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Preface
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Chapter 1

Classification

In this chapter we will discuss one of the most fundamental techniques in
linguistics, the substitution test. It is characteristic of the era of structuralism
where it was declared to be the unique method for discovering the structure of
a language. Although it has ceased to be unique in that respect, we will show
that it is still quite a powerful tool especially when it comes to correlations,
about which we will have much to say in the chapters to come.

1.1 A Short Outline of Structuralism

The most immediate concern of any scientific theory is that of classification. It goes hand
in hand with abstraction, which is necessary for any kind of theory. Given the objects that
we study we have to abstract away from part of the difference between various objects
and concentrate on certain similarities instead. For example, we know that in English
the letter ‘p’ stands for a certain sound, but each time we pronounce this sound, we will
pronounce it differently. Thus, speaking of the sound ‘p’ is an abstraction, and this is
the distinction that marks the difference between phonology and phonetics. For a pho-
netician, the different pronunciations of ‘p’ are real objects, but for a phonologist they
constitute just the different realizations of a single abstract element, the phoneme /p/. A
phonologist must of course assume that the phonemes are somehow identifiable, but does
not particularly care how. Instead he goes on to describe in more detail the structure of the
phonemes themselves and their relationship with each other. He observes, for example,
that in addition to /p/ there is another phoneme /b/, and that the difference between the
two is in a certain sense minimal and corresponds to the same difference that sets apart
/k/ from /g/. Thus, he claims that the following following law of oppositions holds.

5
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(1.1)
/p/
/b/

=
/k/
/g/

By this it is expressed that the way /p/ corresponds to /b/ is the same way /k/ corre-
sponds to /g/. We also speak of the ‘quotient’ /p/ : /b/ as an opposition. Unfortunately
for a phonologist, he can neither say in phonological terms what it means that one element
stands to another in the same way as a third to a fourth. But instead he must insist on the
fact that this is something we can learn by asking around or asking ourselves (as a kind
of informant; the judgements we obtain this way are said to be obtained by introspection,
a common but somewhat dangerous tools in linguistics). All a phonologist can do after
discovering this fact is to say that there is an abstract element, a feature which a phoneme
can be either positively or negatively specified for, and if we assume that /p/ is positively
specified for it, /b/ must be negatively specified for it, /k/ again positively and finally /g/
again negatively. By looking at the actual sounds we can also make a guess as to what this
abstract feature corresponds to. It is the feature of being voiceless. We can identify this
feature by the fact that it corresponds to the activity of the vocal chords in the production
of this sound. If they are not active i. e. if they do not vibrate, then we have a [+voiceless]
sound, otherwise a [−voiceless] sound. Returning to the equation above, we can say that
the equation is true because whatever /p/ is, /b/ is the same with the only difference that
the feature voiceless has a different value, and /g/ is the same as /k/ again except for the
value of voiceless. If we now take another sound, say /t/, then we can put it above the
line, so to speak, and ask what fills the fourth square of the equation.

(1.2)
/p/
/b/

=
/t/
/?/

The answer in this case is /d/. Notice that it would be nonsense to put /t/ below, and so
we learn that /t/ is specified for the feature in the same way as is /p/. Notice also that
not for all sounds we can fill this equation. Although we find many other pairs, /s/ and
/z/ and so on, there are sounds that resist to be put in either of the position. The most ob-
vious example are vowels, but also /h/. It is not clear what we want to do in these cases.
Since the elements are abstract from a phonologists point of view, there can be no real
decision. However, we can use the phonetic criterion and then decide e. g. that vowels
are always [−voiceless]. The reader should bear in mind that although for a phonologist
the distinctive features are abstract because the analytic methods do not give an answer
to the question of their (physical) constitution, no phonologist would deny the reality of
the latter or refuse to allow it to himself as a guide for inquiry. But he would nevertheless
insist, contrary perhaps to a phonetician, that the abstract elements are also real. So /p/ is
not simply the set of all possible pronunciations or utterances of the sound /p/, but there
is clearly a different sense in which we can say that /p/ exists. This is called for also
because the set of such utterances is very large if not infinite and it would be foolish to
assume that it is this set that we keep stored in our mind to identify /p/. Moreover, a pho-
nologist would say that all that the listener cares for is the identification of the phonemes
(or of words, or of message for that matter). He is not interested in the particular way /p/
gets pronounced. Moreover, the phonetic content of words is memorized by speakers not
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as executable motor programs for their pronunciation but rather as a an abstract sequence
of phonemes, which individually get instantiated to motor programs if we wish to pro-
nounce that very word. In this way, we need to store only once that /p/ is pronounced by
putting the lips together, increasing the air pressure in the mouth and releasing it suddenly
without activating the vocal chords. The word /pet/ contains no such information. It is
simply stored as the sequence /p/ + /e/ + /t/ (see (Levelt, 1991)).

How does the linguist proceed from such equations establishing a distinctive feature?
He says that /b/ differs from /p/ ceteris paribus with respect to the feature voiceless.
He also says that they differ minimally, since there is only one feature whose assignment
differs. Both, however, are true only in first approximation, and also only true in the En-
glish phoneme system. First, notice that French also contains a phoneme with the name
/p/ and a phoneme with the name /b/. (Notice that a phonologist cannot tell whether
French /p/ corresponds to English /p/. He has to use phonetic criteria here.) Using the
same analysis in French it is established that there is roughly the same distinctive feature
at work in both languages. Nevertheless, a difference exists. Namely, French voiceless
stops are never aspirated, while in English (and German and other languages) they are.
To represent the various distinctions between sounds across languages we can perform
the same analysis; all we have to do is put all the phonemes of these languages together
and ask for their difference. We will then have to represent English ‘p’ somewhat more
accurately by /ph/, while French ‘p’ is still denoted by /p/. So, we have the equation

(1.3)
/ph/

/p/
=

/th/

/t/

telling us that whatever distinguishes English ‘p’ from French ‘p’ is the same that dis-
tinguishes English ‘t’ from French ‘t’. This is the abstract element aspirated. It is not a
distinctive feature neither in English itself, nor in French. So if we now write somewhat
more accurately for English

(1.4)
/ph/

/b/
=

/th/

/d/

then we can still say that the difference is one and only one feature, because although
phonetically speaking /ph/ differs from /b/ (at least) in the fact that it is voiceless and
aspirated, we cannot have one difference without the other. It is – by the way – again a
matter of choice that we say that aspirated is nondistinctive in English while voiceless
is not. This can be stated only with recourse to the actual sounds. Namely, we can ask
speakers to identify a nonaspirated /p/ and see whether they recongnize it as English
‘p’ or something else and likewise proceed with an aspirated voiced /bh/ and look again
whether it gets interpreted as a ‘p’ or as a ‘b’. Now, finally, switch to Sanskrit. Here we
have the following four sounds, /ph/, /p/, /bh/ and /b/. Moreover, the following equa-
tions hold

(1.5)
/ph/

/p/
=

/bh/

/b/
/ph/

/bh/
=

/p/
/b/
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This establishes that both features are distinctive in Sanskrit, and that what is a minimal
difference in English, the difference between /ph/ and /b/, is a difference in two features
rather than one in Sanskrit.

At the end of such an analysis we get a set of distinctive features and a mapping from
combinations of these features (positively or negatively assigned) to phonemes. This map
can be partial. There might be combinations that are illegitimate, for example, the com-
bination of [+voiceless] with [+vowel]. These combinations are called feature matrices
and are written in the following way

(1.6)


+ voiceless
+ labial
− fricative
+ aspirated

 .
Such an analysis can be performed for specific languages, or for a group of languages. In
the extreme case we can even develop a system for the sound inventory of all languages.
The international phonetic alphabet (IPA) in a sense provides such a distinctive analysis of
the totality of sounds in all human languages. Phonologists have also tried to see whether
the feature hierarchy is structured, that is, whether some features control or preempt other
features in the way that voiced is controlled by vocal and whether we can say something
significant about this hierarchy. Furthermore, the fact that phonemes are put together
in a string suggests we should look for the ways in which phonemes can or cannot be
combined in a string. For we observe that even though all phonemes are pronounceable
elements of a language, some linear combinations are impossible. For example, there are
no voiced consonants at the end of a syllable in German or Russian (this phenomenon is
called devoicing), and the onset of a syllable is mostly highly structured. For example, in
English no syllable can begin with /sr/ or /rp/, but it can begin with /spr/ (as in sprout).
Phonology is up to now the only discipline where the analysis in terms of distinctive fea-
tures has been carried out to a satisfactory degree and a lot of knowledge about languages
on the one hand and about this technique on the other has been accumulated. Syntax and
semantics in comparison have too many primitive symbols to afford such an analysis, and
it is up to now unclear what it can contribute in semantics. However, it can and is used
successfully in syntax, and this is what interests us in the sections to come.

1.2 Feature Matrices as Boolean Vectors

Before carrying on with the informal development of Structuralism let us look in more
detail into the formal presentation of phonemes. The idea we want to pursue here is to
give a certain meaning to laws of opposition such as

(1.7)
/ph/

/p/
=

/bh/

/b/
.
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We have explained informally what it means, but it is clear that beyond a mere formal
reading of the operations of multiplication and division, allowing us as it were to derive
the statement

(1.8)
/ph/

/bh/
=

/p/
/b/

there is no real sense in which we can say that we multiply or divide certain values. In
fact there is also a different reading of these equations which we will propose here which
in contrast to the present one is of an additive nature. It too is somewhat formal, but is
also gives us an excuse to introduce certain important concepts from mathematics into the
present discourse.

Recall that phonemes can be characterized as feature bundles, which means that we
have a finite set of features and each phoneme is uniquely determined by giving each fea-
ture the value + or −. We can also think of the features as the axes in an abstract space,
just as the x- and y-coordinate axes, so that a phoneme is just a vector in a multidimen-
sional space with the values of the features being the values along the coordinate axes.
However, these vectors have only two values to choose from for each dimension, so they
are bit-vectors, to speak the language of computer science. In mathematical terms, they
can be construed as vectors over a special field, the field F2 of integers modulo 2. This is
a structure like the reals, consisting of two elements, 0 and 1, with addition + and multi-
plication · as follows.

(1.9)
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

It arises as follows. Take the integers and group them into two parts, E and O. E is the set
of even numbers, and O the set of odd numbers. Write E + E to denote the set of all sums
k + l, where k ∈ E and l ∈ E, and define E + O, O + E and O + O analogously. Then the
following holds. E+E = E, i. e. the sum of two even numbers is even, E+O = O+E = O
and O + O = E. Likewise, E · O = E · E = O · E = E and O · O = O. Now write 0
instead of E and 1 instead of O. What we get is exactly the tables shown above. Typically
in mathematics one writes k ≡ 0 (mod 2) to say that k ∈ E, and k ≡ 1 (mod 2) to say
that k ∈ O. The equation k ≡ ` (mod 2) generally abbreviates the fact that k leaves the
same remainder as ` when divided by 2. The number 2 is called the module. In principle
any number m can be used as a module, and we can in a similar way divide the set of
integers into different sets, according to the remainder they leave when being divided by
m. Call these sets R0, R1, . . . ,Rm−1. Thus, with m = 2 we have R0 = E and R1 = O.
It can be shown that addition and multiplication acts classwise. But now let us return to
F2. Addition has an inverse, that is, for every element k there is an element −k such that
k + (−k) = 0. In fact, we have −k = k, for 0 + 0 = 0 as well as 1 + 1 = 0. Thus, adding an
element and substracting it yields the same result. (In fact, this is a special feature of the
number 2.)
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A vector space of dimension n over F2 is formed by taking the set of all n-long se-
quences of numbers from F2. There are 2n such sequences. Vectors are denoted by ar-
rows, such as in ~v and ~w. Addition of these sequences is coordinatewise. For example,
with n = 3 we have 〈0, 1, 1〉 + 〈1, 1, 1〉 = 〈1, 0, 0〉. The vector ~0, all of whose entries are
0, plays a special role in that ~v + ~0 = ~v. We say that it is the neutral element with respect
to addition. As in F2, addition is the same as substraction, because ~v +~v = ~0. The vectors
~e1 = 〈1, 0, 0, . . .〉, ~e2 = 〈0, 1, 0, . . .〉, ~e3 = 〈0, 0, 1, . . .〉 etc. have the property that each
vector can be represented as the unique sum of a subset of these vectors. We say that they
form a basis. This is not the only basis we can find for a vector space, in fact there are
quite a lot. In three dimensions, for example, 〈1, 1, 0〉, 〈0, 1, 1〉 and 〈1, 1, 1〉 form a basis.

Let us now return to our analysis of phonemes. To be concrete, fix a set of features,
such as voiced, aspirated, labial and dental. This gives a four-dimensional space and in
total 16 different phonemes. Not all of them might be realized in a language, in fact a
phoneme which is [+dental] is most likely [−labial]. In Sanskrit, for example, we find
all remaining twelve of the sixteen combinations realized. Let us make our life simple by
restricting to a specific set of phonemes in Sanskrit, namely to the following set

(1.10)

voiced aspirated labial dental
/p/ − − + −

/ph/ − + + −

/b/ + − + −

/bh/ + + + −

/t/ − − − +

/th/ − + − +

/d/ + − − +

/dh/ + + − +

/k/ − − − −

/kh/ − + − −

/g/ + − − −

/gh/ + + − −

Now, given the features and the assignment of features, we can define a map d from
phonemes into the four-dimensional vector space F4

2. Namely, the first coordinate of d(x)
is 0 whenever the phoneme x is [−voiced], and it is 1 whenever x is [+voiced]; the second
coordinate is 0 whenever x is [−aspirated] and 1 otherwise; and so on.

We can now give a rather precise interpretation for the equations of the previous sec-
tion. Namely, instead of

(1.11)
/ph/

/p/
=

/bh/

/b/

we can now write

(1.12) d(/ph/) − d(/p/) = d(/bh/) − d(/b/).
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This means that whatever the difference is between d(/ph/) and d(/p/), it is the same
difference as between d(/bh/) and d(/b/). Notice that the difference is ~0 iff the two have
identical feature assignments. Given the laws of arithmetic in F2, adding is the same as
taking away, so the equation can be rewritten into

(1.13) d(/ph/) + d(/p/) = d(/bh/) + d(/b/).

Furthermore, we can add the left hand side on both sides and obtain a fully symmetrical
variant of the law of oppositions.

(1.14) d(/ph/) + d(/p/) + d(/bh/) + d(/b/) = ~0.

This is a more abstract version, and it is actually less informative because it permits us to
deduce that the following laws are equivalent.

(1.15)
/ph/

/p/
=

/bh/

/b/
⇔

/ph/

/bh/
=

/p/
/b/

⇔
/ph/

/b/
=

/bh/

/p/

The first equivalence also follows if we adopt a purely formal attitude to this equation, and
‘multiply’ by /p/ and then divide /bh/. Obviously, this is also the way in which the equa-
tion is meant to be understood. Notice that the ‘additive’ reading presented here, allows
to deduce more equations because there is no directionality in the difference. The original
equation says not only that the differences are equal, but also that the values assigned to
the upper left element is the same as the assignment to the upper right element. So, in the
multiplicative interpretation it can be deduced that the value of aspirated is equal for /ph/
and /bh/, while it is not deducible which value it actually has. In the additive reading it
can only be deduced that we have two aspirated elements and two non-aspirated elements
in the equation. Nevertheless, the structure of the assignment is fixed up to isomorphism
by all the laws of opposition that we can write down. Not all of them are as meaningful.
For example, we can write

(1.16) d(/ph/) + d(/p/) = d(/kh/).

Furthermore, the phoneme /k/ acts as the neutral element in these equations. The rea-
son for this apparent nonsense is that these equations are not invariant under switching
the polarity of the features, which they must be if they are true laws of opposition. By
switching the polarities of the features (that is, making − what has been + and conversely)
we can turn any element into the neutral element of addition. To avoid it figuring in the
laws we must require that laws are true laws of opposition, that is, they must contain an
even number of terms. In phonology, where we know exactly what the difference is be-
tween phonemes the additive laws of opposition might seem just a formal device, but it
is important to note that in absence of any knowledge for the ‘direction’ or polarity of an
opposition (that is, + above the line and − below versus − above the line versus + below)
all that we can say is that the feature constituting the difference in one opposing pair is
the same as in the second.

An important concept to be introduced here is the so-called Hamming-distance, δH. It
is calculated as follows. Two vectors~v and ~w have the Hamming-distance k if they differ at
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exactly k places. For example, δH(〈0, 1, 1, 0〉, 〈1, 0, 1, 1〉) = 3. An opposition between two
phonemes is called privative if they have the Hamming-distance 1. Notice that whether
or not an opposition is privative depends on the coordinatization, that is, on the features
that we use to analyze. For example, the opposition between /ph/ and /b/ is privative in
Sanskrit but not in English. If we were to introduce a different set of distinctive features
we can arrange it that the opposition is non-privative also in Sanskrit. For example, let us
introduce strong to mean either both voiceless and aspirated or voiced and nonaspirated.
Let the strong feature replace the voiced feature. Then /ph/ is strong and voiceless, /b/
is strong and voiced. So, they differ only with respect to a single feature; their Hamming-
distance is now 1 and the opposition is privative.

1.3 Paradigmatic and Syntagmatic Relations

Let us switch from the sound inventory of a language to look at the inventory of words.
We can carry out the same kind of analysis as with sounds, but syntax also allows a differ-
ent approach, one which has not so intensively been explored. First of all, words can be
put together to larger units, sentences or other. Let us for the moment restrict to sentences.
The elements in a sentence enter a relationship by the fact that they are now in the same
string of words. Thus, in

(1.17) The cat is on the mat.

it is the word /cat/ that finds itself to the right of /the/ and to the left of /is/ and so on.
1 On the other hand, the other words in the language can compete with the ones in the
string for their respective position in that string. So, /hat/ competes with /cat/, and also
with /mat/. /was/ competes with /is/, /this/ with /the/ and so on. We say that /the/
and /mat/ enter a syntagmatic relationship and that /hat/ and /mat/ enter a paradigmatic
relationship. But what does that actually mean? Can we say that /the/ can enter a syn-
tagmatic relationship with /was/ as in

(1.18) The was in cat sat on the.

Or can we really say that /hat/ competes with /cat/ in any sense? Well, the fundamental
notion that connects these issues is that of grammatical acceptability. To say that elements
can enter a syntagmatic relationship means that they can be part of a syntactically accept-
able string in a given way. So, we see that /the/ cannot be directly to the left of /was/
because there is no grammatically acceptable sentence in which that is so. Likewise,
/hat/ competes with /cat/ only insofar as the first can be exchanged for the latter without
altering the syntactic acceptability of the sentence. It is hard to justify such things, of

1In analogy to phonology, we write /cat/ to denote the word which is usually written cat. However,
by using the slashes we abstract away from irrelevant details, notably the spelling (at the beginning of a
sentence it is written Cat), the use of different letter fonts, letter sizes and more of that size. Finally, it is
also immaterial whether this word is spoken, written or identified in some other way.
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course, because we are talking about an infinite set of sentences, and we have no obvious
means to tell whether or not these two claims just made are true. Moreover, syntactic
acceptability mostly consists in a grade of acceptability, that is, we judge sentences not
simply as acceptable or unacceptable, but as more or less acceptable, as slightly odd etc.
Throughout this book we will not be concerned with graded judgements, although we
concede that this is a limitation of the whole analysis. Now, given that there is a way to
classifiy sentences into the two categories, syntactically acceptable and syntactically un-
acceptable, we can now take the entire vocabulary of a language, consisting of all words
in all possible fully inflected forms, and subject it to an analysis according substitutivity
in all contexts. Let us make precise how this can be achieved.

In the same way that phonology has phonemes rather than sounds, the syntax has
lexemes rather than words. The notion of a lexeme allows to abstract away from different
appearances, such as due to dialectal variation or different spelling, see the footnote above.
We let V to be the vocabulary of a language, now consisting of lexemes. In the standard
literature on formal languages this set is referred to as the alphabet. This is just a matter
of convenience, but it means that what is called a word there must be called a string here
to avoid confusion. Strings over V are formed by linear juxtaposition or concatenation.
We denote the concatenation of the string ~v and ~w sometimes by ~v · ~w but mostly by
~v~w. The empty string is denoted by ε. V∗ is the set of all strings that can be formed by
concatenation of ε with elements of V , in one step, two steps, and so on, thus, in n steps
for any natural number n. A string is an element of V∗. Strings are either symbolized
by simple letters or by an arrow, such as in ~w. A context is a pair C = 〈~w1, ~w1〉, where
~w1 and ~w2 are strings. In a string ~s a substring ~x occurs in the context C = 〈~w1, ~w2〉 if
~s = ~w1 · ~x · ~w2. Strings can have multiple occurrences of the same word or symbol. Now,
a language over V is for our purposes at hand simply a subset L ⊆ V∗. A string ~v is
acceptable in L iff ~v ∈ L, and unacceptable otherwise. Modulo L we say that x occurs or
can occur in the context C = 〈~w1, ~w2〉 if ~w1 · ~x · ~w2 ∈ L. Now, we say that ~x and ~y are
syntactically equivalent iff for all contexts C, ~x occurs in C iff ~y occurs in C. In symbols
we write ~x ≈L ~y. This is the formal equivalent of the notion of competition. We can
then go on to classify the elements of V according to syntactical equivalence. However,
this method can fail to give satisfactory results. For example, consider the words /fire/
and /hat/. We want to say that they are syntactically equivalent in English, even though
it is not always meaningful to interchange them. That means that we focus on what we
describe by syntactical acceptability regardless of whether a sentence makes sense or not.
In the sentence

(1.19) His boss wants to fire him because of his stupidity.

we cannot replace /fire/ by /hat/ for this would yield a violation in syntactic acceptability,
not only in (semantic) interpretability. Standardly, we assume that /fire/ is actually not a
single word but two, say, /fire1/ and /fire2/ only one of which is fully substitutable with
/hat/. With hindsight we can say that one is a verb and the other is a noun. But crucially,
we want our test to give us this result. The clue to the solution is to use the notion of
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syntactic content. We say that ~x has at least the syntactic content of ~y, in symbols ~x 4L ~y,
if in every context in which ~x occurs, ~y can also occur. Alternatively, we can associate with
each word ~x the set CL(~x) of all contexts in which ~x occurs. Then ~x 4L ~y iff CL(~x) ⊆ CL(~y).
Moreover, ~x ≈L ~y iff CL(~x) = CL(~y) iff ~x 4L ~y and ~y 4L ~x. Returning to our example, we
have /hat/ 4E /fire/, but the two are not equivalent. Also, we have /see/ 4E /fire/ (taking
here only into account that both are transitive verbs; whether they are truly syntactically
identical or has to be left open, but is of no significance for the argument). Moreover, we
observe that

(1.20) CE(/fire/) = CE(/see/) ∪ CE(/hat/).

Additionally, we have

(1.21) CE(/see/) ∩ CE(/hat/) = ∅.

The last says that there are two classes of words which occur in strictly separate contexts.
/fire/ extends to both classes, and this motivates positing two distinct words, /fire1/ and
/fire2/. The identity with one of the two can only be established by the context, for we
define them by the equation

(1.22)
CE(/fire1/) = CE(/fire/) ∩ CE(/hat/)
CE(/fire2/) = CE(/fire/) ∩ CE(/see/)

In other words, /fire/ is /fire1/ exactly in those contexts, in which it can be substituted by
/hat/ without altering the syntactic acceptability, and it is used as /fire2/ in those contexts
where it can be replaced by /see/ without changing the synactic acceptability.

What we have just described is the discovery procedure for word-classes. It is strictly
speaking also the procedure which has to be applied when isolating phonemes. In the
previous section we have taken for granted that it can be done, but in syntax this is not
obviously so, again because the vocabulary of words is large and also flexible, while the
sounds of a language counts well below a hundred, and are relatively stable. We will
for the moment take for granted that the procedure as outlined above yields such classes
in a clear way and we attach to them meaningful labels such as noun, intransitive verb,
complementizer etc. As discussed, the context sets of lexemes need not be disjoint, and
so the picture is not such a simple one. Nevertheless, given that we have only finitely
many lexemes, there is a finite number of context set CE(x) generated from lexemes (but
a possibly infinite one created by strings of lexemes). These are the basic context sets,
corresponding to naive word classes. If we want to avoid the apparent problems as with
the word /fire/, we need to consider all possible intersections of these basic contexts sets,
and take all minimal such intersections. Let us call them basic types. A basic type is
inhabited if it is the context of a lexeme, i. e. of the form CL(v) for some v ∈ V rather
than CL(~x). It is not a priori clear that each basic type is inhabited. We can think of strings
whose set of common contexts is not the context set of a simple lexeme. But there is a
natural expectation is that this cannot arise. We will not push this issue further. If the
reader wants an example, think of the various selection possibilities of a verb. A verb
may select two noun phrase objects, or a noun phrase and a prepositional phrase of some
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kind. By saturating one or more arguments we obtain complex verb phrases which look
for quite different argument sets. Thus is the case in John gives a book ... which requires
a prepositional phrase headed by to. So it belongs to the context set of /to/ + /john/, but
not to the context set of any single lexeme. Let us, however, now focus on the analysis in
the form of distinctive pairs. For example, in Latin the following equations are valid

(1.23)

/poetae/
/poeta/ = /ranae/

/rana/

/poetae/
/poeta/ =

/sigilla/
/sigillum/

/poetae/
/poeta/ = /rēs/

/rēs/
However, again we must ask what precisely this means. There is no obvious way in which
we can use the contexts here as a criterial device, so we are left with only our intuition
to tell us that there is a common difference established by these equations. Being simple
minded, we can point to the first equation and say that what is the common difference is
the addition of an /e/. But this is refuted by the second, and more obviously even by the
third, in which there is no overt difference. If we take the meaning into the account here
we can say that the difference that is at issue is the difference between singular and plural.
(The first equation can also be used to establish the difference dative/nominative, but let
us ignore that here.) So we can as in the contrastive analysis of phonemes posit a feature
to express the common difference.

Nevertheless, there is a syntactic way to get at these distinctions. Consider a pair of
two strings, ~x1 and ~x2. A context for such a pair is a triple C = 〈~w1, ~w2, ~w3〉, and we say
that 〈~x1, ~x2〉 occurs in the string ~s in the context C iff ~s = ~w1 · ~x1 · ~w2 · ~x2 · ~w3. With respect
to a language L we say that 〈~x1, ~x2〉 can occur in C if ~w1 ·~x1 · ~w2 ·~x2 · ~w3 ∈ L. Now consider
another pair 〈~y1, ~y2〉. If it occurs in the context C just as 〈~x1, ~x2〉 then ~y1 competes with ~x1

and ~y2 competes with ~x2. For example, take 〈/hat/, /sat/〉 and 〈/cat/, /slept/〉. Then it is
/hat/ which competes with /cat/ for its syntactic position, and /slept/ which competes
with /sat/. Both are actually individually competitors. However, this competition can be
incomplete, as in 〈/cats/, /sit/〉 and 〈/cat/, /sits/〉. Here, considering a context where we
can replace /cat/ by /cats/ we cannot do this without also changing /sits/ to /sit/. We
express this by saying that means that there is a correlation between the pair {/cats/, /cat/}
and the pair {/sits/, /sit/}. A correlation can be established on the basis of a single context,
such as

(1.24) The ... ... on the mat.

(Notice that in this context there is no element separating the first and the second element.
That is, in this context ~w2 = ε.) Different contexts may not establish this correlation, as

(1.25) The ... would like to ... on the mat.

To put it once again, we have two elements, ~x1 and ~x2, competing for the same position in



16 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

a string, and two elements ~y1 and ~y2 competing for a (disjoint) position. We observe that
of the four possible combinations in a given context, only two are legal:

(1.26)
~w1 · ~x1 · ~w2 · ~x2 · ~w3

√
~w1 · ~x1 · ~w2 · ~y2 · ~w2 ∗

~w1 · ~y1 · ~w2 · ~x2 · ~w3 ∗ ~w1 · ~y1 · ~w2 · ~y2 · ~w3
√ .

In that particular situation we will say that there is an abstract element which distinguishes
~y1 from ~x1, and that same feature distinguishes ~y2 from ~x2. This abstract element can be
characterized via the meaning of these elements. It corresponds to the distinction between
singular and plural. So, we have established that there are singular verbs, plural verbs,
and that there are singular nouns and plural nouns. We can go on with this search and
discover that the singular/plural distinction is at work in the contrast /this/ : /these/ and
so on. We will furthermore postulate that in the context that established the correlation
it is only elements with the same value for the feature singular that can cooccur. This
accounts for the well-known phenomenon of subject-verb agreement and also agreement
between an adjective and a modified noun. Further investigation will reveal that there
also is what we know as gender and case in English. There are three genders, so that an
analysis in terms of binary features is not straightforward. But more on that later. What
we have shown is that in analysing the way in which elements combine with each other
we can establish an internal structure of these elements that we would not be able to see if
we were to analyse the elements on their own. To return to phonology to see the relevance
of this. Notice that there we had phonetic descriptions that enabled us to see that there
is a common regularity in the oppositions /p/ : /b/, /t/ : /d/ and /k/ : /g/ and that in
turn allowed to establish the feature analysis of phonemes. But what good is that for if
the only thing it show is that the elements are distinct? Well, look at the phenomenon
of final devoicing in German. What we find is that we have the verb /reisen/, in which
the sibilant – being syllable initial – is pronounced /z/. At the end of the syllable it is
pronounced /s/. So, we have the 3rd singular present /reist/, in which the sibilant is
voiceless, and so is the /t/. Similarly, we have the noun /jagd/ derived from /jagen/.
The ‘g’ is voiceless in the first, and voiced in the second. We observe that the end of
the syllable may contain several consonants, but they all must be voiceless. Without the
notion of a voiced/voiceless phoneme we would have to express that same observation
with a cooccurrence list. Linguists would say that we are missing a generalization here,
because it is quite obvious what common property the consonants have that can cooccur.
Another case in this connection is that of vowel harmony which can be found in Finnish,
Hungarian and Turkish, for example. In Finnish, within a word vowels must agree in their
frontness. There are three sets of oppositions, and we have

(1.27)
/ä/
/a/

=
/ö/
/o/

=
/y/
/u/

.

In each case the upper vowel is pronounced with advanced tongue while the lower is not.
So we have two series, {ä, ö, y} and {a, o, u}. /e/ and /i/ can cooccur with either of the
series. So the following words are well-formed

(1.28) päällikkö, kansallis, osake, säännöttömys, kaupunki
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To express this law we have to make use of the feature front. We leave the problem of how
to incorporate the behaviour of /e/ and /i/. There certainly are ways to do this, but the
statement of the law is not quite simple even with the help of the feature front. The point
we wanted to make in this section is nevertheless clear. It is that the distinctive features of
the contrastive analysis can only be intrinsically shown to arise if we look at syntagmatic
relationships, and this is also what these features can help to explain.

1.4 Sets, Features and Boolean Algebras

The formal object used for studying features is that of a boolean algebra. We will intro-
duce boolean algebras via sets and prove later that the laws of boolean algebra allow to
build for each abstract boolean algebra an isomorphic algebra using sets. The concrete
boolean algebras are formed from an arbitrary set X. The subsets of X are collected in the
so-called powerset ℘(X). On ℘(X) we have the operations of intersection ∩, union ∪ and
relative complement −. The first two are defined for arbitrary sets, and it is easily seen
that the intersection of two subsets of X is a subset of X, and so is the union. The relative
complement −U of a set U ∈ ℘(X) is defined by X − U, a set containing all elements of
X which are not in U. A field of sets is a sextuple 〈D,∩,∪,−, ∅, X〉 where D is a subset of
℘(X) which is closed under the three operations, and contains ∅ as well as X. In particular,
the powerset algebra 2X := 〈℘(X),∩,∪,−, ∅, X〉 is a field of sets. Any set of subsets of X
closed under ∩ and − contains the empty set ∅ and the full underlying set X, so we can
also drop them in the list. It is easy to verify that in all fields of sets the following laws
are valid.

(1.29)

S ∩ (T ∩ U) = (S ∩ T ) ∩ U S ∪ (T ∩ U) = (S ∪ T ) ∪ U
S ∩ T = T ∩ S S ∪ T = T ∪ S
S ∩ S = S S ∪ S = S
(S ∩ T ) ∪ S = S (S ∪ T ) ∩ S = S
(S ∩ T ) ∪ U = (S ∪ U) ∩ (T ∪ U) (S ∪ T ) ∩ U = (S ∩ U) ∪ (T ∩ U)
−(S ∩ T ) = −S ∪ −T −(S ∪ T ) = −S ∩ −T
S ∩ −S = ∅ S ∪ −S = X
S ∩ ∅ = ∅ S ∪ ∅ = S
S ∩ X = S S ∪ X = X
− − S = S

Abstracting away from sets, a boolean algebra is any structure A = 〈A,∩,∪,−, 0, 1〉where
A is a set, 0, 1 ∈ A, − a unary operation on A and ∩ and ∪ binary operations on A, such
that the laws above are valid for all elements of A, where ∅ is read as 0 and X as 1. It is
a central result of boolean algebra that every boolean algebra can be construed as a field
of sets, so the reader is invited to picture boolean algebras just as fields of sets whenever
necessary. (This result is proved in the next section.) In a boolean algebra we write x ≤ y
for x ∪ y = y. If x ∪ y = y, then also x ∩ y = x ∩ (x ∪ y) = x, so we can character-
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ize x ≤ y alternatively by x ∩ y = x. If x ≤ y as well as y ≤ x we have x = y. For
then x ∪ y = y from the first assumption and x ∪ y = x from the second. If x ≤ y then
(−y) ≤ (−x), because x∪y = y can be transformed into −(x∩y) = −y and so −x∪−y = −y,
which is to say −y ≤ −x. An element y is called the complement of x if x ∩ y = 0 and
x ∪ y = 1. We show that y = −x, so that this is a characterization of −x, one which is
used quite often. It is demonstrated as follows. First of all, we have from x ∩ y = 0 that
x = x∩1 = x∩ (y∪−y) = (x∩ y)∪ (x∩ (−y)) = 0∪ x∩ (−y) = x∩ (−y), which means that
x ≤ −y. Second, from x = x∪0 = x∪(y∩−y) = (x∪y)∩(x∪−y) = 1∩(x∪(−y)) = x∪(−y)
we deduce that −y ≤ x. Hence, −y ≤ x ≤ −y, and so the two are equal. Moreover, if
x = −y then also −x = − − y = y.

Now let us discuss some concrete cases. Consider the set S of all possible linguis-
tic sounds. Every language cuts S into different parts, according to its own system of
distinctions. Let us be simplistic in assuming that any member of S is identified by the
speakers of a language as some sound belonging to his language. Indeed, a structuralist
must make this assumption as long as he is not willing to concede that there are substan-
tial i. e. phonetic properties that allow to identify sounds irrespective of the distinctive
features operative in the language. This is a wide field, and we refrain from speculations
here. Our previous analysis yielded certain distinctive features, such as voiced or aspi-
rated and so on. A distinctive feature divides S into two sets, namely one set to which all
sounds belong which are positively specified for that feature, and the other set to which
belong all sounds for which the feature is specified negatively. These sets are relative
complements of each other. This means that the feature voiced selects the set V ⊆ S of
voiced sounds, while the set of voiceless sounds is just S − V , the relative complement.
Given one distinctive feature, these are all the sets we can define with the distinctive fea-
tures. Now take another feature, say aspirated. It defines the set A of aspirated sounds,
and the set S − A of nonaspirated sounds. With these two features we can define four
basic sets, F++ = V ∩ A, F+− = V ∩ (−A), F−+ = (−V)∩ A and F−− = (−V)∩ (−A). There
is a way to make precise the sense in which these sets are basic.

Definition 1.4.1 Let A = 〈A,∩,∪,−, 0, 1〉 be a boolean algebra and B ⊆ A. If B is closed
under the opperations, we put B = 〈B,∩,∪,−, 0, 1〉 and call it a subalgebra of A. Given
an arbitrary set X the boolean algebra generated by X is the subalgebra defined by the
smallest set B containing X being closed under the operations. We write 〈X〉 for B.

This definition is successful because if X is a set and Bi an arbitrary collection of sets, all
closed under the operations and containing X, then the intersection

⋂
i∈I Bi is another such

collection. It is thus guaranteed that there is a smallest subalgebra containing X. Let us
now ask, what is the structure of the field of sets generated by some set of features? In
the case considered above, it is the algebra of sets which are representable by a union of
the four sets F++, F+−, F−+ and F−−. There are 24 = 16 such sets, at most. Notice that
some of these set may be empty. For example, in most languages there is no sound which
is both labial and dental (labiodentals are a different matter). Thus, the intersection of the
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set of dental sounds with the set of labial sounds is empty. But abstracting away from the
specific context, it is quite conceivable that the intersection of all of the sets defined by the
basic features is not empty. Such is the case with the sets voiced and aspirated features in
Sanskrit. As our first theorem we will now prove the theorem of disjunctive normal form,
which tells us how the algebra generated by a set X can be computed.

Proposition 1.4.2 (Disjunctive Normal Form) Let A be a boolean algebra and E ⊆ A.
Assume that E is finite and E = {e1, . . . , en}. For any subset K ⊆ {1, 2, . . . , n} put

(1.30) hK =
⋂

i∈K ei ∩
⋂

i<K −ei.

Then 〈E〉 consists of all unions of sets hK . For infinite X ⊆ A,

(1.31) 〈X〉 =
⋃
{〈E〉|E ⊆ X, E finite}.

Proof. To prove this claim it is only necessary to verify that the set thus defined contains E
and is closed under the operations. That it is the smallest algebra follows from the fact that
the elements defined above must certainly be in 〈E〉 by closure under the operations. Now,
let us also notice that we need only show closure under intersection and complement.
Namely, union is definable by x ∪ y = −(−x ∩ −y). The bottom element 0 is the empty
union, and 1 is its complement. For closure under intersection let us observe first that if
x = hK(1) ∪ hK(2) ∪ . . . hK(m) and y = hL(1) ∪ hL(2) ∪ . . . hL(n) then

(1.32) x ∩ y =
⋃

i≤m, j≤n hK(i) ∩ hK( j).

This is the generalized distributivity law. It holds for sets, and can be derived from the
equations above. We are obviously done if we can show that the sets hK(i) ∩ hL( j) are of
the type hG for some G. Let us distinguish two cases. Case 1. K(i) = L( j). Then the
claim follows, for then G = K(i) = L( j). Claim 2. K(i) , L( j). Then there is a ` which
is contained in one set, say K(i), but not the other. This means that K(i) is a conjunction
containing e`, while L( j) is a conjunction containing −e`. Then hK(i) ∩ hL( j) = 0, and so
can dropped from the union. Finally, closure under complementation. If x = hK(1)∪hK(2)∪

. . . hK(m) then we claim that

(1.33) −x =
⋃

N,K(1),...,K(m) hN .

To see this, note that 1 = ei ∪ −ei for all i, so that

(1.34) 1 =
⋃

K⊆{1,...n} hK .

Thus, the union of x and −x as defined is 1. The intersection is 0, and this uniquely
characterizes the complement. To see that (1.31) holds, just observe that any term that
can be formed from elements of X is formed by using finitely many elements only, so it
is already in the right hand side. So the right hand side is included in the left hand side;
the other inclusion is equally easy. a

In the case of distinctive features we can conclude that the sets F++, F+−, F−+ and F−−
defined above are of the type hK for some K ⊆ {1, 2}. Any other set is a (possibly empty)
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union of these sets. They correspond to the set of sounds corresponding to a phoneme.
Now what is the phoneme if these sets are just the realizations of a phoneme? We will not
attempt an answer in a linguistical or philosophical sense. Rather, we want to point out
that the field of subsets of S induced by the features contains at most sixteen elements
in the case of two features, and can be reconstructed over a much smaller set. Namely,
we can choose for each set hK a representative, for example simply K itself. An arbitrary
element of the algebra, being a union of the hK , is then simply the set of the represen-
tatives of those hK participating in the union. In this way any element corresponds to
a set {K1,K2, . . . ,Km}, where Ki ⊆ {1, 2, . . . , n}. In other words, we have reconstructed
the algebra as the algebra of subsets of {1, 2, . . . , n}. A phonologist would use a different
terminology here. He will name the representatives of the hK phonemes. A realization
of a phoneme is any sound that is being classified as belonging to the set for which the
phoneme is the representative. Thus, /p/ is the representative of the class of all sounds
classified (say by an English speaker) as ‘p’. It is also the class of all sounds being clas-
sified by a phonologist as being voiceless, labial, aspirated etc. Any sound, that is, any
member of S, is uniquely identifiable as being the realization of a phoneme. Crucially,
as we have sets of sounds, we also have sets of phonemes, which have to be interpreted
disjunctively. The set of all sounds realizing {/p/, /b/} is the union of the sounds re-
alizing /p/ and the sounds realizing /b/. In the present case phonologists speak of an
archiphoneme. Archiphonemes cannot simply be equated with sets of sounds, though
that would be a formally satisfying terminology. Phonologists restrict them to certain sit-
uations in which elements are not specified for a feature. (They correspond more closely
perhaps to rectangles in the tensor product – for a definition see below.)

Sets allow natural operations, such as union, and so do boolean algebras. We will
introduce these operations here with hindsight, assuming that boolean algebras are fields
of sets. First, consider A, a field of sets over the set X, and B, a field of sets over Y . The
disjoint union of X and Y , X + Y , is the smallest set into which X and Y can be embedded
in such a way that no member of X is identical after embedding to a member of Y . This is
a somewhat roundabout definition but there is no other way to define this notion. Consider
the sets {1, 2, 3} and {2, 3, 4}. Their union is {1, 2, 3, 4}. The disjoint union is something
like {1, 2X, 3X, 2Y , 3Y , 4}. It has 3 + 3 = 6 elements rather than four. The idea behind
the disjoint union is that we want to distinguish the elements coming from X from those
coming from Y regardless of whether they are actually identical. This causes a problem
of identification of the elements of X in the disjoint union, and likewise for Y , which is
solved by simply assuming that the disjoint union is not only a set but a set Z together
with two embeddings, ιX : X → Z, and ιY → Z. (Standardly, authors make sets disjoint
by taking X + Y to consist of elements 〈0, x〉 for x ∈ X and 〈1, y〉 for y ∈ Y .) Standardly,
one can view the disjoint union as a normal union where the elements of one of the sets
are replaced by suitable different elements so as to make the two sets disjoint.

Now let us return to A and B. We can actually rename the elements of Y in some
way as to make X and Y disjoint. Then the standard union is isomorphic to the disjoint
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unions (i. e. they yield sets which can be mapped bijectively onto each other). We can
now consider a new algebra over the set X + Y , as follows. Let C be the set of all unions
of the form S ∪ T , where S ∈ A and T ∈ B. This is a boolean algebra. For it contains the
empty set, being the union of ∅X ∪∅Y , and it contains with each set S ∪T the complement
(−S ) ∪ (−T ). Moreover, C is closed under union, which is easy to demonstrate. Thus we
have a boolean algebra, and it is called the product of A and B. It is denoted by A × B.
We leave it to the reader to verify the following theorem.

Theorem 1.4.3 2X × 2Y = 2X+Y .

Now consider instead of the disjoint sum the set X × Y of pairs 〈x, y〉 such that x ∈ X
and y ∈ Y . With S ∈ A and T ∈ B we write S ⊗ T for the set {〈x, y〉|x ∈ S , y ∈ T } and
call it a rectangle or a basic tensor. Under the set–interpretation a basic tensor is nothing
but the product S × T . Then let C be the set of all unions of basic tensors. We claim that
it is a boolean algebra. Namely, ∅ ⊗ T is the empty set, and X ⊗ Y is the full set. The
intersection is easy to compute.

(1.35) (S 1 ⊗ T1) ∩ (S 2 ⊗ T2) = (S 1 ∩ S 2) ⊗ (T1 ∩ T2)

For a union of basic tensors, the intersection is then uniquely defined, and equal to a union
of tensors. Finally, the complement is

(1.36) −(S ⊗ T ) = (−S ) ⊗ T1 ∪ S 1 ⊗ (−T )

Thus we have successfully defined the algebra C over X ×Y . We call it the tensor product
of A and B and write A⊗B. Again we leave it to the reader to verify that if A is the set of
subsets of X and B the full set of subsets of Y , X and Y finite, then A ⊗ B is nothing but
the algebra 2X×Y .

Theorem 1.4.4 2X ⊗ 2Y = 2X×Y .

The tensor product arises naturally in phonemic analysis. Consider the case of a single
distinctive feature, say voiced. We have seen that it divides the set of sounds into V and
−V . Both are (up to now) phonemes. Call them v and l. Consider now another distinctive
feature, aspirated. Again, on its own it defines two phonemes, a and p, say, realized by the
sets A and −A. If the two are taken together, all four phonemes turn into archiphonemes,
because each of them is underspecified for some feature. The new phonemes are now
v ⊗ a, v ⊗ p, l ⊗ a and l ⊗ p. So, given one distinctive feature we get 2 phonemes, with
2 distinctive features 4, and in general with n distinctive features 2n phonemes (assuming
that all combinations are realized, see also next section). The algebra of phonemes can
thus be decomposed into the direct tensor product of the algebra of archiphonemes. In
the extreme case, each feature defines its own archiphoneme, and the real phoneme is the
tensor product of these archiphonemes. Notice also that while the tensor product lives on
the product of the sets of the factors, there is no decomposition of S into a product that
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reflects this. To make this clear, consider the archiphoneme v and the archiphoneme a.
The realization of the basic tensor v ⊗ a is the intersection (!) of the realizations of v and
the realizations of a. However, the phonematic reconstruction of the space of sounds is
different. Under the hypothesis of a single distinctive feature it cuts the space S into two
sets, and each set is given a phoneme as a representative. Under the hypothesis of two
distinctive features the once homogeneous sets are once again divided, yielding a division
into (at most) four sets. So while the phonematic space grows larger, the subdivisions
get smaller. But there is no sense in which the intersection V ∩ A can be seen as a set
product of A and V . This is a mere artefact of the construction of the phoneme algebra
as a set algebra. Even though this fact is somewhat bewildering, it analyses correctly the
mode of inquiry. On the one hand we have the concrete sounds and a division into sets
corresponding to abstract sounds, on the other we have an array of distinctive features,
some of which are operative in a given language, some are not. The distinctive features
create their own space of possibilities and may be just as concrete, for example in the
form of recognition patterns or articulation instructions. We can easily recognize that the
features voiced and labial adress different parts of the articulatory organ, the vocal chords
in one case and the lips in the other, and so we can agree that the division into these
features in the phoneme space has a real counterpart, and is not abstract. Both phonemes
and sounds are at the same time concrete entities from their own point of view and abstract
from the viewpoint of the other.

1.5 Duality Theory for Boolean Algebras

A homomorphism from a boolean algebra A into a boolean algebra B is a map h : A→ B
which satisfies the following structure preservation conditions.

(1.37)

h(0) = 0
h(1) = 1
h(−x) = −h(x)
h(x ∩ y) = h(x) ∩ h(y)
h(x ∪ y) = h(x) ∪ h(y)

If h is surjective, B is said to be a homomorphic image of A, and we also write h :
A � B. If it is injective, A is a subalgebra of B. We call A and B isomorphic if there
exists a bijective homomorphism h : A → B. We write A � B if the two algebras are
isomorphic. Since the operations on a boolean algebra are interdefinable these conditions
are not independent. It is enough to verify the conditions for intersection, complement
and 1, for example. Given a homomorphism, we define the kernel of the homomorphism
ker(h) = {〈x, y〉|h(x) = h(y)}. Kernels can be given an abstract characterization.

Definition 1.5.1 A congruence on a boolean algebra is a binary relation θ which is an
equivalence relation and commutes with the operations in the following way. If x θ y then
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also −x θ − y. If x1 θ y1 and x2 θ y2 then x1 ∩ x2 θ y1 ∩ y2 and x1 ∪ x2 θ y1 ∪ y2.

The kernel of a homomorphism is a congruence. For it is an equivalence relation, as is
easily seen. Moreover, if h(x) = h(y), then h(−x) = −h(x) = −h(y) = h(−y) and if h(x1) =
h(y1) as well as h(x2) = h(y2) then h(x1 ∩ x2) = h(x1) ∩ h(x2) = h(y1) ∩ h(y2) = h(y1 ∩ y2)
as well as h(x1 ∪ x2) = h(x1) ∪ h(x2) = h(y1) ∪ h(y2) = h(y1 ∪ y2). Conversely, given
a congruence, let us define [x]θ = {y|x θ y} and let us call it the θ-block of x. It is then
straightforward to show that the operations can be defined blockwise. For example, if
y ∈ [x]θ then −y ∈ [−x]θ, for y ∈ [x]θ is the same as y θ x, from which follows −y θ − x,
which is the same as −y ∈ [−x]θ. This justifies defining the block-complement of [x]θ to
be [−x]θ. Similarly we have that if y1 ∈ [x1]θ and y2 ∈ [x2]θ then y1 ∩ y2 ∈ [x1 ∩ x2]θ as
well as y1 ∪ y2 ∈ [x1 ∪ x2]θ. Thus we can define the operations on entire θ-blocks.

(1.38)

1 = [1]θ
0 = [0]θ
−[x]θ = [−x]θ
[x1]θ ∩ [x2]θ = [x1 ∩ x2]θ
[x2]θ ∪ [x2]θ = [x1 ∪ x2]θ

Finally, A/θ = {[x]θ|x ∈ A}. Now put A/θ = 〈A/θ,∩,∪,−, 0, 1〉. It is routine to check that
the map hθ : x 7→ [x]θ is a homomorphism. We call A/θ a factor algebra or quotient of
A obtained by factoring out the congruence θ. It turns out that congruences on boolean
algebras are characterized by the class [1]θ alone. Such a class is called a filter and can
be abstractly defined as follows.

Definition 1.5.2 A �lter on a boolean algebra is a set F satisfying the following three
conditions. (fi1) 1 ∈ F, (fi≤) If x ∈ F then x ∪ y ∈ F, (fi∩) If x, y ∈ F then also x ∩ y ∈ F.

(Standardly, one writes (fi≤) as follows. If x ∈ F and x ≤ y then y ∈ F. However, any
element y ≥ x is of the form x ∪ y; namely, y = y ∪ x.) The simplest kind of filter is the
so-called principal filter. It is of the form ↑ x = {y|y ≥ x} for some x. Since 1 ≥ x, (fi1)
holds. Moreover, if y ≥ x then y∪ x = y and so (y∪ z)∪ x = y∪ z, which shows y∪ z ∈ ↑ x.
Finally, for y, z ≥ x we have y ∩ z ≥ x, and so all postulates hold. In general, the least
filter containing a given set X of elements is the set of all elements z such that z ≥

⋂
E for

some finite E ⊆ X. If X is finite, then x :=
⋂

X is defined, and the filter is nothing but the
principal filter ↑ x. If θ is congruence, [1]θ is a filter. For 1 ∈ [1]θ, and so (fi1) is fulfilled.
If x ∈ [1]θ then x ∪ y ∈ [1]θ ∩ [y]θ = [1 ∪ y]θ = [1]θ, showing (fi≤). Finally, if x, y ∈ F
then x ∩ y ∈ [1 ∩ 1]θ = [1]θ, showing the condition (fi∩) to be fulfilled. Conversely, let
F be a filter. Then put θF = {〈x, y〉|x∆ y ∈ F}, where x∆ y = (x ∩ y) ∪ ((−x) ∩ (−y). To
show that this is an equivalence relation is a somewhat longish verification. Notice that
x∆ x = (x ∩ x) ∪ ((−x) ∩ (−x)) = x ∪ (−x) = 1 ∈ F. Furthermore, x∆ y = y∆ x, as the
reader may verify, and finally x∆ z ≥ x∆ y ∩ y∆ z.
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(1.39)

x∆ y. ∩ .y∆ z = [(x ∩ y) ∪ (−x ∩ −y)] ∩ [(y ∩ z) ∪ (−y ∩ −z)]
= (x ∩ y ∩ z) ∪ (x ∩ y ∩ −y ∩ −z)∪

∪(−x ∩ −y ∩ y ∩ z) ∪ (−x ∩ −y ∩ −z)
= (x ∩ y ∩ z) ∪ (−x ∩ −y ∩ −z)
≤ (x ∩ z) ∪ (−x ∩ −z)
= x∆ z

Furthermore, (−x)∆ (−y) = ((−x)∩(−y))∪((−−x)∩(−−y)) = (x∩y)∪((−x)∩(−y)) = x∆ y.
Next, consider x1 ∆ y, x2 ∆ y ∈ F. Then (x1 ∩ x2)∆ y = (x1 ∩ x2 ∩ y) ∪ ((−x1 ∪ −x2) ∩ y) ≥
(x1 ∆ y) ∩ (x2 ∆ y) as can be verified by multiplying out the latter. By assumption the last
is in F, since F is closed under (fi∩), and so the first is also in F since it is closed under
(fi≤).

Theorem 1.5.3 The map F 7→ θF defined by θF = {〈x, y〉|x∆ y ∈ F} is a bijection from
the set of all filters over A onto the set of all congruences over A. Its inverse is given by
θ 7→ Fθ = [1]θ. a

Crucially, filters are in one-to-one correspondence with quotients A/θF , which we also
denote by A/F. A filter is called proper if it is not the full underlying set. An ultrafilter
is a proper filter which has no proper extension. Alternatively, one can characterize an
ultrafilter as a filter U such that A/U � 2. Each filter is contained in an ultrafilter. This is
usually proved with Zorn’s Lemma, but we will an intuitive argument here, resting on the
axiom of choice.

Lemma 1.5.4 Every proper filter of a boolean algebra is contained in an ultrafilter.

Proof. If F is not an ultrafilter, take an element x such that x < F and also −x < F.
Consider the least filter F1 containing x. It consist of all elements z such that z ≥ y∩ x for
some y ∈ F. We claim that it is a proper filter. For if not, then −x ∈ F1 and so there exists
a y ∈ F such that −x ≥ y∩ x. But this means −x∩y∩ x = y∩ x and so y∩ x = 0. However,
y ∩ x = 0 implies y = y ∩ (x ∪ −x) = y ∩ −x, that is, y ≤ −x. Since y ∈ F, we must
have −x ∈ F, in contradiction to our assumption. Thus, F1 is a proper filter. If it is not
an ultrafilter, continue this construction. This yields a chain F = F0 ( F1 ( F2 ( . . .. If
we do not get an ultrafilter in finitely many steps, we will put Fω =

⋃
i∈ω F i. It is a matter

of direct verification that the union over an ascending chain of filters is a filter. Namely,
since 1 ∈ F, we will have 1 ∈ Fω. Moreover, if x ∈ Fω then x ∈ F i for some i, and by
the fact that F i is a filter, x ∪ y ∈ F i and so also Fω. Finally, if x, y ∈ Fω then x ∈ F i and
y ∈ F j for some i, j ∈ ω. Without loss of generality assume i ≤ j. Then x ∈ F j, since
F i ⊆ F j. Hence by (fi∩) for F j we have x ∩ y ∈ F j, whence x ∩ y ∈ Fω. Now we can
continue with Fω etc. Eventually, we will have exhausted A and obtained an ultrafilter. a

Theorem 1.5.5 (Stone Representation) Every boolean algebra is isomorphic to a field
of sets.
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Proof. Let A be a boolean alegbra, and let U(A) be the set of all ultrafilters over A. We
define x̂ = {U ∈ U(A)|x ∈ U}. This is a homomorphism. For 1̂ = U(A), x̂ ∩ y = {U ∈
U(A)|x ∩ y ∈ U} = {U ∈ U(A)|x ∈ U} ∩ {U ∈ U(A)|y ∈ U} = x̂ ∩ ŷ. This equivalence
holds because if x ∩ y ∈ U then also x = x ∪ (x ∩ y) ∈ U and y = y ∪ (x ∩ y) ∈ U, and
conversely by (fi∩). Finally, in an ultrafilter, x < U exactly if −x ∈ U. For if x < U then
hU(x) = 0, and so hU(−x) = −hU(x) = 1, in other words −x ∈ U. And conversely. Thus
−̂x = {U ∈ U(A)| − x ∈ U} = {U ∈ U(A)|x < U} = −x̂. The image of the homomorphism,
that is, the set of sets of the form x̂ for x ∈ A, form a field of sets over U(A), which is a
homomorphic image of A. It remains to be shown that this map is injective. To show that
it is enough to show that if x , y then there is an ultrafilter such that x ∈ U but y < U or
x < U but y ∈ U. To put that differently, if x , y then there is an ultrafilter containing
−(x∆ y). Since the latter is nonzero in case the two are not equal, we are done if we
can show that every element is contained in at least one ultrafilter. This follows from the
previous lemma. a

A boolean algebra is said to be freely generated by X ⊆ A if for every map h : X →
B there exists a unique extension h : A → B. The rationale behind that definition is
as follows. A is generated by X if 〈X〉 = A, in other words, the smallest subalgebra
containing X is A itself. Moreover, we want to say that the elements of X are completely
independent, that is, no relation holds between them unless forced by the laws of boolean
algebra. This is expressed by the condition involving homomorphisms. We will see that
in a minute. Let us first show that the structure of free algebras is determined only by
the cardinality of the set X and that for any cardinality of X there exists an algebra freely
generated by X. For the first claim consider two sets X and Y of the same cardinality, and
let A be freely generated by X, while B is freely generated by Y . By assumption there
exists a map u : X → Y and a map v : Y → X such that u ◦ v = idY , the identity on Y , and
v ◦ u = idX, the identity on X. We then get by freeness of A a homomorphism u : A→ B
and a homomorphism v : B → A, by the freeness of B. We know that v ◦ u(x) = x for
x ∈ X. Again by the freeness of A there is at most one homomorphism extending the
identity on X, and this must then be the identitity homomorphism 1A : A → A. Thus
we must have v ◦ u = 1A. Similarly, u ◦ v = 1B is proved. It follows that both u and v
are bijective, and A and B are isomorphic. Now for the existence of the free algebras.
Take any set X; we assume for simplicity that X is finite. Then let Y = ℘(X). We put
FrB(X) = 2Y . We claim that this is the algebra freely generated by X. To see that, let
h : X → B. Extend that to a map from Y by putting h(E) =

⋂
e∈E h(e) ∩

⋂
e<E −h(e).

Finally, a set M ⊆ Y is mapped onto h(M) =
⋃

E∈M h(E). This is well-defined and a
homomorphism.

Every boolean algebra is the homomorphic image of a free algebra. To see that just
take X = A. There exists a unique homomorphism FrB(X) � A, by freeness of the first.
Of course, this is a crude way to get A, but it nevertheless proves the point. In general,
if an algebra is not itself freely generated by a set X, but still generated by X, then there
exists a surjective map FrB(X) � A. This map has a kernel θ, which in turn defines a
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filter. So we can present A as a pair consisting of generators and a filter. On the other
hand, a filter may be a large set and can itself be defined by some elements. We may
simply consider a least specification of a filter in the form of a set of elements such that
the smallest filter containing the set is the filter we were looking for.

Definition 1.5.6 A presentation of a boolean algebra A is a pair 〈X, E〉 such that X ⊆ A
and the natural homomorphism FrB(X)→ A defined by the least filter containing E is an
isomorphism.

What we have shown is that every algebra has a presentation. Let us look into some ex-
amples. We have seen earlier that the features labial and dental are not independent, that
is to say, that out of the four possibilities of feature-value assignments only three can get
realized. The picture we have presented in the last section about the tensor product of
phoneme algebras is too simple to be true. We always have to reckon with interdependen-
cies between the features. We conclude from the theorems above that we can nevertheless
present the algebra of realizable phonemes by naming the distinctive features and and
naming some nontrivial equations that holds between them. The Sanskrit system (with
the addition of retroflex consonants) is presented by

(1.40)

〈{aspirated, voiced, dental, labial, retroflex},
[−dental] ∪ [−labial],
[−dental] ∪ [−retroflex],
[−labial] ∪ [−retroflex]〉

This means that we have five features which are independent except for the fact that a
consonant which is dental cannot be labial and also not retroflex, and a consonant which
is labial cannot be dental or retroflex, and a retroflex consonant cannot be labial not den-
tal. This means that the three features are mutually exclusive. They give rise to four
archiphonemes, /P/, /T/, /T. / and /K/, with the following feature value specification.

(1.41)

labial dental retroflex
/P/ + − −

/T/ − + −

/T. / − − +

/K/ − − −

These are in fact all combinations. Each archiphoneme gives rise to four phonemes if
the values for aspirated and voiced are being instantiated. Since there are no restrictions
on the latter combinations, we can decompose the phoneme algebra into a tensor product
FrB(1)⊗FrB(1)⊗A, where the first factor corresponds to the voiced feature, the second to
the aspirated feature and the last to the place of articulation. The latter is actually isomor-
phic to FrB(2), so it too can be analysed as a tensor product. However, this would require
making sense of the binary distinctions that get introduced by the decomposition. We
will come to that point below in connection with the attribute-value matrices. Notice also
that nothing is in the way of introducing another feature velar together with restrictions
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governing its cooccurrence with other features.

Let us mention another case, the syntactic categories. According to standard X-bar-
syntax, syntactic categories are specified for two things, the bare or lexical category and
the level. There are three levels, numbered from 0 to 2. Among the lexical categories
are the so-called major lexical categories, noun, verb, adjective and preposition. The two
components can be combined freely yielding a total number of twelve major categories.
The major lexical categories have been analyzed as feature bundles, using two basic fea-
tures, namely verbal and nominal. Then we have the following assignment

(1.42)

verbal nominal
noun − +

adjective + +

verb − +

preposition − −

This analysis can be justified on many grounds. It has moreover been claimed that lin-
guistic rules can only make use of natural classes, that is, basic tensors. So we can expect
laws to force nouns and adjectives to pattern one way, and verbs and prepositions another,
or prepositions one way and verbs, nouns and adjectives another. But there should be no
law that groups nouns and verbs together or adjectives and prepositions. Now when we
come to the levels, we can attempt a similar analysis in terms of features. Naturally, we
would opt not to group level 0 with level 2, but rather to group level 0 and level 1 into non-
phrasal and/or level 1 and level 2 into nonlexical. In the standard system, there is then no
level corresonding to [+phrasal] ∩ [+lexical]. Nevertheless, under different assumptions
on X-bar-syntax such as recently proposed by Chomsky, we may concede the possibility
that an element is both phrasal and lexical; a case in point are clitics.

1.6 Attribute Value Matrices

Out of the feature matrices developed the so-called feature-structures or attribute-value-
matrices. These were originally only succinct ways to write down the classification of an
item. For example, the lexeme /poetarum/ can be classified as

(1.43)


 : noun
 : masc
 : plural
 : gen


Many more syntactic properties can be listed in this way. Notice that rather than writing
[−singular] we write [ : sing]. The difference is that we consider singular the
value of the predicate or attribute , as if asking what number this lexeme has. The
advantage is clear when we come to , because we can have any number of cases and
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it is not clear whether an analysis in terms of distinctive carries us anywhere. Notice that
we can use distinctive features only to discriminate a given set into two parts and not
arbitrarily many. In Latin we have five cases (disregarding the vocative) and it is easy to
state this using attribute-value matrices. We simply say that the attribute  can have
one and only one value which is to be taken from the set

(1.44) {nom, acc, gen, dat, instr}.

If we were to posit a differentiation in terms of distinctive features we have to look harder.
(Linguists will prefer that because it means that the analysis will potentially give deeper
insight into the Latin case system.) We may for example group nominative and accusative
together (calling it, say, structural case), and then set genitive apart (calling it adnomi-
nal case), while dative and instrumental may be called semantic case or something else.
Within these groups, nominative is less oblique, say, than accusative, and dative less
oblique than instrumental. 2 But such groupings are generally hard to establish and cast
doubt on the possibility to use distinctive features throughout. However, an analysis in
terms of attributes and values is straightforward, as in the case of gender and number.

Now while feature bundles can be interpreted as vectors over a field, this is not possi-
ble with attribute-value matrices. The reason is that the coordinate spaces are dissimilar.
We have three genders in Latin, but five cases. Moreover, the values in each coordinate
are incomparable. There is no sense in comparing different cases with different genders.
That means, while we could equate the values of the features in a feature bundles because
they were all either + or −, no such equality is forthcoming here. Attribute-value matrices
are highly complex entities, and we will return to them at various places. Let us for now
make matters simple. An attribute-value language consists of a set of features and a set
of values or atoms. Features are divided into two groups, so-called category-valued and
atom-valued features. An atom-valued feature is assigned a range. This is the set of atoms
which are allowed to be values of the features. A category is now defined as follows. Any
set containing pairs of the form (i) [ : val], where  is an atomic valued feature
and val an atom in the range of , or (ii) [ : cat] where  is a category valued
feature and cat a category. This definition is recursive, allowing to stack attribute-value
structures inside each other. This is useful in many respects. For example it can be used
to state that an element selects another element. We can write this down by introducing a
feature  which will take attribute value structures as values, allowing us to be quite
specific about the nature of the selected structure. In  this role is played by ,
which is different though in that in takes a sequence of lexeme categories as values. 3

Another category valued feature is the -feature of . It was used to code the fact

2I am not in a position to judge whether this is a sensible grouping and whether the terminology is sound.
This is just an example, so I give no warranty here as to its correctness.

3The massive overlap in the terminology is rather disturbing. The word category is used in a wide
variety of senses in linguistics and it is not possible to remedy that. The reader should be aware that there
is now a distinction between category in the narrow sense instances of whic are noun, adjective etc. and
categegories in the broader sense which correspond more or less to the results of the context-substitution
test. The latter is much more fine grained.
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that the element in question had a gap inside it. Thus, in

(1.45) Which book can you afford to buy?

to buy, although ordinarily expecting a noun phrase to its right, is analysed as a verb-
phrase with an additional slash-feature roughly as follows

(1.46)


 : transitive verb
 : 2
 : nonfinite

 :
[
 : noun
 : acc

]


Thus transitive verbs can appear in different syntactic environments, depending on the
value of their -feature. If it is instantiated to some category that the verb selects for,
then we can omit that element (it will have to appear elsewhere to guarantee the correct-
ness of the -introduction, but that is another matter.) However, we must also find
a way to represent the ‘normal’ situation in which there is no gap. Superficially it looks
right to say that a verb phrase with no gap inside has the feature [ : ⊥], where ⊥
is equivalent to the boolean constant 0. (Generally, the attribute-value matrices are of
type boolean.) But this is not the correct analysis. We want that no value for  is
appropriate, so that has to be expressed differently.

In addition to this there also has been the need to introduce hierarchies into the fea-
tures, that is, specify which feature can occur rightfully in a category that is itself the value
of a given feature. This need arises in particular when we pursue the idea of expressing
linguistic generalizations. For example, it is clear that among the features  and
 there is a greater coherence than between say  and . This is manifest
in the fact that verbs and other lexical items select complements with a specific case, but
not with specific number or gender. On the other hand, pronouns when referring back to
a given noun phrase have to agree in gender and number but not in case with their an-
tecedent. Number agreement can be deduced from the following critical data.

(1.47) The boss has fired John. He has been too stupid.
(1.48) The boss has fired John. ∗They have been too stupid.
(1.49) The boss has fired John and Paul. ∗ He has been too stupid.
(1.50) The boss has fired John and Paul. They have been too stupid.

To encapsulate this in the notation we can introduce a new feature, , whose value is
a category with only the features  and  assigned within it. This proposal is
being developed within , where index in addition is also specified for , which it
must be if we follow the line of argumentation presented here.  solves the problem of
appropriateness of features as values of a feature by typing the attribute-value structures.
The reason that  cannot get assigned inside the value of the -feature is because
this value is an index, and for indices the case features are inappropriate. Thus, in  we
have the additional notion of a type to be able to express inappropriateness.  attribute
value structures in  use among other a -feature whole value is a type corespond-
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ing to the rough classification into noun, verb etc. and which can be further specified for
 etc. The reason why this works is that features are appropriate for certain types and
not for others. We can directly state that  is appropriate for nouns, but not for verbs.
It is, however, also possible to state directly that features select categories which contain
only values for certain features and not other, but the approach taken in  is intuitively
more satisfying.

Let us focus a bit more on the notion of appropriateness. Already in the definition of
an attribute-value matrix alias category we have made use of appropriateness by stating
that features can only have values for a feature which are in the range of that feature. So,
to write

(1.51) [ : neuter]

is not simply to write something false, it is to write down a syntactically illegitimate
category. The value for the feature  must be drawn from the list of cases; it can
neither be a different atom nor a category. This notion of appropriateness is based on
logical presupposition because over and beyond syntactic well-formedness it puts (from
a formal point of view arbitrary, i. e. not a priori valid) syntactic requirements on the
structures. To give another example, certain lexical categories are not marked for case,
such as adverbs, complementizers, prepositions and verbs. (At least in English this is so.)
There are two options that we have. The first is to say that case is actually inappropriate for
these categories or that they simply do not exhibit any distinctions in case. By and large
this issue is not resolved. It is not a priori clear that adverbs show no case distinctions.
After all, they are singled out only with respect to their syntactic position. We know also
that many Latin adverbs are actually instrumental or ablative forms of adjectives, so that in
principle there is a right to say that adverbs have case. Still, within a language like English
we can claim that adverbs and verbs have no case. This is a problem for  as long as we
assume that categories look roughly like the one given for Latin /poetarum/. For then we
cannot express this via the standard appropriateness constraints. If  is independent of
the feature  then we cannot state that for some categories case is obligatory, for others
it is inappropriate. Instead, if we want to do that we have to put one inside the other. We
can either put  inside  or conversely. There is only one canonical way to do that;
for it makes little sense to call  the major feature whose value is a category defined for
. Moreover, it would not solve the problem at hand. Instead we want to say that  is
chosen inside a category which is the value of . To make this work properly, we need
to make the value of  a special type, namely that of a category. Then we can go on to
say that for the type noun  is appropriate, while for the type adverb it is inappropriate.

This development of feature structures led to a concentration on the notion of a type.
Types are properties, so they are open to a boolean analysis. In effect, the formalism for
attribute value matrices has been enhanced by boolean constructors, written u, t and ¬.
For example, it may be necessary at times to state a disjunction. In the lexicon we might
state that an element is actually either an adjective or an adverb, a noun or a verb etc.
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We might say that some prepositions in German such as wegen (because of ) select their
complement with either dative or genitive case. Both are legitimate, although the use of
the dative, being now more popular is considered uneducated. Leaving these connotations
aside, either case is grammatical. Likewise, we can express the alternation between these
two sentences

(1.52) John gave a book to Mary.
(1.53) John gave Mary a book.

(so called dative-shift) by stating a disjunction between the two selection requirements.
To express such facts we write, for example,

(1.54) [ : noun t verb]

to say that the value of  is either noun or verb. It is not clear whether disjunction is
just a sign of lack of knowledge of whether it is inherent in the lexical items. This corre-
sponds to the question whether the archiphonemes have a real status or whether they are
just artefacts of the classification. We will not try to resolve this issue. Instead, let us just
pursue the formal idea of introducing the connectives into the language of attribute-value
matrices. We will say that there is a type of expression called boolean, and that there are
boolean constants ⊥, >, the unary function symbol ¬ and the two binary function sym-
bols u and t. The laws governing the behaviour of these symbols are exactly those that
we have in boolean algebras, with ⊥ read as 0, > as 1, ¬ as −, u as ∩ and t read as ∪.
There are possibly many constants of type boolean, such as the cases, and in general all
atoms. Laws can be stated either by restriction on types or as appropriateness conditions.
For example, we can introduce a type called case and also have various constants, such
as nom, acc etc. To get the right connection between these constants, we need to state
among other the following laws for the Latin case system. (We use x v y to abbreviate
x t y = y.)

(1.55)
case = nom t acc t gen t dat t instr
nom v ¬acc u ¬gen u ¬dat u ¬instr
acc v ¬nom u ¬gen u ¬dat u ¬instr

(Notice that in the second and third line there is no equality, since items can have no case.)
This parallels exactly the idea of a presentation of boolean algebras. Finally, inappropri-
ateness can be stated quite simply as follows

(1.56) [ : neuter] ≡ ⊥

This says that neuter is not a value of . To make this work properly, we need to as-
sume the following general law of attribute value matrices.

(1.57) [ : value1 t value1] ≡ [ : value1] t [ : value2]

This is the law of t-distributivity for features. This would allow to say that if we specify
a case value which is the disjunction between neuter and nominative then we can restate
this as a disjunction between the case value being neuter (which is generally false) and
the case value being nominative. So it is the same as saying the the element in ques-
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tion has case value nominative. Notice that even though this might seem nonsensical it
is absolutely necessary if we want to rephrase inappropriateness constraints as equations
or axioms for attribute value matrices. Moreover, let us consider the following problem.
Nothing so far prohibits the following specification

(1.58)

  : noun
 : nom
 : acc


It is contradictory on the standard interpretation. Notice that the problem arises for all
categories. To prevent this we need to postulate a second law for attribute value matrices,
namely

(1.59) [ : value1 u value1] ≡ [ : value1] u [ : value2]

This is the law of u-distribution for features. Thus, a feature can be given essentially only
one value. Let us close by solving the question of the -feature. If we want to state
that an element has no gap inside it, we will have to say that for no value x, [ : x] is
true. This can be restated as

(1.60) ¬[ : >].

The statement [ : ⊥] will generally be considered inappropriate. This is expressed by
a third general law of attribute value matrices, the law of proper assignment.

(1.61) (⊥−hom) [ : ⊥] ≡ ⊥

1.7 A Boolean View on Attribute-Value Matrices

The attribute-value matrices can be thought of as a different way to specify what we have
specified with boolean algebras. Indeed, we will see below that theories of attribute-
value matrices can be thought of just as presentations of boolean algebras. However, the
language of s is usually finite and yet admits an infinite number of s contrary to the
situation in boolean algebras. Consider just the language with a single feature  and
some values, such as {nom, acc, gen, dat, instr}. Then we can not only form the legitimate
object [ : nom] but all sorts of apparent nonsense, like

(1.62)

  : acc

 :
[
 : nom
 : [ : dat]

] 
Essentially, this shows partly the strength and the weakness of the language of s. Its
strength is that we can iterate the construction, but on the other hand we have to stop it
from doing so whenever that is inappropriate. Let us note that it is not really clear why
we should resort to the language of s instead of treating case as a property of noun-
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like phrases. In Indo-European languages, case is simply a property of nominal lexemes
(adjectives and nouns) and to write [ : acc] is to implicitly treat the accusative as
the value of a function assigning to each element its case whenever appropriate. This is
intuitively motivated by locutions such as the case of this noun phrase is accusative. On
the other hand, treating attributes as functions from objects to properties is a somewhat
roundabout way of saying the same thing. The problem is also that using this function
raises problems that we did not have before. We have to say that the function is only
partial, and that it may not be used in particular on its own output. Thus, to ask for the
case of the case of a noun phrase is illegitimate. The ‘object’ accusative (being the value
of the feature ) is not the right thing to ask for its case. Remember that  solves
this by using types, but a boolean property is still the most economical solution. Reasons
for not adopting it come from elsewhere, and we will encounter such reasons later.

It should also be stressed that typical -languages do not view the atoms as booleans.
That is to say, in the syntax of this language acc is an incomplete expression; only
[ : acc] is a boolean. This should be borne in mind in the subsequent discussion.
If instead we adopt a hybrid account, allowing both acc and [ : acc] as booleans, we
could compress the above  into the following form.

(1.63)

  :

 acc

 :
[

nom
 : dat

] 


We have deliberately chosen the example of . With the feature  (an equivalent
of  which does not take lists as values) this structure actually makes sense.

Let us now investigate in detail the classificatory power introduced by the features.
The idea is as follows. We take an arbitrary boolean algebra A of atomic values and a
unary operator ♥. The latter is called a name forming operator. For each x ∈ A, ♥` is
a well-formed expression. Thus, unless specified otherwise, ♥ cannot be stacked and so
♥♥x is meaningless. ♥ allows to create a new boolean algebra A♥. It is the boolean algebra
generated by all expressions ♥x, x ∈ A. We assume for a start that names are different if
the labels are, a property which justfies the terminolgy of name forming operator. Now
suppose that the number of elements of L is 2n, then L♥ has 2n generators, 22n

atoms and
222n

elements. For example, if L is one-generated it has 4 elements, and L♥ has 4 gener-
ators, 16 atoms and 216 = 65536 elements! Thus the numbers increase quite drastically.
But this is only so if there are no laws governing the behaviour of ♥; we say then that ♥ is
imperspicuous. However, we may consider the following laws for ♥.

(1.64)
0-homomorphy. ♥0 = 0
∪-distribution. ♥(x ∪ y) = ♥x. ∪ .♥y
∩-distribution. ♥(x ∩ y) = ♥x. ∩ .♥y

Under a different spelling we have met these laws of distribution in the previous section.
We distinguish three types of name forming operators: imperspicuous operators, satisfy-
ing no logical laws, half perspicuous operators, satisfying 0-hom and ∪-distribution and
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perspicuous operators, satisfying 0-hom and both ∪- and ∩-distribution. The distribu-
tivity properties reduce the size of the name-algebra A♥. If ♥ is half perspicuous then
in the finite case ♥x is equivalent to the disjunction of ♥a, where a is an atom below x.
Hence, A♥ has as many generators as there are atoms of A; if A has 2n elements, it has n
atoms and so A♥ has n generators, 2n atoms and consequently 22n

elements. Finally, if ♥
is perspicuous it turns out that A and A♥ are almost isomorphic.

Proposition 1.7.1 Let ♥ be perspicuous. Then L♥ � 2 × L.

Proof. Consider the map h♥ : x 7→ ♥x : A → A♥. This map is a homomorphism with
respect to ∩ and ∪ since it satisfies both ∪- and ∩-distribution; moreover, ♥0 ≡ 0. But
this does not imply that h♥ is a boolean homomorphism, because it does not necessarily
respect negation. Nevertheless, A♥ is a boolean algebra, so so we can study it via its space
of ultrafilters. We will first show that A♥ contains one more ultrafilter than does A. This
will then establish the theorem. Consider an ultrafilter U ∈ U(A♥). Since the elements
♥x generate the boolean algebra, a general element of A♥ is the union of intersections of
the form ♥x1 ∩ ♥x2 . . . ∩ ♥xm ∩ −♥y1 ∩ −♥y2 . . . ∩ −♥yn. We can replace the conjunction
over the ♥xi by ♥

⋂
xi and the conjunction over the −♥y j by −♥

⋃
y j. Moreover, if an

element ♥x ∩ −♥y is in U, then so are ♥x and −♥y. Hence, U is fully determined by the
sets XU = {x|♥x ∈ U} and YU = {y| − ♥y ∈ U}. These sets therefore have to be studied.
First of all it is clear that XU ∩ YU = ∅. Moreover, since ♥x ∪ −♥x ∈ U we must have
XU ∪ YU = A. So, XU alone determines U. XU is upward closed in A, that is, it satisfies
(fi≤); for if ♥x ∈ U then ♥(x ∪ y) = ♥x ∪ ♥y ∈ U. Moreover, it also satisfies (fi∩); for if x
and y ∈ XU then ♥(x∩ y) = ♥x∩♥y ∈ U, hence x∩ y ∈ XU . Hence either XU is empty or it
is a filter; for if it contains any element whatsoever, it also contains 1. Finally, if it is not
empty it is an ultrafilter. For assume that x∪ y ∈ XU . Then ♥(x∪ y) = ♥x∪♥y ∈ U. Since
U is an ultrafilter, ♥x ∈ U or ♥y ∈ U, from which x ∈ XU or y ∈ XU . Thus we have shown
that XU = ∅ or XU is an ultrafilter of A. What we need to show is that the field of sets of
A♥ can be obtained by taking the product of the field of sets for A with the powerset 2.
What we have established is simply a decomposition of the base set U(A♥) into disjoint
sets C and D, where C corresponds to the set of ultrafilters of A and D contains a single
element. What we need to show that C and D are of the form x̂ for some x. Now take
x = 0. We have ♥̂0 = {U ∈ U(A♥)|♥0 ∈ U}. The set X

♥̂0 = {y|♥y ∈ ♥̂0} is = ∅. Hence ♥̂0
corresponds to the set D; its negation corresponds to C, and this had to be shown. a

This extra atom looks like a little anomaly but it is in fact quite a welcome addition.
Consider the case of  discussed earlier. It allowed us to state that an element had a
gap, or equivalently, that some element that it subcategorized for has been displaced. Was
it not for this extra atom we could not state that the -feature need not be instantiated,
that is, that no displacement has taken place. Another example is . If we accept that
there are elements that have no case rather than any case we must have the possibility to
express this. Thus for adverbs we can state ¬[ : >] rather than saying that adverbs do
not change whatever their case is. Both have a plausibility. A perhaps clearer case is that
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of infinite verb forms. Typically, verbs inflect for person and number, but infinite verb
forms do not. Although we may analyse this as saying that this is simply a lack of overt
agreement, the explanation is usually that in the infinite forms the person and number
features are absent, i. e. specifying them is inappropriate.

If, however, we insist that a feature must always be appropriate we must require the
following.

(1.65) 1-homomorphy. ♥1 = 1

Corollary 1.7.2 Let ♥ be perspicuous and satisfy 1-homomorphy. Then L♥ ≡ L.

Proof. Indeed, now C = ∅ is exluded and so h♥ : x 7→ ♥x is surjective. Hence it is
bijective. We show now that h♥ also respects negation. Namely, ♥x∪♥−x. ≡ .♥(x∪−x). ≡
.♥1 ≡ 1 as well as ♥x ∩ ♥ − x. ≡ .♥(x ∩ −x). ≡ .♥0 ≡ 0. Thus, ♥x is the complement of
♥ − x showing that the map x 7→ ♥x is a boolean homomorphism. a

Finally, let us pursue the idea that both the atoms and the pair feature-value are booleans.
This means effectively that we consider acc as a property of a lexical item as well as
[ : acc]. This would be harmless, unless we want to allow for both forms to occur. In
the case at hand we then have to say that both are equivocal. The postulate that ensures
this is

(1.66) Vacuity. ♥x = x.

All this taken together allows to compute the isomorphism type of the classification al-
gebra obtainable from some atomic values and a given feature. Assume that the atomic
values span an algebra A. Then allowing one iteration of the operator ♥ we get the algebra
A×2×A = 2×A2. Allowing two iterations we get 2×A2×2×2×A2 = 23×A4 and so on.
Consider now adding a new feature. What is the algebra of attribute value matrices with
two features if the values are taken from a boolean algebra A? The answer is straight-
forward if we restrict to finite A. Then A is atomic and so is A♥ for any individual name
forming operator. It has just one additional atom. Let us look at the atoms of the algebra
with two name forming operators. Then the value of one feature is an atom of A (if there
is one) and the value of the second feature is an atom (again, if there is one). So the set
of atoms is the product of the set of atoms of A♥ with the set of atoms of A♥. (Notice that
we have two features, but the isomorphism type of the algebras is the same.) Hence the
algebra is the tensor product of the two algebras.

Theorem 1.7.3 A♥♠ � A♥ ⊗ A♠. a

This theorem holds even if A is infinite. Thus, if only one iteration of the name forming
operators is allowed, combining two sets of name forming operators corresponds to taking
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the tensor product of the name algebras. If more iterations are allowed, the result is of
course more complex.

As with the features we can consider manipulating the set of atoms. For example, we
can consider the case where a new value for an atom is being added (this makes sense
diachronically). Abstractly put, we consider what happens if we take the names of A×B,
where A and B are classification algebras. We cane deduce easily the following theorem.

Proposition 1.7.4 (A ×B)♥ � A ×B♥ � A♥ ×B. a

This may be a puzzling result but it holds from a purely abstract point of view just because
it tells us about the classificatory power of the system. For notice that if A is an algebra,
it corresponds to an intuitive classification. At the same time it may be isomorphic to
another algebra B classifying according to certain other properties. It is then possible to
use B instead of A as the classificatory algebra. The labels that we use are just a help
for humans so to speak, the formal system itself does not care what extrinsic meaning
there is to the distinctions. This is the same situation as that of a phonologist who asserts
that there is some difference between /p/ and /b/ but does not care what that property
actually is. In the case above notice that have a name ♥ corresponding to a feature and
two classificatory algebras A andB. Then (A×B)♥ � 2×A×B because in addition to the
possibility that the feature is inappropriate or that it takes a value from A or a value from
B. Now A♥ allows for the first two, B♥ for the first and the third. Thus we do not expect
(A × B)♥ � A♥ × B♥ precisely because this would mean there are two ways in which the
feature is inappropriate, either for values from A or for values from B.



Chapter 2

Structure and Meaning

According to W  H language has an outer structure, which
is visible in form of a string, and an inner structure, which is more complex.
In this chapter we will show that the inner structure can in first approximation
be assumed to be a tree. The argument will be based on the semantics of
language and this will lead via M G to our first encounter of
categorial grammar.

2.1 Strings versus Trees

Language is commonly understood to be a semiotic system with special properties. One
of its most striking characteristics is for example the recursiveness, but there are more.
Now, what exactly is a semiotic system? The answer must be vague, in fact part of the
answer would supply an understanding of what language is, and so we must be content
with a sketch. Crucial for the definition is the notion of a sign. F  S
defined a sign as a pair consisting the material content of the sign, that by which the sign
is identified qua sign. The other is the thing that the sign is taken to mean, again qua
sign. D S calles the first signifiant, that which means, and the second signifié,
that which is meant. We can picture the sign house as follows.

(2.1) house
/house/
house(x)

Here, /house/ is just an abstract phonemic representation, and house(x) an abstract se-
mantic representation written in predicate logic. 1 The pairing itself is arbitrary. Thus the
phoneme sequence corresponding to /house/ is the signifiant while the concept of a house

1We will oscillate between denoting the phonology of an item by writing it down as it would be spelled
in writing, rather than noting the sequence of phonemes that would have to appear there. This saves having

37
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is the signifié. We simply say that /house/ means ‘house’. This sounds utterly simplistic,
but is mainly due to the fact that we have to use the same words to denote the sign as well
as its meaning. The arbitrariness of the pairing means that nothing permits us to deduce
that this special sequence of phonemes means ‘house’. In French the same meaning is
paired with the string /maison/, in Finnish with /talo/ etc. Signs can be combined in a
special way. We say that they engage in a structure. What this structure is is not a priori
clear. What we can observe, however, is that both sounds and meanings can combine and
in both cases we can find approximative answer as to how this structure looks like. We
can say that sounds engage in a string. Although we will have to revise that assumption
somewhat, it is more or less correct. For we observe that words are just put together in a
linear fashion, one after the other. Moreover, there is no visible or audible extra structure,
punctuation or intonation aside. Let us take that for granted. On the other hand, these
strings have a meaning, too. What we are now interested in is to find out what structure
we have to associate with meanings. This is a very difficult task, because we are not in
a good position to say what the meaning of a given word is let alone the meaning of a
sentence. Nevertheless, we can say that two sentences have the same meaning without
being able to say what that meaning exactly is. As a guiding principle for the set-up of
semantics, semanticists assume F’ P. It says that the meaning of a complex
entity is a function of the meaning of its proper parts. This needs some exegesis. We
will assume that meanings engage in a structure. Then, according to this principle all that
we need to find the meaning is just the individual meanings of the entities occurring in
that structure plus the way in which they are embedded in the structure. Moreover, we
expect that the function that yields this meaning is fixed for every type of structure. If the
structure is a string, then we should expect by F’ P that only the words and
their position with respect to each other should matter.

Before we carry on, we will have to give some formal definitions. First, we need to
clarify two fundamental concepts, that of a string and that of a labelled tree. Both have a
presentation via a description and a presentation via a process that produces them. We call
the first the static presentation and the other the dynamic presentation. Let us begin with
strings. Under a static view, a string of elements of V is a function f : {1, 2, . . . , n} → V .
n is called the length of the string. The length may be 0, in which case the domain of the
function is empty. This represents a legitimate element, the empty string. The function
can assume the same value several times, in the extreme case in can just have one value.
Thus, if we speak of v ∈ V in the string we have to distinguish various occurrences of v
in that string. We can do this by making reference to the number i such that f (i) is that
particular occurrence. We say that an occurrence of v precedes an occurrence of w if the
first is f (i) and the second is f ( j) with i < j. If j = i + 1 we say that (that occurrence of)
v immediately precedes (that occurrence of) w. Alternatively, we can index the various

to elaborate on unnecessary details but also eliminates the need to use phonetic (!) transcription to refer to
the phonemes. An accurate account would note the phonemes as bit vectors, but that complicates the matter
beyond necessity. Similarly, much of what is declared to be the semantic of items is really just a shallow
analysis using formal placeholders to avoid getting into detail.
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occurrences of v in a string arbitrarily in order to make them distinct. Thus, rather than
considering the range of f to be a set, we consider it to be a multiset. The best way to
define a multiset over V in this connection is as a subset of ω × V . x ∈ ω × V is called
an occurrence of v. If x = 〈i, v〉 and y = 〈 j, v〉 for some v ∈ V and i , j, then x and y
are called different occurrences of v. Now, a string can be characterized as a pair 〈S ,@〉
where @ is a linear order on S , a set of occurrences of items from V . This means that the
following holds.

(2.2)
(∀xyz)(x @ y ∧ y @ z.→ .x @ z)
(∀x)¬(x @ x)
(∀xy)(x @ y ∨ x = y ∨ y @ x)

The first condition is referred to as the transitivity of the relation, the second as the ir-
reflexivity and the third as the linearity. We write x v y if x @ y or x = y. Notice that
we are only dealing with finite structures here. In the infinite case there are many more
restrictions that one might place on the relation(s), for example being discrete. But this
does not arise here. We will show that the two definitions of a string are equivalent. First,
let f : {1, 2, . . . , n} → V be a function. Put S = {〈v, i〉| f (i) = v}. Put 〈v, i〉 @ 〈w, j〉 iff
i < j. Then the three laws are satisfied by virtue of the fact that the natural numbers up
to n satisfy them. Conversely, given a finite S and a linear order on S , there is a unique
element x such that x v y for all y ∈ S . Let f (1) = x. Then consider S − {x}. The order @
relativized to that set is a linear order, and so we have an element x′ such that x′ v y for all
y ∈ S − {x}. Put f (2) = x′. And so on. This defines f . It can be shown that the procedures
are up to isomophism inverses of each other. In some sense we can also say that a string
is nothing but a labelled linear order. Namely, on the set of natural numbers {1, 2, . . . , n}
we have a natural linear ordering. So the pair 〈{1, 2, . . . , n}, <〉 is a linearly ordered set.
The numbers will usually be referred to as slots. The function f : {1, 2, . . . , n} → V is
nothing but a labelling of the slots. Then we ordering on the occurrences of labels is the
one that is imported from the natural numbers via f .

Now the third way to describe strings is the dynamic way. It is by using the bi-
nary connective ·, written as an infix operator. Whenever ~x and ~y are strings, so is ~x · ~y.
The set of strings is thus anything that can be obtained by concatenation. The associ-
ated function f can be built following the process of building the string in the following
way. ε corresponds to the empty function. A single v ∈ V corresponds to the function
f : {1} → V : 1 7→ v. Now, if ~x corresponds to the function f : {1, 2, . . . ,m} → V
and ~y to the function g : {1, 2, . . . , n} → V , then ~x · ~y corresponds to the function
h : {1, 2, . . . ,m+n} → V defined by h(i) = f (i) if i ≤ m and h(i) = g(i−m) if m < i ≤ m+n.
The binary symbol · represents a way to build a string by composing it from smaller units.
However, different processes can yield the same string. That is to say, the dynamic pre-
sentation seems to present different objects where the static presentation can identify only
one. For example, if we compose ~x with ~y and the result ~x · ~y with ~z then the resulting
function is the same as if we had first composed ~y with ~z and then composed ~x with the
result of the first operation. We say that · is an associative operation and by that we mean
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that it satisfies the following law.

(2.3) (~x · ~y) ·~z = ~x · (~y ·~z)

Given this fact, it can be shown that all that matters for the constitution of a string is
only the respective order of the basic elements, not the particular history of combination.
In other words, we can omit the brackets from the strings which helped us remember in
which way it had been built. After that we can introduce any bracketing we like. All of
them are equal according to the law above. Let us finally come to the notion of a realiza-
tion of a string. We assume that the labels represent abstract phonemic representations,
and that each if pronounced will give rise to an utterance. An utterance can simply be
identified with what phoneticians look at when they study sounds. They use a spectral
analysis of the utterance; this is a two dimensional picture, where the time is depicted
along the x-axis and the frequency along the y-axis. This can in turn be construed as a
function u : I → W, where I = [t0, t1[= {t|t0 ≤ t < t1} is a half open interval in the set R of
real numbers andW is a suitable space for spectral analysis (for example, the set of reals
or the set ZZ of functions from integers to integers, obtained by Fourier-transformation).
2 It is a crucial assumption that the domain of u is an interval and not any other set of
real numbers. A function u : [t0, t1[→ W is a realization of ~x · ~y iff there is a t2 such that
the restriction r1 of u to [t0, t2[ is a realization of ~x and the restriction of u to [t2, t1[ is a
realization of ~y. This is in many ways overly simplistic. We mention a few points. First,
it is known that the articulation of an abstract sound is different in different environments;
moreover, it is sometimes impossible to segment the articulation of a sequence into a rec-
ognizable sequence of phonemes. This is due to the effect of coarticulation. We cannot
say in a combination where one ends and the other begins, let alone assume that we can
segment the sound in such a way that its individual parts are recognizable. In addition,
speech consists also of pauses. These are meaningful elements; there is a difference be-
tween long and short pauses, although here as well it is next to impossible to say exactly
what is long and what is short. We will not deal with these problems here. We will return
to the problem of realization in connection with stratificationalism below.

The history of a string under composition can be visualized by a tree. Or conversely,
a tree is nothing but a bracketed term. Statically, a tree is nothing but a pair 〈T, <〉 where
the following holds

(2.4)

(∀xyz)(x < y ∧ y < z.→ .x < z)
(∀x)¬(x < x)
(∀xyz)(x ≤ y, z.→ .y < z ∨ y = z ∨ z < y)
(∃x)(∀y)(y ≤ x)

The first two are known from linear orders. The third says that the relation is linear only
if we restrict to the set of elements above a given element x. Let us write

2That the realization is a half open interval is just a technicality to make the definitions of overlap and
precedence simple. Nothing changes substantially if we assume the interval to be closed – except of course
the relevant definitions of precedence etc.
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(2.5)
↑ x = {y|x ≤ y}
↓ x = {y|y ≤ x}

Then the third postulate says that ↑ x is always linear. In particular, linear orders are trees.
The last postulate asserts the existence of a root. If it is not satisfied we call 〈T, <〉 a forest.
Normally, we will mention the root explicitly, so that by a tree we normally understand a
triple 〈T, <, r〉 where T = ↓ r. Notice that r is unique. Furthermore, ↓ x is a tree for all
x. This tree is called a constituent. The minimal elements with respect to <, that is, those
elements x for which no y exists with y < x, are called leaves. These are the elements that
constitute the tree. A labelling is a function assigning a label to each node. Notice that the
labelling gives values to leaves and nonleaves. We will assume that there is a special set
of labels reserved for leaves; these are the terminal symbols. The set of terminal symbols
is the original vocabulary V . The other symbols are called nonterminal symbols. Thus a
labelling is a function that assigns terminal symbols to leaves and nonterminal symbols to
nonleaves.

It is our intention that the labelled tree should serve to uniquely define a string of
terminal symbols. However, a tree does not specify an order on its leaves, though not
all orderings will be compatible with a given tree. Thus we must specify an additional
binary relation on T which we denote by @. The guiding principle for its construction is
the notion of a realization. We consider the tree as an elaborate structure over its leaves.
Each constituent is a subtree, and it too should correspond to a string, in particular a
substring. Here, a set of occurrences of labels is a substring of ~w if it is of the form
{ f (i), f (i + 1), . . . , f ( j)} for some 1 ≤ i ≤ j ≤ m. This means that the tree defines a set
of sets over its leaves and each is a substring. This is all we know. The relative order
of the elements is still not defined. Although it would be enough to specify an ordering
between the leaves, we will consider an ordering of the interior nodes as well. Namely,
we extend the notion of a realization to constituents in the obvious way. We will say that
the realization of a constituent ↓ x is the string of leaves contained in it. Each constituent
x occupies a time segment τ(x), the time or interval of utterance. The function τ has the
following properties.

(2.6)
τ(x) ⊆ τ(y) if x ≤ y
τ(x) ∩ τ(y) = ∅ if x � y � x

Now define the relations overlap, ◦, by x ◦ y if τ(x) ∩ τ(y) , ∅ and precedence x @ y by
(i) τ(x) ∩ τ(y) = ∅ and (ii) all elements of τ(x) precede all elements of τ(y). Since τ(x) is
an interval [t0, t1[ and τ(y) an interval [u0, u1[ we can rephrase x @ y by t1 ≤ u0 and x ◦ y
by t1 ≥ u0 and u1 ≥ t0. This transfers the notions of overlap and precedence to the nodes
of the tree. We can define these relations intrinsically as follows.

(2.7)

(∀xy)(x ◦ y.↔ .x ≤ y ∨ y ≤ x)
(∀xyz)(x @ y ∧ z ≤ y.→ .x @ z)
(∀xyz)(x @ y ∧ z ≤ x.→ .z @ y)
(∀xyz)(x @ y ∧ y @ z.→ .x @ z)
(∀xy)(¬x ◦ y.↔ .x @ y ∨ y @ x)
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(Again, note that we are only axiomatizing the finite structures.) Now, call a structure
〈T, <, ◦,@〉 an ordered tree if 〈T, <〉 is a tree and @ and ◦ satisfy the postulates (2.7).

Proposition 2.1.1 Let 〈T, <, ◦,@〉 be an ordered tree. Then the ordering @ restricted to
the leaves is a linear ordering.

Proof. Let L(T ) be the set of leaves. @ is transitive, so only irreflexivity and linearity have
to be shown. If x, y ∈ L(T ) then either x = y or x � y � x. In the first case we have x ◦ y,
in the second ¬(x ◦ y). Hence, if x , y we have x @ y or y @ x, by the last postulate of
(2.26). This shows the linearity. Also, x @ x cannot hold because x ◦ x. a

It can be shown that each linear order on the leaves gives rise to at most one ordered
tree, as we will show below. However, there are linear orderings which cannot be seen
as arising from an ordered tree under the given analysis of the string into a tree. The
condition is precisely that the ordering must yield a substring of the given string for each
constituent. Now let us be given a tree 〈T, <〉 and let @ be a linear order over the leaves
L(T ) of T . We call @ compatible with < if for every x, the set of terminals of ↓ x is a
convex subset of 〈L(T ), <〉, that is, a set of the form [x, y] = {z|x ≤ z ≤ y}.

Proposition 2.1.2 Let T = 〈T, <〉 be a tree and @ a linear ordering on the leaves of T.
Then there is at most one way to define @ and ◦ over T × T such that 〈T, <, ◦,@+〉 is an
ordered tree and the ordering @+ restricted to the leaves is exactly @. Such an ordering
exists iff @ is compatible with <.

Proof. x ◦ y is defined by x ≤ y ∨ y ≤ x. Define @+ as follows. x @+ y iff ¬(x ◦ y) and
there exists a leaf d ≤ x and a leaf e ≤ y such that d @ e. Notice that by the definition of
an ordered tree, it holds that x @+ y iff for some leaf d ≤ x and some leaf e ≤ y we have
d @+ e. Since the latter is the same as @, this is the only way to define @. We first check
whether this definition is sound. For that that it must be independent of the choice of d
and e. Let D = ↓ x ∩ L(T ) and E = ↓ y ∩ L(T ). We have d ∈ D and e ∈ E. What we need
is that for all d′ ∈ D and e′ ∈ E we have d′ @ e′. This is satisfied if @ is compatible with
<. For then D is a substring and E is a substring. Moreover, D ∩ E = ∅ by the fact that
¬(x ◦ y). It is easy to see that all elements of D precede all elements of E. On the other
hand, compatibility is also sufficient. For let there be a violation of compatibility. Then
there exist x such that ↓ x ∩ L(T ) is not a substring. In particular, there are d1, d2 ∈ D
and e1 < D such that d1 @ e1 @ d2. Then with respect to e1 we have x @+ e1 but also
e1 @

+ x. This concludes the proof that the definition is sound iff @ is compatible with <.
If it is, it is routine to verify that with this definition the structure 〈T, <, ◦,@〉 satisfies the
requirements of an ordered tree. For example, assume x @+ y and z ≤ y. By the first there
are d ∈ ↓ x ∩ L(T ) and e ∈ ↓ y ∩ L(T ) such that d @ e. Let f ∈ ↓ z ∩ L(T ). Since we have
↓ z ⊆ ↓ y, f ∈ ↓ y ∩ L(T ) and so d @ f and hence x @+ z. a
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Another way to specify an ordering on the tree which has been used widely, e. g. in
, is by specifying only the relations between the nodes immediately dominates by
some node. This latter procedure has the advantage to be free of restrictions. To state
the facts properly we will introduce some more terminology. We say that x immediately
dominates y if y < x but no z exists such that y < z < x. In that case we call x the mother
of y and y the daughter of x. Also we write y ≺ x to state that y is a daughter of x. Notice
that ≺ defines < uniquely. Moreover, < is the transitive closure of ≺. To characterize ≺
we use the notion of a local tree. A local tree is the subtree defined on x together with all
its daughters. Thus a local tree is a very simple object consisting of elements x, y1, . . . , ym

where the only relation that holds is yi < x. We call a tree where no three elements exist
such that x < y < z a tree of height 2. A tree can be seen as obtained by piecing together of
all of its local subtrees. (We ignore the obvious exception that the tree consists of a single
node.) Now given a set T and a set H of trees of height 2 over subsets of T . We say that
H satisfies the patchwork condition if every element is either a mother or a daughter in
some tree of H and at most once a daughter in some tree of H. We say that H satisfies the
root condition if there is exactly one element that is a root in a tree but never a daughter.
If H is a collection of trees of height 2, put x ≺ y iff there exists a tree U ∈ H such that
x < y in U. If H satisfies the patchwork condition, for every x there can be at most one
y such that x ≺ y. This is enough to secure that T = 〈T, <〉 thus defined is a forest. To
make it a tree we must assume that there is at most one element that is not a leaf in any
tree of height 2. This is the root condition. Now consider the case of an ordered tree. A
local subtree defines an ordering of the daughters of a node with respect to each other. So
from a tree we get a collection of ordered trees of height 2. Conversely, let us be given
such collection and let it satisfy both the patchwork and the root condition. Then we have
a unique tree T = 〈T, <〉. Then put x @+ y iff ¬x ◦ y and either (i) x and y are in the same
local tree and x @ y or (ii) there are z and w such that x ≤ z and y ≤ w and w, z are in the
same local tree and z @ w.

Proposition 2.1.3 A tree is defined uniquely by the set of all local subtrees. An ordered
tree is defined uniquely by the set of all local ordered subtrees. a

Finally, let us turn to the dynamic presentation of a tree. Although the presentation can be
given quite generally it is simpler if we assume that the trees are strictly binary branching.
By that we mean that every mother has exactly two daughters. In that case the previous
theorem tells us that the ordering on the tree is completely specified if we know just in
what way the daughters of a node are ordered. Let us write ⊕ for the operation which takes
two trees and forms a tree in which the two trees are immediate subtrees. This operation
is called merge. Any binary branching tree can be presented as the result of an iterated
merge. We start with the leaves L(T ) and define inductively a term for each node. For a
leaf x let the term be just x itself. Then if the term is defined for x1 and x2 and x1 and x2

are the daughters of y, the term of y is x1⊕ x2. The term that represents the tree is the term
associated with the root.
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2.2 The Algebra of Meanings

We have clarified in the previous section what we understand by such notions as string
and trees. We want to present here arguments that show that unlike sounds, meanings do
not form strings. Rather, they form trees as we will show. We will give first some ab-
stract formulation of the problem; this will help us in understanding the role of syntax. In
studying language we are interested among other in the map that pairs sound and mean-
ing. Abstracting at the level of sounds we can say that we are interested in the mapping
from sequences of phonemes into meaning(s). Abstracting still further we can ask about
the map that mediates between strings of lexemes and meanings. It is the latter that we
will look at now. Let us call mL the map that assigns relative to the language L meanings
to strings of words in L. It is a common assumption in linguistics that the meaning of
a complex item should be determinable solely by the meaning of its basic parts and the
mode of combination. This is yet loosely defined and will be made more rigorous later. It
is called the Frege-Principle, after G F. If meanings engage in strings we will
have, by Frege’s Principle the equation

(2.8) mL(x ⊕ y) = mL(x) + mL(y)

where ⊕ denotes the abstract sequencing operation for lexemes, and + the map that com-
bines meanings. If ⊕ combines strings, then we would have the following equation

(2.9) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

This is simply the way strings behave. By Frege’s Principle we then also have the equa-
tion

(2.10) mL(x) + (mL(y) + mL(z)) = (mL(x) + mL(y)) + mL(z)

It is our aim to refute this equation of make it at least highly suspicious. This will then
point to the fact that there is additional structure – which has to be postulated but whose
existence is then motivated to some degree – such that (i) it allows to compute the output
string of lexemes (ii) it allows to compute the meaning according to Frege’s Principle. As
a first result we will show that we have to assume a binary operation ⊕ which forms trees
rather than strings out of the lexemes. It allows rather easily to reconstruct the sequence
of lexemes. The difficult part is to show that it satisfies (ii). We cannot prove that really;
rather, the argumentation will allow us to show in principle how syntax emerges. Syntax
is the missing structure that we need to postulate in order to make (i) and (ii) hold. If it
turns out that the trees are enough then we get the following result. There is a map sL

that associates strings with trees, and a map mL that associates meanings. We have a map
�, which we call the Frege-function. It is responsible for the combination of meanings.
Furthermore, we have the following fundamental laws.

(2.11)
sL(x ⊕ y) = sL(x) + sL(y)
mL(x ⊕ y) = mL(x) � m(y)

These laws say that the maps mL and sL are homomorphisms from the structure algebra
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into the meaning algebra and the string algebra, respectively. The area of syntax is prop-
erly characterized as the search for the algebra of structure. The nature of the maps sL and
mL is matter of the interaction of syntax with phonology and syntax and semantics. We
will see that both are nontrivial.

Nor for the proof of the insufficiency of strings. Consider the following sentence.

(2.12) Peter eats pizza.

We want to argue that its meaning cannot simply be the meaning of /peter/ plus that of
/eats/ and that of /pizza/. To refute that, however, it is not enough to point out that there
is nothing corresponding to a string in semantics. What we have to show is that more
is required to define the meaning than just the information that this string can provide.
Let us make that precise. Look at the operation �, which ‘strings’ together pieces of
meaning. If � just strings the meanings together with no additional structure, then it must
be associative. Then it would act roughly in the same way as conjunction. 3 That is
to say, the model we would be proposing is that we allow each element to contribute a
piece of information, so that /peter/ will be taken to mean (in informal rendering) there
is someone called Peter and /eats/ to mean there is someone who eats something and
finally /pizza/ to mean there is pizza. Then there is something that corresponds to the
string, namely the lump of information that the three words provide. But it is easy to
see that this lump is not the meaning we attribute to the sentence above. The problem
is that when we say that /eats/ means there is someone who eats something or someone
eats something there is no indication that the sentence Peter eats pizza tells us who that
someone is, and what that something is. In other words, the verb supplies two roles,
corresponding to argument places in logic, into which we may slot the objects supplied
by the surrounding noun phrases. In standard truth conditional semantics we write the
meaning of /eat/ as eat(x, y). Notice that what eat really means is a different question
altogether. All the notation supplies is the fact that this word has two arguments with a
specific interpretation in connection with an event of eating. 4 Typically, when there is an
event of eating there is an agent, the one who eats, and a theme, that which is being eaten.
All that matters here is that the agent is understood to fill the place of x and the theme the
place of y. Now suppose that we interpret /peter/ as peter(x) and /pizza/ as pizza(x).
Then the problem is to get at the following interpretation for the sentences.

3This is of course not a watertight argument. But notice that the conjunction and of natural language has
the properties that we require. That is to say, it really acts like sequencing rather than boolean conjunction.
This follows if we assume that to utter a certain sentence at time t we claim that it is true at that point of
time. Metaphorically speaking φ gets time-stamped by uttering it. It is clear that uttering φ at t is a different
claim than uttering the same sentence φ at time t′. Thus, φ and φ is not the same as φ, since to utter φ takes
time and so φ may well cease to be true while we are uttering φ. By the same token φ and ψ is not the same
as ψ and φ. However, and is associative if we assume that the items in a string receive the same time stamp
regardless of the bracketing.

4This last paraphrase suggest that we are implicitly assuming an analysis in terms of events. Although
there are many good arguments for that we will simply remain uncommitted here. Semantics will play a
minor role throughout this work. The problem that is at hand is the same whatever reading we ultimately
assume for the words of the language.
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(2.13) peter(x) ∧ eat(x, y) ∧ pizza(y)

It is normally assumed that the sentence means

(2.14) (∃x)(∃y)(peter(x) ∧ pizza(y) ∧ eat(x, y)).

But this is a minor issue relating to the problem whether we assume the sentence to talk
about entities or just assert a proposition. What interests us for the moment is the fact
that we need to slot in the correct variables. Two solutions suggest themselves. The first
method is to start off with

(2.15) peter(x) � eat(y, z) � pizza(w)

This means that we insert the items in such a way that all variables in the distinct items get
renamed prior to insertion in such a way that no variable in one item is equal to another
variables in another item. Now, what we want to achieve is � slots in identical variables
for those variables which are identified as ranging over the same thing. To make that work
we actually assume that we start off not with the original sentence but with the following
annotated sentence.

(2.16) Peter1 eats1,2 pizza2.

The additional numbers are called indices. Let us first ignore the problem of how to get
at the assignment of indices. Then instead of the above translation we get the following
after insertion of items and renaming of variables.

(2.17) peter1(x) � eat1,2(y, z) � pizza2(w).

The instruction for � is to assign the variables to indices. This is straightforward, given
that the sequence of variables is of equal length to the sequence of variables. In fact, in
syntactic theory it is assumed that this assignment of variables to indices is taken care of
in some explicit way by the lexical item. That is to say, it is not uniform, but the lexical
item specifies how it is to be done. Now all variables get identified which bear the same
index; we have for the index 1 the variables x and y and for the index 2 the variables z and
w. � renames the variables, one for each index, and finally changes to ∧. In the end we
get

(2.18) peter(x) ∧ eat(x, y) ∧ pizza(y).

This is the interpretation we claim it has. Now let us return to the problem of assigning
the indices. We assume here that the verb, being the glue between the noun phrases, may
choose an indexation of its variables. Let the indices be 1 and 2. We have 1 corresponding
to the agent and 2 corresponding to the theme. Now in English the first noun phrase alias
subject will carry the same index as the agent, and the second noun phrase alias direct
object the same index as the theme. In Latin, the noun phrase bearing nominative case
will (normally) be the agent, and the noun phrase bearing accusative case the theme. Thus
everything is reduced to a proper regime of argument places.

The second solution has gained more widespread acceptance due to the work by
R M. The reason is partly that it solved much more problems that just
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the one we are dealing with here. The basic assumption is that the sequencing operation
is not associative. That is, we do not have

(2.19) α � (β � γ) = (α � β) � γ.

If that is so, then the structure meanings engage in is not that of a string, and this is the
main point we arguing for here. M assumes that the Frege-function, that is, the
function specifying the way in which meanings combine is not addition or conjunction or
anything like that but just function application. To make that work, several adaptations
have to be made. First, we need to assume that if two meanings are combined via the
merge � one is a function and the other is a suitable argument. Moreover, an element tak-
ing several arguments if read as a function must be rendered into a function that can take
its arguments one at a time. The latter is referred to Currying a function, after H
C. These two changes can easily be achieved in the so-called λ-calculus. The idea
is that any term with a free variable, such as peter(x) or eat(x, y) can be turned into a
function f which will insert the argument exactly into those positions where the variable
has been found before. The way to write f is as follows.

(2.20) λx.peter(x)

Notice that this is a function which can be applied to objects and yields an expression
asserting that the object has the property of being called Peter. As in standard notation
of mathematics, we write f (c) for the result of applying the function f to the object c.
Thus, if u is a certain individual (or the name of an individual, for that matter 5) then
λx.peter(x)(u) stands for the result of plugging in u at those places where x has been.
Hence it is identical to peter(u). Notice that the prefix λx has two ingredients; one is the
so-called λ-abstractor and the other is the variable. The λ-abstractor turns the expression
into a function over the variable. This process can be iterated. We may write

(2.21) λyλx.eat(x, y)

which is a function eating one argument to yield a function that eats another argument.
Notice that this is not the same function as

(2.22) λxλy.eat(x, y)

The first is a function that assigns to the first argument (which is in fact its only argument
– the other is visible only after applying the function to this argument) the theme, while
the second function assigns the argument to the agent. In our somewhat fancy notation
we have a difference between the brackets that constitute the term and the ones that derive
from application. Assuming that the Frege-map is function composition λx.peter(x) � u
denotes the result of applying the function λx.peter(x) to u. The result is peter(u) and is

5By that we mean that u is an individual constant, something which must be mapped onto one and only
one object. Logical names are not like ordinary names, which may be given to many people at the same
time. So, there is the property of being called Peter, while at the same time we may also speak of Peter as
if of an individual. This is justified in contexts where this name will identify an individual by that name.
Notice that language has almost no logical names. Each expression turn into a property at closer look.
Possible exceptions are indexical expressions, such as I, here and now.
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obtained by a process that is referred to as β-conversion. We write

(2.23) λx. f (x) � u B f (u)

We have now achieved two things. We have turned the verb into a function, and we have
obtained a function that does not eat its arguments in one fell swoop, but one by one.
What we have obtained now is precisely an instance of the nonassociativity of �, because
it does matter in which order we supply the arguments. In other words, we have a differ-
ence between the following two structures.

(2.24) (u � λyλx. f (x, y)) � v
(2.25) u � (λyλx. f (x, y) � v)

The first reduces to f (v, u) and the second to f (u, v). Notice that � does not care about
order. So we have obtained a solution to the problem in λ-calculus which uses λ-terms to
organize the association of indices with variables. However, it works on the fundamental
assumption that the structure we work with is not a string, but a binary branching tree.
Notice that in this particular example no further assumptions had to be made concerning
the indexation or variable regime. The only thing that has to be looked out for (as in
the previous case) is that prior to insertion, no variable occurs in distinct elements that
constitute the leaves of the tree.

However, the solution as just sketched is not exactly the one proposed by M.
There are many reasons for this. The first is that it will not work even in the present
case. There is no way in which we can plug in the meaning of the noun phrases into
the argument places of the verb at hand. Originally, M had no problem with that
because he saw Peter as a logical name, and so standing for an individual. He was more
concerned with expresssions such as every man which could not possibly be interpreted as
names. For reasons of uniformity he then adopted for all noun phrases the interpretation
that he chose for the quantified noun phrases. The philosophical reasoning he gave is of
no immediate concern here. The interesting fact is that he saw that if we combine two
elements, x and a function f taking x as an argument, we could also turn things around
and call x the function and f its argument. Write x( f ) and define it by x( f ) := f (x). As
it stands, this sound rather nonsensical because there seems to be a substantial difference
between function and argument. However, this is only apparently so. Nothing prevents
us to view x as the function and f as its argument. In fact, the only thing that prevented
this was the typing regime imposed onto the λ-calculus to keep it from being inconsistent.
It is assumed that each object has type, and that the basic types are objects, denoted by
e, worlds, denoted by s, and truth values, denoted by t. Complex types are formed from
these types by bracketing. Then we have (i) s, e and t are types, (ii) if α and β are types,
so is 〈α, β〉. A function is always of type 〈α, β〉, where α is the type of its argument and β
the type of its value. A predicate, for example, is a function of type 〈e, t〉 yielding a truth-
value when given an object. A transitive verb is a function of type 〈e, 〈e, t〉〉. 6 Crucially,

6We are completely ignoring intensions here. This applies also to the Frege-map. If we were to admit
intensions, we would have to split the Frege-map into several subcases, according to whether the argument
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a quantified noun phrase is interpreted as a different function than an object. For reasons
that shall become clear later we must assume that a subject noun phrase is to be construed
as a function that yields a truth value when given an intransitive verb. Thus, a subject
has the type 〈〈e, t〉, t〉. A direct object, on the other hand, is then interpreted as a function
yielding an intransitive verb when given a transitive verb. That means, it must be of type
〈〈e, 〈e, t〉〉, 〈e, t〉〉. We summarize this in the following table.

(2.26)
/peter/ λPλx.peter(x) ∧ P(x) 〈〈e, t〉, t〉
/eats/ λyλx.eat(x, y) 〈e, 〈e, t〉〉
/pizza/ λQλx.pizza(x) ∧ Q(x) 〈〈e, 〈e, t〉〉, 〈e, t〉〉

Here the variable P is of type 〈e, t〉 and the variable Q of type 〈〈e, t〉, t〉. The typing regime
introduced in this way allows to define the notions of direct object and subject purely by
their respective types. In fact, it was Ms original conception that the syntax should
follow directly from the type assignment. This gave a big impetus for the development of
categorial grammar.

2.3 Constituents

Given a tree T = 〈T, <〉 we have defined a constituent to be a subtree consisting of the
set ↓ x = {y|y ≤ x} and the order induced by T on it. An ordered tree gives rise to an or-
dered constituent. On the other hand, if we look at the strings over which the tree is built,
a constituent is often also referred to by the set of leaves that the subtree ↓ x contains.
There is a certain terminological clash here, but it is usually resolved by the context. A
tree defines over its set of leaves a constituent structure, which consists of all sets of the
form ↓ x ∩ L(T ). Constituent structure arises from the observation that certain words of a
sentence form a group, that is, they are closer together than others. In the light of the pre-
vious discussion we can say that semantics introduces such a grouping into consituents.
We will find out more about that later. Now consider the following sentence.

(2.27) Peter reads books.

Given the analysis of the previous section we get the tree analysis that leads to the follow-
ing constituents.

(2.28) {{Peter}, {reads}, {books}, {reads, books}, {Peter, reads, books}}

A constituent structure can also be intrinsically characterized as follows. A constituent
structure is a pair 〈C,C〉 where C is a set, and C ⊆ ℘(C) a set of subsets such that (i)
{x} ∈ C for all x ∈ C, (ii) for all D, E ∈ C either D ⊆ E, E ⊆ D or D ∩ E = ∅
and (iii) C ∈ C. An ordered constituent structure is a triple 〈C,@,C〉 such that (i)
〈C,C〉 is a constituent structure, (ii) 〈C,@〉 is a string and (iii) each D ∈ C is convex,

is intensional or extensional, and the result should be intensional or extensional. It is quite plausible however
that a uniformity can be achieved by a more fine grained syntax. (See (?).)
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that is, of the form [x, y] = {z|x v z v y}. A tree T defines a constituent structure
Cs(T) = 〈L(T ), {↓ x ∩ L(T )|x ∈ T }〉. In the same way an ordered tree defines an or-
dered constituent structure. A tree is strictly branching if every node has more than one
daughter.

Proposition 2.3.1 Let C be a(n) (ordered) constituent structure. There are infinitely many
trees whose constituent structure is T. However, there is exactly one strictly branching
tree T whose constituent structure is C.

Proof. We show the second claim first. Let C be a constituent structure. Let T = C.
Furthermore, put C < D iff C ( D. Then 〈T, <〉 is a tree. For the ordering is irreflexive
and transitive. Moreover, if D1,D2 ⊇ C. Then D1 ∩ D2 , ∅ and so D1 ( D2 or D1 = D2

or D1 ) D2. Finally, every node in T which is not branching is a leaf. Namely, consider
a set C. Let C immediately dominate D. Then there is a x ∈ C − D. Let E be the largest
set ( C containing x. We claim that E is immediately dominated by C. For take any
larger set X ) E. Then either X ( C, X = C or X ) C. The first cannot hold by choice
of E. The last two imply our claim. Finally, E ∩ D = ∅ because x ∈ E but x < D, so
E , D. Since they are both immediately dominated by C, C is branching. Now let C
be ordered. Then there exists an ordering on T defined by C iff @ is compatible with <,
that is, iff constituents are convex sets. Now for the first claim. Take any node x in a tree
〈T, <〉 and replace it by two copies x1 and x2 as follows. Whenever y < x put y < x1 and
y < x2, and whenever y > x put y > x1 and y > x2. Finally, put x1 < x2. This defines
the tree T+. The construction replaces x by two copies x1 and x2 such that x1 is the only
daughter of x2. Assume that x was not a leaf; then neither x1 nor x2 is a leaf. From the
construction it follows that ↓ x1 ∩ L(T+) = ↓ x2 ∩ L(T+) = ↓ x ∩ L(T ). For the remaining
elements we also have ↓ y ∩ L(T+) = ↓ y ∩ L(T ), and this shows that T+ and T have the
same constituent structure. The construction can be iterated arbitrarily often. This shows
that there are infinitely many trees with the same constituent structure. a

Using standard set-theoretic constructions it is possible to code any tree into set the-
oretic notation. Namely, let T = 〈T, <〉 be given. We define by induction on the height
of a node te function γ. A leaf x is mapped onto {x}. If γ is defined on all daughters
y1, y2, . . . , , ym of x then

(2.29) γ(x) := {γ(y1), γ(y2), . . . , γ(ym)}

If we want to code the ordering, we have to use sequences rather than sets, that is, we
have to put

(2.30) σ(x) := 〈σ(y1), σ(y2), . . . , σ(ym)〉.

This is the same as the usual bracket notation if instead of 〈a, b, c〉 we write [a, b, c].

We have indicated earlier that the semantic analysis of M provided evidence
that we have to assume a constituent structure for sentences. If we set aside meaning as
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criterial evidence we might ask whether there are intrinsic syntactical reasons for assum-
ing constituents, and what may count as evidence. The facts are not as straightforward
as with classification. There are many tests for detecting constituents, and they give rise
to some strikingly different constituent analysis. It cannot expected that we will solve
that problem by some magical definition. However, we will propose a number of criteria
which are quite robust. The first definition is that anything is a constituent in a given con-
text that can be replaced by a single lexical item in the same context. This presupposes
that a constituent is a convex subpart of the string. The rationale for this test is as follows.
If in a string something is a constituent, then it functions as a kind of complex lexeme.
We expect that it should not make a difference syntactically whether something is a single
lexeme or a string of lexemes as long as they are of the same type. This reasoning, how-
ever, is circular as long as types are defined for strings as in Chapter 1. Because then if
the string ~v is basic, that is, has the same context set as x, then they are intersubstitutable
in all contexts by definition. Thus, to avoid the apparent circle we need to define basic
syntactic categories only for single lexemes. After that we define the category of a string
to be that of a single lexeme if it has the same context set.

Definition 2.3.2 Let L be a language over the vocabulary V. The set of syntactic cate-

gories of L is the set of all context sets CL(x) for x ∈ V. A basic context of L is a context
C = 〈~w1, ~w2〉 such that for some x ∈ L ~w1 · x · ~w2 ∈ L. A string ~v is a constituent in the
context C = 〈~w1, ~w2〉 if C is basic and ~v can occur in C.

Let us give an example. Consider the string

(2.31) Peter gives a book to his friend.

Substituting Mary for his friend yields a grammatical sentence, likewise substituting Fido
for a book. We then have

(2.32) Peter gives Fido to Mary.

It is not possible to substitute anything for to Mary but we can replace gives Fido by talks.
Still it is impossible to replace anything simple for to Mary. Finally, we can replace talks
to Mary by walks. This results in the following analysis.

(2.33) (Peter ((gives (a book)) (to (his friend))))

This is actually the standard constituent analysis for this sentence. It is not always easy
to verify that nothing can be substituted for a given string, but the analysis as put forward
here yields an analysis in finitely many steps if the vocabulary is finite. Let us notice that
there are strings that can appear both as a constituent and as a non-constituent, depending
to the context. For example, William and the firemen is a constituent in (2.34) but not in
(2.35).

(2.34) William and the firemen talked to the president.
(2.35) Superman attacked William and the firemen helped him.
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A language is called transparent if no string can occur as a constituent is some context
and as a nonconstituent in another context. Natural languages are thus nontransparent.

Now what about the classification of strings into categories? As we have seen, strings
are not exactly the same as lexemes, because the latter are constituents in all contexts,
while strings may show both behaviour depending on the context. Nevertheless, we wish
to say that if a string is a constituent in a given context then it has the same type than the
lexeme that can be substituted for the string. Behind that is the assumption that if it so
happens that the same string appears in another basic context, the same lexeme will be
substitutable for the string again. If we want to live without that assumption, the following
definition has to be made.

Definition 2.3.3 Let L be a language over the vocabulary V. The syntactic type or
category of a string ~v is the set of basic contexts of L in which it can occur.

This is a very important definition and a guiding principle for syntactic classification.
Notice that it has some peculiar consequence. Standardly, it has been assumed that there
are so-called lexical categories and phrasal categories. Every lexical category, written
X0, has a corresponding phrasal category, denoted by XP. Here X is a variable for lexical
categories. In a sentence, every lexical element of category X0 is contained in a minimal
string of phrasal category. This category must be the corresponding XP. This is part of
X-bar-theory. The terminology is confusing, however, in that it suggests that there can
be no element corresponding to XP. But this is not true. In fact, we are suggesting here
that all phrasal categories should have a lexeme of that category. (This is not exactly a
consequence of the definition but it is observed to be more or less true.) For example,
there are nouns such as book and noun phrases such as William; there are verbs such as
gives and there are verb-phrases such as walk.

It is possible to show that the definition above will not yield a constituent structure in
all cases. For example, consider the sentence

(2.36) William has bought himelf a new, red, fast, super car.

Let us concentrate on the series new, red, fast, super car. We can replace super car by
car, then fast car by car after that red car by car and finally new car by car. This gives
the following structure

(2.37) (new (red (fast (super car)))

On the other hand we can also replace red, fast by fast showing the first to be a constituent.
We thus have the unexpected result that there are overlapping constituents. To get around
this problem we need the notion of an adjunct.

Definition 2.3.4 Suppose ~v ·~x (~x ·~v) occurs in the context C = 〈~w1, ~w2〉. ~v is an adjunct of
~x if both ~v · ~x (~x ·~v) and ~v occur as in C and are of the same category. In the construction
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~v · ~x (~x · ~v), ~x is called the head.

The idea then is that adjuncts, rather than being grouped among each other as in new, red,
fast must always be grouped with what they are adjuncts of. In other words, we need to
assume that an adjunct is never of the same category as the head. Otherwise the procedure
will not produce an unambiguous bracketing.

Another test for constituent structure is coordination. The test works as follows. In a
context C, assume that ~v1 can occur as a constituent. Assume that ~v1 · and · ~v2 occurs as
well. Then the latter occurs in C as a constituent since it can be replaced by the lexeme
which witnesses that ~v1 occurs as a constituent in C. It is then assumed that (1) ~v1 ·and ·~v2

has the same category as ~v1 and that (2) ~v1 and ~v2 have the same category. This is the
basic theory of coordination. Notice that – unless we take this test by definition to be
showing us constituents and their category – its correctness gives us a theory about the
syntactic behaviour of the word and and similar words. The line we want to take here
is that the behaviour of and is a matter of empirical study, and not part of a definition.
The reason is that it is hard to pinpoint exactly the behaviour of coordination. Typically,
it is assumed that and can take any two elements of identical category and produce an
element of identical category. This is false given our definitions. We can coordinate
freely noun phrases with identical case regardless of whether they are singular or plural,
and regardless of their gender and person.

(2.38) William and the firemen
(2.39) me and you
(2.40) Cynthia and Jack

Notice also that the result of coordination shows different category. If two singular noun
phrases are coordinated, the result is plural. Thus, it turns out that there is no simple
description of the effect of coordination. Therefore it has to be used with care.

2.4 Categorial Grammar and Basic Phrase Structure

Categorial grammar has a long tradition and builds on the notion of selection. Selection
is the term used for lexical elements which need other elements in order to form the next
higher constituent. Since selection goes hand in hand with the building of the structure
it should be no surprise that it also functions in the semantics of the selecting items.
This is the basic insight of M. Originally, it has been assumed that the syntactic
selection is just a reflex of the semantics and so ultimately syntax can be reduced to
semantics. Although semantics can certainly be built up this way this makes little sense
as a research strategy because there is more often than not no semantic reason for the
observed syntactic behaviour. The semantics that one would have to postulate stand no
way near what would intuitively be correct. This casts doubt on the assumption that syntax
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is a reflex of semantics.

Definition 2.4.1 A lexical element v selects an element of category C to its right if in
every context C = 〈~w1, ~w2〉 in which v occurs, there is a ~x and a ~y such that ~v · ~x is a
constituent and ~w2 = ~x · ~y and ~x occurs as a constituent of category C in 〈~w1 · ~v, ~w2〉.
Analogously, selection to the left is defined. In the constituent v · ~x v is called the head
and ~x the complement.

Compare the notion of complement with that of an adjunct. By definition, an adjunct is
not selected. Otherwise it has no choice but to appear where it is. On the other hand,
we will assume that the adjunct itself selects the head. This is true for adjectives as noun
modifiers. In the position that they occur in they cannot be without the modified noun. In
sum, when there is a constituent, we always find that there is one daughter which gives
the reason for the other daughter(s) to be there and without which this daughter would
not form a constituent at all. It is not necessary to assume that all constituent structure is
binary branching, but our notion of selection would force us to assume that. It has been
argued by some linguists that for example the verb give does not select first an indirect
object and then a direct object, but that it does select both of them at once. It turns out,
though, that the binary hpyothesis is by and large tenable. In categorial grammar this is
enshrined in the notion of a category. 7

Definition 2.4.2 Let C be a set. The set Cat(C) of directional categories over C is the
smallest set containing C and which is closed under the formation rules

(c/) If α, β ∈ Cat(C) then α/β ∈ Cat(C).
(c\) If α, β ∈ Cat(C) then β\α ∈ Cat(C).

The symbols / and \ are called slashes. The idea behind this definition is that any element
which selects an element of category α to its right to form a category of type β is itself
assigned the category α/β; and any element selecting an element of category α to its left
to form an element of category β is assigned the category α\β. It follows that with the
category of the argument and that of the mother given the category of the sister can be
calculated uniquely. This gives the following trees.

(2.41)
�

�
�
�
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@

@
@

β

β/α α
�

�
�
�

@
@

@
@

β

α α\β

We can express this as well with the equations

7Notice that we once more a different technical variant of the term category.
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(2.42)
Forward Application β/α ⊕ α = β
Backward Application α ⊕ α\β = β

The nondirectional version of categorial grammar has only one slash, and we write α( β.
Then we have the following rules

(2.43) α( β ⊕ α = α ⊕ α( β = β

Hand in hand with this goes the the assignment of meaning. If elements of the category
are assigned a type t(α) and elements of the category β a type t(β), then elements of the
form α\β and β/α are given the type 〈t(α), t(β)〉. 8 To make this work, we need to start
with basic types, for example np (to be of type e) and s (to be of type t) and assign bottom
up categories to lexemes. Our first choice would be to put the category of intransitive
verbs to be np\s, that of transitive verbs (np\s)/np, and so on. A transitive verb can then
compose only with its direct object to form an intransitive verb, a sentence adverb like
necessarily with a sentence to form a sentence etc. The basic calculus that we get is called
AB, after K A and Y B-H.

However, as we have explained earlier, M assumed that the basic type e of
objects is not the denotation of a noun phrase. His arguments were semantic in nature, but
we can also give syntactic arguments for that. The observation to start with is that in some
cases there is a mutual selection between elements. On the one hand an intransitive verb
selects a noun phrase to its left, but by the same token a (nominative) noun phrase selects
an intransitive verb to its right. This is the motivation behind the rule of type raising.

(2.44)
Right Type Raising α B (β\α)/β
Right Type Raising α B β\(α/β)

The symbol B in the context α B γ is read to be like an implication, to say that if an
element has category α it has also category γ. Semantically, if x is a variable of type α
and P a variable of type 〈α, β〉 then λP.P(x) is a function of type 〈〈α, β〉, β〉. Indeed, we
have λP.P(x)� λy. f (y) = f (x); so it is the same result as λy. f (y)� x. This means that we
have found a semantic rule corresponding to the syntactic rule of type raising. The rule
of type raising makes sense only if we give up the assumption that words or constituents
must have a unique type, but that they have an initial type assigned to them and can raise it
when necessary. This has indeed been proposed. But what could be the reason for raising
the type?

Well, observe that the proposal given for type assignments works well for English,
but it runs into various problems in languages that have different word order. Consider
German, which allows the following sentence to be grammatical.

(2.45)
..., daß das Geld der Räuber stahl.
..., that the money the thief stole.

Here we have the order OSV, object followed by subject followed by verb. The verb

8Notice that there is no difference in meaning between two directional variants. We see exemplified the
fact that there are syntactic facts that do not follow from any semantic type assignment.
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may not combine with the subject because it would then assign it the status of an object,
which is inadmissible for reasons of case. 9 What can be done in this circumstance is the
following. We assume first of all that the following rules also hold.

(2.46)

Forward Composition α/β ⊕ β/γ = α/γ
Backward Composition α\β ⊕ β\γ = α\γ
Nondirectional Composition α( β ⊕ β( γ = α( γ

β( γ ⊕ α( β = α( γ

These rules have been motivated by P G. They are necessary in order to avoid
overly complex categorization. For take the example of an adverb like excessively. It can
modify both intransitive verbs, and also transitive verbs. If we say that excessively has
category (np\s)/(np\s), that is, are classified as adjuncts of intransitive verbs, they will by
the above rule be able to act as adjuncts of transitive verbs. The corresponding semantical
rule alias Frege-function is function composition. The way to see that this is correct we
observe that if we were to feed the sequence α/β⊕β/γ a γ to the right, we could compose
β/γ and get β and then compose with α/β to get α. Instead the Geach-rule allows us to
compose first α/β with β/γ to get α/γ and then compose with γ to get α.

(2.47)
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Assume now that α/β has the meaning λx. f (x), β/γ the meaning λy.g(y). Then let u
be an object of type γ. Then λy.g(y) � u = g(u) and λx. f (x) � g(u) = f (g(u)). Now
the composition f ◦ g of the functions is exactly defined by f ◦ g(u) := f (g(u)). Thus, to
associate with the Geach-rule the semantics of function composition is exactly as it should
be from the viewpoint of categorial grammar. This hypothetical feeding of arguments
plays a fundamental role in modern categorial grammar.

Now write V0 for the category of sentences, V1 for the category of intransitive verbs,
V2 for the category of transitive verbs, and V3 for the category of ditransitive verbs. Then
we have the following classification.

(2.48)
Subject V1 ( V0

Direct Object V2 ( V1

Indirect Object V3 ( V2

9We are clearly using a semantical argument here. Per se, nothing permits us to ignore this in syntax.
However, on syntactic grounds we can argue that the subject plus the verb do not form a constituent, because
they cannot be replaced by a single item!
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Regardless of whether V0, V1, V2 and V3 can be obtained by the basic set np and s we can
observe that with the rule of function composition all six basic alignments in a sentence
can be a (nondirectional) analysis which yields the category V0 = s.

(2.49)

SVO : V1 ( V0 ⊕ (V2 ⊕ V2 ( V1) = V1 ( V0 ⊕ V1 = V0

SOV : V1 ( V0 ⊕ (V2 ( V1 ⊕ V2) = V1 ( V0 ⊕ V1 = V0

VSO : V2 ⊕ (V1 ( V0 ⊕ V2 ( V1) = V2 ⊕ (V2 ( V0) = V0

VOS : V2 ⊕ (V2 ( V1 ⊕ V1 ( V0) = V2 ⊕ (V2 ( V0) = V0

OSV : (V2 ( V1 ⊕ V1 ( V0) ⊕ V2 = V2 ( V0 ⊕ V2 = V0

OVS : (V2 ( V1 ⊕ V2) ⊕ V1 ( V0 = V1 ⊕ V1 ( V0 = V0

This is in fact as it should be. Notice that whether or not one must assume that we can im-
pose restrictions concerning the order of the words, to account for English, for example,
there are also languages which allow any of the six orders. For these the nondirectional
version gives them a seemingly proper analysis. There are some quirks, however. In order
to give an analyis at all we must assume that some pairs are constituents which are not
constituents according to the definition assumed above. Moreover, we need to assume
quite funny constituents such as pairs subject-object. Notice also that SOV has two anal-
yses, (SO)V and S(OV), which corresponds to two constituent analyses. M S
faces the problem head on in Combinatory Categorial Grammar () and declares that
all of them are indeed constituents. His solution comes in combination with the assump-
tion that in coordination we need such constituents if we want to analyse the following
sentences.

(2.50) Frank bakes a cake and proves theorems.
(2.51) Frank bakes a cake and Carsten rolls.
(2.52) Frank bakes and Imke eats a cake.

If we take the analysis of coordination literally, that coordination is coordination of con-
stituents then the three sentences give us all two element subsets of the string SVO as a
constituent. Particularly worrying is that SO should also be constituent in the structure
SVO. 10 We will later see how a solution can be given that avoids this paradox. For now
let us note that the proposal still stands as a solution of the paradox. Let us see why it too
cannot work.

Let us take a ditransitive verb like give. Let us work in a languages which allows for
free word order among the four principal constituents. Latin is such a language. In this
language, all 24 variations on the sentence (2.42) are grammatical.

(2.53)
Carolus librum uxori dat.

Carl the book to his wife gives
S O I V

In particular the following serializations are grammatical.

10Combinatory Categorial Grammar also does not provide a constituent here; Steedman proposes a re-
analysis of the SVO complex into two units, one of which is a consituent of same type as SO. This reanalysis
is triggered by conjunction.
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(2.54) Librum dat Carolus uxori.
O V S I

(2.55) Uxori Carolus dat librum.
I S V O

These are the only two serializations that are ruled out by the undirectional analysis to-
gether with the Geach rule. As before, some serializations receive several analyses, while
some have only one, or in this case even none. The reason is that V can combine with I
only, but S can combine with O, and O with I, but not I with S, S with V or O with V,
and this rules out any analysis for the given string. Naturally, one has tried to overcome
this weakness. Moreover, it is clear that this is only part of the problem. We still need
to account for languages in which only part of the serializations are allowed. The meth-
ods to solve these problems are too involved to get into here. They show one weakness
of the whole project, however. Categorial grammarians have been more or less lexically
minded. They insist that grammar provides only very few and basic syntactical rules,
while the power and richness of languages is the result of the lexicon in interaction with
these rules. However, this only defers the problem to coding the behaviour of language
into the lexicon given a sufficiently rich core of syntactical rules. It has been shown that
what has become known as Lambek Calculus – named after J L – is equiva-
lent in analytic power with context-free grammars, to which we will turn later. This result
is due to M P. The fact is, however, that once the behaviour of lexical items is
known it is quite easy to deliver a context free grammar that accounts for this, so the ques-
tion arises why we need categorial grammar for that purpose. The typical answer is that
categorial grammar shows us a direct way to semantics. They point out that the categories
one needs to derive the syntactical patterns can give us a direct clue as to how to set up the
semantics, as has done M. Be this true or not, the important fact is that it gives
us no clue as to what syntactical behaviour these elements have. Categorial grammar in
its present day form has already lost its semantic innocence. Lexicalists experiment with
complicated type constructors so as to get the syntactic facts right but they do not provide
us any longer with such a principled insight that they have done earlier by pointing out
that nothing permits to distinguish the combination transitive verb plus direct object from
an intransitive verb. To the extent that this is false it teaches us that the truth has to be
looked for elsewhere.

2.5 Morphology – The Additional Level

Let us pause and rethink the model of  S in the light of the preceding discussion.
We have isolated beyond semantics and phonology a third dimension of a sign, it syntax.
Thus we write
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(2.56) give
/gıv/

((np\s)/np)/np
λxλyλz.give(z, y, x)

The reason was that the semantic type does not give enough information about the proper
combination of this item, in particular the directionality of selection. Thus, the reason for
positing the additional level of syntax is that phonology has the directionality but lacks
the tree structure to determine semantics via the Frege-principle; semantics has the tree
structure but lacks directionality to get the phonology right. There have been arguments
– for example in  but also within  – that directionality has no locus in syntax but
should only be present in the phonology. To make this work, the phonology of a sign
cannot simply be assumed to be a string of phonemes, but a kind of template

(2.57) p3 + /gıv/ + p1 + p2.

Here p1 is the variable for the phonology of the first argument, p2 a variable for the
phonology of the second argument, and p3 a variable of the third argument. This corre-
spondence must however be represented, and this causes the whole setup to change. We
need to assume that what combines is the entire sign denoted here by give. We cannot
separate a level of representation called syntax at which we may abstract away from se-
mantical and phonological content and isolate all and only the combinatory properties of
the elements. Syntax in our conception is the most general locus of combination which
is expressed by the fact that syntactic structure allows two homomorphisms, one into
phonology, turning the structure building operation into string concatenation, and one
into semantics, turning the structure building operation into function application. If we
are to follow the direction of , these three levels get conflated into a single level of
signs and combination of signs. Another way out, however, is to use two combination
functions in phonology, forward concatenation with x and backward concatenation with
x.

(2.58)
Forward Concatenation λp.x + p
Backward Concatenation λp.p + x

Thus, prepositions know syntactically only that they are looking for a noun phrase, but
syntax is blind as to where the noun phrase will appear, to the left or to the right. This lat-
ter specification, however, is a matter of phonology. Although this is a way to go because
it still recognizes three levels with their own mode of combination it does not conform to
our conception of syntax. We will not dwell on this issue, however, simply noting that
specifying the directionality in the phonology is a possibility.

A sign has three components, a syntax, a semantics and a phonology. This much is
nowadays rather uncontroversial. It is the question, whether this is actually all there is to
be said. We will analyse the situation by considering a difficult problem of linguistics,
that of analysis or segmentation. It will eventually lead to a rather complex picture of
language, one which linguists have over the years tried to reduce to the original model,
with little success so far. The problem is caused by the fact that an additional level is
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assumed between the level of words and the level of phonemes, the level of morphemes.
We will first outline arguments that lead to positing such a level and then proceed to an
outline of a stratificationalist picture of language. Given that the mode of combination
in phonology is concatenation it is plausible to say that the comparative of monosyllabic
and disyllabic adjectives in English is formed by combining two phonological elements,
namely the phonology of the adjective and the sequence /er/. Evidence may be the fol-
lowing list

(2.59)
tall : taller fast : faster
new : newer long : longer
short : shorter high : higher

This can be read as a chain of oppositions. In each case the same semantic difference is
paired with an identical phonological difference.

We therefore posit a decomposition of the comparatives into two smaller units. Since
we cannot speak of /er/ as a word, for varying reasons, we are lead to say that it is
an element of different character. Such elements are generally called morphemes. The
lexemes taller, smaller etc. can and have to be segmented into two morphemes. One is
the bare lexical entry, which we treat as unanalysable, and the other is the morpheme

(2.60) er
/er/

(n/n)\(n/n)
λP.more(P)

n is the syntactic category of common nouns. Adjectives are premodifiers, so are of the
category n/n, and er is thus of category (n/n)\(n/n). This is of course only a very rough
approximation. In the first instance, a comparative adjective allows for a phrase opened
by than as in His car is faster than mine. This is unaccounted for in the syntax as well
as in the semantic, where more is just a placeholder for a semantic analysis that we do
not intend to provide here. The standard definition of a morpheme is that a morpheme
is a smallest meaningful unit. This definition is quite imprecise, however. It is unclear
whether smallest refers to the phonological content or the semantic content. Since we
will analyse the segementation problem below let us briefly have a look at the semantic
segmentation. It is painfully clear that we cannot define a smallest unit of meaning in
an abstract sense. How many units differentiate a table from a chair? Is the difference
between a book and a leaflet minimal or not? Indeed, the impossibility of such problems
have led structuralists to assume that a contrast is minimal if it is within the prefabricated
distinctions that the system makes. But even that is plainly imprecise, because any natural
language makes infinitely many distinctions, and any distinction can be broken down
into a chain of several distinctions. Thus we are led to assume that if the definition of a
morpheme is to make any sense at all it must involve the phonological content.

There are several facts that that get in the way of an analysis of the comparative into a
sequence of two morphemes. First, morphemes such as /er/ demand a strict adjacency to
the word to which they attach. There can be no element intervening between the adjective
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and the comparative morpheme. This can be captured by positing a difference between
word boundaries and morpheme boundaries. We will say that the phonology of /er/ is
/ † ]/ where † is a morpheme boundary and ] a word boundary. Then, as /er/ selects
an adjective to the left it will attach only leaving a morpheme boundary while to the
right it will induce a word boundary which permits no further attachment of morphemes.
The additional morpheme boundary marker will have a significance that will become
clear in later chapters. The second problem we have is that the combination rules are
not as simple. We have, for example, that the result of combining /er/ with /simple/ is
/simpler/, which is pronounced without the epenthetic vowel called schwa between /p/
and /l/. The fact that this is so casts first doubts on the claim that phonology simply
chains phonemes. In fact, it has been proposed that at the level of phonology there are
rules which make combinations of phonemes better pronounceable, so-called euphonic
rules or Sandhi. We might argue whether phonologically speaking we should posit such
an epenthetic schwa at all. This will eliminate the problem in phonology but effectively
defers it one level lower. Phonology will insist that /simple/ is pronounced as a sequence
of the phonemes /s/, /ı/, /m/, /p/ and /l/. However, the phonetic realization allows for
the insertion of schwa as a kind of grease to make the word pronounceable. But it can be
shown that this cannot be a question of phonetics alone. The reason is roughly speaking
that phonetics should be a universal property of humans; there should be no difference in
Finnish phonetics from that of English. Nevertheless, there may be different phonology,
because the phonology is an arbitrary abstract system. This is the reason why we will say
that vowel harmony in Finnish cannot be a fact of phonetics. Perhaps there are properties
of Finnish vowel harmony that are phonetically predictable, the particular way it operates
cannot be said to be due to phonetics. One fact that is that German has (roughly) all
the sounds that Finnish has without exhibiting vowel harmony. Consider then the case
endings of Finnish. The inessive of talo, house, is talossa, meaning in the house. Likewise
we have ravintolassa, in the restaurant, bussissa, in the bus. However, we have hississä,
in the lift and others. The alternation between ssa and ssä is completely predictable
from phonological laws of Finnish. Comparable argumentation concerning devoicing in
German lead to the conclusion that the alternation between /ya:g/ and /ya:k/, meaning
‘to chase’, is phonologically determined. The first is used when the ending begins with a
vowel (as in wir jagen, we chase) and the second when the ending begins with a consonant
(as in er jagt, he chases). If we take the phonologically conditioned alternations into
account, the segmentation into morphemes in the particular case of er is actually quite
successful.

There are two more problems that the segmentation analysis faces. The hardest prob-
lem for the analysis so far is what has been termed portmanteau realization by H.
The adjective bad when combined with er yields worse and not bader. The other problem
is that of suppletion or allomorphy. The adjective good yields better and not gooder. In
the last case we can still segment into the sequence bett and er. That is to say, we will
argue that this is form is still open to the same segmentation but we have to clarify the re-
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lation between good and bett. 11 The answer consists in positing a one-to-many relation of
realization. We speak of a single morpheme, but say that it has possibly different morphs
that realize it. Morphs are still abstract, but they are still phonetically visible. This means,
in the case at hand we say that bett is an allomorph of good. In fact, we also have the
possibility to say that it is an allolex since /good/ is the phonology both of the morpheme
good and the lexeme good. This poses some problem for the identification that there are
items which are both lexemes and morphemes inasmuch as their phonological realization
is concerned. If the model is to make any sense at all, the two cannot be independent.
Nevertheless, there is a question of whether we have identified an item qua lexeme or qua
morpheme. This refers us to the problem of allomorphy. Can we decide whether we have
to say that good is an allomorph of bett rather than an allolex? What criteria can there
be to make such a distinction? One criterion is to analyse the cause of the alternation
between the two forms. Analysing the case at hand we see that it is morphologically con-
ditioned and not lexically. This is so because there is no syntactic process on the level
of the usual lexicon that will induce a change from good to bett-. Rather it is only the
combination at the morphological level that triggers a change from good to bett. We say
that it is a morpholexical alternation. If that is so, we say that we are faced with a single
lexeme good. However, being a morpheme, too, it displays phonetically different forms
and this in turn means that the morpheme good has different allomorphs. There is a clear
rule that determines which allomorph has to be taken in a given context.

This leaves the case of bad and worse. Here there is no plausible phonological or
phonetic rule that allows a segmentation into two different morphemes. Thus, from a
morphological point of view, worse must be a unit. On the other hand, there is no indica-
tion why we should not have the combination bad+er. Let us assume that we do have it,
at least abstractly. The picture then is this. We have the lexeme worse which corresponds
in meaning with the combination bad+er. The process that on the morphological level
will give the analysis bad+er is then blocked by the fact that there already is a single
lexeme, or for that matter also morpheme, namely worse. In that case, what we get as
a phonetic realization of the morphemic sequence bad+er is that of worse. The latter is
called a portmanteau realization of the morpheme combination bad+er.

The model that we have developed is that of stratificationalism, developed by S
L. It is one of the most elaborate systems of structuralism and bears resemblance to
tagmemics, developed principally by K P. L assumes that language oper-
ates on different strata. These are more or less abstract levels of description. We have at
the moment a division into four levels, phonology, morphology, syntax and semantics. 12

11Notice that the superlative is best which would leave us with a mere b- as a morpheme for the meaning
of good. This may point to a solution via portmanteau realization, but the present line is nevertheless
consistent. Crosslinguistically, as far as I am aware, the adjectives good and bad have three different stems
in many languages, for the positive, the comparative and the superlative. Take for example Latin bonus,
melior, optimus, and malus, peior, pessimus.

12Our outline is in several ways a simplification of the original model. However, the basic ideas can be
made clear without introducing the full apparatus that stratificational grammar provides.
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Each level supplies concrete elements and abstract elements. The terminology with which
to refer to them is consistent. At the lowest level, phonology, we have the phons, which
are concrete. The corresponding abstract elements are the phonemes. The relation be-
tween phons falling under the same phoneme is called allophony. The regime for putting
phonemes together is called phonotactics. Phonemes do not bear meaning. One level up
we find the morphemes. These are the abstract entities; their concrete counterparts are the
morphs and the morphs falling under the same morpheme are called allomorphs of each
other. Morphemes are combined, and the regime for doing this is called morphotactics.
One level up we find the lexemes, lexes and lexotactics, mostly referred to as syntax. Still
one level up we find the sememes, or units of meaning, and we consequently must find
also sems, allosemy and semotactics. The levels are connected with each other via real-
ization. A sememe is realized at the lexical stratum by some lexotactical complex. This in
turn is realized on the morphological stratum as a morphotactical complex and the latter
as a phonotactical complex. We assume that realization is defined only with respect to
adjacent levels. Thus, a sememe cannot directly be realized as a string of phonemes or a
string of morphemes. It must pass the lexical stratum first.

(2.61)

Semantic Stratum

?

Realization

Lexical Stratum

?

Realization

Morphological Stratum

?

Realization

Phonological Stratum

The division into strata might seem to be bewildering and counterproductive, but it consti-
tutes an explification of what is the actual explanation linguists use in everyday practice.
It leads to a great economy in explanation. Notice that the sounds corresponding to the
sequence ch differ in German Licht and Macht. Since the change is determined by the
context alone, there is no need to assume two different phonemes. This simplifies the
representation in the mental representation of signs, since the distinction between the two
need not be stored. Further, vowel harmony in Finnish has allowed us explain the two
endings ssa and ssä as phonologically determined alternants of each other. Thus we are
be exempt from positing two allomorphs. On the lexical level it is a bit harder to find
similar cases. A very clear case is the use of classification nouns in Malay. We cannot
say as in English two clerks. We must say two men clerks. The word man here serves no
purpose but to identify the kind of object that is being counted. What distinguishes Malay
from other languages that also have classifiers is that these classifiers are genuine words
and have independent meaning in different syntactic environments. We can say orang itu
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baca buku, which means This man reads a book. In this sentence orang has its standard
meaning man. However, when preceded by a numeral, it reduces to a classifier. Thus the
numeral selects a classifier noun to its right. There is a fixed list of classifiers, which are
determined largely by the noun that is being counted. Consider for example

(2.62) dua orang kerani
two  klerk = two clerks

(2.63) dua batang rokok
two  cigarette = two cigarettes

(2.64) dua buah buku
two  book = two books

The analysis is to assume that there is a single lexeme best translated by piece-of, that
intervenes between the numeral and the noun that is being counted. However, this lexeme
comes in different forms. Crucial for our analysis is the fact that the selection of the form
is determined by the shape of the object in question, so that the alternation must be said
to be semantic in nature. Since there is no semantically driven morphological alternation
(by lack of adjacency of the strata), the alternation occurs at the lexical level. Thus we
have a case of allolexy. 13

2.6 Underspecification and Sandhi

Earlier we have made allusions to the fact that phonology does not mirror morphotacti-
cal rules by mere concatenation, or to speak the language of mathematics, that the map
+ combining phonological strings cannot be simple concatenation. The problems are of
varying complexity and have called for different types of solution. In this section we will
look at the phenomena that we have called Sandhi or rules of euphony. These rules are
phonotactical rules and therefore should get a genuinely phonotactical solution. More-
over, these rules are rules that operate when two items get in contact, so we assume that
a proper formulation will involve only looking at the phonological junctures. To explain
this, let us take a look at a string. It is a list of items, one following the other. If we
take these items to be blocks that have to be glued together to form the string, then any
time two blocks get glued we have a juncture. It is the moment of juncture when Sandhi-
rules apply. However, if the blocks come already fully shaped there is no Sandhi without
altering the shape of some of the blocks. This is roughly the view that is expressed by pro-

13The argumentation is not quite complete. For example, it is conceivable that the choice of classifier is
not syntactically determined but rather semantical in nature, that is, what classifier is to be put depends on
the shape of the objects. This is accounted for here by saying that the allolexy is semantically determined.
Moreover, notice that the usual explanation of what classifier is to be put is in fact that one must look for the
objects over which the noun phrase talks. Hence the stratificational grammar can only analyse this as a case
of allolexy not allomorphy because the latter can only be lexically driven. This will then force us to assume
that in languages where classification is morphologically marked we have lexically driven allomorphy.
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ponents of a rules-and-derivations model, the most famous of which is the model of SPE
(Sound Patterns of English). However, we can also think of the blocks alias phonemes as
being underspecified before getting into contact and it is at the moment of juncture when
the underspecification is removed because the context requires some feature to be this or
the other way. This is the idea behind so-called unification based approaches. The lat-
ter view the syntactic entities (lexemes or morphemes for that matter) as specifying only
some property of the phonological event that realizes them. Or, they specify exactly what
is common to all phonological events realizing it. When elements get into contact they are
a context for each other and the euphonic rules will determine some of the underspecified
features.

We will motivate these ideas by considering two facts that we have met before, namely
vowel harmony in Finnish and devoicing in German. The rule of vowel harmony of
Finnish says that within a word, all vowels agree with respect to their back-feature. It is
crucial for the proper statement of the facts that the word boundary is also the boundary
of the vowel harmony. To be really exact, we need a proper definition of word boundary.
For example, the following are genuine Finnish words.

(2.66) henkilökohtainen, osakeyhtiö

Since they are genuine Finnish words, they must analysed as compound words, with a
boundary in between its parts. Although we can’t hear this boundary as a pause, its
effect is clearly detectable. We will write ] for this boundary even though it does perhaps
not correspond to a word boundary in all detail. Derivational and inflectional affixes do
not introduce a word boundary between the word they are affixed to, only a morpheme
boundary. This will allow the spreading of the harmony from the word to the derivational
and inflectional morphology affixes. We observe, namely, that it is the word that gets the
affix that determines the harmony-feature, and not the affix. In syntactic terms, it is the
stem that governs the affix with respect to the harmony feature. If we want to use a rules-
and-derivations model here, we may actually assume that the affix comes with a default
harmony, but that the latter is overridden by the governing stem. This is the intuition that
we find in syntactic textbooks when they specify a neutral form for the affix, say -ssa for
the inessive singular, and then go on to say that it changes when the stem displays back-
harmony. On the other hand, if we use a unification based approach we assume that affixes
are not specified for the harmony feature. Thus whenever they affix to the stem, the stem
will determine the value of the harmony feature. But how does the stem get its harmony
feature? The answer must in some sense be that stems are different from morphological
affixes in that they must have a harmony feature while affixes may not. Whatever the
reason for that property is, we still need to explain how the stem can know what harmony
feature it has. This can be explained by underspecification theory only partly, and it is the
latter part that causes some problems for the proper formulation of the vowel harmony of
Finnish.

The guiding principle is that all that needs to be known is that stems determine, or
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govern, the harmony. They determine the shape of the affix. Each affix comes in two
forms, one displaying back- and the other displaying front-harmony. Word and affix in-
ternally, however, there also is Sandhi, and we must account for that too. In other words,
we must allow for the lexical specification to be such that lexical entries are not prefabri-
cated, but allow harmony to operate on it. We might still concede, however, that there is
a possibility for full specification, as for example in loan words, but that genuine words
of the language are not fully specified. For normal words, however, we can say that it
is not the individual phonemes that get marked for their back-feature, but it is the entire
word. Since there are words which are compounds, this marking must be for each seg-
ment boundary-to-boundary. So we get something like the following representation.

(2.67)
henkilO ] kOhtAIneN

– ] +

OsAke ]UhtiO
+ ] –

Here, A, O and U are archiphonemes, underspecified for their back- or harmony-feature.
Equivalently, they are the set of phonemes which agree in all but their back feature. For
example, A = {a, ä}. Let us call A, O and U strong phonemes, all others weak. (There
will e a distinctive feature strong to embrace that within the phonology.) Then the rule
of harmony is that the strong phonemes govern the weak phonemes. This seems like an
acceptable solution for the data. However, as is theoretically possible, there might be no
strong phonemes within a lexeme. An example is the word hissi, in English lift. The cor-
rect form of the inessive of hissi is hississä and not hississa. Thus, even though there is
no strong phoneme, or governor for harmony, nevertheless the harmony feature is unique;
there is no choice as to how to assign it. This may be a reason for saying that there is
a default for the harmony feature, which is front. Unless otherwise specified it assumes
the value front. Alternatively, we can think of the following explanation. 14 We make the
boundary markers ] and † into real phonemes. This is not implausible, because they too
are part of the phonological system as we have demonstrated earlier on. Then say that the
word boundary is strong and has the harmony feature front while the morpheme boundary
is weak. Strong means now that it governs the value of the feature to the right. Unless a
strong phoneme is present, the harmony feature of ] wins. However, the first, or in fact
any strong phoneme wins over ]. To make that work we need to assume that all phonemes
can be marked for the harmony feature, although it will not always show up as a phonetic
distinction. We say that we posit an abstract feature. This abstract feature can be passed

14I am inclined to call this a trick rather than an explanation. But arguments as the one I will present
below are really the everyday method in linguistics and it is in principle hard to decide whether we have a
genuine explanation or just found a trick to get the facts to follow. In the case at hand this can be decided
on the basis of the question whether there are prefixes in Finnish. The formulation of Sandhi as proposed
here can only work if stems are annotated in the lexicon with a boundary marker. This is turn implies that
they must refuse either prefixes or suffixes. Since the standard affixes are suffixes, the proposal works as
indicated. Notice also that we must distinguish two problems. One is the formulation of Sandhi, which is
relatively easy. The other is to guarantee correct behaviour of affixes with respect to Sandhi in presence of
the fact that stems are underspecified and need to recover the harmony feature from the phonotaxis. The
present proposal is not meant as a definitive solution but as an illustration of how a solution can be obtained.
If the data is more complex, a more complex solution must be found, too.
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on along the phonological juncture ‘+’. Each word is divided into one or two parts. The
first part is the half-open interval between the word boundary and the first strong vowel.
The second part is the half open interval between the first strong vowel and the next word
boundary. Call the first strong vowel in a word as well as each word boundary a pivot.
Then the phonological string is divided as follows.

(2.68) [] . . .]([p . . .])[] . . .]([p . . .]) . . .

The brackets denote the segments determined by the pivots. The round brackets enclose
optional segments. The rule of Sandhi is then as follows.

(2.69) Each pivot determines the harmony in its segment.

A word has two possibilities. It may consist of one segment or two. In the first case there
is no string vowel present, and the boundary marker determines front-harmony. If there
are two segments, the pivot vowel can determine the harmony in its segment. Since there
are two kinds of pivot vowels, there are two kinds of harmonious strings, one with front-
harmony, and the other with back. 15 The problem that we have is that a strong vowel
needs to know whether it is a pivot or not. It is impossible to judge that on the basis of
its environment, which consist (at most) of a phoneme to the left and a phoneme to the
right. Again, an abstract feature must be introduced that allows for a phoneme to check
whether it is eligible for being a pivot. The idea is that we have a toggle feature called
freeze, which is passed left to right along the juncture. It is passed on negatively by ]
and positively by a strong vowel. All other phonemes may not change it. To define all
these notions rigorously, let us introduce some terminology, which will also be helpful to
understand syntactic processes. To formulate it we use booleans instead of features.

Definition 2.6.1 A property P is said to govern a property Q to the right if in the
combination x+ y of two phonemes where x is P, y must be Q. We write Py Q. P is said
to govern Q to the left and write Qx P if whenever in x + y y is P then x is Q.

We need the booleans back, front, strong, pause, pivot and freeze. pause is true only of
]. front is the same as ¬back. strong is true of pause and /a/, /ä/, /o/, /ö/, /u/ and /y/.
pivot and freeze are contextually defined, via government.

15Notice that the formulation of Sandhi is not derivational in nature even though the metaphorical lan-
guage suggest that it is.
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(2.70)

F
{
¬freeze ∨ pause y ¬freeze
freeze ∨ strong ∧ ¬pause y freeze

}
P pivot.↔ .pause ∨ ¬pause ∧ strong ∧ ¬freeze

S


pivot ∧ back y back
pivot ∧ front y front
¬pivot ∧ back y back
¬pivot ∧ front y front


The reader may check that the formulation does the job as intended. Notice that there
might be more compact ways to write these rules down, by considering notions like pass-
ing on a feature. Such mechanisms will be considered in detail when we discuss , to
which this solution owes a great deal.

Now consider finally the phenomenon of devoicing. In the same way as in Finnish we
can assume this to be a process of spreading a feature. This time it is the voiced feature
that gets spread. As before, it is not good to assume that lexical entries are simply under-
specified at their end. For example, the naive approach to assume for roots of verbs such
as setzen and pfeifen that they look like seTZ and pfeiF, where T = {t, d}, F = {f, v} etc., so
that the end is simply unmarked for the voiced-feature. This means that the value of the
feature is not recoverable, so that for verbs like jagen and toben we will get jaK and toP,
which would be identical for the verbs jaken and topen, if they existed. Thus we must
assume that they all are marked for their voiced feature. However, the analysis can be
enhanced by introducing a fine structure into the phonological string of syllables together
with a subdivision of a syllable into onset nucleus and coda. The vowels are contained in
the nucleus, and the consonants in the onset and the coda. A syllable can lack an onset,
and it can lack a coda. 16

(2.71) Nucleus Coda

Onset Rhyme

Syllable
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We assume now that in German, the coda consists of voiceless consonants only. What
explains the voiced/voiceless alternation is the fact that in different forms the final conso-
nant cluster may or may not be contained in the coda.

16Unless, of course, we assume empty consonants.
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(2.72)
j a · g e n
O N ·O N C

j a g t
O N C C

It is clear that with this assignment of O, N and C the relevant facts follow. It is not clear
whether we need to assume that the coda simply overwrites the value of the voiced fea-
ture, or whether we can formulate this in a unificational way. We will show that there is a
unificational solution. Crucially, we add distinctive features for onset, nucleus and coda.
It must be specified in what ways they can be distributed, and it is clear that lexical ele-
ments need largely not contain any information as to what the subdivision into syllables
exactly is. However, the root of the verb jagen contain the following information concern-
ing the final sound. First, it is either /g/ or /k/, that is, it is contained in the archiphoneme
/K/. Moreover, if it is onset, then it is voiced.

(2.73) [−onset] t [+voiced]

Notice that the segmentation into syllables is at least as complex as vowel harmony in
Finnish, and we have to omit that here. It is, however, in principle possible to spell it
out in a similar way, using contextual features. In sum we have seen two things. One is
that many facts have an explanation as soon as we assume a more articulate structure of
phonotaxis, such as words and syllables etc. Second, there is a way to introduce abstract
features into the phonotactic system that allows to state phonotactic restrictions as restric-
tions applying only at a juncture, that is, between adjacent phonemes. It is this latter
observation that has led to the development of .

2.7 Discontinuity

In linguistics there exists also the notion of a discontinuous constituent. These are con-
stituents which do not correspond to conxev subsets of the string. Given the previous
definitions, the notion of a discontinuous constituent is a contradiction. However, to talk
of such things is not to talk nonsense, because the problems that are raised in connection
with discontinuity of constituents are real problems. We have met already one problem,
that of gapping. Consider (2.44), repeated here as (2.74)

(2.74) Frank bakes a cake and Carsten a roll.

Under the plausible assumption that and only coordinates constituents we must assume
that Carsten rolls is a constituent. Furthermore, under the likewise plausible assumption
that and coordinates only constituents that are of same type (modulo the caveats that we
have outlined above) we must assume that the corresponding constituent to the left is
Frank a cake which is discontinuous. We can simply deny that the latter is a constituent,
but the problem is to be solved somehow. The solution that has been proposed is to as-
sume that there is a phonetically empty verb denoted by v that occupies the analogous
position of bakes in the second conjunct.

(2.75) Frank bakes a cake and Carsten v a roll.
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This solves our problem in the following way. Without such an empty element we have
say why Carsten rolls is a constituent. If we assume that it is a sequence of two noun
phrases then it is hard to see how they could possibly form a constituent. With this empty
verb, however, we have a sequence SVO, and it is clear that it is a constituent. Notice that
the argument is a mixture of syntactic and semantic arguments. For even if this empty
element was present we still have the same visible object and have to call it a constituent.
The constituency tests show that this is correct. Notice that the following sentences are
grammatical.

(2.76) Frank bakes a cake and leaves.
(2.77) Frank bakes a cake.

This shows that the structure of coordination must be as follows.

(2.78)
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The problem comes when we analyse the situation in conjunction with the semantic inter-
pretation. Combinatory Categorial Grammar offers the solution of using function compo-
sition to get the interpretation of the combined noun phrases, but we have seen that it runs
into problems with free word order. Positing an empty verb frees us from this problem,
but gives us another: we have to make sure that it gets interpreted in the same way the
visible verb in the left conjunct. So, from interpretive point of view we must get the same
result as for the sentence

(2.79) Frank bakes a cake and Carsten bakes a roll.

Thus empty verbs allow us to uphold our notion of constituency and coordination while
complicating the interpretation component by introducing a interpretive dependency be-
tween empty elements and visible (= overt) elements. This is a dilemma that we will quite
often have; we get one thing straight at the expense of another. Empty elements are one
such solution; this is why empty elements have not univocally been praised. Moreover,
there has been harsh criticism against them. From a formal point of view there is no prob-
lem in assuming empty elements, and the only thing to show is that they allow in some
way for a simple presentation of the ideas. We will have a lot to say about them in the
subsequent chapters, and so we will seize the opportunity to present some alternatives.

A spectacular case of nonlinearity is the morphology of Arabic. In Arabic, roots
commonly consist of a sequence of three consonants, out of which derived forms are
produced by inserting vowels and manipulating some properties of the consonants. We
will restrict ourselves to a simplified outline. Consider the root ktb which means to write.
The following stems can be obtained from this root
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(2.80)

katab : perfective active
kutib : perfective passive
aktub : imperfective active
uktab : imperfective passive

This list can be applied to all roots, in other words this phenomenon is regular. It is easy
to see what the regularity is. And it is likewise easy to see that our previous approach
to morphology will not do. The problem is that if we analyse these forms as sequences
root+affix or affix+root, no matter which order we choose and no matter what phonology
we choose, the realization cannot be of the form given above. The reason is that the root
consists of three slots, while the affix consists of two vowels which have to be intercalated
with the consonants of the root. Here is one description of the way in which the se forms
are obtained. We can represent the root as .k.t.b, with three slots to be filled, and the affixes
as .a.a., .u.i., a..u. and u..a.. The dots represent vowels in the root, and consonants in the
affixes. In phonological terms we can say that the root is phonologically underspeficied at
the dots, where it contains only the feature [+vowel] while in the affixes we find [−vowel].
It turns out now that both root and affix consist of slots, and the rule of combination is to
put these slots into correspondence and take the conjunction of the information provided
for each slot by the root and the affix. A strict condition is that the correspondence respects
the ordering imposed on the slots by both templates.

(2.81)
V k V t V b
| | | | |

C a C a C

V k V t V b
| | | | |

u C C i C

Notice that some slots cannot be made to correspond. The model can be made smooth by
the introduction of an empty vowel, which we denote by ◦. Rather than uktib we would
then have the form uk◦tib. We can then assume a regular six slot form for both root and
affix. Moreover, if we insist on the syllable structure that is CV, consonant plus vowel,
and an additional empty consonant, all morphemes have the same structure and matching
consists in putting the templates over each other. Moreover, notice that the root gives
information only over the nature of the consonants and the affixes only over the vowels.
This has sparked off the idea that prosodic information is spread not over one linear order
phoneme-by-phoneme, but over several such linear orders, called tiers. Each tier is a
linear order with slots, and a tier contains specific information about specific distinctive
features. There are now two modes of combination. One is concatenation, as before;
the other is unification. In the latter case the two morphemes are interpreted as talking
about the same phonological event. In the latter case the ideal situation is when the time
slots that each morpheme provides are associable with each other one-by-one and that we
can then interpret the associated slots as talking about the same phoeneme. Modulo the
association of slots, the mode of combination is again unification.

In Arabic, we have been lead to assume that there is a vocalic tier and a consonantal
tier. Tiers must be brought into correspondence; this means that we identify some slots in
one tier with some slots in another tier. In general, identification across tiers 〈T1,@1〉 and
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〈T2,@2〉 is a binary relation R ⊆ T1×T2 such that if xRu and xRv then x @1 y iff u @2 v. This
is called the No Crossing Constraint. It is a matter of direct verification that the simple
model of consonantal and vocalic tier outlined above explains the data (2.56). It would
be overly simplistic to declare that this is what there is to Autosegmental Phonology,
since the data it sets out to explain is much more complex than (2.56). Nevertheless, it
is enough for us to point out that it provides a model to generate data that would under
the concatenative view of phonological realization be impossible to explain. We will have
little to say about autosegmental approaches.



Chapter 3

Generative Grammars

We have seen how we can distill a structural description of a language by
using a structuralist analysis. Now we turn to the question whether we can
describe structure of the language in a succinct way. This will lead to the
concept of a generative grammar. In its most elaborate form it is called gen-
eralized phrase structure grammar. We will see that many descriptions can
be better described using movement transformations, which leads us to trans-
formational grammar and to head driven phrase structure grammar.

3.1 Phrase Structure Grammars

Let us return to the definition of syntactic classes via context-sets. Suppose we are inter-
ested in a full description of all strings that can be generated within the language. That is,
suppose we want to describe our language L ⊆ V∗. Such a description – in whatever terms
– is what is traditionally called a grammar. A grammar is distinct from the lexicon. The
difference is that the grammar is stable while the lexicon is an open set, that is, it can vary
in time. From our structuralist point of view, the grammar does not deal with individual
words but with word classes, and the lexicon only lists which words fall under which
word class. Thus a lexicon is a list of pairs, consisting of an individual lexeme v ∈ V , and
a word class, like 〈/eat/,V2〉, 〈/walk/,V1〉. We get at the word classes as follows. Recall
that we have called v and w syntactically equivalent if their context sets are equal.

Definition 3.1.1 Let L be a language over V. A word class is a set closed under syntac-
tical equivalence. A word class is basic if it is the set of all words syntactically equivalent
to a word in V. The lexicon of L, Lex(L), is the collection of all basic word classes.

73
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It is clear that given the lexicon, we know which words are intersubstitutable in all con-
texts, and we can abstract from words and go over to word classes in the following way.
We consider the map γL : v 7→ [v]L = {w|w ≈L v} assignig to each word its basic class.
This map can be extended to a homomorphism of the string algebra 〈V, ·〉 by putting

(3.1) [~x · ~y]L := [~x]L · [~y]L

The claim is now that there exists a M ⊆ [V]L such that L = γ−1
L (M). This is not hard

to verify. What we have to show is that ≈L is a congruence and that L is a collection of
congruence classes.

Theorem 3.1.2 Let L ⊆ V∗ be a language over V. Then ≈L is a congruence of the algebra
〈V∗, ·〉. Moreover, L is a union of congruence classes of ≈L.

Proof. We have ~v ≈L ~w iff ~v and ~w can be substitued for each other in all contexts. We
show that ~x ·~v ≈L ~x · ~w as well as ~v · ~x ≈L ~w · ~x for all ~x. Now, pick an ~x ∈ V∗ and a context
C = 〈~t, ~u〉. Then put C′ = 〈~t · ~x, ~u〉 and C′′ = 〈~t, ~x · ~u〉. ~x · ~v can occur in C iff ~v can occur
in C′ iff ~w can occur in C′ iff ~x · ~w can occur in C. Likewise, ~v · ~x can occur in C iff ~v can
occur in C′′ iff ~w can occur in C′′ iff ~w · ~x can occur in C. Since C was arbitrarily chosen,
the proof of the first claim is complete. Now let ~w ∈ [~v]L. Then if ~v ∈ L, ~v can occur in
the context 〈ε, ε〉. By assumption on ~w the latter can also occur in this context and we also
have ~w ∈ L. a

This theorem provides a rigorous formulation of what is intuitively clear, namely that
we can ignore the difference between words that are intersubstitable in all contexts. This
has allowed us to separate the lexicon from the syntax. We will henceforth assume that
a grammar is a description of [L]L, that is of L reduced by the word classes. The big
problem, however, is to provide such a description. Consider to that effect the set B(L) of
basic contexts. Recall that these are the contexts in which a lexeme can occur. We have
used B(L) to define the basic contexts to define the notion of a constituent. 1 Write BL(~x)
for CL(~x) ∩B(L). This set is the set of all contexts in which ~x occurs as a constituent. As
before, we can define the notion of equivalence, but this time with respect to constituent
occurrence. Write ~x ∼L ~y if BL(~x) = BL(~y). This abbreviates that ~x and ~y are intersubsti-
tutable as constituents, not as arbitrary strings. To see the effect of this definition, consider
the strings William and the firemen and the firemen. The two are intersubstitutable, but
only if they occur as constituents.

(3.2) William and the firemen talked to the president.
(3.3) The firemen talked to the president.
(3.4) Superman attacked William and the firemen rescued him.

1One can disagree with the notion of a constituent that has been offered. Nevertheless, the approach that
I present here is not dependent on the definition. One can define grammars simply by making reference to
the constituency without knowing exactly how one arrives at it. It is our aim, however, to present a coherent
system of definitions that yield concrete results.
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(3.5) ∗Superman attacked the firemen rescued him.

Thus, once again we see cases of nontransparency. The context sets defined by ∼L de-
fine congruence classes of constituents. This time, however, a reduction of the language,
that is the strings modulo intersubstitutivity on the word level, cannot be compressed fur-
ther. Instead, we can describe the language by saying how constituents are made up from
simpler constituents. Call {~w}L = {~w|~w ∼L ~v} a constituent class. Each element of a con-
stituent class is substitutable for another element of the same class if the first occurs as a
constituent; the latter will then also occur as a constituent. Now if ~w is a constituent and
can be segmented into subconstituents ~x1 · ~x2 · . . . ~xm, then each subconstituent ~xi can be
replaced by any ~yi ∈ {~xi}L. Thus, the language is fully specified if we can list all possible
ways in which a constituent can be segmented into subconstituents. Obviously, to do that
it is engough to list all possible ways to segment a constituent into immediate subcon-
stituents. Such a list is called a phrase structure grammar or rewrite system. We will
concentrate in the remaining paragraphs on a special subcase, when we have only finitely
many classes.

Definition 3.1.3 A context free grammar is a quadruple G = 〈Γ, S ,Ω,R〉, such that Γ
is a finite set, the set of symbols, S ∈ Γ the start symbol, Ω ⊆ Γ the set of terminal

symbols and R ⊆ (Γ −Ω) × Γ∗〉 a finite set, the set of rules.

Given G, there is a notion of a labelled string generated by G and that of a labelled
ordered tree generated by G. In both cases the labels are from Γ. We take the second
notion first. A rule ρ is commonly written not in the form 〈A, B1, . . . , Bm〉 but in the form
A→ B1 B2 . . . Bm. That ρ ∈ R says that a node with label A can for example immediately
dominate m nodes, y1, y2, ..., ym such that yi @ y j iff i < j and the label of yi is Bi. If that is
so we say that the local tree headed by x instantiates ρ. Moreover, R is the exhaustive list
of such possibilities. That is, a tree is generated by G only if every local tree instantiates
one of the rules of G. We call the condition that each local tree must be instantiation of
a rule of G the local admissibility condition. The local admissibility condition is only a
necessary condition. Two more conditions must be added. The first is that the root is
labelled with S (this is the root condition) and the the leaves are labelled with terminal
symbols (this is the leaf condition). Notice that indeed the rules are statements of the
immediate constituency. Now for the strings. We say that G generates the string S in zero
steps. If it generates a string ~x · A · ~y in n-steps and A → B1 B2 . . . Bm is a rule of G then
G generates ~x · B1 · B2 · . . . · Bm ·~y in n + 1-steps. Then a string is generated by G if it can
be derived in finitely many steps.

Definition 3.1.4 Let G = 〈Γ, S ,Ω,R〉 be a context-free grammar. L(G) is the set of strings
∈ Ω∗ which are generated by G. L(G) is called the language generated by G. A set
L ⊆ Ω∗ is called (weakly) context free if there exists a context-free grammar G such
that L = L(G).
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The relation between the trees generated by G and the strings is as follows. Given a
labelled ordered tree T we define a string cut or section to a maximal set of nodes such
that no two nodes overlap. This section is called terminal if all nodes are leaves. There is
only one terminal section, consisting of all leaves; it is often also called the yield of the
tree. A section inherits a linear order from the tree, because two non-overlappping nodes
are comparable via @. Thus, we can view a section of an ordered tree as a string. Finally,
if T is labelled, the section also inherits the labels.

Proposition 3.1.5 Let G be a grammar over Γ and T be a labelled ordered tree with
labels from Γ, σ a string over Γ. T satisfies the local admissibility condition and the root
condition of G iff all sections are generated by G. σ is generated by G iff there exists a
labelled ordered tree satisfying the local admissibility condition and the root condition of
G such that σ is a section of T.

Proof. Let T be a labelled ordered tree. Notice that there is a way to derive all sections
by starting from r and replacing in a section ~x · u · ~y u by the string ~z of its immediate
daughters. If we look at the corresponding strings, we have that r corresponds to the
string S (by the root condition), which is generated by G in zero steps. Now assume
that ~A · B · ~C corresponds to ~x · u · ~y. Assume that ~A · B · ~C is generated by G. Then,
by assumption on T, the local tree headed by u is an instance of the rule ρ = B → ~D
for some rule ρ of G. But then replacing B in the string by ~D yields a derivable string.
Thus ~A · ~D · ~C is derivable. It corresponds to the section ~x · ~z · ~y. Now assume that σ is
generated by G. Then the tree of which σ is a section, will be defined by induction over
the number of steps needed in the derivation. If this number is 0, then σ = S and the tree
is defined to the just the node r, with all relations empty. r is labelled S . Next assume
that σ is derivable from τ = ~A · B · ~C in one step, by replacing B by ~D. Assume that τ is
derivable in n steps, so that σ is derivable in n + 1 steps. By induction hypothesis, there
is a tree T satisfying the admissibility condition and the root condition such that τ is a
section of T. By throwing away all nodes properly dominated by a node of the section
τ we can achieve it that we also have a tree whose terminal section is τ. It too satisfies
the local admissibility condition and the root condition. For simplicity, assume that T has
all these properties and let ~x · u · ~y correspond to τ = ~A · B · ~C in that decomposition.
Then add to u a set of daughters y1, y2, ..., ym and put them into correspondence with
~D = D1 · D2 · . . . · Dm. Let yi @ y j iff i < j. This defines U. U satisfies the root condition
and the local admissibility condition of G. Moreover, σ is a terminal section of U. a

Trees define constituent structures, and so we can also speak of the constituent struc-
tures generated by G, which is nothing but the set of constituent structures of trees gener-
ated by G. Now, we want to say that a language L is strongly context free if there exists
a context-free grammar generating the constituent structures of L. Notice, however, that
this definition can be read in two ways. We can on the one hand say that the constituent
structures are actually part of L, that is, we consider L as a set of constituent structures
over V . On the other hand we can view the constituent structures as an something that we
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can derive from L by analysis. There are independent reasons to believe in constituents,
but both readings are prima facie plausible. However, suppose that we have two different
grammars generating the same language but with different analyses. Such is the case with
the following two grammars, generating the language a+ · b.

(3.6)

S → A S
S → B
A→ a
B→ b

S → B
S →T B
T→ A
T→ A T
A→ a
B→ b

Then both represent possibly constituent analyses and should be admissible as syntactic
analyses. This means that if we assume that constituent structures arise from substitu-
tion tests on strings that these tests yield no consistent answer, as we see above, a case
corresponding exactly to what we have analysed in connection with adjuncts. There are
several possibilities. We can simply choose one constituent analysis to be the official one
and produce it via the grammar (as we have done with adjuncts). Or we say that all analy-
ses into constituents are legal, in other words our string is ambiguous whenever there are
two constituent analyses, and that the grammar must be capable of generating all these
strings. This is the approach we will take here. Notice, however, that we also have the
semantic interpretation as a criterion for constituent structure so that most cases of syn-
tactic ambiguity can be resolved by looking at the semantic interpretation. To resolve the
terminological clash, let us talk of a constituent structure S as projected by L, L ⊆ V∗ a
language, if it is a legitimate constituent structure from the viewpoint of substitution tests.
A set of constituent structures C is projected by L if it is the set of all constituent structures
projected by L.

Definition 3.1.6 Let V be a vocabulary and C be a set of constituent structures. C is
called context free if there is a context free grammar such that C is the set of all con-
stituent structures of trees generated by G. Let L be a language over V. L is called
strongly context free if the set of all constituent structures projected by L is context
free.

Notice that standardly one talks of a language L to be either weakly or strongly context-
free. The latter concept make sense only if we assume L to consist not of strings but
of constituent structures. Or, alternatively, we must say in what ways we can derive at a
unique set of constituent structures that are defined by L. The above definition of projected
structures achieves this.
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3.2 Elements of Phrase Structure

Context-free grammars solve the puzzles of phrase structure that we have noted in con-
nection with categorial grammar. The price to pay, however, is breaking the tight con-
nection with the interpretation. However, to break free from the requirement to have a
well-defined interpretation means to be able to approach first the constitution of phrases
and worry later about how to square this with the semantics. This has been historically
the line of thought. Therefore, let us temporarily ignore the problem of meaning and just
attack the problem of phrase structure. Right from the start it seems plausible that the
whole problem can be segmented into various subproblems. For example, we know that
an intransitive verb only needs a subject to be a complete sentence. However, immedi-
ately we see that there is a complication. As the data below shows, there are two forms of
walk, one for a singular, 3rd person subject, and another for other types of subject. 2

(3.7) Fred walks.
(3.8) ∗Fred walk.
(3.9) ∗The children walks.
(3.10) The children walk.

We can account for this in two ways. We can simply write two rules, one for singular,
3rd subject, and another for other subjects. This will be rather tiresome, especially when
we come to languages with rich inflection. In Latin, a verb shows six different agree-
ment patterns, depending on number and person of the subject, some languages also have
agreement in gender. For Latin, we would have to write down six different rules just to
account for the present tense. This approach therefore does not get us very far and is
rather unsatisfying, because it misses a generalization that we can descriptively capture
by saying that subject and verb have to agree. Thus, we will say that there is only one
rule, namely

(3.11) V0 → NP ⊕ V1

and that the complications are a kind of syntactic Sandhi, which is referred to as agree-
ment. To factor out the effect of agreement from the rules of syntax we need to factor
it out already at the level of categories. Analysing syntactic categories as attribute-value
structures, we can posit a special feature called  which allows for features , 
and . The first takes the values 1, 2, 3, the second masc, fem, neut and the third sing
and plu. This is enough to account for Indo-European languages. The rule (3.11) can then
be written with the help of a variable ranging over feature structures as follows

(3.12) V0 → NP u [ : α] ⊕ V1 u [ : α]

These rules have to be read in the following way. Any specific rule falling under this

2From the perspective of our approach we would not notice this as such, but see that there are categories
a, b, c, d such that a can combine with c, not with d, and b can combine with d but not with c. The
sketch here is outlined with hindsight, knowing that a and b are two forms of nouns, c and d two forms of
intransitive verbs.
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scheme for α = > must not violate (3.12) for any more restricted value α can be assigned
to one of the items. This interpretation has to be kept in mind especially when more com-
plex cases are considered. Thus if we have a subject which is 3rd person plural feminine,
then α can be instantiated to that combination rather than >, and the verb must then dis-
play the correct form under that value for α. Because of the limited range of values that α
can assume, this will only account for the agreement facts, not more. Notice also that this
rule is much more than just a rule of English; inasmuch as the facts about agreement are
correct it accounts for all Indo-European languages and many more. The difference being
that not all languages display the same type of distinctions, so that the range of values of
α has to be adapted. In French, there is no neuter gender, just masculine and femine. In
English, a verb shows no gender distinctions, but none of this fact casts doubt on the valid-
ity of (3.12). Notice that it requires that noun phrases have a person–feature instantiated
although a noun phrase cannot choose which person it has. Nevertheless, a classification
of noun phrases into first, second and third person exists, otherwise the agreement feature
does not make sense.

We can continue in this vein; agreement between adjective and modified noun are
accounted for by positing the following rule.

(3.13) N u [ : α]→ Adj u [ : α] ⊕ N u [ : α]

However, two things must be noted. To account for the fact that a modified noun has the
same agreement features than the noun itself, we must write N u [ : α] both into the
daughter and into the mother node. This is in contrast to the first rule where no agreement
features have been annotated for V0. Intuitively, this is because in the latter case it is the
fact that agreement features have done their job, because they are features that mediate
subject-verb agreement, so when the subject and verb are in contact, they can do that
among themselves and the features are free at the mother node. In the case of adjective
and noun we can better view them as features of cohesion, showing that this adjective
modifies this noun and not another. We can also view as a mere consequence of the
fact that adjectives are adjuncts. We will return to this point below. Notice that in the
case of subject and verb agreeing we can view agreement features on a sentence, which
appears here as V0, is merely an artefact of the classificatory system. A sentence shows
no agreement distinction, and that is all. 3 It can be demonstrated that sentences if they
appear as subject in another sentence, are invariably 3rd person singular. (3.14) and (3.15)
gives evidence.

3The reader should also be alert to the fact that the discussion makes sense only if we abstract away from
the terminology of agreement. If we talk about agreement, then it is a question of who agrees with whom.
The fact that agreement features are primarily subject verb agreement and secondarily adjective-modified
noun agreement features gives an indication as to how to set up the rules. Had we given the features a
different name, then it would be not so clear as to how the rules should look like. The puzzled reader
might picture himself exposed to a new language, where there is some systematic form of agreement. The
question is whether he should call it subject-verb agreement. If so, the procedure for writing the rules is
more or less clear. But the question is whether the analysis is correct. If not, the terminology is misleading,
not the rules per se.
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(3.14) [To betray his friends like this] is/∗are a shame.
(3.15) [That Fred betrays his friends like this] is/∗are a shame.

A simple sentence like (3.7) cannot appear in this position, however, so the evidence is
not compelling.

However, we must also look at all the other constitution rules and see how they are
set up. This is also a very time consuming procedure, and it seems that it too is amenable
to a more succinct formulation. Recall in this connection the notion of an adjunct. X
is an adjunct if whenever Y is of category C, then so is X ⊕ Y . In other words, if we
know that adjectives are adjuncts 4 then from the category of the sister we can predict the
category of the mother (or conversely). In fact, an adjunction induces a strong form of
agreement here, namely complete identity. All that needs to be specified is the category
of the modified sister. Thus, we have two basic syntactic relations at work, selection and
agreement. We can say as we did in phonology, that being an adjective governs to the
right being a noun (in English). In semantical terms, we will say that the adjective selects
a the noun. Since there are more types of adjuncts, verbal adjuncts alias adverbs, we
can separate here a kind of rule skeleton involving only the notion of an adjunct from its
specific instances where we have to talk about selection. The general rules is this.

(3.14) β→ [ : adjunct] ⊕ β β→ β ⊕ [ : adjunct]

β is a variable ranging over feature structures. Here,  is a new feature, called the
centricity feature, which has four values, one of which is adjunct. As it stands, the rule is
true by definition and adjunct, and therefore a universal fact of language, that is, it holds in
no matter what language we pick. The only question is whether a word or constituent is an
adjunct or not in the sense of the definition. Notice also that this pair of rules is equivalent
with the definition of an adjunct (assuming binary branching), so that positing the rules
(3.14) as universal rules is not nonsensical because there is no independent definition of
an adjunct other than what is encoded in the rules. We can still abstract further from these
two rules by writing down a single rule which does not state anything about the order of
the daughters. The order between the daughters can then either be set within a language
and universally for all categories or individualised to categories, or even individualized to
words.

Now we turn to the centricity rules. To understand the intuition behind them it is
necessary to unfold the nature of the syntactic nexus. Let us assume, as is standard in
many syntactic theories but of marginal importance for the argument, that we have bi-
nary branching trees in syntax. Then, in contrast to phonology, the nexus involves three
items, two daughters and a mother. Recall that the phonological nexus just involved two
elements, namely two immediately adjacent phonemes. In syntax, however, matters are
different because we have trees. Rather than a binary relation, the syntactic nexus is a
ternary relation between nodes of a tree. In phrase structure rules this is directly encoded

4They are not necessarily. But let us assume that for the moment.
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because it simply consists of a list of admissible local trees. And local trees constitute
the syntactic nexus. In categorial grammar this is encoded by taking one daughter as the
argument, the other as the function. Then the category of the function is α ( β which
says that α is the category of its sister and β the category of its mother. If we allow items
to carry a list of categorial types 5 then we can simply encode all structural relations that
an item can engage in. In other words, the system of categorial grammar is only seem-
ingly specific. Rather than classifiy the possible syntactic nexus qua ternary relation, it
encodes the third argument, called functor via the category of the argument and the re-
sult. The functor carries the label if-you-are-an-α-we-will-together-be-a-β, nothing more.
However, the notion of an adjunct is a different one. It says that the mother and the head
are of same category. In categorial terms it will be of category α ( α for certain α. But
knowing that it is an adjunct and selects an α would be enough to know that it is of this
type. Thus, the idea of a vertical encoding of categories has become more widespread.
The idea is that in each nexus there is a mother node and two daughters, one of them
the head. The head more or less determines the category of its mother. We say that
the head projects its category. Projection is thus the vertical relation between head and
mother, while selection is generally the horizontal relation. How projection works will
be explained soon. If the non-head is an adjunct then the mother is of same category as
the head. The case remains, however, when the non-head is not an adjunct. There is a
case that we have already met, namely the case of a complement. A transitive verb takes
two complements, a direct object and a subject. 6 A transitive verb plus a direct object is
an intransitive verb. We have coded this before by numbers. We had a rough distinction
between sentence (V0), intransitive verb (V1), transitive verb (V2) and ditransitive verbs
(V3). There was a general rule of nexus. If the head daughter is Vi+1 then the mother is Vi.
This is, however, too rough because we have to specify also the category of complements
that the verbs select, in particular their case. Thus, given the category V0 as a primitive,
calling it V , we can write V1 and V2 as

(3.15) V1 := V u
[
 :

[
np
 : nom

]]

(3.16) V2 := V u

 :


np
 : acc

 :
[

np
 : nom

]



In other words, we have used  to write down in specific detail what complements
the verb needs. We will then simply posit a rule that says that the mother is what the head

5In terms of categorial grammar, we say that the functor is polymorphous. Polymorphism is unavoidable
in categorial grammar unless one opts for an underspecification approach and the use of variables. However,
then the categorial approach gets close to undistinguishable from a phrase structure account such as 
and .

6The reader is asked to excuse me for calling the subject a complement of the verb. This is an artefact
of the terminology set up here, which needs to be adjusted at certain places to accommodate for the finer
distinctions. To the extent that the finite verb needs a subject, calling the latter a complement is justified.
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daughter is minus the complement that the daughter selected. To encode this we need,
finally, the notion of a category, as used in  theory. This is a raw classification, ab-
stracting away from morphological features, and complement selection. We will have to
be content at the moment with a list; the categories are noun, verb, adjective, preposition,
complementizer. More may follow. The category is the value of a feature . Then the
following rules are correct by virtue of the definitions.

(3.17)
[
 : α
 : β

]
→ γ ⊕

[
 : head
 : γ u [ : β]

]
(3.18)

[
 : α
 : β

]
→

[
 : head
 : γ u [ : β]

]
⊕ γ

However, in this formulation the rule is not quite correct. If we want to block the com-
plement to pass on its own features, then it must not smuggle its selectional properties
through the projection properties of the head. In the other hand, it is a fact that we must
satisfy selection properties; thus we must assume the following additional axiom.

(3.19) [ : comp] v ¬[ : >]

The mechanism of this encoding is as follows. Each basic category is allowed to bear a
list of complements, and it can combine with them in a fixed order. This is an advance
over categorial grammar insofar as the rule schema is more general. However, free word
order is still not accounted for. But let us continue for the moment with the development
of abstract phrase structure until we pick up the matter again.

What we have achieved is an analysis of the syntactic categories into what we might
characterize as the bare categories, plus morphologically marked distinctions, such as
case, gender, number, tense, mood, and more; and finally, a list for subcategorization
analogous to the -list used in . This allows for potentially infinitely many
syntactic categories. Without the subcategorization list, however, there would be finitely
many. It is assumed that a category cannot select for arbitrarily specific complements. In
fact, what it cannot select is the selection properties of its complement, by the assumption
that what it selects is the complement and we have just assumed that a complement when
selected must have no unsaturated selection features. This is a strong restriction, but still
does not restrict the possibilities to finitely many. But, as a quick inspection of a lexicon
makes clear it is plausible that the subcategorization frame is not unrestricted. It must
be. however, on the basis that we have a finite lexicon, because each word has a finite
subcategorization frame. But this is not a satisfactory answer, because we want to know
whether there are a priori limits to the length of such a list. In general it seems that the
subcategorization lists do not exceed a certain length, which may either be thought of as
given by the number of different morphological differences a language can make (with a
restriction of two per type, so that two accusative objects would be possible, but not three)
or restricted by the number of different primitive semantic arguments that can be specified
(with a flat limit of one per type). The first is a restriction that derives for example from
case marking properties, the latter from θ-marking properties, to use the terminology of
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.

Finally, we come to the distinction between lexical categories and phrasal categories.
This will be an opportunity to give an exposition of X-bar-syntax, by now a widely ac-
cepted skeleton of syntactic phrase structure. A category is phrasal if it takes no comple-
ments, only adjuncts. A category is lexical if it is a leaf which has taken only adjuncts.
This might seem like an odd terminology, because it does not define these notions intrin-
sically, only with respect to a tree. But notice that the intrinsic categorization encodes part
of the structure in which the element may occur. Given a leaf x in a tree which has basic
category α, e. g. the noun destruction. It selects a complement. Therefore, it will always
occur in a local tree with a complement, say

(3.20) destruction of the city

It can also take any number of adjuncts as in

(3.21) violent, brutal, unprecedented destruction of the city

Each of the constituents that contain the word destruction has the basic category noun.
This is because these constituents form a chain such that each immediate subcontituent is
the head of the next larger constituent. We say that these constituents form the projection
line of the word destruction. We say that the entire constituent is the phrase, of which
destruction is the lexical head, and that each projection between them is an intermediate
projection. This has motivated to make a threefold distinction into phrasal levels, namely
0 for lexical, 1 for intermediate and 2 for phrasal level. From a categorial viewpoint, this
cannot work as indicated, however. Roughly speaking, a verb with three arguments, say
give must project four different levels, depending on the subcategorization frame.

(3.22)

gives V3

gives a book V2

gives a book to William V1

The president gives a book to William. V0

Standard X-bar-syntax has only the two ingredients, the basic category feature  and the
level feature . The first has the basic categories as values, the latter the levels 0,1,2. A
category is lexical if it of level 0 and phrasal if it is of level 2. The universal rule skeleton
is this.

(3.23)
[
 : α
 : i + 1

]
→

[
 : α
 : i t i + 1

]
⊕

[
 : β
 : 2

]
(3.23)

[
 : α
 : i + 1

]
→

[
 : β
 : 2

]
⊕

[
 : α
 : i t i + 1

]
Here, i ∈ {0, 1, 2}. Usually one writes α for [ : α]u [ : 1] and α for [ : α]u [ :
2]. (3.32) and (3.33) are the X-bar-skeleton. Commonly there are also unary rules, with
the non-head omitted. However, we will assume that there are no such rules. This causes
some trouble for the equation lexical = level zero, but gives more elegance to the system.
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We assume that Peter is a noun phrase, and not of level zero. Likewise, intransitive verbs
are to analysed as intermediate level verb projections, since they take only one argument,
a subject. Some words can be either zero level or first level, e. g. words like talk, which
have optional arguments. The centricity roles can be read off these rules with one impor-
tant exception, namely that we assume β , α in the rule skeleton

(3.24) α → β ⊕ α, α → β ⊕ α

If we ban these rules, then centricity roles are fully characterized as relational properties
within the X-bar-schemes. We have four roles, head, complement, specifier and adjunct.
Every rules expands into a head and a nonhead. In other words, we assume the following
basic scheme.

(3.25) > → [ : head] ⊕ [ : ¬head]
(3.26) > → [ : ¬head] ⊕ [ : head]

Finally, we say that the head projects its bar level iff the nonhead is an adjunct, that the
nonhead is a complement iff it is not adjunct and its sister head is lexical, and that a non-
head is a it specifier if it is not an adjunct and the head sister is intermediate. To put that
differently, the basic category of the mother is that of its head daughter, while the level
has two possibilities. It can remain the same, in which case the nonhead is an adjunct, or
it can go one up. In latter case it can go from 0 to 1, that is when we have a complement,
or it can go from 1 to 2, and then we have a specifier. 7

Although many people still adhere to X-bar-syntax, it is problematic in many respects
and has been revised in one or the other form. In view of the evidence presented above
it is not explainable why there should be a single specifier and a single complement.
The arguments in favour of that are quite complex and will not be presented here but
do not stand up to full scrutiny. Moreover, why should the schema (3.24) be banned?
It seems more likely that the centricity roles are more fundamental than the bar levels
and that the latter are recovered from the syntactic structure. The roles of complement
and specifier are then properties that should be derived from the properties of the sister
head. For example, we could argue that we two kinds of complements, the specifier,
which is the complement of a head which subcategorizes for only one complement, so
that the mother is a phrase, and the non-specifiers, which are all other complements. One
reason for positing a specifier is that it takes part in agreement while the complement
does not. A review of Indo-European languages shows that for subject-verb-agreement
this is indeed so, taking the view that the subject is the outermost complement of the
verb. Unfortunately, this does not account for adjective-noun agreement, and leaves out
of consideration languages in which there is agreement between the verb and its subject

7Notice that we do admit zero-level adjuncts. Though this traditionally not viewed as part of X-bar-
syntax, because the latter is in  terms only a property of D-structure, such a line of argumentation is not
open to us. If it should turn out that there is head-to-head movement that we can document by constituency
tests (e. g. Dutch verb clusters) then the possibility of zero-level head adjunction is a surface fact and
therefore part of the scheme, for we are taking surface structure as the basic criterion.
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and it object. Basque is such a language.

The hardest problem for the universality of phrase-structure rules from X-bar-syntax
is posed by coordination. It is the same problem that categorial grammar has with coor-
dination. To account for the fact that the coordination compound is of identical category
(more or less) than the individual elements left and right we must introduce variables into
syntactic types or else admit massive polymorphism. Dito with X-bar-syntax. However, it
is not unplausible to view coordination as a scheme on top of standard syntax, as a set of
metagrammatical schemes that are valid throughout languages no matter what particular
grammatical rules or rule schemes they have. The most common schemes are (3.27) and
(3.28) with the coordinating element repeated throughout or showing up only once, at
the end. The other examples (3.29) and (3.30) though not ungrammatical as such, have a
special meaning, and can be counted as ungrammatical with the intended meaning. 8

(3.27) Peter, William, Theodor and the firemen
(3.28) Peter and William and Theodor and the firemen
(3.29) Peter and William, Theodor and the firemen
(3.30) Peter, William and Theodor and the firemen

These facts can be acocunted for by very basic rules. We will not do that here since the
facts at hand are too simple to allow for significant generalizations. Notice, however, that
coordination points at a significant different between  and . We see that the indi-
vidual conjuncts must agree in case (this is not so clearly seen in English, but holds for
example in Latin, Finnish and German) but they need not at all agree in their -feature.
However, there is nevertheless a regime for calculating the -feature of the mother
given the values for the daughters. This is a ternary relation between two daughters and a
mother, and – as a rule – there is no possibility to reduce it to some binary relations. That
means that coordination is principally of different type as the other nexus because the lat-
ter can be reduced to some binary relations, namely head-sister and head-mother modulo
very basic rule schemata, the regime of centrictity roles, or else the basic X-bar-skeleton.
Coordination is an intricate affair, to which we will devote our attention in a later chapter.

3.3 Movement, Part I: Adjunction

The rule skeleta of the previous section account for a number of syntactic phenomena,
but they are still deficient. First of all, the problem of free word order is still not solved
and secondly there are phenomena that can be quite frustrating for someone who tries to
give a phrase structure account. Z H was the first to consider the idea that free

8Even under the intended interpretation they would not be counted as ungrammatical by a normal
speaker, because the meanings of these alternative readings differ minimally, so that they will cause a
minor violation at the interpretative level. Nothing hinges on the assumption of ungrammaticality, since
this is only an illustration.
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word order is not the effect of a phrase structure generation process but that the phrase
structure rules define only one (or perhaps a small number) of the structures, and that the
others are derived from this structure by means of what he called transformation. We will
not make an attempt at retracing the original ideas but follow a path of thinking that has
evolved during the last decades, due to N C and many others. In a language
like German we observe that the order of the arguments a verb takes is free; the only
restriction which applies is that the verb must be in final position, at least in subordinate
clauses. What happens in main clauses will be considered below. An immediate solution
that comes to mind is use the so-called ID/LP-format of rules, one which separates the
part that determines the constituency from the that determines the linearization. We can
simply say that a V3 projects the following constituent

(3.34) V0 → {V3,NP1,NP2,NP3}

and state that verbal elements follow nouns. We know, however, that this does not gener-
ate the right constituents. We have given semantic arguments, but syntactic ones can be
given as well. The boundary of a constituent can be found by considering where adjuncts
can be placed. Since the constituents in question are verbal, consider the positions where
adverbs can be placed.

(3.35)
..., daß 1 Johannes 2 seiner Freundin 3 sein Auto 4 geliehen hat.
..., that John to his girl-friend his car lent has.

In fact, at all positions 1 – 4, and only those, adverbs can be inserted, and in any number,
such as nach langem Zögern (after long hesitation), gestern (yesterday) and ausnahms-
weise (exceptionally ). Moreover, these adverbs can be spread over these positions. And
this does not depend on the order of the arguments.

(3.36) ..., daß gestern Johannes seiner Freundin nach langem Zögern sein Auto
ausnahmsweise geliehen hat.

(3.37) ..., daß gestern seiner Freundin nach langem Zögern Johannes sein Auto
ausnahmsweise geliehen hat.

(3.38) ..., daß gestern sein Auto nach langem Zögern Johannes seiner Freundin
ausnahmsweise geliehen hat.

We have to conclude that rather than one quaternary rule we have several binary rules. If
we want to account for this by general phrase structure rule schemes we can do this by
positing not a list of arguments that the verb is looking for, but a set, and that each time
it finds a complement, the corresponding item in the set will be removed. This will make
sure that the verb can have its arguments in any order, one by one. Nevertheless, there are
several things that can be noted. It is a fact that one of the serializations of the arguments
is felt to be normal, while others are more and more marked, though not ungrammatical.
Thus there is a default order of arguments. This can be argued to be a pragmatic effect
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depending on the nature of the arguments. But what should be the basis on which a nor-
mal word order is selected? It is not case, as is often assumed in the generative literature.
(Haider, 1993) gives the following pair of verbs, which is a clear conterexample.

(3.37) zumuten  >  >  (engl. to ask something of someone)
(3.38) aussetzen  >  >  (engl. expose someone to something)

Rather, we see that there is a natural likeness from a semantic point of view of the argu-
ment that occupy analogous positions. The patient appears in dative case with zumuten,
while it appears in the accusative case with aussetzen. Notice that English word order is
morphologically determined.

There are arguments that show that the alternative word orders are not simply prag-
matically marked but also let the original word shine through, as it were. Such arguments
come from quantifier scope. Notice that normally, the quantifiers have scope over each
other in the same way as they appear naturally in the string. Each quantifier takes scope
over the next. This is the preferred reading. However, some sentences allow for a differ-
ent reading, one in which the quantifiers do not take scope over each other the way their
alignment dictates. Consider the following sentences.

(3.39) Mindestens ein Stück von Stockhausen lobte jeder Kritiker.
At least one piece by Stockhausen every critic praised.

(3.40) Mindestens ein Stück von Stockhausen wurde von jedem Kritiker gelobt.
At least one piece by Stockhausen has been praised by every critic.

(3.41) Mindestens ein Kritiker lobte jedes Stück von Stockhausen.
At least one critic praised every piece by Stockhausen.

(3.42) Von mindestens einem Kritiker wurde jedes Stück von Stockhausen gelobt.
By at least one critic every piece by Stockhausen has been praised.

In each of the sentences there is a universal quantifier in the scope of an existential, so
we have a statement of the form (∃x)(∀y)φ(x, y). Thus we should be able to pick some
x such that for all y holds φ(x, y). In the first two sentences we should be able to pick
out a piece of music by Stockhausen such that it has been praised by every critic. In
the second pair of sentences we must be able to pick out a critic who has praised all
pieces by Stockhausen. This is the normal reading. Now some of these sentences allow
for a different order of quantification, one in which rather than (∃x)(∀y)φ(x, y) we have
(∀y)(∃x)φ(x, y) is true. To test this reading, consider that there has been a performance
of Sternklang, Inori and Alphabet für Liège. Let there be three newspapers, in which the
respective critic of the newspaper reports about this concert. Now let the critics be Jones,
Smith, and Anderson. Suppose that Jones praised Inori but not the others, Smith praised
Sternenklänge but could not find a good word for Inori, while finally Anderson adored
Alphabet für Liège, while he disapproved of Sternenklänge. Then the question is whether
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we would still accept (3.39) or (3.40), even though under the normal reading they would
be false. The contention is that we do accept (3.39), and that (3.40) we would accept with
difficulty. 9 Now turn to (3.41) and (3.42). Under the normal reading they would be false,
since no critic was full of praise for all the pieces, just some. On the other hand, under the
reading with the order of the quantifiers reversed, they would be true. Here, the contention
is that we would accept (3.42), but (3.41) only with difficulty. The explanation is in both
cases the same. (3.40) and (3.41) are the natural serializations. (3.39) differs from (3.40)
in that the object precedes the subject; (3.42) differs from (3.41) in that the by-phrase
precedes the subject. If the different serializations are just some pragmatic variants, why
is it that the quantifiers show some tendency to fall back into their original order?

What seems to be more likely is that there is only one set of phrase structure rules
rule that generates the basic, default serialization and that the others are derived form that
order by different means. Thus we may stick to the construction of the previous section,
with the verb having a stack of selected items, which it may discharge one by one. This
will inevitably generate a single word order, unless we assume the verb to be polymor-
phous. However, assume that there is a general process which is allowed to change the
order of the arguments by moving them around. Then this would take care of the other
word orders, and we would have an additional benefit of an explanation why the other
word orders are marked; we could namely say that their markedness is the effect of a
larger number of steps needed to generate them. However, as much as one would like to
make such claims, they are very hard to demonstrate, and so we will use some ‘harder’
facts. One of them is the quantifier scopes; if is true that the quantifiers occupied the nat-
ural order in the course of derivation, then this could be a reference point for the marked
readings other than the default ones. If we have a derived structure, then two quanti-
fier scopes are possible, but if we have the the normal serialization we can get only one
type of relative quantifier scopes, as the data above showed. So we have arguments for a
two-layered process of sentences generation. First, we have a generation via phrase struc-
ture rules, and on top of that another process of rearrangement, called transformational
component. The additional tranformational component opens a very promising view on
cross-language variation. Unlike before, we can now assume that German geben and En-
glish give are of identical syntactical category. The different behaviour of the two can be
explained by a conjuration of different factors. First, English has strict SVO order, while
German has SOV order (in the subordinate clause) so that the basic serializations are dif-
ferent. 10 The second factor is the relative movability of complements. We can assume
for example that German verbal complements are free to move leftward, while English

9These judgements also depend on the intonation contour one assumes for these sentences. The con-
tention here is that with normal intonational contour, (3.39) allows for the alternate quantifier scopes, while
(3.40) does not.

10Here an approach via an ID/LP-factorization of rules is plausible. We assume that the lexical entry of
the verb specifies only the complement, not the order in which it stands with respect to this complement.
In generative linguistics this has led to the claim that there is a parametric difference between language,
depending on whether the verb selects its direct object to the right and whether it selects it to the left.
Although this has fallen into disrepute, it still is a convenient tool in cross-language classification.
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complements are subject to heavy restrictions. We will not spell out these matters in de-
tail. Instead, let us review some of the facts noted above to get an idea of how movement
actually works. The crux is that we observe a simple effect of movement, namely that it
changes word order, but since our structures are not simply strings, we must also say what
happens to the structure when we have movement. As we have seen with adverb place-
ment, movement removes a constituent and creates another. For example, if we start from
the basic structure SOV and move the object past the subject, we get OSV with the con-
stituent structure (O(SV)). Originally, it has been assumed that movement means erasure
of the constituent from where it had been and insertion into the new place. But a different
view has turned out to square better with the theory. For we want the structure that has
been obtained by movement to comply with the basic rule format of X-bar-theory. Since
we have obtained X-bar-syntax on the basis of certain definitions plus evidence over all
constructions of the language, derived or underived, we are compelled to assume that this
is true. Thus, the structure (O(SV)) must conform to X-bar-syntax. But then we are in a
dilemma. If it does conform to X-bar-syntax, then it is a V0, that is, a sentence, and SV a
V1 lacking an object, and V2 is a verb lacking a subject to form a constituent lacking an
object. Thus the verb is polymorphous, after all. But this is exactly what the movement
approach seeks to avoid. To circumvent this problem, we postulate an empty constituent
at the point where the object had been before it moved. This is called a trace. The trace
is phonetically empty, that is, inaudible, but it serves the syntactic purpose of giving the
verb the constituent that it selects for. The trace frees the actual object from its location
requirement by feeding itself to the verb. After that we project the verb phrase as usual.
What remains to be stated are conditions that regulate the relations between the trace and
the constituent it is related to.

(3.43) [ S [ OV ]]{ [ O [ S [ tV ]]]

Notice that there being traces or not, the visible or audible constituents are the same. Now
we have to determine the category of the elements in question. By assumption, the trace
must be of same category as the constituent it replaces. Hence, it is a noun phrase. It is
selected by V2 in the structure and the complex [tV] is a V1. It combines with the subject
to form a V0. Finally, we have to specify the category of the whole structure. Two things
help. The first is the iterability of this movement.

(3.44) [ S [ O [ IV ]]]{ [ I [ S [ O [ tV ]]]{ [ O [ I [ S [ t [ tV ]]]

The second is the fact that adverbs can be placed at all junctures, so that we must assume
that the category of the additional constituents are verbal projections. Since we are at the
phrasal level by the time the verb has found the subject, we must assume that the object
and the indirect object in (3.40) are adjuncts of V0. For by the fact that they are adjuncts,
the category of the mother is that of the head, so we can iterate this process ad libitum.
Second, the verbal character of the head is preserved, so that adverbs can be placed in
between the moved constituent and the head. The movement type that we have described
is known as adjunction, and the particular type of adjunction of arguments of the verb to
the verb phrase as scrambling.
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There is a lot to say about movement, and what there is to be said will fill large parts
of this book. In particular, movement cannot just be the placement of a constituent some-
where else, otherwise phrase structure will be a total chaos. Restrictions have to be put.
We will ignore that aspect of movement for now. Let us ask instead the question of what a
trace is. By definition, it must be a constituent of the same category as the corresponding
moved item. It is a kind of placeholder. We will assume, then, that languages can in prin-
ciple have traces of any category. If a language fails to have traces of a certain category
then there are elements which are not allowed to move – simply because nothing can fill
the gap that they would leave. Moreover, we can ask about the structure of traces. Two
possibilities are plausible. One is that they are just singular constituents without further
structure. The other is to assume that they are structurally isomorphic copies of their
antecedent. To decide between these options is very difficult and largely a question of
elegance in the technical apparatus. For the moment we will adopt the view that they are
singular constituents. The next problem we face is that of interpretation. If we assume
Frege’s principle, then traces can from an interpretive point of view not just be pieces of
ink. After all, the verb selects a complement because it is a function that needs to apply
to an argument. If we feed that argument in form of a trace, then the assumption of a
uniform Frege-map makes it clear that we need to assume some meaning for a trace. In
fact, we assume that traces are variables of the appropriate type. This also saves the type
correspondence; we can still assume that V2 corresponds to a function which will yield
V1 if applied to its argument, and that the latter yields V0, a sentence, if applied to its
argument. Although noun phrases are type raised, we assume here that their traces are
not. 11 Hence, every trace of a noun phrase corresponds to a distinct variable, xi, that we
feed as an argument to the verb. Take for example the verb den Hof machen, to court. The
following is an acceptable sentence with derived word order.

(3.45)
..., daß Sibylle ein Junge von nebenan den Hof macht.
..., that Sibylle a boy next door courts.

We are led to conclude that the constituent der Junge von nebenan den Hof macht is a
verb phrase, so it is not looking for a subject. The subject is present in form of a variable
x0, so that the translation is

(3.46) ∃u.boy-next-door(u) ∧ court(u, x0)

Notice that this is an open formula, since the variable x0 is free. This squares well with
the intuition that the boy next door courts is not yet complete. But now we have to fit in
the object. Originally, the translation of the object noun phrase Sibylle is

(3.47) λPλx.(∃y)[sibylle(y) ∧ (∀z)(sibylle(z)→ y = z) ∧ P(y)(x)].

The semantic type is 〈〈e, 〈e, t〉〉, 〈e, t〉〉, with P being a variable of type 〈e, 〈e, t〉〉 and x, y
variables of type e. However, after extraction Sibylle is a verb-phrase adjunct; since verb

11This is a harmless assumption. If a trace is a variable, then it can also be viewed as function x̂ :
f 7→ f (x), as we have seen. So we might as well view traces as type raised, just like their corresponding
antecedents. However, we will assume that type raising is syntactically triggered and that this trigger is
absent with traces. But nothing hinges on that assumption.
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phrases are sentences, the noun phrase must of semantic type 〈t, t〉, that is, it must be a
sentence adverbial. To see how to get to this adverbial notice that all we need to do to
obtain the intended meaning is to abstract again over the variable x0 in (3.46). For if we
attempt to plug in (3.46) as it is in the denotation of the object noun phrase we obtain a
clash. Thus rather than inserting P, a variable of type 〈e, 〈e, t〉〉, we insert an open formula
containing the variable x0. Moreover, notice that the λ-abstracted subject x has been fed
already, so it does not have to appear here. Thus, finally, the interpretation of Sibylle at
the moment of adjunction is

(3.48) λP.(∃y)[sibylle(y) ∧ (∀z)(sibylle(z)→ z = y) ∧ (λx0.P(x0))(y)]

Internally, we have abstracted over x0. It is at this point that we need to know exactly
which variable has been fed to the verb by the trace. Graphically, this is pictured by giv-
ing the trace an index, in this case the number 0, and giving the moved constituent, in
this case Sibylle the same index, so that we know exactly over which variable to abstract.
Now, if we feed to (3.48) the open sentence (3.46), we obtain the reading that we intend.

(3.49)
(∃y)[sibylle(y) ∧(∀z)(sibylle(z)→ z = y)

∧(∃u)(boy-next-door(u) ∧ court(u, y)]

This sounds satisfactory, but is only the beginning of a long chain of problems. The first
is the fact that we have to propose numerous semantic types for one and the same noun
phrase, depending on whether it is subject or object, whether it is in base position or has
been moved. The second is the proper regime of the variables. The third is that we only
derive the normal quantificational reading, and not the extra readings that are possible in
case there are derived word orders.

The problem of semantic polymorphy is rather worrying for all proponents of cate-
gorial grammar. For it displays a fundamental waekness of the type raising approach. It
may or may not be justified to posit a different semantic type of a direct object than for
a subject, but we must also identify the trigger that helps to raise into these types if we
want to uphold the uniformity of the Frege-map. Naturally, linguists have looked for such
a trigger and have speculated that it might be (morphological or abstract) case. Conse-
quently, we assume that a noun is segmented into stem and a case-morpheme, and the
case morphemes have the following types.

(3.50)  np( ((np( s)( s)
(3.51)  np( (np( (np( s).( .np( s)

Unfortunately, we have seen that it is not possible to identify indirect or direct objects
in German simply by means of case. We are led to conclude that the semantic type of a
noun phrase depends on the type of the verb of which that noun phrase is a complement.
If we want to avoid that, we are led to conclude that we had better given noun phrases a
uniform type and let them initially be arguments of the verb. This is in fact possible; we
can simply treat all overt noun phrases to be not in their original position, but in adjunct
position to the verb. Then they are all of type 〈t, t〉, and their corresponding traces a are
the arguments for the verb. This takes care of the variable handling, and also the type
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uniformity, but now we are back to square one. For now there is no way to distinguish
positions that are derived from those which are not – all positions of overt noun phrases
are derived.

The solution that all noun phrases are in derived positions, one which is assumed to
be true for English in the Minimalist Program of C allows to encode syntactically
two different notions; one is the association of arguments with variable slots in the se-
mantic formula, which is managed through the discharge via function application in the
building of the verb phrase. And the other is the view of a noun phrase as a sentence
adverbial, which is the syntactic reflex of a generalized quantifier with the exception that
a generalized quantifier is of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, corresponding to a relation between
sets. The way that a generalized quantifier yields a sentence adverbial is as follows. We
have the generalized quantifier Q, and two properties, φ(x) and ψ(x). Then Qx(φ(x), ψ(x))
is a sentence. Now, the denotation of a noun phrase carrying the index i is

(3.52) Qx(φ(x), (λxi.ψ)(x))

This gets the variable regime right; we abstract over xi in ψ. Because ψ is a sentence and
since it contains the trace ti, the variable xi is free, and we can meaningfully abstract over
it.

The last problem is the hardest; assuming Frege’s principle there is only one trans-
lation per syntactic structure. Thus, if one sentence allows different interpretations we
must posit different syntactic structures with identical phonemic translation. To account
for this, it has been argued that quantifiers do not anyway exhibit their relative scopes
on surface structure and that they have to move even higher until their proper locus is
reached. We will see later why this is reasonable. For now let us simply note that we
can also interpret the different meanings as evidence of the fact that sometimes only the
phonetic content moves, while the logical content (the one that interests the Frege-map)
stays in situ.

3.4 Movement, Part II: Substitution

In this chapter we will review some classical facts about movement of so-called wh-
phrases. The evidence for movement is more clear cut perhaps than in the case that
we considered before, and is standardly used as prime evidence. It seems to me, however,
that the basic word order is the most fundamental issue, and so I treated it first. Any-
way, wh-phrases show different behaviour, and we will be led to conclude that the type
of movement is different in that they do not move into adjunct position. Let us give the
evidence.

English, otherwise a strict SVO language, requires the object to move at the beginning
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of the sentence if it is a wh-phrase. Thus we have both (3.53) and (3.54).

(3.53) Who is visiting you?
(3.54) Whom are you visiting?

Whereas (3.53) conforms to the usual sentence structure, (3.54) is out if the wh-phrase is
replaced by a simple noun phrase such as my friend in a standard assertive sentence. If
we assume the model of discharge of last section there is no question that the wh-phrase
originates in the verb phrase and gets moved to the front. The question then is whether the
result of this movement is the same as in the fronting of a direct object in German. This
would be the case e. g. if we assume for English that it has wh-traces but not np-traces. If
this is so then we conclude that if we have several noun phrases, all of them can be moved
to the front of the sentence. But this is not so; look at the following data.

(3.55) About what1 are you talking to him t1?
(3.56) To whom1 are you talking t1 about this?
(3.57) ∗To whom1 about what2 are you talking t1 t2?
(3.58) ∗Are you talking to whom about him?
(3.59) ∗Are you talking to him about what?
(3.60) ∗Are you talking to whom about what?
(3.61) You are talking to whom about him?
(3.62) You are talking to him about what?
(3.63) You are talking to whom about what?

We see from (3.55) – (3.57), that of the wh-phrases only one can be fronted, and it must
be if the verb precedes the subject ((3.58) to (3.60)), while it need not when the subject
precedes the verb ((3.61) to (3.63), but only if used as an echo-question). It seems that
with a three place verb we have not three, but four places to put arguments.

(3.64) 1 are 2 talking 3 4

Assuming that the verb discharges its arguments in the canonical way, the positions 2, 3
and 4 have a natural explanation. But 1 is a new position, not projected by the verb. It
is not an adjunct position to the verb, otherwise we assume that the process is iterable.
Hence, we are led to conclude that the position is prefabricated by the sentence structure.
Indeed, the verb are is a two place verb and so positing the structure in (3.65) solves the
riddle.

(3.65) 1 are [2 talking 3 4]

Now, the arguments originate as 2, 3 and 4. The subject (2) will move to 1 unless there is
a wh-phrase, which will override this and move itself to 1. The details of this procedure
go beyond the present interests. Moreover, we could have produced the same argument
with the construction do ... talk, the normal way to produce questions from a sentence.
The evidence points into the same direction; wh-phrases are not intrinsically forced to
move, but one of them has to. The facts are the same in German.
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(3.66) Ich frage mich, wer dies gesehen hat.
I wonder, who this has seen.

(3.67) ∗Ich frage mich, dies wer gesehen hat.
I wonder, this who has seen.

(3.68) Ich frage mich, was er gesehen hat.
I wonder, what he has seen.

(3.69) ∗Ich frage mich, er was gesehen hat.
I wonder, he what has seen.

(3.70) Ich frage mich, wer was gesehen hat.
I wonder, who what has seen.

(3.71) Ich frage mich, was wer gesehen hat.
I wonder, what who has seen.

In view of the fact that we have free order, this is strong evidence that in questions there
must be a special position which can and must be occupied by a wh-phrase. The precise
determination of that position requires long argumentation. However, we can show quite
clearly that this position cannot be inside the verb phrase. For if so, adverbs would be
allowed to precede the leftmost wh-phrase. But this is contrary to fact.

(3.72) ∗Ich frage mich, zuerst wer dies gesehen hat.
I wonder, for the first time who this has seen.

(3.73) Ich frage mich, wer zuerst dies gesehen hat.
I wonder, who for the first time this has seen.

(3.74) Ich sagte ihm, daß zuerst Einstein dies gesehen hatte.
I told him, that was first Einstein to see this.

(3.75) Ich sagte ihm, daß Einstein zuerst dies gesehen hatte.
I told him, that Einstein was the first to see this.

To cut a long story short it is now a wide consensus that a sentence is not equal to a V0, but
that the V0 is the complement of a new head different of a verb. This head projects a phrase
with head, along with a complement and a specifier, and it is the specifier position that
the fronted wh-phrase occupies. The nature of the head is difficult to determine and has
caused some concern. It is now widely assumed correct that this head is a complementizer.
The complementizer is normally not visible, but there are overt complementizers such as
that and whether. Complementizers are what is called functional elements. Functional
elements, or also called closed class elements, are of a quite restricted and invariable
number and serve largely syntactical purposes. Nevertheless, they do have a meaning. A
complementizer is the locus of illocutionary force. It determines whether the sentence is
a statement, or a question or a promise etc. Thus, while the V0 has the semantic type of a
proposition (a thing which has a truth value), a sentence must have the semantic type of
an utterance, which is roughly a proposition endowed with a force by the speaker.
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With questions we do not have a clear semantic intuition as to what they mean, that is
to say, logicians have not looked at questions as hard as they have been looking at asser-
tions (or propositions, in fact) so that up to now we do not know well enough what they
mean. Therefore, only a rough solution can be given here. First, let us take our initial
examples.

(3.76) Who is visiting you?
(3.77) Whom are you visiting?

In each case the question is an implicit statement of the speakers ignorance about a certain
state-of-affairs and a wish on behalf of the adressee to tell him what he knows about that
state-of-affairs. The question is put by using an open proposition. 12 Let φ(x) be an open
proposition. Then denote by ?x.φ(x) the question for which x does φ(x) hold?. In the first
example φ(x) is the open proposition x is visiting you and in the second example it is you
are visiting x. Seen this way, the question operator ? functions just like a quantifier. Un-
like who, which is a generalized quantifier rather than a quantifier. In its case the question
operator ? must be a generalized quantifier acting in an analogous way. ?x.(φ(x), ψ(x))
will denote the question which x which are φ are also ψ?. The answer to such a question
is a list, containing all those φers which are ψers, according to the addressee. But there
are important differences. A question operator cannot be iterated in the same way as an
ordinary quantifier. When it is, it means something totally different. The reason is roughly
that we can have per sentence only one force. Consider

(3.78) Who is visiting whom?

The speaker is not aware of which people visit which people, and so he puts this as an
open proposition. The appropriate answer is not a list of people who were visiting some-
one plus a list of people who have been visited, but a list of pairs of people 〈x, y〉 such that
x is visiting y. From a logical point of view a more accurate translation of (3.78) is

(3.79) ?〈x, y〉.visiting(x, y)

It is conceivable that there are ways to arrive at this translation by closer inspection of
what the correct semantics of questions is, so that it would turn out to be equivalent to

(3.80) (?x)(?y)visiting(x, y)

But this is only speculation for the moment. The fact that multiple wh-phrases give rise to
a single question, asking for a list of tuples, and not separate lists, has led to the concep-
tion that wh-phrases all eventually move together into a single wh-constituent marking the
objects that are being asked. For notice that wh-phrases do not display their scope at the
surface and neither can their original, underived position tell us about it. Rather, they all
have a common scope, the main clause – unless we are talking about embedded questions.
To account for that, something similar to the in situ interpretation of quantified phrases
has been invented. It is assumed that the reason a wh-phrase can take such a wide scope
is that at one stage it has really been there. In the case of questions, however, this position

12Yes-No-questions are left out of consideration here.
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must be leftward of the overt phrase. The problem is that the phrase has never been there
before. Thus it was claimed that after being positioned for surface structure the phrase
moves up from its surface position to that position where can take its natural scope. When
it is there, the structure thus obtained is called the logical form, abbreviated . It should
not be confused with the translation into logic that we are using here. The introduction
of  has led to a three-stage model of , also implicit in the Minimalist Program. The
initial stage, called -structure is the sentence structure conforming to the selectional re-
strictions, projected mainly by the latter. D-structure is generated by the context-free base
component called X-bar syntax. After -structure has been generated, the elements start
moving around. At a certain moment the arrangement is spelled out, that is, the words
have reached the relative positions that we can see or hear, that is when we have reached
-structure. The -structure of the sentence is passed on to the phonological system for
pronounciation. However, this is not the end of the movements. For now the words have
to move to find their respective scopes. Only when that is achieved, the derivation stops,
and we are at .

(3.81) -structure

 

-structure
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3.5 Movement, Part III: Head Movement

The types of movement transformation that we have considered in the previous two sec-
tions have a lot in common. First, the constituent that is moved is an entire phrase, and
second the landing site strictly c-commands the site of the trace. Here, a node x strictly c-
commands a node y in a tree if neither dominates the other, and the mother of x dominates
y. 13 The difference between them is that substitution is movement into a position that
must be there for structural reasons, such as the specifier of the complementizer phrase
while adjunction movement was into a position which does not have to be there and can
be added in any number, i. e. into an adjunct position. The typology of movement oper-
ations is not complete. There is one very special type of movement that still needs to be
added, namely head movement. A spectacular case of head movement is verb movement
in Germanic languages. What we find (except in English) is that in the subordinate clause

13If x does not dominate y then x is not the root, and so there is a mother of x.
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the verb must occupy the final position while in the main clause it appears as the second
constituent.

(3.82) Ich weiß, daß er den Präsidenten heute tri�t.
I know that he the president today will meet.

(3.83) Heute tri�t er den Präsidenten.
Today he will meet the president.

Because of this one is initially inclined to classify German as a SVO language. Moreover,
it is not a priori clear that the verb should originate at -structure in final position. We
could also say that it originates in second places and must move to the end in subordinate
clauses. Finally, we could deny there to be any uniform -structure position for the verb,
and say that the verb is in second place in main clauses but at the end in subordinate
clauses. Such must be the approach of non-transformational theories such as  or
. Even though this is in principle an unrefutable position, we will see that the facts
point into a different direction.

First of all, note that it is not the verb phrase that moves into second place, but only
the verb carrying finite inflection. Thus it is a different type of movement because what is
moved is not a phrase. To argue for that it is not enough to show that we see only the verb
move while its complements stay behind. We are already in the uncomfortable position
that the complements may have moved themselves before the verb is moved, so that the
verb phrase is already empty with the exception of the head, at least up to the specifier
position. 14 We will present several arguments. First, consider the fact that (3.85) and
(3.86) are not grammatical. This shows that the canonical position of the arguments at
-structure is not between unterschrieben and hat. Nevertheless, in the main clause it
is only hat that moves, not the complex unterschrieben hat. But the latter selects the
complements as a whole, so is a constituent at -structure. However, at surface structure
the two are separated. Since the previous types of movement do not allow to split up
constituents, we must assume that the separation is an effect of movement by one of the
constituents.

(3.84) Es ist erwiesen, daß er den Vertrag unterschrieben hat.

14Here, the distinction between inclusion and exclusion sticks out its head. Adjuncts still belong to the
verb phrase in the sense that there is a projection of the verb that dominates the adjunct. On the other
hand, the part dominated by the least phrasal node above the verb (the mother of the specifier of the verb
phrase) contains the set of constituents that are more closely related to the verb than the adjuncts. We say
the latter form the strong constituent, while the verb phrase in its entirety, with all adjuncts, forms the weak
constituent. The problem here is that if only strong constituents can move then the fact that the complements
may not be there, only their traces, may create the illusion that when the strong verb phrase moves it looks
as if only the verb moves. Our problem is to refute the prima facie possibility that this is what is going
on, and that it is really only the head that moves, and that it leaves behind a verb phrase whose strong
constituent is now completely empty!
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It is proved that he did sign the treaty.
(3.85) ∗Es ist erwiesen, daß er unterschrieben den Vertrag hat.

It is proved that he signed the treaty has.
(3.86) ∗Es ist erwiesen, daß den Vertrag unterschrieben er hat.

Is is proved that the treaty signed he has.
(3.87) Er hat den Vertrag unterschrieben.

He has the treaty signed.
(3.88) Den Vertrag hat er unterschrieben.

The treaty has he signed.
(3.89) ∗Den Vertrag er hat unterschrieben.

The treaty he has signed.

(3.89) repeats the evidence that the verb is really the second constituent of the main clause.
Now we have shown that it cannot be the previous types of movement that generate
these structures, if we uphold the hypothesis that the different structures are generated
via transformations. We have also seen that it is not the verb phrase that moves. Still,
unterschrieben or hat may be analysed as phrases of some sort. Which of the two has
moved? An answer can be obtained by looking at the places of adverbs.

(3.90) 1 Er 2 hat 3 ihr 4 sein Auto 5 geliehen 6.

Only positions 3,4 and 5 allow placement of adverbs. Hence it is there that we must posit
verbal constituents. If we assume the verbal head to be in second position we would have
to assume that at position 2 we have a verbal consituent boundary. But adverbs may not be
placed there. Adverbs are left adjuncts (in subordinate clauses), and so they turn out to be
right adjuncts in the main clause. Thus, assuming the second position to be the underived
position gets us into a series of unexpected complications.

Thus, we conclude that what we have is movement of the verb from the final position
into second position. We will present two rather murky facts about head movement that
support this conclusion. The first is that in main clauses verbs consisting of a preposition
plus a stem like weg+laufen (to run away) or auf+essen (to eat up)15 or a frozen com-
plement plus verb like rad+fahren (to cycle) or maschine+schreiben (to type) split at the
juncture.

(3.91) Er a� seinen Apfel auf.
He eat the apple up.

(3.92) ∗Er aufa� den Apfel.
He eat up the apple.

(3.93) Er schrieb den ganzen Tag maschine. (colloquial)
He typed the whole day.

15But not unter+schreiben, lit. to ‘underwrite’. This verb does not split in this way; see below.
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(3.94) ∗Er maschineschrieb den ganzen Tag.
He typed the whole day.

The split is obligatory as the data shows. Moreover, the verb is at second place, and the
preposition cannot be, likewise with the frozen complement. This is already an uncom-
fortable fact, because in order to explain it properly we have to produce a morphological
analysis. On the other hand it shows that the proper locus of the transformational analysis
is perhaps not the lexical stratum but the morpholexical stratum, that is, both lexotactics
and morphotactics in combination. Be this as it may, if word fragments move there is no
question that they cannot be phrases; they must be heads. 16 Now, there is a small class
of verbs that have a peculiar defect. One of these verbs is uraufführen (to give the first
performance of, to premiere).

(3.95) Er hat diese Symphonie uraufgef�uhrt.
He has given the first performance of this symphony.

(3.96) ∗Er urau��uhrte diese Symphonie.
∗Er au��uhrte diese Symphonie ur.
∗Er f�uhrte diese Symphonie urauf.
He gave the first performance of this symphony.

(3.97) Er diese Symphonie urau��uhren – lächerlich!
He to give the first performance of this symphony – ridiculous!

(3.98) Ich erinnere mich daran, als er diese Symphonie urau��uhrte.
I recall when he gave the first performance of this symphony.

It is at first sight rather hard to say why the sentence (3.95) is fine, but its past tense variant
(3.96) is not. Morphologically, nothing is wrong with uraufführte, as shows (3.98). It can
also not be the fact that it is in a main clause, as shows (3.97). Rather, it seems that
uraufführen is caught between two requirements. Aufführen is a verb that must split in the
way shown above. Thus, in the main clause auf- and führen must be in different positions.
On the other hand, ur- does not want to split. It requires the integrity of the verb. Thus,
because auf- never moves as of these prefixes, and the prefix ur- is stuck with auf- but
needs the verbal head, as a consequence the entire complex cannot move, neither partly
nor as a whole. It is then verbs such as uraufführen which let us exceptionally see where
the element has been at -structure. Ordinarily we must always reckon with the possibility

16Unfortunately, this requires still deeper argumentation. For once we are talking about morphemes and
not lexemes we have to offer an analysis of that part of the lexeme that is being moved. For notice that in the
combination preposition + verb we must be able to say that the verb is the head of the construction if we are
to argue that what is at hand is head movement. For that to be so, the terminology must be extended to the
morphotactic stratum. This has been done by some morphologists; however, in X-bar-syntax it is assumed
that on the lexical level there is only adjunction and no room for structures head+complement. Yet, as a
quick review of morphological facts show this is not a tenable view. We must leave matters undecided and
vague here.
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that where we see constituents is not where they have been at -structure. In this case we
have a little window to -structure.

Now that we have clarified the origin of the verbal head we must also find out what the
target is and what the resulting structure after movement is. Notice that if a verbal head
moves by substitution into a position, it can only be a position of same type, a position
of a verbal head. But the evidence presented under (3.90) makes this unlikely. Thus, the
verbal head cannot substitute. It is therefore assumed that it adjoins to a head position.
This has several consequences, among other that the head does not strictly c-command
its trace. On the other hand, in the derived position it does not project its own category
features, but it allows the original head to do that. Thus adjunction does not disturb the
local constitution of the tree. This given we have to find out what head position the verb
adjoins to. To answer that we look at wh-phrases.

(3.99) Wer hat was gestern unterschrieben?
Who has signed what yesterday?

(3.100) ∗Wer was hat gestern unterschrieben?
Who what has yesterday signed?

(3.101) ∗Hat wer was gestern unterschrieben?
Has who what yesterday signed?

This data suggests that the finite verb adjoins to the complementizer head. Given that
wh-phrases are in specifier of the complementizer phrase this will readily explain the sec-
ond position of the finite verb. However, notice that we must then also assume that the
first argument of the sentence is in this position, too. 17 To make this work, two addi-
tional assumptions are needed. First, the complementizer position may not be left empty.
Second, an overt complementizer blocks adjunction of the verb. The first will make sure
that the verb has reason to move into second place, and that the process is obligatory
when there is no complementizer. On the other hand, an overt complementizer fills the
vacant position, and the reason for the verb to move adjoin to it is lost. This explains
why subordinate clauses show SVO structure. The claims made seem stipulative, but a
morphological explanation may be found in the case of the ban to adjunction. As regards
the first requirement, we must assume that it is an idiosyncrasy of Germanic languages.
But here, too, more can be said. At this point, however, we leave the discussion.

17Unless, of course we postulate more functional heads with more positions to fill than just one. But
the latter leaves us with the uncomfortable problem to state which of these positions must be empty when
another is filled, and a lot more.



Chapter 4

Nearness

In this chapter we introduce the central theme of this book, namely nearness.
Starting with the observation that syntactic processes never operate on the en-
tire tree but work within certain neighbourhoods, we will develop a language
for talking about nearness in trees.

4.1 The Local Character of Syntactic Processes

In the previous chapter we have sought to reduce the rule schemata as much as possible.
The idea behind this was the conception that we could factor out several independent
rule schemata, the conjuration of which would be the ones that we observe in natural
language. Thus, we hope that ideally we are left with a skeleton (the X-bar schema)
and that an individual rule is obtained by providing more details coming from various
subcomponents, which are yet to be identified. This is pretty much the concept of the
theory of Government and Binding, . It has identified various subtheories, each dealing
with a special phenomenon of language. These subtheories were factored out from the
phrase-structure schema in order to gain a principled understanding of the possibilities
and limits of natural language. Ideally, each of these subtheories would be a rather small
bundle of constraints (called module) and that the maze of constructions will be the effect
of superimposing all these constraints.

We have made some progress with respect to identifying these subtheories. We have
seen that there is agreement, selection, case, movement etc. Now, however, we will at-
tempt at reviewing the basic properties of these individual subtheories, or modules. What
is interesting is that they can all be rendered in a uniform way as nearness statements. A
nearness statement is a statement of the form if a node x of category α then all nodes in
the R-domain of x are of category β or a statement of the form each node x of category α
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has exactly one node y of category β within its R-domain. Here, we have made use of cat-
egories and so-called R-domains. The latter are based on a binary relation R on (labelled,
ordered) trees, which depends on the nature of the syntactic process, that is, the subtheory.
It is the question of what counts as a suitable and natural relation R that interests us here.
Notice also that the general philosphy is that we start with the mere classificatory part
of language, assume that there is a rule skeleton and a set of correlations with respect to
certain features such as agreement features, case features etc. Thus, these features are not
spelled out in tandem with the phrase structure rules but are kept strictly apart. We can
identify agreement features, or selectional properties indepently of their exact behaviour,
but the test of their existence lies — of course — in the correlations that we can establish.
So, when we see that some features of the subject NP correlate with certain features of the
V(P) then this calls for a theory of this correlation; this correlation comprises two things,
namely a look-up table of what corresponds with what (we will see that this is a nontrivial
issue) plus a description of the structural relationship that nodes must enter if they are
forced to correlate in the given way.

Before we present this theory in its abstract form, however, let us look at some mo-
tivating cases. The first complex is subject-verb agreement. Agreement consists of two
ingredients. One is the bare correlation table, namely that a singular third person noun
phrase correlates with verb plus ending /s/ in the indicative present tense form (which
includes the auxiliary in the perfect tense), while any other noun–phrase demands the
non-suffixed form. The other is a specification of which subject agrees with what verb.
When we say that subject and verb agree, we mean to say that subject and verb of the
same sentence agree. Not any pair subject–verb is required to agree, but just those that
are contained in the same sentence. This accounts for the grammaticality of the sentences
(4.1) and (4.2) and the ungrammaticality of (4.3) and (4.4).

(4.1) William believed that the firemen have rescued the president.
(4.2) The firemen believed that William has rescued the president.
(4.3) ∗William believe that the president has been rescued.
(4.4) ∗The firemen believes that the president has been rescued.

These observations are in fact quite easy to make. However, formulating an exact prin-
ciple turns out not to be so easy, because the story is complicated by many factors. Let
us try to get at the idea, however. What we want to say is that the least node of category
sentence above the subject is the least node of category sentence above the verb. However,
for some reason that will become clear we will separate this into two nearness principles.
We say that a node x sentence–commands another node y if the least node of category
sentence properly dominating x also dominates y. Given that terminology, we can say
that if x is the subject of a sentence, and x sentence–commands a node y that is a verb and
y sentence–commands x, then x and y must agree. This statement just encodes the struc-
tural relationship that x and y must enter in order to be forced to agree, but does not say
anything about what we mean by agreement. We should also say that there are languages
in which the verb not only agrees with the subject, but also with the object (e. g. Basque,
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Georgian).

Another matter is case. We find here that the verb assigns case to its complements, or
rather that it uses case and other properties to identify the relevant variable an argument
is to be associated with. Moreover, in standard  it is assumed that the verb has a single
complement (if it has arguments at all) and that it assigns case to this complement, while
the other arguments get their case through a different mechanism. We have adduced
arguments against that view; we can nevertheless formulate a theory of case-assignment
that is compatible with the view that case is assigned only under the tightest possible
nearness-relationship, that of sisterhood. It seems that (with some exceptions, usually
traded under the name , for exceptional case marking) we can state that if a category α
has a case to assign, then the potential receiver of case must be the sister of a node bearing
the label α. This roundabout way of talking is necessitated by the fact that we want to
separate the fact that an item induces a correlation from the fact that it assigns case. Thus,
other than previously, where we associated with a word a (possibly empty) list of selected
arguments — which in turn could be specified for case and must be discharged one at a
time —, we now separate the selectional part from the structural part, allowing us to talk
merely about selectional properties, and — separately — about the structural condition
under which these properties become operative. For the sake of exposition, let us take the
simplest case, that of a direct object. A verb that has a direct object, also assigns case to
it, and in English this is accusative case. This is the selectional property of the verb. We
say that it selects a direct object. Next we need to say where it expects to find that direct
object. In English, it is assumed that it expects its object to be a sister. Thus the following
data is accounted for.

(4.5) Wayne did not raise this question.
(4.6) ∗Wayne did not raise.
(4.7) ?Wayne did not raise yesterday this question.

(4.6) is ungrammatical because there is no object even though the verb needs one. (4.7)
is ungrammatical because there is no object that is sister to the verb.

Notice however that the predictions of this requirement must be calculated against a
series of loopholes that the theory of transformational grammar provides. We may violate
the requirement of sisterhood simply because the object is entitled to move into specifier
of the complementizer position, for example when it is a question–phrase.

(4.8) Which question did Wayne not raise (yesterday)?

To account for the acceptability of (4.8) we assume that movement leaves a trace, and
that the trace provides enough local structure so that the selectional requirement of the
verb is fulfilled. In other words, the object trace is assumed to be a noun phrase with case
accusative etc., but phonetically empty. Using this, we can also account for the apparent
possibility to have (4.7), which does not seem downright ungrammatical. We can assume
that this question has been extraposed to the right, and adjoined to some higher node. This
is manifested also in the fact that we need to use a special intonation contour to make this
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sentence alright, setting apart somewhat the adverb yesterday.

Thus, the neighbourhood in which the verb expects the direct object, is the neighbour-
hood of the most immediate constituent containing that verb; in technical terms, we say
that the verb c-commands the object. That is to say, since the object cannot be the verb
nor contain it, nor be contained in it, this is the same as to require that the direct object be
sister to the verb. We will later return to these subtleties. Now let us look at the problem
of assigning the correct case feature in general. For even if we have settled the question
of what case feature the complement of the verb has, this does not mean the issue is fully
settled. First, notice that from the perspective that we developed in the earlier chapters, to
say that the object noun-phrase has accusative case is not what we can observe. We can
only observe that the elements of which that noun–phrase consists agree in case — with
noteworthy exceptions. So, consider the following data.

(4.9) Cäsar befahl den Angri�.
Cesar ordered the attack.

(4.10) Cäsar befahl die Zerst�orung der Stadt.
Caesaer ordered the destruction of the city.

We see that when the noun–phrase consists of several words as in (4.9), they all agree in
case. However, there is a conflict that arises as a possibility. Suppose that a verb selects
a complement, and that complement contains a case assigner γ whose complement is α.
Then what should be the case of α if the verb assigns a different case as does γ? There we
observe in German (and many other languages) that the closest assigner, in this case γ,
wins. This is exemplified in (4.10). The verb befahl assigns accusative case to its comple-
ment whose head is the noun Zerstörung which is itself a case assigner. It assigns genitive
case, however. The noun–phrase der Stadt appears in the genitive case, so does not agree
in case with the complement Zerstörung.

The general line of thought is that closer assigners intervene in the relationship. So
in principle we say that γ, being a case assigner, assigns case to the entire complement β
but any intervening case assigner blocks the appearance of case. There are two immediate
questions. First, what justifies us saying that the case assigner assigns case to the entire
complement if this appears to be contrary to fact? And secondly, what allows us to say
that the closest case assigner wins? We answer the second question first, and this will
also throw some light on the first. There are languages in which we can have several case
endings. Consider the sentence from (Blake, 1994).

(4.11) Maku-ntha yulawu-jarra-ntha yakuri-naa-ntha
woman  catch-- fish--
dangka-karra-nguni-naa-ntha mijil-nguni-naa-ntha

man---- net---
‘The woman must have caught fish with the man’s net.’

In this example,  stands for oblique,  for past tense, mabl means modal ablative,
 is genitive, and  is intrumental. What is observed is that we can stack up to four
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case suffixes, that all the words are suffixed by -ntha, meaning oblique. So rather than one
case assigner winning over another, each case assigner is allowed to contribute a suffix,
so to speak, where the innermost suffix is the one corresponding to the closest assigner.

Another remarkable phenomenon is found in Old Georgian. A genitive attribute if
following a noun phrase is marked for genitive in addition to receiving the case ending of
the entire noun phrase. For example

(4.12) sarel-ita man-isa-jta
name- father--
‘with father’s name’

Again the innermost case corresponds to the case assigned by the closest assigner. Thus
it is not always the case that we have a blockade of case assigning properties. And this
answers the first question as well. We may assume at least in all the constructions shown
above that the case assigner assigns case to the entire constituent; languages differ, how-
ever, in the way the case information gets realized if various case assigners compete. In
fact, what is known as abstract case can be assimilated to this solution as well. We say
that even if in English there is no overt case marking, there is case assigned but it is
not realized. So while German, Latin, Finnish and many other languages realize 1 case,
Kayardild 4 cases, 1 Georgian any number, English realizes none.

4.2 Command Relations

Before we continue with the motivating examples and develop some formal terminology.
We start with the notion of command relation defined by C B and G
P in (Barker and Pullum, 1990). Let T be a tree with underlying set T . A command
relation is going to be a binary relation on T . Given such a binary relation R we write
xR := {y : x Ry} and call it the R-domain of x. The first requirement that we pose on
command relations is that xR must always be a constituent. This means that R can be
represented by a function fR : T → T , which satisfies xR =↓ fR(x). We call fR the domain
function of R. Call a function f : T → T strongly extensive if for all x either x is the root
and f (x) = x or else f (x) > x. Call f increasing or monotone if for all x and y if x ≤ y
then f (x) ≤ y.

Definition 4.2.1 A relation R on a tree is called a command relation if the R-domain
of a node x is constituent, so that xR =↓ fR(x) for some function fR : T → T which is
strongly extensive and monotone.

1This is an oversimplification; the cases cannot be iterated, that is, not cases of the same type. (Blake,
1994) speaks of four layers of case. But this anyway just an illustration. A detailed analysis still has to be
done.
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This explained in the following way. We are interested in the set of nodes with are related
via some syntactic process with a given node x. Say, this process is case assignment.
Primarily, this is a relation between certain constituents, say the verb and the direct object.
However, there are reasons why we want to say that it extends to the constituent. One
is that the property of having case is visible at the leaves of the tree only, because the
overt material (the phonological string) can only attach there. Thus we must assume
that the influence of x really extends to the leaves of that constituent. This is a purely
observational criterion. We may say that the influence of x over y is mediated by a z
which is directly influenced by x (the complement of x, say) and which by some other
rule influences y. This is possible, though it does not invalidate the claim that x influences
y. Second, we have previously noted that the elements that x influences do actually not
form a constituent. There are several exceptions. First, a closer case assigner may block
the influence of x. We have explained this by saying that it does not block this influence
but adds another, which is the one that is visible. There are languages in which we can
see elements being marked for double influence. Secondly, there is a usual exemption
of x itself plus whatever is dominated by x or dominates x. It is awkward to say that x
influences whatever it is itself made up of. However, the difficulties arise with respect to
a particular interpretation of influence, namely when we consider the tree as being built
bottom-to-top by successively merging trees into larger trees. Then as soon as x comes
into existence it no longer influences its parts. Yet then it is plausible to say that x may
influence its mother. Conversely, if we assume trees to be produced top-down (when
produced by grammars) then x may well be seen to influence its parts, but not what itself
is part of. As the trees here are static objects, neither view is right. We simply see all
nodes as existing independently of each other and exerting influence onto each other. So
we are taking here a purely descriptive attitude towards sentence structure. Finally, the
exemption clauses also are relevant because they correspond to elements which are not
ordered with respect to x. So, exempting the constituent as well as the position of x from
the influence of x is the same as saying x must not overlap with elements of its domain.

Given a command relation R and a pair x, y such that x R y we say that x is the R-head
of y and that y is the R-foot of x. The R-feet of a node form a constituent. The R-heads
for a given node y form an upper closed set, by monotonicity of the associated function.
Domains may never shrink when we go up the tree. We say that x and y are co–heads if
they have the same R-domain, and that they are co–feet if they are contained in the same
R-domains. An R-chamber is a maximal set of co–heads, and a cell a maximal set of
co-feet. Finally, x and y are R-mates if x R y and y R x.

The smallest possible command relation is the one obtained by taking the following
function. fc(x) is the mother of x if x is not the root, and the root otherwise. The relation
thus generated is called idc-command. Standardly, authors call idc-command c-command.
However, there are various definitions of c-command, differing because c-command was
invented to do justice to binding facts, and with the theory trying to accommodate the
data the definition of c-command has been frequently altered. This is why, following
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B and P, we have chosen idc-command. Another special variety of command
relations are the tight relations.

Definition 4.2.2 A command relation is called tight if for y < fR(x) we have fR(y) ≤
fR(x).

This is a purely technical definition whose meaning will become clear later on. There
is a particular way of understanding this definition which reveals something about the
property of tight relations. Say that we move inside the tree in the following way. We
start at z0 and are allowed to move inside the R-domain of z0, but not to the generating
node of the constituent, which is fR(z0). Then from that new point, z1, we may move into
the R-domain of z1. Then if the command relation is tight we can never leave the original
domain, fR(z0).

Tight relations can be characterized in a different way as follows. Select a set S ⊆ T .
Say that x S-commands y if for every node z ∈ S properly dominating x, z ≥ y. This
relation will be denoted by S. Thus, the associated function is computed as follows. Put
gS (x) := r if there exists no z ∈ S such that z > x. Otherwise, let gS (x) be the least node
in S properly above x. Defining min(U) to be the minimal element if it exists, and = r
else, we can define gS (x) simply by

gS (x) := minS ∩ {y : y > x}.

This defines a command relation, as is straightforward to check. Now a command relation
is fair if its associated function is of the form gS for some S ⊆ T . Idc-command is tight,
and we can easily see that its associated function is gT , T the entire set of nodes.

Theorem 4.2.3 A command relation R is fair iff it is tight.

Proof. Suppose R is fair. Then its associated function has the form gS . Now let y < gS (x).
Then two cases arise. Either gS (x) is the root, in which case gS (y) ≤ gS (x) holds anyway.
Or it is not the root, and then gS (x) ∈ S . Consequently, gS (y) ≤ gS (x). Now assume
conversely that R is tight. Put S := { fR(x) : x ∈ T }. Then we have to show that fR(x) is
the least node of the form fR(y) strictly above x, unless x is the root. Suppose, however,
that we have x < fR(y) < fR(x). Then by tightness, fR(x) ≤ fR(y), contradiction. a

Tight relations have an important property; even when the structure of the tree is lost
and we know only P we can recover gP and < to some extent. Notice namely that if
Px , T then gP(x) is the unique y such that y ∈ Px but the P-domain of y is larger than
the P-domain of x. We can then exactly say which elements are dominated by y: exactly
the elements of the P-domain of x. By consequence, if we are given T , the root r and
we know the -command domains, < can be recovered completely. This is of relevance
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to syntax because often the tree structures are not given directly but are recovered using
domains. Let f , g be strongly extensive functions; then define

( f t g)(x) := max{ f (x), g(x)}
( f u g)(x) := min{ f (x), g(x)}
( f ◦ g)(x) := f (g(x))

Since f (x), g(x) ≥ x, that is, f (x), g(x) ∈ ↑ x and since ↑ x is linear, the maximum and
minimum are always defined. Clearly, with f and g strongly extensive, f t g, f u g and
f ◦ g are also strongly extensive.

Lemma 4.2.4 fR∪S = fR t fS . fR∩S = fR u fS .

Proof. z ≤ fR∪S (x) iff x(R ∪ S )z iff either xRz or xS z iff either z ≤ fR(x) or z ≤ fS (x)
iff z ≤ max{ fR(x), fS (x)}. Analogously for intersection. In remains to be shown that the
intersection and union is monotone. Now let x ≤ y. Then by assumption fR(x) ≤ fR(y) and
fS (x) ≤ fS (y). Then fR(x) u fS (y) ≤ fR(y), fS (y) and so fR(x) u fS (x) ≤ fR∩S (y). Similarly
for union. a

Theorem 4.2.5 For any given tree T the command relations over T form a distributive
lattice Cr(T) = 〈Cr(T),∩,∪〉.

Proof. By the above lemma, the command relations over T are closed under intersection
and union. Distributivity automatically follows since lattices isomorphic to lattices of sets
with intersection and union as operations are always distributive. a

Proposition 4.2.6 gP∪Q = gP u gQ. Hence tight relations over a tree are closed under
intersection. They are generally not closed under closed union.

Proof. Let P,Q ⊆ T be two sets upon which the relations P and Q are based. Then the
intersection of the relations, P ∩ Q, is derived from the union P ∪ Q of the basic sets.
Namely, gP∪Q(x) = min{y : y ∈ P ∪ Q, y > x} = min{min{y : y ∈ P, y > x},min{y :
y ∈ Q, y > x}} = min{gP(x), gQ(x)} = (gP u gQ)(x). To see that tight relations are not
necessarily closed under union take the union of NP-command and S-command. If it
were tight, the nodes of the form g(x) for some x define the set on which this relation
must be based. But this set is exactly the set of bounding nodes, which defines Lasnik’s
kommand. The latter, however, is the intersection, not the union of these relations. a

The consequences of this theorem are the following. The tight relations form a
sub-semilattice of the lattice of command relations; this semi-lattice is isomorphic to
〈2int(T),∪〉. Although the natural join of tight relations is not necessarily tight, it is pos-
sible to define a join in the semi-lattice. This operation is completely determined by the
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meet-semilattice structure, because this structure determines the partial order of the ele-
ments which in turn defines the join. In order to distinguish this join from the ordinary
one we write it as P•Q. The corresponding basic set from which this relation is generated
is the set P∩Q; this is the only choice, beacuse the semilattice 〈2int(T),∪〉 allows only one
extension to a lattice, namely 〈2int(T),∪,∩〉. The notation for associated functions is the
same as for the relations. If gP and gQ are associated functions, then gP • gQ = gP∩Q

denotes the associated function of the (tight) join.

Consider the definition of the relational product

R ◦ S = {〈x, z〉 : (∃y)(xRyS z)}

Then fR◦S = fS ◦ fR (with converse ordering!). For a proof consider the largest z such
that x(R ◦ S )z. Then there exists a y such that xRyS z. Now let ỹ be the largest y such that
xRy. Then not only xRỹ but also ỹS z, since S is monotone. By choice of ỹ, ỹ = fR(x).
By choice of z, z = fS (ỹ), since fS (ỹ) > z would contradict the maximality of z. In total,
z = ( fS ◦ fR)(x) and that had to be proved.

From the theory of binary relations it is known that ◦ distributes over ∪, that is, that
we have R ◦ (S ∪ T ) = (R ◦ S )∪ (R ◦ T ) as well as (S ∪ T ) ◦ R = (S ◦ R)∪ (T ◦ R). But in
this special setting ◦ also distributes over ∩.

Proposition 4.2.7 Let R, S ,T be command relations. Then R ◦ (S ∩ T ) = (R ◦ S ) ∩ (R ◦
T ), (S ∩ T ) ◦ R = (S ◦ R) ∩ (T ◦ R).

Proof. Let x(R ◦ (S ∩ T ))z, that is, xRy(S ∩ T )z, that is, xRyS z and xRyTz for some y.
Then, by definition, x(R◦S )z and x(R◦T )z and so x((R◦S )∩ (R◦T ))z. Conversely, if the
latter is true then x(R ◦ S )z and x(R ◦ T )z and so there are y1, y2 with xRy1S z and xRy2Tz.
With y := max{y1, y2} we have xRy(S ∩T )z since S ,T are monotone. Thus x(R◦ (S ∩T ))z.
Now for the second claim. Assume x((S ∩T ) ◦R)z, that is, x(S ∩T )yRz for some y. Then
xS y, xTy and yRz, which means x(S ◦ R)z and x(T ◦ R)z and so x((S ◦ R) ∩ (T ◦ R))z.
Conversely, if the latter holds then x(S ◦ R)z and x(T ◦ R)z and so there exist y1, y2 with
xS y1Rz and xTy2Rz. Put y := min{y1, y2}. Then xS y, xTy, hence x(S ∩ T )y. Moreover,
yRz, from which x((S ∩ T ) ◦ R)z. a

Definition 4.2.8 A distributoid is a structure D = 〈D,∩,∪, ◦〉 such that (1) 〈D,∩,∪〉 is
a distributive lattice, (2) ◦ an associative operation and (3) ◦ distributes both over ∩ and
∪.

Theorem 4.2.9 The command relations over a given tree form a distributoid denoted by
Dis(T). a
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The fact that distributoids have so many distributive laws means that for composite com-
mand relations there are quite simple normal forms. Namely, if R is a command relation
composed from the R1, . . . ,Rn by means of ∩,∪ and ◦, then we can reproduce R in the
following simple form. Call C a chain if it is composed from the Ri using only ◦. Then
R is identical to an intersection of unions of chains, and it is identical to a union of inter-
sections of chains. Namely, by (3), both ∩ and ∪ can be moved outside the scope of ◦.
Moreover, ∩ can be moved outside the scope of ∪ and ∪ can be moved outside the scope
of ∩.

Theorem 4.2.10 (Normal Forms) For every R = R(R1, . . . ,Rn) there exist chains C j
i =

C
j
i (R1, . . . ,Rn) and D j

i = D
j
i (R1, . . . ,Rn) such that R =

⋃
i Ii with Ii =

⋂
j C

j
i and R =⋂

j U j with U j =
⋃

iD
j
i . a

From the linguistic point of view, tight relations play a key role because they are defined as
a kind of topological closure of nodes with respect to the topology induced by the various
categories. (However, this analogy is not perfect because the topological closure is an
idempotent operation while the domain closure yields larger and larger sets, eventually
being the whole tree.) It is therefore reasonable to assume that all kinds of linguistic
CRs be defined using tight relations as primitives. Indeed, (Koster, 1986) argues for quite
specific choices of fundamental relations, which will be discussed below. It is worthwile
to ask how much can be defined from tight relations. This proves to yield quite unexpected
answers. Namely, it turns out that union can be eliminated in presence of intersection and
composition. We prove this first for the most simple case.

Lemma 4.2.11 Let gP, gQ be the associated functions of tight relations. Then

gP t gQ = (gP ◦ gQ) u (gQ ◦ gP) u (gP • gQ).

Proof. First of all, since gP, gQ ≤ gP ◦ gQ, gQ ◦ gP, gP • gQ we have gP t gQ ≤ (gP ◦

gQ) u (gQ ◦ gP) u (gP • gQ). The converse inequation needs to be established. There are
three cases for a node x. (i) gP(x) = gQ(x). Then (gP t gQ)(x) = gP∩Q(x) = (gP • gQ)(x),
because the next P-node above x is identical to the next Q-node above x and so is identical
to the next P ∩ Q-node above x. (ii) gP(x) < gQ(x). Then with y = gP(x) we also have
gQ(y) = gQ(x), by tightness. Hence (gP t gQ)(x) = (gQ ◦ gP)(x). (iii) gP(x) > gQ(x). Then
as in (ii) (gP t gQ)(x) = (gP ◦ gQ)(x). a

The next case is the union of two chains of tight relations. Let g = gm ◦ gm−1 . . . ◦ g1

and h = hn ◦ hn−1 . . . ◦ h1 be two associated functions of such chains. Then define a splice
of g and h to be any chain k = k` ◦ k`−1 . . .◦ k1 such that ` = m+n and ki = g j or ki = h j for
some j and each gi and h j occurs exactly once and the order of the gi as well as the order
of the hi in the splice is as in their original chain. So, the situation is comparable with
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shuffling two decks of cards into each other. A weak splice is obtained from a splice by
replacing some number of gi ◦ h j and h j ◦ gi by gi • h j, the least tight relation containing
both gi and h j. In a weak splice, the shuffling is not perfect in the sense that some pairs
of cards may be glued to each other. If g = g2 ◦ g1 and h = h2 ◦ h1 then the following are
all splices of g and h: g2 ◦ g1 ◦ h2 ◦ h1, g2 ◦ h2 ◦ g1 ◦ h1, g2 ◦ h2 ◦ h1 ◦ g1. The following
are weak splices (in addition to the splices, which are also weak splices): g2 ◦ g1 • h2 ◦ h1,
g2 • h2 ◦ g1 • h1. A non-splice is g1 ◦ h2 ◦ g2 ◦ h1, and g2 • g1 ◦ h2 ◦ h1 is not a weak splice.

Lemma 4.2.12 Let g, h be two chains of tight relations (or their associated functions).
Let wk(g, h) be the set of weak splices of g and h. Then

g t h = 〈s : s ∈ wk(g, h)〉

.

Proof. As before, it is not difficult to show that g t h ≤ 〈s : s ∈ wk(g, h)〉 because
g, h ≤ s for each weak splice. So it is enough to show that the left hand side is equal to
one of the weak splices in any tree for any given node. Consider therefore a tree T and a
node x ∈ T . We define a weak splice s such that s(x) = max{g(x), h(x)}. To this end we
define the following nodes. x0 = x, y0 = x, x1 = g1(x0), h1(y0), . . . , xi+1 = gi+1(xi), yi+1 =

hi+1(yi), . . .. The xi and the yi each form an increasing sequence. We can also assume that
both sequences are strictly increasing because otherwise there would be an i such that
xi = r or yi = r. Then (g t h)(x) = r and so for any weak splice s(x) = r as well. So, all
the xi can be assumed distinct and all the yi as well. Now we define zi as follows. z0 = x,
z1 = min{x1, . . . , xm, y1, . . . , yn}, . . . , zi+1 = min({x1, . . . , xm, y1, . . . , yn}−{z1, . . . , zi}). Thus,
the sequence of the zi is obtained by fusing the two sequences along the order given by the
upper segment ↑ x. Finally, the weak splice can be defined. We begin with s1. If x1 = y1,
s1 = g1 • h1, if x1 < y1, s1 = g1 and if x1 > y1 then s1 = h1. Generally, for zi+1 there are
three cases. First, zi+1 = x j = yk for some j, k. Then si+1 = g j • hk. Else zi+1 = x j for some
j, but zi+1 , yk for all k. Then si+1 = g j. Or else zi+1 = yk for some k but zi+1 , x j for all
j; then si+1 = hk. It is straightforward to show that s as just defined is a weak splice, that
zi+1 = si(zi) and hence that s(x) = max{g(x), h(x)}. a

The tight relations generate a subdistributoid Tgr(T) in Dis(T) members of which we
call tight generable.

Theorem 4.2.13 Each tight generable command relation is an intersection of chains of
tight relations. a
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4.3 The Distributoid Structure of Nearness Relations

We have previously studied the so-called tight generable relation. The reason for the
interest in them is the fact that we can use the labels to define the relations schematically
over the trees. Each boolean label a defines the relation of a-command on a fully labelled
tree via the set of nodes of category a. This is the classical scenario; the label s defines
s-command, the label np ∪ cp defines Lasnik’s Kommand. And so forth. We denote
the particular relation induced on 〈T, `〉 by δT(a). From this basic set of tight command
relations we allow to define more complex command relations using the operations. To
do this we have defined a constructor language that contains a constant a for each boolean
label a and the binary symbols ∧, ∨ and ◦. (Although we also use •, we will treat it as an
abbreviation; also, this operation is defined only for tight relations.) Since we assume the
equations of distributoids, the symbols a generate a distributoid with ∧, ∨, ◦, namely the
so-called free distributoid. The map δT can be extended to a homomorphism from this
distributoid into Dis(T). Simply put

(4.15)
δT(d ∧ e) = δT(d) ∩ δT(e)
δT(d ∨ e) = δT(d) ∪ δT(e)
δT(d ◦ e) = δT(d) ◦ δT(e)

By definition, the image of d under δT is tight generable. Hence δT maps all nearness
terms into tight generable relations. With np ∪ cp being 1-node subjaceny (for English)
we find that (np ∪ cp) ◦ (np ∪ cp) is 2-node subjacency (see below). Using a more
complex definition it is possible to define 0- and 1-subjacency in the barriers system on
the condition that there are no double segments of a category. If we consider the power
of subsystems of this language, e. g. relations definable using only ∧ etc. the following
picture emerges.

(4.16)
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This follows mainly from Theorem 4.2.13 because the map δ is by definition into the
distributoid Tgr(T) of tight generated command relations. Moreover, ∧ alone does not
create new command relations, because of Proposition 4.2.6. Each of the inclusions is
proper as is not hard to see. So, ∨ does not add definitional strength in presence of ◦ and∧;
although things may be more perspicuously phrased using ∨ it is in principle eliminable.
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By requiring command relations to be intersections of chains we would therefore not
express a real restriction at all.

It is important to realize that the formal operations on domains are not just mathemat-
ical games, but that they are linguistically meaningful. A particular reason is that these
structures allow for what may be called internalizations of definitions. To exemplify this
consider the case when a command relation R is defined in the following way from two
commmand relations S and T .

(4.17) xRy iff xS y and xTy

This definition involves in addition to known symbols also the logical word and. If gram-
matical processes are regulated by domains we may ask ourselves whether or not it is
possible to make the word and disappear. In the present case this is easy. Just let R be
the intersection S ∩ T and the above is automatically fulfilled. This strategy to replace
a complex definition of a domain by a single domain that encodes this definition we call
internalization. As it stands, we have been able to internalize and by ‘∩’; the reason for
this is that command relations are closed under intersection and thus R — defined in this
way — is again a command relation. By similar arguments we see that a definition of R
via

(4.18) xRy iff xS y or xTy

yields R = S ∪T and thus or is internalized by ‘∪’. One may be inclined to think that this
is just a formal device. But it does clarify certain issues, and is not a completely arbitrary
affair. There are, for example, definitions that resist internalization. This means that they
lead to non-domains and should for that reason always looked at with suspicion. To take
a real example, consider the conditions [A] and [B] of the binding theory.

C [A] An anaphor must be bound inside its governing category.

C [B] A pronoun must be free in its governing category.

If we assume that we know how to define the set  of governing categories the two
conditions can be accurately rephrased as follows.

C [A] If x is an anaphor, then x -commands its antecedent.

C [B] If x is a pronoun, then x does not -command any of its antecedents.

Condition [B] is exactly the opposite or boolean negation of Condition [A]. Thus the ‘do-
main’ in which a pronoun may find an antecedent according to this definition is exactly
the complement of the domain for [A], namely -command. However, it is easily seen
that such a relation can never qualify as a command relation in our sense since it is not a
constituent. Maybe this is the reason for the rather ill-fated history of Condition [B]. It
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exemplifies an instance of a definition of the type

(4.19) xRy iff not xS y.

Such a definition is not good as it does not define a command relation; equivalently, we
may classify the notion of boolean negation by saying that not is not internalizable. Sim-
ilarly, a definition

(4.20) xRy iff xS y implies xTy

fails to yield a command relation even if both S and T are CRs. Yet there are definitions
that do correspond in some way to negation and implication, which can also be internal-
ized. For example, let R be the largest command relation such that S ∩ R ⊆ T ; then this
can be checked to be a command relation and internalizes some notion of implication,
namely intuitionistic implication. Composition arises from a form of mediated command.
Suppose we offer the following definition of R:

(4.21) xRy iff for some z xS z and zTy

Then x R-commands y iff there is a mediating element T -commanding y which is itself
S -commanded by x. Then R is the composition of S and T and denoted by S ◦ T . There
are nontrivial cases which motivate the necessity of introducing composition. They arise
in the theory of movement. One of the characteristic advantages of  was that it could
explain certain failures of extraction by the fact that movement from the -structure posi-
tion is not a one-step process, but must proceed via a sequence of intermediate steps. On
the one hand, a wh–word can move from arbitrarily deep to the main clause as in (4.22),
but on the other hand any intervening wh–word eliminates this possibility.

(4.22) Who1 do you wonder Mary wanted John to get hold of t1?
(4.23) ∗Who1 do you wonder when2 Mary wanted John to get hold of t1t2?

The explanation rests on two assumptions. The first is that a wh–element can only move a
fixed distance per step. The second is that when moved, it can only be moved to specific
places. The third is that these places are limited in number. To be precise, a wh–word has
been assumed to only have the choice to fill the position of the specifier of the comple-
mentizer phrase. Generally, languages allow only for one such position per sentence. This
was referred to as the doubly–filled comp filter. Let us not be concerned with that history,
however. Crucially, a wh–word, wherever it originated, could move to the next specifier
of a complementizer phrase. If that position was filled, either by an overt element or by
a trace, then that movement was blocked. What the theory did not explain was why it
was possible for a wh–element to stay if it could not move, and why on the other hand
at least one of them had to move. We have spoken about that earlier. Let us here try to
see whether we can capture the restrictions on the movement of wh–elements. There are
clearly two. One is the typical restriction that the antecedent c-commands its trace, which
we will for the moment equate with the restriction that the antecedent idc-commands its
trace. The other, more interesting restriction is the requirement that the antecedent be not
higher than the next complementizer phrase. This looks like a tight domain, but it is not.
It can easily be demonstrated that a tight domain does not allow to be escaped by succes-
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sive movement. In fact, the description just given is defective because if the wh-phrase
is already in the position of a specifier of a complementizer phrase then instead of next
complementizer phrase we should say second next complementizer phrase. This is indeed
a command relation, as can easily be checked. But is it tight generated? Here we have
to resort to a trick. Let cp stand for the label is a complementizer phrase. Its negation is
−cp. If a wh–phrase is not in the specifier of cp then the next phrase containing it is a
−cp. Hence, the following is a movement domain for wh–movement.

(4.24) −cp ◦ cp

4.4 The Koster Matrix

The preceding chapter has been rather formal, just introducing notions and proving re-
sults. Now we want to connect this with syntactic theory. There have been some attempts
within Government and Binding to approach syntax from the perspective of nearness do-
mains. The most elaborate proposal is due to (Koster, 1986). The principal idea is that
natural languages specify a limited range of locality restrictions, and that syntactic coer-
cion between items in a sentence can take place only within such domains. Moreover,
languages differ with respect to the nature of these domains, which follow a standard
pattern, which we will call the Koster Matrix. We will outline this theory because it is
the closest in spirit to the nearness analysis of grammar that we are going to propose.
As K and many others have observed, grammatical relations are typically relations
between a dependent element δ and an antecedent α.

α δ. . . . . . . . .

R

Four conditions are put on such configurations.

a. obligatoriness

b. uniqueness of the antecedent

c. c-command of the antecedent

d. locality
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If these conditions are met then this relation has the effect

share property

This has to be understood as follows. (a.) and (b.) express nothing but that δ needs one
and only one antecedent. This antecedent, α, must -command δ. Finally, (d.) states that
α must be found in some local domain of δ. This domain is language specific as well as
specific to the syntactic construction, i. e. the category of δ and α. Likewise, the property
to be shared depends on the category of α and δ. The locality restriction expresses that
α is found within the R-domain of δ. This relation R is in the unmarked case defined as
follows.

Definition 4.4.1 α is locally accessible1 to δ if α ≤ β, where β is the least maximal
projection containing δ and a governor of δ.

In (Koster, 1986) it is assumed that greater domains are formed by licensed extensions.
These extensions are marked constructions; while all languages agree on the local accessibility1

as the minimal domain within which antecedents must be found, larger domains may also
exist but their size is language and construction specific. Nevertheless, the variation is
limited. There are only three basic types, namely locally accessiblei for i = 1, 2, 3.

Definition 4.4.2 α is locally accessible2 to δ if α ≤ β, where β is the least maximal
projection containing δ, a governor for δ and some opacity element ω. α is locally

accessible3 to δ if there is a sequence βi, 1 ≤ n, such that β1 is locally accessible2 from δ
and βi+1 is locally accessible2 from βi.

The opacity elements are drawn from a rather limited list. Such elements are tense, mood
etc. A well-known example are Icelandic reflexives whose domain is the smallest indica-
tive sentence. For an extensive study see (Koster and Reuland, 1991).

The local accessibility relations certainly are command relations in our sense. The real
problem is whether they are definable using primitive labels of the grammar. In particular
the recursiveness of the third accessibility condition makes it unlikely that we can find
a definition in terms of ∧,∨, ◦. Yet, if it were really an arbitrary iteration of the second
accessibility relation it would be completely trivial, because any iteration of a command
relation over a tree is the total relation over the tree. Hence, there must be something
non-trivial about this domain; indeed, the iteration is stopped if the outer β is ungoverned.
This is the key to a non-iterative definition of the third accessibility relation.

Let us assume for simplicity that there is a single type of governors denoted by gov
and that there is a single type of opacity element denoted by opy. The first hurdle is the
clarification of government. Normally, government requires a governing element, i. e. an
element of category gov that is close in some sense. How close, is not clarified in (Koster,
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1986). Clearly, closeness cannot be accessibility1, for then the definition would be circu-
lar. It must be an even smaller domain. Let us agree that a node has the property �x if all
of its sisters is of category x, so that � − x means that none of the sisters is of category
x. (For now, � is just a device to describe certain sets of nodes. Later we shall see that
it can be given a logical interpretation as a modal operator as well.) With this definition,
being governed is equal to being of category − � −gov. Notice that this does not exclude
that there are several governors. Assuming binary branching, however, the governor is
indeed unique, given that the relation sister of is irreflexive. Moreover, another construc-
tor is introduced, namely .̂ A node is of category ^x if one of the immediate daughters
is x. These constructors will play an important role later on, so it is useful to study the
definitions of the domains carefully. We will assume that the opacity element must be in
-command relation to δ. This is a simplifying assumption. The third assumption we
make is that governors are heads, that is, they are not decomposable further. None of the
assumptions is necessary, and if they fail one could adapt the definitions accordingly.

We are now ready to define the three accessibility relations, which we denote by LA1,
LA2 and LA3.

(4.13)

LA1 = ^gov • bar:2
∧^gov ◦ bar:2

LA2 = ^gov • ^opy • bar:2
∧^gov • ^opy ◦ bar:2
∧^gov ◦ ^opy • bar:2
∧^gov ◦ ^opy ◦ bar:2

LA3 = ^gov • ^opy • bar:2 • � − gov
∧^gov • ^opy ◦ bar:2 • � − gov
∧^gov ◦ ^opy • bar:2 • � − gov
∧^gov ◦ ^opy ◦ bar:2 • � − gov

(Observe that • binds stronger than ◦.) We shall show that if x is governed, the domains
are as intended. For a proof consider a point x of a labelled tree T. Let g denote the
smallest node dominating both x and its governor (in fact the mother of both) and let m
be the smallest maximal projection of g. Then x < g ≤ m. So two cases arise, namely
g = m and g < m. In each cases LA1 picks the right node. Likewise, if o denotes the
smallest element containing x and a opacity element that -commands x, then x < o.
Three cases are conceivable, o < g, o = g and o > g. However, if government can take
place only under sisterhood, o < g cannot occur. So x < g ≤ o ≤ m. For each of the four
cases LA2 picks the right node. Finally, for LA3 there is an extra condition on m that it be
ungoverned.

Notice that our translation is faithful to Koster’s definitions only if the domains defined
in (Koster, 1986) are monotone. This is by no means trivial. Namely, it is conceivable
that a node has an ungoverned element y locally accessible2, while the highest locally
accessible2 node, z, is governed. In that case (ignoring the opacity element for a moment)
the domain of local accessibility3 of y is z while the domain of x is strictly larger. We find
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no answer to this puzzle in the book because the domains are defined only for governed
elements. But it seems certain that the monotone definition given here is the intended one.

It should be stressed that gov and opy are not specific labels. Their value may change
from language to language, and from one type od dependency to another. Consequently,
the local accessibility relations are parametrized with respect to the choice of particular
governors and particular opacity elements. As an example, recall the Icelandic case again,
where certain anaphors whose domain of accessibility2 (typically the clause) can be ex-
tended in case the opacity element is subjunctive. Following our reduction, the domain
of local accessibility3 is defined by the first maximal projection that is not subjunctive,
hence indicative. We take a primitive label ind to stand for is indicative. We write ^x to
denote the set of nodes whose left sister is a x. Assume that government is to the right.
Then for Icelandic we have the following special domain

(4.14)

LA3 = ^gov • înd • bar: 2 • −^gov
∧^gov • înd ◦ bar: 2 • −^gov
∧^gov ◦ înd • bar: 2 • −^gov
∧^gov ◦ înd ◦ bar: 2 • −^gov

We notice in passing that recent results have put this analysis into doubt (see (Koster and
Reuland, 1991)) but this is a problem of K’s original definitions, not of this transla-
tion. What is a problem, however, is the standard opacity factor of an accessible subject.
There is a rather technical notion in , that of a SUBJECT characterizing what can be
the subject of an item as concerns binding theory. We will not go into that. While such
notions can be easily handled introducing another boolean label, the accessibility condi-
tion presents real difficulties because to define in the system the distribution of the label
corresponding to SUBJECT is a tricky affair. We will omit that here.

4.5 Nearness Defined by Path Sets

Command relations in an abstract form have first been introduced in (Barker and Pullum,
1990). Despite other constructs to be introduced later (such as nearness terms) command
relations are rather stable under certain changes in the underlying grammar or transfor-
mations, which make them particularly useful for stratification of . Moreover, com-
mand relations have established themselves as a kind of lingua franca in linguistics. The
problem is, however, that the interpretation of primitive command relations such as -
command is constantly changing, so that there is a certain need for standardization.

We will focus now on the definition of command relations via their domains, as out-
lined in (Barker and Pullum, 1990). Suppose that R ⊆ T 2 is a binary relation on T. For
two relations R, S we have R = S exactly if for all nodes x we have x R = x S . (Barker
and Pullum, 1990) list a number of desiderata a relation must meet in order to qualify for
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a command relation.

[B] r R = T
[C] (∀x∃y)(x R = ↓ y)
[D] (∀xyz)(y ∈ x R ∧ z ≤ y→ z ∈ x R)
[E] Command relations on a subtree are insensitive to

material external to that subtree.
[A] Command relations are insensitive to the linear

structure of the tree.

Note that D already follows from C, which itself is a rather strong
condition. In fact, C can in this context be replaced by  C.

[W C] If y ∈ x R and z ∈ x R then w ∈ x R where w is the least node
dominating both y and z.

Only seemingly weaker is an alternative definition where w is not required to be the min-
imal node dominating both x and y. To see that W C and D imply
C on a finite tree observe that from D we can conclude that x R is the
union of finitely many lower cones, namely x R =

⋃
〈↓ y : y ∈ x R〉. But if x R =

⋃
〈↓

yi : i ≤ n〉 then by W C there is a w such that ↓ yn−1, ↓ yn ⊆↓ w ⊆ x R so
that ↓ yn−1 and ↓ yn can be replaced in this union by a single cone. Induction on n yields
x R =↓ w for some w.

So much for the independence of the postulates. The list of desiderata calls for some
comments. It is not clear, for example, what is meant by A if we consider
a relation on some fixed ordered tree. Rather, these restrictions only make sense if we
see them not as defining properties of relations over ordered trees but rather as defining
properties of systems of relations over families of trees. So, given a set L of labels and a
family (= set) F of L-trees, we callR an abstract relation or a system of relations over F
if R is a function assigning to each tree T a binary relation R(T). Then A
can be understood as saying that if @ and @′ are two different orderings on the same
(labelled) tree T then with T1 = 〈T,@〉 and T2 = 〈T,@

′〉 we have R(T1) = R(T2). This
property of ambidextrousness allows to treat command relations (i. e. abstract ones) as
defined not over ordered trees but over unordered trees, by which we have reduced the
complexity of the structures involved somewhat. The next great simplification results
from E. However, this condition is somewhat vague in the sense that it is
not clear what counts as a subtree. We present three consecutive definitions of subtrees
which will yield different consequences of E. The strictest notion is that of a
constituent. If at least all constituents are subtrees then E implies

[W-I] (∀y)(y R ⊇↓ y)
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For a proof let R = R(T) and S = R(↓ y) for some y ∈ T . Now let z ≤ y. Then the domain
of z in ↓ y should not be different in ↓ y if considered on its own than if considered
as a subtree of T. Hence, z S = z R∩ ↓ y. Hence we have derived the principle that
R(↓ y) = R(T)∩ ↓ y for any tree T and y ∈ T . Since y is the root of ↓ y, we must have
R(↓ y)y =↓ y, whence R(T)y ⊇↓ y. W-I and C can be replaced by
a single condition, namely

[D↑] (∀x)(∃y ∈ ↑ x)(x R = ↓ y)

And if a relation R satisfies D↑ in T , R ∩ (↓ y)2 satisfies D↑ on ↓ y. For if
x ∈↓ y, let x R =↓ w for some w ∈ ↑ x. Then (R ∩ (↓ y)2)x =↓ w∩ ↓ y =↓ min{y,w}. Since
both y,w ≥ x, min{y,w} ≥ x. The characterization of command relations as proposed in
(Barker and Pullum, 1990) therefore leads to the characterization of command relations
as relations satisfying D↑. This includes the possibility to have x R = ↓ x for some
or all x, which is excluded according to (Barker and Pullum, 1990). However, command
relations satisfy a stronger condition, namely that the choice of the generator of the cone
x R is not a member of the upper cone of x but rather an element properly dominating x if
such an element exists, and r else. Let us define the crown of x to be the set �x = {r}∪{y :
y > x}. Then R is a command relation if and only if it satisfies

D� (∀x)(∃y ∈ �x)(x R =↓ y)

The next class of subtrees derive from subsets U which are connected, have a root possibly
different from r and leaves of U := T ∩ U must be leaves of T. Such substructures are
called strong subtrees here. Strong subtrees play an important role in Pesetzky’s theory
of extraction. This class contains all branches of T. Hence, if y ∈ T and U is a branch
containing x then the relation R(U) is nothing but R(T) ∩ U. Since the domain of an
element y is a constituent ↓ x with x > y, x ∈ U and so the domains are determined from
considering the branches alone.

The final, most weak definition is a subtree as a convex subset with maximal ele-
ment. We call such subtrees weak subtrees. Positions are weak subtrees and by similar
arguments the E constraint leads to a reduction to positions.

[L U] The domain of a node in a tree depends only on its position.

In addition to these requirements defined in (Barker and Pullum, 1990) for command
relations in general there also is a restricted class of fair relations as defined in (Barker
and Pullum, 1990). Fairness is easier to describe in terms of the generating relations than
intrinsically. But there is a property of command relations that we have called tightness
and that can characterize them. The idea is best explained in terms of movement. Suppose
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that x moves somewhere within its domain. Then the landing site of x cannot be the
generating element of the downward cone x R, at least if movement is assumed to work
as outlined in Chapter 3. And then tightness says that x commands no more elements in
the new position than in the old one. Or, to rephrase that, tight command relations are
such that no element can escape its domain via movement. Tightness will be shown to be
strictly stronger than monotonicity, which is the condition that x ≤ y implies x R ⊆ y R;
this seems to be universally satisfied by all command relations in language. It seems
therefore that monotony is an essential property of command relations; but from a formal
point of view we would like not to impose it as a condition sine qua non.

[M] (∀xy)(x ≤ y.→ .x R ⊆ y R)

[T] (∀xy)(y ∈ x R ∧ (↓ y , x R).→ .y R ⊆ x R)

That T implies M is seen thus. Suppose that x ≤ y. Then either x = y
in which case x R ⊆ y R is trivially true; or x < y and then ↓ x (↓ y ⊆ y R and hence
↓ x , y R. By T x R ⊆ y R, as required. It is to be added here that fair relations
cannot be characterized by their behaviour on single branches unlike monotone relations
which just need to be monotone on each branch. Tightness restricted to branches is the
condition

(∀xyz)(x < y < z∧ ↓ z = x R.→ .y R =↓ z)

This property is not identical to tightness. Consequently, tightness is a property of rela-
tions over the whole tree. The following tree with w R = r R =↓ r and x R =↓ z shows that
a relation which is tight on all branches need not be tight on the tree.

(4.25)
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The concept of nearness is based on a notion of distance in trees. This notion is not
straightforward because trees are not linear and so do not have a direct distance. How-
ever, if x and y are points in a tree, then there always exists a z such that z ≥ x and z ≥ y.
Moreover, there is a least such z because ↑ x and ↑ y are linear. The distance between x
and y is then a pair of distances, one from x to z and the other from y to z.

Definition 4.5.1 Let x, y ∈ T. We call z := min(↑ x ∩ ↑ y) the crosspoint of x and y.
The distance between x and y is given by a pair 〈λ, ρ〉 of natural numbers defined by
λ := ](↑ x∩ ↓ z) − 1 and ρ := ](↑ y∩ ↓ z) − 1. We write dist(x, y) := 〈λ, ρ〉. We also say
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that x and y are 〈λ, ρ〉-near if there exists a u ≥ x, y such that λ = ](↑ x∩ ↓ u) − 1 and
ρ = ](↑ y∩ ↓ u) − 1. Obviously, x and y are always dist(x, y)-near.

(4.26)
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In the picture we have dist(x, y) = 〈7, 5〉 since ](↑ x∩ ↓ z) = 8 and ](↑ y∩ ↓ z) = 6. This
calls for some comments. First, let us check this concept for the simple case that y ≥ x.
Then y = z and so ρ = 0, because ↑ y∩ ↓ y = {y}. Moreover, λ = ](↑ x∩ ↓ y)−1 measures
how many nodes one has to travel before reaching y. If y is identical to x then λ = 0 and
if y covers x then λ = 1; and so forth. Thus we have x = y iff dist(x, y) = 〈0, 0〉, x ≤ y iff
dist(x, y) = 〈λ, 0〉 and x ≥ y iff dist(x, y) = 〈0, ρ〉. Notice that while normally distances are
symmetric, this is not so here, by definition of distance as a pair. We might have defined
the distance as a set {λ, ρ} in which case we would have had symmetry, but it is not our
aim here to have full congruence with the classical definition.

In fact, we want to take advantage of the asymmetry of the definition in a special way.
Notice, namely, that if y has distance 〈1, 0〉 from x it covers x while x covers y if the
distance from x to y is 〈0, 1〉. We are interested in keeping a distinction between the up-
and the down-going direction of the two components. To this end defined the following
functions

(4.27)
next(S ) := {y : (∃x ∈ S )(x ≺ y)}
prev(S ) := {y : (∃x ∈ S )(y ≺ y)}

These functions are defined on subsets of T . next(S ) returns all covers for nodes of S
while prev(S ) returns all nodes covered by nodes form S . Notice that next(S ) can be
defined as next(S ) := {next(x) : x ∈ S } where next(x) is the following partial function.

(4.28) next(x) :=
{

y if y covers x
undefined else

For prev(S ) a similiar reduction is not possible. We define iterations of these functions
as usual; next0(S ) := S , next(n+1)(S ) := next(nextn(S )) prev0(S ) := S , prev(n+1)(S ) :=
prev(prevn(S )). These iterations will be used to define the symbols 〈n| and |n〉. For a
set S let S 〈n| = nextn(S ) and S |n〉 := prevn(S ). Moreover, S 〈m|n〉 = prevn(nextm(S )).
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(The notation is Dirac’s notation from quantum mechanics; there the idea is that there are
two types of vectors, one from the space and one from the dual. One is denoted by 〈v|
and the other by |v〉. The skalar product of two vectors v,w is 〈v|w〉.) The same number
thus represents both an up- and an downgoing function, depending on the context. Notice
that these functions can be iterated arbitarily. For example, S 〈n|m〉〈`| denotes a set in T .
However, the following rules are directly verified:

〈m|〈n| = 〈m + n|, |m〉|n〉 = |m + n〉,

|m〉〈n| ⊆ |m − n〉 if m ≥ n,

|m〉〈n| ⊆ 〈n − m| if m ≤ n

We write x|m〉, x〈m| for x|m〉 and x〈m|. Note that |m〉〈n| need not be equal to |m − n〉. For
example, if y is a preleaf and m = 2, n = 1 then y|2〉 = ∅, whence y|2〉〈1| = ∅. But of
course y|1〉 , ∅. Notice that there are no laws reducing 〈n|m〉. Notice that y is 〈λ, ρ〉-near
to x iff y ∈ x〈λ|ρ〉.

4.6 Structured Distance

The definition of distance is now carried over to labelled trees. Of course, the numerical
distance defined earlier remains a valid definition but the labellings allows for a more
subtle definition of distance that will be called structured. Taking two nodes x and y and
the crosspoint z the structures ↑ x ∩ ↓ z and ↑ y ∩ ↓ z are now linear labelled trees. As for
such trees, there is a direct correspondence between the labelling and the string of labels
`(x) when the nodes are ordered by <, i. e. read from bottom to top. Namely, define for a
linear, labelled tree T = 〈T,@, `〉 where T = {0, 1, . . . , n} ordered by <

tp(T) = 〈`(yi) : 1 ≤ i ≤ n〉

Two such strings describe the voyage from x to z within an arbitrary tree T; the type of
the weak subtree from x to z and the type of the weak subtree from y to z.

Definition 4.6.1 Let T be a labelled (ordered) tree, x, y ∈ T with crosspoint z. The struc-
tured distance from x to y is the pair

dist(x, y) = 〈tp(↑ x ∩ ↓ z), tp(↑ y ∩ ↓ z)〉
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In the tree shown above we have dist(x, y) = 〈bbdbaba, abaca〉. Again, this definition is
not symmetric, e. g. dist(y, x) = 〈abaca, bbdbaba〉. We have x ≤ y iff dist(x, y) = 〈λ, ε〉,
x ≥ y iff dist(x, y) = 〈ε, ρ〉 and, consequently, x = y iff dist(x, y) = 〈ε, ε〉. As before,
the two strings λ and ρ occur with different interpretation. The functions 〈−| and |−〉 are
defined inductively as follows.

S 〈x| = {y : (∃x ∈ S )(x ≺ y and `(y) v x}

S |x〉 = {y : (∃x ∈ S )(y ≺ x and `(x) v x}

S 〈s · t| = S 〈s|〈t|

S |s · t〉 = S |s〉|t〉

Here s, t are sequences of labels and s · t their concatenation. We write x〈s| for {x}〈s|
and also x|t〉 for {x}|t〉. Since from y, y′ ∈ x〈s| follows y = y′, we often write y = x〈s|.
Furthermore, we note that if in a tree the isomorphism type of the position ↑ y determines
y uniquely, then for all y, y′ ∈ x|t〉 y and y′ are sisters, not necessarily identical. Nev-
ertheless, in this case we also write y = x|t〉 to denote any of y and its sisters. Notice
that x〈s|t〉 is empty if the last symbols of s does not match the first symbol of t, i. e. if
s = σ1 · . . . ·σm and t = τ1 · . . . · τn and τ1 , σn. If S 〈s| (or S |t〉) is empty we also say that
〈s| (|s〉) is undefined on S . Furthermore, the following universally true.

1. x〈ε| = x, x|ε〉 = x.

2. x|s〉〈sT | = x if x|s〉 is defined.

3. x|a〉 is defined iff `(x) v a and ∃y : x ≺ y.

4. x〈a| is defined iff ∃y : y ≺ x and `(y) v a.

This definition is extended to sets of strings. Given a set V of labels and L,R ⊆ V∗

then let
S 〈L| =

⋃
〈S 〈l||l ∈ L〉
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S |R〉 =
⋃
〈S |r〉|r ∈ R〉

Proposition 4.6.2 (Red Contraction) x|s〉〈t| is defined only if either sT is a prefix of t or
tT is a suffix of s. In the first case t = sT · u and so x|s〉〈t| = x〈u|; in the second case
s = u · tT and x|s〉〈t| = x|u〉.

Proof. Straightforward verification. a

Notice that in this contraction law we do not have iff, but only only if. This is why it is
called red. For example, the polynomial 〈a ·b|b ·b〉〈b ·b ·c|, if defined is equal to 〈a ·b ·c|.
Yet, the latter is defined on certain trees, where the former is not, and so equality does not
always hold. However, the following can be verified as easily.

Proposition 4.6.3 (Green Contraction) For all s

|s〉〈sT |s〉 = |s〉, 〈s|sT 〉〈s| = 〈s|

Proof. If |s〉 is defined at x, |s〉〈sT |s〉 is defined at x as well, and they are equal because if
y ∈ x|s〉 then x ∈ y〈sT |, whence the latter is defined. By Red Contraction, y〈sT |s〉 = y and
this shows equality. Similarly for the other case. a

Here, equality strictly holds, so this law can be used at any time. From now on we call 〈L|
and |M〉 paths and the sets L,M the path sets. From paths we can build up polynomials
in the following way. A nearness polynomial p is a function composed from 〈L| and |L〉
for L ⊆ V∗ using function composition and union. We define the union by S (p ∪ q) =
S p. ∪ .S q. We call p spherical if it is composed without union. Union distributes over
composition and so any nearness polynomial is a union of spherical polynomials. The
nearness polynomials form a structure 〈P, ·,∪〉 where 〈P, ·〉 is a semigroup and 〈P,∪〉 is
a semi-lattice and · distributes over ∪. This implies among other that there is an ordering
⊆ of nearness polynomials. We have p ⊆ q iff for all trees and all nodes x, y if y ∈ xp
then y ∈ xq. Let p = q1 ∪ . . . qm where qi are spherical. The degree of the spherical
polynomial dg(qi) is the number of simple 〈L| and |L〉 composed, e. g. dg(〈L|〈M|N〉) = 3.
We then define the degree of p as dg(p) = max{dg(qi) : 1 ≤ i ≤ m}. We can show
that under some conditions on the path sets any nearness polynomial can be reduced to a
polynomial of degree at most 2. Call 〈L|, |R〉 s-closed if it is closed under suffixes. Call
it p-closed if it is closed under prefixes. p is sp-closed if all 〈L| paths are s-closed and
all |R〉 paths are p-closed. The set S p is called a n-sphere around S if p is a spherical
polynomial of degree n, otherwise it is called a generalized n-sphere. If p is sp-closed, a
generalized sphere around S is a convex subset containing S . The proof of this reduction
lies in a generalization of Contraction to sets. Let L,M be sets of strings. Then write
L−1 · M = {m : (∃` ∈ L)(` · m ∈ M)} and L · M−1 = {` : (∃m ∈ M)(` · m ∈ L)}.
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Lemma 4.6.4 (Set Contraction) |L〉〈M| ⊆ |L(MT )−1〉 ∪ 〈(LT )−1M|.

Proof. L(MT )−1 is the language where all strings are computed in which a postfix of a
` ∈ L has been cancelled by a mT ∈ MT . Dually, (LT )−1M is the language where all
strings are computed where a prefix of an m ∈ M has been neutralized by a `T ∈ LT . Now
to conclude that the two polynomials are equal, is nevertheless a mistake. Rather, if a
polynomial on the left hand side is defined, it is by Red Contraction equal to a polynomial
on the right hand side. a

Lemma 4.6.5 Let p be sp-closed. Then there exists a sp-closed nearness polynomial q of
degree at most 2 such that for all trees and all sets S : S p = S q.

Proof. Obviously, we can reduce 〈L|〈M| to 〈L ·M| and |L〉|M〉 to |L ·M〉. The interest now
lies in possible reductions of 〈L|M〉 and |L〉〈M|. The first is not reducible in the general
case; let us concentrate on the second. Here we have the following inequalities

|L(MT )−1〉 ∪ 〈(LT )−1M| ⊆ |L〉〈M| ⊆ |L(MT )−1〉 ∪ 〈(LT )−1M|

The first holds by sp-closure, the second by Set Contraction. Notice namely that by
sp-closure, ε ∈ L and ε ∈ M, hence ε ∈ LT ,MT and finally L(MT )−1 ⊆ L as well as
M(LT )−1 ⊆ M. So

|L(MT )−1〉 ⊆ |L〉 ⊆ |L〉〈ε| ⊆ |L〉〈M|

〈(LT )−1M| ⊆ 〈M| ⊆ |ε〉〈M| ⊆ |L〉〈M|

Thus
|L〉〈M| = |L(MT )−1〉 ∪ 〈(LT )−1M|

Any 2-sphere |−〉〈−| is thus reducible to a union of 1-spheres. Hence, any n-sphere for
n ≥ 3 is reducible to a union of 2-spheres. a

The previous lemma shows that there is a a special class of polynomials to which we can
reduce all sp-closed polynomials.

Definition 4.6.6 An oval nearness polynomial is a 2-sphere 〈L|R〉 where L,R ⊆ V∗. If
S is a set in a tree and p an oval nearness polynomial then S p is called an oval around

S .

Theorem 4.6.7 Let p be a sp-closed nearness polynomial. Then p is equivalent to a
union of oval nearness polynomials.

Proof. By Lemma 4.6.5 any sp-closed polynomial is equivalent to a sp-closed polynomial
of degree 2. Moreover, 2-spheres of type |−〉〈−| (i. e. non oval 2-spheres) can be reduced
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to a union of 1-spheres. Now notice that 〈L| = 〈L|ε〉 and |M〉 = 〈ε|M〉, so 1-spheres are
ovals. a

Suppose that a tree is such that for any x, all daughters have different label if non-terminal.
Then from any node x any other non-terminal y can be adressed by the distance dist(x, y) =
〈s, t〉 plus the label of y. However, the set x〈s|tT 〉 not only contains y but also all of its
sisters. If we want to define the set {y} alone, we have to use the following trick. Let
`(y) = a. Then {y} = x〈s|tT · a〉〈a|. Hence, to define certain spheres, we really need
polynomials of degree 3.

Proposition 4.6.8 Suppose T is a tree such that all nodes are uniquely identified by their
position. Moreover, let a nonterminal x either have a single, terminal daughter or let
otherwise all daughters be nonterminal. Then let x ∈ T be any point and Y be any subset
of T: Y is a generalized sphere around x.

Proof. It suffices to show that {y} is a sphere around x for all {y}. Now, if y is non-
terminal, we have shown this already. If, however, y is terminal and dist(x, y) = 〈s, t〉,
then x〈s|tT 〉 = {y}. a

In what is to follow we will call attention to the fact that the sets L in the nearness poly-
nomials 〈L|, |L〉 are by definition languages over the vocabulary of non-terminal symbols.
This allows to study nearness terms with the tools of formal language theory. We say that
a nearness polynomial p is recursive, context-free, regular iff the occurring path sets are
recursive, context-free, regular as languages over V . Regular nearness terms play a key
role in our investigation. It will be proved that definable command relations can also be
seen as regular nearness terms. Moreover, regular nearness terms are well-behaved from
a syntactic point of view.

4.7 The Embeddability Constraint

The purpose of this section is to prove that the E formulated earlier leads to
a similar contraction of polynomials than does sp-closure. Thus, if there is a grammatical
law making use of an abstract relation we can assume this relation to be a union of ovals
if it satisfies E. The techniques are not difficult but rather delicate in that one
has to beware of certain exceptional cases.

We begin with a simple sphere S = 〈u1|d1〉〈u2|d2〉 . . . 〈un|dn〉. If we allow empty strings
to occur, this is the most general type of a sphere. There is a sense in which this sphere
decribes a voyage on a tree, which is a bit tricky to define. First, the paths 〈ui|, |di〉 can be
decomposed into elementary steps 〈σ j

i |, |τ
j
i 〉 where σ j

i and τ j
i are non-terminal symbols.

The number of elementary steps shall be n. Intuitively, an S-voyage, that is, a voyage
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defined by the sphere S, is a partial function v : n × T → T conforming to the description
given by the elementary steps. Let S = f1· f2·. . .· fn the decomposition of S into elementary
functions. Choose a point x and put v(0) := x. Inductively, v(i + 1) := v(i) fi. v(i + 1) is
undefined if either v(i) is undefined or fi is undefined on v(i). The function v is also called
the S-voyage of x. If v is a total function, the voyage is said to be complete. The trace of a
voyage v is simply im[v] = {v(i)|0 ≤ i ≤ n}. v(0) is the begin, v(n) the end of the voyage.
In a tree, y ∈ xS iff there is a S-voyage with begin x and end y.

Lemma 4.7.1 Let S = 〈u1|d1〉〈u2|d2〉 . . . 〈un|dn〉 be an n-sphere and T a tree. The trace of
an S-voyage in T is a weak subtree.

Proof. Notice that by definition, the trace of a voyage is a connected subset of T. Con-
nected subsets are weak subtrees. Namely, let U = {x1, . . . , xn} ⊆ T be a connected subset.
We construct a sequence of zi such that zi ≥ x j for all j ≤ i. Evidently, z1 = x1 is a good
start. Then (↑ x1 ∪ ↑ x2) ∩ ↓ z2 ⊆ U for the crosspoint z2, by connectedness. Moreover,
z2 ∈ U. Now take x3 and let z3 be the crosspoint of x3 and z2. Again, z3 ∈ U. Moreover,
z3 ≥ x1, x2, x3. And so forth. zn ∈ U and zn ≥ xi for all i. Hence zn is the root of U in T. a

Voyages are certainly not always the best way to go from one point to another. It is
clear that if x, y are points and dist(x, y) = 〈u, d〉 then 〈u|d〉 is the shortest possible voyage
from x to y. Moreover, a voyage v is shortest if it is injective as a function. We will show
in the subsequent investigation that E is tantamount to requiring that if p is a
polynomial and y ∈ xp, then indeed the dist(x, y)-voyage is a voyage for some S ⊆ p. But
first an example. Let S = 〈ab|bc〉〈cbc|, Ŝ = 〈abc|. Ŝ results from S by Red Contraction.
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There is exactly one S-voyage from x0 to y in the first tree, but there is none in the second.
The attempt fails because S also contains what amounts to a detour via x1. Red Contrac-
tion cuts short such detours with the results that Ŝ is now well defined on the second tree.
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Of course, it is also defined on the larger tree. Notice also that the traces of voyages have
the property that if they can be embedded into a tree T then there is a voyage from the
embedded begin to the embedded end. In a sense, traces correspond to minimal subtrees
on which a voyage can be defined. However, as we have seen, a voyage may contain more
than just the point needed to join the begin and end. Now let us see what E
amounts to: if v is an S-voyage for some S ⊆ p with begin x and end y, then there must be
a Ŝ ⊆ p with begin x and end y which is defined on the points connecting x and y. Since
the latter are just the ones on the dist(x, y)-voyage we restate this as follows. If S ⊆ p and
y ∈ xp and dist(x, y) = 〈u, d〉 then 〈u|d〉 ⊆ p. We will restate this once more now using
closure under Contraction. Namely, when we apply Red Contraction we can remove cer-
tain unnecessary detours leading us through extra points. Indeed, Red Contraction leads
to a polynomial that is equal to the one given in case the two are defined. Moreover, if
S is defined for x and y ∈ xS then the contractum Ŝ is defined on some proper subtree.
So Ŝ ⊆ p for each S ⊆ p. Notice that Green Contraction leads to a shorter voyage on no
less points. It just concerns an up- and down-movement on the same set of points. There
is, finally, a third type of Contraction that we need to consider. Suppose, namely, that we
have the sphere S = 〈t · u|uT · v〉. Then there are two possible types of voyages that can be
defined on trees.
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While the first trace contains no superfluous points because it goes down a different path
than the one it went up, the second contains a detour using the path u. The latter has a
contractum 〈t|v〉 because it should be defined also on the minimal subtree connecting x
and y — at least if E is required.
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Let us call a sphere 〈u|uT 〉 a yo-yo-sphere. (Well, since our trees grow upside down, so is
yo-yo-movement an up- and down-movement rather than a down- and up-movement.) p
is closed under yo-yo-contraction if q〈u|uT 〉q′ ⊆ p implies q · q′ ⊆ p.

Proposition 4.7.2 (Yo-Yo-Contraction) If p satisfies E then p is closed un-
der yo-yo-contraction. a

Lemma 4.7.3 An oval p satisfies E iff it is closed under yo-yo-contraction.

Proof. The direction from left to right is covered by Lemma 4.7.2. Consider a 〈u|d〉 ⊆ p.
Let y ∈ x〈u|d〉 and dist(x, y) = 〈g, h〉. Then we must have u = g · x and d = xT · h. By
closure under yo-yo-contraction, 〈g|h〉 ⊆ p. But this means that p satisfies E.
a

Theorem 4.7.4 An abstract relation R satisfies E iff it is a (possibly infinite)
union of ovals and closed under yoyo-contraction.

Proof. Let R be given. By E, R is faithfully represented by

R =
⋃
〈〈〈g|h〉|〈g, h〉 = dist(x, y) for some T and x, y ∈ T with xR(T)y}

Notice, that this polynomial is indeed closed under yo-yo-contraction. This proves the
direction from left to right. The other direction is easy. a

This theorem shows that E reduces relations to unions of ovals. Interesting is
what happens to regular polynomials. Assume that we have a regular nearness polynomial
p. Then observe that Set Contraction if applied to regular spheres yields regular spheres.
Namely, by Set Contraction |L〉〈R| ⊆ |L(RT )−1〉 ∪ 〈(LT )−1R| and if L,R are regular, so
are L(RT )−1 and (LT )−1R. Moreover, if p satisfies E then |L〉〈R| ⊆ p implies
|L(RT )−1〉 ∪ 〈(LT )−1R| ⊆ p. Thus in p we can replace |L〉〈R| by |L(RT )−1〉 ∪ 〈(LT )−1R|. We
thus effectively reduce p to a union of regular ovals. The problem is now what happens
to the yo-yo-closure. Here, we find ourselves in trouble because yo-yo-contraction has no
set-equivalent. If 〈L|R〉 is an oval, then we would guess that the yo-yo-contracta are given
by 〈L(RPT )−1|(LS T )−1R〉 but it is not hard to see that this overgenerates. Only if we assume
that L and R are closed with respect to prefixes and suffixes, we stand a chance. If this is
the case we say that 〈L|R〉 is ps-closed, dually to sp-closure. Notice namely, that if 〈L|R〉
is ps-closed and 〈g · u|uT · h〉 ∈ 〈L|R〉 then 〈g|h〉 ∈ 〈L|R〉 by prefix closure of L and suffix
closure of R.

Theorem 4.7.5 Let p be a regular, ps-closed nearness polynomial. Then p satisfies E-
 iff p is equivalent to a finite union of ps-closed regular ovals. a
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In order to characterize command relations via nearness polynomials we can use these
results the quite effectively. Command relations satisfy E and are therefore
an infinite union of ovals and are closed under yo-yo-contraction. The next property we
consider is D↑. Together with E it implies that if 〈u|d〉 ⊆ R then 〈u| ∈ R
as well, because if dist(x, y) = 〈u, d〉 then for the crosspoint z dist(x, z) = 〈u, ε〉. By
E, in the subtree ↑ x ∩ ↓ z xRz as well. Now let v be any string. There exists
a tree U such that dist(x, y) = 〈u, v〉. (Just glue a branch of type v onto z.) By D↑,
xR(U)y. Thus, we have seen that if R satisfies both E and D↑ it is a
union of ovals of the form 〈L|V∗〉. But for all Li, i ∈ I and R⋃

i∈I

〈Li|R〉 = 〈
⋃
i∈I

Li|R〉

so that, finally, R can be reduced to a single oval of the form 〈L|V∗〉. By yo-yo-closure, L
must be closed under prefixes, as is easily checked.

Theorem 4.7.6 An abstract relation satisfies E and D↑ iff it is an oval
〈L|V∗〉 with L = LP. a

Let us distinguish between a left oval and a right oval; an oval is a left oval if it is of type
〈L|V∗〉 and a right oval if it is of type 〈V∗|R〉. We have found that command relations are
special left ovals.

Theorem 4.7.7 An R is a command relation iff it is a left oval 〈L|V∗〉 with L ⊇ V and
L closed under prefixes. Furthermore, R is monotone iff L is in addition closed under
suffixes.

Proof. From left to right we only need to observe that since for x ≺ y we have y ∈ R(T)x

regardless of the label of y, and since dist(x, y) = 〈σ, ε〉 we must have a ∈ V for every
a ∈ V . This concludes the proof of the direction from left to right. For the other direction
we need to show that 〈L|V∗〉 for a L = LP ⊇ V is a command relation. We know by
the previous theorem that it satisfies E and D↑. Moreover, D � is
also quite clear. A is satisfied because structured distance is completely
independent of the linear ordering @. Now for M observe that it is equivalent
to the condition that if x ≤ y ≤ fR(x) then fR(x) ∈ Ry. So suppose that fR(x) = x〈r| and
that x ≤ y ≤ fR(x). Then y = x〈g| for a prefix g of r. It follows that r = g · h with a suffix
h and fR(x) = x〈g · h| = y〈h|. Since fR(x) ∈ Ry we must have h ∈ L. This follows from the
fact that dist(y, fR(x)) = 〈h, ε〉 and that dist(x, y) ∈ 〈L,V∗〉. So indeed, L must be closed
under postfixes if M holds. Reversing the argument shows that if L is closed
under postfixes, the relation defined is M. a

Remains to see what T amounts to. Here assume that y < fR(x). Let y ∈ x〈u|d〉,
where u ∈ L and d , ε. Assume now that z > y. If z ≥ x we must have z ≤ fR(x). (In
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the other case this automatically satisfied.) Now, z = dT · e for some dT · e ∈ L, and so,
by suffix closure, e ∈ L. Then z ∈ x〈u|d〉〈dT · e| and thus z ∈ x〈u · e|. z ≤ fR(x) is then
equivalent with u · e ∈ L. Let now L ∗ L = {d · e : (∃a ∈ V)(d · a, a · e ∈ L)}.

Theorem 4.7.8 An abstract relation is a tight command relation iff it is a left oval 〈L|V∗〉
such that L ⊇ V, L is closed under subwords and L ∗ L ⊆ L. a

E. Tight relations are defined by the following languages. (i) {ε} ∪ V ∪ W∗ for
some W ⊆ V . This language defines a relation R via fR(x) = the smallest in a continuous
row of W properly above x. (ii) {ε} ∪ V ∪ (V −W)∗ ∪ (V −W)∗ ·W. This is the standard
type: fR(x) = the first W strictly above x. (iii) L = all subwords of a1 · . . . · an, where
V = {a1, . . . , an}. The characteristic function of this relation is rather tricky to determine.
However, this last example shows that tight relations can be rather odd in their behaviour.

It is not hard to check that the following laws hold

〈L1|V∗〉 ∪ 〈L2|V∗〉 = 〈L1 ∪ L2|V∗〉

〈L1|V∗〉 ∩ 〈L2|V∗〉 = 〈L1 ∩ L2|V∗〉

Moreover, if L1 and L2 are prefix (postfix) closed, then so are their intersection and join.
As for composition the law

〈L1|V∗〉 ◦ 〈L2|V∗〉 = 〈L1 · L2|V∗〉

does not necessarily hold. It does hold, however, when both are monotone, that is, suffix
closed.

Theorem 4.7.9 Regular command relations are closed under intersection and union; the
monotone, regular command relations are in addition closed under composition. a



Chapter 5

Boolean Grammars

5.1 Context Free Grammars

§ 5.1 is based on (Harrison, 1978), (Becker and Walter, 1977) and (?). A context-free
rewrite system is a pair R = 〈V,R〉 where V is a non-empty set, the so-called vocabulary
and R ⊂ V × V∗ a finite set, the set of rules. A rule is commonly written as ρ = A → Γ
where A ∈ V and Γ ∈ V∗. ρ is said to be n-ary if Γ is a string of length n. In that case
we also say that the productivity of ρ is n − 1; the productivity is denoted by pρ. Note
that pρ can be any number ≥ −1. If pρ ≤ 0, ρ is called unproductive. A context free
rewrite system stands in correspondence with the set of V-strings as well as the set of
(ordered) V-trees it generates. We define R � T = 〈T,@, `〉 as follows. R � T if for every
x ∈ T which is not a leaf and x↓ = y1 . . . yn the string of daughters of x with yi @ yi+1

we have `(x) → `(y1) . . . `(yn) ∈ R. If R � T then R is said to generate T. The trees
generated by R is called the yield of R; we symbolize it by Yd(R). Notice that all one-
element trees are generated. The strings generated by R are defined thus. All v ∈ V1 are
generated. Furthermore, if ΓlvΓr is a string generated by R and v → ∆ ∈ R, then Γl∆Γr

is a string generated by R. Note that if we use ρ = v → ∆ to rewrite v in this way then
](Γl∆Γr) = ](ΓlvΓr) + pρ. Note that the lengths of strings do not have to increase; we
can only say that ](Γl∆Γr) ≥ ](ΓlvΓr) − 1. We write L(R) for the set of strings generated
by R and call it the language of R. Notice that L(R) is the set of all string cuts of trees
generated by R. Notice also that R also generates the subtree consisting of all elements
x with x ≥ c for some c ∈ C, i. e. the set ↑ C. Furthermore, C turns out to be the set of
leaves of this tree. So, L(R) is the set of minimal string cuts of trees generated by R. We
also write R � ~v for ~v ∈ L(R).

Context-free grammars are rewrite systems in which the symbols from which to start
a derivation and the symbols with which to end derivations are fixed. Namely, select from
V a subset S and a subset T . Then G = 〈V, S ,T,R〉 is a context-free grammar if 〈V,R〉

133



134 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

is a rewrite system and no rule exists of the form t → Γ where t ∈ T . We follow the usual
convention to denote terminal symbols by lower case letters and non-terminal symbols by
upper case letters. If a symbol is undetermined in this respect we use lower case Greek
letters. We say thatG generates the ordered labelled tree T if generates the tree as a rewrite
system and, moreover, `(r) ∈ S and `(l) ∈ T if l is a leaf. We also write G � T. The
language generated by G means either the subset of V∗ generated by G – in which case
it is the set of cuts of trees generated by the grammar – or it can mean the set of all strings
in T ∗ generated by G – in which case it means the set of minimal cuts of trees generated
by the grammar. We distinguish the two (whenever necessary) by Ln(G) and Lt(G). A
language L is called context free if L = Lt(G) for some context free G.

Context-free grammars are quite a general concept. For every language generable by
a cfg there are infinitely many cfgs generating this language. Moreover, there are bad and
good grammars to write for generating a language. We will be concerned to see how good
grammars can be in the general case. Before we do so we have to show that our definition
of a context-free grammar is the same as the usual one. Namely, in standard definitions it
is required that S contains only one symbol. Now, given a grammar in our sense, we add
a new symbol ℵ and new rules ℵ → Γ for each rule W → Γ ∈ R with W ∈ S . We then
declare ℵ the only start symbol; that is, we form the grammar

〈V ∪ {ℵ}, {ℵ},T,R ∪ {ℵ → Γ|(∃W ∈ S )(W → Γ ∈ R)}〉

This grammar has a single start symbol and – with the exception of the root label – it
generates exactly the same ordered labelled trees. Notice that in this new grammar the
start symbol does not occur to the right of a rule. So there is now a symmetry between
start symbols and terminal symbols because the latter may not appear to the left of a rule.
Notice that the proofs also reveals that the languages generable by cfgs are closed under
union. Namely, take two grammars G = 〈V, S ,T,R〉 and H = 〈V ′, S ′,T,R′〉 over the same
alphabet. One can arrange it that the non-terminals of both grammars are disjoint sets.
Then let G∪H = 〈V ∪ V ′, S ∪ S ′,T,R∪ R′〉. It is routine to check that a tree is generated
by G ∪ H iff it is generated by one of G or H.

There are two quite obvious deficiencies that a context free grammar can have. These
are exemplified by the grammars over the vocabulary {S , A, a} with set of terminals {a}.
The first has the rules S → S , S → a, A → a. Here the symbol A and the rule A → a
although technically present can never be used in an actual derivation from the grammar.
The second grammar only has the rule S → S a. Here there is no possibility to end a
derivation. A grammar is called normal if it has neither of these defects.

Theorem 5.1.1 For each grammar G there exists a normal grammar Gn generating ex-
actly the same set of trees.

Proof. Define the notion of reachable and groundable symbols. σ ∈ V is reachable if
eitherσ ∈ S or there is a rule W → Γ such that W is reachable andσ ∈ Γ. σ is groundable
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if either σ ∈ T or there is a rule σ→ Γ such that all α ∈ Γ are groundable. Let S n = S , Vn

be the set of all σ ∈ V which are both reachable and groundable, T n = T ∩Vn and, finally,
Rn = R ∩ Vn × Vn∗. And Gn = 〈Vn, S n,T n,Rn〉. It is not hard to see that if Gn � T then
G � T as well, because the latter has more rules and more symbols. Now letG � T. Then
by induction on the depth it is shown that all labels `(x) for x ∈ T are reachable. Likewise,
by induction from bottom to top it is shown that all `(x) are groundable. Then if x ∈ T is
not a leaf and y1 . . . yn is the sequence of its daughters then `(x) → `(y1) . . . `(yn) ∈ R and
all symbols are in Vn; hence `(x)→ `(y1) . . . `(yn) ∈ Rn. a

In normal grammars a symbol is a terminal symbol iff it does not occur to the left in a
production. We have seen that we can arrange it that a symbol is a start symbol iff it does
not occur to the right of a rule. Hence grammars can be identified with context-free rewrite
systems in which the terminal and the start symbols are left implicit, that is, in which
these sets are recoverable from the rules. From now on we assume all grammars to be
normal. There are other, more serious ‘deficiencies’ a grammar might have. Particularly
problematic are the unproductive rules, namely A → ε and unary rules A → B. It is not
difficult to understand that one wants to get rid of such rules in a grammar. One actually
can get rid of them but at the cost of writing a grammar that does not generate the same
trees. However, as we already explained, it is constituent structures rather than trees that
we need to keep invariant under our manipulations; this is so, because it is in principle
unobservable from which tree structure the observed constituent structures of sentences
arise. This statement inasmuch as it arises naturally here, is one of formal content. It is
quite controversial in linguistics how far removed the analysis of sentence structure needs
to be from the visible structure, that is, the constituent structure. In  it is often claimed
that there can be principles reasons to choose one rather the other. But the arguments as
far as I have seen are only of intrinsical nature, stemming from considerations about a (or
the?) theory of grammar, rather than from the pure and simple concern to explain the data
at hand. They might be right in saying that the formal reduction has no psychological
basis but they are wrong in suggesting that this can be seen from judging the data alone.
Psychological claims cannot be proved other than by psychological experiment.

The main result of this paragraph is a proof that for every grammar there is an effective
algorithm to derive a grammar without unproductive transitions which nevertheless has
the same constituent structures and lets itself be represented faithfully by an associated
rewrite system. The latter property is of technical importance, while the former are of
wider importance for the application of formal language theory. First we consider the
elmination of unproductive rules. We introduce the skeletal type of a grammar. For a
symbol σ ∈ V we let sk(σ) = n if σ is non-terminal and sk(σ) = t if σ is terminal. For
a rule ρ = X → σ1 . . . σn we let sk(ρ) = 〈sk(σ1), . . . , sk(σn)〉. So, the skeleton sk(ρ) of
a rule ρ tells us which elements of the production of the rule are terminal and which of
them are not. The skeletal type of G is defined by sk(G) = {sk(ρ)|ρ ∈ R}. For example,
a grammar is in Chomsky Normal Form if it is of skeletal type {〈t〉, 〈n〉, 〈n, n〉}, that is,
a rule is either of the form A → a, a terminal or of the form A → B with B non-terminal
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or else of the form A → BC, B,C non-terminal. (This ignores the possibility to have
the rule S → ε which allows to generate empty strings, but for proper languages this is
excluded; simply assume that none of the grammars considered here allow to generate the
empty string.) We will show that there is an algorithm transforming a grammar G into a
grammar Gc which allows the same constituent structures but is of skeletal type contained
in the type {〈t〉, 〈n, n〉, 〈n, n, n〉, . . .}. To this end we need to eliminate certain rules. The first
simplification consists in introducing a nonterminal A for each terminal a ∈ V together
with a rule A → a. These extra nonterminal symbols are called preterminal since it is
the case that they can only cover leaves in the generated trees. Furthermore, if W → Γ
is a rule in G containing some non-terminals we replace any non-terminal a in Γ by its
corresponding preterminal. For example, the rule X → aZbXc will be replaced by the
rule X → AZBXC with the rules A → a, B → b,C → c added etc. It is straightforward
to check that this operation leaves the set of constituent structures unharmed. Observe
namely that in the constituent structure any leaf i is covered by the preleaf {i}, so that any
single symbol in a generated string is in fact treated as a constituent. The new grammar
indeed generates it as a constituent and so comes closer to the constituent structures. Next
we attack the empty productions. Suppose our grammar contains an empty production
W → ε. Let ∆1, . . . ,∆n be the (possibly empty) enumeration of ∆i such that W → ∆i ∈ R.
Now for any rule ρ = Z → X1 . . . Xr we let ρW be the set of rules obtained by replacing the
occurrences of W as W = Xi by any of the ∆ j. Let RW =

⋃
〈ρW |ρ ∈ (R−(W → ε))〉. Notice

that if there are no ∆i the set ρW is empty. RW does not contain the empty production
W → ε; it does contain still the other empty productions, but no more. It generates the
same strings and the same constituent structures. We do this procedure for each empty
production – thus eliminating them all. In the next step we get rid of the productions of the
type W → X. First we throw away all productions W → W. Then we do a construction
which is quite similar to the one above. In every rule ρ = Z → Y1 . . . Yr we replace all
occurrences of W = Y j by a ∆ such that W → ∆ is a rule and ∆ has at least two symbols.
After adding all such rules, W → X can be retracted. Notice that the remaining grammar
has one unary production less and produces the same constituent structures.

The next property we want to monitor is the correspondence with a rewrite system.
Notice that we have already spoken of the possiblity to let terminal and initial symbols
be implicitly defined by the rules. The initial symbols cannot appear on the right, the
terminal symbols cannot appear on the left. Still, in a nonstandard grammar the mixed
apprearance of terminal and initial symbols in the right hand side of a rule causes concern
if we aim at eliminating the terminal symbols altogether. At present this may appear
unmotivated, but let us grant that one may be interested in this question. The question can
be put as follows. Suppose that we have a language over T and a context-free grammar
G. Suppose that we drop all terminal symbols in the rules, suppose we forget what is the
start symbol – under what circumstances is G fully recoverable? For example, let G be
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the following grammars

G H
S → AaA A→ S aS S → AaaA A→ S aS
A→ a A→ aa

If all terminals are dropped we get in both cases the grammar S → AA, A → S S . How-
ever, none of the grammars is standard. Namely, the assumpmtion of standardness lets us
locate the terminal symbols in a possible rule; for it can only be unary. However, dropping
terminals from a rule lets no trace of that rule, so we cannot recover it. The problem is that
we do not know which symbols admit an expansion into a terminal symbol. Technically,
this can be overcome by splitting a grammar into syntax and lexicon. We define here a
lexicon as a pair Λ = 〈N,T, λ〉 where T is a set of terminals, N a set of nonterminals and
λ : T → N a map from T to N. Precisely this split is made in current syntax; there is
the grammar and there is the lexicon. The grammar if properly written lets us eliminate
all reference to terminals and so reduces to a pure cf rewrite system. This rewrite system
together with the lexicon lets us reconstruct the ‘ordinary’ cfg.

Without the lexicon, however, it is necessary to have a distinction between those non-
terminals that can occur as preterminals and those which cannot. This, however, is an
important question. Let us say that a labelled tree F is the frame of T, if it results from T

by dropping all leaves. The question arises how we can determine what frames the gram-
mar generates, given only its rewrite system. To be able to answer this we need to know
which of the trees generated by the rewrite systems are completed, that is, have leaves that
can be expanded into terminals in the original grammar. In other words, we need to be able
to distinguish preterminal systems. This, however, is not possible without assuming that
our grammar is of a special form. Namely, it must be such that a nonterminal the choice
of appearing either exclusively as a preterminal or exclusively as a non-preterminal. This
whole exercise is principally the same as with the terminal symbols, now done with the
preterminals. If a grammar is organized in this way, the preterminals function as classi-
fiers of the terminals. They denote classes of syntactically indistinguishable terminals;
whereby we mean to say that if P → a and P → b are two expansions of the preterminal
P, then a and b can be substituted for each other in all contexts. Clearly, if a grammar has
a non-terminal N that may also occur as a preterminal, we can get around the problem by
splitting N into the twins Np,Nn. All rules N → t are replaced by Np → t and all rules
N → ∆ are replaced by the set of rules of the form Nn → ∆̂ where ∆̂ arises from replacing
N by either of the twins Np,Nn.

Definition 5.1.2 We call G in standard form if

sk(G) ⊆ {〈t〉, 〈n, n〉, 〈n, n, n〉, . . .}

and every nonterminal N is either strictly preterminal or strictly non-preterminal.
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Standard grammars have the advantage of generating constituent structures directly as
trees. If 〈T,@, `〉 is a labelled ordered tree generated by a standard grammar then the con-
stituent structure of this tree is basically the tree itself (just drop the superfluous labels).
Furthermore, a cf rewrite system 〈N,R〉 based on nonterminals lets us recover G if G is
standard.

Theorem 5.1.3 Any grammar G with S → ε < R can be reduced algorithmically to
standard form Gs such that both G and Gs admit the same constituent structures. a

5.2 Perfect Grammars

Another important concept is that of an invertible grammar.

Definition 5.2.1 A grammar G is invertible if for any pair of rules A → Γ and B → Γ in
R we have A = B.

Invertibility is quite an important property. Namely, suppose we have a standard, invert-
ible G and a constituent structure σ = 〈~v,P〉 generated by G. Then there is a unique way
to extend this constituent structure to a tree generated by G. Namely, by the fact that G
is standard, the constituent structure belongs to a tree whose minimal cut is ~v. Thus the
problem is to introduce the labels at the interior nodes. But here we can proceed induc-
tively; suppose that x ∈ P and that x immediately dominates y1, . . . , yn in 〈P,⊆〉 with
yi @ yi+1. Suppose inductively that the labels `(y1), . . . , `(yn) have been assigned. Then
there is at most one `(x) to make `(x) → `(y1) . . . `(yn) a rule of G. That there is at least
one way follows from the assumption that ~v ∈ L(G), so there is a tree with minimal cut ~v.

Proposition 5.2.2 Let G be standard and invertible and 〈~v,P〉 a constituent structure of
G. Then there is a unique tree generated by G with constituent structure 〈~v,P〉.

Proof. By standardness, the tree based on the constituent structure is the only tree that as-
signs this constituent structure to ~v. The labelling is unique by the fact that G is invertible.
a

Theorem 5.2.3 There is an algorithm transforming a grammarG into an invertible gram-
mar Gi such that both admit the same constituent structures.

Proof. For simplicity we assume that G has no unproductive rules. We take T i = {{t}|t ∈
T } but V i = T i ∪ N i with N i = 2N − {∅} with N = V − T . So, while the terminals of Gi
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are in effect the terminals of G, the nonterminals of Gi are the sets of nonterminals of G.
Intuitively, {A1, . . . , An} is a label that if assigned to x means has label A1 or A2...or An.
Then S i = {A|A ∩ S , ∅}. Furthermore, as rules we take all rules of the form

A→ B1 . . .Gn

such that whenever A ∈ A there exist Bi ∈ Bi such that A→ B1 . . . Bn ∈ R. (Notice that the
Bi may also be terminals in which case Bi = {bi}, by definition of T i.) By construction,
Gi = 〈V i, S i,T i,Ri〉 is invertible. For if the B1, . . . ,Bn are fixed, the set A is uniquely
determined. It remains to be seen, however, that Gi has the same constituent structures
as G. Consider to this effect a labelled tree T � G. By induction from bottom to top
we show that there is a U = 〈T,@, µ〉 such that Gi � U. On the leaves, let µ(l) = {`(l)}.
Suppose then that x is not a leaf and that µ(yi) has been defined for all yi ∈ x↓. Then,
inductively, it holds that `(yi) ∈ µ(yi) and moreover `(x) → `(y1) . . . `(yn) ∈ R. Then
the set A of all A such that A → B1 . . . Bn ∈ R for some Bi ∈ µ(yi) is not empty and
so µ(x) = A is a good candidate. Eventually, µ is defined over the whole tree and this
gives the desired U. Conversely, assume U � Gi is given. We now want to produce a
` such that G � 〈T,@, `〉. Here we proceed top to bottom. We choose a A ∈ µ(r) and
let `(r) = A. Inductively, assume `(x) = A that x↓ = y1 . . . yn and that µ(yi) = Bi. By
construction of Gi there must be Bi ∈ Bi such that A → B1 . . . Bn ∈ R. Define `(yi) = Bi.
Proceed inductively. Eventually, ` is defined over the whole tree. Since for the leaves
`(l) ∈ µ(l) and µ(l) = {tl}, we have by the identification t 7→ {t} that both trees have the
same minimal string cut. This proves the theorem. a

After having reduced the grammars to standard, invertible form there is a final reduc-
tion that one can make. Consider the following grammar.

S → AA A→ CD
S → AB B→ DC
S → BA C → c
S → BB D→ d

In this grammar the two symbols A, B although extensionally different in the sense that
they develop into different trees are intensionally identical in that they can be substituted
for each other in any right hand side of a rule. It is not hard to see that the difference
between A and B is syntactically irrelevant. We can namely write a simpler grammar in
which A and B are identified, and the same trees are generated.

S → AA C → c
A→ CD D→ d
A→ DC
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Both grammars are invertible and standard. Yet the second is obviously simpler. This
motivates the following definition.

Definition 5.2.4 Let A, B ∈ V − T. A and B are called indistinguishable in G if A ∈
S ⇔ B ∈ S and for every rule ρ = X → Γ ∈ R also X → Γ′ ∈ R where Γ′ results from Γ
by replacing some occurrences of A by B and some occurrences of B by A. A grammar is
re�ned if for every pair A, B if A is indistinguishable from B then A = B.

Lemma 5.2.5 Let G be normal, standard and invertible and A, B be nonterminals. Then
A is indistinguishable from B iff for every pair ~w1, ~w2 of constituents such that ~w1 is of
category A and ~w2 of category B and any constituent ~v G � ~v⇔ G � ~v′ where ~v′ results
from ~v by replacing a constituent occurrence of ~w1 by ~w2 or a constituent occurrence of
~w2 by ~w1

Proof. Straightforward from the fact that ~w1 occurs as a constituent iff it occurs as a
constituent with label A and ~w2 occurs as a constituent iff it occurs as a constituent with
label B. a

Now let ≈ be an equivalence relation such that A ≈ B implies that A and B are indistin-
guishable. Let π be the canonical map π : V → V/≈, where V/≈ is the set of ≈-equivalence
classes. We put Vπ = V/≈, S π = {X/≈|X ∈ S }, T π = T , Rπ = {x/≈ → σ1/≈ . . . σn/≈|X →
σ1 . . . σn ∈ R}. Then put Gπ = 〈Vπ, S π,T π,Rπ〉. We call π a refinement map and Gπ a
refinement of G. If G admits no nontrivial refinements G is called refined. If ≈ is defined
via A ≈ B iff A and B are indistinguishable then Gπ is not necessarily refined; however,
since this grammar has less symbols, a suitable iteration of this process will yield a refined
grammar.

Theorem 5.2.6 There is an algorithm transforming any grammar G into a refined gram-
mar Gr which generates the same trees via the canonical translation σ 7→ σ/≈ as G.
Moreover, if G is invertible, so is Gp.

Proof. For a tree T = 〈T,@, `〉 we put Tr = 〈T,@, `r〉 with `r(x) = `(x)/≈. It is straight-
forward to check that if G � T then Gr � Tr. Moreover, if Gr � Tr then there exists
a tree U〈T,@, µ〉 with Ur = Tr and G � U. It remains to determine µ. Obviously,
for leaves µ(l) = `(l) satisfies the requirements. Furthermore, let x be not a leaf and
x↓ = y1 . . . yn. Assume that µ(yi) is defined and µ(yi)/≈ = `(yi)/≈. By assumption,
`(x)/≈ → `(y1)/≈ . . . `(yn)/≈ ∈ Rr and so X → µ(y1) . . . µ(yn) ∈ R for some X ≈ `(x).
Put µ(x) = X. Finally, µ is defined over the whole tree and µ(r) ≈ `(r). Since `(r) ∈ S ,
µ(r) ∈ S and this shows G � U. This proves the first assertion. For the second let
A/≈ → Γ/≈, B/≈ → Γ/≈ ∈ Rp. Then for some ∆1,∆2 ≈ Γ, some Â ≈ A and B̂ ≈ B we
have Â→ ∆1 and B̂→ ∆2. Now, by definition of indistinguishability, Â→ Γ, B̂→ Γ ∈ R
and so by the fact that G is invertible, Â = B̂, which means A/≈ = B/≈. a
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Definition 5.2.7 A grammar G is perfect if it is normal, standard, invertible and refined.

Theorem 5.2.8 For every G there exists a perfect Gp such that Cst(Gp) = Cst(G).

Proof. Reduce G first to normal and then to standard form. Make G invertible and refine
it. The last step leads to a perfect grammar, since invertibility is not lost. a

Perfect grammars have interesting properties. The most remarkable is the following.

Proposition 5.2.9 There exists up to renaming of the nonterminals exactly one perfect
grammar P generating Cst(P).

Proof. Let G be a perfect grammar such that Cst(G) = Cst(P). Define a relation τ ⊆
NP × NG from the nonterminals of P to the nonterminals of G as follows. Given a 〈~v,P〉 ∈
Cst(P) and a constituent ~w of ~v in this structure. Then by Proposition 5.2.2 ~w has a unique
label W in P and a unique label X inG. In this case we let WτX. So, τ collects all instances
of W, X where W is the label of a constituent in P and X the label of a constituent in G.
Suppose now that WτX1, X2. Then there are constituents ~w1, ~w2 in some structures such
that both ~w1, ~w2 have label X in P but ~w1 has label X1 in G and ~w2 has label X2. Then
because the strings ~w1, ~w2 have the same label in P they can be substituted for each other
in each string ~v if they occur as constituents. On the other hand, since this is so and G is
normal, standard and invertible, we can invoke Lemma 5.2.5 to prove that X1 ≈ X2 and
hence X1 = X2, since G is reduced. This proves that there is a function τ : NP → NG such
that P � T ⇔ G � Tτ and τ � T = id. By reversing the roles we can show that there is
a similar function σ : NP → NG with P � T ⇔ G � Tσ. Now P � T ⇔ P � Tτσ and
G � T ⇔ G � Tστ, and σ ◦ τ � T = id, τ ◦ σ � T = id. From the invertibility of P it
follows τ ◦ σ = id and from the invertibility of G it follows that σ ◦ τ = id, which proves
the theorem. a

Theorem 5.2.10 It is decidable for two grammars G and H over a given set of terminal
symbols whether or not Cst(G) = Cst(H).

Proof. First, it can be assumed that both G and H are perfect; otherwise reduce G,H to
perfect form. Then Cst(G) = Cst(H) is decidable by Proposition 5.2.9 because if they
generate the same constituent structures they must in fact be isomorphic. But whether
two finite structures are isomorphic, is decidable. a

This result is also proved essentially in (?), though the results do not explicitly appear in
that form due to the use of Greibach Normal Form. In the quoted paper the notion of a
bisimulation is used, which is technically somewhat simpler than the notion of syntactical
indistinguishability but intuitively more demanding. used instead.
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5.3 Regular Languages

Definition 5.3.1 A language L ⊆ V∗ is called regular if it can be produced from the sets
{ε}, {a}, a ∈ V, with the help of the operations ∪, · and the Kleene-star −∗.

The following are regular languages. V∗, the set of all strings, a∗ = {an|n ∈ ω}, (V−{a})∗ ·a.
Note that we drop the brackets from {a} and write a instead. Also, we write an for the n-
fold concatenation of a with itself.

There are two characterization theorems for regular languages, one in terms of the
grammars generating them and the other in terms of machines that accept these languages.
We will not prove these results; proofs can be found for example in (Harrison, 1978). Call
a context-free grammar right linear if it has type {〈t〉, 〈n〉, 〈t, n〉}, that is, all the rules are
of the form

A→ t, A→ B, A→ uB, for t, u ∈ T, A, B ∈ N

Theorem 5.3.2 A language L ⊆ V∗ is regular iff it is generated by a right linear grammar.
a

A finite state automaton is a quintuple A = 〈S ,V, τ, I, F〉 where S is set, the set of states,
I, F subsets of S , called the set of initial and the set of final states, V a set, the vocabulary
and τ : V × S → S the (direct) transition function. From the direct transition function we
can define the transition function τ̂ inductively for H ⊆ S via

τ̂(ε)(H) = H, τ̂(g · v)(H) = τ(v)(̂τ(g)(H))

Notice that in contrast to the usual definition we have a set of initial states and that we
define the transition function over sets of states rather than states. This is for convenience
only. Now A accepts a string s if F ∩ τ̂(s)(I) , ∅, that is, if there exists an initial state
i ∈ I such that if s is fed to the machine symbol by symbol the machine will at the end of
the word reach a state f ∈ F. Call a language L finite state recognizable or simply finite
state if there exists a finite state automaton A such that A recognizes s iff s ∈ L.

Theorem 5.3.3 (Kleene) A language is regular iff it is finite state. (^)

A usual finite state automaton has only a single i as a start symbol, that is, ]I = 1. There
is a way to reduce an arbitrary automaton to one that has ]I = 1 and accepts the same
language. Furthermore, an indeterministic automaton differs from a deterministic one in
that τ : V × S → 2S is a function not into S but the powerset S , so that in fact we have
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an indeterminism in the transition if ]τ(σ, s) ≥ 2. By introducing a different automaton,
whose states are the sets of states of A we can produce a deterministic automaton 2A =

〈2S ,V, 2τ, Id, Fd〉 where Id = {H|H ∩ I , ∅}, Fd = {H|H ∩ F , ∅} and 2τ(σ)(H) =⋃
〈τ(σ)(h)|h ∈ H〉. Certainly, 2A is deterministic; and it accepts exactly the strings which

are accepted by A.

We will use these results to derive certain closure conditions on regular languages.
First the following.

Theorem 5.3.4 If L is regular, so is V∗ − L. If L1, L2 are regular, so is L1 ∩ L2.

Proof. Suppose A = 〈S ,V, τ, {i}, F〉 is the automaton accepting L. Then Ac = 〈S ,V, τ, {i}, S−
F〉 accepts s iff τ̂(s)(i) ∈ S − F iff τ̂(s)(i) < F iff A does not accept s iff s < L. For the
second claim observe that L1 ∩ L2 = V∗ − ((V∗ − L1) ∪ (V∗ − L2)) and so, since regular
languages are closed under union and under complementation, L1 ∩ L2 is regular. a

Theorem 5.3.5 Suppose that L is regular. Then so are LT , LP and LS .

Proof. Let A = 〈S ,V, τ, I, F〉 accept A. Consider the automaton AT which inverts the
action of A: AT = 〈S ,V, τ−1, F, I〉 with τ−1(σ)(H) = {h|τ(σ)(h) ∈ H}. AT is not necessarily
deterministic but that does not harm as we have seen. Now, by definition, AT accepts
sT iff there is an initial state f ∈ F such that s if fed in reverse order will yield a set T
containing a final state i ∈ I. Hence, if s is fed in its proper order to A, starting with i, it
will end in a set containing f ∈ F, hence accepting s. This shows the first claim. Now
consider the automaton AP = 〈S ,V, τ, I, FP〉 where FP is the set of all h such that for some
t τ̂(t)(h) ∈ F. Then AP accepts s iff there is a i ∈ I and h ∈ FP such that τ̂(s)(i) = h iff
there is i ∈ I, f ∈ F and h ∈ V∗ such that τ̂(s · h)(i) = f iff there is h such that A accepts
s · h iff s ∈ LP. This shows the second claim. The third follows, because LS = ((LT )P)T ,
that is, suffixes are transposes of prefixes of the transpose of s. It is also not difficult to
produce an automaton accepting LS . a

Notice that in this proof it has payed off to have a set of initial states rather than a single
such state. Recall the notation

L−1M = {m|(∃` ∈ L)(` · m ∈ M}

LM−1 = {`|(∃m ∈ M)(` · m ∈ L}

Theorem 5.3.6 If L is regular, so is LM−1. If M is regular, so is L−1M.
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Proof. Clearly, the second assertion follows from the first; namely, L−1M = (MT (LT )−1)T .
So, if M is regularm so is MT by Theorem refmirror, and so MT (LT )−1 is regular, by the
first statement. Hence (MT (LT )−1)T is regular, again by Theorem 5.3.5. Now for the first
assertion. Let A = 〈S ,V, τ, I, F〉 accept L. Let FM = {h|(∃m ∈ M)(̂τ(m)(h) ∈ F}. Then
AM = 〈S ,V, τ, I, FM〉 accepts s iff τ̂(s)(i) ∈ FM for some i ∈ I iff for some m ∈ M and
some i ∈ I τ̂(s ·m)(i) ∈ F iff for some m ∈ M A accepts s ·m iff for some m ∈ M s ·m ∈ L
iff s ∈ LM−1. a

5.4 Grammar Operations

Context free grammars can be manipulated in order to obtain new cfgs. Two operations
are of particular significance. One is cutting. GivenG and a set U of non-terminals, G−U
is the result of dropping all non-terminals in U from G. Thus, if G = 〈V, S ,T,R〉, then let

R − U = 〈A→ Γ|A < U,Γ * U}

and then G − U = 〈V − U, S − U,T,R − U〉. Cutting simply means to forbid certain
nonterminals to occur. The second operation is pairing. With G1 = 〈V1, S 1,T,R1〉 and
G2 = 〈V2, S 2,T,R2〉 we put

R1 × R2 = {ρ1 × ρ2|ρ1 ∈ R1, ρ2}

where ρ1 × ρ2 is defined exactly when ρ1 and ρ2 have the same signature. Suppose that
this is the case and let ρ1 = A1 → Γ1, ρ2 = A2 → Γ2; then ρ1 × ρ2 = 〈A1, A2〉 → Γ1 × Γ2

where the latter is defined according to t × t := t if t is terminal and N1 × N2 = 〈N1,N2〉

if N1,N2 are nonterminal. Pairing of two grammars with identical alphabet of terminals
results in something of an intersection of the languages. Namely, it can be shown that the
trees generated by the pairing G1 × G2 must match both generating rules of G1 and G2.
This is intuitively clear, and a rigorous proof will be given later.

5.5 Going Boolean in Grammar

Syntax tries to abstract as much as possible from the actual words. It aims to produce a
classificatory system of words that allows to abstract from the individual words to classes
thereof. These classes represent words with identical syntactic behaviour; thus the classes
group together words which are syntactically indistinguishable. Boolean grammars con-
cern themselves exclusively with this latter classification and do not talk of words at all.
This is the job of the lexicon. Notice that we have earlier been saying that an ordinary
grammar can be decomposed into syntax and lexicon, where the latter is simply speaking
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a list telling us which word belongs to which group. Moreover, if we aim at completely
disentangling syntax and lexicon the grammar needs to be prepared in standard form in
order to be uniquely recoverable. Of course, since any grammar can be reduced to stan-
dard form keeping the constituent analysis constant, there is no real need to assume that
the grammar is recoverable. For this shows that the outer form of the grammar is – as
far as the constituent yield is concerned – somewhat arbitrary and it makes absolutely no
sense to ask from which grammar the boolean grammar originated, except of course, it is
syntactic trees we are after. Any pair of syntax and lexicon results in a standard grammar,
and that is the grammar from which say that they originate.

After the lexicon being split from the grammar, we need to use only the classificatory
system. This system we assume to be in boolean form. A priori we do not assume
finiteness of the classificatory system, but for cfgs it necessarily will be (up to reduction).
Such a classificatory scheme is best seen as a boolean algebra, or in fact a mereology.
Notice namely, as we have pointed out earlier, that the 0 cannot hold of any element, so the
classifiers that the syntax manipulates are all nonzero, and therefore the basic underlying
classification scheme is a mereology rather than a boolean algebra.

Definition 5.5.1 A boolean rewrite system is a pair R = 〈M,R〉 where M = Bo is a
mereology, R a finite subset of M × M+. R is context free if M is finite. A booolean

grammar is a quadruple G = 〈Σ,Ω,M,R〉 where 〈M,R〉 is a boolean rewrite system and
Σ,Ω ∈ M disjoint elements.

This definition needs explanation. First, we can under some conditions on the grammar
actually drop explicit mentioning of the terminal symbols. This can be useful technically.
Notice also that the booleanness allows to have a single terminal symbol rather than a
set on condition that this set is finite. But since we are dealing with a finite lexicon it
necessarily is and we have therefore defined it this way. The notion of a labelled tree now
needs to be adapted. Let Ter be the vocabulary (i. e. lexicon) and M a mereology. A
partially labelled tree over M and Ter is a pair 〈T, `〉 with ` : T → M ∪ Ter. A partial
frame over M is a pair 〈F, `〉 with ` : F → M. A partial frame arises from a partial tree
by dropping all leaves, while a frame can be boosted up to a tree by adding a node under
each leaf.

For a frame we can define a model relation with the grammar. We write 〈T, x〉 |= a if
`(x) v a. The reason we call this labelling partial is that it is no longer true that either
〈T, x〉 |= a or 〈T, x〉 |= −a; thus we no longer have bivalence, that is, classical logic.
Nevertheless, we do use classical logic, but the labels now express only part of what is
or may be true of a node. A (fully) labelled tree is a partially labelled tree in which for
every x the set

x∗ = {a ∈ M|〈T, x |= a}

is an ultrafilter in the mereology; this can only be if the lowest element in x∗, `(x) is an
atom ofM.



146 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

As outlined above, we will not take labels as unanalysable. The labelling component
itself will have the structure of a mereology. the algebra of labels is by definition meant
for the non-terminals. A partially labelled tree is generated by G if it satisfies the local
condition and the boundary condition. The boundary condition is that `(r) v Σ and
that `(x) v Ω iff x is a leaf. The local condition is that for an x which is not a leaf
and has daughters y1, . . . , yn the rule `(x) → `(y1) . . . `(yn) instantiates one of the rules of
the grammar. In  terms we say that `(x) → `(y1) . . . `(yn) have to satisfy the local
admissibilty conditions set by the grammar. These conditions are given via the rules.
Namely, let λ = A → B1 . . .Bm µ = K → L1 . . . Ln be rules (alias local trees); then we
write λ v µ if m = n, A v K and Ai v Li for all i ≤ n. And then ξ = `(x)→ `(y1) . . . `(ym)
instantiates a rule ρ if ξ v ρ. This concludes the definition of the local condition by a
grammar. Intuitively, this makes sense as follows. Given a partially labelled tree 〈T, `〉
and a node x ∈ T we write `(x) v B to say that in the labelled tree x is a node of type B.
This is formally the case if in the mereology of labels L `(x) v B. Now whenever we have
a rule ρ = A→ Γ it is understood to mean that any node of type A immediately dominates
a sequence x↓ of nodes of type Γ whenever ρ is used to expand A.

A boolean cfg is effectively a cfg. To this end one should note that a boolean rule
ρ = a → Γ effectively abbreviates a set of rules, namely all precisifications of ρ. To also
be precise, σ is a precisification of ρ if σ v ρ. Each tree in which a rule ρ is used at a
point x instantiates a precisification of ρ in the sense that `(x) → `(x↓) precisifies ρ. The
local and the boundary conditions are translated as follows:

(bd) `(r) v Σ
`(x) v Ω if x is a leaf

(lc) `(x)→ `(x↓) v ρ for some ρ ∈ R

Since in a cfg all labels are mutually exclusive, we must take as labels of the grammar
all maximal precisifications ofM, in other words the atoms ofM. SinceM is finite, it is
atomic and so this construction goes through. Each element b ∈ M is uniquely determined
by the set b̂ of all atoms below it. Thus if 〈Σ,M,R〉 is a boolean cfg, let At(M) be the set
of atoms ofM. Now replace a rule ρ = a→ Γ by the set of atomic precisifications of ρ

ρ∗ = {b→ ∆|b v a,∆ v Γ, b ∈ At(M),∆ ⊆ At(M)}

and define R∗ =
⋃
〈ρ∗|ρ ∈ R〉. Then G∗ = 〈Σ∗,At(M),Ω∗,R∗〉 is a cfg with a set of start

symbols Σ∗. The two grammars are equivalent in the sense that they admit the same trees
with labels from At(M). It is a standard procedure to reduce a cfg with a set of start
symbols to another with a single start symbol. If we do not have a boolean cfg beacuse
the mereology is infinite, we can produce an ordinary rule grammar via duality. This time,
the rules are based on ultrafilters rather than atoms.

At this point we shall pause the development of the formal theory and reflect on the
necessity to have infinite mereologies in the grammar. At first sight this seems totally un-
necessary. But there are technical devices in nearly all grammars that practically amount
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to an infinite mereology. In  the nodes are attributive value matrices, but in contrast
to  there is no a priori bound on their size. In  elements are indexed and this also
amounts to an infinite resource of symbols. In both grammar camps one might disagree.
From the  viewpoint the indices may be called extraneous, just a sort of helping device
to keep track of what one is doing. That is, they might be good for the eye, but dispens-
able in principle. But this turns out to be a subtle matter. Indeed, some theories show
that there is an a priori bound on the number of crossing extraction paths, and this implies
that a finite stock of indices is sufficient. But some phenomena, which lead languages
out of context freeness, require an analysis with an in principle unbounded stock of in-
dices. Otherwise they cannot generate a non-context free language. However, this does
not demonstrate that we need boolean indices rather than plain indices. Again, this is an
empirical matter. But a proper formulation of the rules handling such indices needs to
make reference to the set of indices that have hitherto been used, in case, for example, the
new index needs to be strictly different. In order to characterize that suitably, we need to
have finite unions and complements. And thus the index component of the grammar is
boolean as well. It might be of some interest to speculate whether it consists of finite and
cofinite sets of indices so that the indices are actually there in some sense like in Cof, or
whether the indices are just given via descriptions as in Mod. (In fact, in the latter case
the descriptions can with some right be said to be the indices.)

5.6 Presentation of Grammars and Memory Grammars

On the one hand boolean grammars just consist of a boolean algebra together with rules,
on the other we prefer this boolean algebra to consist of specific terms such as being an n-
bar, being a v-zero trace etc. From an abstract point of view, the grammar itself need not
care about such an interpretation of its labelling discipline, so one and the same grammar
can serve different purposes under different interpretations because we can think of the
boolean labels in different ways. This means that what we should be dealing with are
pairs 〈G, ε〉 where G = 〈Σ,Ω,M,R〉 is a boolean grammar and ε : F → M a map from a
finite set F of labels. This map can also be seen as a homomorphism ε from Fr(F)o into
the mereologyM of the boolean grammar. This homomorphism evaluates any term built
fromthe symbols of F in the mereology – as long as it is not contradictory, in which case
no value is given. The homomorphism is thus a partial map.

Theorem 5.6.1 A memory F-grammar is a pair S = 〈G, ε〉, where G = 〈Σ,Ω,M,R〉 is
a boolean grammar and ε : F → M a map.

The concept of a memory grammar is rather natural if developed this way, but rather
hard to justify intuitively. From an intuitive standpoint we expect the mereology of the
grammar to be generated by the F-terms, that is, we expect to have access to all symbols of
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the mereology. But this is to say that ε is surjective. If it is, we call the memory grammar
rational. Non-rational grammars are nevertheless motivated by some considerations on
the architecture of a linguistic theory. The leading idea behind them is that there might be
classifications in the mereology of the grammar which are technically necessary to ensure
the correctness of the grammatical output trees but from an intuitive syntactical viewpoint
uninteresting. And that it might be undesirable that syntactic principles make reference to
these distinctions. Such a distinction might be VP[−SLASH: NP] and VP[SLASH: NP]
as opposed to just VP. 1 More clear, however, is the case of . Trees shown in 
books display very little information locally, opposite to  and . The idea is that
the missing local information can be recovered by the context, that is, the overall tree.
In , the distinction just mentioned is never made in the labelling because the tree itself
documents clearly whether or not we have an np-trace inside the vp at hand. If we aim at
generating such trees with an ordinary boolean grammar we have a problem, because the
global information that the labels do not display because it resides in the tree needs to be
strictly locally accessible for a cfg.

Memory grammars solve this problem by making the global information locally ac-
cessible while denying outside access to the content of this information. This is just an
optical trick. These grammars have the information to know how to proceed but we can-
not spy into them to see what that information is. Nevertheless, we can analyze these
grammars by artificially adding extra symbols to make the map ε surjective. These hid-
den states create what might suitably be called a memory. Even though we cannot see a
difference by means of the F-symbols between these states, the grammar acts differently
when being in one rather than the other. For the sake of concreteness let us assume that
F = {F1}. There is no context free boolean grammar over Fr(F) that allows to distribute
F1 on exactly those nodes of depth divisible by 3. This can only be achieved if we allow
the grammar to internally count the number of successive −F1 on it’s way down in the
tree. In fact, there is a grammar based on three atoms that achieves this. We call them
A1,A2 and B. Let us put Σ = B, Ω = {A1,A2,B} and

B

A1

A1

A2

A2

B

Actually, we should be using sets of atoms rather than atoms, but this is marginal. Now
we map ε(F1) = {B}. The distinction between A1 and A2 is purely induced by the need
to keep track of the number of elapsed −F1. The number of features needed to achieve

1I deliberately said might be, because on a closer inspection the difference between the two might seem
also relevant.
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the counting can be measured quite effectively by comparing the image of ε with the
actual mereology the grammar uses itself. Or, we could simply ask how many more
features we need to add to F in order to make ε surjective. In memory grammars the
mereology splits into two parts; one part connected with the F-features and one memory
of hidden part. Now if M = Bo is the mereology of an F-grammar S = 〈G, ε〉 then
M contains a subalgebra imε of all ε-images of boolean terms from F. So we have a
surjective map Fr(F) � imε � B. On the other hand there is a set X ⊇ F such that a
surjection κ : Fr(X) � B exists which extends ε. Put M = X − F. Then it follows that
M � Fr(F) ⊗ Fr(M)/G for some filter G. The minimum cardinality of M is called the
memory of S and is denoted by m(S). In the context free case this can be defined via

m(S) =
⌈

2log(
](At(M))
](At(imε))

)
⌉

S is rational or memory free if m(S) = 0. In a boolean grammar, the number of genera-
tors is p](At(B))q, where ](At(B)) is the cardinality of the set of atoms and prq for a real
number r the least integer greater or equal to r.

It is known that context free languages can be parsed by a push-down automaton.
This push-down automaton uses a stack of symbols from the grammar. Therefore, apart
from the size of the stack in correspondence with a sentence to be parsed, the number
of symbols manipulated by a grammar is an important complexity measure. In boolean
grammars we have a boolean grammar as a basis. In the finite case we can simply consider
it’s set of atoms, that is, consider the corresponding ordinary cfg. But the problem is that
in many cases the underlying boolean algebra is not finite, even though the symbols can
be finitely presented. This case is too important to be ignored. An important number to
monitor in boolean algebra is the number of generators. (Recall that a boolean algebra
can be presented by a set of generators and relations.) In the infinite case this cannot be
a number, but is a cardinal number. So, non-context free boolean grammars have at least
ℵ0 generators. Memory grammars give this classification an additional twist.

Memory grammars are not supposed to give away the exact labels. The mereological
labels are not communicated; instead they give us a tree where the labels from F are
positioned. So, a memory F-grammar generates trees with labels from Fr(F), which we
call F-trees. We write M |= a v f for a f ∈ Fr(F) and a ∈ M if ε(f) w a. A memory F-
grammar generates an F-tree T = 〈T, `〉 iff there is a tree U = 〈T, µ〉 which the underlying
boolean grammar generates such thatM |= µ(x) v `(x). So, secretly the memory grammar
produces a tree with internal labels; these labels we can in most cases only partially access
via the labels.
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5.7 Cutting Grammars

Suppose that G = 〈Σ,M,R〉 is a boolean grammar and ζ : M → N a homomorphism
of mereologies. Then we can define the image grammar Gζ of G under ζ as follows.
Assume that ρ = a → b1 . . . bn is a rule. Then two cases arise. The first is when ζ
fails to be defined on either a or one of the bi. In that case ρζ is left undefined. In the
other case we put ρζ = ζ(a) → ζ(b1) . . . ζ(bn). Finally, Rζ = {ρζ |ρζ is defined}. Now
Gζ = 〈ζΣ, ζΩ,N,Rζ〉, whenever all symbols are defined. In the same way we can define
the image of a labelled tree under ζ. Namely, if T = 〈T, `〉 is a labelled tree then if ζ(`(x))
is defined on the whole tree, Tζ is defined and equal to 〈T, ζ ◦ `〉.

Proposition 5.7.1 Suppose Tζ is defined. Then G � T implies Gζ � Tζ .

Proof. Σζ is defined and by assumption we have `(r) v Σ. Thus (ζ ◦ `)(x) v ζ(Σ).
Similarly for leaves. So much for the boundary condition. Now assume that x is not a
leaf. and `(x) → `(y1) . . . `(yn) v ρ. We know that ζ is defined on `(x) and all `(yi). Thus
(ζ ◦ `)(x)→ (ζ ◦ `)(y1) . . . (ζ ◦ `)(yn) v ρζ and so `(x)→ `(y1) . . . `(yn))ζ v ρζ . a

By the representation theorems of § ??, M � 2At(M)
o and N � 2At(N)

o, and so the
action of ζ can be studied by looking at the partial function it induces from 2At(M)

o to
2At(N)

o; equivalently, we can study the corresponding boolean homomorphism. This ho-
momorphism we denote by the same symbol. Since ζ is a homomorphism it is again
enough to study the function ζ̂ : At(M) → 2At(N). Namely, every element a is the join
of the atoms below it and thus ζ(a) =

⋃
〈ζ(A)|A v a〉 =

⋃
〈̂ζ(A)|A v a〉. Any function

ι : At(M) → 2At(N) can be raised to a homomorphism provided it satisfies two things:
ι(a) ∩ ι(b) = 0 iff a , b and

⋃
〈ι(a)|a ∈ At(M)〉 = At(N). To put it simple, ι must induce

a partition on the atoms of N. Returning to ζ we can state that ζ is surjective if for all
atoms ]̂ζ(A) ≤ 1 and injective if ]̂ζ(A) ≥ 1 for all atoms A. Surjections ‘cut’ atoms to
scrap, namely those for which ζ̂(A) = ∅. The latter means that any atomic precisification
of a rule which contains this atom will be banned from the image grammar. An injective
ζ ambiguates symbols of the source grammar. If, namely, ζ̂(A) contains two atoms B and
C then in any labelled tree generated by Gζ C and B are syntactically indistinguishable
in the sense defined earlier. A grammar is refined if this cannot occur. We make this
precise as follows. A map ζ : M � M (surjective) is called a refinement if there exists
an injection ι : M � M such that for all fully labelled trees T G � T iff Gζ◦ι � T. G is
refined if every refinement of G is bijective. To give a simple example, take the grammar
SET = 〈1,Fr(A),R〉 with R consisting of 1 → 1 and 1 → 0. It is clear that A and −A
are absolutely equal and can be subsituted for each other anywhere in a tree. Another in-
stance of reduction which is exemplified in grammar L = 〈A,Fr(A),R〉 with R consisting
of A→ A and A→ 0. It is clear that −A can never appear on any node of a generated tree,
is not groundable. Thus the map ζ : A 7→ A,−A 7→ 0 simply cuts an atom that is never
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needed anyhow. In this case we cannot give an inverse ι as in the case of refinement, but
we have G � T iff Gζ � T.

There is a one-to-one correspondency between images N of surjections ζ : M � N
and filters, given by F = h−1(1). In effect, most surjections are given by a set of equations
which can be turned into a filter F which in turn gives rise to a canonical homomorphism
ζF . We write G/F for the grammar

5.8 Tensoring Grammars

A boolean grammar G = 〈ΣG,ΩG,M,R〉 can be understood as a complex consisting of
a mereology regulating possible labellings and a rule component regulating the local ad-
missibility. Such a view has been most fruitfully adapted in  work. The rule

�
�

�
�

@
@

@
@

C ∩ BAR:2

N ∩ BAR: 2 C ∩ BAR: 1

tells us that if a node branches into two daughters the tree is locally admitted at least if the
mother is C∩BAR: 2, the left daughter is N∩BAR: 2 and the right daughter is C∩BAR: 1.
We said at least because the rules concerning binary branching nodes specify a disjunctive
condition on admissibility. Thus, a local tree

�
�

�
�

@
@

@
@

A

B C

is admitted by a grammar if it is admitted by at least one of its binary branching rules.

We consider the set of rules to be decomposed into

R =
⋃
〈Rn|n ≤ k〉



152 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

where Rn collects all n-ary rules. Consider now a different grammar H = 〈ΣH,ΩH,N, S 〉,
with a similar decomposition of S into the sets S n of n-ary rules. Assume the label alge-
bras have nothing in common. This means that each grammar defines local admissibility
using totally different features. The question to answered is how to define a grammar
G⊗H such that for any labelled tree 〈T, µ⊗ ν〉 we have G⊗H � 〈T, µ⊗ ν〉 iff G � 〈T, µ〉
and H � 〈T, ν〉. We have earlier discussed this in the context of cfgs under the heading of
pairing. Pairing meant producing pairs of nonterminal symbols. By the correspondence
of pairs of atoms with the tensor product of their set algebras the labelling algebra will be
M ⊗ N and the start symbol ΣG ⊗ ΣH. What about rules?

Assume a local tree of the following kind.

�
�

�
�

@
@

@
@

A ⊗ K

B ⊗ L C ⊗M

This tree is admitted by G ⊗ H if G admits A → B C and H admits K → L M. This
suggests the following definitions. Given two n-ary rules ρ = A → B1 . . .Bn and σ =
K→ L1 . . . Ln from G and H we put

ρ ⊗ σ = A ⊗ K→ B1 ⊗ L1 . . .Bn ⊗ Ln

Rn ⊗ S n = {ρ ⊗ σ|ρ ∈ Rn, σ ∈ S n}

G ⊗ H = 〈ΣG ⊗ ΣH,M ⊗ N,
⋃

n Rn ⊗ S n〉

Theorem 5.8.1 Let 〈T, µ ⊗ ν〉 be a fully labelled tree where µ : T → M and ν : T → N.
Then

G ⊗ H � 〈T, µ ⊗ ν〉 iff G � 〈T, µ〉 and H � 〈T, ν〉.

Proof. We need to check the boundary condition and the local condition. Both are quite
straightforward. One only needs to see that for rules ρ1, ρ2, σ1, σ2 we have ρ1 ⊗ σ1 v

ρ2 ⊗ σ2 iff both ρ1 v σ1 and ρ2 v σ2. a

This theorem asserts that the tensor product has the desired properties. Finally, we need
to deal appropriately with the case when grammars share labels. To combine grammars
with shared labels in the correct way in fact we use the same rules but factor out unwanted
assignments.
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Definition 5.8.2 The tensor product of G = 〈ΣG,ΩG,M,R〉 and H = 〈ΣH,ΩH,N, S 〉
�bred along a common submereology L is denoted by G ⊗L H and defined by

G ⊗L H = 〈ΣG ⊗ ΣH,ΩG ⊗ΩH,M ⊗L N,
⋃

n

Rn ⊗ S n〉

We notice two extreme cases; the first is when L = 2. In this casesM⊗LN = M⊗N since
2 is always a subalgebra so thatM and N cannot be said to share a non-trivial subalgebra.
Consequently, G ⊗L H = G ⊗ H. The second extreme is when M = N = L. Then, as
the labels of the two algebras M and N are identified and must be assigned in tandem it
is clear thatM ⊗L N � M. Thus the local admissibility conditions of G and H are simply
conjoined; G ⊗A H � 〈T, µ〉 iff both G � 〈T, µ〉 and H � 〈T, µ〉.

Another interesting construction is the amalgamation. The amalgamation of two
grammars unifies the tensor product and the fibred tensor product.

Definition 5.8.3 Let G and H be boolean grammars and F a thin filter. Then (G ⊗ H)/F
is called an amalgamation of G and H.

Analogous operations can now be defined on memory F-grammars. A first guess, that
if ε : F → M, ζ : F → N, then the map ε ⊗ ζ : F → M ⊗ N is a map from F
into the underlying mereology of the tensor product, is incorrect. Namely, it is a strict
condition that the labels must mean the same in both grammars, so we need to identify
their interpretation. This is the generic case of a fibred tensor product. The appropriate
labelling mereology in the tensor F-grammar is not the tensor product butM⊗Fr(F)N. Thus
with 〈G, ε〉 and 〈H, ζ〉 F-grammars, the tensor product is defined as 〈εζ,M ⊗Fr(F) N〉.

5.9 Examples and Discussion

As an example to illustrate boolean grammars we present (one version of) X-syntax. For
the sake of concreteness let us take X-syntax over two labels, S and N; it has in addition
to these two also the labels BAR:0, BAR:1 and BAR:2. Not only is N inconsistent with S,
the bar levels are also exclusive. This allows 6 consistent atoms, namely, N∩BAR:0,N∩
BAR:1,N∩BAR:2,S∩BAR:0,S∩BAR:1,S∩BAR:2. The start symbol is S∩BAR: 2. In
addition to this, the following rules are rules of X-syntax. (We are assuming a head-final
language here, we allow for recursion on non-branching symbols and we also exclude

pruning (X → X and zero level adjunction. This is of course only for the purpose of
illustration.) We write X(S,N) for this grammar.
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S ∩ BAR:2 → S ∩ (BAR:2 ∪ BAR:1)
S ∩ BAR:2 → BAR:2 S ∩ (BAR:2 ∪ BAR:1)
S ∩ BAR:1 → S ∩ (BAR:1 ∪ BAR:0)
S ∩ BAR:1 → BAR:2 S ∩ (BAR:1 ∪ BAR:0)
N ∩ BAR:2 → N ∩ (BAR:2 ∪ BAR:1)
N ∩ BAR:2 → BAR:2 N ∩ (BAR:2 ∪ BAR:1)
N ∩ BAR:1 → N ∩ (BAR:1 ∪ BAR:0)
N ∩ BAR:1 → BAR:2 N ∩ (BAR:1 ∪ BAR:0)
BAR:0 → 0

This amounts to a total of 25 rules in an ordinary cfg. This grammar is indeed a normal
grammar. Notice that the algebra of labels is a tensor product of the algebras Bar and the
algebra of the categories. The former is isomorphic to 23 the latter isomorphic to 22; so
the resulting algebra is isomorphic to 26.

Q. Is a rule such as

�
�

�
�

@
@

@
@

XP

XP XP

a rule of X-syntax? Normally, phrasal categories are not considered recursive, that is,
there are no phrasal adjuncts. But this holds mostly only of deep structure. In (Chomsky,
1986a), there are phrasal adjuncts at surface structure, so the question does arise here.
Real ers would actually say that X-syntax does only spell out deep structure trees. But
this only defers the problem. Suppose we have a surface structure tree, how do we rec-
ognize in this structure which is the adjunct – the left or the right XP? In the sequel we
will ban (even in the surface structure) such productions together with empty productions
such as

XP

XP

X ∩ BAR:1

X ∩ BAR:1

We can separate in (boolean) grammars two things: a structure building component
and a component spreading (boolean) labels over the structure. In boolean grammars,
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this spreading of labels may itself be viewed as a spreading of the features of which the
labels are made. Recall namely that if 〈T, `〉 is a fully labelled tree, the labels `(x) are
atoms and therefore rectangles. If ` : T → Fr(n) then ` decomposes into assignments
µi : T → Fr(1) concerned with the feature Fi. And the latter are completely determined
by the sets [[Fi]] = {x|〈T, `, x〉 |= Fi}. This is, I guess, also intuitively clear; given that
features are positively or negatively assigned to every node of the tree it suffices to give all
the sets [[Fi]] in order to create the labelling `. We wish to think of the grammar as actively
assigning values at the nodes; that causes some problems of identity if we assume that
labels can be partial. But we want to think of these partial objects rather as abbreviations
of the set or their precisifications. So the grammar actively produces fully labelled trees,
we are just too sloppy to write down which one we mean. Nevertheless, this does not
mean that we are back to plain cfgs because the labels are stills assumed to have internal
structure. The precise nature of the labels is clarified exactly by the labelling algebra.
Here we also want to stipulate that it is always in it’s incarnation as a presented algebra
that we want to look at it. This presentation uses a finite set Fk ⊂ F = {Fi|i ∈ ω}. So, from
the (infinite) stock of features that we can possibly use, the grammar actively distributes
only a finite number of them. These features, however, are treated as logical constants;
all other features that are not assigned in this grammar are not simply undertermined and
can be precisified at random. The number of labels that are distributed by the grammar
is therefore unique because it depends on the presentation of te labelling algebra. If the
number is k we say that the grammar is a k]-grammar.

If we have no labels at all, that is, if we have an 0]-grammar, then this grammar gen-
erates just the bare trees, or, as we will say, the slots into which labels can be inserted
by tensoring with other boolean grammars Therefore 0]-grammars will also be called
slot grammars. Slot grammars present the structural aspect of grammars without the
labellings. The structure component of a grammar is completely determined by its simi-
larity type. This type is a set of natural numbers. We put tp(G) = {n|(∃ρ ∈ R)(ρ = A →
B1 . . .Bn)}. In other words, tp(G) collects all branching numbers for rules of G. For nat-
ural languages the types are normally assumed to be {1, 2}. We call exp(G) := max tp(G)
the expansivity of G. It is worthwile noting that tp(G ⊗ H) ⊆ tp(G) ∩ tp(H) and so
exp(G) ≤ min{exp(G), exp(H)}. Equality need not hold for example with G consisting of
the rules 1→ 1 0, 1→ 0 and H consisting of the rules 1→ 0 1, 1→ 0. ΣG = ΣH = 1.
Then G⊗H has type {1} while both G and H have type {1, 2}. A slot grammar is uniquely
determined by its type.

5.10 Observables and Unobservables

We have seen that the mereology of a memory grammar can be seen as labelled through-
out. This is convenient for practical calculations. It is very difficult to be consistent in
using features only when they stem from the set F and not access the internal mereology
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with a full set of features. Thus it is a good fiction to consider the mereology to be pre-
sented as generated by a set X of labels with a set of equations, or as a homomorphism
κ : Fr(X)o → M. The set X naturally splits into two sets, F and it’s complement. We call
a feature O ∈ X an observable if it is in F and unobservable if not in F. This termi-
nology is chosen with hindsight. We are not proposing that the split into observables and
unobservables is arbitrary. To the contrary, we want to argue that it is better to think of the
observables as the features that can be fixed by looking at the outer form of language, i. e.
as language presents itself to us directly via the strings, while the unobservables are intro-
duced step by step in the process of coding certain syntactic principles into the grammar.
These principles are of course also necessitated by the facts, but in a less direct way, and
are invariably dependent on the language with which we allow to talk about principles.

We will therefore propose that classification via observables must reflect morphologi-
cal difference. An example will make this clear. The uninflected verb borrow as it occurs
in Can I borrow this book? cannot be distinguished materially from the verb phrase (bor-
row t) as in This is the book that I used to borrow. There has been a long debate about
this subject, to be correct, but the outcome in favour of a materially attestable basis for
traces is quite meager. I admit, though, that what counts as material manifestation is de-
batable. First of all, it depends on whether we take language as written, or language as
spoken; second, it depends on whether we take phonology (even semantics) into account.
These questions are, quite clearly, not to be solved by a theoretical debate but by empir-
ical study. We can despite all this reach the following consensus. We suitably restrict –
though only for the purpose of exposition – the attention to written English (occasionally
other written languages). In that case the material data is the string as it occurs in the writ-
ten sentence. Clearly, traces leave no trace in a written sentence, and this means that the
difference between a verb and a verb followed by a trace is unattestable just by looking at
the strings. Let us take, then, a feature O and ask whether the difference between O and
−O is significant in this sense. Here, we need the lexicon. The lexicon allows to define a
map [ : M → 2V∗ , where V is the vocabulary. This map transports a grammar symbol a
into the set of all strings that can be classified or analysed as constituents of type a. With
respect to this evaluation map we can state a principle of what to choose as observable.

Principle 5.10.1 (Observability) A feature O is to be classified as observable if only
O[ , (−O)[.

This is only a mild form of observability because it constrains the grammar only with
respect to the features that have been chosen from the outset. So it does not tell us which
features to select as critical (this must be done elsewhere) but it does tell us which of
them is to be seen as an observable feature. However weak, it does have consequences
that cannot be overlooked. With nearness restrictions yet to be defined, let us remark that
any such condition that will be coded into a grammar can refer only to observables. Most
grammatical conditions already comply with this restriction, but the whole binding theory
has to be revised in this light. If namely indices are unobservable, then binding conditions
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and the i-over-i-principle can simply not be expressed in their usual form. Two protests
that may be voiced against this shall be discussed. First, indices are seen as an integral
part in syntax because they do have a reflex in semantics. They express distinctness and
non-distinctess. I have a two-fold answer to that. First, this claim means to give up the
autonomy of syntax at least partly; in any case it means to concede that LF is more than
a syntactic symbolism. Secondly, it is quite conceivable to count semantics as raw data
(though I would prefer not to here) and to let [ map classifications into annotated strings
so that the difference is attestable. This is possible.

A second objection would be that indices are necessary to ensure the correctness of
the antecedent-trace relation. I will say more about this later. It is one of the points of this
whole book to demonstrate that indices are eliminable, and that they must be eliminated
if  wants to get clear about the meaning of it’s own symbolism. It is simply not true
that indices generally have a semantic interpretation. Linguists in  are concerned with
getting distributional facts right at all costs, and indices (in connection with movement)
are intuitively useful. But they are a rather dangerous device simply because they are
unobservable. At an initial stage one might use them, but the aim should be to get rid of
them as soon as possible.

5.11 Modularity

Modularity has become an important criterion in linguistic ideology. It is desired that a
syntactic theory and perhaps any linguistic theory be modular by which is meant that it is
explicitly decomposed into subtheories that are inherently simple and whose interaction
produces the complexity of the entire theory. We said is decomposed and not can be
decomposed because modularity is a property of a theory, that is, something that is man
made and does not decompose automatically. This subtle point might be the point of
argument in many debates of whether such and such theory is modular. Even though a
theory might be modularized it need not be modular; this is a question of presentation
not of content. Of course, modularization can be understood formally as a procedure
to modularize a theory in such a way that each restriction is associated with its own
subtheory; such a modularization will be empirically empty. We do want the subtheories
to be empirically motivated such that their independent existence is attestable.

In the context of boolean grammars modularization is the process of decomposing
grammars into reduced tensor grammars. In the best possible case a grammar completely
decomposes into grammars of type 1] which contain rules governing one single feature.
This, however, is in most cases impossible. Try e. g. decomposing X(S, N) in this way.
But intermediate solutions are possible and yield satisfactory results.

E. X-syntax uses an algebra of labels which can be decomposed into an algebra L



158 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

of levels and an algebraB of basic syntactic categories. We have described it earlier. If we
consider B being based on a single feature, say N, the rules are the following, assuming a
head-final language:
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This grammar looks exactly the same for all other symbols. Thus, X(S) is isomorphic
to X(N). We get X(S, N) by tensoring the corresponding grammars identifying the level
algebra Bar and forcing the equation S = −N.

X(S,N) = (X(S) ⊗Bar X(N))/{S = −N}

This is not hard to check. Any other X-syntax decomposes into one-feature grammars; a
possible exception is that some times there are no coassignment restrictions. For example,
if V and INFL are coassignable then
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X(V, INFL) = X(V) ⊗Bar X(INFL)

Proceeding in an analogous way with other grammars it is possible to decompose
large grammars into manageable components that are fused by reduced tensor products.
This defines a modularization of boolean grammar. The degree of modularization is mea-
surable with the number of the factors and the size of the reducing filters in comparison
with the grammar itself. The more components the better, the larger the filters by which
to reduce the worse.
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Chapter 6

Modal Logic and Syntax

6.1 A Brief Introduction to Modal Logic

The story of name forming operators was quite complex; however, it emerged that they
can (in the really non-trivial cases) be shown to arise from an underlying relational struc-
ture on the tree. This makes modal logic the appropriate tool for analysis. Before we can
do so we need to learn about it. The standard approach is via frames. A frame is a set
ordered by a binary relation; hence, a frame is a pair f = 〈 f ,C〉 where f is a set, called
the set of possible worlds and C ⊆ f × f a binary relation on f called the accessibility
relation. Frames are often called kripke-frames after Kripke who was one of the first to
use them in modal logic. For our purposes it is quite helpful to think of f as a set of loca-
tions and of C as a reachability or vicinity relation. If x C y then y is declared to be near
to x or accessible from x. We also speak of y as a successor of x. Ordinary propositions
can assume different values on different locations. For example, if f consists of the sets
of rooms of my flat and p represents the proposition I am here then p can be true of the
kitchen while being false for the living room and vice versa. This is a typical behaviour
of indexicals such as here. Or, if q represents the proposition has windows it can be true
both of the kitchen and the living room, to give an example where the truth at one place
does not exclude the truth of the other. The accessibility relation is given by the system of
doors. If there is a door from the kitchen to the living room, then the living room is near
(in the technical sense) to the kitchen. Notice that this relation is symmetric, so that we
an conclude that the kitchen must also be near to the living room. We can easily think of
asymmetrical relations if we take f to be the set of road crossings of Paris and specify xCy
if x is directly connected with y and one is allowed to drive from x to y. The numerous
one-way roads make this quite an interesting frame.

The notion of propositions being true at worlds or locations is formalized by a function
β that gives for each propositional variable or constant p a set β(p) ⊆ f ; formally, β :

161
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Var → 2 f . We call 〈f, β〉 where f = 〈 f ,C〉 a kripke-model. Given a point x ∈ f we write
〈f, β, x〉 |= p in case x ∈ β(p) and we write 〈f, β, x〉 2 p otherwise. In the first case we say
that x is true at x in the model and in the second case we say that p is false. We can boost
this up to more complex expressions by saying that p ∩ q is true at x iff both p and q are
true at x, that p ∪ q is true at x iff either p or q are true at x, and that −p is true at x iff
p is false. Then all laws of boolean logic hold for the concept being true at x, regardless
of x and the kripke-model it lives in. So far so good. Now we introduce the possibility to
express facts that hold not at the location or world itself but which hold at another one. At
this point the accessibility relation begins to play an active part. We introduce two new
symbols, � and ^. Both are unary operators on propositions and form new propositions.
So if p is a proposition, so are �p and ^p. They are read it is necessary that p and it
is possible that p. The crucial fact is that is possible is interpreted as there is a nearby
location or there is an accessible world while is necessary is interpreted for all nearby
locations or for all accessible worlds. Formally, this looks as follows.

〈f, β, x〉 |= ^P iff there is a y such that x C y and 〈f, β, y〉 |= P
〈f, β, x〉 |= �P iff for all y such that x C y holds 〈f, β, y〉 |= P

Let’s return to Paris. Suppose we are at some crossing x with our car. Let p be the
proposition there is a traffic jam. If p holds at x already, we are stuck. If not, we are
still not free of trouble. Suppose, namely that there are three directions to go (say, going
north is forbidden at the moment because we would be entering a one way road) and that
at all the next crosspoints there is a traffic jam. Then it holds at x that �p! An informal
rendering would be everywhere we may go, there is a traffic jam. Equivalently, −^ − p
is true; this amounts to saying that nowhere we can escape a traffic jam. Indeed, one can
check that −^−p ≡ �p and that^p ≡ −�−p. The assertion^−p, by the way, tells us that
there is at least one direction free of traffic jam. If we want to get out of Paris, ^− p is still
not enough because ��p may still hold. We see that modal logic is in effect a language
to talk about facts in different locations. Though it is a rather impoverished language we
can make it quite powerful by assuming more than one nearness or accessibility relation.
Basically, we can introduce a new relation J on the road crossings of Paris where x J y
exactly if we as pedestrians can go from x to y. Obviously, in the inner city of Paris every
road connection by car is a road connection by foot so C ⊆J. We can introduce new
propositional operators � and � which again mean somewhere nearby it holds that and
everywhere nearby it holds that but now nearness is calculated with respect to J. Hence
the following truth assignment rules hold.

〈f, β, x〉 |= �P iff there is a y such that x J y and 〈f, β, y〉 |= P
〈f, β, x〉 |= �P iff for all y such that x J y holds 〈f, β, y〉 |= P

It is clear that we have endless possibilities of introducing nearness relations and corre-
sponding operators and we will shortly see that syntactic domains allow for a variety of
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nearness domains to be captured not by one but by a (limited) number of modal oper-
ators. Modal logic is by and large the study of the logic that result by taking a set of
kripke-frames and studying the set of all propositions and rules that are true on all of
them. The simplest case is when we take simply the set of all kripke-frames. For the
moment we will also assume just one operator. Then the following are axioms.

PC. All classical tautologies.
BD. �(p→ q).→ .�p→ �q
DU. ^p.↔ . − � − p

Furthermore we have the rule of Modus Ponens (from p → q and p infer q) and the
Modus of Necessitation (if p is a theorem, �p is a theorem as well). This presents the
basic system K (again named after Kripke). It is possible to derive the following theorems.

0-homomorphy. ^0.↔ .0
∪-distribution. ^(p ∪ q).↔ .^p ∪ ^q
∩-distribution. �(p ∩ q).↔ .�p ∩ �q

It is not hard to verify that on all kripke-models these equivalences hold in all worlds. If
we study not all kripke-frames but only a proper set F of them we derive a logic LF of
formulas that hold on all models based on kripke-frames from F:

LF = {P|(∀f ∈ f)(∀β : Var→ 2 f )(∀x ∈ f )(〈f, β, x〉 |= P)}

LF turns out to be an extension of K by some set of extra axioms. If F is the class of
frames satisfying certain nice properties we an actually characterize the frames of F by
some modal axioms. For example, on all reflexive frames, that is, on all frames 〈 f ,C〉
where x C x for all x, we have that p → ^p is true regardless of the valuation and the
point chosen. Namely, if p holds at x then x C x and so by the truth definition ^p. For
example, let C be the relation of being within 1 km distance. This relation is reflexive. For
matters of concreteness, take p to be there is a tree. Then clearly, if we have a tree here
we also have a tree somwhere within 1 km. The axiom p→ �^p characterizes symmetric
relations. Take my flat again; if I am in this room, then no matter through which door I
pass, I can go back to this room through at least one door. To conclude this discussion we
point out that the Paris road system satisfies the axiom ^p→ �p or whatever happens at
a crosspoint to which we may drive happens at a crosspoint that one can go to. This is a
direct logical equivalent of the fact that C ⊆J.

Regarding our intended application there are some quite special logics, namely Alt1,
D, D.Alt1 and Triv. Alt1 is the logic of frames in which every point x has at most one
accessible point, i.e. x C y, x C z imples y = z. D is the logic of frames in which every
point has at least one successor. D.Alt1 is the logic of the frames in which every point
has exactly one accessible point. And Triv is the logic of the frame f = 〈{x}, {〈x, x〉}〉, the
frame consisting of exactly one point, which is reflexive. The logics can be characterized
by the following axioms. We will not show here that this is so.
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Alt1. ^p.→ .�p
D. ^1
Triv. ^p.↔ .p
D.Alt1. ^p.↔ .�p

Let us briefly mention the some connections with s. Attribute-

value formalisms are extremely powerful. In principle, any term can be coded into s.
Moreover,  benefits from the possibility to code lists and trees into s. That the
latter is possible should not be surprising. The operators ,̂ ,̂ ^ of the next section
satisfy Alt1 and can thus be read as attributes. This allows to code trees bottom-to-top.
But a coding top-to-bottom is possible with the help of `̂ which relates a node with its
left-most daughter. Then just `̂ and ^ suffice to describe fully the structure of a given
tree with an . In  this is used to realize information exchange between items in a
syntactic tree; one can namely state via this coding that e. g. subject and verb agree by
stating a so-called reentrancy condition or path equation,

 :  ≈  : 

In modal logic this can be axiomatically expressed by the postulate

〈〉〈〉p.↔ .〈〉〈〉p

This statement of agreement between a verb phrase and a subject is parasitic on the phrase
structure rules, that is, the grammar, in which these constraints are supposed to be imple-
mented. The modal axiom states quite directly what the intention is, namely, the exchange
of information between two nodes in a tree. In definite clause grammars we have boolean
variables, and so the path equation can be coded directly into rules. The danger, however,
is that this direct implementation blurs the distinction between finite and infinite s. A
priori the s for  can be infinite – as opposed to  – and so it is not clear that
the path equation lays a connection that allows a transfer of finite information between
nodes. The latter is important. If only a finite amount of information is exchanged, it can
be implemented into a boolean cfg without the use of variables for structures, by a simple
case by case analysis. If the amount of information is infinite, boolean cfgs cannot guar-
antee the proper exchange of this information. This means, however, that implementing
this exchange principle means transcending context freeness.

6.2 Propositional Dynamic Logic

We have just seen that we can have as many relations on a given set as we want and
can connect a modal operator with it; moreover, if the two relations are interwtined in
some non-trivial way this will be reflected by an axiom that the frame satisfies. Instead
of keeping a fixed number of operators and relations we can exploit the aspect that binary
relations can be combined by certain operations such as intersection, union and composi-
tion. Dynamic logic concentrates on this aspect. In dynamic logic we start with a basic
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set of abstract relations (called programs) and a basic set of propositions. We can com-
bine propositions in the usual way; however, we can also combine abstract relations via
union, concatenation and the Kleene-star. (Intersection proves to be rather badly behaved
in modal terms so is generally left out of consideration.) Moreover, for every proposi-
tion P the expression P? (read: P test) is an abstract relation. The concrete details are as
follows. The vocabulary consists in

• A set P0 = {π1, . . . , πn} of programs

• A set V0 of propositional variables

• The program connectives ∪, ; ,∗

• The propositional connectives ¬,∧,→ etc.

• The test ?

• The modality formation operators [−], 〈−〉

It is just for convenience that we assume P0 to be finite. Well-formed expressions
are defined thus. We have two types of well-formed expressions, namely propositions
and programs. Propositions are built the usual way from propositions using the boolean
connectives. Moreover, if π, σ are programs, then π ∪ σ, π;σ and π∗ are also programs.
If P is a proposition, P? is a program and if π is a program and P a proposition then [π]P
as well as 〈π〉P are propositions. A dynamic frame is a pair f = 〈 f ,R1, . . . ,Rn〉. It is clear
that the Ri serve as the relations that instantiate the programs in this dynamic frame. In
dynamic logic one thinks of f as the states of a machine (say, a computer) and of the Ri as
the basic operations that this computer performs. A model based on this dynamic frame
is a pair 〈f, β〉 where β : V0 → 2 f is a valuation on the propositions. The clauses for
acceptance at a world are listed below. In formulating them we have used the convention
πn. This is defined inductively by π0 = {〈x, x〉|x ∈ f 〉, πn+1 = π; πn. So, πn is the n-fold
iteration of π.

〈f, β, x〉 |= p iff x ∈ β(p)
〈f, β, x〉 |= 〈π〉P iff exists y such that xπy and 〈f, β, y〉 |= P
〈f, β, x〉 |= [π]P iff 〈f, β, x〉 |= ¬〈π〉¬P
〈f, β, x〉 |= 〈π ∪ σ〉 iff 〈f, β, x〉 |= 〈π〉P or 〈f, β, x〉 |= 〈σ〉P
〈f, β, x〉 |= 〈π;σ〉 iff 〈f, β, x〉 |= 〈π〉〈σ〉P
〈f, β, x〉 |= 〈π∗〉 iff for some n ∈ ω 〈f, β, x〉 |= 〈πn〉P
〈f, β, x〉 |= 〈P?〉Q iff 〈f, β, x〉 |= 〈σ〉P and 〈f, β, x〉 |= 〈σ〉Q

One may be easily deceived by this calculus in thinking that the addition of ∪, ∗ and ?
is just a nice notation but does not add any strength since can can always replace these
symbols. But this only true if the Kleene-star is not present. With the Kleene-star, this
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calculus is quite powerful and any of the symbols makes a genuine contribution to it. The
program operations have direct analogues in Kleene-algebras. To see this quite clearly we
will deliberately confuse modal operators with the abstract relation they stand for. Thus
the following abbreviations are justified

(♦ ∪ �)p = (♦p) ∪ (�p)
(♦ ◦ �)p = ♦(�p)
♦∗p = (〈R∗〉p) where ♦ is based on R

It is easy to see that if 〈π〉 is the modality corresponding to the program π and the relation
Rπ in the dynamic frame, then 〈π〉〈σ〉 corresponds to π;σ and this corresponds to the
relation Rπ◦Rσ; and 〈π〉∪〈σ〉 corresponds to 〈π∪σ〉 and to Rπ∪Rσ. Finally, π∗ corresponds
to R∗π.

The test operator intertwines the boolean valuation and the relation structure that is
created over f by the basic relations, because it creates new relations. The relation that
corresponds with P? is ∆ ∩ β(P) × β(P). So, 〈x, y〉 ∈ RP? iff x = y and x ∈ β(P). This test
therefore does not allow to look at another world; rather it allows us to cut some process
in programs if certain conditions are not met at a state.

6.3 Schematic Grammars

In the course of the development of grammatical formalisms it has been realized that
simple context free grammars are deficient in two respects. One is that the actual rules
do not display the regularities of the language succinctly enough; the other is that natural
languages transcend the generating power of context free grammars. As for the latter
observation it is hard to find such instances and the arguments are subtle, so we will
refrain to develop this point right now. But the first objection in itself is strong enough to
call for different tools. Let us look at an example. We know that subject and verb agree in
person and number. So, rather than being forced to write several rules elaborating on the
basic rule

S→ NP VP

we would like to write one rule that encapsulates the full consequences of the agreement
condition. This can be achieved by introducing variables into the rules. In addition we
need to import the attribute-value mechanism in order to express exactly over what values
the variable is allowed to range. The basic rule is then written as follows.

S→ NP
[
: X
: Y

]
VP
[
: X
: Y

]
Such examples are known from definite clause grammars. We call a rule where variables
occur schematic and a grammar that contains such rules a schematic grammar.
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It is actually not these types of agreement rules that motivated for us the introduction
of schematic rules but the need to capture very complex phenomena (e. g. cumulative
head-movement) which are responsible for the non-context freeness of languages. The
reason is twofold. First, closer inspection of inflectional systems shows that agreement
in feature values accounts only for half of the phenomena involved, the other half being
a result of more complex mechanisms which do not admit a formulation as schematic
rules. Second, the finite character of inflection means that the agreement system can be
unravelled into conventional rules, and so from a purely theoretical standpoint agreement
presents the solvable case of grammar evaluation, because we find the results on perfect
grammars applicable to this case. Thus, only when the use of variables abbreviates a
potentially infinite set of rules is there a need to introduce variables – for our purposes at
least.

But how can variables range over infinitely many values? In the example with inflec-
tional agreement we have seen that the variable – as it ranges over atomic values – can
realize only a finite number of different choices. Therefore, only when the attribute value
formalism involved admits certain infinities in the definition of s can the variables
range over infinitely many alternatives, because they range over s. This is important.
This means, namely, that morphological and lexical alternations cannot be the source of
this infinity; hence it must be nearness restrictions, that is, non-local dependencies and
similar phenomena that involve nodes in the tree with no a priori fixed distance. This
means also that the proposals of (?) of layering the language with which to express syn-
tactical facts on top of the language of s is completely misguided. If we were to do
this, it would be a pure coincidence that elements can exert non-trivial influence on each
other, because the feature language internal to the nodes influences the syntactic environ-
ments of these nodes only by mediation of the rules. Consequently, the information stored
in the  can only be interpreted in view of the full rule system.

Our view is opposite. Rather than letting the rules decide the meaning of the internal
s, we consider their interpretation fixed a priori, similar to the slashes in categorial
grammar. 1 So, we will assume that there is a language internal to nodes which allows
to code certain external facts about this node. And that this language uses primitives
whose interpretation is fixed a priori. The grammatical rules do not necessarily fall out
as corollaries of this interpretation, as in categorial grammar, but nevertheless need to
conform with the interpretation given to these symbols. So, taking the categorial grammar,
A/B expresses the fact that the node combines exclusively with a B (which must be on

1It is worthwile observing that the meaning of the slashes in categorial grammar is actually not as clear
as it appears to be. The Geach rule, for example, distorts the picture quite drastically. Without it, A/B just
codes the fact that the item needs a B to the right to give a mother A. However, if we can also combine
A/B with B/C to have a mother A/C – as in Geach rule –, this interpretation needs to be suspended. The
analogy with modus ponens in logic, which has driven the development of categorial grammar a long way,
has twisted the intuition that the slashes code nearness information and given way to an interpretation of
slashes as meta-level statements of syntactic reducibility. The latter might be fine as such, but does not
square with the official propaganda of categorial grammar.
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the right) to form a constituent of category A. Thus, a rule A → A/B B conforms
with this interpretation, while A → A/B C does not when C , B. The difference
with categorial grammar is that we do not assume the information at the node to be total,
that is, we reject the view that the lexical items contain enough information to code the
entire syntax. Rather, there are global facts of the language, expressed by rules, which are
supplemented by facts which the syntactic items supply locally. In fact,  assumes that
lexical items draw only from a finite source of distinctions, while the syntactic architecture
of a language results from various global principles of syntax. It is this view which we
are going to formalize with geometrical grammars.

6.4 The Orientation Language

With respect to trees there are four fundamental relations which allow to locate elements
with respects to each other. These correspond to the notions of being daughter of, mother
of, the left sister of and the right sister of. We denote them by ,̂ ,̂ ,̂ .̂ We illustrate
them with a binary tree:

1

2 3 4

�
�

�
�

@
@

@
@

In this tree

^ = {〈2, 1〉, 〈3, 1〉, 〈4, 1〉}
^ = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉}
^ = {〈3, 2〉, 〈4, 3〉}
^ = {〈2, 3〉, 〈3, 4〉}

Notice that ^ = ^` and ^ = ^`. So, ^P is true at a node iff it has a mother and its mother
satisfies P; ^P is true at a node iff it has a daughter and one of its daughters satisfies P.
^P true at a node iff there is a sister immediately to the left and it satisfies P; ^P is true a
node iff there is a sister immediately to the right and it satisfies P. Various other relations
can be defined from these primitives using the usual operations.
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R T

^
∗ dominates
^
+ properly dominates
^
∗ is dominated by
^
+ is properly dominated by
^
+
∪ ^

+ sister of
^
∗
◦ ^

+
◦ ^

∗ precedes
^
∗
◦ ^

+
◦ ^

∗ succeeds
^
∗
∪ ^

∗ overlaps with
^
∗
◦ (^+ ∪ ^+) ◦ ^∗ ∪ ^+ ∪ ^+ is different from

We denote by Ot the orientation language, which is based solely in the programs
,̂ ,̂^ and ^ in addition to the features. With some effort it is possible to axiomatize the

logical theory of finite trees with these orientation modalities. This logic of finite trees is
called Olt. We observe that the behaviour of ^+ can be captured by Gödels logic G. This
logic is characterized by the axiom

�p.→ .�(p ∧ ¬�p)

It can be shown that this axiom implies transitivity, and it says then that for any value for p
if p is possible via �, there is a successor satisfying p and no successor, direct or indirect,
satisyies p again. The behaviour of ^+,^+,^+ can be captured by G. In addition, ,̂ ,̂^
satisfy Alt1. Furthermore, there are axioms to epress the fact that ^ and ^ as well as ^
and ^ are converse modalities, namely

p→ ¬^¬^p, p→ ¬^¬^p

It remains to fix axiomatically the relation between ^ and .̂ Here we use the axioms

^p ∧ ^q.→ . (̂q ∧ ^p)

^p ∧ ^q.→ . (̂q ∧ ^p)

By standard techniques it can be shown that these axiom are equivalent on refined frames
to the elementary conditions that if x^y and x ẑ, then z^y and if x^y and x ẑ, then z^y.
(Again notice that we use the modality to denote the corresponding relation.)

Theorem 6.4.1 A finite frame is a Olt-frame iff it is a tree.

Proof. Clearly, ^ has to satisfy Alt1, and if it does, the frame is based on a relation
where ^ offers for each point at most one alternative. Similarly, by correspondence the
postulates p.→ .¬^¬^p and p.→ .¬^¬^p force the relation ^ to be the converse of .̂
The postulates

^p ∧ ^q.→ . (̂q ∧ ^p)
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^p ∧ ^q.→ . (̂q ∧ ^p)
induce the property that sisters to a daughter node of x are daughter nodes as well. Thus,
these daughters are linearly ordered by ^+ as well as ^+. a

This theorem does not extend to infinite frames; this is the source of great complica-
tions. If, namely, we could enforce models to be finite the logic would be decidable. But
this is not so, and the infinite models can be rather nonstandard. We will return to this
problem in a short while.

Let us now turn to a slightly different class of frames. These frames arise naturally
when we allow reentrancy in trees. This can be desirable in dealing with movement.
The idea would be that both the mother of the moved constituent and the trace left by it
dominate the same structure. The verb, requiring an object of a certain type to its right,
can check the satisfaction of this requirement simply by inspection of the trace rather
than indirectly by inspection of the moved phrase. The consequence of this is that the
structures admit several mother nodes per group of sisters. Such structures will be called
daglods (directed acyclic graphs with linearly ordered daughters). Their logic, called
Olg, is Olt minus the Alt1 postulate for .̂ These structures are based on two relations, ^
and ^ such that x^y ẑ and x^y with z^y imply x ẑ. So, mothers must share the same
group of sisters.

6.5 Geometric Grammars versus Schematic Grammars

If rules can be expressed in the orientation language, it is not hard to imagine that one can
actually eliminate rules altogether in favour of the local conditions on trees they induce.
This is actually in line with the philosophy of the  research. The idea is that rather
than using rules one should search for principles which allow to derive these rules in their
conjunction. In addition, there should be certain finite parameters that need be set to
define a particular core grammar. This latter feature of  shall be ignored here. However,
the principles are an important feature of  – and in fact all other grammar formalisms.
Despite claims to the contrary these formalisms use rules as well as principles, so there is
never a formulation that uses rules or principles exclusively. This has to do with a certain
conceptual economy. Notice namely that rules in a grammar are taken disjunctively, it
makes no sense to speak of the local condition a rule places on the local trees, rather than
the condition the totality of rules imposes on the local trees. Likewise, a principle does not
translate into a rule, because it is a condition on the local trees admitted by the grammar,
and thus affects all rules. Principles act conjunctively, rules disjunctively. There is now
great emphasis on the advantage conjunctive principles have for grammars and parsing
and it sometimes sounds as if a disjunction can be rejected on principled grounds. 2

2Just consider the case of (Rizzi, 1990). He argues quite strongly for a non-disjunctive formulation of
the ECP but the definition of minimality itself is disjunctive. The whole discussion, like that of (Chomsky,
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This is not justifiable, since the disjunction represented by the disjunction are there, and
whether they can be avoided by a suitable revision of the overall theory depends of the
case at hand. A basic core of alternatives in the form of real disjunctions does in fact
always remains – in the form of X-syntax, for example.

To summarize, rules act disjunctively and principles act conjunctively. In actual syn-
tactical frameworks there is a natural balance between rules and conditions on representa-
tions. Nevertheless, there is theoretical possibility of a strictly rule based grammar and a
strictly principle based grammar. The latter is exemplified by geometric grammars while
the former is exemplified by schematic grammars. A schematic grammar allows the use
of variables in rules; however, unlike usual definite clause grammars these variables have
quite special interpretation, namely they express geometrical structure sharing. Similarly,
a geometric grammar is a finite set of sentences from the orientation language. Likewise,
these sentence may contain variables, and these variables express structure sharing. It
needs to be said quite clearly what we mean by structure sharing. There are basically
two interpretations. The first is that structure means constituent. So, a variable under
that interpretation stands for a constituent, and using the same variable means talking
about the same constituent. The second interpretation is that structure means the whole
accessible structure, so not only the downwardly accessible structure (as in the first in-
terpretations), but also the structure accessed by going up (and back down again). The
latter interpretation is easier to handle logically, because here a variable acts as a standard
logical variable. Let us illustrate this with an example. Suppose we state via a formula
in the orientation language that a trace has an antecedent which is subjacent. Using the
orientation language we can express this as follows

TR ∩ X.→ .〈sub〉X

Here, sub is the relation of subjacency, and X a variable. We assume here that traces have
the structure of the antecedent (thus are not feature- and structureless), the only difference
being that they are phonetically empty. The latter is signalled already by the feature
TR. This postulate, if expressed this way will force the antecedent and the trace to be
generators of the same open constituent; namely, the generating nodes are different, but
everything else is shared. This is a consequence of the interpretation of X. We can namely
substitute any formula for it. So, if the trace is dominated by a V, as for an object trace,
so must be the antecedent, because we can substitute (̂V ∩ BAR:1 for X. And similarly,
if the trace has a verb as a left sister, so has the antecedent, by substituting (̂V∩BAR:0).
And so on.

The consequence is that the structures compatible with this interpretation are not re-
ally ordered trees but daglods. This consequence is emphasized in , where actual
identity of the structure which is shared is considered an explanation for the fact that

1986a) is an exercise in propaganda shadow boxing. Unification by underlying principles is sometimes not
distinguishable from a unification by disjunction of cases. It is a question of the terminological primitives,
and in the effect boils down to the same.
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information about this structure flows both ways between the nodes accessing this struc-
ture. However, there is an apparent overload in the information that we transfer under
this interpretation, for it is only the structure of the trace that needs to be accessed by the
antecedent, not the environment this trace lives in. The axiom above does therefore not
really (under our intentions) speak of structure as of the orientation language, but con-
stituent structure. Constituent structure can be associated with special expressions of the
orientation language.

Definition 6.5.1 A constituent in the orientation language is an expression of the form
A ∩ ^M, where A is nonmodal (= free of modalilties) and M free of .̂ A constituent

variable is a variable which admits as subsitution instances only constituents.

Thus, constituent variables are more appropriate linguistically, while ordinary variables
are more suitable from a logical point of view. This difference is accentuated in the
following definitions.

Definition 6.5.2 A geometrical grammar is a quadruple 〈F,Σ,Ω,Λ〉, where F is a finite
set of features, Σ,Ω ∈ Fr(F), and Λ a finitely axiomatized extension of Olg.

Definition 6.5.3 A schematic grammar is a quadruple 〈F,Σ,Ω,R〉 where F is a finite
set of features, Σ,Ω ∈ Fr(F), and R a finite set of rules M → N1 . . .Nm, where M,Ni are
Ol-formulae over F possibly containing constituent variables.

These rather long winded definitions have a common core consisting of a set F of basic
features forming the boolean algebra Fr(F) from which both the start symbol Σ and the
terminal symbolΩ are drawn. The difference is that the structures are defined in a geomet-
ric grammar by axioms concerning the structure of the daglods (not ordered trees) while
a schematic grammar is like an ordinary definite clause grammar rule with the possibility
to use complex symbols (written with all four operators ,̂ ,̂ ,̂ )̂ while the variables
themselves are constituent variables. The latter can be considered an optical trick. This
way we ensure that the structures the grammar generates conform to the interpretation
we must assign to the symbols. Namely, the grammar generates trees, so no reentrancy
is possible. On the other hand shared variables mean shared structure. The puzzle is
resolved if structure means constituent structure.

6.6 From Rules to Geometric Axioms and Back

First we deal with the simple case of a boolean grammar. A (memory) F-grammar gram-
mar S can be seen as a machine that produces models for the orientation language. Not
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only does it generate a structure (the trees) but it also produces a labelling at each node in
case we have full access to it’s internal states, that is, in case it is rational. We can charac-
terize the models that are generated by S by a single axiom. The axiomatic extension of
Olt by this axiom will characterize all and only the finite models of Olt that S generates.
Consider for the sake of concreteness that S contains only one rule, namely a → b1 b2.
Then consider the following formula

a ∧ (̂¬^> ∧ b1 ∧ (̂b2 ∧ ¬^>))

This says that a is mother and one step below a is a b1, and it is leftmost among the
nodes covered by a. Furthermore, it has a sister to the right satisfying b2, which itself
has no right sister. Exactly as the local condition expressed by the rule. Now consider a
translation of rules ρ 7→ ρt. If ρ = a→ b1 . . . bn then

ρt = a. ∧ . (̂¬^> ∧ b1 ∧ (̂b2 ∧ (̂b3 . . . ∧ (̂bn ∧ ¬^>) . . .)))

Now put
Ax(S) =

∨
ρ∈R

ρt. ∧ .¬Σ→ ^>. ∧ .¬Ω→ ^>

Proposition 6.6.1 (First Characterization) Let S be a rational F-grammar. A finite,
fully labelled tree with labels from the labelling of S satisfies Olt.Ax(S) iff it is gener-
ated by S.

This theorem is the easy part of a description of context-free grammars. It shows that
a grammar is effectively describable by a single Ol axiom. We will later show that to
a certain extent this theorem has a converse; any Ol axiom can be coded into context-
free rules in such a way that the grammar consisting with these rules conforms with this
axiom. However, it is still open whether the First Characterization extends to non-rational
grammars. The difficulty is that we have to use only the symbols from F and so cannot
‘spy’ into S.

In a similar way we can reduce schematic rules from a schematic grammar. To trans-
late a schematic rule ρ = A → B1 . . .Bm we use the same translation, but now A, Bi are
geometric formulae from the orientation language. The variables originally act as con-
stituent variables, but are now read as structure variables, and so the translation returns a
geometric grammar. The problem is now to compare the structures that the two grammars
describe. But it is intuitively clear that a daglod can be disentangled in such a way that it
yields a uniquely determined ordered tree. Namely, if two nodes x1 and x2 share the same
open constituent C we split C into two isomorphic copies C1 and C2 and insert C1 below
x1 and C2 below x2. This procedure is repeated until all nodes have unique mothers. We
then say that a geometric grammar is finitely equivalent to a schematic grammar if the
daglods it admits are the same as the trees generated by the schematic grammar – after
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disentangling. Notice, however, that the geometric also admits infinite models, which the
schematic grammar does not. Thus a stricter notion of equivalence is necessary if true
equivalence is wanted. We say that the geometric grammar is strongly equivalent if it is
determined by its finite frames. This means that it admits infinite frames, but the logical
theorms of that grammars can be evaluated by just looking at the finite models.

Theorem 6.6.2 (Rules to Geometry) Let 〈F,Σ,Ω,R〉 be a schematic grammar. Then
〈F,Σ,Ω,Olg(Rt)〉 is a weakly equivalent geometric grammar. a

Theorem 6.6.3 (Geometry to Rules) Let 〈F,Σ,Ω,Olg(Φ)〉 be a geometric grammar con-
taining an axiom ¬^k

> for some k. Then there exists a weakly equivalent schematic
grammar.

Proof. The proof is by reference to the Coding Theorem. This theorem says that it
can be guaranteed for any formula φ of the orientation language that it is distributed by
means of schematic rules exactly according to its semantic interpretation. So we can
write a schematic grammar that distributes the formulas Φ according to their semantic
interpretation. Now take a rule A→ B1 . . .Bm, m ≤ k, of this grammar and replace it by

A ∩
⋂
Φ→ B1 ∩

⋂
Φ . . .Bm ∩

⋂
Φ

The totality of these rules form the rule set R of the schematic grammar. a

It is illustrative to see the exact mechanism of this proof. The axiom ¬^k
> says that

each nodes has at most k daughters. Without such an axiom we would not have a grammar
of finite type. Now we take the feature system Fr(F) and write down all possible rules
F → G1 . . .Gm, m ≤ k, with F,Gi ∈ Fr(F). Successively, we code the subformulas of Φ
into these rules. That this is possible (and how it is) is shown by the Coding Theorem in
7.7.7. This means that the rules still have no content, that is, no restrictions are worked in.
We only know that when a formula appears, e. g. ^+(F2 → ^^F1), that it appears exactly
at those nodes where it should according to its interpretation. This ensures that if we now
add
⋂
Φ at all nodes we can be sure that the postulates of Φ are obeyed.

6.7 The Formal Evaluation of Grammars

The conversion of grammars into logics allows to restate certain important problems con-
cerning grammars as logical problems, and there is some hope that the tools from modal
logic can supply sufficiently satisfying answers to them. The first problem is that of gen-
erative capacity. If G and H are two schematic grammars, can we decide whether they
are generatively equivalent, or whether one is stronger than the other? We understand by
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generative power not the generative power in terms of strings (whch is known to unde-
cidable) but rather generative capacity in terms of structures, ordered trees that is. Thus,
by replacing these grammars by their geometric counterparts we can rephrase this prob-
lem as a condition on models for the underlying logic of the geometric grammars. Let
namely 〈F,Σ,Ω,Λ〉 be a geometric grammar. The set F is implicit in the language of
Λ, so is of no real significance. The start symbol codes the axiom ¬^> → Σ, and the
terminal symbol codes the axiom ¬^> → Ω. Thus, by adding these two postulates to
Λ we obtain a slightly stronger logic which contains all the conditions on models of the
geometric grammar. 3 Thus a geometric grammar is an extension of Olg with finitely
many constants by finitely many axioms. Given two geometric grammars, Λ,Θ, over the
same language, the generative power of the corresponding schematic grammar is decided
by the set of finite models these logics admit. Since they also admit infinite models, it
is necessary to postulate here that the logics are determined by their finite models. Sup-
pose that they are; then we can decide both Λ ⊆ Θ and Λ = Θ, and consequently the
corresponding problem about the generative power of the schematic grammars. Namely,
the theorems of Λ are recursively axiomatized and so enurable. Furthermore, for a finite
frame it is decidable whether it is a model for Λ. We cane therefroe enumerate the frames
for Λ, and with them the models, and so the non-theorems of Λ. Now take an axiom of
Θ, θ. We can decide Λ ` θ, and so we can decide Λ ⊇ Θ. Reversing the roles we can
decide whether Θ ⊇ Λ, and so we can also decide whether Λ = Θ. All this is subject to
the condition that the logics are strongly equivalent to their schematic grammars, that is,
that they have the finite model property.

Thus the finite model property is the key property here. One might suggest to weaken
this to decidability, which would still leave the evaluation problem with an answer, but in
that case we cannot really speak of a good representation of the schematic grammar by the
corresponding logic. It should be relatively easy to come up with logics which fail to have
the finite model property and so are not stronlgy equivalent to their schematic grammars.
It is most likely not even decidable which logics have fmp. Nevertheless, since human
languages use only a fraction of the possibilities it might very well be that this fraction is
a bundle of logics which have the finite model property. This problem, however, needs to
be left open. An important subcase is the base logic Olg.

Problem 6.7.1 Does Olg have the finite model property?

A positive answer to this question would immediately show that all context free grammars
are strongly represented by their geometric grammars. Namely, context free grammars use
a finite symbol resource and can thus be axiomatized without the use of variables, that is,
with a constant formula. So a context free grammar reduces to an extension of Olg by a

3The presence of start and terminal symbol is technically required in the definition of a geometric gram-
mar only because we need to make sure we can identify them. From a pruely technical point of view it is
possible to do without them.
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constant axiom A. Now, from Olg(A) we can deduce a formula φ exactly if we can deduce

(^∪ ^∪ ^∪ )̂∗A.→ .φ

from Olg. (See (Kracht, 1993) and (Kracht, 1995) for similar arguments.) Therefore, if
Olg has the finite model property, so does Olg(A).

There is thus a marked difference between our approach to syntax and the one pro-
posed in (?). Stabler uses full predicate logic to formalize  theories and throws away
all chances of obtaining decidability results outright. Here, the language is a fragment of
dynamic logic and the question of decidability is not a priori negatively answered. But
even if it turns out that the general evaluation problem is undecidable for Olg, there are
good arguments to prefer the orientation language over predicate logic. One is the local
character of the primitives ,̂ ,̂ ,̂^ and the full correspondence with rule based mech-
anisms and axiom or constraint based mechanisms based on the orientation language.
Such a close correspondence cannot be found with predicate logic because the latter is
too amorphous. The fact that just anything of interest can be coded makes it unlikely that
useful results will appear. With our approach, however, the question of representing facts
in grammars is still nontrivial – because the mechanisms are restrictive – but we might
be rewarded with clearer insight into the grammars themselves and – hopefully – with
substantial decidability results.



Chapter 7

Spreads and Codes

7.1 Definition and Examples

Suppose that we have a set F of features (mostly finite) and an F-tree T. We can distin-
guish in T two types of sets; an internal set is one that can be defined by a proposition over
F, that is, S ⊆ T is internal if there exists a boolean expression A in terms of the features
from F such that S = [[A]]. If S is not internal then it is external. Moreover, consider
an abstract set S, that is, a function S that returns for each F-tree T a set S(T) ⊆ T. S
is internal if there exists a boolean F-term A such that for all F-trees T S(T) = [[A]]T.
Examples are the abstract set F1 ∩ F2 which selects for each labelled tree T the set of
nodes which are both in F1 and F2. (We will not distinguish thoroughly between a term
 and the abstract set [[a]].) Simply speaking we require to have a formula that selects in
each labelled tree exactly the set that we have singled out via S. If S is not internal, it
is called external. This distinction between internal and external is quite rough; we can
for instance think of other ways to identify sets uniformly in trees, for example by use
of predicate logic. The set of branching is clearly dedinable by a first-order formula. So,
being external can be split into being first-order definable and not being first-order defin-
able. The interest in such sets and abstract sets lies in the relation with grammars. We
can view grammar writing as a process whereby external sets become internalized. This
means that we start with a slot grammar (on no symbols!) and gradually add the labels.
BUt we add them in such a way that their distribution is exactly as we want it. This is,
however, quite difficult to achieve and therefore formal tools that can be of help are highly
desirable. The way we proceed here is by specifying external sets in some suitable way
and then internalize them using an effective algorithm. It is namely often comparatively
easy to say in informal terms what particular distribution a label has while it is hard to
write a grammar that achieves this.

We will provide mechanisms that translate such specifications into rules. Moreover,
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we will calibrate the strength of the conditions that can be imposed on such sets if this
translation is at all possible. This is not a trivial thing to do. We can for example select
the set of all nodes whose depth is a prime number. Since this latter (abstract) set never
defines a regular path set on sets of trees for which there is no upper bound on the depth,
there is no chance whatsoever of writing a cfg that has an internal abstract set of this type.
This raises the question of the exact limits of internalization. This limit can be determined
quite precisely. We will show that the abstract sets that are definable via the orientation
language Ol with labels from F are exactly those sets that can be internalized in this sense.
This is the content of the Coding Theorem.

Before we can enter the proof of the Coding Theorem, we will broaden the notion of
an abstract set. First, we will allow for different choices of sets to be instantiated at one
and the same tree; moreover, we will allow to specify a sequence of sets rather than a
single set. The latter will prove to be an irrelevant generalization, but is at least from an
intuitive standpoint helpful.

Definition 7.1.1 Let 〈T, `〉 be a labelled tree; an n-extension of 〈T, `〉 is a sequence
〈T, `, S 1, . . . , S n〉 where S i ⊆ T, i ≤ n. An n-spread is a collection of n-extensions over
(finite) trees. Finitely, an n-spread over T, a set of labelled trees, is a collection of
n-extensions of the trees from T.

Given an n-extension E = 〈T, `, S 1, . . . , S n〉 of a labelled tree T we can form an equivalent
labelled tree E]; equivalent in the sense that it contains the same information as E. Namely,
take a set G = {Gi|i ≤ n} of labels such that F ∩G = ∅ and define assignments

µi(x) =
{

Gi if i ∈ S i

−Gi if i < S i

Put `] = ` ⊗ µ1 ⊗ . . .⊗ µn ∈ L⊗Fr(n). Then E] = 〈T, `]〉. E] is a F ∪G-tree. Similarly any
n-spread over a set T of trees is reduced to a set of labelled trees; only we need to use the
same labels for the same S i throughout. The extensions are thus made homogeneous. If a
distinction is needed between E and E] we will refer to the former as a set-extension and
to the latter as a label-extension.

The formal definition of spreads leaves a lot of room for arbitrariness; the question
that naturally arises is how to extract appropriate spreads from linguistic data. Based on
some formal considerations we will formulate a principle at the end of this chapter that
allows to construct optimal spreads.
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7.2 Codability of Spreads

We assume that S is an n-spread over the set of finite F-trees for a finite set F of labels;
that 〈G, ε〉 with G = 〈Σ,L,R〉 is a silent boolean F-grammar. S defines a spread on Yd(G)
which in turn gives rise to a set Yd(G)] of trees with labels in L ⊗ Fr(n).

Definition 7.2.1 Suppose that G = 〈G, ε〉 is a silent boolean F-grammar and Yd(G) the
set of finite trees generated byG. LetS be an n-spread. We say thatS is memory codable

in G if there is a F ∪ G-grammar H = 〈H, ζ〉 with finite memory with G = {G1, . . . ,Gn}

such that E = 〈T, `, S 1, . . . , S n〉 ∈ S exactly if G ⊗ H � 〈T, ` ⊗ µ〉 and S i = [[Gi]] for
all i. The silent grammar H is called the code of S in G. We call a spread S memory

codable simpliciter if it is memory codable in every grammar.

This calls for some exegesis. The basic idea is that coding a spread into the grammar G
means an amalgamating it with another grammar in such a way that the spread is inter-
nalized. The spread tells us that over the set of F-trees certain (unknown) features have
to be distributed in exactly the way presented. Thus we need to expand our trees by some
more features in order to make room for the new sets in the spreads. It is then our task
to distribute them according to the spread. Thus we identify each S i with a feature in the
extended language, using also the new labels if necessary. Thus we have to first upgrade
G into a F ∪ G-grammar, but with no conditions associated with the G-features. This
means passing on from the F-trees generated by G to the set of all F ∪ G-trees whose
F-reduct is generated by G. Next we tensor G with another silent grammarH . The whole
point of this is that G and H share the burden of distributing labels. G is responsible
for the F-features, H is responsible for the G-features. Seen this way the construction
is symmetric in G and H . But there is an intuitive difference that we want to capture,
namely that spreads refine an already existing grammar G. This is reflected in the fact
that we requireH to be of finite memory, thus, in fact, context free.

E 1. Let Brn be the branch spread. This is the spread of all 1-extensions where
S 1 is simply any branch of the tree. (To be precise here: Brn contains for all trees all
sets that are branches. So Brn is not necessarily an abstract set since there is generally
more than one branch in a tree.) This spread is indeed codable. To see this, let us try to
define how the rules of the grammar have to be enriched with the symbol B such that it
will be distributed along a single branch. Take a rule ρ = L→ M1 . . .Mn. We must define
a set of extensions ρ] of ρ that schedule B. ρ] naturally splits into two sets of extensions.
The first is when the mother node has B and the second is when the mother node has −B.
Both cases must be dealt with. B means being in the spread; thus, if the mother node
bears −B it is clear that neither of the daughters are B. Consequently, there is only one
extension of ρ of this type, namely, L ⊗ −B → Mi ⊗ −B . . .Mn ⊗ −B. However, if the
mother node in a rule is B then exactly one of the daughter nodes must be B as well. In
this case we must add a new rule for each daughter, L⊗B→ M1⊗B M2⊗−B . . .Mn⊗−B,
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L⊗B→ M1⊗−B M2⊗B . . .Mn⊗−B etc. The start symbol of the grammar has to Σ⊗B,
because cannot afford not to select the root as part of the branches!

If G is at most two branching (= of expansivity at most 2), then to code the branch
spread it suffices to tensor G with the following grammar RRN. For other types it is quite
clear how the code looks like.
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E 2. Given a n-spreadS1 and an m-spreadS2 we can form an m+n-spreadS1⊗S2

which consists of all m + n-extensions 〈T, S 1, S 2〉 such that 〈T, S 1〉 ∈ S and 〈T, S 2〉 ∈ T.
Suppose that 〈H1, ζ1〉 codesS1 intoG and 〈H2, ζ2〉 codesS2 intoG. Then 〈G1⊗G2, ζ1∪ζ2〉

codes S1 ⊗S2 into G.

E 3. Furthermore, we can form from the n-spread S an n-1-spread by dropping
one of the sets, for example, S n. So, define

S\(n) = {〈T, S 1, . . . , S n−1〉|(∃S n ⊆ T )(〈T, S 1, . . . , S n〉 ∈ S)}.

Suppose S is coded in G by 〈H, ζ〉. Let ζ\(n) = ζ � (F ∪G) − {Gn}〉. Then S\(n) is coded
by 〈H, ζ\(n)〉.

We say that \(i) is a forget operation. We say that T is an expansion of S and S is a
contraction of T if there is a series of forget operations \(i) which transform T intoS. This
forget operation brings us to the actual coding problem that we sketched at the beginning.

A code, being a silent grammar, need not be rational, that is, we might need more
unobservables to guarantee the successful distribution of the spread-features in addition
to the unobservables that we need to distribute to F-features of the original grammar. We
say, then, that a spread is memory free codable if the coding grammar is memory free,
or rational. So memory free codability means that there are no additional features needed
to encode the spread. However, by adding some finite set of extra features we can turn a
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silent grammar into a rational grammar, simply by making the unobservables observable.
That this set is finite is a consequence of the requirement that the code must have finite
memory. Let the unobservables be X1, . . . ,Xk. Consider then an expansion of S into a
spread T that distributes the Xi for i ≤ k over G-trees exactly as the grammar rational
expansion ofH does; then by definition T is memory free codable and S is a contraction
of T.

Proposition 7.2.2 S is memory codable iff there exists an expansion ofSwhich is context
free codable. a

7.3 Covariance and Codability

This section will introduce some basic terminology and prove certain essential theorems
on codability. Even though their correctness is intuitively quite clear, the necessary conse-
quences on the construction of grammars are quite far reaching. We start by investigating
the current practice of defining spreads in linguistics. Spreads are underdetermined by
the data so that there is some room for arbitrary decisions. This leap from data to the-
ory is normally taken without justification and linguists are sometimes prone to present
their particular version of feature distribution as necessitated by the facts, so that the data
would support their theory rather than the theory that is being criticized. We will demon-
strate the complexity of this issue by a seemingly innocuous example, namely agreement.
Before I can start presenting the kernel principle of agreement feature sharing in  let me
say passim that it is rather disappointing how many textbooks on  with pompous titles
– usually employing phrases like the theory of grammar – fail to mention agreement or
treat it in the way it deserves. A notable exception is (?). One might get the impression
that this was just a minor issue of syntax. This is clearly not so, and  has incorporated
principles that are supposed to reflect agreement. The problem is that they are not recog-
nized by the reader as such, nor is their role explained in the textbooks. If one digs hard
enough one finds, for example, this.

S-H-A () The head of a phrase agrees with its specifier.

Notice that this principle as stated is quite empty; it does not clarify what it means to
agree and is typically stated without explanation in the books that I consulted. There
is in fact no fixed set of features uniform over all basic categories that can be called
agreement features. For example, when specifier and head of a complementizer agree
then it is quite plausible that they agree in different features than if the specifier and head
of a noun phrase agree. This is simply a reflex of different classification schemes for the
different heads. But let us not get distracted by this issue. We agree on the following
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convention. To ‘agree’ means to carry the same gender, case and number features, these
are also commonly called agreement features. The  is responsible for the distribution
or spreading of such features in a syntactic tree. It is certainly not the only principle
since it does not account for the fact that adjectives agree with the nouns they modify, but
grammar books of the kind that I have been looking at do not treat this case at all. We will
not question, therefore, the correctness of the , rather we want to use it as a guinea-pig
for studying codability. To simplify things at the beginning we do as if the only agreement
feature was PLU which distinguishes plural from non-plural (= singular in English, but
not necessarily in all languages, e. g. Old Greek and Sanskrit).

To see the effect of  we unravel an NP.
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We are following strict X-syntax; nothing is implied by writing the specifier as DP rather
than DET. Neither do we question whether NPs should better be analysed as DPs. As
usual, non-assigned features are unspecified and may therefore be assigned at random.
Thus both of the above trees represents 8 different choices of full assignments. To dis-
tinguish between the base grammar and the spread we have used the notation NP[PLU].
This stands for the fact that in this given extension the node is in the set S 1. When we
have successfully coded the spread we will change notation to NP ∩ PLU.

Let us begin by noting that the formulation of the  presupposes X-syntax of some
form and so the question of codability can be asked meaningfully only if we assume the
grammars to extend X-syntax. But let us forget that problem as well and assume a boolean
grammar generating the base trees such a the ones above and let us try and code  into
it. To this end we fix a tree generated by the base grammar G such as
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This will be our base tree. If E is an extension of T we let the index indE(x) of a node x in T

be the set of numbers i ≤ n such that x ∈ S i. Alternatively, we let the index be a sequence
of +’s and −’s indicating whether or not x ∈ S i. In the first extension indE(1) = {1}, or,
indE(1) = 〈+〉; in the second extension we have indE(1) = ∅, or, in the alternative nota-
tion indE(1) = 〈−〉. The choices of x in T are all those indices for which there exists an
extension in the spread giving the node this index: chT(x) = {indE(x)|E ∈ S, E extends T}.
In the base tree all nodes have the choices {〈+〉, 〈−〉}. Yet there is an intuitive difference
between the nodes 1 and 2 and the others. The difference is that the choices cannot be
independently be instantiated at the node 1 and the node 2. To formulate this we define the
covariance of x and y to be the set covT(x; y) = {〈indE(x), indE(y)〉|E ∈ S, E extends T}. x
and y are called independent if covT(x; y) = chT(x)×chT(y); otherwise they are called de-
pendent. In case of dependency a choice made at x may not be compatible with any other
choices made at y. So, 1 and 2 are dependent since covT(1; 2) = {〈+,+〉, 〈−,−〉} while
chT(1)× chT(2) = {〈+,+〉, 〈+,−〉, 〈−,+〉, 〈−,−〉}. All other pairs of nodes are independent.

If S is codable in G we can give for each rule ρ of G a set of extensions ρ+ such that
the so extended grammar G+ generates the trees of S. Thus it should be intuitively clear
that the source of dependency must lie in the rules, that is, the local trees. A rule ρ seen as
a local tree A → B1 . . .Bn has a fixed set of extensions. To give an example (taking here
the binary case) let there be only
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B1[−F] B2[F]

In this case B1 and B2 are dependent and this dependency results from the fact that the
other combinations of choices are not legitimate rules. The dependency of B1 and B2 may
extend to a dependency between the daughters of these nodes, but it need not, e. g. in case
that the daughters are independent from their mothers.
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On the other hand, it is clear that if a node y dominates a subtree ↓ y and E and F are
extensions of T such that indE(y) = indF(y) then we may replace (↓ y)E in E by (↓ y)F.
This observation is used to prove the next lemma.

Lemma 7.3.1 (Independency) Suppose that S is codable in G and that G � T. Let
x, y, z be nodes of T such that x � y and z ≤ y. If x and y are independent, so are x and z.

Proof. Let i ∈ chT(x) and j ∈ chT(z). We have to show that 〈i, j〉 ∈ covT(x; z). This shows
that chT(x) × chT(z) ⊆ covT(x; z); the other inclusion, covT(x; z) ⊆ chT(x) × chT(z), is
trivial. Take an extension F such that indF(z) = j and let k := indF(y). By independency of
y from x there exists an extension E such that indE(y) = k and indE(x) = i. Now substitute
(↓ y)F for (↓ y)E in E. This defines an extension G; G ∈ S becauseS is codable. Moreover,
indG(x) = i since x � y and indG(z) = indF(z) = j. Thus 〈i, j〉 ∈ covG(x; z). a

Now call x and y close if they are within the same local tree; alternatively, x and y are close
if they are ⊥-mates. The Independency Lemma shows how to trace dependency back to
dependency between close nodes. Consider two nodes x, y. Suppose x � y. If y does not
⊥-command x then there exists a ŷ > y such that ŷ does not dominate but ⊥-command x
and by the previous lemma x and ŷ are dependent if x and y are. Similarly we find that if
y � x and y does not ⊥-command x then for the lowest ⊥-commanding ancestor x̂ of x, x̂
depends on y. Let us call x̂ and ŷ the close ancestors of x and y if x̂ is the least ancestor
of x ⊥-commanding y and ŷ the least ancestor of y ⊥-commanding x. Then as a result of
our investigations we find the following.

Lemma 7.3.2 (Dependency) S is codable in G only if for every base tree T and every
pair of nodes x and y can only be dependent if their close ancestors x̂ and ŷ are dependent
as well. a
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This theorem deserves attention even though it is not hard to prove. Let us note, namely,
that we do not need that for a pair of dependent nodes there is a common ancestor on



Spreads and Codes 185

which both depend. So, if we introduce the dependency domains of a spread in a labelled
tree to be subsets such that for each pair of points there is a chain of dependencies running
from one to the other, then these domains are convex sets with the top being removed;
thus, they are either ragged cones or open ragged cones.

By this theorem we see that  is not codable in its present form. Namely, 1 and 2
are dependent but their close ancestors, 1 and 4, are not. Thus we need to have a memory.
It is in this case enough to have a memory of size 2 which can be realized by adding a
single feature M. The trees must be specified for M as follows.
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At this point we may pause to investigate the question whether it was a good choice to
ignore the value of PLU at the other nodes. Notice namely that (1) for all interior nodes
the value of morphophonological features can only be hypothesized while for the terminal
nodes it can be attested by direct grammatical data and (2) if one node is independent from
all other nodes and we have full choice of instantiating the features we can with no harm
stipulate some particular instantiations as the only legitimate ones. Thereby we restrict the
spread artificially but in this case the result is markedly superior. We stipulate now that the
agreement feature is spread over the whole phrase with the exception of the complement.
(Whether it will be spread over adjuncts will not be discussed now; we are at the moment
only considering our example base tree.)
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We can say then that with the interpretation of PLU in mind we have used the feature
PLU as a memory for itself. This almost exaplains itself; theoretically, as in  we need
to distinguish between marking the value of the agreement features and marking the fact
that in the local structure the agreement head has such and such agreement features; the
latter is abbreviated by AGR: PLU and AGR: − PLU. Although distinct in interpretation,
it is a question of economy in the grammar (as well as the relation between grammatical
data and the necessitation of a particular analysis) whether the two can be identified. In
this particular case this can be done. This spread is codable (modulo other unseen feature
instantiations for adjuncts etc.) and we can immediately read off a boolean grammar
coding it.

However, for the sake of concreteness let’s look at a more complex issue, namely
disagreement constructions (see (Baker, 1992)). (I claimed in an earlier version that dis-
agreement is not memory free codable, but have actually discovered that it is. This shows
how tricky this subject is when it comes to such issues.) In Mohawk, discussed in the
quoted article, both the sentence [A] and [B] require dual marking for the verb, while in
many European languages only in the [B] sentence the verb is non-singular (i. e. plural,
since they have no dual, mostly).

[A] I danced with Mary.

[B] Mary and I danced.

If we would simply let PLU (or DUAL) percolate from the subject down to the verb
we would have the situation as in European languages; the verb decides on the basis of
the plural feature of the subject. If the situation is as in Mohawk, the verb must receive
two pieces of information: the marking of the subject and the marking of the comitative
phrase. How can we achieve this? If we have to posit a phrase structure analysis of the
following kind

S→ NP VP NP[COM]

then it is evident that the two pieces can be passed to the VP without memory because the
information is close (in the technical sense). If we have a binary branching analysis with
the comitative phrase being the VP-adjunct, we do the following
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NP[SG] VP[SG]

VP[SG]

Other assignments are done similarly. The idea is that the information of the agreement
status of the subject is passed on until the adjunct is reached; it’s agreement features are
then merged with the ones of the subject to yield the VP-agreement features. One might
have objections from an intuitively point of view, but formally this analysis is as good as
any other.

7.4 Join Spreads and Reusability

The discussion of agreement leads us to another important question in codability namely
that of reusability. In inflectional languages it is not necessary to mark the verb for agree-
ment at all; we can rely on case to tell us which NP serves as which argument of the
verb. So agreement is a kind of luxury, or, to use a neutral term, introduces redundancy
into the system. If there is indeed no agreement or only one type of agreement, either
subject-verb or object-verb then the plural marking on the verb does not need to discrim-
inate these types of agreement and the feature PLU is enough. If, however, both types of
agreement are present the verb needs to realize them differently; we consequently have to
split PLU into PLU-S and PLU-O; we might be tempted to understand them as abbrevi-
ations of [PLU, CASE : NOM] and [PLU, CASE : ACC] but if these two features meet
at the verb they clash because their conjunction is contradictory. On the other hand, PLU
itself does not seem to need a distinction at the NP itself whether it is PLU-S or PLU-O.
The NP needs to be marked only for plural simpliciter. Only outside of the NP it matters
whether it is a PLU-S or a PLU-O.

All this applies only to a single clause, however. Outside the clause these features can
be used again with different meaning. So, while PLU-S has one and only one abstract
meaning, namely to specify morphological agreement of the verb with its subject, its con-
crete use in different clauses provides different contexts and different concrete meanings
even within the same tree. It is a general feature of grammatical mechanisms that outside
of their nearness domains they can be used again for same purpose but with different in-
stantiations. A quite surprising example will be discussed now, that of binding. We know
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that binding is mediated via ⊥-command. Technically, x binds y if x is coindexed with y
and ⊥-commands it. To code this we need a memory unless y ⊥-commands x by chance
as well. But for the moment we will concentrate not on this question but on the question
of reusability. Let us therefore ignore the coindexing clause, in fact, let us indiscrimi-
nately spread the index of x over its ⊥-domain. Then being coindexed with x is the same
as being ⊥-commanded with x. Already this poses problems. If, namely, the only thing
we have access to is the indexing, it is impossible to recover x. If x and y are ⊥-mates then
they have the same ⊥-domains (they are ⊥-co-heads in our terminology). So we need to
distinguish the origin of the index in some way. This detail is frequently overlooked in .
Here, for example, is a version of the i-within-i-filter in a recent textbook ((Haegeman,
1991)):

The i-within-i-filter ∗[Ai . . . Bi . . .]

What is not meant here is that B may not be coindexed with A in the case where A ⊥-
commands B or that they may not bear the same index. What is forbidden by this is that
A and B create the same index. There is no way to make this precise without making
the distinction between index creation and coindexation. We must therefore assume that
an index IND is accompanied by a feature REF selecting items at which the index is
instantiated, or better, which are co-referential with the given index. The i-within-i-filter
will be encapsulated in the following postulate

Unique Indexation ∗REF ∩ IND

This leaves us with three other possibilities:

N : −IND∩−REF
I : IND∩−REF
R : −IND∩ REF

Thus we have the following rules:
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Specifically, these rules pass I on to all daughters and no more referents will be created
under the same name. Hence, when I is initiated it co-occurs with a sister R and the I
is henceforth distributed exactly over the ⊥-command domain of the referent. However,
since the referent itself does not carry the index, the very same index can be used inside
of it, so that the following structure is quite possible.
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However, the same index means different things. At 2 it means being coindeced with
1 and at 4 it means being co-indexed with 3. This is not as funny as it first appears.
In predicate logic one and the same variable can be used in different contexts to mean
different things, likewise in computer languages like P and A. This is illustrated
by the formula below.

(∀x)(φ(x) ∧ (∃x)(ψ(x)→ φ(x)))

Consider now the following phrase

[Peter’si best friend]i
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3NP[R]

1NP[R] 2N[I]

While the referent attribute REF may be instantiated at both 1 and 2 the two need not
mean the same thing. However, best friendi bearing the index i is ‘coindexed’ with Peter,
so that the object-variable in friend(x1, x2) has to be the same as for Peter. The first
variable, however, being the referent of the higher NP, may or may not be co-referential
with x2. The two way identity: identity because of being the same variable and identity
because of coreference – are the two ways in which a referent REF and an index IND
can be identical. The first case arises wheen the REF-bearing node ⊥-commands the
IND-bearing node and the second if it does not.



190 Marcus Kracht, Nearness and Syntactic Influence Spheres, February 11, 2008

7.5 Principles of Spread Construction

With the terminology and results developed so far we can return to the problem of extract-
ing spreads from the linguistic data. By data we understand the some abstractly defined
map [ that relates grammatical trees with observable structures. The best observable is the
physical string, either as spoken or as written down on paper. This raises interesting ques-
tions. Namely, the assignment of the agreement features to nodes in a tree is supported
from the data only inasfar as it can be documented in morphological correlations between
words; and the latter are determine only the properties of the leaves of the syntactic tree.
Even though we consider intuitively the property of being plural to be attributable not
only to simple nouns but also to noun phrases, this is not a priori guaranteed to be a nec-
essary consequence of the morphological facts. In fact, the deeper one engages in this
question the less clear it becomes. Nevertheless, we can formulate principles that are
quite viable and give a postiori explanations for our intuitions.

We remain with agreement, especially number agreement. Let us assume, that number
agreement can be isolated as an independent phenomenon, i. e. that number agreement is
uncorrelated with gender agreement and let us try to define an optimal spread for number
agreement. How are we to proceed? First let us be clear in the terminology. Given a single
feature F we say that two nodes x and y in a labelled tree are positively F-correlated
or F-agree if covT(x; y) = {〈−,−〉, 〈+,+〉}, and that they are negatively F-correlated if
covT(x; y) = {〈−,+〉, 〈+,−〉}.
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For a set F of features we say that x and y F-agree if they F-agree for all F ∈ F. Agree-
ment means agreeing with respect to a certain set F. Agreement is a special type of
correlation and indeed the most simple one to be handled. Agreement with respect to a
set of features can always be decomposed as agreement with respect to a single feature.
Agreement is also a transitive relation. If x and y F-agree and y and z F-agree, then x
and z F-agree as well. Call A ⊆ T an agreement set if it is the set of all nodes agreeing
with a given node x. Let A be an agreement set and z the smallest node such that ↓ z ⊇ A.
Call D an agreement domain if D is of the form ↓ z ∩ ↑ A − {z}. Alternatively, D is an
agreement domain if it is the dependency domain of A. Even though agreement sets are
disjoint, agreement domains need not be.
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In the tree shown above assume that w and y F-agree, x and z F-agree, but that w and
x are F-uncorrelated. It follows that we have the agreement sets {w, y} and {x, z} and
the agreement domains {w, s, t, y} and {x, s, t, z}. I have to stress here that we do not
have a fully specified spread, whether or not the interior nodes of the tree agree or are
uncorrelated cannot be answered. Rather, we want to develop means to reconstruct (or
construct) the spread at the interior nodes through this analysis.

It is clear that overlapping dependencies mean that the feature F is not straightfor-
wardly reusable. The problem is created at the interior points at which the domains over-
lap. These points have a problem in storing the feature value for two different agreement
sets. It is clear that this cannot be done without memory. But assume that we have an A
Priori here, namely that on all trees of the grammar the number of agreement sets con-
taining a given point is bounded by α. Then we can actually disentangle these domains
by introducing new feature algebras. If previously we had the algebra F, we now have
F⊗F⊗ . . .⊗F, α times. The situation is quite similar to that of the index algebra, and I can
recommend reading the section on interpreting the tensor product once again at this point.
If α = 2, the feature F is split into F ⊗ 1 and 1 ⊗ F, which are identical morphologically,
but are now hypothesized as different. A possible case in point are AGR-S and AGR-O.

After disentangling the agreement domains we postulate the following spread. With
respect to a tree T the extension 〈T, S 〉 belongs to the agreement spread for F iff for each
agreement domain D either S ∩ D = ∅ or S ⊇ D. So, a spread set may not split an agree-
ment domain. This is plausible; otherwise the agreement link between certain agreeing
leaves is cut somewhere so that they are forced to disagree in the label-extension corre-
sponding to 〈T, S 〉. It is now not guaranteed but highly probable that this spread is memory
free codable.

Let us demonstrate this procedure with practical examples. We know that adjectives
and nouns PLU-agree in Latin. Spefically, we have
√

mare nostrum ∗ mare nostra
– – – +

∗ maria nostrum
√

maria nostra
+ – + +
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This leads to the postulating this spread for the parse tree.
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Put into prose this means that although the sisters must agree whether they are positively
or negatively PLU, we cannot on the basis of this data conclude that the NP mother agrees
with them. This is counterintuitive, but we will see that the conclusion is correct on the
basis of the given data. A similar situation is namely agreement between subject and verb.
√

philosophus ambulat ∗ philophus ambulant
– – – +

∗ philophi ambulat
√

philosophi ambulant
+ – + +

The conclucion is the same, namely that subject and verb agree, but the sentence itself
does not need to agree. This time, however, the conclusion is supported by our intuition.
The difference is easily explained by considering more complex phrases.

√
philosophus illustris ambulat ∗ philophus illustris ambulant

– – – – – +
∗ philosophus illustres ambulat ∗ philophus illustres ambulant

– + – – + +
∗ philosophi illustris ambulat ∗ philophi illustris ambulant

+ – – + – +
∗ philophi illustres ambulat

√
philosophi illustres ambulant

+ + – + + +

Not only do we see the old agreement between adjective and noun, but also between
adjective and verb, noun and verb. This time the principle of spread construction dictates
that we assume the noun phrase to agree with the noun, the adjective and the verb; for
it is contained in the agreement set of noun and verb. (With A = {1, 2, 4} we have D =
{1, 2, 3, 4}.)
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This leads to the conclusion that noun phrases are marked for PLU in the same way as their
noun head. A similar embedding test shows quite different results. Subject sentences are
always singular, be their own subject singular or not. This is quite universally true in all
languages. This leaves two options. We can say that sentences are singular throughout, or
that it is not meaningful to speak of singular or plural sentences. In the boolean language
this cannot be expressed as such. However, there is an analogue of this. Call a point x F-
isolated if it is independent of all other points in a tree. Call an element in a mereology of
a boolean grammar F-isolated if all F-points are F-isolated. Then for F-isolated points it
makes no sense to speak of their marking for either being positively F or being negatively
F. This applies to lexical categories (such as adverbs and other immutable words) and
also to non-lexical categories such as sentences. It turns out that on this interpretation
sentences are not PLU-isolated, and that we must classify them as singularia tanta, i. e.
categories which are necessarily singular.

Not everything concerning plural can be analysed in terms of agreement. Consider
coordination constructions such as John and I, Either the car or the bicycle. Analysing
the English data, a conjunction NP and NP is plural throughout, independently of whether
the individual conjuncts are singular or plural. Since plural is connected with a subject
consisting of a single individual, this is not surprising and might lead to the conclusion
that in coordination constructions the driving factor in the correlation of PLU-marking is
the semantics. But this not necessarily so. Consider

I had a constant fight with myself.
Me and myself always disagree.

We do not attempt at settling this question here but let us pursue the syntactic complica-
tions for PLU-marking in coordination. Firstly, it is evident that there is no agreement
between conjuncts, not even between mother and daughters. In the English case, in con-
junctive coordination the mother is independent from it’s conjuncts because it is plural. In
languages with dual there is a clear case for a correlation between mother and daughters
but not agreement. We leave it for the reader to verify the details. Notice also that al-
though there is a correlation along each axis compound-left conjunct and compound-right
conjunct, the correlation is a function from the marking pair left conjunct-right conjunct
to the marking of the compound. This function is as follows.
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This raises the question whether this function is actually determined by the individual
correlational data. However, it is compatible for the mother to be plural while the left
daughter is singular and the right daughter is not singular. Or, the left daughter is singular
and the right conjunct is not singular. With only this correlational data we would conclude
that the compound can be plural if both conjuncts are singular – which we must reject.
This number system shows that the correlation analysis is good for spotting dependencies,
but too weak to represent them faithfully.

7.6 Specification of Spreads

As we noted earlier, a spread is a construction and is as such either externally given or
produced by a certain description. For example, the branch spread is the 1-spread where
S 1 is a branch of the tree in question. The mother-of-A spread is the 1-spread where S 1

collects all mothers of nodes of category A. And so on. Apart from these informal ways
to introduce spreads, there are more formal ones. The latter are realized by writing down
this specification in a formal language; most suitable in our case is the language Ol. For
example, the mother-of-A is spread is rendered formally as follows. We reserve for S 1

a new feature X1; the distribution for X1 is then laid down by the equation X1 = ^A.
Equivalently, we could have written the axiom X1 ↔ ^A. The latter corresponds more
closely to the idea of filtering. Any new feature, here X1, is in principle free to distribute
itself wherever it wants. Thus without the axiom we would have the trivial 1-spread over
the trees, where S 1 can be any set. But if we add this axiom, we filter out all extensions
of trees in which S 1 does not collect the mothers of A-nodes. So, with basic features
F1, . . . ,Fm given, we can specify spreads with Ol-formulas by writing axioms of the form

X1 ↔ φ1(F1, . . . ,Fm)
X2 ↔ φ2(F1, . . . ,Fm)
. . . . . .
Xn ↔ φn(F1, . . . ,Fm)

But as it stands, this schema is quite restrictive. Consider, for example, the branch spread.
There is no single formula over the given features F1, . . . ,Fm that allows to define all and
only the branches. This is easy to see; namely, since the features are already given, that is,



Spreads and Codes 195

their distribution is fixed, the distribution of the Xi is also fixed. Thus, spreads defined in
this way do not allow multiple extensions of the same tree. Hence this schema character-
izes abstract sequences of sets rather than spreads. Thus we have to find something else.
The solution lies in lifting the restriction that the distributions of the Xi are independent
of each other; e. g. we can imagine quite well defining X2 in terms of X1, X3 in terms of
both X1 and X2; however, this still is deterministic on the same sense. What is creating
indeterminacy is when the dependencies displayed by the formulas are circular. We can
write for example

X1.↔ . − ^
+X1 ∪ −^

+X1

This means that X1 is true at a node iff it is true at none of its sisters; evidently this allows
for more than one solution. Indeed, it is checked that this formula defines the branch
spread. So we relax the definitional schema in the following way.

Definition 7.6.1 A n-spreadS is Ol-speci�able iff formulas φ1, . . . , φn exist such that the
distribution of Xi, corresponding to S i, as defined by S coincides with the satisfaction of
the following equations

X1 ↔ φ1(F1, . . . ,Fm,X1, . . .Xn)
X2 ↔ φ2(F1, . . . ,Fm,X1, . . .Xn)
. . . . . .
Xn ↔ φn(F1, . . . ,Fm,X1, . . .Xn)

For example, X1 ↔ ^^>) specifies the spread is a branching node; X1 ↔ (^∗ ◦ (^ ◦
(−A?))∗ ◦ (^∪ 〈>?〉)F specifies the spread being c-commanded by an F-node. This needs
some checking. We will later show how the usual nearness conditions can be rendered in
Ol.

The most elegant way to code a spread into G would be to write a grammar C that
codes S simultaneously over all grammars using the same grammar C. But this can
evidently not be done; just think of coding the branch spread into grammars whose type
is not known. Then we are at a loss as to how large C has to be chosen because if the
expansiveness of G exceeds that of C we accidentally ‘kill’ rules instead of just coding a
branch into them. On the other hand we have the feeling that the expansiveness ofG is the
only thing we have to monitor, in fact the rules we should put into C do not individually
depend on the type of G, rather we need to know whether or not to put the rules of type
m into C. So, while for each type T there is a grammar CT directly coding the branch
spread into grammars of type T , it is really so that if T ⊆ U then RT is the set of rules
of type T contained in RU . In order not get bogged down too much into formal details it
seems profitable to use a single grammar Cω of type ω = {1, 2, 3, . . .} to code the spread
for all grammars. Surely, Cω is not finite, but it contains only finitely many rules for
any finite subtype grammar. So when G is of finite type T then G ⊗ C is certainly of
finite type T ′ ⊆ T . In this way we can ignore the problems connected with types. On
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the other hand, when writing concrete codes we will restrict ourselves to grammars of
expansiveness ≤ 2 and specify codes for them only. The general grammar Cω can mostly
be guessed immediately.

Definition 7.6.2 A spread S is directly (memory) codable if there is a grammar Cω

of type ω such that for any grammar G of type T CωT codes S into G, where CωT is the
restriction of Cω to the subtype T .

Direct codability can be characterized quite effectively. Notice namely that codes have
the property to be downwardly stable.

Proposition 7.6.3 LetS a spread over F-trees, and let G and H be F-grammars such that
Yd(G) ⊆ Yd(H). Then if C codes S into H, it also codes S into G.

Proof. Observe that G⊗C � 〈T, ` ⊗ µ〉 iff G � 〈T, `〉, C � 〈T, µ〉 and all nodes x satisfy
the equations EQ. Hence G ⊗ C � 〈T, ` ⊗ µ〉 iff H ⊗ C � 〈T, ` ⊗ µ〉 and G � 〈T, `〉 iff
〈T, `〉 ∈ Yd(G) and 〈T, `, [[A1]], . . . , [[An]]〉 ∈ S, and that had to be proved. a

Hence if there is a grammar that generates all F-trees, it would be enough to code S into
this grammar. Again, there is a problem with the restriction to finite types. For each finite
type there exists indeed such a grammar, the so-called set-grammar ST (F). Notice that
if F = {F1, . . . ,Fk} then

ST (F) � ST (F1) ⊗ . . . ⊗ ST (Fk)

Again, to avoid carrying around the finite type, we consider instead the grammar Sω(F)
which contains simply all the rules of the finite subtype grammars. This grammar is again
a tensor product of 1]-grammars.

Theorem 7.6.4 Let S be an F-spread. Then S is directly (memory) codable iff it is
(memory) codable into Sω(F) iff some extension of S seen as a label-extension is the
yield of a context-free grammar. a

Consequently, instead of giving a code we might as well write a grammar that produces
the labelled version of the extension of S in order to prove direct codability.

7.7 The Coding Theorem

The coding theorem states that any Ol-specifiable spread is codable, though not neces-
sarily memory free. This theorem is proved in several steps, simply by induction on the
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formation of the defining formulae and so rather than proving that such spreads can be
coded, we also give direct codes in the technical sense. From now on we will also forget
to talk about spreads; rather, we use the specifications instead. Moreover, most of the time
we can use abstract sets rather than spreads. Finally, as we will prove direct codability,
it will be enough to show codability in the easiest possible grammars, namely slot or set
grammars. This basically means that we can ignore the equations in the code and just
concentrate on the grammar. We begin by showing that the elementary modalities are all
directly codable and proceed by a demonstration that abstract n-sets are codable.

Lemma 7.7.1 X↔ 〈F1?〉F2 is codable.

Proof. By axioms of dynamic logic 〈F1?〉F2 and F1 ∩ F2 are the same. a

Lemma 7.7.2 X↔ ^F, X↔ ^F, F↔ ^F and X↔ ^F are codable.

Proof. For X↔ ^F consider the grammar G( )̂.
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The start symbol is >. By direct checking one sees that the grammar G( )̂ does as
promised. Now consider the grammar G( )̂ with the start symbol −^F (!) and the rules
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Again it is directly verified that this grammar is correct for the spread X ↔ ^F. Now
for the grammar G( )̂ which has the start symbol −^F and the rules
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And similarly the grammar G( )̂ with the start symbol −^> and the rules
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a

Lemma 7.7.3 Suppose that X ↔ φ(F1, . . . ,Fm) and X ↔ ψ(F1, . . . ,Fm) is internal. Then
the spreads X↔ φ ∩ ψ, X = φ ∪ ψ and X↔ −φ are also internal. a

Lemma 7.7.4 If Si specified by Xi ↔ φi(F1, . . . ,Fm) are codable for all i ≤ n then so is
the n-spread S defined by

X1 ↔ φ1(F1, . . . ,Fm)
X2 ↔ φ2(F1, . . . ,Fm)
. . . . . .
Xm ↔ φn(F1, . . . ,Fm)

Proof. S = S1 ⊗S2 ⊗ . . . ⊗Sn. a

Lemma 7.7.5 (Substitution) Suppose that X ↔ φ(F1, . . . ,Fm) and Y ↔ ψ(G1, . . . ,Gn)
are codable. Then X↔ φ(F1, . . . ,Fm−1, ψ(G1, . . . ,Gn)) is codable.

Proof. Let S be specified by φ(F1, . . . ,Fm) and T be specified by ψ(G1, . . . ,Gn). Now
consider the specification

X1 ↔ φ(F1, . . . ,Fm). ∩ .Fm ↔ X2

X2 ↔ ψ(G1, . . . ,Gn)

Let G code S and H code T. Then G ⊗ H codes this new spread. However, the map ζ
interpreting the symbols needs to be revised according to the substitution, i. e. ζ(X2) =
ε(Fm). a
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Warning. The labels Gi need not be distinct from the X j!

Lemma 7.7.6 If X ↔ 〈π1〉F and Y ↔ 〈π2〉G are codable then so are X ↔ 〈π1 ∪ π2〉F,
X↔ 〈π1; π2〉F and X↔ 〈π+1 〉F.

Proof. Since 〈π1 ∪ π2〉F is equivalent to 〈π1〉F. ∪ .〈π2〉F the first result follows from
boolean closure. The second follows from the Substitution Lemma; simply substitute
〈π2〉G for F and we obtain X↔ 〈π1〉(〈π2〉G). Swapping F for G and observing the standard
equivalence of 〈π1〉(〈π2〉p) with 〈π1; π2〉p we get the desired result. For the last assertion
let H code X↔ 〈π1〉F where G = H(X,F). Consider the grammarM = H(X,F ∪ X). This
grammar distributes X according to X ↔ 〈π1〉(X ∪ F), by Substitution. This equation can
be solved; it then turns into X↔ 〈π+1 〉F. a

Theorem 7.7.7 (Coding Theorem) A spread is memory codable iff it is Ol-specifiable in
any set of trees of finite type.

Proof. Suppose that S is memory codable and let the type of trees considered be T . Then
it suffices to consider its code in the slot grammar of type T . This code is a grammarH. By
the First Characterization we know that H satisfies a Ol-axiom φ(X1, . . . ,Xn,F1, . . . ,Fn).
Then the following characterization of the spread can be given

X1 ↔ φ1 ∩ X1

X2 ↔ φ2 ∩ X2

. . . . . .
Xn ↔ φn ∩ Xn

For the converse direction, observe that by the Substitution Lemma it suffices to code

X1 ↔ φ1(F1, . . . ,Fm,G1, . . .Gn)
X2 ↔ φ2(F1, . . . ,Fm,G1, . . .Gn)
. . . . . .
Xn ↔ φn(F1, . . . ,Fm,G1, . . .Gn)

and then substitute Xi for Gi on the right hand side. But the coding of this spread can be
built up inductively with the formulas φi by the previous lemmata. a

Corollary 7.7.8 A spread is memory codable into G iff its restriction to the yield of G is
Ol-specifiable.

Proof. Again, due to the First Characterization, it is necessary that the spread be Ol-
specifiable over the yield of G, because if it is codable by C then the yield of G ⊗ C is
Ol-specifiable. It is also sufficient by the Coding Theorem. a
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An important consequence is also a solution of the problem of constraint implementation.
It consists in the following problem.

Given an F-grammar S and an F-sentence φ. Can we write a grammar that
generates exactly the trees generable by S which satisfy the constraint φ? If
so, φ is said to be implementable into S.

The constraint implementation can solved by introducing a 1-spread specified by X.↔ .φ.
Once this spread is coded, we cut X.↔ .⊥.

Theorem 7.7.9 (Constraint Coding) A constraint on the yield of a grammar S is imple-
mentable iff it is Olt-specifiable over the yield of S. a

The actual size of the memory needed to code a spread is not easy to establish. This
is so because the number of features needed does not match one-by-one the inductive
steps of the proof. Subtle methods are called for. The problem we pose is the question
of constraint implementation. Obviously, the set of subformulas of φ gives an indication
of the size; but this can only be a rough upper bound. There are two differences to be
accounted for. One is that horizontal modalities if stacked onto each other introduce no
extra cost; ^^D is as cheap as ^D. The other is that ♦∗D is as expensive as ♦D. To make
the best use of these facts we introduce the function σ, which selects from the so-called
Fischer-Ladner closure those subformulas which introduce an extra memory. The proper
definition is quite lengthy. Notice that σ returns for given φ a set of formulas of φ. For the
understanding of the definition let ♦, � range over programs, and let a program be called
horizontal if it is free of ,̂^ (though it may contain tests, stars etc.).

σ(F) = ∅ if F ∈ F
σ(F) = {F} if F < F
σ(−φ) = σ(φ)
σ(φ ∧ ψ) = σ(φ) ∪ σ(ψ)
σ(φ ∨ ψ) = σ(φ) ∪ σ(ψ)
σ(〈φ?〉ψ) = σ(φ) ∪ σ(ψ)
σ(♦φ) = {♦φ} ∪ σ(φ) ♦ horizontal
σ(^φ) = {^φ} ∪ σ(φ)
σ(^φ) = {^φ} ∪ σ(φ)
σ((♦ ∪ �)φ) = σ(♦φ) ∪ σ(�ψ)
σ((♦ ◦ �)φ) = σ(♦(�ψ))
σ((♦ ∪ �)∗φ) = σ(♦(♦ ∪ �)∗φ) ∪ σ(�(♦ ∪ �)∗φ) ∪ σ(φ)
σ((♦ ◦ �)∗φ) = σ(♦ ◦ � ◦ (♦ ◦ �)∗φ) ∪ σ(φ)
σ((♦)∗∗φ) = σ(♦∗φ)

First of all, one needs to see that σ is well-defined. The boolean connectives are covered.
So let us take a formula ♦φ. If ♦ is basic, we have either the clause for horizontal programs,
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or the extra clauses for ,̂ .̂ The cases ♦ = ♦1 ◦ ♦2, ♦ = ♦1 ∪ ♦2, and the test are covered
as well. This leaves the case ♦ = �∗. Only the subcases of union and composition are
critical. We wave a rigorous proof here of the fact that the definition of σ is well-founded,
but such a proof can be given.

Theorem 7.7.10 The constraint φ can be coded with a memory of at most ](σ(P)).

Proof. It suffices to show that if the elements of σ(P) are all coded, so is P, and that all
elements are codable in a single step from some other elements in σ(P). For example,
since �∗∗φ. ↔ .�∗φ, the first is coded if the latter is. The code for (� ∪ ♦)∗φ arises from
the specification X. ↔ .φ ∪ (♦ ∪ �)X. To code that we need to code φ. Furthermore, we
need to code ♦X and ♦X, which turn out to be equivalent to ♦(� ∪ ♦)∗φ and �(� ∪ ♦)∗φ.
(Actually, the procedure is first to code ♦φ and �φ and then to replace that code by the
fixpoint determined by X.) And so on. a
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Chapter 8

Nearness Grammars

8.1 Motivation and Definition

The Coding Theorem has the advantage to calibrate exactly the codable spreads, but does
not correspond to the way linguists normally think about syntax. Therefore we need to
liberate ourselves step by step from the low level Coding Theorem by developing higher
order tools. One is the notion of a nearness grammar. A nearness grammar allows to
specify directly certain functional dependencies between elements in a tree which need
not be close. This allows to relax the local structure of a cfg considerable. Remember
a cfg is a grammar in which the only accessible information is the one that resides in
the label of a node and two nodes can influence each other only if they are close. Yet,
the influence spheres of elements are far typically larger than that. In order to be able to
state directly which nodes are influenced in what way by a node, we present the following
definition. Let p be a nearness term and A, B be two labels. We define three types of
nearness conditions based on p, A and B.

• Existential E(A, p,B)
• Universal U(A, p,B)
• Definite D(A, p,B)

A tree T satisfies the existential nearness condition E(A, p,B) iff for all x ∈ T with label A
there is a y ∈ xp of label B. T satisfies the universal nearness condition U(A, p,B) iff for
all x ∈ T of label A and all y ∈ xp y is of label B. Finally, T satisfies the definite nearness
conditionD(A, p,B) iff for all x ∈ T there is exactly one y ∈ p of label B.

Definition 8.1.1 A nearness grammar over L is a pair N = 〈G,N〉, where G is a
boolean grammar and N is a finite set of nearness conditions. G is called the gener-

ative component of N and N the nearness �lter.

203
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With N = 〈G,N〉 a nearness grammar we write N � T if

(Generative Condition) G � T

(Nearness Filter) T satisfies all n ∈ N

The complexity of nearness grammars is measured by two ordinary complexity measures:
one for the generative component and one for the nearness filter. For example, we call
N context-free with regular (nearness) filter if the generative component is context-free
and the ovals of the nearness filter are all regular. We say that N is context-free if it
is equivalent to a context-free grammar in the sense that there is a context-free grammar
generating exactly the same labelled trees. It is quite intriguing to see what effect nearness
conditions have if unravelled into plain phrase-structure rules. One main result of this
work will be that as long as the nearness filter is regular it can be encoded into the phrase-
structure rules without affecting the complexity of the grammar (except for the number of
labels which of course increases). A regular grammar with regular filter is again regular, a
linear grammar with regular filter is again linear and a context-free grammar with regular
filter is context-free. However, if we go beyond regularity in the filter, nothing can be
guaranteed.

8.2 A Pathological Example

We will show that the complexity of the nearness filter affects the the total complexity of
the grammar rather drastically if it is not regular. Our particular example is the following
grammar.
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This grammar, called G, is right linear and generates the regular language a+b+c+. Con-
sider now the following nearness conditions. Let

Ol = 〈A|{AmBm+n−1Cn|1 ≤ m, n ∈ ω}〉

Or = 〈{CmBm+n−1An|1 ≤ m, n ∈ ω}|A〉

Lemma 8.2.1 Ol and Or are context-free.

Proof. We have to show that {AmBm+n−1Cn|m, n ∈ ω} and its transpose are context-free.
To prove this for one of them is enough. Notice namely, that this language is a union of
A · L1 · L2 and L1 · L2 · C where L1 = {AmBm|m ∈ ω} and L2 = {BnCn|n ∈ ω}, which both
are context-free. Context-free languages are closed under concatenation and union. a

Now we investigate the effect of adding E(a,Ol, c) or E(c,Or, a) to the grammar G.

Lemma 8.2.2 N = 〈G, {E(a,Ol, c),E(c,Or, a)}〉 generates the language

{ambmcm|1 ≤ m ∈ ω}

Proof. Consider the string arbsct = a . . . ab . . . bc . . . c. There is exactly one way to parse
this string in G namely as

[A a[A a . . . [A a[B b[B b . . . [B b[C c[C c . . . [C c] . . .]]] . . .]]] . . .]]

Now observe a few things. Each a corresponds to a unique A covering it, and each A
corresponds to a unique a covered by it, similarly the b and the B and the c and the C
are connected. Now take the string arbsct and consider the last a. We know that for some
m, n, there must be a c such that c ∈ a〈A|AmBm+n−1Cn〉. Clearly, m = 1 so that we have
c ∈ a〈A|ABnCn〉, for some n ≥ 1. It follows in this case that s = n and t ≥ n and so t ≥ s.
Take then the last c. Since a ∈ c〈CmBm+n−1An|A〉, we must have m = t, m + n − 1 = s and
so n = s − m + 1 = s − t + 1. From n ≥ 1 we deduce that s − t ≥ 0 and so s ≥ t. Together
this gives s = t. Consider then the first c in the string. According to the nearness filter,
there must be an a ∈ c〈CmBm+n−1An|A〉 for some m, n. By choice of the c, a ∈ c〈CBnAn|A〉
for some n ≥ 1. Hence, n = s and r ≥ n, from which we deduce r ≥ s. Now consider the
first a. Since c ∈ a〈A|AmBm+n−1Cn〉 for some m, n ≥ 1 we have in this constellation m = r
and s = m + n − 1 and thus n = s − m + 1 = s − r + 1. From n ≥ 1 we have s − r ≥ 0
whence s ≥ r. Together we have s = r. a

Theorem 8.2.3 There are right linear grammars and existential context-free nearness
filters which give rise to a non-context free language. a
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We could have proved this result taking just one of the two nearness conditions, but the
result would not have been that convincing. Notice that this result generalizes easily. It is
not hard to generate any language

{an
1an

2 . . . a
n
m|n ∈ ω}

from a similar right linear grammar and a set of nearness conditions. Notice finally that the
effect of the filter imposed by nearness conditions varies with the generative component.
If we had chosen to generate a+b+c+ by this grammar instead then the language generated
by this grammar together with the nearness conditions given above is empty.
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8.3 Codability of Nearness Restrictions

Theorem 8.3.1 A nearness grammar with context free generative component and regular
filter is context free.

This theorem will be proved by translating nearness conditions into spread specifications.
To this end consider a regular nearness polynomial p. We will translate this polynomial
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into a regular modality as follows.

〈A|� = ^ ◦ 〈A?〉
|A〉� = 〈A?〉 ◦ ^
(p · q)� = p� ◦ q�

(p ∪ q)� = p� ∪ q�

(p∗)� = (p�)∗

The last equation has to be taken cum grano salis because the star is not really defined on
p but rather on path-sets; but that in effect means that only the left hand side is restricted,
and the translation works in all cases. Furthermore, we let p�A.↔ . − p� − A.

Lemma 8.3.2 y ∈ xp iff xp�y.

Proof. By induction. a

Observe that for regular nearness polynomials p the translation is regular in ,̂ ,̂ ,̂^ and
the tests 〈A?〉. Consequently, we can define the converse (p�)`, which is then a regular
modality as well.

Lemma 8.3.3 A labelled tree T satisfies E(A, p,B) iff it satisfies the axiom A → p�B. T

satisfiesU(A, p,B) iff it satisfies the axiom A→ p�B.

Proof. T satisfies A → p�B iff for all nodes x of label A there is a y such that xp�y and
y is of label B iff for all x of label A there is a y ∈ xp of label B iff T satisfies E(A, p,B).
Similarly forU(A, p,B). a

These two conditions are comparatively easy to handle. For the definite nearness con-
dition we have to do some more work. It can be simplified by breaking the uniqueness
condition into two parts. If namely for an A-node there is a unique B-node, then there
also is a unique crosspoint. Moreover, if we have that every A is connected with a unique
crosspoint and the crosspoint is itself connected with a unique B-node, then the B-node
connected with the A-node is unique. So let us be given an oval O = 〈L|R〉, and let
O` = 〈L|, Or = |R〉. Introduce a new feature X into grammar and replace D(A,O,B) by
the two conditions D(A,O`,X) and D(X,Or,B). If the latter two are satisfied, so is the
first; and conversely. Similar reductions can be made wit respect to n-spheres. Conse-
quently, we can restrict ourselves to discussing 1-spheres only. For example,D(A, 〈L|,X).
Let A be an accepting automaton for L with intial state i0 and accepting states F. For any
pair i, j of states write [i : j] for the set of all strings that lead A from state i to state j.
This is obviously a regular language for any choice of i and j. The key idea is now this.
Starting from an A-node x we inititialize A and travel up the tree. As soon as A comes
into an accepting state f ∈ F and we hit a X-node y, there may not be any further X-nodes
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on an accepting state. This requirement can be recast in the orientation language. Let
[i : j]� abbreviate 〈[i : j]|� and [i : j]� abbreviate −[i : j]�−. Then consider the following
postulate.

A.→ .
∧
f∈F

[i0 : f ]�(X.→ .
∧
f ′∈F

[( f : f ′) − ε]� − X)

It says that on condition we are at an A-node, and on travelling upwards we meet an
X-node y in state f , then any different (!) node above which is reached in an accepting
state must be a −X-node. Notice that we have to chose [( f : f ′) − ε] rather than [( f :
f ′)− ε] to avoid quantifying over the crosspoint as well. If we want to code the downward
looking uniqueness restriction, we just have to exchange the upward looking 〈[i : j]| by
the downward looking |[i : j]〉 throughout. The proof runs completely analogous. This
finishes the proof of Theorem 8.3.1. aObviously, one can think of more nearness filters;
for example, we can require an A-node to have a fixed amount of B-nodes within it’s
influence sphere. Little reflection is needed, that for elementarily definable generalized
quantifiers Q the nearness filter Q(A, p,B) is codable. But we will not dwell on this issue.

8.4 Schematic Nearness Grammars

For practical purposes, the concept of a nearness grammar is too low level. In the fol-
lowing two paragraphs we will therefore provide two ways of generalizing this concept to
make it more useful for practical linguistic work. Moreover, we will derive a rather gen-
eral theorem which we call the A Priori Theorem which determines whether particular
grammars exceed the limits of context freeness.

The main deficiency of nearness grammars is that the obvious notion of passing on
information from one node to another is not directly expressed. For example, if we want
to express that a trace of category C and bar-level ` needs an antecedent of category C
and bar level `, we must specify that for each possible choice of C and `. So we need to

state that an N-trace needs an N-antecedent, a N-trace needs a N-antecedent, a V needs
a V-antecedent etc. This is not an ideal situation, not only because this procedure is
rather boring. It also misses the point of the dependeny; the obvious general form which
this dependency has is not mirrored in the code. Therefore linguists have adopted the
use of schematic variables. In  with its  formalism one would replace the list of
dependencies by just one:

E(

 :yes
 : x
 : λ

 , p,
[
 :x
:λ

]
)

x and λ are allowed to range over all possible values. Let us call a nearness grammar
schematic if in addition to concrete categories schematic variables are used in the nearness
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filters. Obviously, this step is critical because we do not know whether the range of the
variables is finite. However, if it is, the schematic nearness filters can be replaced by
ordinary nearness filters and we derive what we call the -variant of the

Theorem 8.4.1 (A Priori: HPSG) A schematic nearness grammar with context free gen-
erating component and regular nearness filters is context free if the schematic variables
can only range over finitely many values. a

This part of the theorem is actually quite easy although generally quite useful. The other,
the  half, is more demanding. If, namely, the schematic variables cannot a priori be said
to range over a finite set of values, is there nevertheless a criterion for context freeness?
Let us be concrete and take again movement as an example. A first glance at formulations
of movement suggest that as above each trace of certain category has a unique antecedent
of identical category, and that the indices are just for better readability. But that turns
out to be false on close inspection. Especially head-movement – about which we will
have something to say later on – cannot be formalized without the use of indices. So the
scheme above needs to include a variable for an index. With a nearness polynomial to be
fixed by an individual theory, the overall scheme for movement in  is this

D(


:yes
 : x
 : λ
 : i

 , p,

  :x
:λ
 : i

)
The range of i is the set of natural numbers, so there is no hope of using the a priori
argument in this form. Rather, one needs to investigate the role of p quite closely. The
key is the Dependency Lemma. It states that a dependency from x to y needs to involve all
nodes of dist(x, y), without the crosspoint, however. Given p we define an extraction path
of p to a trace without it’s maximal and minimal points unless they are start and end point.
So, from x we trace p, going up and down etc. until we arrive at y. Intermediate extreme
points are omitted. For example, in the normal case p is an oval and the extraction path
from x to y is ↑ x ∩ ↑ y − {z}, where z is the crosspoint. Such paths, even though defined
not quite the same way, are essential in certain theories of movement, such as Pesetzky’s.
The extraction paths give us the exact set of points needed to control the fulfillment the
nearness filter. For the sake of illustration think of a fire brigade getting water from a
lake to the spot where a house is burning; the men have to line up quite close to each
other in order to be able to pass on the buckets. Likewise in syntactic trees. The nodes
which are supposed to transport information have to be close – in the technical sense.
The Independence Lemma says that if they are not, the information chain is broken. So,
selecting a minimal chain of close nodes linking x to y is necessary and sufficient. This
suffices for ovals, but fails in the general case, because of lack of E. Here, it
is important to follow the attempted voyages from x of the polynomial p in order to find
out whether or not we reach y.
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Along each extraction path the information about the trace needs to be stored together
with information about the relative position of the actual node in the (attempted) voy-
age. If the polynomial is regular, the information about the position is finite. The trace,
however, has an index. Yet indices are a tricky thing. The actual number of the index
is unimportant, it can be randomly assigned as long as certain identity criteria and non-
identity criteria are observed. Indices are therefore unobservables. Howevere, indices
seem to be essential to  because they make the formulation of movement at all pos-
sible. Without indices there might be several antecedents within the influence sphere in
question, even though it is desired to have a one-to-one correspondence between traces
and antecedents within their respective spheres. Now consider the case where there is an
a priori bound on the number of extraction paths having a node in common. Call this
number E. Then it seems that rather than taking all numbers as indices, we only need
some finite set of numbers. This can be done, but needs some care. In fact, we assign
to each node a number as trace and a number as antecedent. (In case something is not a
trace, the trace number is arbitrary, likewise if something is not an antecedent.) So, we
have E × E many indices. Each individual node in the tree just needs to keep track of E
many traces with their respective distance. A trace just has to select an index which is not
at present used. It can always do so, because it knows which numbers are already given
away. There must be such a number because at the node of the trace there can be at most
E coexisting extraction paths, one being the path of the trace itself. We conclude

Theorem 8.4.2 (A Priori: GB) A context free grammar with schematic nearness filter is
context free if the filter is regular and there exists an a priori bound on the number of
overlapping extraction paths. a

This theorem is highly significant. (Manzini, 1992) states explicitly that her theory pre-
dicts there can be no more than two overlapping A-extraction paths. Her extraction paths
coincide with ours, so it is immediate that locality for A-movement is context free.

Finally a word on memory. If we have a nearness condition D(A, p,B) or any other
type, then A and B are standardly assumed to be accessible symbols, i. e. composed
from the feature set. The code of the nearness condition works by pairing the symbols
A, B with a distance tag that give information as to how far the corresponding syntactic
item is that we wish to monitor. The tag comes from a finite set T and depends only on
the distance polynomial and the quantifier of the nearness condition. It does not depend
on A and B. This has the consequence that the memory needed to code a schematic
nearness condition D(A[X], p,B[X]) is ≤ 2log]T , the number needed to create ]T atoms
in a boolean algebra. So, an infinite labelling mereology is expanded only by a finite set of
features in order to code a schematic nearness condition. However, on the level of atoms
the situation is different; the number (=cardinality) of atoms is multiplied by T . Here we
see the advantage in the somewhat roundabout definition of a memory. In the infinite case
it would be hard to quantify the memory otherwise. For example, ℵ0 · ]T = ℵ0, so one
could by a suitable code do with no more memory.
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8.5 Functional Dependencies

Not always can a dependency be factored out so nicely with the introduction of variables.
An interesting case is morphological agreement. In  it is argued that  is overly re-
dundant with it’s interpretation of agreement. The principal reason is that the information
flow is assumed to be one way in  rather than two way as in . That this should
matter is exemplified with particular redundancies in agreement. German, with it’s par-
ticularly rich abstract inflectional system, having three genders, four cases, singular/plural
and three inflectional paradigms (weak/strong/mixed), allows in principle for 72 different
form per lexeme. In fact, adjectives only have fourteen different forms, and the abstract
classification allows for more distinctions than actually present in the morphology. Nouns
obviously have even less forms because they have fixed gender. Different classes of lex-
emes cut the space of 72 forms in different ways. Two issues arise. The first is, whether
the whole classification is adequate for German inflectional morphology. Much has been
said on this and it is not the purpose of this book to comment on it. We assume here
that the classification is correct and optimal. The second question is what to do with the
inflectional covariance in face of the fact that lexeme classes show different redundancies.
To see the point, look at the following example.

(MS) Je suis heureux.
(FS) Je suis heureuse.
(MP) Nous sommes heureux.
(FP) Nous sommes heureuses.

The subject noun is ambiguous with respect to gender while the adjective is not. Both
are unambiguous with respect to number, but in the phonetics the adjective is in fact
ambiguous.  assumes that the noun takes the lead and sets the agreement features (mas-
culine/feminine), (singular/plural), and passes the values on to the dependent elements.
While this underlying process generates all theoretically necessary distinctions, the actual
sentence will not display certain choices, whence the ambiguity. Notice that with respect
to gender we can just as well say that there is no depedency from adjective to subject, at
least if we look at the surface forms. We could namely set the subject to masculine and
nevertheless generate a feminine adjective. The mismatch is not observable at the surface
string.  takes notice of this fact and lets the subject be underdetermined with respect
to gender. The adjective takes the lead instead with respect to gender agreement features,
and lets the information flow the other way around. One of arguments adduced in favour
of this procedure is that it is more economical than a one-way information flow. But this
argument has not much more than rhetorical force. First of all, the difference in the two
approaches lies principally in the difference with respect to analysing language from the
parsing point of view as opposed to analysing it from the generating point of view. If I
utter (MS), then it is perfectly sensible to say that the gender value is fixed at the subject,
even though that is not at all visible. If I hear (MS), on the other hand, I must defer a
decision on gender until a suitable point for clarification is reached. These two views
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present aspects of the same thing in different use, the grammar. However, the grammar
as an object is insensitive as to in which direction we perceive the information to flow.
A dependency from x to y can be seen as a dependency from y to x, because the two are
covariant.

Still, the argument is a formal one, namely that  is uneconomical in it’s use of
agreement features. Let us see how much force this argument has. We have to return
to schematic variables. A priori, what  assumes is that a schematic variable, fully
instantiated, is transferred. So there is a dependency, let us say, of this form.

U(A[X], p,B[X])

The concern now is that for several values of X, A[X] has identical form, and that for
some choices of X, the corresponding B[X] are identical. At each end, there is thus a
certain redundancy. These redundancies might differ, because the categories A and B
need not match. Let us for the moment assume that the category information is not passed
on. Thus, B at the receiving end of the line, does not know whether it agrees with an
adjective, or a noun, or a prounoun etc. This is important for the argumentation. Without
this assumption, the whole problem becomes much more complex, but the situation is in
nuce the same. As for the transfer, it is not necessary for B to know the choice at A exactly,
only inasmuch as it’s own distinctions are concerned; and likewise for A. A brute force
method would be to suggest different classification schemes for A and for B, and produce
a look-up table as to which corresponds to which. This look-up table will be implemented
at the crosspoint. The branch leading down to the A-point and the branch leading down
to the B-point are coupled at the crosspoint, and so the grammar rules simply have to
be written in such a way that each crosspoint creates the correct combinations for both
branches. The information sent to A depends on the classificatiry scheme for A, and the
information sent to B depends on the classificatory scheme for B.

Suppose (spoken!) Mini-French was the only language of the universe (so it’s gram-
mar is identical to ) and suppose Mini-French just had sentences similar to the ones
above, say a sequence pronoun+copula+adjective. Mini-French linguists would not posit
any agreement. Neither would the Mini-French  linguist. The distinctions of  will in
this case not go any deeper than Mini-French. Any postulated agreement, though not in
itself inconceivable, will fall prey of Ockham’s razor. It is also subject to the observabil-
ity principle. The classification scheme for the subject is independent of the classification
scheme for adjectives. Now consider Midi-French, a language expanding Mini-French by
having also ordinary nouns and determiners. In Midi-French there is agreement, namely
(if spoken sentences are concerned) only in gender. So the Midi-French linguist will posit
agreement with respect to gender, not with respect to number. The problem of controlling
agreement in grammar has to be solved now. One possiblity is to layer a grammar of Midi-
French on top of Mini-French by implementing agreement only with respect to determin-
ers and nouns which are not-pronouns. Finally, Maxi-French is written Midi-French, and
so reveals a number distinction in adjectives as well. The Midi-French linguist will ob-
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serve a distinction between pronouns and noun phrases with respect to agreement. He
can either declare them to be distinct instances of a phrasal category, one with gender
marking and one without. Or he can assume each pronoun to stand for two homophonic
pronouns, one for each gender. Question for the grammar implementation is whether
agreement knowledge needs to be transported for pronouns. We have assumed, however,
that the categorial identity is not transferred, so that the receiving adjective, if it has to
agree, must know the gender of the subject because it cannot decide whether that is rel-
evant. Could it know it is agreeing with a pronoun, it needn’t care. But to transfer such
knowledge costs extra memory, i. e. multiplies the symbols of the grammar.

This is precisely the point where the argument of  runs into difficulties. Even
though in  the question of quantity of transferred information is taken seriously, it
is dificult to quantify exactly the amount of information to be transferred. Notice that
our approach via coding allows to measure this much more directly than with . The
reason lies in the peculiar mechanism of reentrancy. The latter, being of metaphysical
significance to  is a hidden source of memory explosion, because any reentrancy
even though cutting the size of the representation locally does so at the cost of relaxing
into a global structure – just as does . The price is the same; it means that when one
is parsing a sentence global information has to be available at the spot, it has to local.
This time it is by means of pointers to reentrant points. The predicate being able to tap
the resources of agreement so nicely by reentering the feature system of the subject – this
luxury means that even after succesfully parsing the subject we need to remember part of
it’s structure if we do not want to lose these reentrancy points. The point of our search
for the cost of coding tries to quantify exactly how much we need to remember about the
subject in order to carry on successfully.
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