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A rule is admissible in a logic L if it can be added without increasing
the set of tautologies of L. For example, the rule ϕ/∀x.ϕ is admissible
in predicate logic, since if ϕ is a theorem, so is ∀x.ϕ. The notion of
an admissible rule is quite central to logic, but it hardly attracts any
attention outside a small group of people. Modern textbooks do not
teach a student about consequence relations let alone admissible rules,
and it is hard to find other books on logic that do. It is one of the aims
of this book to fill this lacuna.

It deals specifically with the question of admissibility of inference
rules, and here mainly in the context of intermediate and modal logic.
1 Nevertheless, the reader will also learn a good deal about algebraic
logic, deductive systems and modal and intuitionistic logic in general.
The book contains six chapters, of which the first two present the
general theory of algebraic, modal and intuitionistic logic, while the
remaining four chapters deal with the problem of admissibility of rules
in modal and intermediate logic. We shall summarize the first two
chapters before entering a review of the book in a more chronological
fashion.

Even though the results are more general, we shall often take ad-
vantage of the fact that we are dealing with extensions of K4 and su-
perintuitionistic logics. This will eliminate certain complications, into
which we will not go, since they are not relevant for the main results.
We assume that the reader is acquainted at least with modal and in-
tuitionistic logic. For a general introduction we refer to [2]. In what
is to follow, we shall try to use the most standard terminology, which
is not necessarily the author’s own. For example, we shall make use of
generalized Kripke–frames rather than models. This will help in the
formulation of the results. Recall that a Kripke–frame is a pair 〈F,R〉,
where F is a set and R ⊆ F 2. A generalized Kripke–frame (or frame
henceforth) is a triple F = 〈F,R, U〉, where 〈F,R〉 is a Kripke–frame

I wish to thank Vladimir Rybakov for useful discussions while writing this review.
1Although the book also treats tense logic in the introductory chapters, there

are no results of substance proved about them later. I will therefore ignore tense
logic in sequel.
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and U ⊆ ℘(F ) is closed under intersection, complement and the oper-
ation τ(A) := {y : if y R x then x ∈ A}. A Kripke–frame 〈F,R〉 is
often tacitly identified with the general frame 〈F,R, ℘(F )〉. A modal al-
gebra is a quintuple A := 〈A, 1,−,∩, τ〉, where 〈A, 1,−,∩〉 is a boolean
algebra with unit, complement and intersection, and τ : A→ A a func-
tion satisfying τ(1) = 1, τ(a ∩ b) = τ(a) ∩ τ(b). A frame F defines the
wrapping algebra F+ by

F+ := 〈U, F,−,∩, τ〉 .
Conversely, given a modal algebra A, let U(A) denote the set of ultra-
filters of A. Put U R V iff for all τ(a) ∈ U we have a ∈ V ; finally, put
â := {U ∈ U(A) : a ∈ U}. Then

A+ := 〈U(A), R, {â : a ∈ A}〉
is a generalized frame, called the dual frame of A. Recall that for a
modal algebra A, A+

+
∼= A, but for a generalized frame F, F+

+ ∼= F
only holds if F is descriptive. A (Kripke–)model is a pair 〈F, β〉, where
F is a generalized frame (Kripke–frame) and β a valuation, that is, a
partial function from V into U . 〈F, β〉 |=x ϕ for x ∈ F is defined by
induction on ϕ as usual. If β is defined only on finitely many variables,
we call the model weak.

We shall briefly mention a few results on the connection between
modal and intermediate logics. The so–called Gödel–McKinsey–Tarski
translation T from intuitionistic formulae to modal formulae is defined
as follows.

T (p) := �p
T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)
T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ)
T (ϕ→ ψ) := �(T (ϕ) → T (ψ))
T (¬ϕ) := �¬T (ϕ)

Given an intermediate logic L, we define ρ(L) := S4⊕T [L] and σ(L) :=
Grz ⊕ T [L]. Here, the notation L ⊕X is used to denote the (normal)
extension of L by X, where X is a set of formulae. Given a modal
logic L′ containing S4 we put τ(L′) := {ϕ : T (ϕ) ∈ L′}. We call L′

a modal companion of τ(L′). For each intermediate logic the set of
modal companions is exactly the interval [ρ(L), σ(L)]. The mapping σ
is an isomorphism between the lattice of superintuitionistic logics and
the lattice of normal extensions of Grz. The translation is faithful with
respect to a number of properties, such as tabularity, and the finite
model property (fmp).

Take a language L. A consequence relation over L is a relation
` ⊆ ℘(L)× L such that
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(1) if ϕ ∈ ∆ then ∆ ` ϕ,
(2) if ∆ ` ϕ then ∆ ∪ Γ ` ϕ,
(3) if ∆ ` ψ for every ψ ∈ Γ and if Γ ` ϕ then ∆ ` ϕ.

` is structural if from ∆ ` ϕ follows ∆σ ` ϕσ, where σ is a substitution,
and ` is finitary if ∆ ` ϕ implies that there exists a finite ∆0 ⊆ ∆ such
that ∆0 ` ϕ. We will consider in sequel only structural and finitary
consequence relations. 2 Given `, we put Taut(`) := {ϕ : ∅ ` ϕ}, and
call it the set of tautologies of `.

A rule is a pair ρ = 〈∆, ϕ〉, where ∆ ⊆ L and ϕ ∈ L. For example,
MP = 〈{p, p→ q}, q〉 is the well–known rule of Modus Ponens. Alter-
native notations for rules are δ0, . . . , δn−1/ϕ. So, the rule MP is also
written like this: p, p→ q/q or even, more visually, like this

p, p→ q

q

ρ is a derived rule of ` if ρ ∈ `. Given a set R of finitary rules we let
`R denote the least finitary structural consequence relation in which
all rules from R are derived rules. This is uniquely defined. We call R
an axiomatization of ` if ` = `R.

Definition 1. Let ρ = 〈∆, ϕ〉 be a rule and ` a consequence relation.
ρ is admissible in (or for) ` if for every substitution σ: if ∆σ ⊆
Taut(`) then ϕσ ∈ Taut(`). ` is called structurally complete if
every admissible rule of ` is also derivable.

Clearly, every derived rule is also admissible. The converse is not true
as we shall see, and this of course makes the notion of admissibility all
the more interesting.

The notion of an admissible rule is defined on the basis of the set of
tautologies alone, and this means that there are several consequence re-
lations with the same set of tautologies. Some examples may illustrate
this. Let L be a modal logic. Then two special consequence relations
are generally associated with L. These are called the local consequence
relation, `L, and the global consequence relation, 
L. They are defined
as follows. ∆ `L ϕ if ϕ is provable from ∆ ∪ L by means of MP alone;
∆ 
L ϕ if ϕ is provable from ∆∪L by means of MP and MN := p/�p.
The rules MN and DN := �p/p are both admissible rules of `K, but
neither is derivable. MN is a derived rule of 
K, while DN is admissible
but not derivable. In the book, the symbol `L is used for what we have

2In the book, there is an occasional reference to infinitary rules, and some results
are proved about them. However, the majority of results concern finitary rules and
finitary consequence relations.
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called the global consequence relation of L. We shall not follow this us-
age, since most people would find that irritating. There is a particular
reason for preferring 
L over `L. The latter is in general not finitely
axiomatizable even when L is. This is so because we cannot ensure the
closure of L under MN other than by assuming infinitely many axioms.
For an intermediate logic L, the consequence relation `L is defined as
the local consequence relation, but it matches the global consequence
relation of σ(L) under the translation T . The Theorem 3.2.2 (called
the Translation Theorem) says that a rule ρ is admissible in L iff T (ρ)
is admissible in σ(L). Given this, it suffices to develop the theory of
admissibility for modal logics. The results for intermediate logics can
be derived from them. This is how we shall present the results here.

The consequence relations over a language form a complete lattice,
and for each set L of formulae, the set of consequence relations whose
set of tautologies is L form an interval, whose maximal element is
structurally complete. We denote this consequence relation by `m

L .We
say that in L the admissibility of inference rules is decidable if for any
finitary ρ it is decidable whether or not ρ is admissible, ie whether or
not ρ ∈ `m

L . Given a modal logic, the following questions naturally
arise:

. Is `m
L finitely axiomatizable?

. Is `m
L decidable?

. How many consequence relations exist in the interval [
L,`m
L ]?

. Is 
L structurally complete?

Clearly, the last problem is a special case of the third one, but it is
this one which is treated in this book. To answer these questions, some
more machinery needs to be developed. Recall Birkhoff’s theory of
equationally definable classes. From this theory it follows that there
is an antiisomorphism between the lattice of normal modal logics and
the lattice of varieties of modal algebras, where both are ordered by
class inclusion. Namely, in the present context, an equation of the
form ϕ

.
= ψ can be replaced by the equation ϕ ↔ ψ

.
= >, which in

turn is equivalent to the axiom ϕ ↔ ψ. Conversely, the axiom ϕ is
equivalent to the equation ϕ

.
= >. This opens the way for an algebraic

model theory of modal logic, aided by Stone’s representation theorems
for boolean algebras. Now, a similar correspondence holds between
quasi–identities and quasi–varieties. Quasi–identities are equivalent in
this context to what is known as Horn–clauses. A Horn–clause is a
sentence of the form (∀~x)(

∧
i<n δi → ϕ), where all the δi (i < n) and
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ϕ are atomic formulae. Quasi–varieties are those classes that are ax-
iomatizable by means of quasi–identities. They are therefore elemen-
tary, and closed under products and subalgebras. We say that a rule
ρ = δ0, . . . , δn−1/ϕ is valid in a modal algebra A if the correspond-
ing Horn–clause (∀~x)(

∧
i<n δi

.
= > → ϕ

.
= >) is valid in A. (Here, ~x

contains all variables occurring free in ρ.)
Now, given a modal logic L and a cardinal κ, denote by FL(κ) the

freely κ–generated L–algebra. Of particular interest in the study of
admissible rules is FL(ω). For the following holds.

Theorem 2. ρ is admissible for L iff ρ is valid in FL(ω).

Hence, the quasi–variety axiomatized by `m
L is exactly FL(ω)Q, where

KQ denotes the smallest quasi–variety containing K.
We now enter the book at Chapter 3. This is really the heart of

the whole book. It contains the most difficult and powerful theorems.
Throughout we shall assume that L is a modal logic containing K4.
An important notion is that of an n–characterizing model. It can be
described in standard terms as follows. Take the free L–algebra FL(n)
on n generators. Denote the dual frame of FL(n) by CanL(n). This
frame is infinite but it contains as a generated subframe the frame
of all points of finite depth, which we denote by ChL(n). Together
with the natural valuation this constitutes the n–characterizing model,
which we also denote by ChL(n). It is known that each point of infinite
depth sees a point of arbitrary finite depth (see Fine [6]). Theorem 3.3.6
asserts that if L has the finite model property every nontheorem of L is
refutable in one characterizing model. 3 The n–characterizing models
can be used to determine the admissibility of a rule as follows. Let L
have fmp. Then the wrapping algebra of ChL(n) is actually isomorphic
to FL(n). Since FL(n) is a subalgebra of FL(ω), one can show that
{FL(n) : n ∈ ω}Q = FL(ω)Q. Now, suppose we are given a rule ρ.
Then ρ is admissible in L iff it is admissible in every n–characterizing
model. Finally, Lemma 3.4.2 says that if ρ contains k variables, ρ is
admissible in ChL(n) iff it is admissible in ChL(k). This gives the first
general result:

Theorem 3. Let L be a finitely axiomatizable logic containing K4. If
the variety of L–algebras is locally finite, the admissibility of rules for
L is decidable.

3Actually, the condition of finite model property is lacking from the formulation,
which is clearly false. Otherwise, any logic containing K4 has the fmp, since every
generated subframe of ChL(n) is finite.
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This includes all tabular logics, since they generate a locally finite
variety and are finitely axiomatizable. There is a criterion on local
finiteness, which runs as follows. Call a logic L of depth d if no refined
L–frame contains a sequence of points xi, i < d+1, such that xi R xi+1

but not xi+1 R xi. L generates a locally finite variety iff it is of depth
d for some d ∈ ω.

Theorems 3.5.1 and 3.5.2 are still more general. We will state them
as one:

Theorem 4. Suppose that L is a logic containing K4. Suppose further
that

(1) L has fmp,
(2) L has branching below m for some m ∈ ω,
(3) L has the effective m–drop point property for some m ∈ ω.

Let ρ be a rule with k variables. Then ρ is admissible in L iff it is
valid in the wrapping algebra of the Kripke–frame underlying the k–
characterizing frame. Furthermore, suppose that there is an algorithm
which decides for a finite frame whether it is an L–frame. Then there
exists an algorithm deciding whether a given inference rule is admissible
for L.

Here, a logic has branching below m if whenever in some frame for
L there is a cluster with d immediate successor clusters, then whenever
we find d incomparable clusters in ChL(n), there is a cluster C having
these clusters as its immediate successor clusters. The effective m–drop
point property is still more cumbersome to define. To understand it,
recall the selection procedure of Fine and Zakharyaschev (see [6] and
[8]). This procedure extracts a finite model out of a given model M
on the basis of a set Y of formulae closed under subformulae. Denote
this frame by X(M, Y ), and by Xm(M, Y ) the model containing both
X(M, Y ) and the points of depth at mostm. (We are assuming that the
model is weak.) Crucially, this procedure does not preserve the truth
of all formulae (since we are taking subframes, which are in general
not generated) but it does preserve the truth of all formulae from Y .
For cofinal subframe logics this shows that they have the finite model
property. The m–drop point property says the following. Suppose that
we have a finite n–generated L–model M and that it is large. Then it
contains a submodel W ⊇ Xm(M, Y ), which is contractible onto a L–
frame of no more than g(x, y) elements, where g is a recursive function
and x = |Y |, and y the number of points of depth at most m in M.

The proof of this theorem uses the selection procedure. It shows that
if ρ is refutable in the n–characterizing model then we can construct
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a model whose size we can estimate a priori and in which ρ is refuted
as well. This model also has the so–called view–realizing property.
Conversely, if such a model exists, ρ is refutable in the n–characterizing
model. The proof of the latter statement is the most involved, but it
seems that it can be simplified using the technique of homogenization
proposed in [7].

As it turns out, the standard modal systems, K4, S4, GL, Grz, S5,
with or without an axiom of finite width, all satisfy the conditions of
this theorem, and the problem of admissibility is therefore decidable
in them. By the Translation Theorem, admissibility of inference rules
is decidable for the logics Int and LC and many more. The remainder
of Chapter 3 is devoted to some questions related to the decidability
of admissibility. For example, if a logic L has the disjunction property
and the admissibility problem is decidable, then the universal theory
of FL(ω) is decidable. However, as is also shown, mostly the elemen-
tary theory of this algebra is undecidable for the standard systems (K,
K4, GL). This gets even worse when we consider the logic of schemes.
Schemes are introduced to study the admissibility problem for rules in
first–order theories. A scheme is a formula S formed from variables
zi, i ∈ ω, for first–order formulae using the boolean connectives and
the quantifiers (∀xi), (∃xi), where the xi (i ∈ ω) are first–order vari-
ables. A scheme S(z0, . . . , zn−1) is valid in a first–order theory T if
S(α0, . . . , αn−1) is derivable in T for all first–order formulae αi, i < n.
A valid scheme (for all first–order theories) is for example

(∀x0)(z0 ∧ z1) ↔ (∀x0)z0 ∧ (∀x1)z1 .

A rule is a pair 〈Σ, S〉, where Σ is a set of schemes, and S a single
scheme. It is admissible in a first–order theory T if for all substitutions
s of formulae for scheme variables, if every member from Σs is valid
in T , then so is Ss. An example of a rule is the rule 〈{z0}, (∀xi)z0〉;
it is admissible in all first–order theories. It turns out that if a first–
order theory T has infinite models, then the set of T–valid schemes is
not decidable; if T is in addition decidable, its set of valid schemes is
not even recursively enumerable. This means that in such cases the
admissibility of a first–order rule is undecidable. It is decidable iff T
has only finitely many finite models. The chapter closes with examples
of logics (due to Alexander Chagrov) which are decidable but for which
the problem of admissibility of rules is undecidable. Furthermore, it is
shown how to prove admissibility using the so–called reduced form of
a rule.

The fourth chapter deals with the problem of finding axiomatic bases
for the set of admissible inference rules. It defines an infinite series of
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frames, whose precise definition we will not give here, and shows that
if these frames are L–frames and L has the finite model property, the
property of branching below m for some m and the effective m–drop
point property, then L has no basis of admissible rules in finitely many
variables. 4 This covers K4, S4, GL, Grz and their extensions of finite
depth, and consequently also the logic Int (and its extensions of finite
depth). This answers negatively the question of Harvey Friedman,
whether or not Int has a finite basis of admissible rules. Crucially,
the logics for which this technique works must be of infinite width, so
there is hope that logics of finite width behave differently. Indeed, it
is shown in Section 4.3 that S4.3 is much different in this respect. The
main result is here that if L ⊇ S4.3 then `m

L is axiomatizable over 
L

by the single rule 3p,3¬p/q. The quasi–variety generated by a finite
number of finite, subdirectly irreducible algebras has a finite basis for
its set of quasi–identities, provided these are algebras for K.T. This
means that the consequence determined by these algebras is finitely
axiomatizable. This is false if the algebras are not K.T algebras. If we
return to the question of admissibility of inference rules, the picture
changes again. There is a finite Grz–frame of depth 3, whose logic has
no basis for admissible rules in finitely many variables. This is the
best possible result, since Remazky has shown that all tabular logics
of depth 2 have a finite basis for admissible rules.

Chapter 5 deals with questions of structural completeness. It in-
troduces a technique originally due to Citkin, which is an analogue of
Jankov’s technique of splittings (see [3] and [4]). Before we can intro-
duce this technique, it is worthwhile to recall a few facts. If L is a
logic that has the finite model property then the free algebra FL(ω)
is a subalgebra of the product of the finite subdirectly irreducible L–
algebras. Under this condition, a logic L is structurally complete iff
every finite s. i. L–algebra is embeddable into the algebra FL(ω) (or
some FL(n), n a finite number). Now let A be a finite, subdirectly
irreducible K4–algebra. Then there exists a largest element ω 6= 1 such
that ω ∧ τω = ω. Call this element the opremum. Now, take for each
element a of A a propositional variable pa and let r(A) be the following
rule:

r(A) :=
{pa∗b ↔ pa ∗ pb : a, b ∈ A} ∪ {p◦a ↔ ◦pa : a ∈ A} ∪ {p1}

pω

4This implies that there is no finite basis, since this basis has finitely many
variables. But it also implies that there is no infinite basis using only finitely many
variables.
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where ∗ runs through all the basic binary connectives and ◦ through all
the basic unary connectives. This is the quasi–characteristic inference
rule of A. Now the following holds:

Theorem 5. Let A be a finite, subdirectly irreducible K4–algebra. Then
for any K4–algebra B, r(A) is invalid in B iff A is isomorphically
embeddable into B.

It is not hard to show that no K4–algebra with at least two elements
is embeddable into FK4(ω). Armed with this result one can show that
there are infinitely many admissible rules, which are independent from
each other. One has to show only that there are infinitely many simple,
finite K4–algebras. On the other hand, the set of admissible quasi–
characteristic rules of S4 and Grz have a finite basis. In the latter case
the generalized Mints’ rule alone forms a basis:

[(p→ q) → (q ∨ r)] ∨ u
[((p→ q) → p) ∨ ((p→ q) → r)] ∨ u

For S4 we need in addition to the modal translation of this rule two
more, one of which is the quasi–characteristic rule of the two element
cluster, which is equivalent to the rule 3p,3¬p/q, which we have al-
ready met above.

Indeed, the results on extensions of S4.3 can be understood quite
easily now. All we need is the following two facts, which are not hard
to establish:

Lemma 6. Let L be a modal logic containing S4.3 and A a finite,
subdirectly irreducible L–algebra. Then A× 2 is a subalgebra of FL(ω),
where 2 is the two–element S4–algebra.

Lemma 7. The rule 3p,3¬p/q is valid in A iff the wrapping algebra
of the two element cluster is not embeddable into A.

Now, any extension L of S4.3 is finitely axiomatizable and has the
finite model property, by results of Fine and Bull ([1] and [5]). L
has the property of branching below 1 and the effective m–drop point
property for some m. It follows that the admissibility of inference
rules is decidable for L. Second, if we add the rule 3p,3¬p/q then the
resulting consequence relation axiomatizes the quasi–variety containing
all finite L–algebras of the form A× 2. Since L is determined by such
algebras, we see that this quasi–variety contains FL(ω). Moreover,
since the smallest quasi–variety containing FL(ω) must contain these
algebras, the two are equal. Hence we have axiomatized `m

L .
The chapter continues with the investigation of intrinsically complete

modal logics. Call a logic L hereditarily structurally complete if all
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its extensions are structurally complete. L is structurally precomplete
if it is not structurally complete, but all its proper extensions are.
It is shown that there are exactly 20 structurally precomplete logics
containing K4, and they are all tabular. (The Kripke–frames for these
logics are explicitly given.) A logic is hereditarily structurally complete
iff neither of these frames is a frame for the logic. Consequently, there
is a least hereditarily structurally complete logic, and this logic is the
join of twenty splitting logics. From this, results on S4 and Int are
immediately derived (since the frames are explicitly known). All these
logics must be of width 2.

Chapter 6 rounds off the book. It covers a number of related issues.
The first section deals with rules that have parameters and extends
the results obtained so far to such rules. The second and third section
characterizes those logics containing S4 or Int in which all rules ad-
missible for S4 (Int) are also admissible. It turns out that these logics
closely resemble the hereditarily structurally complete logics (indeed,
they form a subset of these logics). The condition is that they are of
width 2 and tightness 1 (in the terminology of [7]). The latter means
that the following frame is not a subframe of an L–Kripke frame:

•Q
Q

QQs

�
�

��3

•

• -•

The remaining two sections are devoted to the study of non–compact
logics, where a logic L is called compact if the following is the case. Let
ϕ be given. If for each finite subset of L, ∆, there is a Kripke–frame
F such that F |= ∆ but F 2 ϕ then there is an L–Kripke frame F such
that F 2 ϕ.

This book gives an exhaustive overview over the problem of admis-
sibility of rules in modal and intuitionistic logics. Most of these results
are due to the author himself. Many constructions are delicate and use
sophisticated methods of modal logic. Certainly, without the modern
inventory of techniques for transitive logics (which have been provided
among other by Fine and Zakharyaschev) these results would certainly
have been impossible. Nevertheless, the author uses them with ease
and imagination. 5

Despite all this, the book also has its shortcomings. I feel that the
author has not tried to make things really simple. His terminology

5Vladimir Rybakov has emphasized in personal communication that he has de-
veloped these techniques independently of Fine and Zakharyaschev.
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(model, compact logic) is often not standard, and the notation not
really suggestive or clumsy. It leads to such constructs as a≤≤, which
denotes the cone generated by a (under the relation denoted by ≤).
To give another example, F ◦ 1 denotes the disjoint union of the frame
F with the one element reflexive frame. But why not write F t 1,
where t denotes the disjoint union? And why not use • instead of 1
— as is used in pictures? Second, the results on extensions of S4.3
are readily understood if the techniques of Chapter 4 are used, as we
have shown above. But this is nowhere mentioned or explained. This
means more effort than necessary. There are so many mistakes and
typographical errors that an unexperienced reader is easily put off.
Even though I have not found any deeply worrying mistakes, I would
bet that there is no single flawless page in the book. This concerns both
the mathematical formulae as well as the English prose. The author
must be held responsible for the errors in the formulae, and for tacitly
changing the notation, which occurs not so infrequently. However,
the English language is not something that an author is supposed to
know well enough to write a book. For that, he should be able to
rely on the publishers. Yet, the publisher didn’t bother to have this
book proofread beforehand. So, even though the author has had other
people read the manuscript, the quality of the prose varies considerably.
If this (widespread) policy of editing books continues, the literary style
of scientific books will deteriorate in the long run. Moreover, writers
with a native command of English will have an advantage in publishing
books, since they do not need to worry that much about the language.
All others run the risk of making stupid mistakes that will appear in
print (and upset the critic). Another concern is the layout. Also the
layout and typesetting is now entirely a responsibility of the author,
which those experienced with it will enjoy. For all others it is a pain
in the neck. The present book illustrates what can happen if someone
not so experienced with typesetting is left alone with the job.

With all this being said, the book is enjoyable for the experienced
reader. It is full of innovative methods and strong results not only
about the admissibility of rules. It deepens our understanding of modal
logic, and of logic in general. And it may — hopefully — show that
modal logic is full of deep and also difficult theorems, and help to ad-
vance a topic that is nowadays a rather neglected area of logic, namely
the study of rules and logical consequence. I should mention perhaps
that the notion of a rule as considered in the book is — at least in
one instance — not general enough. For there are often cases when we
want to have several conclusions. Let us therefore write ρ = 〈∆,Γ〉 for
sets ∆ and Γ to denote such a rule and call it a multiple conclusion
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rule. ρ is called admissible in L if for every substitution σ: if ∆σ ⊆ L
then for some γ ∈ Γ γσ ∈ L. In the literature there are several ex-
amples of multiple conclusion rules, for example the rule of margins:
〈{p → �p}, {p,¬p}〉. Another example is related to the disjunction
property. Recall that an intermediate logic has the disjunction prop-
erty if whenever ϕ ∨ ψ ∈ L then either ϕ ∈ L or ψ ∈ L. L has the dis-
junction property iff the multiple conclusion rule δ := 〈{p ∨ q}, {p, q}〉
is admissible in L. 6 It would be interesting to develop a theory of
such rules. It is clear that multiple conclusion rules are connected with
properties of the quasi–varieties. For example, the admissibility of mul-
tiple conclusion rules is decidable iff the universal theory of the algebra
FL(ω) is decidable. Thus, by the results of the book, the problem of
admissibility of multiple conclusion rules is decidable for all extensions
of S4.3. It is of course beyond the scope of this review to present a
theory of multiple conclusion rules, but we have at least indicated how
such a theory might go and that it is worth its while. Now it is time
for others to pick up the book and continue the research.
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