
Logic and Control: How They Determine the
Behaviour of Presuppositions

Marcus Kracht
II. Mathematisches Institut

Freie Universität Berlin
Arnimallee 3
14195 Berlin

1

Marcus Kracht 20.November 1992 2

1 Three Problems for Presuppositions

Presupposition is one of the most important phenomena of non-classical logic as
concerns the applications in philosophy, linguistics and computer science. The
literature on presuppositions in linguistics and analytic philosophy is rather rich
(see [8] and the references therein), and there have been numerous attempts in
philosophical logic to solve problems arising in in connection with presuppositions
such as the projection problem. In this essay I will introduce a system of logics
with control structure and elucidate the relation between context-change potential,
presupposition projection and three-valued logic.

For a definition of what presuppositions are consider these three sentences.

(1) Hilary is not a bachelor.

(2) The present king of France is not bald.

(3) limn→∞ an , 4

Each of these sentences is negative and yet there is something that we can infer
from them as well as from their positive counterparts; namely the following.

(1†) Hilary is male.

(2†) France has a king.

(3†) (an)n∈N is convergent.

This is impossible under classical circumstances. In classical logic, nothing of
significance can be inferred from both P and ¬P – but here we can infer non-trivial
conclusions from both a sentence and its negation. Exactly how does this come
about? The most popular answer has been given by Strawson. According to him a
sentence may or may not assert something; the conditions under which a sentence
asserts are not only syntactic but also semantic in nature. So, while Dog the table
very which under is syntactically ill-formed and for that reason fails to assert, the
sample sentences given above are syntactically well-formed and yet may fail to
assert, namely when some conditions are not met. According to Strawson we say
that a sentence S presupposes another sentence T if whenever S asserts, T is true.
For example, (3) presupposes an is convergent since the former is assertive only if
the latter is true. We will not question this view here; all we ask of the reader at
this stage is his consent that the given intuitions are sound. If they are, sentences
can no longer be equated with propositions. A sentence is a proposition only if
it is assertive. Assertivity depends on the facts and hence it is not possible to say

Marcus Kracht 20.November 1992 3

outright whether a given sentence is a proposition; this can vary from situation to
situation. The distinction between sentences and propositions carries over to logic
if we want to hold on to the assumption that sentences must have truth values.
Then, as the classical truth-values shall continue to function in the same way, in
a given model a proposition is still defined to be a sentence that is either true or
false. On the grounds that there exist non-propositions we need to postulate at least
one more truth-value, which, by penalty of self-contradiction, cannot mean has no
truth-value; rather, it means has no classical truth value.

Three problems of presupposition theory can be isolated with which we will
deal in turn. These are the separation problem, the projection problem and the
allocation problem. The projection problem has a long intellectual history in lin-
guistics. Intuitions have oscillated between an interpretation of presuppositions as
a reflex of logic or as a result from the speaker-hearer-interaction, in short between
a purely semantic and a pragmatic account. Strong Russellianists such as [4] want
to deny it any status in semantics while most semanticists try to derive as many of
the projection phenomena from their theory as they can. We will see shortly that
both must be wrong. If semantics has to do with meaning that is static (at least
in the short run) then computer languages and mathematical jargon provide solid
evidence that three valued logic is here to stay and presupposition has a home in se-
mantics. Yet, if one and the same sentence has two different meanings, that is, if we
acknowledge that there are cases of ambiguity with respect to the presuppositions
which are only resolved by the context, there must be more to presupposition than
a semantical theory can provide. The problem of projection is generally stated as
follows. Suppose that a sentence S is built from some simple sentences S 1, . . . , S n

and that we know the presuppositions of S 1, . . . , S n, can we compute the presup-
positions of S ? This is really a non-trivial question. A first inspection of examples
suggests that presuppositions are simply accumulated; this is the theory of [5]. But
consider (4).

(4) If (an)n∈N is convergent then limn→∞ an , 4.

It has quickly been found that if S presupposes T then T and S as well as If T
then S do not presuppose T . So there is a general question as to why this is so
and what other rules of projection are valid. It has gone unnoticed that the way
in which we have stated the projection problem it becomes ambiguous or at least
hopelessly untractable in view of the data that has been accumulated over the years.
It is known, namely, that the logical form of a complex sentence need not directly
conform to the logical form of the message communicated. Subordination provides
one example; another, rather vexing example is the following announcement that
could be seen e. g. in a cinema. (This example is due to [6].)

Marcus Kracht 20.November 1992 4

(5) Old age persons
{

and
or

}
students at half price.

No matter whether the board says and or or, we read the same message out of
it. This means that we have to postulate two levels of representation similar to
syntax: the surface form, called here syntactic logical form, and the logical form
of the message that is communicated. We use the word message rather loosely
here but it should be clear that it is not the same as the utterance of the sentence or
meaning thereof. The logical form of the message will be called the underlying (or
semantic) logical form. The map from the syntactic logical form to the underlying
logical form is not unique and it is not at all clear how the two relate; to spell this
out in detail is the the problem of the underlying logical form. Once the underlying
logical form is found, the question how the presupposition of a complex expression
is computed can be asked again and answers can be given by direct calculation; we
will show how this is done using three valued logic. It is in the following sense that
I will understand the projection problem: Given the underlying logical form of a
sentence, what are its presuppositions?

Distinct from the projection problem in the narrow sense is the allocation prob-
lem. 1 To formulate it we assume that the semantics of words or phrases gives rise
to explicit presuppositions. Though there is no surface connective that is equiv-
alent to the presuppositionification operators ↓ or ∇ to be defined later, there are
constructions or words that need to be translated using↓or ∇. Typical examples are
know or bachelor. In DRT terms, they create a special presuppositional box which
I call a semantic anchor. This anchor needs to be dropped somwhere. That there
really is a choice between places at which to drop this anchor, let us consider the
next examples.

(6) Everytime X saw four aces in Y’s hand he signalled to his partner.

(7) If the judges make a mistake in the formal procedure the lawyer will persuade
his client to appeal.

In (6), we can assume X to have a fixed partner, that is, we can read into (6) a
stronger statement than the one given. (I should excuse myself here for not being
precise; of course, by statement given I mean something like the syntactic logical
form but this is not 100% right.) But we need not; if we assume that X is playing
in each game with a different partner, the referent of his partner will depend on the
chosen occasion in which X sees four aces in Y’s hand. Similarly with (7). If the

1I will later challenge the picture on presupposition allocation that I will now draw. For the
moment it suffices that the problem itself becmoes clear.

Marcus Kracht 20.November 1992 5

presupposition initiated by the phrase the lawyer stays local, (7) presupposes (7†).
If it is chosen to be global, (7) presupposes (7‡).

(7†) If the judges make a mistake in the formal procedure there is one and only
one lawyer.

(7‡) There is a unique lawyer.

Admittedly, (7†) sounds artificial because we are more inclined to say that the
lawyer is sufficiently determined by the legal procedure and not the additional for-
mal mistakes that may occur. We will see that this view is not justified; but even
if it were this only fortifies our arguments that projection and allocation should
be seen in the context of the problem of logical form. To account for these dif-
ferences, we introduce a distinction between the origin of a presupposition and its
locus. First we fix an underlying logical form with respect to the language, that
is, we do not yet interpret the words by a semantical meta- or infra-language; we
can assume this level to be some variant of LF in Government and Binding. Once
we have done that we unpack the meaning of the occurring words in terms of the
representational language, a process which accidentally also produces instances of
presupposition creating operators (↓ or ∇). Or, to use the DRT metaphor, the an-
chors are now being dropped. This is a straightforward translation; we call the
place in the syntactic parse of the resulting translation at which a presupposition is
created the origin. Mostly, the origin can be located in the original sentences by
pointing at the item creating the presupposition. The representation thus created is
only a transient one. For we now consider the question whether the presupposition
should be placed somewhere else in order to obtain the correct underlying logical
form. This ‘placing somewhere else’ can be understood as a kind of movement
transformation that will remove the presupposition from its origin and reinsert it
somewhere else. In order not to offend established associations I refer to this pro-
cess as reallocation. The place at which a presupposition is finally placed is called
the locus. [7] can be understood as a theory of allocation in our sense.

The separation problem originates from a distinction between the assertion of
a sentence and the presupposition of a sentence. It consists in the problem to find,
given a sentence S , two propositions (!) A and P such that

(sep) S is true iff A is true
S is a proposition iff P is true

The separation problem has received little attention; to our knowledge it has never
been explicitly formulated. However, it is quite an important one since normal
semantic theories assume that all their predicates used in the representation are
bivalent. So, when bachelor finally receives an interpretation via, say, Montague
translation, as male′(x) ∧ human′(x) ∧ adult′(x) ∧ unmarried′(x) it is assumed

Marcus Kracht 20.November 1992 6

that male′(x), human′(x), adult′(x) as well as unmarried′(x) are classical and can
therefore be manipulated on the basis of a distinction between truth and falsity
only. Many projection algorithms are defective in the sense that it they tacitly
assume that they manipulate only propositions. In ordinary language, however, it
is not at all clear that separation can be fully carried out. For even though we can
name sentences that fulfill (sep) it is not clear whether we can have propositions
to fulfill (sep). This is due to the fact that all predicates and operators in language
are typed, that is, they need as input an object of a certain type in order to be
well-formed. For example, unmarried′(x) requires an x that is human; otherwise
Consciousness is unmarried. would count as a proposition.

Under limited circumstances, however, separation can be worked out to the bot-
tom. Such circumstances are provided in mathematics. For example, limn→∞ an ,

4 can be separated into
A : No density point of (an)n∈N is equal to 4.
P : (an)n∈N is bounded and has exactly one density point.

Likewise, a/x = 6 can be separated into
A : a = 6x
P : x , 0

The projection problem may also be formulated as follows. Given a sentence S
composed from simple sentences S 1, . . . , S n; how to separate S on the basis of a
separation A1 : P1, . . . , An : Pn?

2 Some Notions from Logic

Propositional languages have the advantage of knowing only one type of well-
formed expression, that of a proposition. Since there is a clash with the philosoph-
ical terminology I will refer to the propositions of an arbitrary propositional lan-
guage as terms. Terms are produced from variables and connectives in the known
way. Terms are interpreted in algebras. A propositional language defines a simi-
larity type of algebras in which we can interpret the variables and also the terms.
Let us fix such a language and call it L. A logic over L is defined via a set of rules
in the obvious way. A rule is a pair 〈∆,Q〉 where ∆ is a finite set of terms called
the premisses and Q a single term called the conclusion. We will not spell out the
details here and refer instead to [9]. Logics correspond one-to-one with certain
classes of matrices. A matrix is a pair M = 〈A,D〉 where A is an algebra of the
similarity type of L and D a set of elements of A. D is the set of designated ele-
ments ofM. The rule 〈∆,Q〉 is valid inM is for all valuations β we have β(Q) ∈ D
if only β(∆) ⊆ D. We write ∆ `M Q.

It is possible to give an analogical treatment of presupposition. In addition to

Marcus Kracht 20.November 1992 7

designated truth values we need a distinction between admitted and non-admitted
or unwanted truth-values. Technically, if we want to incorporate presupposition
into logic we have to expand logical matrices by a set that tells us which truth-
values are unwanted, just as we need a set of designated truth-values to tell us what
truth is. It seems natural to say that designated truth-values are admitted and hence
we get the following definition.

Definition 2.1 A p-matrix or presuppositional matrix is a triple P = 〈A,D,U〉
where D ⊆ A is a set of designated elements and U ⊆ A a set of unwanted truth
values, and moreover D ∩U = ∅. We say that P presupposes Q relative to P— in
symbols P .P Q — if for all valuations β β(P) < U implies β(Q) ∈ D.

A general theory of presuppositions in arbitrary languages is possible but we prefer
to concentrate on three valued logic in relation to the three main issues of presup-
positional theory. This does by no means imply that the abstract approach sketched
here serves no real purpose. Indeed, in computer science there are more than one
recognizable type of unwanted truth value, namely loop and fail. Moreover, in
more sophisticated logics for natural language there sometimes is a need to have
more than two truth-values. In all of these cases, a presuppositional theory can be
added on top using these abstract methods.

3 Connectives with Explicit Control Structure

Unlike classical logic, three-valued logic forces us to think quite seriously about the
meaning of simple connectives such as and and or. Indeed, there is no single best
choice of a three-valued interpretation. Rather than arguing for one interpretation
that it is best we will try to develop an understanding of the difference between
these options. We will use a computational interpretation which has its origin in
the discussion of [2]. At the heart of this interpretation lies a consistent reading of
the third truth-value as computational failure (fail or, in our context U). This failure
arises from improper use of partial predicates or functions for example dividing
by 0, taking the square root of negative numbers etc. A second component is the
addition of an explicit control structure that determines the actual computation of
the truth-value. So, rather than using logic as a meta-language describing facts, we
are interested now in a particular internal realization of logic, be it in a computer
or in a human. The fundamental difference is that truth values are not immediately
given to us just because they apply by logical force to the terms but we have to
calculate in each case which term has which truth value. This makes no difference
with respect to classical logic. But the fact that computations may fail and that this
failure itself is counted as a truth-value intertwines logic with its implementation.
To take a concrete example consider the following part of a Pascal program.

Marcus Kracht 20.November 1992 8

(8) if x < 0 then 1/(1 − x) > 1 + x;

The second clause aborts if x = 1. However, the computer will never notice this,
since the consequent is only considered if the antecedent is true; and the condition
in the antecedent preempts this failure. In total, this sentence has no presupposition
as far as the computer is concerned because it will under no circumstances fail.
This, however, is due to two reasons. (1) The computer considers the consequent
after the antecedent. (2) The computer drops the computation of the consequent in
case the antecedent is not true. We could – in priciple – think of another strategy
by which the consequent is checked first and the computation of the antecedent is
dropped if the consequent is true. Then (8) will fail just in case x = 1. On the
other hand, if the computer computes antecedent-to-consequent but looks at the
consequent regardless of the antecedent, still it will fail if x = 1. So, both (1) and
(2) are necessary.

We have isolated two properties of the standard computer implementations that
produce the presuppositional behaviour of computers. One is the directionality of
computation and the second is the principle of economic computation. If the com-
puter implements no economy strategy the resulting logic is the so-called Weak
Kleene Logic or Bochvar’s Logic. It is characterized by the fact that any failure
during a computation wherever it may arise will let the overall computation fail.
The same logic will be derived even with the economy principle but with a dif-
ferent control structure. We can isolate four control structures; the first two are
the uni-directional control structures left-to-right and right-to-left. The second are
the bidirectional control structures; here, both directions are tried; the difference
is whether the computation succeeds if only one branch succeeds (strong) or if
both succeed (weak). These four cases correspond to four diacritics;

.
→ for left-

to-right,
/
→ for right-to-left,

p
→ for bidirectional and weak and

�
→ for bidirectional

and strong. The reader may check that this gives the following truth tables.

p
→ T F U
T T F U
F T T U
U U U U

.
→ T F U
T T F U
F T T T
U U U U

/
→ T F U
T T F U
F T T U
U T U U

�
→ T F U
T T F U
F T T T
U T U U

If we define the assignment relation ≤ between truth values in the obvious way
(U ≤ F,T) then the bidirectional connectives are defined from the unidirectional
ones in the following way.

P
p
→ Q = min≤{P

.
→ Q, P

/
→ Q}

Marcus Kracht 20.November 1992 9

P
�
→ Q = max≤{P

.
→ Q, P

/
→ Q}

There is also an interpretation that does not assume that computations may
fail, i. e. that the basic predicates are partial, but nevertheless introduces three
valued logic because it admits the possibility of broken channels in information
transmission. Here we assume the connectives to be machines in a network which
are supposed to answer queries. Once activated, the machines work the query
backwards to the input channels. A single query can start an avalanche of queries
which terminates in the variables. The latter we also regard as machines, working
on no input; they are able to respond directly to a query. They can in principle give
two answers, namely T and F. In that case, everything works as in classical logic.

Now suppose that the machines can also fail to respond because they are bro-
ken, because the connection is interrupted or because some machine fails to answer
in due time. Our automaton ∨ somewhere in the network is thus faced with several
options when the answers to the queries may turn out to be incomplete or missing
at a time point. (a) It can wait until it receives the proper input; (b) It can use some
higher order reasoning to continue in spite of an incomplete answer. (b) is the op-
tion with inbuilt economy principles and (a) is the option without. The (b) option
branches into several distinct options. They are brought together as follows. We
understand that in a binary function f (1, 2) there is an information lock between
the first slot and the second slot. This lock has four positions. It can be closed (p),
completely open (�) and half-open, either to the right (.) or to the left (/). These
four positions determine in which way information about a received input, that is,
about the value of the argument that is plugged in may flow. In closed position
the left hand does not know what the right hand is doing. Even though P is re-
ceived as T it is not known to the automaton when working at Q that P is true and
it can therefore not know that it may now forget about the value of Q. It is still
waiting. The same occurs if the information lock is open from right to left. The
truth-values coincide with those given above. Of course we must now be careful
with the boolean laws since it is not guaranteed that they hold. But the typical in-
terdefinability laws of boolean logic hold for the connectives with similar control
structure. We show some of them in the next lemma.

Lemma 3.1 The following interdefinability laws hold:

P
p
∨ Q = ¬(¬P

p
∧ ¬Q)

P
.
∨ Q = ¬(¬P

.
∧ ¬Q)

P
/
∨ Q = ¬(¬P

/
∧ ¬Q)

P
�
∨ Q = ¬(¬P

�
∧ ¬Q)

P
p
→ Q = ¬P

p
∨ Q

P
.
→ Q = ¬P

.
∨ Q

P
/
→ Q = ¬P

/
∨ Q

P
�
→ Q = ¬P

�
∨ Q.

Marcus Kracht 20.November 1992 10

Answer propagation Query propagation

(1)

!

!

I

I

�
�

��

Q
Q

QQ∨

(1)

?J

�
�

��

Q
Q

QQ∨

(2)

!I

�
�

��

Q
Q

QQ∨

(2)

?

?

J

J

�
�

��

Q
Q

QQ∨

Variables and Constants

��
��

p J ?

(1)

��
��

p I !

(2)

These pictures show the behaviour of logical automata. A connective may either
compute an output answer (2) from the input answers (1) or an input query (2)
from an output query. Variables transform output queries into output answers.

Marcus Kracht 20.November 1992 11

It is instructive to see why this interpretation is sound even when the variables are
assumed to be classical. The answer is not straightforward but simple. It is best
understood with an example. We take p

�
→ p.

��
��

p
1

2 �
�

��

Q
Q

QQ→ J ?

When a query is received, our automaton sends a query with both input channels.
Suppose it receives answers as follows.

��
��

p
1

2
q

I
T

�
�

��

Q
Q

QQ→

If we assume that the connection from ‘p’ to the second (= lower) input channel is
broken, only the first channel receives the answer given by p. Yet the automaton
cannot act. The reason is that the automaton does not know that the two input
channels give the same answer; it only sees that they go out into the network but
has no idea that they are systematically connected. So it is forced to wait for the
second input. p

�
→ p is thus not always true. The situation is comparable to that

of a scientist concerned with the truth of two propositions r and s. Suppose that he
does not know that they are in fact the same such as Hesperus rises in the morning
and Phosphorus rises in the morning. So he cannot conclude that r

�
→ s is true; in

fact, only by long term experiment and/or statistical reasoning he may come to the
conclusion that the two must be the same because the one is true exactly when the
other is. Indeed, his local knowledge of the world compares directly to the limited
knowledge of the

.
→-automaton.

Returning now to the issue of presupposition we notice that the explicit control
structures give us the desired systematization of the logics; choosing uniformly the
weak bidirectional connectives realizes Bochvar’s Logic or Weak Kleene Logic,
choosing the strong bidirectional connectives we get the Strong Kleene Logic and

Marcus Kracht 20.November 1992 12

choosing the left-to-right interpretation gives us the typical computer implementa-
tions. In natural language the facts are not that simple. On closer inspection the
connectives only show a certain tendency to be asymmetrical and left-to-right. But
this default choice can be overridden as the bathroom sentences show.

(9) Either the bathroom is upstairs or there is no bathroom.

(10) If the bathroom is not upstairs there is none in the house.

It turns out that or tends to be weak and is directional only if there is a chance of
cancelling a presupposition that would otherwise be inherited. Furthermore, and
can be weak. Only if ... then shows a rather strong left-to-right tendency. But these
are only rules of thumb.

4 A Formal Approach to the Projection Problem

In three-valued logic we agreed to let P be a proposition if β(P) ∈ {T,F}. So
we have D = {T} and U = {U}. An immediate consequence is that P . Q iff
P ∨ ¬P `3 Q. For P ∨ ¬P is true iff P is either true or false, regardless of which
of the four instantiations we choose. Thus if P . Q then if P ∨ ¬P is true, P is
either true or false and thus Q is true as well. And conversely. The same holds
for classical logic. But since in classical logic no term can fail to be a proposition
under no matter what valuation, the notion of presupposition becomes trivial.

Proposition 4.1 In classical logic, P presupposes Q iff Q is a tautology.

Proof. By definition, P .2 Q if Q is true whenever P is a proposition. Thus Q is
always true, hence a tautology. QED
Only when we admit a third value the notion of presupposition starts to make sense.
In the sequel we will indeed study presupposition in the context of three valued
logic. We write . for .3.

Proposition 4.2 (0) P . Q iff P ∨ ¬P `3 Q. (∨ ∈ {
p
∨,
.
∨,
/
∨,
�
∨}.)

(i) If P . Q and P ≡3 P′,Q `3 Q′ then P′ . Q′.
(ii) If P . Q and Q . R then P . R.
(iii) P . Q iff ¬P . Q.
(iv) If P . Q and Q . P then P ≡3 Q and P (as well as Q) is not falsifiable.

Proof. (0) β(P) ∈ {T,F} iff β(P ∨ ¬P) = T. Hence if P ∨ ¬P is true, P is true or
false and by P . Q, Q is true. Also if P ∨ ¬P `3 Q and P is true or false, P ∨ ¬P is
true and so Q is true. (i) Let P . Q, P′ ≡3 P and Q `3 Q′. Assume β(P′) ∈ {T, F}.

Marcus Kracht 20.November 1992 13

Then β(P) ∈ {T,F} as well. Thus β(Q) = T; now by Q `3 Q′ also β(Q′) = T. (ii)

If Q . R then a fortiori Q `3 R and by (i) P . R. (iii) P . Q iff P
�
∨ ¬P `3 Q iff

¬¬P
�
∨ ¬P `3 Q iff ¬P . Q. (iv) Clearly, P . Q implies P `3 Q and ¬P `3 Q and

Q . P implies Q `3 P,¬Q `3 P. Thus P `3 Q `3 P. Furthermore, suppose that P
is false; then Q is true and so P must be true as well. Contradiction. Similarly, Q
cannot be false. Finally, if β(P) = U, then Q cannot be true, otherwise P is true. Q
is not false either, hence β(Q) = U as well. Dually, if β(Q) = U then also β(P) = U.
This shows P ≡3 Q. QED
Hence, if we consider the set N of all nonfalsifiable formulae then . turns out to
be irreflexive and transitive on N. Let us now analyse the formal behaviour of
presuppositions in languages of three valued logic. To this end we define a binary
connective↓by

↓ T F U
T T F U
F U U U
U U U U

Proposition 4.3 (Q↓P) . Q. Moreover, P . Q iff Q↓P ≡3 P.

Proof. The first claim is easy to verify. We turn to the second. (⇒) If Q↓P is true
then P is true. If P is true then by P . Q also Q is true, hence Q↓P is true. If Q↓P
is false, P is false. If P is false, Q is true by P . Q and so Q↓P is false. (⇐) If P is
true, Q↓P is true, so Q is true. This shows P `3 Q. If P is false then Q↓P is false
as well; and so Q is true showing ¬P `3 Q. So, P . Q. QED

It is possible to define a unary connective∇ by∇P := P↓P. It has the following
truth-table.

∇

T T
F U
U U

The idea of such a connective is due to D. Beaver. This unary connective allows to
define presuppositions in a similar way as↓. This due to the fact established in the
next theorem.

Proposition 4.4 Q↓P ≡3 ∇Q
p
∧ P ≡3 ∇Q

.
∧ P.

Proof. The formulae are truth-equivalent. For all three are true iff both P and Q
are true. Q ↓ P is false iff P is false and Q is true iff ∇Q is true and P is false iff
∇Q

p
∧ P is false iff ∇Q

.
∧ P is false. QED

To be precise: as soon as
p
∧ or

.
∧ or

/
∧ are definable,↓ is definable from ∇ and one

of the three. It is therefore a matter of convenience whether we use Q↓P or some
definition using ∇.

Marcus Kracht 20.November 1992 14

Lemma 4.5 Let ∗, ◦ ∈ {
p
∧,
.
∧,
/
∧,
�
∧}. Then ∇P ∗ ∇Q ≡3 ∇(P ◦ Q).

Proof. ∇P ∗ ∇Q can never be false since ∇P, ∇Q can never be false. Hence, we
need to check only equivalence in truth. But ∇P ∗∇Q is true iff ∇P, ∇Q are true iff
P and Q are true iff P ◦ Q is true iff ∇(P ◦ Q) is true. QED

Lemma 4.6 R ↓ (Q ↓ P) ≡3 (R ↓ Q) ↓ P. Furthermore, if ∗ ∈ {
p
∧,
.
∧,
/
∧,
�
∧} then

R↓ (Q↓P) ≡3 (Q ∗ R)↓P.

Proof. We show the second claim first. R ↓ (Q ↓ P) ≡3 ∇R
p
∧ (Q ↓ P) ≡3 ∇R

p
∧

∇Q
p
∧ P ≡3 ∇(Q ∗ R)

p
∧ P ≡3 (R ∗ Q) ↓P. Now for the first. R ↓ (Q ↓P) ≡3 ∇R

p
∧

(Q↓P) ≡3 ∇R
p
∧ (∇Q

p
∧ P) ≡3 ∇(∇R

p
∧ Q)

p
∧ P ≡3 (R↓Q)↓P. QED

The main theorem of this paragraph deals with the projection problem. Our solu-
tion is completely formal and bears only on the logical properties of presupposi-
tions. We will approach the projection problem via normal forms.

Definition 4.7 Let L be a language of boolean connectives with locks and L↓ its
expansion by↓. We say a formula P ∈ L↓ is in presuppositional normal form (pnf)
if P is syntactically equal to Q2 ↓Q1 for some Q1,,Q2 ∈ L.

Theorem 4.8 For each P ∈ B3 there exists a π(P) ≡3 P which is in presupposi-
tional normal form.

Proof. The following are valid statements:
(as↓) (R↓Q)↓P ≡3 (R ∧ Q)↓P
(di↓) R↓ (Q↓P) ≡3 (R ∧ Q)↓P
(ne↓) ¬(Q↓P) ≡3 Q↓ (¬P)

(co↓) (Q↓P)
p
∧ R ≡3 Q↓ (P

p
∧ R)

(Q↓P)
.
∧ R ≡3 Q↓ (P

.
∧ R)

(Q↓P)
/
∧ R ≡3 (R

.
→ Q)↓ (P

/
∧ R)

(Q↓P)
�
∧ R ≡3 (R

�
→ Q)↓ (P

�
∧ R)

These statements if read from left to right, provide an algorithm for deriving a
pnf for a formula containing negation and conjunctions. With the fact that all
boolean connectives with locks can be represented with just negation and the con-
junctions with locks, we can effectively reduce all terms by first eliminating the
other booleans and then reducing according to the equivalences shown above. The
task is thus to prove them. Lemma 4.6 showed (as↓) and (di↓), (ne↓) is not difficult.
For the laws (co ↓) observe the fact that all left hand sides and all right hand sides
are true iff P,Q and R are true. So it is enough to establish that they receive U (or
F) under the same valuations. (1) (Q↓P)

p
∧ R is U iff Q↓P is U or R is U iff either

Marcus Kracht 20.November 1992 15

Q is not T or P is U or R is U iff Q is not T or P
p
∧ R is U iff Q↓ (P

p
∧ R) is U. (2)

(Q↓P)
.
∧ R is U iff either Q↓P is U or Q↓P is T and R is U iff either Q is not T or

P is U or P, Q are T and R is U iff Q is not T or P
.
∧ R is U iff Q↓ (P

.
∧ R) is U. (3)

(Q ↓P)
/
∧ R is U iff R is U or R is T and Q ↓P is U iff R is U or R is T and: either

P is U or Q is not T iff either R is U or R is T and P is U or R is T and Q is not T;
(R

.
→ Q)↓ (P

/
∧ R) is U iff R

.
→ Q is not T or P

/
∧ R is U iff either R is U or R is T

but Q is not T or R is U or R is T and P is U iff either R is U or R is T and P is U or
R is T and Q is not T. (4) (Q↓P)

�
∧ R is F iff either Q↓P is F or R is F iff either Q

is T and P is F or R is F; (R
�
→ Q)↓ (P

�
∧ R) is F iff R

�
→ Q is T and P

�
∧ R is F iff

P is F and Q is T or P is F and R is F or R is F iff R is F or Q is T and P is F. QED
Now that projection of presuppositions is formally defined let us see how it helps
in finding out the presuppositions of an arbitrary formula. Let us define the generic
presupposition of P to be such a Q that P .R iff Q `3 R. Such a generic presuppo-
sition always exists; just take Q = P

p
∨ ¬P; moreover, it is unique up to deductive

equivalence. Because if Q̂ is another such generic presupposition then Q `3 Q̂
as well as Q̂ `3 Q. It does not follow, however, that generic presuppositions are

equivalent! By Proposition 4.2, P
p
∨ ¬P, P

/
∨ ¬P, P

.
∨ ¬P and P

�
∨ ¬P are all

generic presuppositions. These easy solutions have a serious disadvantage. If P

contains↓, so does P
p
∨ ¬P, but we like to have a generic presupposition free of↓.

Theorem 4.9 Let Q2 ↓Q1 be a presuppositional normal of P. Then (Q1
p
∨ ¬Q1)

p
∧

Q2 is a generic presupposition of P and free of↓.

Proof. It is enough to show P
p
∨ ¬P `3 (Q1

p
∨ ¬Q1)

p
∧ Q2 `3 P

p
∨ ¬P.

P
p
∨ ¬P ≡3 Q2 ↓Q1

p
∨ ¬(Q2 ↓Q1)

≡3 Q2 ↓Q1
p
∨ Q2 ↓ (¬Q1)

≡3 (∇Q2
p
∧ Q1)

p
∨ (∇Q2

p
∧ ¬Q1)

≡3 ∇Q2
p
∧ (Q1

p
∨ ¬Q1)

Together with ∇Q2 `3 Q2 `3 ∇Q2 the claim quickly follows. QED
Now let L be a language of boolean connectives with locks, and as above L↓ its
↓-extension. If P ∈ L↓, denote by P[Q ↓ p/p] the result of uniformly substituting
Q↓ p for p for every variable p of P.

Theorem 4.10 Q↓P ≡3 P[Q↓ p/p].

Proof. Q↓P is true iff P and Q are true iff P[Q↓ p/p] is true. For if Q is not true,
all Q ↓ p are undefined and so is P[Q ↓ p/p]. But by induction, P is undefined if

Marcus Kracht 20.November 1992 16

all variables are U. Hence Q must be true and then P[Q↓ p/p] reduces to P. Thus
Q↓P is false iff P is false and Q is true iff P[Q↓ p/p] is false. QED

5 Separation: Internal or External?

At first glance, separation does not look problematic; but a short investigation into
the formal prerequisites that make separation possible will produce surprises. To
begin we investigate the relationship between two- and three-valued logic. Since
in our situation we have defined our three-valued logics as extensions of classical
logic it seems straightforward to imitate two-valued logic within three valued logic
but more problematic to interpret three-valued logic in two valued logic. But so it
only seems.

To begin let us assume that we have some variable p. A priori, p can assume
three values, T,F and U. Now define operations p∆ and p∇ with the following prop-
erties. (i) Both p∆ and p∇ are propositions, i. e. have only classical truth values,
(ii) p ≡3 p∇ ↓ p∆. p∆ and p∇ by definition solve the separation problem. It is easy
to show, however, that no system using connectives with whatever control structure
can produce p∇ and p∆. The reason is simply that any term of that system assumes
U if all variables are U. There is no way to define propositions from sentences that
are not necessarily propositions themselves. Nevertheless, we might argue that
we have considered a system that is too weak; we might, for example, add weak
negation.

∼

T F
F T
U T

Then p∇ ≡3 ∼ (p
p
∨ ¬p) and p∆ ≡3 ∼∼ p. In that case, these two functions be-

come definable. We can on the other hand define weak negation from the assertion
function by ∼ p ≡3 ¬p∆. Furthermore, ∼ p ≡3 p∇

.
∨ ¬p and so in principle one

of the three functions is sufficient to define the others (given enough of the other
connectives).

The above arguments show that it is not clear that we can separate any sentence
language internally. It is, however, always possible to separate sentences language
externally by stipulating two functions (−)∇ and (−)∆ that produce the assertion and
proposition of that sentence in another language. If we add certain functions (e. g.
weak negations) to our language the external functions can be mimicked internally

Marcus Kracht 20.November 1992 17

as we have seen, but the system with external functions has some conceptual ad-
vantages for natural language analysis. With the three valued projection algorithm
we can formulate principles of ∇- and ∆- percolation. For example,

(P
p
∧ Q)∇ = P∇ ∧ Q∇ (P

p
∧ Q)∆ = P∆ ∧ Q∆

(P
.
∧ Q)∇ = P∇ ∧ (P∆ → Q∇) (P

.
∧ Q)∆ = P∆ ∧ Q∆

(P
/
∧ Q)∇ = Q∇ ∧ (Q∆ → P∇) (P

/
∧ Q)∆ = P∆ ∧ Q∆

(P
�
∧ Q)∇ = [P∇ ∧ (P∆ → Q∇)] (P

�
∧ Q)∆ = P∆ ∧ Q∆

∨[Q∇ ∧ (Q∆ → P∇)]

Notice that the right hand side does not contain the three valued-connectives; this is
because we use an external separation in two-valued logic. If we separate internally
we can use any of the control equivalents on the right hand side since only the
classical values count. Notice also that the assertive part is rather regular in its
behaviour.

The discussion on separation becomes less academic when we look at seman-
tics. With few exceptions, semantical theories use two valued logic: Montague
Semantics, Discourse Representation Theory, Boolean Semantics, etc. [7] presents
an account of presupposition within DRT. Interestingly, however, he makes no at-
tempt to solve the problem of how to mediate between two- and three-valued logic.
Of course, he doesn’t see such a problem arise because he views presuppositions as
kinds of anaphors so that there is no projection, just allocation. But this means that
he closes his eyes in front of some problems. Firstly, there is a marked difference
between presuppositions being allocated as presuppositions and presuppositions
being allocated as antecedents or conjuncts; we will return to this later. Secondly,
the additional conceptual layer of two-valued predicates needs arguing for; it is
comfortable to have it but arguably quite unnecessary. Let us consider an example.

(9) Hilary is unmarried.

(9†) unmarried◦(h)

(9‡) unmarried′(h)

A direct translation of (9) is (9†), which uses a three-valued predicate λx.unmarried◦(x),
which we simply write as unmarried. The two-valued equivalent is λx.unmarried′(x)
or simply unmarried. The two are not the same; it is clear that we would not say
of a desk, a star or an ant that it is unmarried. Neither would we say this of a
six-year old child. In logic we say that unmarried is type restricted. It applies only
to objects of a certain type. This type restriction is a presupposition since it stable

Marcus Kracht 20.November 1992 18

under negation. In the same way bachelor is type restricted to all objects that are
male and satisfy the type restriction of unmarried. There is a whole hierarchy of
types which are reflected in the net of elementary presuppositions carried by lexical
items. The predicate unmarried is not type restricted hence only truth-equivalent
to unmarried. Indeed, we have exactly unmarried ≡3 unmarried◦∆. It is difficult
to verbalize this. To say that (9) asserts (9‡) is no proof that such an entity exists;
language does not allow to introduce a simple way to express (9‡) without intro-
ducing standard presuppositions. This claim on my side needs arguing, of course.
Prima facie nothing excludes there being such a predicate conforming to unmar-
ried. I would, however, not go as far as that. All I am saying is that there is no
straightforward, logical procedure to verbalize the assertional and presuppositional
part of a sentence. The operations (−)∆ and (−)∇ are merely theoretical devices,
and weak negation does not exist contrary to what is sometimes claimed. There
is no way of saying simply (9) or (10) to mean (10‡). An argument using (11)
as evidence for weak negation begs the question because it is clear that the added
conflicting material serves to identify the presupposition that is cancelled. If it is
dropped the negation is interpreted as strong. In addition, I still find such examples
of questionable acceptability.

(10) Hilary is not married.

(10‡) ¬married′(h)

(11) ? Hilary is not married; she is only six years old!

In a similar we can see that spelling out the two-valued presupposition of unmar-
ried is not straightforward. In a first attempt we write unmarried∇ = human ∧
textitadult but we find that adult itself has type restrictions.

6 Dependencies and Allocation

[7] recently offered a rather detailed account of a theory of allocation. We will not
try to improve here on the empirical coverage of that theory; rather we will note
some deficiencies of the theory itself. Before we start the analysis, let us quote
from that paper. Van der Sandt makes the following basic claim: ‘Presuppositions
are simply anaphors. They only differ from pronouns or other kinds of semantically
less loaded anaphors in that they contain enough descriptive content to establish a
reference marker in case the discourse does not provide one.’ His formal analysis
uses DRT with semantic anchors. Typical entries for presupposition inducers are
the following; the anchor is denoted here by a dashed box.

Marcus Kracht 20.November 1992 19

α0 =?

A(α0)

α0

the A his/her A

α0 α1

α1 =?

α0 =?

of(α0, α1)

A(α0)

Firstly, this theory uses classical logic. This might be a surprising diagnosis
because it is explicitly states that the Frege-Strawsonian theory of presupposition
can be reinstalled by using a truth-value gap. Yet, van der Sandt claims that this
gap arises from violating explicit binding constraints and so is in effect reducible
to binding. Furthermore, he makes use of separation. We have argued against that
earlier; I will take the opportunity to discuss a further disadvantage of internal sep-
aration. If presuppositions and assertions of words such as bachelor are separable
internally and thereby in principle arbitrarily assignable, why does this extra free-
dom never get exploited? It is namely possible to define a different concept, say,
lachelor, which has the truth conditions of a bachelor but is presupposes that the
object is a living thing. Thus lachelor ≡ living↓bachelor;
textitlachelor is truth-equivalent with bachelor but evidently not falsity equiva-
lent. Yet such a concept is not lexicalized in the language and it is quite difficult
to imagine such a concept. So it seems that presuppositions are just part of the
concept and not dissociable from it not the least because we have argued against an
additional two-valued interpretation language for reasons of economy. Hence, the
story of reallocation (which I also used in the introduction) is just a bad metaphor.
The presupposition cannot be freed from the concept; this seems to be at least in-
tuitively accepted (see [3]) even though this and other logical implementations do
not take notice of that fact. Hence, if presuppositions do not move, they have in
some sense to be copied. We can understand this as follows. Knowing that at a
certain point we have to satisfy certain presuppositions (which are directly given
by the concept) we decide to accommodate this presupposition at some place so
that the presupposition in question is satisfied at the point we come to evaluate it.
It is, however, important (and has been overlooked by van der Sandt) that the re-
allocated presupposition functions as a presupposition. In the semantics we thus

Marcus Kracht 20.November 1992 20

need to postulate the connectives ∇ or↓as primitives in order to guarantee that the
inserted material can function as a presupposition not just as an assertion.

The next problem to be considered is the reduction to binding conditions. Prob-
ably this can be made meaningful in the following way.

program NULL; program NULL2;
begin N : integer;

N := 0; begin
end. N := 0;

end.

If we compare these two Pascal programs we see that the left program will fail
because the variable N has not been declared. In the other this has been done and
so it operates successfully. In the same way we can understand the functioning of
the upper part of the box in DRT. It makes a DRS to undefined if a variable is used
but not defined in the head section. So in the DRSs below the left DRS is ill-formed
while the one to the right is well-formed.

man′(x)
x
man′(x)

This would be enough to exclude unbound occurrences if we assume some extra
control principles handling composite structures; however, van der Sandt chose to
translate lexical items in such a way that the binding conditions are satisfied and
he artificially adds the clause α0 =? to make binding required. I do not see how
this can be superior to an account where the variable mechanism itself is exploited.
Prior to inserting a DRS for a lexical item we have to choose anyway the variables
we are going to insert and we can rely totally on this mechanism to create the
presuppositional effect.

Thirdly, it can be demonstrated that presuppositions are as matter of fact not
reducible to anaphor resolution. There are obvious arguments against this. One is
that there are presuppositions that simply have no variable to be bound. These are
easy cases. A trickier example is this one.

(12) If John buys a car he removes the spare wheel.

(13) ? If John buys a car he removes his spare wheel.

(12) could in principle be interpreted in two ways; the presupposition can stay or
be reallocated at the top-level. People prefer the first alternative simply because
cars tend to come with spare wheels. On the other hand it is possible that in certain

Marcus Kracht 20.November 1992 21

contexts (12) presupposes that there is a definite spare wheel e. g. when the pre-
vious discourse established a particular spare wheel already. So the choice where
the presupposition is accommodated is not governed by binding facts but by some
kind of pragmatic dependency. Choosing spare wheels to be dependent in some
form on cars we opt for a local reading of the presupposition. By default, how-
ever, presuppositions or objects are independent. Specific knowledge, in this case
about cars and spare wheels, is required to establish such a dependency. We can
use the context to create such dependencies or overrun them. (13), however, is the
interesting bit of the argument. The theory of [7] has no means to tell us why this
sentence is so odd. It is not the choice of the locus of the presupposition that is at
stake but the question whether the spare wheel is actually identifiable with the one
that arises naturally with the car if the presupposition is reallocated at the top. This
has nothing to do with binding; we can in principle have it either way.

A theory of allocation must be pragmatic in nature as we have seen. Van der
Sandt agrees with that because he limits the locus not only by binding conditions
but also by pragmatic factors. But with respect to the last he remains rather vague.
He only considers cases in which there appears a logical conflict if the locus of the
presupposition is too high. This leaves the impression that logic plays a signifi-
cant role as a determining factor. I am tempted to say that it does not. It seems to
me that this theory should be based on a theory of dependencies. I used this term
earlier but let me be a bit more precise here what I mean by that. Dependencies
are relations that hold between objects, between concepts or between objects and
concepts etc. In logic, when we use arbitrary objects (see [1]) an object that is
freed from an existential quantifier depends on all the free variables or constants
of the formula. So, (∀x)(∃y)φ(x, y) does not imply (∃y)(∀x)φ(x, y) because if we
were to free objects from the quantifiers we get dependencies that block the rein-
troduction of the quantifier for an object. This goes as follows. We first assume
an a such that (∃y)φ(a, y). Then we take a b such that φ(a, b). The conclusion that
the conclusion (∀x)φ(x, b) is not licenced because b depends on a. In this way the
theory by Fine shows how reasoning with quantifiers is reducible to reasoning with
objects. The dependencies are the main thing that we have to memorize if we want
to reason correctly. Notice that if we manage to prove that b actually does not de-
pend on the choice of a the above reasoning could be carried on and the implication
(∀x)(∃y)φ(x, y)→ (∃y)(∀x)φ(x, y) would then hold. The observable is therefore the
dependency of b on a. How we recognize this dependency is quite another story
but it certainly determines the reasoning. In totally the same way we understand
the mechanism of reallocation of presuppositions. Dependency is a primitive no-
tion; by some means we come to recognize that the truth of some proposition or the
referent of some description is dependent on some other. It is then a consequence
that the dependent description or proposition cannot be processed before the one

Marcus Kracht 20.November 1992 22

on which it depends and this in turn explains why the locus of a presupposition
must be inside the scope of all things on which the presupposition depends. A final
illustration is this sentence.

(14) As long as the moon wanders around the earth fishermen will love the tide.

It is known (not to all of us) that the moon creates the tide. So, the tide ceases
to refer as soon as moon stops wandering. Hence the locus of the presupposition
is its origin. But those who fail to know (or notice) that will read this as saying
that there is a tide whether or not the moon is wandering around the world. The
two differ not only logically; in the latter reading we are led to think that it is the
moon which induces the love of the fishermen for the tide in some way. The latter
therefore leads us to see a dependency between the moon’s wandering around the
earth and fishermen’s love of the tide whereas in the first case no such dependency
is induced.

7 Conclusion

In comparing possible extensions of two-valued logic to three-valued logic using
explicit control structures we have managed to give an account of standard presup-
positional behaviour of computers or mathematicians. We have boosted this up to
natural language semantics by assuming possible reallocation of presupposition.
The latter extension touches on pragmatics and is therefore not easily spelt out in
detail. We will in this last section evaluate the pros and cons not of the theory of
allocation but of the interpretation in three-valued logic.

It has been noted that standard three-valued logics for presupposition can be
rephrased with the help of the rules of context change. Underlying that is the
notion of presupposition as failure. This would lead to Bochvar’s Logic was it
not the case that the evaluation procedure is spelt out differently. Let us study the
following two clauses (cf. [3]).

(lc→) If the local context for if A then B is X, the local context for A is X and the
local context for B is X ∪ {A}.

(lc∨) If the local context for A or B is X then the context for A is X and the local
context for B is X ∪ {¬A}.

Each of A and B may carry their own presuppositions but in (lc→) the presuppo-
sitions for B are evaluated only in those situations where not only X holds but also
A. Taking this together with the standard two-valued interpretation of→ yields the

Marcus Kracht 20.November 1992 23

truth-tables for
.
→. This is not hard to check. Similarly, (lc∨) leads to

.
∨. The prob-

lems that arose were that (1) the local context is not fixed by the connective and (2)
one cannot freely assign any rule of local context to a connective. We cannot, for
example, choose to take X ∪ {¬A} as the context for B in (lc→). [3] is particularly
worried by this. But the problem is that too much is specified in the rules of local
context. We have seen earlier that the control structure is enough; so rather than
anticipating the actual context against which B is evaluated we only say that A has
to be evaluated first and B is evaluated against the context that results from X by
adding the condition that must be satisfied if the computer is about to process B.
This readily explains the difference between the rules of local context of (lc→) and
(lc∨). We have seen that the control structures are independent of the connective
and that the connective plus the control structure yield a definite truth-table. Each
of the possible combinations is realized in language. As examples we study (15)
and (16). If we consider all four possible options we see that (15) and (16) are free
of presupposition if the context rules are spelled out as (lc′∨) and (lc′ →). They

sound rather circular but in fact reflect the control strategy of
�
∨ and

�
→.

(15) Either John has started smoking or he has just stopped smoking.

(16) If John hasn’t started smoking he has just stopped smoking.

(lc′∨) If X is the local context for either A or B then the local context for A is
X ∪ {¬B} and the local context for B is X ∪ {¬A}.

(lc′ →) If X is the local context for if A then B then the local context for A is
X ∪ {¬B} and the local context for B is X ∪ {A}.

We can perform the same trick with implication and thereby force a symmetrical
reading or the implication. It remains to be seen, however, what exactly determines
this choice of the control structure. This we have not been able to establish nor
the conditions under which it may take place at all; nor how this relates with the
dependencies.

References

[1] Kit Fine. Natural deduction and arbitrary objects. Journal of Philosophical
Logic, 14:57 – 107, 1985.

[2] P. Hayes. Three-valued logic and computer science, part i: Propositional cal-
culus and 3-valued inference. Ms. of the University of Essex, 1975.

Marcus Kracht 20.November 1992 24

[3] I. Heim. Presupposition projection. 1990. Workshop on Presupposition, Lexi-
cal Meaning and Discourse Processes.

[4] R. M. Kempson. Presupposition and the delimitation of semantics. Cambridge
University Press, Cambridge, 1975.

[5] D. H. Langendoen and L. Savin. The projection problem for presuppositions.
In Charles Fillmore and Langendoen, editors, Studies in Linguistic Semantics,
pages 5.2 – 6.2. Holt, New York, 1971.

[6] W. Rautenberg. Klassische und nichtklassische Aussagenlogik. Vieweg Verlag,
Wiesbaden, 1979.

[7] R. A. van der Sandt. Ananphora and accommodation. 1990. Workshop on
Presupposition, Lexical Meaning and Discourse Processes.

[8] Rob A. van der Sandt. Presupposition and Context. Croom Helm Linguistic
Series. Croom Helm, London, 1988.

[9] A. Wójcicki. Theory of logical calculi. Kluwer, Dordrecht, 1988.

