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Abstract

There are various pumping lemmata for context free languages, the stron-
gest of which is Ogden’s Lemma. It is known that it does not fully character-
ize context free languages. In an attempt to remedy the situation, Manaster–
Ramer, Moshier and Zeitman have strengthened this lemma. As we shall
show here, there exist non–semilinear languages that satisfy this stronger
lemma and also the lesser known interchange lemma, also due to Ogden.

1 Preliminaries

Let A be a finite set,NA the set of functions fromA to N. Denote by0 the
function that sends every element fromA to 0. Further, definef + g by

(f + g)(a) := f(a) + g(a)

Denote the structure〈NA, 0,+〉 byΩ(A). We definenv inductively as follows.
0v := 0, (n + 1)v := nv + v. We writeNv for the set{nv : n ∈ N}. Finally,
for v ∈ N6A and subsetsV,W ⊆ NA write v + W := {v + w : w ∈ W} and
V + W := {v + w : v ∈ V,w ∈ W}. A subsetS of NA is calledlinear if it
can be written as

(1) S = v0 + Nv1 + Nv2 + · · ·+ Nvn

for somen (which may be zero, in which case we get the singleton{v0}) and
somevi ∈ NA (i < n). A set is calledsemilinear if it is the finite union
of semilinear sets. TheParikh–map from the setA∗ to Ω(A) is defined as
follows. If a ∈ A, let ea be the function that sendsa to 1, and every other
letter to 0.

π(ε) := 0(2)

π(~xa) := π(~x) + ea(3)



In what is to follow below, we shall actually writea in place ofea . For a set
L ⊆ A∗, π[L] := {π(~x) : ~x ∈ L}. L is calledlinear if π[L] is linear, and
semilinear if π[L] is semilinear. A useful theorem is this. Call a subsetS of
N almost periodical if there are numbersn0, k, such that for every number
n ≥ n0: n ∈ S iff n + k ∈ S.

Theorem 1.1 Let A = {a}. Then the mapα : f 7→ f(a) is an isomorphism
from Ω(A) onto 〈N, 0,+〉. Moreover, a subset ofΩ(A) is semilinear iff its
image underα is almost periodical.

Proof. We tacitly identifyΩ(A) with N. A linear subset has the formn0 +
Nn1 + · · ·Nnk for somek. Now

(4) n0 + Nn1p = (n0 + Nn1p) ∪ ((n0 + n1) + Nn1p)+
· · ·+ ((n0 + (p− 1)n1) + Nn1p)

Hence we can represent the linear set as a union of sets of the form(n0 + v)+
Nn1n2 · · ·nk. Hence, a linear set is almost periodical. It is not hard to see that
also a finite union of linear sets is almost periodical, by extending the modulus
to the least common multiple of all cyclic vectors involved. Conversely, an
almost periodical setS is semilinear. For letn0 andk be given. LetP the
set of numbersh < k such that there is an ≥ n0 with n ≡ h (mod k). For
convenience we may assume thatn0 is a multiple ofk. ThenS is the union
of the set of members< n0 (which is finite, hence semilinear) and sets of the
form n0 + h + Nk, which are linear. 2

Corollary 1.2 There are countably many semilinear languages over a one–
letter alphabet.

We also remark that an intersection of two semilinear subsets ofΩ(A) is again
semilinear ([1]). In fact, seen as subsets ofNn, semilinear sets are exactly the
ones definable by elementary formulae in Presburger–arithmetic (see [2] for a
proof). This does not hold for semilinearlanguages, though.

Let ~x be a string. Anoccurrenceof a string~y in ~x is a pairC = 〈~v, ~w〉
such that~x = ~v~y ~w. We say for two occurrencesC = 〈~v1, ~w1〉 andD =
〈~v2, ~w2〉 of strings~u1 and~u2 in ~x thatC precedesD — in symbolsC < D
— if ~v1~u1 is a prefix of~v2. C containsD if ~u1 is a prefix of~u2 and~v1 a suffix
of ~v2.

If L is a language and~z ∈ L, apumping pair for ~z in L is a pair〈C,D〉
of occurrences of strings~x, ~y such thatC = 〈~u1, ~v1〉, D = 〈~u2, ~v2〉 and

(5) ~z = ~u1~x~w~y~v2



for a certain~w (so that~v1 = ~w~y~v2 and~u2 = ~u1~x~w) and

(6) {~u1~x
i ~w~yi~v2 : i ∈ ω} ⊆ L

2 Ogden’s Lemmata

The following is from [6].

Lemma 2.1 (Ogden’s Lemma)LetL be a context free language. Then there
exists a numbernL such that for every string~x ∈ L: if P is a set of at least
nL occurrences of letters in~x then there exists a pumping pair containing at
least one member ofP and at mostnL of them.

If L is a language, letLn denote the set of strings that are inL and have length
n. The following is from [5].

Lemma 2.2 (Interchange Lemma)Let L be a context free language. Then
there exists a real numbercL such that for every natural numbern and every
setQ ⊆ Ln there isk ≥ p|Q|/(cLn2)q, and strings~xi, ~yi, ~zi, i < k, such that

1. for all i < k: ~xi~yi~zi ∈ Q,

2. for all i < j < n: ~xi~yi~zi 6= ~xj~yj~zj ,

3. for all i < i < k: |~xi| = |~xj |, |~yi| = |~yj |, and|~zi| = |~zj |.

4. for all i < k: n > |~xi~zi| > 0, and

5. for all i, j < k: ~xi~yj~zi ∈ Ln.

Note that if the sequence of numbersLn/n2 is bounded, then the language
satisfies the Interchange Lemma. For assume that forn0 we haveLn0/n2

0 ≤ c.
Then setcL := max{c|Lm|m2 : m ≤ n0}. Then for every subsetQ of Ln,
p|Q|/(cLn2)q ≤ 1. However, withk = 1 the conditions above become empty.

Theorem 2.3 Every languageL wherelimn→∞ |Ln|/n2 is bounded satisfies
the Interchange Lemma. In particular, every one–letter language satisfies the
Interchange Lemma.

3 A Family of Languages that Satisfy Ogden’s Lemmata

Let Ω be a subset ofω. Now define

(7) LΩ = {ambn : m 6= n} ∪ {anbn : n ∈ Ω}



Lemma 3.1 LΩ is semilinear iffΩ is.

Proof. Notice thatπ[LΩ] has the following decomposition

π[LΩ] = a + Na + N(a + b)(8)

∪ b + Nb + N(a + b)
∪ {n(a + b) : n ∈ Ω}

The first two sets are linear. Suppose now thatΩ is semilinear. Then the map-
pingn 7→ n(a + b) actually translates semilinear subsets ofN into semilinear
subsets ofN{a,b} and non–semilinear subsets into non–semilinear subsets.
So, if Ω is semilinear, then so isLΩ. Conversely, suppose thatLΩ is semilin-
ear. Then so is its intersection withN(a + b). This is{n(a + b) : n ∈ Ω}.
This set is semilinear iffΩ is. So,Ω is semilinear. 2

Corollary 3.2 There are only countably manyΩ for whichLΩ is semilinear.

Theorem 3.3 For everyΩ, LΩ satisfies the Interchange Lemma.

Proof. Notice that for eachn the number of strings ofLΩ of length n is
≤ n + 1. So,limn→∞ |Ln|/n2 = 0. Whence by Theorem 2.3L satisfies the
Interchange Lemma. 2

Lemma 3.4 Suppose that~x ∈ LΩ contains an unequal number ofa’s and
b’s. Further, letC be an occurrence ofak andD an occurrence ofbk in ~x for
somek > 0. Then〈C,D〉 is a pumping pair for~x in LΩ.

Proof. For suitable numbersq0, q1, q2 andq3 we have

(9) ~x = aq0akaq1bq3bkbq3

and

(10) C = 〈aq0 , aq1bq2bkbq3〉, D = 〈aq0akaq1bq2 , bq3〉

By assumption,q0 + k + q1 6= q2 + k + q3. It follows thatq0 + ik + q1 6=
q2 + ik + q3 for everyi ∈ N. Now suppose we pump the pairi times. Then
we get the string

(11) ~y = aq0aikaq1bq2bikbq3

Then~y ∈ LΩ as well. 2



Lemma 3.5 Suppose that~x = ambn ∈ LΩ. If m > n, then any occurrence
of a together with any occurrence of the empty string is a pumping pair for~x
in LΩ. If m < n, then any occurrence ofb together with any occurrence of the
empty string is a pumping pair for~x in LΩ. If m = n, then any occurrence of
a single letter together with any occurrence of the empty string is a pumping
pair for ~x in LΩ.

Proof. The proof is as straightforward as the previous. Let us just prove the
last case,m = n. ~x = anbn. Take an occurrenceC of a letter, sayC =
〈ap, an−p−1bn〉, which is an occurrence ofa. Then letD = 〈anbq, bn−q〉 or
D′ = 〈aq, an−q, bn〉 be an occurrence of the empty string. ThenC < D and
C < D′, unlessq ≤ p, in which caseD′ < C. If we iterate zero times, we
get the stringan−1bn; and if we iteratei > 1 times we getan+i−1bn, all of
which are inLΩ. Similarly for occurrences ofb. 2

Theorem 3.6 For everyΩ, LΩ satisfies Ogden’s Lemma.

Proof. We show that we can choosenL := 2. Let ~x ∈ LΩ. Fix a setP of two
occurrences of letters in~x. We assume first that~x has an unequal number of
a’s andb’s. Case 1.P contains one occurrence ofa and one occurrence ofb.
Then these two occurrences form a pumping pair by Lemma 3.4. Case 2. The
occurrences are all occurrences ofa. Case 2a.~x contains ab. We match one
of thea with thatb. This forms a pumping pair, by Lemma 3.4. Case 2b.~x
contains nob. Then any occurrence ofa together with any occurrence of the
empty string is a pumping pair for~x in LΩ, by Lemma 3.5. So, we now have
to look at the case where the string has an equal number ofa andb. Then,
pick a member ofP . Again by Lemma 3.5, that occurrence of a letter together
with any occurrence of the empty string is a pumping pair. 2

In an unpublished paper [4], Manaster–Ramer, Moshier and Zeitman have
proposed the following strengthening of Ogden’s Lemma. Call a set of pump-
ing pairs{〈Ci, Di〉 : i < p} independentif for all i < j < p either (1a)Ci <
Di < Cj < Dj or (1b)Cj < Dj < Ci < Di or (1c)Ci < Cj < Dj < Di

and (2) all pairs can be pumped independently of each other. (If either of the
occurrences is an occurrence of the empty string, it is ignored in the condition,
as the empty string can be placed anywhere.)

Theorem 3.7 (Multiple Pumping Lemma) Suppose thatL is context free.
Then there exists a numberpL such that for any string~x and a setP of kpL

occurrences of letters in~x there existk independent pumping pairs each con-
taining at least one and at mostk members ofP .

Theorem 3.8 For everyΩ, LΩ satisfies the Multiple Pumping Lemma.



Proof. The pair is not unlike the first one, except that we need to be careful
with the selection of pumping strings. We shall show that the claim holds for
pLΩ := 2. Assume that~z ∈ LΩ. Select a setP of occurrences of letters in
~z. P is the disjunction of the subsetPA of occurrences ofa and the subset
PB of occurrences ofb. We may assume thatPA = {Ci : i < p} and
PB = {Fj : j < q}, whereCi < Cj iff i < j andFi < Fj iff i < j. Assume
that |P | = p + q = 2k. We need to establish at leastk independent pumping
pairs. Case A.~z = ambn with m < n. Case Aa.|PA| ≥ |PB |. Then put
Di := 〈ambm−i−1, bi〉. 〈Ci, Di〉 is a pumping pair, and is independent from
〈Cj , Dj〉. Namely, it is verified that all occurrences satisfy (1c): while the
occurrences ofa are aligned in ascending order, the occurrences of theb are
aligned in descending order. Moreover, the occurrences can be independently
pumped. A pair consisting of an occurrence ofa plus an occurrence ofb
can be pumped or taken away without affecting the difference between the
number ofa’s and the number ofb’s. Case Ab.|PA| < |PB |. Here we put
Ei := 〈ai, am−i−1, bn〉, if i < m, Ei := 〈ai, am−ibn〉 otherwise. P :=
{〈Ei, Fi〉 : i < q} is a set of independent pumping pairs. There is just one
case that needs attention. That is the case wherePB contains all occurrences
of b. In that case, depumping all strings leaves us with the empty string, which
is not inLΩ if 0 6∈ Ω. In that case, we putP := {〈Ei, Fi〉 : 0 < i < p}. (For
connoisseurs: we might have to make sure to match at least one ofPA with a
PB in order to keeppLΩ = 2, but that is a matter of detail.) Case B.m > n:
Similarly. Case C.~z = anbn. Assume that|PA| ≥ |PB |. Then|PA| ≥ |P |/2.
Put P := {〈Ci, D〉 : i < p}, whereD = 〈an, bn〉 is an occurrence of the
empty string. This is a set of independent pumping pairs. If on the hand
|PA| < |PB | thenQ := {〈D,Fi〉 : i < q} is a set of independent pumping
pairs. 2

It is immediate that there are continuously many languages that satisfy all
three conditions above simultaneously, and are semilinear.

Corollary 3.9 1. There exist continuously many non–semilinear languages
that satisfy the Multiple Pumping Lemma and the Interchange Lemma.

2. There exist continuously many undecidable languages that satisfy the Mul-
tiple Pumping Lemma and the Interchange Lemma.

4 Conclusion

This paper shows that to require independent pumping strings of whatever
number will not do to characterize CFLs. Assuming that a pumping pair indi-



cates a pair of subconstituents that have the same category, pumping lemmata
reveal part of the context free structure of a string. If the goal is to characterize
CFLs exactly, one would have to guarantee that there are plenty of pumping
pairs, part of which will be dependent. Such a characterization, though in
principle available, might not be easy to use in practice. So far a practical
characterization of CFLs in terms of pumping properties has not been found.
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