
ON SCOPE AND C-COMMAND

MARCUS KRACHT

1. Introduction

C-command and scope are notions used to talk about readings of a
given sentence. In the sentence

(1) Every man loves a woman.

one says that in one reading every (or every man) “takes scope over”
a (or a woman), and that in the other reading it is a that “takes scope
over” every. Interchangeably, one says that in the first sentence every
man (however, arguably not every) c-commands a woman, and that the
situation is reversed in the second reading.

To have different readings is prima facie a matter of interpretation,
or meaning, as I will consistently say. However, both scope and c-
command happen to be defined in terms of structure. Scope is typically
based on the string, while c-command is based on the tree structure
that the sentence is thought to have. In what is to follow I shall be
concerned with the exact ways in which tree based notions reflect string
based ones, and vice versa; and with the question of how it is exactly
that c-command and scope bear on interpretation. More precisely, I
shall ask to what extent the c-command relation is sufficient in nail-
ing down the structure inasfar as it matters for interpretive purposes.
And thirdly I shall ask whether the different definitions given in the
literature will make be different in this.

There is a connection between c-command and scope that has its
roots both in the intellectual history of the notions themselves and the
use that is made of them in the technical literature. Unfortunately,
for neither notion is there an agreed definition. In this note I shall
review some definitions and show that for all intents and purposes
these definitions do give identical results.

2. Conventions

We assume that languages are formed over a basic set which we
call alphabet. Elements of the alphabet are called letters. From let-
ters we form strings by concatenation. The symbol of concatenation

1



2 englishMARCUS KRACHT

is a. Actual letters or strings are written using typewriter font, like
this: Pxy→Qy. Other symbols are just proxy for strings of a certain
kind. Typically, I use ~x, ~u to denote strings, but other wuthors have
different habits. Concatenation is sometimes not even written. I write
interchangeably

(2) abbac

and

(3) aababaaac

Natural languages work a little differently. The letters of the language
are actually the words, and the alphabet therefore should be called a
dictionary. The fact that the words are themselves composed using
letters of a different alphabet (unlike Chinese) may give rise to what
is known as segmentation problems. These are problems to identify
the basic words in a string. Suppose, by way of example, that we
have a binary relation symbol P and a unary relation symbol Pa in
addition to a constant a and a variable x. Then Pax is segmentable
into a succession of Pa and x as well as a sequence of P, a and x. The
presence of a blank eliminates most segmentation problems in written
language. However, for the purpose of this note we assume that the
language of the simple kind above: the basic constituents (alias words)
are simply the letters of the alphabet.

3. Logic

The notion of scope is technically used only in connection with quan-
tification. It is thus not even defined what the scope of a connective
like → or ∨ is. The definitions of scope of a quantifier vary. [5] says
the following. First, it is agreed that if A is a well-formed formulae
and y a variable then (y)A is a well-formed formula as well.

In ((y)A, “A” is the scope of the quantifier (y).

To understand this, one has to be reminded of the fact that in logic
one first specifies an alphabet of symbols and then a set of so called
well-formed formulae (= ‘wffs’). Additional sets, such as the sets of
terms, variables and so on are also defined. The definition typically
amounts to a context-free grammar, where the sets are replaced by
nonterminals standing in for these sets. Thus, if Wff is a nonterminal
denoting the set of wfs, and Var a nonterminal for the set of variables,
it is first agreed that we have a rule of the form

(4) Wff → ‘(’ Var ’)’ Wff



englishON SCOPE AND C-COMMAND 3

To say this is tantamount to saying that if ~x is in Var and ~y in Wff
then the concatenation of ‘(’ then ~x then ‘)’ and then ~y is in Wff as
well. It is customary to write this concatenation either as

(5) (a~xa)a~y

thus using the a as a symbol of concatenation, or simply—suppressing
this symbol—as

(6) (~x)~y

Notice that there is no need for quotes anymore: we concatenate only
strings!

Upon this one proceeds right away to the specification of meaning.
Strings belonging to different sets will denote different things; in pred-
icate logic, variables denote objects (under a given assignment), so do
constants. Unary predicates denote sets of objects, binary predicates
letters denote relations between objects. Finally, wffs denote truth val-
ues: these are true and false. We generally do not say, however, that
an expression denotes true under a valuation but that it is true. What
the definition (4) provides is a way to determine whether the expression
formed using the syntactic rule is true or not. Thus, given we know
the meaning of ~x and ~y, we should be able to say what (~x)~y means.
The definition (not shown here) is effectively the one standardly given.
I paraphrase [5] as follows.

(y)A is true under a given assignment σ if A is true
under every assignment σ′ which is different from σ at
most in the value of y.

The notion of scope is not needed here; but we notice that Mendelsohn
declares the scope of (y) to be A. Scope is not even needed to talk
about free and bound occurrences of a variable. Here we are told that
an occurrence of a variable x is bound either if it is in an expression of
the form (x) or in the scope of such an expression.

Machover in [4] gives a different account. He issues the following
clause:

(4) If x is a variable and b is an L-formula then ∀xb (the
string obtained by concatenating a single occurrence of
∀, a single occurrence of x and the string b, in this
order) is an L-formula.

Notice that this defines an altogether different language even if the
same underlying letters were used! This is because (~x) is a different
string than is ∀~x. Mendelsohn uses y to denote a string that is a
variable, while Machover uses the symbol x. We use ~x to say the same.



4 englishMARCUS KRACHT

These differences are just stylistic; however, in Mendelsohn’s language
the universal quantifier is denoted by a pair of brackets enclosing the
string, while in Machover’s it is the symbol ∀ and no brackets are used.

(4) leaves nothing to desire in terms of explicitness. Greek letters are
used as variables for strings that are L-formulae, while x is a variable
over strings which are variables (of the language). Then we are told
that

A formula ∀xb constructed according to (4) is called a
universal formula; here x is the variable of quantification
and the string xb is the scope of the initial occurrence
of the universal quantifier.

Here the scope includes every bound occurrence of the variable, which
was not the case in the previous definition.

This definition fixes a few question of detail that the previous defi-
nition left implicit. Machover distinguishes between strings and occur-
rences of strings. We can make this distinction formal as follows. Let
~x be a string. An occurrence is a pair of strings. We say that 〈~v, ~w〉 is
an occurrence of ~x in ~z iff ~z = ~va~xa ~w. Thus, the notion of an occur-
rence makes sense only when we are talking about a given string. Say
that string is aabba. In this string, a has three occurrences: 〈ε, abba〉
(where ε denotes the empty string), 〈a, bba〉 and 〈aabb, ε〉. b has only
two occurrences: 〈aa, ba〉 and 〈aab, a〉. If you dislike the complica-
tion about pairs, think of an occurrence as a string with some portion
underlined, such as this:

(7) qwertyuiop

This gives you both the host string (qwertyuiop) and the substring
(rty). The occurrence is obtained by naming the part that is to the
left of the line (qwe) and the part that is to the right (uiop).

To see that this care is needed let us look at the following formula:

(8) ∃xPx→∃x∀yxQy

In this string, the quantifier ∃x has two occurrences, so does the vari-
able x: it occurs 4 times. We have to be exact as to which quantifier
occurrence binds which variable occurrence. Talk of “the quantifier
∃x” and “the variable x” is not enough in this circumstance. Thus, in
the definition given by Mendelsohn, he ought to have said this:

In (y)A, “A” is the scope of the leftmost occurrence of
the quantifier (y).

As scopes are assumed to be disjoint from their quantifiers, this may
be judged an innocent matter. For the only occurrence of (y) that is



englishON SCOPE AND C-COMMAND 5

not in A is already the leftmost one. However, and this is mostly left
implicit, the scope of (y) remains A even when we embed the formula
into a larger one. Thus, in

(9) (x)Px→¬(x)¬(y)xQy

the formula xQy is the scope of the right most occurrence of (x), but it
is not the scope of the leftmost occurrence. The scope of the leftmost
occurrence is larger. This is not innocent. For if we want to establish
which variable is bound by which quantifier we must do the following:
we need to be careful to talk only about occurrences and we need to
be precise about scope. In detail, an occurrence C of a variable y is
bound by an occurrence O of a quantifier (y) iff for every occurrence
O′ of the quantifier (y) whose scope contains C, its scope also contains
O′. In linguistics, one reads “whose scope contains” simply as “which
c-commands”. And so we get the definition: O binds C iff (1) it c-
commands C, (2) for every occurrence O′ of (y): if O′ 6= O, and O′

c-commands C then O′ c-commands O. Finally, replace reference to
occurrences by reference to nodes, and label nodes by their strings, and
you get a definition that says that a node labelled y is bound by the
minimal c-commanding node labelled (y). This is a structure based
equivalent of the string based notion.

The notion of scope, though defined in both books, actually plays
no role, not even in the definition of bound variable. It is completely
absent from other books that I have looked at ([2], [6]). This does not
mean that it cannot be used; it means that it is largely irrelevant and
that other concepts are used in its place.

4. Scope Generalised

Scope is basically a relation between occurrences of substrings in a
string. To talk about scope means in effect to talk about the way the
meaning of certain strings feeds the meaning of other strings. This is
the link between these notions. In a nutshell, if a string ~x takes scope
over some other string ~y then the meaning given to ~y feeds the meaning
given to ~x. We shall put this to work.

Above we have seen some examples. To see how this generalises, let
us first see some more examples. The intention is that in

(10) ((A∨B)→C)

(the occurrence of) ∨ is in the scope of (the occurrence of → but not
conversely. How come? The idea is that the clauses that establish
the meaning of an expression, here ((A∨B)→C), work inside out: the
meaning of an (occurrence of a) substring is defined on the basis of the



6 englishMARCUS KRACHT

meaning of its parts. In the present example, the meaning of (A∨B)
is defined on the basis of the meaning of A and the meaning of B.
Next, the meaning of the entire string is defined on the basis of the
meaning of (A∨B) and the meaning of C. That the meaning of (A∨B)→C
indirectly depends also on the meaning of A is a consequence of the
definition, and a welcome one. (Although the meaning of A can be a
function of the meaning of (¬A) this does not mean that it is defined in
this way. Sometimes outside-in-algorithms can be used, but definitions
are always inside-out.) Thus, the algorithm for obtaining the meaning
works inside-out: the meaning of a substring is determined on the basis
of its immediate subexpressions. If we determine meanings according
to this algorithm then if an occurrence of ~x is strictly contained in
an occurrence of ~y then we shall compute the meaning of ~x before we
compute that of ~y.

Notice that some substrings are not assigned meaning; they are non-
constituents. Such strings are (A→, for example. Constituents can be
of different kind (term, variable, wff, and so on), in which case they
may have different meanings. The meaning of a constituent is obtained
simply by applying some recipe (= function) to the meaning of its im-
mediate parts. There is a slight problem in that certain grammars
allow an expression to be a part of itself in the sense that it can pass
from being an expression of type A to an expression of type B. Such
is the case with variables and terms. There is a rule Term → Var,
and it says that any variable is also a term. In this case we require
that the meaning of the string as a term is obtained in a direct and
unambiguous manner from its meaning as a variable. This is just not
really a problem, but it creates some uneasiness about the reduction of
the tree structure to just strings.

Now let us look at a different string.

(11) (A∨(B→C))

In this string, the occurrence of ∨ now takes scope over →.
Now, for all intents and purposes, what matters for the determination

of meaning is what the smallest constituent is that contains a given
occurrence of a string ~x. For it is this part of the string whose meaning
is computed using the meaning of ~x directly. And so we assume the
following definition:

The scope of a constituent occurrence of a string ~x in
a string ~y is the smallest constituent occurrence that
properly contains the given occurrence of ~x. (And it is
~y is ~x = ~y.)



englishON SCOPE AND C-COMMAND 7

However, we are most interested in the notion of “being in the scope
of”, which is rendered as follows.

A constituent occurrence of a substring ~z of a given
string ~y is in the scope of a constituent occurrence of
a string ~x iff it is contained in the smallest constituent
occurrence that contains the given occurrence of ~x.

It is awkward to have to talk about occurrences of strings all the time.
So we finally turn to trees. A string maps into a tree by taking as
nodes all the constituent occurrences and draw lines for immediate
containment. Then the previous definition can be rephrased for the
corresponding constituent tree as follows.

The scope of a non-root node x in a tree is the mother
of x. y is in the scope of x if y is dominated by the
mother of x, if x is not the root, by x otherwise.

Now, this way of doing this seems to introduce a circularity in the
meaning algorithm since scope determines priority, so it ought not to
contain loops or be reflexive. For that reason one often excludes all
parts that x dominates, and the mother of y as well. This leads to a
notion that is called idc-command:

x idc-commands y iff x is not the root, x is incomparable
with y, and the mother of x is above y.

Notice that this definition will make us go to the next node up rather
than the next branching node up. I prefer this version because it is
much clearer.

5. Scope Taking

One fundamental difference between formal languages and natural
languages is that formal languages are unambiguous. They are also
often transparent. To define these notions, let us recall that each of
the definitions either explicitly or implicitly associates a (context free)
grammar to the language. The grammar in turn can be said to project a
structure over a string as follows. Define for an ordered tree T the yield
of T , Y (T ) to be the concatenation of the letters at the leaves of T in
the order specified by T . Each node x in the tree defines a constituent,
the subtree headed by x, call it Tx, and this subtree therefore defines
not only a substring Y (Tx), but in addition an occurrence thereof. The
constituent structure projected over ~x by T is precisely the set of all
these occurrences, which are also called constituents of ~x, or, somewhat
more pedantically, constituent occurrences of ~x under T . So, let us take



8 englishMARCUS KRACHT

the string

(12) (A∨(B→C))

Here, the strings that are (occurrences of) constituents are A, B, C,
(B∨C) and the entire string. (I resist the temptation to present the
occurrences of them ...) Now the string

(13) ((A∨B)→C)

gives us the constituents A, B, C, (A∨B) in addition to the entire string.
Now, it is customary to drop brackets between disjunctions. Thus,

rather than write ((A∨B)∨C) we write A∨B∨C. If we do this it so hap-
pens that the same string can be the result of dropping brackets from
two different strings. Or, if we do not consider them as the result
of dropping brackets but rather as being genuinely generated by the
grammar, then the situation is that we get two trees that the grammar
generates which have the same yield. This means that the grammar
is ambiguous. Formally we say that ~x projects T in G if T is a tree
generated by G and ~x = Y (T ). We say that G is ambiguous if there is
a string that projects two different trees. This means that we cannot
simply say that a certain (occurrence of a) substring is a constituent
in the string. This may depend on the tree that we choose. So, in the
present case we get the following alternative constituent structures:

C1 = {A, B, C, A∨B, A∨B∨C}(14)

C2 = {A, B, C, B∨C, A∨B∨C}(15)

In C1, A∨B is a constituent, in C2 it is not.
Let us make the assumption that there are no unary rules. Then

the set of constituents uniquely characterises the tree. It does not,
however, characterise uniquely the labels that we assign to the con-
stituent strings. This must be stipulated as well. Finally, and thirdly,
we assume that each letter is a constituent by itself. You have to take
my word for it that neither of these requirements cause much concern;
there are mild operations on the grammar that achieve this. Given
that the meaning is assigned on the basis of the (labelled and ordered)
tree, everything depends on the constituent structure, or the question
which substring occurrences qualify as constituents. Once we reduced
the matter to this question, we can finally the contribution that scope
makes in this connection. By our definition, scopes are constituents
that properly contain other constituents. Let us return to C1 above.
What are the scopes of this structure? They are A∨B and A∨B∨C. The
letters are excluded because scopes are constituents properly contain-
ing some constituent. Letters cannot contain anything, so they cannot



englishON SCOPE AND C-COMMAND 9

be scopes. Since letters are constituents, there is no question here
to answer. Therefore, by our stipulations, knowing all the scopes is
tantamount to knowing the entire structure.

It is however not uncontroversial that the scope is a constituent. The
next best definition is one that takes the scope of a constituent C to
be the next constituent that it is contained it excluding C itself. Let
this be the scope1. Thus, in C1, the scope of → consists in (, A, B
and ) and whatever constituents they make up. The disadvantage of
this definition is that the remainder is not necessarily a string again.
(Check that [4] did a very clever thing here!) On the other hand, if
you know what the scope1 of a constituent occurrence is you also know
its scope and conversely. So the two are equivalent for the purpose of
determining the sentence structure.

6. Safeness of Omitting Brackets

In formal languages, the conventions usually are that one inserts
brackets around every constituent. Although this is tedious, it allows
unique readability. It does even more: it guarantees that everything
that looks like a constituent if taken by itself is a constituent in the
string at hand. This is called transparency. If some substring has the
same form as a constituent occurrence in some (!) tree projected by
some (!) string, then it is a consituent in this string as well, no matter
what the tree is that it projects. The grammar is thus unambiguous,
since a given string can only project one tree. Let us call a bracketing
safe if the resulting strings allow to recover the bracketing uniquely.
Given a transparent grammar one then starts to drop brackets, as they
get pretty tedious. We can, for example, drop the outermost brackets.
Safeness is guaranteed: the full string is a constituent. Likewise, we do
not enclose the letters into brackets. (Here is where segmentation prob-
lems may typically creep in!) From this point on, however, dropping
brackets is not generally safe. Here is what can be done.

6.1. Polish Notation. Suppose the convention is that every connec-
tive is written before all of its arguments. So, we write (→AB) rather
than (A→B); a quantifier precedes its matrix, a generalised quantifier
both its arguments, a predicate letter precedes all its argument terms,
and so on. In this situation, all brackets can safely be dropped!

6.2. Operator Precendence. One agrees that certain operators bind
stronger than others. It is generally agreed, for example, that ¬ binds
stronger than &, which binds stronger than →, which in turn binds
stronger than ∨. The symbol that binds stronger will be outscoped by



10 englishMARCUS KRACHT

the weaker one. So, in the sequence ¬A∨B→C the constituents are ¬A,
A→B and the full string. Or, in terms of bracketings, it derives from
((¬A)∨(B→C)).

6.3. Associativity. It is agreed that a binary operator is either left
or right associative. By that we mean the following. Suppose we have
string

(16) ~x1o~x2o~x3o · · · o~xn

where o is the operator, and the ~xi are constituents. In case of left
associativity the consituents are prefixes of each other, so we assume
the following bracketing:

(17) (· · · ((~x1o~x2)o~x3)o · · · o~xn)

In case of right associativity suffixes

(18) (~x1o(~x2o(~x3o . . . (~xn−1o~xn) . . . )))

It does however also occur that we need not bother to fix any strategy
at all. There is a big class of binary operations which are what is called
associative. They satisfy that (~x1o~x2)o~x3 has the same meaning (!) as
~x1o(~x2o~x3). For associative operation symbols different bracketings
result in a different structure, but the meaning we associate with the
different structures is the same. In this case we say that a given string
is ambiguous but that the ambiguity is spurious. It vanishes upon
mapping to the meaning.

7. C-Command

We are finally ready to see where this leads us for c-command. First,
c-command is a relation on trees, and although one always refers to
nodes using their labels (“the DP c-commands the QP”) this is strictly
speaking inappropriate. But it has the same status as talking about
substrings as opposed to occurrences thereof. Once it is sufficiently
clear what the distinction is we can ignore it. Now, there are different
versions of c-command, and we shall discuss them in turn. Let R be a
relation on T , where T is the set of nodes of the tree. Given x ∈ T , we
put xR := {y : x R y} and call this the R-domain of x.

The c-command domain of x is contained in a node y ≥ x. This node
we have taken to be either the mother of x (or the root if x is the root)
or the least branching node above x (and the root if such a node does
not exist). These versions are not different if every node which is not
a leaf is branching. Under current assumptions in generative grammar
this is the case. Also, we have assumed the rammar not to have unary
rules, so again there is no distinction.



englishON SCOPE AND C-COMMAND 11

The next question is: are there any nodes to be excluded from the
constituent headed by y? Most textbooks in linguistics agree that we
want to exclude all nodes which are comparable to x. [1] and myself (see
[3]) have argued that one should better not exclude any nodes from the
constituent. Let us see whether this will make a difference. To assess
this, we need to be clear about the question that we are raising. If
I say that we are given the tree nodes, and we want to recover the
dominance relation, then that is a pretty useless affair. The tree nodes
are constituents of our string, so the nodes are already giving us the
tree structure. To give you an example, let us take the string

Jack is a teacher and a hobby astronomer or a(19)

doctor.

If I reveal the tree nodes, what could they possibly stand for if not
strings? But as each string stands for a constituent, this is to reveal
too much. So, what is in question is whether there exists a node in
the tree corresponding to, say, a hobby astronomer or a doctor, or
whether there is rather a node in the tree representing a teacher and

a hobby astronomer. If we have the strings that correspond to tree
nodes, the dominance order is simply inclusion, and the linear order
is precedence. Thus, knowing the substrings is all there is to know
anyway.

We assume therefore that we are given only the string. Additionally,
we are given for each letter (or word, for that matter) the c-command
domain in the form of the mother constituent. Once again, if we would
give the c-command domain for each constituent this would be too
much: then we would already have revealed the constituents (or prac-
tically all of them). To be a constituent other than the root is to stand
in a c-command relation with someone else. So, we need something
less trivial. Therefore, we say that we only reveal the c-command do-
main of each letter. This can be done in the form of just revealing the
c-command relation restricted to the set of letter occurrences. This will
be enough as soon as every constituent actually contains a letter as
an immediate constituent. If not, additional information about other
constituents must be made available. Now consider instead that you
are given for each letter the c-command domain in the form of the re-
mainder of the mother constituent minus the letter in question. It is a
trivial matter to find the least constituent containing any given letter,
and so we are back to the previous case. Thus, none of the two version
are any different. This can be formalised thus.



12 englishMARCUS KRACHT

Definition 1. Let T be a set and ≥ a dominance relation on T . Then

C(≥) := {〈x, y〉 : for all z > x: z ≤ z}(20)

C◦(≥) := C(≥)− {〈x, y〉 : x ≤ y or y ≤ x}(21)

Proposition 2. Let T be a set and ≥, ≥′ be dominance relations both
with set L ⊆ T of leaves, such that every nonbranching node is a leaf
(= in L). Assume that every constituent contains a leaf as immediate
constituent. Then if C(≥) ∩ L2 = C(≥′) ∩ L2, ≥=≥′. Also, if C◦(≥
) ∩ L2 = C◦(≥′) ∩ L2, ≥=≥′.

Despite the rather complicated form in which this appears, this is
actually quite useful for practical purposes. For the conditions are
actually guaranteed by design of the grammar.

Observe that

(22) C◦(≥) ∩ L2 = (C(≥) ∩ L2)− {〈x, x〉 : x ∈ L}
There is a final point to consider. The notion of c-command is actu-

ally symmetric. This is disturbing in many cases. For example, many
people want it to be transitive but loop free. The latter comes down to
being irreflexive. Thus if x c-commands y and y c-commands z we want
that x also c-commands z; but we do not want that x c-commands x.
In this case x c-commands y may actually be taken to mean something
like: x needs y as input. Yet, under the above definitions, if x and
y are sisters, they c-command each other. If c-command is transitive,
x would c-command itself. This is unacceptable. So, we define our
final notion, which is asymmetric c-command, ac-command for short.
It is defined on the basis of c-command: x ac-commands y if (a) x
c-commands y, (b) y does not c-command y.

Formally, this is done as follows. For a binary relation R, let R` :=
{〈y, x〉 : x R y}. Further, put

(23) A(R) := R−R`

It can be verified that ac-command, based on any of the previous no-
tions, is both transitive and irreflexive.

Now we ask the same question: suppose we have A(C(≥)) restricted
to the leaves—is it possible to reconstruct ≥? (It is easy to see that
A(C◦(≥)) = A(C(≥)).) The answer is yes again. For this we proceed
as follows. Let a be an occurrence of a letter with empty ac-domain.
This is going to be of level 0. a is of level n + 1 iff it does ac-command
only letters of level n, and it does ac-command at least one such letter.
Now, two letters of level n + 1 are sisters iff they ac-command the
same level n elements. Two letters of level 0 are sisters iff they are
ac-commanded by the same letters of level 1.



englishON SCOPE AND C-COMMAND 13

References

[1] Chris Barker and Geoffrey Pullum. A theory of command relations. Linguistics
and Philosophy, 13:1–34, 1990.

[2] Paul Gochet and Pascal Gribomont. Logique. Hermes, Paris, 1998.
[3] Marcus Kracht. Mathematical aspects of command relations. In Proceedings of

the EACL 93, pages 241 – 250, 1993.
[4] Moshé Machover. Set theory, logic and their limitations. Cambridge University

Press, Cambridge, 1996.
[5] Elliott Mendelsohn. Introduction to Mathematical Logic. Van Nostrand, New

York, 1964.
[6] Wolfgang Rautenberg. Einführung in die Mathematische Logik. Ein

Lehrbuch mit Berücksichtigung der Logikprogrammierung. Vieweg, Braun-
schweig/Wiesbaden, 1996.

Department of Linguistics, UCLA, 3125 Campbell Hall, Los Ange-
les, CA 90095-1543


