
ADJUNCTION STRUCTURES AND SYNTACTIC
DOMAINS

MARCUS KRACHT

Abstract. Since Chomsky’s Barriers System, crucial use is made
of the distinction between nodes and categories. In particular,
Chomsky has shown that subjacency can be redefined in such a
way that it looks like a tight command relation in the sense of
Kracht [10] and yet allows for cyclical movement. However, this
new shift has been accompanied by a great confusion concerning
the structures about which we are now talking. In this paper we
will propose a definition of adjunction structures that allows to en-
compass the distinction between nodes and categories. Moreover,
we will adress many questions that ensue once these structures are
defined.

1. Introduction

Ever since the introduction of the Barriers System in [3] categories
are assumed to be complex objects, consisting of (possibly several)
segments. Linguists have found many uses of the distinction between
categories and their segments. The primary use of course was the dis-
tinction between domination of one category by another and inclusion
of category by another. Unfortunately, it is not easy to get accustomed
to this distinction. What is more, the effects of differentiating between
categories and segments are usually looked at only superficially without
awareness of the many awkward details. (A notable exception is [14].)
However, it must be realized that the standard notation of structures
as labelled trees is inappropriate when dealing with categories. The
categories are not the nodes of the tree; nor is it appropriate to equate
them with maximal connected sets of nodes with identical label (see
Section 3.4). The categories are distinct objects introduced into the

This work has been carried out in the Innovationskolleg ‘Formale Modelle kog-
nitiver Komplexität’ (INK 12) funded by the DFG. I wish to thank Carsten Grefe
with whom I discussed many issues concerning adjunction structures. Some results
have been worked out in collaboration with him. This work has been presented at
workshops in Amsterdam, Tübingen and Prague. My thanks go to Patrick Black-
burn, Tom Cornell, Hans–Martin Gärtner, Hans–Peter Kolb and Maarten de Rijke.
Special thanks to Hap and Uwe for organizing a life–changing event in Prague.

1

2 MARCUS KRACHT

tree structure that fundamentally change the structure of these (previ-
ously treelike) objects. To illustrate this (and to rid ourselves from this
confusing term category) we have found it best to introduce the notion
of a block. A block is a linear set of nodes. A node is a segment of a
block if it is contained in it. We demand that each node is a segment
of some block. If we equip trees with a partitioning of the node set into
a set of blocks we get what we call adjunction structures (Section 3).
These are structures in which we claim Post–Barriers linguistics should
be done.

At first blush this seems to be just a harmless complication. How-
ever, many question arise that have never been answered in the liter-
ature (many of them have to our knowledge never even been raised).
First of all, what is now a constituent? This must be determined for
many reasons, among other in order to know what elements can un-
dergo movement. Second, is there a way of defining structures in which
categories are simple objects? In other words, can we discard nodes
and define structures that contain categories in place of nodes? The
answer is that we can, but we loose some information about the makeup
of the adjunction structure (Section 4). It does seem, however, that for
the purpose of linguistics the loss of information is inessential. Third,
as regards the theory of command relations of [10] can it be adapted
to adjunction structures such that the mathematical properties remain
and we get the effects of the Barrier’s type domains (that is, can we
escape barriers by successive movement even though the relation looks
like a tight relation)? The answer is yes and this will be shown in
Section 5. Moreover, we will show in 5.3 that the command relations
exhibit what we call Movement Invariance. This means that whether
or not two nodes are in a certain relation at some level of derivation
can be checked at the end of derivation. This is a welcome property,
since it paves the way for stratification of transformational theory. (See
Section 6.)

2. Trees

2.1. General Structures. By a natural number we understand a pos-
itive integer; 0 is a natural number. Moreover, the natural number n
is also the set of its predecessors, that is, we put n := {0, 1, . . . , n −
1}. ‘i < n’ is synonymous with ‘i ∈ n’. A structure of signature
〈〈ρi : i < m〉, 〈σi : i < n〉〉 over a set M is a triple

M = 〈M, 〈Ri : i < m〉, 〈fi : i < n〉〉

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 3

such that Ri ⊆ Mρi for each i < m and fi : Mσi → M . Let
N = 〈N, 〈Si : i < m〉, 〈gi : i < n〉〉 be a structure of same signa-
ture as M. A function h : M → N is an isomorphism from M

to N if (i) h is bijective, (ii) for every i < m and every sequence
~x = 〈xj : j < ρi〉 ∈ Mρi we have ~x ∈ Ri iff h(~x) ∈ Si, where
h(~x) := 〈h(~xj) : j < ρi〉, and (iii) for every i < n and every sequence
~x ∈ Mσi , h(fi(~x)) = gi(h(~x)). Given a structure M over a set M , and
a bijection h : M → N then there exists exactly one structure N over
N which makes h an isomorphism. We say that h induces N over N .

2.2. Tree Structures. Let S be a set and < a binary relation on S.
< is called transitive if x < y and y < z imply x < z, irreflexive if
for no x ∈ S, x < x; < is linear if for x, y ∈ S either x < y, x = y

or y < x. A linear order is a pair 〈S,<〉 such that < is transitive,
irreflexive and linear. If S = 〈S,<〉 is a finite linear order and S has n
elements, S is isomorphic to the order 〈n,<〉, where by our convention,
n = {0, 1, . . . , n− 1} and < is the usual order on the natural numbers.
Given a nonempty set D a triple ~x = 〈S,<, ℓ〉 is called a D–string if
〈S,<〉 is a linear order and ℓ : S → D. If S has n members, ~x is said
to be of length n. Alternatively, a string of length n can be thought
of as a function f : {0, 1, . . . , n− 1} → D. A string can also be viewed
as a list, namely the list 〈f(i) : i < n〉. A domination structure is a
pair T = 〈T,<〉 where T is a nonempty set and < a binary relation on
T which is irreflexive and transitive. We write x ≤ y if x < y or x = y.
x and y are comparable if x ≤ y or y ≤ x. If x < y we say that x is
properly dominated by y. If x < y and for no z we have x < z < y

then we say that y immediately dominates (is a mother of) x and
write y ≻ x or x ≺ y. If x ≺ y, z ≺ y and x 6= z we say that x and
z are sisters. An element x such that x ≥ y implies y = x is called a
leaf or a terminal node. A leaf of x is a leaf u such that u ≤ x. A
node x is preterminal if for all y immediately dominated by x, y is a
leaf. x branches if x has at least two daughters. We write

↑x := {y : y ≥ x}
↓x := {y : y ≤ x}

and call ↑x the upper cone of x and ↓x the lower cone of x. A
forest is a domination structure in which all upper cones are linear
(with respect to <). A triple T = 〈T, r, <〉 is a tree if 〈T,<〉 is
a forest and r ∈ T is such that r > x for all x 6= r. r is called
the root of T. Given a subset U ⊆ T , < induces a binary relation
<U := {〈x, y〉 : x < y, x ∈ U, y ∈ U}. We write < for <U . We call
℘(x) := 〈↑x−{x}, r, <〉 the position of x, and c(X) := 〈↓x, x,<〉 the

4 MARCUS KRACHT

constituent of x. It is clear that these structures are trees. It is to be
noted that while the constituent headed by x contains x, the position
of x does not. Often we will also call a set of the form ↓x a constituent.

Let 〈T, r, <〉 be a tree. A binary relation L ⊆ T × T is a (linear)
ordering compatible with < if (ℓ) L is an irreflexive linear ordering
on the leaves, and (c) xL y iff uL v for all leaves u, v such that u ≤ x

and v ≤ y. By (c), if x ≥ x′, y ≥ y′ and xL y then x′ Ly′. Conversely,
if x is not a leaf then xL y iff for all x′ < x, x′ Ly; likewise for y. Given
L, we say that x precedes y if xL y and for no z we have xL z L y
we say that x immediately precedes y. If x1 and x2 are sisters
and x1 Lx2, then x1 is called a left sister of x2. If in addition x1

immediately precedes x2 then x1 is called an immediate left sister
of x2. An ordered tree is a quadruple 〈T, r, <, L〉 where 〈T, r, <〉 is a
tree and L an ordering relation on T compatible with <.

In general, there exists more than one ordering relation compatible
with <. There is however one which is unique in the following sense.
Call x and y overlapping and write x ◦ y if neither xL y nor y Lx.
In general, comparable nodes overlap. For if x ≤ y then every leaf of
x is a leaf of y. Moreover, there is at least one leaf z ≤ y such that
z ≤ x, and this shows that y cannot precede x either. Call 〈T, r, <, L〉
exhaustively ordered and L exhaustive for 〈T, r, <〉 if x and y

overlap iff they are incomparable. It can be shown that there always
exists an exhaustive ordering. Namely, for each x let δ(x) be the set
of daughters of x. (If x is a leaf then δ(x) = ∅.) Let Px ⊆ δ(x) × δ(x)
be a linear ordering of the daughters of x. Put P :=

⋃
x∈T Px. Now

put uL(P) v if there exists z and daughters x, y of z such that y 6= x,
u ≤ x, v ≤ y and xPy. This ordering is exhaustive. For let u and v

be incomparable. Then there exist a unique z and unique daughters
x and y of z such that y 6= x, u ≤ x and v ≤ y. P is linear on the
daughters. Therefore xP y or y P x. By definition of L(P), in the first
case uL(P) v, and in the second case v L(P) u. Only one of the two
obtains. Now let x and y be comparable. Then first of all they are
not daughters of the same node, so they are not comparable via P .
Second, there exists no z and distinct daughters y, x such that u ≤ x

and v ≤ y. Hence, neither uL(P) v nor v L(P) u obtains.

2.3. Labelled Structures. All structures can also be equipped with
a labelling. Let D be a set. A D–structure (of signature σ) is a
a tuple of the form M+ := 〈M, 〈Ri : i < m〉, 〈fi : i < n〉, ℓ〉 where
M = 〈M, 〈Ri : i < m〉, 〈fi : i < n〉〉 is a structure of signature σ and
ℓ : M → D a function, called the labelling function. ℓ(x) is called

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 5

the label of x. A map h : M → N of sets is a homomorphism of D–
structures if it is a homomorphism of the underlying structures, and
x and h(x) receive the same label. For example, a labelled tree (or-
dered or unordered) with labels in D is a tree together with a function
ℓ : T → D, D the set of labels. Seen this way a D–string is a labelled
linear order. Now let T = 〈T, r, <, L, ℓ〉 be an ordered labelled tree
with labels in D. Let M ⊆ T be a set which is linearly ordered by L

and such that for no M (N ⊆ T , N is linearly ordered by L. Such
sets are called cuts. If M is a cut, 〈M,L, ℓ〉 is a D–string. This string
is called the string cut of T based on M . If M is the set of terminal
nodes, M is a cut. The string cut based on M is called the string
associated with T.

2.4. Domains. Barker and Pullum [2] observed that many relations
in syntax can be defined in a uniform way. They defined the notion of
a command relation. This has been taken over in Kracht [10]. We shall
follow the outline of [10]. First, let R ⊆ T 2 be a binary relation on T

and let x ∈ T . Put xR := {y : xRy} and call xR the R–domain of x.
If y ∈ xR, x is said to R–command y. A relation on a tree 〈T, r, <〉
is a command relation if

(1) The domain of r is the entire tree.
(2) The domain of a node 6= r is a constituent properly containing

x.
(3) If x ≤ y then xR ⊆ yR.

The last property is called monotonicity. A binary relation on an or-
dered labelled tree 〈T, r, <, L, ℓ〉 is a command relation if it is a com-
mand relation on 〈T, r, <〉. Given a command relation R there is a
function fR : T → T such that ↓fR(x) = xR for all x ∈ T . This is
called the generating function of R. The above conditions boil down
to the requirements

(1) fR(r) = r.
(2) If x < r then fR(x) > x.
(3) If x ≤ y then fR(x) ≤ fR(y).

A command relation is tight if it satisfies

Tightness. If y < fR(z) then fR(y) ≤ fR(z).

As Kracht [10] emphasizes, the command relations used in syntactic
theory can be generated from very simple relations using intersection
and relation composition.

6 MARCUS KRACHT

Definition 1. Let D be a set of labels and O ⊆ D. Let 〈T, r, <, L, ℓ〉
be an ordered D–tree. Then

κ(O,T) := {〈x, y〉 : (∀z > x)(ℓ(z) ∈ O → z ≥ y)} .

If 〈x, y〉 ∈ κ(O,T) we say that x O–commands y. We often write O

in place of κ(O,T).

Proposition 2. The generating function for O–command is the func-
tion gO mapping x onto the least node y > x such that ℓ(y) ∈ O, if it
exists, and onto r otherwise. The relation O is tight for all O ⊆ D.

Proof. With R := O let gO := fR. We show that gO has the properties
announced in the theorem. Let y < gO(x). If gO(x) = r the claim is
certainly true. Let u be the least node > y such that ℓ(u) ∈ O. Such a
node exists, since gO(x) < r and so ℓ(gO(x)) ∈ O. Moreover y < gO(x).
Hence, u ≤ gO(x), and u = gO(y). �

We have κ(O,T) ⊇ κ(P,T) if O ⊆ P and κ(O ∪ P,T) = κ(O,T) ∩
κ(P,T). We call a tight relation definable if it is of the form O for a
certain O. Now given two binary relations R, S on T define

R ◦ S := {〈x, z〉 : (∃y ∈ T)(x R y R z)}

We note here that

fR◦S = fS ◦ fR

For if fR◦S(x) = z, then z ≥ x and there exists a y such that x ≤ y ≤ z

and xRySz. By monotonicity of the relations we may assume y = fR(x).
Then z = fS(y) = fS(fR(x)).

Definition 3. A binary relation R on a labelled (ordered) tree is a
chain if there exist n and Ci ⊆ D, i < n, so that R = C0◦C1◦. . .◦Cn−1,
with Ci := κ(Ci,T). R is called definable if it is an intersection of
finitely many chains.

Theorem 4. The set of definable command relations is closed under
intersection, union and relation composition.

The proof of this theorem can be found in Kracht [10]. As a corollary
we note that there is a smallest and a largest command relation. Both
are tight. The smallest relation is obtained when we choose O := D,
the entire set of labels. Then, x O–commands y iff x = r or the node
immediately dominating x dominates y. This relation is called idc–
command. The largest relation is obtained when O := ∅. Here, all
nodes O–command all other nodes. (This relation is only of mathe-
matical importance.)

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 7

2.5. The Use of Domains. In Kracht [10] it was claimed that re-
lations in GB theory are definable command relations. It was shown
that the system of Koster [9] can be reformulated using definable com-
mand relations. Here we will give some more examples, this time of
some more canonical literature. First, the notion of c–command is of
central importance. It is usually defined in two ways, depending on
the authors. It is either identical to idc–command or identical to max–
command. Here, the relation of max–command is obtained by choosing
O to be the set of maximal (= phrasal) nodes. Indeed, with this choice
given, x max–commands y if all phrasal nodes properly dominating y
also dominate y. In many cases of the literature it is also required that
x and y are incomparable. We call this the Non Overlapping Condi-

tion. It has been argued in [2] that to include this condition into the
definition of a command relation is not a good choice. 1 Suffice it to
say that from a mathematial point of view it is better to do without
the Non Overlapping Condition.

For the purposes of binding theory and other modules such as Case–
Theory the relation of c–command (which we now take to be idc–
command) is central. Indeed, it is also the smallest command relation,
and used quite extensively as a diagnostic instrument to analyse the
D–Structure of sentences, using evidence from binding theory (for ex-
ample, see Haider [7]). In Baker [1] it has been modified somewhat,
but this modification will be automatically implemented in adjunction
structures.

Let us now turn to some more difficult questions, namely the nonlocal
relations. Here, the most prominent one is subjacency. In its most
primitive form it says that a constituent may not move across more
than one bounding node. This condition can be rephrased easily in
the present framework. Let BD be the set of labels corresponding to
bounding nodes. Examples are BD = {S,NP} or BD = {S ′,NP},
in the LGB–terminology. The choice between these sets is empirical
and does not touch on the question how to define subjacency. Now,
the requirement on subjacency can be rephrased as a condition on the
relation between the trace and the antecedent. Let BD be the relation
of BD–command. Then put

SUB := BD ◦ BD

We claim that y ∈ x SUB — that is, x SUB–commands y — iff y is
subjacent to x. For to check this, we need to look at the least node
z such that z dominates both x and y. Suppose that x is subjacent

1This condition can also be formulated in many other ways. One is to require
that x precedes y or y precedes x. We will not discuss that issue here.

8 MARCUS KRACHT

to y. Then in the set [x, z] − {x} at most two nodes carry a label
from BD. Let f be the generating function of BD–command. Then
the generating function of subjacency is f ◦ f . By definition, f(x) is
either a node carrying a label in BD, or f(x) = r. Hence, for the node
z defined above, z ≤ f ◦ f(x). It follows that x SUB–commands y.
Now let conversely x SUB–command y. Let again z be the least node
dominating both x and y. Then z ≤ f ◦ f(x) and it is easy to see that
at most two nodes of label ∈ BD can be in the set [x, z] − {x}. So, y
is subjacent to x.

In Chomsky’s Barriers System (see [3]) this definition of movement
domain has been attacked on the ground that it is empirically inad-
equate. The definition that Chomsky gives for subjacency makes use
of adjunction structures and an appropriate adaptation of the defini-
tion of command relations for those structures. We will return to that
question. However, the use of adjunction is not necessary to get at
most of the facts that the new notions and definitions are intended to
capture. It would take too much time to prove this claim. We will
be content here with outlining how different notions of movement do-
mains can achieve the same effect. Crucially, the instrument we are
using is that of composing relations. As in the definition of subjacency
given above, the relation is defined from tight command relations by
means of relation composition. This is no accident. It can be shown
that tight command domains cannot be escaped by movement (whence
the name). However, subjacency is intended to be a one–step nearness
constraint, and it can clearly be violated in a successive step. Now
consider the following sentence

(1.) [Von welcher Stadt]1 hast Du [den Begin [der Zerstörung t1]] gesehen?
[Of which city]1 did you witness [the beginning of [the destruction t1]]?

Here, in moving the wh–phrase (pied–piping the preposition), two bound-
ing nodes have been crossed. Indeed, to capture wh–movement it seems
more plausible not to count intervening nominal heads. If that is so,
let us look for an alternative. It has been often suggested that the only
escape hatch for a wh–phrase is the specifier of comp. A wh–phrase
always targets the next available spec–of–comp. If that spec is filled,
movement is blocked. To implement this we take advantage of the
fact that the complement of C0 is IP. Hence we propose the following
domain

WHM := IP ◦ CP

Fig. 1 below illustrates a case of wh–movement, where a wh–phrase is
movemed from inside a verb phrase into spec–of–comp. The domain
of the trace is the least CP above the least IP which is above the

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 9

Figure 1. Wh–Movement

•

J
J

JJ

•
�

�
�

�

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

CP

• C ′

• IP

• I ′

• VP

•

J
J

J
J

trace. In the present case, the domain is the clause containing that
trace. From spec–of–comp, however, the domain would be the next
higher clause! This readily accounts for the fact that in a subsequent
movement step the wh–phrase may target the next higher spec–of–
comp. (Of course, the present domain allows the constituent to move
anywhere within that domain. We assume however that independent
conditions will ensure that only this position is chosen, if at all it is
available.) Although this definition may have its problems, too, what
we have shown is that ideas proposed in the literature about movement
can be succinctly rephrased using definable domains.

3. Adjunction Structures

3.1. Adjunction Structures. An adjunction structure is a struc-
ture S = 〈S, r, <,C〉 where 〈S, r, <〉 is a tree and C a partitioning of
S into subsets which are linear with respect to <. (A note. To make
this a structure in the sense above, we would have to use instead of
C the relation ∼ defined by x ∼ y iff there exists a x ∈ C such that
x ∈ x and y ∈ x. Conversely, given the equivalence relation ∼, we put
C := {[x]∼ : x ∈ S}, where [x]∼ := {y : y ∼ x}. It is however in
many instances easier to work with C rather than ∼.) We say that

10 MARCUS KRACHT

S is based on S. A member of C is called a block. Thus a block is
always of the form [x, y] = {z|x ≤ z ≤ y} for some x, y ∈ S. Mem-
bers of a block are called segments of that block. We let b◦ be the
minimal segment of b and b◦ the maximal segment of b. By definition,
b = [b◦, b

◦]. Given x, there is exactly one x ∈ C such that x ∈ x; we
denote x by b(x). Thus, b : S → C is a function assigning to a node
the block in which that node sits. In sequel many notions for trees will
be defined for adjunction structures. Generally, blocks will take over
the part of nodes. Given S = 〈S,<, r,C〉 and a subset U ⊆ S, put as
before <U := {〈x, y〉 : x ∈ U, y ∈ U, x < y}. Suppose that there is a
u ∈ U such that x ≤ u for all x ∈ U . Then S ↾ U defined below is an
adjunction structure.

S ↾ U := 〈U,<U , u, {x ∩ U : x ∈ C, x ∩ U 6= ∅}〉

We say S ↾ U is the adjunction structure induced by S on U . S ↾ U

is called a subadjunction structure if U is a union of blocks and
lower closed. (It follows that U = ↓x◦ for some x.)

An ordered adjunction structure is based on an ordered tree. An
adjunction structure over D is an adjunction structure together with
a function ℓ : C → D. Equivalently, we may say that for the corre-
sponding node based function ℓ ◦ b that is a function from S to D such
that nodes of the same block receive identical label. Given two blocks,
b and c, there are two notions of superiority, called containment and
inclusion. b contains c if some segment of b properly dominates some
(and therefore all) segments of c. We write b > c (and b ≥ c if b = c or
b > c). b includes c, in symbols b ≫ c, if all segments of b properly
dominate all segments of c. If b includes c, it also contains c. The
following characterization of containment and inclusion can be given.

Proposition 5. (1) b > c iff b◦ > c◦.
(2) b ≥ c iff b◦ ≥ c◦ iff b◦ ≥ c◦.
(3) b ≫ c iff b◦ > c◦ iff b◦ > c◦.

We note the following.

Corollary 6. < and ≪ are irreflexive and transitive.

Proof. Since b◦ < b◦ cannot hold, < is irreflexive, by (1.) of the previ-
ous theorem. Furthermore, let b > c > d. Then b◦ > c◦ > d◦. Hence,
by transitivity, b◦ > d◦, from which b > d. Now we turn to ≪. Since
b◦ > b◦ cannot hold, ≪ is irreflexive. Now let b ≫ c ≫ d. Then
b◦ > c◦ > d◦. By transitivity, b◦ > d◦. Hence b ≫ d. �

It can also be shown that (1.) if a < b ≪ c then a ≪ c and (2)
if a < b < c and a ≪ c then b ≪ c. As we will see later, this

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 11

Figure 2. A Complex Morphological Head

•

•

•

�
�

��

@
@

@@�
��

@
@@

@
@@

�
��

�
��

@
@

@
@

@
@

�
��

@
@

@
@

@
@

completely characterizes the properties of < and ≪ with respect to the
block structure. We define

↑b := {c : c ≥ b}
↓b := {c : c ≤ b}

↑↑b := {b} ∪ {c : c ≫ b}

↓↓b := {b} ∪ {c : c ≪ b}

and call the adjunction structures based on the sets ↑b−{b} and ↑↑ b−

{b} the weak (strong) position and ↓b and ↓↓ b the weak (strong)
constituent of b.

Proposition 7. Let 〈S, r, <,C〉 be an adjunction structure. Let r ∈ C

be the block containing r. Then 〈C, r, <〉 is a tree and 〈C,≪〉 is a forest.

Proof. Clearly, the block containing r contains all blocks. Therefore,
we only have to show that weak and strong upper cones are linear.
First, weak upper cones. So, let c > b and d > b. Then c◦ > b◦ as
well as d◦ > b◦. So, c◦ and d◦ are comparable. Then either c◦ < d◦,
c◦ = d◦ or c◦ > d◦. In the first case, c is contained in d, in the second
case they are equal, and in the third case case c contains d. Now for
the strong upper cones. Let c ≫ b and d ≫ b. Then c◦ > b◦ as well as
d◦ > b◦. Therefore, c◦ and d◦ are comparable. If they are equal c = d.
Otherwise, let c◦ > d◦. Then, by linearity of the blocks, c◦ > d◦, so
that d is included in c. Similarly if d◦ > c◦. �

The adjunction structure below illustrates that ≪ does not need
to be a tree ordering. Here ≪= ∅. We will see below that this is
important. It allows for complex heads in syntax. Namely, we propose
the following definition.

Definition 8. Let A be an adjunction structure. A morphological
head of A is a subadjunction structure of A in which ≪ = ∅.

This conforms to the standard use of head–adjunction. Heads ad-
join to heads to form complex heads, and they act in syntax as words

12 MARCUS KRACHT

(though they receive a structural analysis). The rationale of the defi-
nition is the following. If there is a pair x and y of blocks such that x

is immediately included in y, then there exists a pair x and y such that
x does not include any block. Then x is a zero level projection. If x is
the (relational) head of y, y is a projection of x, and so the constituent
contains a nonminimal projection. If x is not the head, then we look
at the sisters of x. Some sister, call it z, is the head of y, and either it
is minimal (then we are done) or it is not. In the latter case the con-
stituent headed by z contains a pair t and u such that t ≪ u. Since the
constituent z is smaller than the original one, this procedure will come
to an end and we get a pair of blocks such that one is a nonminimal
projection of the other. Hence what we have defined is exactly what is
standard. In order not to get confused with the usual relational notion
of a head in a construction we call them morphological heads.

3.2. Ordering on Adjunction Structures. Given an ordering L

compatible with < put bL c iff for some x ∈ b and y ∈ c, xL y. It
turns out that bL c iff b◦ L c◦. For if x ∈ b and y ∈ c, then b◦ ≤ x and
c◦ ≤ y. If xL y, then b◦ L c◦. Conversely, assume that b◦ L c◦. Then
bL c by definition. The problem of compatibility of this order with the
dominance structures arises. This can only be solved if we define the
notion of a leaf first.

Definition 9. A leaf in an adjunction structure is a block which con-
tains a leaf of the tree. Equivalently, a block a is a leaf iff a is ≪–
minimal.

Proposition 10. L is an ordering on C compatible with ≪.

Proof. Let S be an adjunction structure based on S. L is irreflexive and transitive.

If bL b then b◦ L b◦; which is not the case. Now suppose that bL cL d.
Then b◦ L c◦L d◦. By transitivity of L, b◦ L d◦, and so bL d. L satisfies (ℓ).
Let b and c be minimal with respect to ≪. Then b◦ and c◦ are leaves.
Thus, b◦ L c◦, b◦ = c◦ or c◦ L b◦. In the first case we have bL c and in
the third case cL b. In the second case we have b = c, since the blocks
partition S. L satisfies (c). Assume that for all ≪–minimal f ≪ b and
all ≪–minimal g ≪ c, fL g. Then for all such f and g, f◦L g◦ and
f◦ < b◦, g◦ < c◦. By compatibility, b◦ L c◦, from which bL c, by defini-

tion. Conversely, let bL c and let f be a ≪–minimal element in ↓↓ b, g

a ≪–minimal element in ↓↓ c. Then f◦ ≤ b◦ and g◦ ≤ c◦. Now, b◦ L c◦
since bL c, and so f◦ L g◦, by compatibility. Hence fL g. �

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 13

Figure 3

•�
�

�
�

�
�

��

0
�

�
�

�
�

�
�

�
��

@
@@

�
�

�
�

�
�

�
�

��@
@@

a

•1

•
2

•@
@

@
@

3
@

@@

�
��

�
��

@
@@b

•@
@

@@

4
@

@@

�
��

�
��

@
@@c

L is not necessarily compatible with <. Let

S := {0, 1, 2, 3, 4},
< := {〈0, 1〉, 〈0, 2〉, 〈3, 1〉, 〈3, 2〉, 〈4, 2〉},
L := {〈0, 3〉, 〈0, 4〉, 〈3, 4〉},
C := {{0, 1, 2}, {3}, {4}}.

Put a := {0, 1, 2}, b := {3} and c := {4}. Then a > b and a > c.
Moreover, since 0 = a◦, and 0L 3 we have aL b. So, a is comparable
with a node that it dominates. This is excluded. (For otherwise by (c),
bL b, a contradiction.)

One may ask whether by a different definition of L we can make it
compatible with both < and ≪. We may instead of the lower segments
compare the upper segments. This however does not yield satisfactory
results. First, the reader may check that if aL b then either a◦ L b◦ or
a◦ L b◦. However, it is not predictable which of the two obtains. Hence,

the remaining notion would be a L̂ b iff a◦ L b◦. This ordering fails to
be linear on the leaves, as the above example shows. Instead, putting a
very mild requirement on the block structure is enough to ensure that
L is compatible with < as well.

Definition 11. An adjunction structure S is proper if a block is
<–minimal exactly when it is ≪–minimal. S is called standard if
(1) nodes are branching iff they are neither terminal nor preterminal,
(2) for all terminal nodes x, {x} is a block. S is 2–standard if it is
standard and nodes have at most two daughters.

It is not hard to see that standard structures are proper. Grammars
in Chomsky Normal form generate 2–standard structures (assuming
Maximal Blocks, defined below).

Proposition 12. Let S = 〈S, r, <,C〉 be proper and L compatible with
the tree ordering. Then let L ⊆ C2 be defined by xL y iff for all leaves

14 MARCUS KRACHT

a and b such that a ≤ x and b ≤ y we have aL b. L is compatible with
both ≪ and <.

Definition 13. An ordered adjunction structure is a quintuple

〈S, r, <, L ,C〉

such that 〈S, r, <, c〉 is an adjunction structure and L an ordering
compatible with ≪.

3.3. What Is a Constituent? Clearly, we must answer the question
of what is a constituent in an adjunction structure S. Of course, con-
stituents of S must be adjunction structures, and we demand that they
be of the form S ↾ U for some U . It follows immediately that U = ↓x
for some x. We have two choices: we may either demand x to be a lower
segment of some block, or an upper segment of some block. In the first
case we say that a constituent must be based uniformly on a strong
cone or on a weak cone. If we opt for weak cones, then the notion of
‘constituent of S’ and ‘subadjunction structure of S’ coincide. We will
use movement as a diagnostic instrument for determining what nature
the constituents have. That we can do so is due to the fact that there
exist weak cones which are not strong and strong cones which are not
weak. If we find such cones being moved, this gives decisive evidence
for our choice. Such evidence comes from head–movement. The current
analysis is that head–movement uniformly creates complex morpholog-
ical heads. So, if V moves to I it creates the complex head [V I], and
if that head moves to C it creates the complex head [[V I] C]. Now, if
strong cones may move it may be possible for the I in [V I] to move
alone and create the complex head [C I]. As we say, I excorporates
from [V I]. Generally, excorporation is not an option. (Notice that
even if constituents are weak, there is an option for V to excorporate.
That must be ruled out independently.) What is more, the weak cone
[V I] is not a strong cone. In fact, no complex head is a strong cone;

for ≪ is always empty. Hence complex heads are never of the form ↓↓ x

for an x. Hence, with respect to heads, only weak cones may move.
Although it is not necessary to assume that phrasal movement moves
weak cones, it would be quite unsatisfactory if we did. For then the
uniformity of the movement operation is seriously challenged. There
are also other reasons to assume that constituents are weak cones. One
is that for weak cones it also holds that their set of nodes is a union of
blocks. This is characteristic of weak cones, as can be checked.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 15

Definition 14. Let S = 〈S, r, <,C〉 be an adjunction structure and
x ∈ C. The constituent of S headed by x is the adjunction structure

γ(x) := 〈↓x◦, x, <, ↓x〉

where < is the restriction to ↓x◦ of <.

Now consider the second case, remnant topicalization. There is a
rather popular analysis of argument ordering in German that relies on
the assumption that the arguments of the verb are in canonical order
at D–structure, while at S–structure they can practically appear in any
order. This reordering is referred to as scrambling. Although we do
not endorse the view that this is a correct analysis of the facts, let us
assume that it is. Let us now look at the construction where the verb
phrase is topicalized. This topicalization may happen after scrambling.
Hence, in the extreme case it is the bare verb that moves, giving the
the impression that we have an instance of head movement. (But since
this is movement to specifier of comp, it is phrasal movement, and so
it may not be analysed as head movement.)

(2.) [Gelesen]
1
hat Alfred das Buch nicht t1.

Read has Alfred the book not.
‘Alfred read this book not.’

(3.) [Gelesen]
1
hat das Buch Alfred nicht t1.

Read has the book Alfred not.

(4.) [Das Buch gelesen]
1
hat Alfred nicht t1.

The book read has Alfred not.

Suppose that only weak cones may move. Then scrambling cannot be
adjunction to VP, as is often assumed. For then if the VP is moved, its
scrambled arguments must move with it. So, after topicalization the
verb appears at the beginning of the phrase with all its arguments —
though they may occur in any order. Hence, we conclude that scram-
bling is either adjunction to a block containing the VP or else it is
substitution. What it is depends on whether the chains formed by ad-
junction are A–chains or A′–chains. The literature varies considerably
on this point. Some take scrambling to be substitution, some take it
to be adjunction. If it is adjunction to VP, however, then it cannot
be weak cones that move. Then we must conclude that there are two
types of constituents, weak ones — if they are heads — and strong
ones — if they are phrases. This is a rather unsatisfactory solution.
Let us therefore adopt uniformly that constituents are weak. Scram-
bling is therefore substitution into a higher specifier position. Below
we illustrate the relevant structures.

16 MARCUS KRACHT

(5.) Alfred1 hat [[das Buch]
2
nicht [t

1
[t

2
gelesen]]]].

(6.) [t
3
[t

2
Gelesen]]

1
hat [[das Buch]

2
Alfred3 nicht t1].

(7.) [t
3
[t

2
Gelesen]]

1
hat [Alfred

3
[[das Buch]

2
nicht t1].

3.4. Are Blocks Independent? The next problem to be considered
is whether blocks can be reconstructed given only the labelled tree. Let
S = 〈S, r, <,C, ℓ〉 be an adjunction structure. Put Ntc(S) := 〈S, r, <, ζ〉,
where ζ(x) := ℓ(b(x)). We call Ntc(S) the node trace of S. The
question assumes the following form: do there exist nonisomorphic ad-
junction structures with identical node traces? If so, the node trace
alone does not give enough information to let us recover the adjunc-
tion structure. The answer is positive, and counterexamples are easy
to find (see Figs. 4 and 5 below). As we will see in this section the dis-
tinction between a base generated adjunct and a movement generated
adjunct is lost by passing to the node trace. Therefore, the decom-
position into blocks adds linguistically relevant distinctions. However,
in order to establish the partition C it is enough if we know only the
upper segments of a category.

Proposition 15. Let A := 〈S, r, <,C〉 be an adjunction structure. Put

U(C) := {c◦ : c ∈ C}

Then A is uniquely identified by 〈S, r, <〉 and U(C).

Proof. Let U := U(C) be given. Define

x ∼U y ⇔ (∀u ∈ U)(x ≤ u↔ y ≤ u)

Put Π := {{y : y ∼U x} : x ∈ S}. We show that Π = C. To that end,
assume that for some x, x, y ∈ x. Then clearly x ∼U y; for x ≤ d◦ iff
x◦ ≤ d◦ iff y ≤ d◦. Conversely, assume that x ∼U y. Put x := b(x) and
y := b(y). Then x ≤ x◦, and so y ≤ x◦, since x ∼U y. Thus, y◦ ≤ x◦.
Hence x ≤ y. Likewise x ≤ y is shown. Together this gives x = y, as
desired. �

Note by contrast that the lower segments are not sufficient for de-
termining the blocks. Put

L(C) := {c◦ : c ∈ C}

It turns out that in the picture below L(C2) = L(C3). Again, notice
that if 0 or 2 would be required to have different labels, there would be
no question as how to reconstruct C. Moreover, consider the following
restriction on blocks.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 17

Figure 4. An Ambiguous Tree

•�
�

��

d
0

•
@

@
@@

d
1

•
d

2

Maximal Blocks. Blocks are maximal linear subsets of nodes with iden-
tical label.

Often, structures are implicitly assumed to satisfy this property. Nev-
ertheless, not only is there counterevidence, it is also not sufficient for
the recovery of the blocks. For consider the following tree with d ∈ D

an arbitrary label. Without any restriction there exist three possible
divisions into blocks (out of five possible partitions).

C1 := {{0}, {1}, {2}}
C2 := {{0, 1}, {2}}
C3 := {{0}, {1, 2}}

Only C2 and C3 fulfill Maximal Blocks. However, we have no means to
distinguish between them. Indeed, precisely this configuration poses
problems in Chomsky’s system of bare phrase structure, see Chomsky
[5]. In general, this configuration also poses problems for the recovery
of the head in the construction, since we assume that the head projects.
(In the present context this means that it has the same label as the
mother or is part of the same block as the mother.) So, the block with
two segments corresponds to the head, to which the remaining block is
adjoined. Fanselow [6] discussing such structures notes that they arise
only through movement, so the head is nevertheless identifiable as the
part that is not antecedent to a trace.

Interesting evidence against Maximal Blocks comes from the so–
called Split–DP constructions. In the following sentences a part of an
DP has been topicalized.

18 MARCUS KRACHT

Figure 5. Base Generated versus Movement Generated Adjuncts

•
�

�
��

@
@

@@

"!
NP

•y

J
J
JJ

• NP"!
•

�
��

@
@

@
@

@
@

@
@

@
@

@
@

�
��

NP
�

�
��

@
@

@@•y

J
J

JJ

•

(8.) [Teure klassische Bücher]
1
hat Alfred [viele t1] gestohlen.

Expensive classical books has Alfred many stolen.
‘Alfred has stolen many expensive classical books.’

(9.) [Klassische Bücher]
1
hat Alfed [viele teure t1] gestohlen.

Classical books has Alfred many expensive stolen.

(10.) Bücher1hat Alfred [viele teure klassische t1] gestohlen.
Books has Alfred many expensive classical stolen.

In (8.) an entire NP is topicalized, in (9.) and (10.) however only
parts of it. Since the movement is an instance of phrasal movement
we must assume that in both cases an NP is moved. Hence, if this
is an instance of movement at all — and there are reasons to believe
that it is not — we must assume that the NP nodes are not part of
the same block. In other words, we must assume that at D–structure
each block is a singleton, and that proper blocks are created by ad-
junction movement. Althoug this weakens the appeal of the notion of
adjunction put forward in [3], it has from time to time been noted that
one must distinguish base generated adjuncts from movement gener-
ated adjuncts. The advantage of the adjunction structures is that this
distinction can be made. Namely, a constituent headed by y is a base
generated adjunct of x if y is a sister of x, and x and its mother z have
identical label, but are in distinct blocks. The constituent headed by
y is a movement generated adjunct of x if y is a sister of x and x is
not an upper segment in its block. The picture below illustrates this
distinction. To the left the constituent headed by y is a base generated
adjunct, and to the right it is a movement generated adjunct.

4. Compression of Adjunction Structures

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 19

4.1. Adjunction Trees. An immediate question arises as to whether
the two relations of inclusion and containment characterize an adjunc-
tion structure. Moreover, a related question is whether it is necessary
that blocks are sets of nodes rather than a primitive entities. This
makes sense especially since it is the basic idea of Chomsky in [3] that
blocks should be the primitive objects, not the nodes contained in them.

Definition 16. An adjunction tree is a quadruple A = 〈A, a, <,≪〉
such that

(a1) 〈A, a, <〉 is a tree,
(a2) 〈A,≪〉 is a forest,
(a3) <⊆≪,
(a4) if x < y ≪ z then x≪ z as well, and
(a5) if x < y < z and x≪ z then also y ≪ z.

Members of A are called blocks, a is called the root, < containment
relation and ≪ the inclusion relation.

Definition 17. An ordered adjunction tree is a quintuple

A = 〈A, a, <,≪, L〉

where 〈A, a, <,≪〉 is an adjunction tree and L an ordering compatible
with ≪.

The reader may first of all note that if < is a tree ordering and ≪⊆<
then 〈A,≪〉 is automatically a forest. So the second condition does not
need to be checked if the others are satisfied.

Proposition 18. Let T = 〈T, r, <,C〉 be an adjunction structure. Put
T(T) := 〈C, r, <,≪〉, where r ∈ r ∈ C. Then T(T) is an adjunction
tree.

Proof. We clearly have (a1), (a2) and (a3). For (a4), assume that
a < b ≪ c. Then b◦ < c◦ and a◦ < b◦. Then a◦ < c◦, and so a ≪ c.
For (a5), assume that a < b < c and a ≪ c. Then a◦ < b◦ < c◦ and
a◦ < c◦. Since also b◦ > a◦, b◦ is comparable with c◦. Clearly, since
b◦ < c◦, only b◦ < c◦ can obtain. So, b ≪ c. �

Now let us look into the question of recovering the adjunction struc-
ture from a given adjunction tree. Let A = 〈A, a, <,≪〉 be an adjunc-
tion tree. Say that b is adjoined to c if (1) b < c, (2) not b ≪ c,
(3) for no d, b < d < c. Let Adj (c) be the set of nodes adjoined to c.
Another way of defining this set is by

Adj (c) = max<(↓c − ↓↓ c)

20 MARCUS KRACHT

Now formA(c) := Adj (c)×{c} = {〈b, c〉 : b ∈ Adj (C)}, andN(c) := {c∗}∪
A(c), where c∗ := 〈c, ∗〉 for some suitable ∗. Finally,

N(A) :=
⋃

c∈A

N(c)

Moreover, A∗ := {c∗ : c ∈ A}. This will be the set of nodes of the
adjunction structure. To define a tree ordering, choose for each c ∈ A

a linear ordering on A(c). We denote this ordering by ⊳. Next define
∆i, i < 6, as follows.

x∆0y iff x = c∗, y = 〈d, x〉
x∆1y iff x = c∗, y ∈ d∗, c ≪ d

x∆2y iff x = b∗, y = 〈c, d〉, b ≪ c or b = c

x∆3y iff x = 〈c, d〉, y = e, d ≪ e

x∆4y iff x = 〈c, d〉, y = 〈d, e〉
x∆5y iff x = 〈d, c〉, y = 〈e, c〉, x ⊳ y

Now let
∇ :=

⋃
i<6

∆i

< := ∇+

So, < is the transitive closure of the union of the ∆i. a is the root in A.
If Adj (a) = ∅ put r(A) := a∗. Otherwise, let 〈c, a〉 be the ⊳–maximal
element in A(a) and put r(A) := 〈c, a〉. Finally,

A(A, ⊳) := 〈N(A), r(A), <, {N(c) : c ∈ A}〉

Theorem 19. Let A be an adjunction tree. Then A(A, ⊳) is an ad-
junction structure.

Proof. The relation < is transitive by definition. We will prove at
the end that < is a tree ordering. Then, as can be checked, there is
no element y such that r(A)∇y. Hence, r(A) is maximal. Now let
x 6= r(A) be any element that is maximal. Then if x = 〈c, d〉, 〈c, d〉
must be maximal with respect to ⊳ in A(d). Furthermore, d may not be
adjoined to any block e, otherwise 〈c, d〉 < 〈d, e〉, nor may d be included
in a block e, otherwise 〈c, d〉 < e. Hence d is <–maximal, that is, d = a.
It follows that x = r(A). Now suppose that x = c∗. Then A(c) = ∅,
and so x = r(A).

Now for the fact that < is a tree ordering. We shall proceed as
follows. First of all we notice that all ∆i are irreflexive. Therefore ∇
is irreflexive. For every x 6= r(A) we show that there exists a y such
that x∇y and such that for all z with x∇z we have y < z. We call
this property of y with respect to x simply (‡). It follows first of all
that x 6= y, and that that positions are linear. Now let x 6= r(A). Case
1. x = c∗. (Case 1A) Suppose that Adj (c) 6= ∅. Then A(c) is not

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 21

empty. Let y be ⊳–minimal in it. Then y satisfies (‡). Proof. Let x∆iz

for some i < 6. Then i < 4. Suppose that i = 0. Then z = 〈d, c〉 for
some d. Hence y = z or y ⊳ z, and so y ≤ z. Let i = 1. Then z = g∗

and y∆3z, hence y < z. Let i = 2. Then z = 〈d, e〉 such that c ≪ d

and y = 〈f, c〉 for some f. Then y∆3d and d∆2z. So, y < z. (Case 1B)
Suppose that Adj (c) = ∅. Then let d be the least node with respect
to < such that c < d. It exists and is unique. If c ≪ d, put y := d∗.
Otherwise put y := 〈c, d〉. Then y satisfies (‡). Proof. Let x∆iz. Then
i ∈ {1, 2}. Suppose i = 1. Then, as x < z, we have y ≤ z. Suppose
i = 2. Then, z = 〈f, g〉 and c ≪ f or x = f. If c ≪ f then c < f

and so d ≤ f. Therefore either d = f or d ≪ f, by (a5). From this
y ≤ z follows. If x = f, g is unique, and z = y. Case 2. x = 〈c, d〉
for some c and d. (Case 2A) x is not ⊳–maximal in A(d). Then there
exists by linearity of ⊳ a least element 〈b, d〉 in A(d) greater than x.
Put y := 〈b, d〉. We show (‡) for y. Proof. Assume that x∆iz. Then
i ∈ {3, 4, 5}. Let x∆3z. Then y∆3z as well. Let x∆4z. Then z = 〈d, e〉
for some e and so y∆4z as well. Finally, let x∆5z. Then z = 〈a, c〉
for some a, and by choice of y, either a = b and so y = z or y ⊳ z,
which gives y∆5z. (Case 2B) x is maximal in A(d). Let e be the least
f such that f > d. e is uniquely determined, since < is a tree ordering
on A. (Case 2Bα) d is adjoined to e. Then 〈d, e〉 ∈ N(A). In this case
y := 〈d, e〉. We show that y satisfies (‡). Proof. First of all, x∆4y. Now
let x∆iz. Then i ∈ {3, 4}, the case i = 5 cannot arise. Assume i = 3.
Then z = g∗ and d ≪ g. Now c < d < e. Since e 6= g, we have e < g.
Moreover, d ≪ g and so since e ≪ g, by (a5). Hence y∆3z, therefore
y < z. Assume i = 4. Then z = 〈d, g〉 for some g. By choice of d, g

and e, g = e and so z = y. (Case 2Bβ) d is included in e. Then put
y := e∗. We show (‡) for y. Proof. Let x∆iz. Then only i = 4 can
arise. So, z = f∗ and d ≪ f. By definition, e ≤ f. If e = f we are done.
Assume therefore e < f. Then, as d < e < f and d ≪ f we also have
e ≪ f, by (a4). So, y∆4z, concluding the proof. �

Not all adjunction structures are obtained in this way. What we get
are structures in which nonminimal segments are binary branching.

Definition 20. Let S = 〈S, r, <,C〉 be an adjunction structure. S is
called natural if for every block c each x ∈ c − {c◦} is exactly binary
branching.

Theorem 21. (1.) Let A = 〈A, a, <,≪〉 be an adjunction tree. Let
⊳ be a family of linear orderings on the sets A(c), c ∈ A. Then A

is isomorphic to T(A(A, ⊳)). (2.) Let S = 〈S, r, <,C〉 be a natural
adjunction structure and ⊳ a family of linear orderings on A(c), c ∈ C,

22 MARCUS KRACHT

defined in the following way. 〈a, c〉 ⊳ 〈b, c〉 iff there exists a y ∈ c such
that a◦ < y but not b◦ < y. Then S is isomorphic to A(T(S), ⊳).

Proof. To show (1.), put φ : N(c) 7→ c. It turns out that c∗ < d∗ is
equivalent to c ≪ d (by definition of ∆1 and the properties of adjunc-
tion trees). φ is bijective. For if N(c) 6= N(d) then also c 6= d. More-
over, c is the image of N(c). φ respects roots. We have put r(A) = a

if a is not adjoined to, and r(a) = 〈a, x〉 for the highest adjunct x. In
both cases, φ(r(A)) = a. φ respects ≪. Notice first of all that c is the
smallest element in N(c) with respect to <. Hence N(c) ≪ N(d) iff
c < d, by Proposition 5, (3.). The latter is equivalent to c ≪ d, as
desired. φ respects <. For the relation <, several cases have to be dis-
tinguished. N(c) < N(d) iff there is a x ∈ N(c) and a y ∈ N(d) such
that x < y. Indeed, we can actually assume that x ≺ y and therefore
x∆iy for some i. i = 0. Cannot arise, since c 6= d. i = 1. Then y = d∗,
x = c∗ and c ≪ d and so c < d. i = 2. Then y = 〈b, d〉 for some b

and x = c∗, with c = b or c ≪ b. Since b < d (b is adjoined to d), we
have c < d in all cases. i = 3. y = d∗ and x = 〈b, c〉 for some b as well
as c ≪ d. Hence c < d. i = 4. y = 〈c, d〉 and x = 〈a, c〉 for some a.
Then c < d. i = 5. Cannot arise, since c 6= d. The reasoning can be
played in the converse direction. Then we assume that c ≺ d and show
that N(c) < N(d). This is straightforwardly verified. This finishes the
proof of the first claim.

Let us now show (2.). Let S = 〈S, r, <,C〉 be given and a family
of linear orders on N(c), c ∈ C, such that 〈a, c〉 ⊳ 〈b, c〉 if there is a
y ∈ c such that a◦ < y but not b◦ < y. Assume also that S is natural.
We define ψ : N(T (S)) → S as follows. Put ψ : c∗ 7→ c◦, and let
〈c, d〉 ∈ N(d). Let z be the least node in S dominating both c◦ and d◦.
Then put ψ(〈c, d〉) := z. ψ is bijective. For if x ∈ S, then let x ∈ c. If
x is the lowest segment in c then x = ψ(c). If not, there exists a d such
that d◦ is a daughter of x which is not in c. d exists and is unique, since
S is natural. Now d is adjoined to c and so 〈d, c〉 ∈ N(c). Furthermore,
ψ(〈d, c〉) = x. Let ρ be the inverse of ψ. We show that ρ is bijective.
So let x 6= y. Various cases arise. If x and y belong to different blocks,
then clearly ρ(x) 6= ρ(y). So let them be in the same block. If one of
them is minimal, the other is not, and then ρ(x) 6= ρ(y). So, let them
both be nonminimal. Then x = 〈a, c〉 and y = 〈b, c〉 for certain distinct
a, b and c. So, in all cases ρ(x) 6= ρ(y). It is clear that each element
of N(T (S)) is of the form ρ(x) for some x. ψ respects roots. Follows
from the fact that ψ respects < and the fact that the root A(S, ⊳) is
the maximal segment of the block containing r. ψ respects <. We show
that (i) if x ≺ y then ρ(x)∇ρ(y). Namely, let x ≺ y. Let x ∈ c and

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 23

y ∈ d. Suppose first that c = {x}. Then let y = d◦. So ρ(x) = c∗
and ρ(y) = d∗. Furthermore, c ≪ d from which ρ(x)∆1ρ(y). If y is
not minimal in d then we get ρ(x)∆2ρ(y). Now suppose that c 6= {x}.
Then two cases arise. (Case 1) x is maximal in c, and (Case 2) x is
not maximal in c. In Case 2, c = d, and ρ(x)∆0ρ(y) if x is minimal
in c and ρ(x)∆5ρ(y) if not. (For then, ρ(x) = 〈a, c〉 and ρ(y) = 〈b, c〉,
where ρ(x)⊳ρ(y). This means a∗ < 〈a, c〉, but not b∗ < 〈b, c〉.) In Case
1, we get ρ(x)∆4ρ(y) if y is not minimal in d, and ρ(x)∆3ρ(y) if y is
minimal in d. This completes all cases. (ii) If ρ(x)∇ρ(y) then x < y.
This however is established by checking all cases. Hence the claim (2.)
proved. �

Corollary 22. Let A be an adjunction tree. Call A rigid if for any
normal adjunction structures S1 and S2 T(S1) is isomorphic to T(S2)
iff S1 is isomorphic to S2. An adjunction tree is rigid iff to each block
at most one block is adjoined.

4.2. The Ordered Case. One expects that ordering will help in mak-
ing the reconstruction of the adjunction structure unique. We will see
that this holds only under certain conditions. First, let S = 〈S, r, <,C〉
be given. For a and b adjoined to c we say that a is adjoined higher
than b if there exists a y ∈ c such that b◦ < y but it does not hold
that a◦ ≤ y. We have seen that in compressing the adjunction struc-
ture we must put 〈b, c〉 ⊳ 〈a, c〉 iff a is adjoined higher than b. Now let
us introduce an ordering on S. We shall see that different orderings
give rise to identical ordered adjunction trees. Notice first that given
an adjunction tree, all that needs to be established is how a node of
the tree is spelled out as a block with segments, and how the segments
are ordered with respect to ⊳. What determines the shape of the block
N(c) is the set of immediate daughters, D(c) := max<{d : d < c}. a is
adjoined to the left (right) of c if a is adjoined to c and aL c (cL a).
Let LA(c) (RA(c)) be the set of blocks adjoined to the left (right) of c.
Furthermore, let IN (c) be the immediately included blocks. It turns
out that both sets are linearly ordered by ⊳. For let a and b be adjoined
to the left to c and a higher than b. Let x, y and z be the following
segments. Then a◦ Ly, b◦ Lz. Then a◦ L b◦, by the fact that the order
is compatible. So, if a is higher and both are left adjoined, then a is
left of b. Dually, if both are right adjoined and a is higher than b then
bL a. Now, the set D(c) of <–daughters of c is partitioned into three
sets, LA(c), IN (c) and RA(c). Each element of the first is left of every
element of the second, and each element of the second is left of every
element of the third. Now each element of N(c) is of the form 〈x, c〉
where x ∈ LA(c) or x ∈ RA(c). Choose two orderings ⊳1 and ⊳2 such

24 MARCUS KRACHT

Figure 6. Two Left Adjuncts

•�
�

��

a◦

•
@

@
@

@
@

@
@@

x

•�
�

�
�

b◦

• y

•
z

Figure 7. Alternate Adjuncts

•

•

�

�

�

�

•

c

�
�

��•
��

a @
@

@
@•
��

b
•

•

�

�

�

�

•

c

@
@

@@•
��

b
�

�
�

�•
��

a

that LA(c)×{c} as well as RA(c)× {c} are linearly ordered by ⊳1 and
⊳2. Then T(A(A, ⊳1)) ∼= T(A(A, ⊳2)).

Definition 23. An ordered adjunction structure is homogeneous if
for every node all nodes are adjoined to the left or all to the right.

Theorem 24. An ordered adjunction tree is the compression of exactly
one ordered adjunction structure iff it is homogeneous.

We have already seen that homogeneous adjunction trees have the
desired property. Now let A be not homogeneous. Then there is a c,
a and b such that a is adjoined to the left of c and b to the right of
c. Then we may define ⊳1 such that a is higher than b and ⊳2 such
that b is higher than a. Homogeneity is a consequence of a stronger
requirement, namely right or left uniformity.

Definition 25. An ordered adjunction structure (adjunction tree) is
left uniform (right uniform) if adjuncts are always left (right) of
the blocks to which they are adjoined.

Haider [7] assumes that the basic projection line goes down if one
moves left–to–right. The LCA of Kayne [8] (see below) has as a con-
sequence that structures are left uniform. So, both Haider and Kayne

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 25

assume that structures are left uniform. This has the advantage that
from the adjunction tree the adjunction structure can be recovered.
That both should converge on this is an accident. Both base their
restriction on c–command as a diagnostic for constituent structure. C–
command, however, used by Kayne is defined blockwise and does not
allow to distinguish different adjuncts which are adjoined at the same
side. Haider’s notion is node based, and his arguments are derived
from empirical observations concerning the sequence of arguments of a
verb.

5. Domains

5.1. Block Based Command Relations. The change from trees to
adjunction structures necessitated a revision of the notion of command
relations. Command relations shall now be defined not nodewise but
blockwise (so in fact we are defining them over adjunction trees).

Definition 26. Let S = 〈S, r, <,C〉 be an adjunction structure and
r ∈ r ∈ C. A command relation over S is a binary relation R

on C such that (1.) rR = C, (2.) for y 6= r the domain yR is
a constituent properly containing the constituent headed by y, and
(3.) if x ≤ y, then xR ⊆ yR. The node–trace of R is the set
{〈x, y〉 : (∃c, d ∈ C)(x ∈ c, y ∈ d and cRd)}.

There are four choices, depending on whether positions are weak or
strong upper cones, and whether constituents are weak or strong lower
cones. Namely, consider the following definition of O–command. x

O–commands y iff for all z in the position of x with label O, y is in the
constituent headed by z. Depending on the choice of weak and strong
for positions and constituents we end up with different notions of a
command relation. However, as we have noted earlier, constituents are
weak cones. So, two of the four choices are excluded. We are thus left
with two notions.

Let us call a command relation R weak if for the generating func-
tion fR we have fR(x) ≥ x for all x and fR(x) > x for all x < r. R

is strong if fR(x) ≫ x for all x such that x ≪ r, and fR(x) = r oth-
erwise. Then it is clear what we understand by strong O–command
and weak O–command. Is there a way to choose between strong and
weak relations? The answer is indirect. We will show that if we opt for
weak relations, they turn out to be node based, so the entire reasons
of introducing adjunction structures in [3] disappear. If we opt for the
strong relations, however, we get the intended effects of the barriers
system. Let us say a command relation on an adjunction structure is
node based if the node–trace is a command relation. We want to

26 MARCUS KRACHT

require the following property.

Node Compatibility. A block based relation is a command relation only
if its node trace is a command relation.

This excludes the relations where constituents are strong constituents.
For the node trace of a strong constituent is not necessarily a con-
stituent. For let c be a two segment block. Assume that d is adjoined
to c. Then the strong cone of c does not contain d. However, c◦ is

a member of the node trace of ↓↓ c. So, the node trace of ↓↓ c is not a
constituent.

We now want to compute the node trace of the command relations
of weak and strong O–command. Let O ⊆ D be a set of labels. Then
let O• be the (node based) command relation based on the set of nodes
which have label from O and are minimal segments in their block. Let
O• be the (node based) command relation based on the set of nodes
that have label O and are maximal segments. Finally, let Oµ be the
relation based on the nodes with label O which are both maximal and
minimal. Denote by W (O) the node trace of weak O–command, and
by S(O) the node trace of strong O–command.

Theorem 27.
W (O) = O•

S(O) = (O• ◦ O•) ∩ Oµ

In particular, W (O) is tight.

Proof. Let 〈x, y〉 ∈ W (O) and let x ∈ x and y ∈ y. Then for the least z

which is > x and has label in O, z ≥ y — if it exists. Assume z exists.
Then z◦ is also the least node with label in O which is a maximal
segment and > x◦. It follows that z◦ > x and also that z◦ ≥ y. Hence,
〈x, y〉 ∈ O•. Assume that z does not exist. Then no block above x

has a label in O. Then no node above x has a label from O, and so
〈x, y〉 ∈ W (O). Conversely, let 〈x, y〉 ∈ O•. Let z be the least node
with label from O which is a maximal segment. (If it does not exist,
we are done, as can be seen easily.) Let z be its block. Then z is the
least block > x with label from O. So, x weakly O–commands y. Hence
〈x, y〉 ∈ W (O). Now for S(O). Let 〈x, y〉 ∈ S(O). Let x ∈ x and
y ∈ y. Assume there exists a block ≫ x with a label from O. Let
z be the least such block. Two cases arise. (Case 1.) z◦ = z◦ = z.
Then z is minimal and maximal at the same time. Then x < z and
y ≤ z. It is then clear that 〈x, y〉 ∈ Oµ. Moreover, 〈x, y〉 ∈ O• and so
〈x, y〉 ∈ O• ◦ O•. (Case 2.) z◦ < z◦. Then 〈x, z◦〉 ∈ O• ◦ O• but also
〈x, z◦〉 ∈ Oµ. Thus, 〈x, y〉 ∈ (O• ◦ O•) ∩ Oµ. Now assume conversely
that 〈x, y〉 ∈ (O• ◦ O•) ∩ Oµ. Let x ∈ x, y ∈ y. Let z be the least

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 27

block of label from O such that z ≫ x. Then z ≥ y. This shows the
theorem. �

As before, we can use a generating function for command relations.
A block based command relation R is tight if it satisfies the postulates
for tight relations.

Tightness. If fR(x) is in the position of y then fR(y) = fR(x) or fR(x)
is also in the position of fR(y).

Clearly, among the tight relations we are interested in the analogues of
κ(O,S) for O ⊆ D. We put 〈x, y〉 ∈ λ(O,S) iff for all z ≫ x such that
ℓ(z) ∈ O we have y ≤ z.

Definition 28. Let S be a labelled (ordered) adjunction structure with
labels over D. A definable command relation over S is a command
relation generated from relations of the form λ(O,S), O ⊆ D, using
intersection and relation composition.

5.2. K(ayne)–Structures. In [8], Kayne proposes a constraint on
adjunction structures which he calls the Linear Correspondency Ax-

iom (LCA). This axiom connects precedence with antisymmetric c–
command. Here, x c–commands y antisymmetrically if x c–commands
y but y does not c–command x. Kayne’s theory is illustrative for the
potential of adjunction structures, yet also for its dangers. The at-
tractiveness of the proposal itself — namely, to link precedence with
hierarchy — disappears as soon as one starts to look at the details.
For the canonical definition of c–command does not yield the intended
result. It is too restrictive. Hence, to make the theory work, a new
definition has to be put in place of it, that takes constituents and po-
sitions to be strong. Although it too is restrictive (so that in the book
Kayne has to go through many arguments to show that it is the right
theory) it resorts to a definition of c–command that we have actually
discarded on theory internal reasons, since it takes the wrong notion of
a constituent.

Definition 29. x ac–commands y if x and y do not overlap and x

c–commands y but y does not c–command x.

A nice characterization of c–command and ac–command can be given
in the following way. Let µ(x) be the mother of x. This is undefined if
x is the root.

Lemma 30. (1) x c–commands y iff x is the root or µ(x) ≥ y. (2) x
ac–commands y iff (a) x and y do not overlap and (b) µ(x) > µ(y).

28 MARCUS KRACHT

Proof. (1) Suppose that x c–commands y. If x is not the root, µ(x) is
defined and µ(x) ≥ y, by definition of c–command. The converse is also
straightforward. (2) Suppose that x ac–commands y. Then neither x
nor y can be the root. Then µ(x) ≥ y. Now, µ(x) = y or µ(x) > y.
µ(x) = y cannot hold, since then y overlaps with x. So µ(x) > y and
hence µ(x) ≥ µ(y). However, µ(x) = µ(y) implies that y c–commands
x, which is excluded. So, µ(x) > µ(y). Conversely, assume that x and
y do not overlap and that µ(y) < µ(x). Then neither is the root and
µ(x) > y, since y ≤ µ(y). So, x c–commands y. If y c–commands x
then µ(y) ≥ x, which in combination with µ(y) < µ(x) gives µ(y) = x.
This is excluded. Hence y does not c–command x. �

Proposition 31. Antisymmetric c–command is irreflexive and transi-
tive.

Proof. Irreflexivity follows immediately from the definition. Suppose
that x ac–commands y and that y ac–commands z. Clearly, none of
the three is the root of the tree. Then µ(x) > µ(y) > µ(z), from which
µ(x) > µ(z). Now suppose that x overlaps with z. x ≤ z cannot hold,
for then µ(x) ≤ µ(z). So, x > z. Hence µ(y) must overlap with x, for
also µ(y) > z. Since µ(x) > µ(y), we have x ≥ µ(y) and so x > y.
This is a contradiction, for x does not overlap with y. �

We will suspend the full definition of ac–command for adjunction
structures and state first the LCA. After having worked out the con-
sequences of the LCA for trees we will return to the definition of ac–
command.

Definition 32. Let S = 〈S, r, <,C〉 be an adjunction structure. Define
a binary relation on C, ⋊, by c ⋊ d iff there exists x ≥ c and y ≥ d such
that x ac–commands y.

Thus the LCA can be phrased in the following form.

Linear Correspondence Axiom. ⋊ is a linear order on the leaves.

We remark that ⋊ depends on the particular choice of the notion of
c–command. We will play with several competing definitions and see
how LCA constrains the structure of adjunction structures depending
on the particular definition of c–command. Let us give a special name
for the structures satisfying LCA.

Definition 33. Let S be an adjunction structure, and X ⊆ S2 a
binary relation over S. Put

⋊X := {〈x, y〉 : (∃v ≥ x)(∃w ≥ y)(〈v,w〉 ∈ X)}

S is called a K(X)–structure if ⋊X is a linear order on the leaves.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 29

Recall that a leaf is a block that contains a segment which is a leaf of
the underlying tree. First we take X to be the notion of ac–command
defined above. The result is quite dissimilar to those of Kayne [8].
The reason is that Kayne chooses a different notion, which we call
sc–command. It is defined below.

To see how K(AC)–structures look like, let us start with a limiting
case, namely trees. Notice that in general, if x ac–commands y and
y ≥ z then x ac–commands z as well.

Definition 34. Let T = 〈T, r, <〉 be a tree. T is called a K(AC)–tree
if x⋊ y is linear on the leaves, where x⋊ y iff there exists v ≥ x, w ≥ y

such that v ac–commands w.

Theorem 35 (Kayne). A tree is a K(AC)–tree iff it is at most binary
branching, and for every x, y1, y2, y1 6= y2 such that y1 ≺ x and y2 ≺ x,
either y1 is a leaf or y2 is a leaf, but not both.

Proof. Let T be a tree. Let x and y be leaves. We claim that x ⋊ y

and not y⋊ x iff x ac–commands y. Assume that x⋊ y and not y⋊ x.
Then x and y do not overlap. (Otherwise, let u ≥ x and v ≥ y.
Then u does not ac–command v since u and v also overlap.) If x does
not ac–command y then either (Case 1) x does not c–command y or
(Case 2) y c–commands x. Case 2 is easily excluded. For then x ⋊ y

simply cannot hold since every node dominating y must c–command x.
Suppose Case 1 obtains. By definition of ⋊ and the remark preceding
Definition 34 there is a u such that x ≤ u and u ac–commands y but
u � y. Moreover, since y does not c–command x there is a v > y such
that v c–commands x but v � x. Hence, x does not c–command v,
otherwise x c–commands y. Hence, v ac–commands x. We now have:
u ac–commands y, whence x⋊y, and v ac–commands x, whence y⋊x.
Contradiction. So, x ac–commands y. If x ac–commands y then by
definition x⋊ y. Moreover, if for some v ≥ y and some u ≥ x we have
that v ac–commands u, then v � x and u � y, from which follows
that u = x, and u c–commands v, a contradiction. This proves our
claim. Suppose now that T is a K(AC)–tree. Let x be a node with
three (pairwise distinct) daughters, y1, y2 and y3. Let zi (i ∈ {1, 2, 3})
be leaves such that zi ≤ yi for all i. By LCA, the zi are linearly
ordered by ⋊. Without loss of generality we assume z1 ⋊ z2 ⋊ z3. Then
z1 ac–commands z2 and z2 ac–commands z3. Therefore, z1 = y1 and
z2 = y2. But then z2 ac–commands z1, a contradiction. So, any node
has at most two daughters. Likewise, if x has exactly two daughters
then exactly one must be a leaf. Now assume that T satisfies all these
requirements. We will show that it is a K(AC)–tree. First, any node is

30 MARCUS KRACHT

either a leaf or a mother of a leaf. Mothers of leaves are linearly ordered
by >. (For if not, take mothers u and v that do not overlap. Let w be
their common ancestor. w has at least two daughters of which neither
is a leaf.) Now let x⋊ y. Let u be the least node dominating x and y.
Then, u has two daughters, of which one is a leaf. This is easily seen to
be x. Further, y is not a leaf. So, y ⋊ x cannot obtain. Hence we have
x ⋊ y iff x ac–commands y. This is irreflexive and transitive. Now,
finally, take a leaf x. It has a mother µ(x) (unless the tree is trivial).
From what we have established, x⋊ y for a leaf y iff µ(x) > µ(y). But
the mothers of leaves are linearly ordered by >, as we have seen. �

A few comments are in order. If ac–command would not require x
and y to be incomparable then x ac–commands y if x > z > y for
some z. Then trees satisfying LCA would have height 2 at most. If we
would instead use the relation of ec–command, where x ec–commands
y if x c–commands y but x � y then x ac–commands y if x ≺ y. So,
trees satisfying LCA would again be rather flat. We would achieve the
same result as above in Theorem 35, however, if the definition of c–
command would be further strengthened as follows. x cc–commands y
if x and y are incomparable and x c–commands y; x acc–commands y
if x cc–commands y but y does not cc–command x. (Simply note that
acc–command is the same relation as ac–command.)

Now let us go over to adjunction structures. The results we are going
to provide shall in the limiting case of a tree return the characterizations
above.

Definition 36. In an adjunction structure, x wc–commands y if x � y

and for every block u ≫ x we have u ≥ y.

This is c–command as defined earlier for blocks, with the added
condition that x excludes y. In the tree case this is like c–command,
but the clause x � y is added.

Definition 37. In an adjunction structure, x awc–commands y if
x and y are ≪–incomparable, x wc–commands y but y does not wc–
command x.

This is the same as ac–command in the tree case, hence the re-
sults carry over. First of all, we assume that adjunction structures do
not contain segments which are nonbranching and nonminimal. Re-
call that a morphological head of an adjunction structure is a maximal
constituent in which no block includes another block. With respect
to heads, the LCA is less strict on adjunction structures. The reason
is that the exlusion of overlap is replaced by the condition that no

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 31

Figure 8. A K(AWC)–Structure which is a Head

•
x0
�

�
�

�
�

�
��

&%
'$•

x1

@
@

@
@

•
x2

@
@

@@
@

@
@

@
@

@

�
��@

@
@

@
@

@

�
��

@
@

@
@

@
@

�
��@

@
@

@
@

@

�
��

•
y0

•
y1

block includes the other. It turns out that in adjunction structures the
following type of morphological heads are admitted.

Theorem 38. Let A be a morphological head and a K(AWC)–structure.
Then A is right branching. That is to say, A = 〈T,<, r, L,C〉 where

T := {xi : i < n+ 1} ∪ {yi : i < n}
< := {〈xi, xj〉 : i < j < n+ 1} ∪ {〈yi, xj〉 : i < j < n+ 1}
r := xn

L := {〈xi, yj〉 : i ≤ j < n} ∪ {〈yi, yj〉 : i < j < n}
C := {{yi, xi+1} : i < n} ∪ {{x0}}

Proof. Suppose that ≪= ∅. Suppose first that there are x and y such
that x � y and y � x. Then x wc–commands y and y wc–commands x.
This however contradicts LCA. (For if x are y are ≤–incomparable, so
are any of their leaves, and this means that they precede each other.)
So, for any two blocks, either x ≤ y or y ≤ x. Hence C is linearly ordered
by <. It follows that there can be only one <–minimal block, x0. It
consists of one node, by assumption that no nonbranching nonminimal
segment exists. Put x0 := {x0}. We have n blocks, xi, i < n, such that
xi ≺ xi+1 and xi is adjoined to xi+1. (For xi ≪ xi+1 does not hold.) Hence
xi+1 is a two segment block, assuming that there are no nonminimal,
nonbranching nodes. Call the lower segment yi and the upper segment
xi+1. Then yi < xi+1, by definition. Furthermore, xi < xi+1. xi is
incomparable with yi. This is exactly the structure of A. �

Now we turn to the structure of K(AWC)–structures in general. Here
again the structural constraints imposed by LCA are quite drastic.
First, we cannot have two adjuncts to the same block unless exactly
one of them is a head. For if x1 and x2 are adjoined to y, then they
exclude each other, and they mutually c–command each other. In order
for the leaves of x1 to be left of the leaves of x2 (in the sense of ⋊) we

32 MARCUS KRACHT

must have that x2 is not a head. For the same reason x1 must be a
head. Further, if there is an adjunct to a block x, its leaves must be to
the left (in terms of ⋊) of the strong daughters of x. For the adjunct
ac–commands the daughters of x.

Lemma 39. Let A be a K(AWC)–structure, and x and y blocks of
A. Suppose that the constituents γ(x) and γ(y) are not morphological
heads. Then x ≤ y or y ≤ x.

Proof. Suppose the theorem fails. Then there exist x and y which head
constituents that are not morphological heads but are incomparable
with respect to ≤. We can actually assume that x and y are maximal
with this property. They are not adjuncts of the same node, however,
as we have seen. So, either one is adjoined to the other, or they are both
≪–daughters of the same node. If x is adjoined to y, we know that x is
a head. Likewise, y is not adjoined to x. So, they are ≪–daughters of
some block m. There exists u1, u2 ≤ x such that u1 ≪ u2, and likewise
y contains v1 and v2 such that v1 ≪ v2. In particular, u1 6= x and
v1 6= y. Now, x ac–commands v1. For every block properly including x

also includes m (or is = m), and so contains v1. x excludes v1, and so
x wc–commands v2. But the ≪–mother of v2 is ≤ v1, whence v2 does
not wc–command x. This shows that x awc–commands v2. In the same
way we see that y awc–commands u1, a contradiction to LCA. �

Lemma 40. Let A be a K(ASC)–structure, and x and y distinct blocks
of A. Suppose that the constituents γ(x) and γ(y) are not morphological
heads. Then x ≪ y or y ≪ x.

Proof. By the previous theorem, x ≥ y or y ≥ x. Assume the first.
Suppose that x ≫ y does not hold. Then y is adjoined to x and must
be a head. Contradiction. Likewise, if y ≥ x then also y ≫ x, showing
the theorem. �

It now follows that the relation ≪ is rather simple. It is a disjoint
sum of right branching structures!

Definition 41. A is strictly complex if for every leaf r there is an x

such that r ≪ x.

It is not hard to deduce the following

Theorem 42. Let A be an adjunction structure. Then A is a K(AWC)–
structure iff for every block x the following holds.

(1) At most one block is adjoined to x. Call it s. s is a morphological
head.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 33

(2) At most two blocks are immediately included by x. If there are
two, one is a morphological head (we call it h) the other is not
(we call it c).

(3) c is strictly complex.

The relative ordering is s ⋊ h ⋊ c.

Unlike Kayne we deduce also the requirement that s is a morpholog-
ical head. To get the result of Kayne we must shift to the definition
which Kayne takes.

Definition 43. Let A be an adjunction structure, and x and y be
blocks. x sc–commands y iff x � y, and for every block u such that
u ≫ x also u ≫ y or u = y.

This definition is the version of c–command that takes cones and
positions to be strong. The non–inclusion condition remains.

Definition 44. x asc–commands y if neither x ≫ y nor y ≫ x, and
if x sc–commands y but y does not sc–command x.

This definition defines the same set of trees, since if blocks are all
trivial, and if x = {x} and y = {y}, then x sc–commands y iff x c–
commands y and y � x. Hence x asc–commands y iff x ac–commands
y. However, notice that the node trace of asc–command is not the
same as ac–command on the underlying tree! Now, suppose that A is
a K(ASC)–structure. If y has two adjuncts, then they exclude each
other, so are incomparable with respect to both ≤ and ≪. It follows
that these adjuncts sc–command each other, which is impossible. So,
we retain the fact that there is only one adjunct. If a node has two
daughters, exactly one of them is a head. Otherwise, if both are heads,
they sc–command each other, a contradiction. If both are non–heads,
we find that there are leaves r and y such that x ⋊ y and y ⋊ x. So, we
are left with almost the same characterization, however with a small
difference: adjuncts are allowed to be complex.

Theorem 45 (Kayne). Let A be an adjunction structure. Then A is
a K(ASC)–structure iff for every block x the following holds.

(1) At most one block is adjoined to x. Call it s.
(2) At most two blocks are immediately included by x. If there are

two, one is a morphological head (we call it h) the other is not
(we call it c).

(3) c is strictly complex.

The relative ordering is s ⋊ h ⋊ c.

34 MARCUS KRACHT

Proof. We have already seen that if A is a K(ASC)–structure it satisfies
(1) and (2). (3) is also easily established. Suppose that c is not complex.
Then there exists a leaf u ≤ c which is not included by any member
of c. Then let u ≤ x. Any block including x must also include h, by
assumption. Since h is a head, it is also not complex. Hence, take a
leaf v of h. Then neither v⋊u nor u⋊v holds. Now assume conversely
that (1), (2) and (3) hold. Let u and v be distinct leaves. We must
show that (a) u⋊v or v⋊u, and (b) not both u⋊v and v⋊u. Consider
the set U := {x : x ≥ u} and V := {y : y ≥ v}. Clearly, U ∩V 6= ∅. Let
b be the minimum of U ∩ V . Case 1. u = b or v = b. Without loss of
generality v = b. Then v does not sc–command u, but u sc–commands
v. So, u ⋊ v. Hence (a) holds. It is clear that (b) also holds. Case
2. u 6= b and v 6= b. Then let c and d be ≤–daughters of b such that
u ≤ c and v ≤ d. Not both are adjuncts by (1), so we may without loss
of generality assume that d ≪ b. Case 2a. c is an adjunct to b. Then
c asc–commands d. Furthermore, no y ≤ d sc–commands any x ≤ c.
So, u ⋊ v, but v ⋊ u does not hold. Case 2b. c is not an adjunct to
b. Then both c and d are ≪–daughters, and so by (2) one of them is
a head. Assume without loss of generality that c is the head. Then d

is not a head, again by (2). Furthermore, by (3), d is strictly complex.
Thus v ≪ y for some y ≤ d. Furthermore, there is a z, a ≪–daughter
of y and v ≤ z. Then c asc–commands z. Hence u ⋊ v. To show (b),
we have to show that v ⋊ u does not obtain. But c sc–commands d, so
c sc–commands any block ≤ d. Since c is a head, any block of c sc–
commands any block of d. Therefore, no block of d can asc–command
any block of c. This shows that v ⋊ u does not hold. The proof is
complete. �

These are the requirements as can be found in Kayne.

5.3. Movement Invariance of Domains. Finally, we want to dis-
cuss an important feature of the new, block based definitions of do-
mains, namely their invariance under movement. In fact, invariance
holds with respect to more transformations than just movement. The
simplest of them is deletion. Let S = 〈S,<, r, L,C〉 be an ordered
adjunction structure and Y ⊆ S , such that Y = ↑Y . Then

S ↾ Y := 〈Y,<Y , rY , LY ,CY 〉 ,

where
<Y := < ∩Y 2

rY := r

LY := L ∩ Y 2

CY := {x ∩ Y : x ∈ C, x ∩ Y 6= ∅}

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 35

Finally, for x a block, let Y := S − ↓x◦ ∪ {x◦}. Then Y = ↑Y and so
Del(S, γ(x)) := S ↾ (S − Y) is well–defined and called the result of
deleting the constituent γ(x). If we turn to labelled structures, let
ℓ : S → D be a labelling function. Then ℓY : S − Y → D is simply
ℓY (x) := ℓ(x).

The converse operation is called tagging. Here we take to adjunction
structures and tag the root one structure to some designated node of
the first structure. To discuss this properly we need a construction
that makes two copies of adjunction structures disjoint in their ele-
ments. Let S = 〈S,<, r, L,C〉 be an ordered adjunction structure. Put
Si := S × {i}, let h : S → Si : x 7→ 〈x, i〉(=: xi). Then h induces
a (uniquely) defined adjunction structure, as discussed in Section 2.1.
Namely,

Si := {xi : x ∈ S}
<i := {〈xi, yi〉 : x < y}
Li := {〈xi, yi〉 : xL y}
Ci := {{xi : x ∈ c} : c ∈ C}
Si := 〈Si, <i, ri, Li,Ci〉

Now let S = 〈S,<S, rS, LS,CS〉 and T = 〈T,<T , rT , LT ,CT 〉 be adjunc-
tion structures, and w ∈ S a node. Then

Tag(S, w,T) := 〈U,<U , rU , LU ,CU〉 ,

where

U := S1 ∪ T 2 − {r2
T}

<U := <1
S ∪ <2

T ∪{〈y2, x1〉 : x ∈ S, y ∈ T, w ≤ x}
rU := r1

S

LU := L1
S ∪ L2

T

∪{〈x1, y2〉 : x ∈ S, y ∈ T, xLw}
∪{〈y2, x1〉 : x ∈ S, y ∈ T, w Lx}

CU := {x1 : x ∈ CS, w 6∈ x}
∪{y2 : x ∈ CT , rT 6∈ x}
∪{x1 ∪ y2 : x ∈ CS, y ∈ CT , w ∈ x, rT ∈ y}

If ℓS : S → D and ℓT : T → D are labelling functions, the operation
of tagging is defined only if ℓT (rT) = ℓS(w). In that case, however, we
may define ℓU : U → D as follows.

ℓU(x1) := ℓS(x), ℓU(y2) := ℓT (y)

Notice that this is exactly as in the case of trees, where we tag the
second tree onto the first at node w. The only thing to be remembered
is that the block containing the node at which the trees are fused is the
join of the blocks containing the counterpart of that node in S and T.

36 MARCUS KRACHT

Finally, Fus(S, w,T), the result of adjoining T to S at w, is defined
as 〈U,<U , rU , LU ,CU〉 where

U := S1 ∪ T 2 ∪ {w3}
<U := <1

S ∪ <2
T

∪{〈y2, x1〉 : x ∈ S, y ∈ T, w < x}
∪{〈y2, w3〉 : y ∈ T}
∪{〈x1, w3〉 : x ∈ S, x ≤ w}
∪{〈w3, x1〉 : x ∈ S,w < x}

rU :=

{
r2
S if w < rS

w3 if w = rS

LU := L1
S ∪ L2

T∪
∪{〈x1, y2〉 : x ∈ S, y ∈ T, xLw}
∪{〈y2, x1〉 : x ∈ S, y ∈ T, w Lw}
∪{〈w3, x1〉 : x ∈ S,w Lx}
∪{〈x1, w3〉 : x ∈ S, xLw}

CU := {y2 : y ∈ CT}
∪{x1 : x ∈ CS, w 6∈ x}
∪{x1 ∪ {w3} : x ∈ CS, w ∈ x}

We call this operation fusion, to distinguish it from standard adjunc-
tion. If ℓS : S → D and ℓT : T → D are labelling functions, put
ℓU : U → D as follows.

ℓU(x1) := ℓS(x), ℓU(y2) := ℓT (y)

Clearly, from these elementary operations we can define the standard
operations of substitution and adjunction of a constituent of S at some
node. First, we copy the constituent and tag or fuse it to w. After that
we delete the previous copy. Notice that we keep track of the different
copies by means of superscripts. If we take the constituent γ(y) and
tag or fuse it, then γ(y) splits into γ(y)1 and γ(y)2, which are the old
and new copy, respectively.

Sub(S, w, γ(y)) := Del(Tag(S, w, γ(y)), γ(y)1)
Adj(S, w, γ(y)) := Del(Fus(S, w, γ(y)), γ(y)1)

With these definitions we can now state and prove the fact that de-
finable command relations (block based) are invariant under these
transformations. We call a schema of binary relations (or sim-
ply schema) over labelled, ordered adjunction structures a function X
that assigns to each finite labelled ordered adjunction structure S a
relation X(S) ⊆ S × S. Clearly, tight generated command relations
are defined as relation schemes.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 37

Definition 46. Let X be a schema of binary relations over labelled,
ordered adjunction structures. X is invariant under deletion if for
any adjunction structure S, a constituent γ(y),

X(Del(S, γ)) = X(S) ∩ ((S − Y) × (S − Y))

where Y := (S−↓x◦)∪{x◦}. X is invariant under tagging (fusion)
if for given structures S, T, and U := Tag(S, w,T) (U := Fus(S, w,T))

X(S)1 = X(U) ∩ (S1 × S1)
X(T)2 = X(U) ∩ (T 2 × T 2)

Theorem 47. Definable command relations (node based) are invariant
under deletion and tagging. Definable command relations (block based)
are invariant under deletion, tagging and fusion.

Proof. We will only show the claim for block based command relations.
The claim for node based command relations then follows. It is first of
all necessary to verify that the claim needs to be proved only for tight
relations. To see this, let X = Y ◦Z. Then X(S) = Y (S) ◦Z(S). So,
what we need to show is that in the case of deletion of γ(x) from S, for
any pair of command relations, (R∩Y) ◦ (S ∩Y) = (R ◦S)∩Y , where
Y = S − ↓x◦ ∪ {x◦}. However, this holds precisely because Y is upper
closed. Similarly, we need that for any pair S and T of structures, and
w ∈ S, for U := Tag(S, w,T) (Fus(S, w,T)), if P and Q are binary
relations over S and R and S command relations over T then

(P ◦Q)1 = P 1 ◦Q1

(R ◦ S)2 = R2 ◦ S2

This clearly holds. The reader may verify the same holds forX = Y ∩Z.
Hence we are done if the claim is true for tight relations. This however
is straightforward to verify. �

6. Prospect

‘Generative’ literally means: producing. Thus, we will distinguish
between a generative grammar and a ‘descriptive’ grammar. The dif-
ference is that the former produces the structures of the language while
the latter just tells us how they look like. Grammatical theories that
have been proposed can be categorized into either the generative class
or the descriptive class, but mixtures are possible and are in fact the
rule rather than the exception. If however we are only interested in
the set of structures rather than the actual process of obtaining them,
then it becomes hard to attribute any significance to this distinction.
GPSG may be viewed as a sophisticated version of a generative the-
ory of language, but it can easily be presented as a descriptive theory.

38 MARCUS KRACHT

Transformational grammar is presented as a purely generative theory
of language. What is more, the structures are obtained by a doubly
layered generative process. First, a context–free grammar generates
D–structures and then a transformational process is initiated that gen-
erates the S–structure, and subsequently the phonetic and logical form.
Since the relationship between the generative and the descriptive ac-
count on structure in context free grammar is reasonably clear (see [13],
[11] and [12]), the focus of attention in transformational grammar is on
the second process. A theory is called representational or monostratal
if it makes no use of a transformational component and derivational
otherwise. 2 Since transformational grammars can produce any recur-
sively enumerable language representational accounts of language that
mirror the insights of transformational theory must be more complex
than GPSG. One such theory is HPSG.

A derivational theory can be turned into a representational theory.
The property that guarantees this is the condition on recoverability of
deletion. It says that if a transformation τ transforms Si into Si+1

then given Si+1 and τ we can reconstruct Si. Therefore, given Si+1 we
can guess Si. Furthermore, if we memorize the subsequent stages of
a generative process, then any generative account — even in transfor-
mational grammar — can be turned into a descriptive one. However,
this is an uninteresting claim. More interesting is the claim that from
the beginning of GB the representations used (S–structure, LF) con-
tain enough information to reformulate any derivational account into
a representational one. Two factors can be named. First, the restric-
tion of transformations to Move–α means that the surface structure
contains all material of the intermediate levels, though in somewhat
deranged order. Second, the introduction of traces (and the coindex-
ation of traces with their antecedent) made it possible to reconstruct
the movement process up to inessential variations. Koster [9] was one
of the first to come up with a theory within GB that was purely de-
scriptive. The discussion surrounding the question whether a deriva-
tional or generative theory had something to offer that a descriptive
or representational theory could not provide has been fought mainly
at a philosophical or methodological level and in effect became more
and more academic. The arguments in favour of a derivational theory
can be grouped into three kinds. (1) Arguments from simplicity. It is
claimed that there exist simpler derivational accounts than there can

2There is a slight difference between the notion of a representational theory and
the notion of a monostratal theory. But for all intents and purposes this boils down
to the same in our discussion.

ADJUNCTION STRUCTURES AND SYNTACTIC DOMAINS 39

be representational accounts. The main example for this claim is the
Head Movement Constraint (HMC). (2) Arguments from reality. In
a certain sense — so it is claimed — derivational theories are closer
than descriptive theories to what is going on in the human brain. (3)
Arguments from methodology. It is said that derivational theories are
explanatorily more adequate than representational theories.

This paper contains the first of two parts in which we aim to show
that (1) fails. We aim to show in detail that a derivational theory can at
low costs be transformed into a representational one, and the resulting
theory is no more complicated (in an intuitive as well as in a formal
sense) than the previous one. The argument from the HMC works
only if a specific choice is made with respect to the representations.
However, if (1) fails, then (2) and (3) will be difficult to maintain. The
problem is that at least in the relevant linguistic literature evidence
is given almost exclusively using syntactic facts. But if we believe
(1), then the difference between these theories is merely a notational
one. The derivational aspect can be viewed as merely metaphorical.
Ironically, in the Minimalist Program it is just that, see Chomsky [4].
Therefore, if (2) and (3) are to make sense, the facts that should decide
between these approaches should be sought elsewhere. We are not in
a position to make any well–founded claims, but to the best of our
knowledge nothing decisive has been found.

In sum, what needs to be seen is that the derivational component in
GB can be replaced by a set of surface filters, and that this replace-
ment does not distort the theory in a significant way. We claim exactly
that. Unfortunately, this proof is rather long. Not because it is diffi-
cult in a mathematical sense, but because a lot of details need to be
fixed before a proper proof in the mathematical sense can be given.
For the structures have been complicated greatly in Chomsky [3] with
the introduction of the category/segment distinction, and once more in
Chomsky [4] with the insistance that syntactic relations should be for-
mulated in terms of relations between chains. In the present paper the
step from ordered labelled trees to ordered labelled adjunction struc-
tures has been looked at in detail and it is shown how the established
terminology in linguistics is adapted to the new structures.

References

1. Mark C. Baker. Incorporation. A theory of grammatical function changing.
Chicago University Press, 1988.

2. Chris Barker and Geoffrey Pullum. A theory of command relations. Linguistics

and Philosophy, 13:1–34, 1990.
3. Noam Chomsky. Barriers. MIT Press, Cambrigde (Mass.), 1986.

40 MARCUS KRACHT

4. Noam Chomsky. A minimalist program for linguistic theory. In K. Hale and
Keyser S. J., editors, The View from Building 20: Essays in Honour of Sylvain

Bromberger, pages 1 – 52. MIT Press, 1993.
5. Noam Chomsky. Bare Phrase Structure. In Gert Webelhuth, editor, Govern-

ment and Binding Theory and the Minimalist Program, pages 385 – 439. Black-
well, 1995.

6. Gisbert Fanselow. Minimale Syntax. Number 32 in Groninger Arbeiten zur
germanistischen Linguistik. Rijksuniversiteit Groningen, 1991.

7. Hubert Haider. Branching and discharge. Technical Report 23, SFB 340, Uni-
versität Stuttgart, 1992.

8. Richard S. Kayne. The Antisymmetry of Syntax. Number 25 in Linguistic In-
quiry Monographs. MIT Press, 1994.

9. Jan Koster. Domains and Dynasties: the Radical Autonomy of Syntax. Foris,
Dordrecht, 1986.

10. Marcus Kracht. Mathematical aspects of command relations. In Proceedings of

the EACL 93, pages 240 – 249, 1993.
11. Marcus Kracht. Syntactic Codes and Grammar Refinement. Journal of Logic,

Language and Information, pages 359 – 380, 1995.
12. Marcus Kracht. Inessential features. In Christian Retoré, editor, Proceedings of

LACL 96, Springer Lecture Notes in Compter Science. Springer, 1997.
13. James Rogers. Studies in the Logic of Trees with Applications to Grammar

Formalisms. PhD thesis, Department of Computer and Information Sciences,
University of Delaware, 1994.

14. Wolfgang Sternefeld. Syntaktische Grenzen. Chomskys Barrierentheorie und

ihre Weiterentwicklungen. Westdeutscher Verlag, Opladen, 1991.

II. Mathematisches Institut, Arnimallee 3, D – 14195 Berlin

E-mail address : kracht@math.fu-berlin.de

