suppose we can decide whether
T presents a finite semigroup. Then we can decide whether T presents the
one–element semigroup in the following way. With T given, decide whether
it presents an infinite semigroup. If yes, then that semigroup is not the one–
element semigroup. If not, T is decidable. For the set of equations derivable
from T is recursively enumerable. Its complement is now also recursively enu-
merable, since an equation fails in T iff it fails in a finite semigroup validating
all equations of T.

Let us note that the above theorem would be false if A had only one symbol.
In that case, every Thue process is decidable. With a Thue–process over {w, b}
we associate a modal logic as follows. A word is translated as a sequence of
modalities.

[ε]P := P 〈ε〉P := P
[b]P := �P 〈b〉P := �P
[w]P := �P 〈w〉P := ♦P
[~u · ~v]P := [~u]([~v]P ) 〈~u · ~v〉P := 〈~u〉(〈~v〉P )

We translate an equation E = ~x ≈ ~y by the axiom

Em := 〈~x〉p.→ .[~y]p

This axiom is first–order and says that for every point s every successor t related
by an ~x–path from s and every successor u related by a ~y–path from s we have
t = u. Here, an ~x–path is a path formed by ~x under the identification of b (=
black) with J and of w (= white) with C. Now let T be given. With T we
associate the following two logics.

Σ(T) := K.Alt1 ⊗K.Alt1 ⊕ {Em|E ∈ T}
Λ(T) := Σ(T)⊕ ♦>⊕ �>

Let F, G be n–modal frames. G is a subframe of F if g ∈ F, Cg
i = Cf

i ∩ (g× g)
and G = {a ∩ g : a ∈ F} = {a ∈ F : a ≤ g}. In other words, subframes
are relational reducts to internal subsets of a frame. For the purpose of this
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definition, kripke–frames are identified with the corresponding full frames. A
suframe logic is a logic whose class of frames is closed under taking subframes
(see [32]). The axioms of Λ(T) are elementary, and the corresponding 1st–order
formulae can be written using only restricted universal quantifiers. Thus the
logics Λ(T) are subframe logics (see [32] or [18]), which is Claim (4.) of the
theorem below.

Proposition 56 Let T be a Thue–process over A = {w, b} and Σ := Σ(T) and
Λ := Λ(T) be as above. The following holds.

1. Σ and Λ are finitely axiomatizable by one–letter axioms.

2. Σ and Λ are complete.

3. `Λ P iff ♦>;�> Σ P .

4. Σ is a subframe logic.

5. Σ has the local finite model property and is locally decidable.

The first claim is straightforward since alt1 can be axiomatized by ♦p → �p,
and the second follows from a theorem of [32], which states that any extension
of polymodal K.Alt1 is complete; this generalizes a theorem of Bellissima [1].
The third claim is straightforward. A proof can be found in [18]. The fourth
follows by inspection on the elementary condition imposed by the axioms of
Σ. The axioms Alt1 are preserved when passing to a subframe, and so are the
axioms Em. The last claim now follows easily. Assume that P 6∈ Σ. Then there
exists a model 〈f, β, x〉 |= ¬P , since Σ is complete. Now let d be the maximum
nesting of modal operators in P , and let g be the subset of all points reachable
from x in at most d steps following the relations C or J. Then g is finite,
containing at most 2d+1 − 1 points. The subframe based on g, g, is a frame for
Σ. Let γ(p) := β(p)∩ g. Then 〈g, γ, x〉 |= ¬P . The local decidability of Σ is an
immediate consequence.

Now take a Thue–process T. Denote by FrSG(A)/T the semigroup presented
by T. Then this semigroup can be turned into a kripke frame as follows. Write
~x ≈T ~y if the equation ~x ≈ ~y is derivable in T. Furthermore, let [~x] := {~y : ~y ≈T

~x}. Put [~x]C [~y] iff ~x ·w ∈ [~y] (iff ∀~v ∈ [~x] : ~v ·w ∈ [~y]), and [~x] J [~y] iff ~x ·b ∈ [~y]
(iff ∀~v ∈ [~x] : ~v · b ∈ [~y]). We denote by Sgr(T) the frame 〈{[~x]|~x ∈ A∗},C,J〉.
Then the following holds (see [16] and [18]).

Proposition 57 (Grefe) (1.) Λ(T) = ThSgr(T) = Th 〈Sgr(T), [ε]〉. (2.)
Λ(T) is decidable iff T is decidable. (3.) Λ(T) is tabular iff T presents a finite
semigroup.

Proof. (1.) First of all, 〈Sgr(T), [ε]〉 |= Λ(T), and so Λ(T) ⊆ Th 〈Sgr(T), [ε]〉,
as is easily checked. Now, take a rooted kripke frame 〈f, x〉 such that 〈f, x〉 |=
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Λ(T). We claim that there is a p–morphism π : Sgr(T) � f such that π([ε]) = x.
Namely, put π([ε]) := x. Furthermore, assume π is defined on [~u] and π([~u]) = y.
If yCz put π([~u·w]) := z. If y J z put π([~u·b]) := z. In this way, π is defined on
all strings and is onto. Now we show that it is a p–morphism. Let [~u]C[~v]. Then
[~v] = [~u · w]. Furthermore, π([~u · w]) = z for the unique z such that π([~u]) C z.
Hence π([~u]) C π([~v]). Similarly if [~u] J [~v]. Next assume that y = π([~u])
and that y C z. Then put ~v := ~u · w. With this choice we get [~u] C [~v] and
π([~u]) C π([~v]). Likewise for J. This shows that π is a p–morphism. Moreover,
π([ε]) = x, by definition of π. By Proposition 56, Λ(T) is complete. Hence, if
P 6∈ Λ(T) there exists a rooted kripke model 〈f, β, x〉 such that 〈f, x〉 |= Λ(T) and
〈f, β, x〉 2 P . Then let π : Sgr(T) � f be a p–morphism such that π([ε]) = x.
Put γ(p) := {[~u] : π([~u]) ∈ β(p)}. With this valuation, 〈Sgr(T), γ, [ε]〉 2 P .
The first claim is now proved, since we also note that 〈Sgr(T), x〉 |= Λ(T). (2.)
By (1.), 〈~x〉p ↔ 〈~y〉p ∈ Λ(T) iff 〈Sgr(T), [ε]〉 |= 〈~x〉p ↔ 〈~y〉p iff [~x] = [~y] iff
~x ≈T ~y. Therefore, if T is undecidable, so is Λ(T). Now let T be decidable. Let
us call a formula P straight if it is of the form 〈~x〉C, where C is a variable or
a negated variable. It is not hard to show that in K.Alt.D ⊗ K.Alt.D, any
formula is deductively equivalent to a disjunction of conjunctions of straight
formulae. (Moreover, there is an effective procedure which transforms a given
formula into a deductively equivalent formula of such a form.) Therefore, it
is enough to show that for such formulae, satisfiability is decidable in Λ(T).
For that it is in turn enough to show that the satisfiability of a conjunction of
straight formulae is decidable. Let Q =

∧
i<k〈~xi〉Ci be such a formula. By (1.),

Q is satisfiable iff 〈Sgr(T), [ε]〉 2 ¬Q iff there exists a valuation β such that
〈Sgr(T), β, [ε]〉 |= Q. 〈Sgr(T), β, [ε]〉 |= Q is equivalent to (†).

(†) For all i < k, if Ci = p then [~xi] ∈ β(p)
and if Ci = ¬p then [~xi] 6∈ β(p).

β exists iff (†) is noncontradictory iff for no i, j there is a variable p such that
Ci = p and Cj = ¬p and [~xi] = [~xj ]. Since [~xi] = [~xj ] iff ~xi ≈T ~xj , it is decidable
(by decidability of T) whether (†) is consistent, hence whether Q is satisfiable.
So, Λ(T) is decidable. (3.) Is straightforward. a

For the statement of the next theorem, recall that an element x in a modular
lattice L with top element > has codimension n if there exists a sequence
Y = 〈yi : i < n+ 1〉 such that y0 = x, yn = >, and for all i < n, yi < yi+1 and
there is no z such that yn < z < yi+1. The condition of modularity guarantees
that n —- if it exists — is independent of the sequence Y . The lattices EKn

are distributive, and therefore modular.

Theorem 58 The following properties of logics are undecidable for finitely ax-
iomatizable monomodal logics on the basis of a finite axiomatization

1. local decidability,

2. local finite model property,

3. global finite model property,
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4. tabularity,

5. being of finite codimension in EK.

Proof. By the Simulation Theorem and the fact that these properties are un-
decidable for bimodal logics. That they are undecidable for bimodal logic we
will show now. Local decidability is undecidable by Theorem 55 and Proposi-
tion 57, likewise tabularity. For logics of the form Λ(T), tabularity and finite
codimension coincide. The undecidability of the finite model property is proved
thus. Suppose that the finite model property is decidable. Then a decision pro-
cedure can be given that decides whether T presents a one–element semigroup.
Namely, take T. If Λ(T) fails to have the finite model property, it is anyway not
tabular. If Λ(T) has the finite model property, however, it is decidable, because
not only the theorems are recursively enumerable, but also the nontheorems.
(Namely, Λ(T) is finitely axiomatizable, and so the finite frames are enumer-
able.) Now, by Proposition 57, T is trivial exactly when ♦p ↔ p ∈ Λ(T) as
well as �p ↔ p ∈ Λ(T). Since both problems are decidable, it can be decided
whether or not T is trivial. Contradiction. Therefore, the finite model property
is not decidable. The same argument can be given for the global finite model
property of Σ(T). Since Σ(T) has the local finite model property, it follows that
the global finite model property is not decidable. a

We remark that what we have shown in fact is that it is not even decidable
whether a logic has the global finite model property when we know that the
logic has the local finite model property. That tabularity is undecidable has
independently been proved by Alexander Chagrov in [5].

Theorem 59 The following properties are undecidable for finitely axiomatiz-
able bimodal logics on the basis of a finite axiomatization:

1. independent axiomatizability,

2. consistency,

3. containment of a given tabular logic.

Proof. (1.) Take the logics Λ(T). Suppose Λ(T) is independently axiom-
atizable. Then it is decidable, for it is the fusion of monomodal extensions
of K.Alt1, which are all decidable. Hence if independent axiomatizability is
decidable, so is the problem whether Λ(T) presents a one–element semigroup.
Contradiction. (2.) Let •|• be the one–element kripke frame with both re-

lations empty. Consider the logic Σ(T) t Th •|• . This logic is consistent iff
Sgr(T) contains a point which is irreflexive in both relations. This is the case
exactly when neither [ε] = [w] nor [ε] = [b] iff neither w ≈T ε nor b ≈T ε. The
latter problem, however, is undecidable. Suppose otherwise. Then the problem
‘w ≈T ε or b ≈T ε’ is also decidable. This gives a decision procedure for the
problem whether T is trivial as follows. Let T be given. Decide ‘w ≈T ε or
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b ≈T ε’. If it is false, T is not trivial. If it is true, however, Λ(T) is the fusion of
two monomodal logics Θ1 = Λ(U1) and Θ2 = Λ(U2) where U1 and U2 are one–
letter Thue processes. (One of U1 and U2 is actually trivial.) Since Θ1 and Θ2

are decidable and complete (this is shown in [28]) their fusion, Λ(T), is decid-
able, by a theorem of [20]. T is trivial if p→ [b]p ∈ Λ(T) and p→ [w]p ∈ Λ(T),
which is now decidable. Hence it follows from our assumption that we can de-
cide whether T is trivial. But we cannot. So the supposition fails. (3.) Assume
that containment of Θ is decidable, and Θ is tabular, Θ = Th f for a finite kripke
frame. We show that it follows that consistency is decidable. To that end, take
a bimodal logic Λ. Test first whether it contains Θ. If not, it is consistent. If
yes, test all generated subframes of f whether they are frames for Λ. If none of
them is, Λ is inconsistent, otherwise consistent. a

Corollary 60 For a monomodal logic it is undecidable whether it is a subframe
logic.

Proof. This claim follows from the fact that for an extension Θ of Sim, Θ is
a subframe logic iff it is inconsistent or Λ = Th2•. (For let F be a Θ–frame. If
Θ is a subframe logic, the subframe G based on fw ∪ f b is a frame for Θ. But
G |= ♦>. Hence fw ∪ f b = ∅. So, the only Θ–frames are the empty frame and
the one–point frame.) It follows that for a bimodal logic Λ, Λ is consistent iff
Λsim is a subframe logic. Since the first is undecidable, the latter is undecidable
as well. a

The last two parts of Theorem 59 have also been shown by Alexander Cha-
grov in [5]. With these results in our hands we can use the technique of fusion
to obtain a number of cardinality and undecidability results. The method has
already been established with respect to decidability in [31]. Suppose that P is
a property of logics such that the inconsistent n–modal logics have P, and which
is reflected under fusion in the following sense. If Λ⊗Θ has P, then both Λ and
Θ have P. Now take a logic Λ that fails to have P. Then Λ ⊗ Θ fails to have
P iff Θ is consistent. It follows that to have P is undecidable, and that there
exist 2ℵ0 logics without P. Such properties are G–persistence, R–persistence,
D–persistence, completeness, the finite model property, elementarity, Sahlqvist,
Halldén–completeness, interpolation and many more. (To show this, one needs
to establish that these properties are reflected under fusion in each of these
cases. It is enough to take Λ a monomodal and Θ a bimodal logic. Reflec-
tion of P is straightforward for the listed properties, see for example [20]. The
preservation of P is in many cases much harder to show, but not needed here.)
However, this argument does not allow to deduce that there are 2ℵ0 logics with
P. In the case of tabularity this is false. This scheme is therefore asymmetrical
in this respect. We will not spell out the results in detail; once the way to
obtain them is known, the results become of lesser importance.
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