
The Combinatorics of Cases

Marcus Kracht ∗

II. Mathematisches Institut
Arnimallee 3

D – 14195 Berlin

Abstract

In this paper we will introduce a semantics for languages with
stacked cases. In these languages, the burden of building up the struc-
ture is carried entirely by the morphology, and syntactic structure is
redundant. This is the exact opposite of standard Montague Seman-
tics, which is based on λ–calculus, where morphology is redundant
and the meaning is computed from the structure alone. Furthermore,
we shall demonstrate that only case marking languages can afford free
word order. Although the languages fall out of standard hierarchies
of languages (they are not even multiply context–free since they are
not semilinear) we will show that their complexity is very low, with an
upper bound of O(n3/2 log n). The semantics is also of low complexity
and far easier to implement than λ–calculus.

∗This paper has been prepared in long discussions with Alan Dench and Jens Michaelis,
both of whom have contributed significantly to the genesis of this paper. The stay of Alan
Dench at Potsdam has been made possible through the Innovationskolleg INK 12. Further-
more, the paper contains ideas presented at a workshop on Morphology and Complexity
of Language at the University of Potsdam, in December 1996, likewise financed through
the Innovationskolleg INK 12. I wish to thank the audience there, especially Gisbert
Fanslow, Ed Keenan and David Perlmutter for constructive criticism. Thanks also to
Christian Ebert for discussions on the complexity of case marking. Finally, thanks to two
anonymous referees for their critical assessment and Dick Oehrle for his generous help and
comments.

1

1 Introduction

The dominant paradigm in formal semantics ever since its beginnings in the
70’s has been Montague Semantics. In Montague Semantics, the meaning of
a sentence is computed on the basis of its structural description. Although
Montague Semantics is potentially very powerful, it cannot explain the role
of agreement and case marking. From its point of view, both should be
redundant, since we have structure to give us all the information we need.
In fact, Oehrle [19] notes that

[...] such grammars (gpsg and standard categorial grammars,
MK) would be simplified if agreement relations [...] failed to
exist. The same point holds for a wide variety of other syntac-
tic theories: the ‘government–and–binding’ theory of Chomsky
(1981), the ‘relational grammar’ of Perlmutter and Postal, the
‘lexical–functional grammar’ of Bresnan and Kaplan.

We have argued elsewhere (see [12]) that assuming highly articulated syn-
tactic structures is the wrong route to take. If however we assume that there
is not enough structure to begin with, then agreement or case marking is
no longer redundant. In this paper, we shall explore the potential of case
marking as a substitute for syntactic structure. We shall show that in the
presence of case marking of a specific kind, no syntactic structure whatsoever
is needed. 1 The basic mechanism needed to make this work is called suffix-
aufnahme. 2 We shall develop an idealized model for such languages, called
ideal case marking languages. Although this model is mainly of theoretical
significance, it may have far reaching consequences for the study of formal
semantics, some of which we shall indicate at the end of this paper.

The idea that cases contribute information concerning the functor–argument
relationship is not new. This view is implicit in the school grammars of clas-
sical languages. Some authors have also tried to analyse the various ways
in which functor–argument relatonships are encoded in natural languages,
for example Oehrle [19] or Nichols [17]. There have also been discussions on
the relationship between free word order and case–marking (see for example
Steele [22] to name just one). However, these papers have remained sketchy

1This does not mean that no structure actually exists. However, its presence is not
strictly required. More on this will be found in later discussions, cf. Section 8.

2Literally translated it means ‘taking up of suffixes’, see [21] for the history of this
term.

2

on the theoretical level, appealing to common sense rather than providing
rigorous proof. The literature has laid too much emphasis on the variation
that is actually observed in languages themselves. However, without knowing
the theoretical limits of dependent marking there is no proper understanding
of the nature of natural languages. For example, we shall show that head–
marking languages are necessarily ambiguous, while case–marking languages
need not be. We expect therefore that free word order should occur more
often with case–marking languages than with head–marking languages. If
this is not so — as has been claimed — then this is actually a remarkable
property and deserves close investigation.

Cases are difficult for language theory because of their dual nature. On
the one hand they do service in syntax by marking arguments for their syn-
tactic status and on the other hand cases also have a meaning, although to a
varying degree. Core cases tend to be more syntactic, while other cases (for
example locative and instrumental cases) have a clearly definable semantic
meaning, which makes them more semantic in nature. The degree to which
a given case in a given language is semantic or syntactic differs from one con-
struction to another, so it is by no means fixed. One and the same case (for
example the allative in Finnish) can on one occasion be completely semantic
(in which case it is typically an adverbial, indicating the movement of some
object towards the allative marked NP) and the next time a purely syntactic
one (being selected by some verb, for example).

While the semantic side of cases is surely interesting, we shall deal in
this paper exclusively with the syntactical side of cases. We consider cases
in their role as devices to keep track of the syntactic status of an argument.
Our investigation will be held theory neutral. This is why we have chosen
to speak of the combinatorics of cases. We shall investigate in what ways
cases can help to keep track of arguments. As we shall show, the more
elaborate the case marking system, the freer the word order is allowed to be.
This approach has hardly been prominent in the last decades. All syntactic
theories we know of study the mechanics of cases independently of any word
order phenomenon (a notable exception is the dissertation by Nordlinger
[18]). Moreover, we find in [2] the remarkable statement that head–marking
languages tend to have free word order, while case marking languages do not.
(Steele [22] seems to imply the same.) As we shall show in the beginning
of this paper, there are purely combinatorial arguments that this is unlikely.
Several empirical arguments against this view will also be adduced.

3

The paper is organized as follows. We begin with an overview of language
strategies to encode syntactic relations. It will emerge that there are two
systems which yield unambiguous languages: Polish Notation, Reverse Polish
Notation and case marking, provided that no functor selects the same overt
case twice. We shall subsequently develop a semantics for case marking
languages that is flexible enough for both types of case marking: group and
word marking languages. We will then compare this semantics to Montague
Semantics. Finally, we will pick up some remaining issues on the relationship
between grammatical restrictions and semantical restrictions.

2 Three Regimes

In semantical as well as syntactical terms the problem in understanding a
sentence is to know which of the words is the head or functor and which of
the others are which arguments of the functor. This problem can be looked
at in two ways: as a language choice or as a speaker choice. If looked at as
a speaker choice, we will talk of strategies. A strategy is a way to say clearly
and unambiguously what one wants to say in a given language. If looked
at as a language choice we will talk of regimes. A regime is a fixed way of
encoding relations in a language. Strategies and regimes are of course closely
connected. Strategies depend on the regimes of the language. To allow for a
formal definition of regimes, we shall fix a language of semantical structures,
which should be unambiguous. We may take, for example, semantic deriva-
tions in Montague Grammar. The regime is then a recipe of ‘sugaring’ (to
use a term by Aarne Ranta) a derivation into a legitimate string of the lan-
guage with the corresponding meaning. Sugaring is a process that eliminates
parts of the structure and adds some functional elements in its place.

Let us illustrate the problem with a thought experiment. Imagine a lan-
guage, Ektian, with only three words, eg, which means ‘cat’, ag, which means
‘dog’, and the word um, which means ‘to chase’. 3 There are no determin-

3This is an adaptation of a language described by Franz Hohler in his Wegwer-
fgeschichten. It might be worth emphasizing why we engage in a thought experiment
rather than taking real language examples. The reason is simply that a fictitious language
can be made to function any way we please. So we can make it consistently SOV, for
example. If we take real language example we always run the risk that one objects that
such and such construction is actually not SOV, and that one finds marginal constructions
of type VSO, and so on. Such objections will however never matter for what we really
want to say and so we have opted for the thought experiment.

4

ers, so eg may mean, depending on circumstances, either ‘a cat’ or ‘the cat’.
But this will hardly matter. Now consider the English sentence (2.1) and its
semantic translation. 4

(2.1) The cat chases the dog.
chase′(x, y) ∧ cat′(x) ∧ dog′(y)

Suppose we want to translate this sentence into Ektian. We certainly expect
the words eg, ag and um to occur exactly once. 5 But, in what order will
they appear? What if anything is added to these words? In particular, which
additional information (order, markers, etc) does Ektian use to identify the
subject and the object? There are three basic choices, all exemplified in
natural languages. 6

1. Inferential or Null Regime. Subject and Object must be inferred
from their meaning and the context. Examples. Lusi. 7

2. Positional Regime. It is agreed that the elements follow in a certain
order, for example subject first. Example. English, Chinese.

3. Marking Regime. The words get markers that allow one to disam-
biguate the sentence.

(a) Head Marking Regime. The head is marked for some quality
of the subject and the object. We write as follows

N1 N2 n1–n2–V

4In what is to follow we shall pay no attention to the distinction between definite and
indefinite NPs. Quantifiers are suppressed when not needed. So, in the present example
we should have used the definite description opertor ι. Likewise, everything is extensional.
These extra complications, though necessary in dealing with language in general, would
simply obscure the issue at hand if added.

5Dick Oehrle has rightly pointed out to me that we may code for example accusative
by means reduplication. However, reduplication seems to be a rather iconic device in lan-
guage, restricted to formation of plural, intensives and so on — however also in changing
category (eg Indonesian baling to rotate and baling baling Propeller). Therefore, redupli-
cation will be excluded from consideration hereafter.

6There are of course infinitely many regimes. Below we will exemplify some more
occurring regimes which do not fit this scheme.

7We take this example from [20], who quotes Li and Thompson [15] for the claim that
Lusi does not distinguish subject and object. Also, Dick Oehrle (p. c.) has pointed out
to me that colloquial Japanese allows to drop case markers when they can be recovered
in the context.

5

Here n1 and n2 are markers (which we write as prefixes, even
though they may also be suffixes or clitics etc) that reflect a prop-
erty of N1 and N2 (gender, class etc). We call these markers
also agreement markers. Also, n1 is the reflex of N1 in V . Some
agreement markers may be absent. Examples. Mohawk, Bantu
languages.

(b) Dependent or Case Marking Regime. The head identifies the
subject by a subject marker and the object by an object marker.
These markers are called cases. We write as follows.

N1–γ1 N2–γ2 V

Note that γ1 and γ2 must be distinct in order for this to disam-
biguate the sentence. Example. Tagalog.

Before we continue, some remarks are in order. We assume by default that
case marking languages do not have functors selecting the same (overt!) case
twice. If for example, some verb in German assigns accusative twice, the
encoding is actually imperfect. Further, with respect to head marking lan-
guages, two cases arise. (a) the set of subject reflexes and the set of object
reflexes are disjoint. Then it is not necessary to order them in a word, and
omission of, say, the object reflex marker does not create ambiguities. (b)
The two sets are not disjoint. Again, this can guve rise to ambiguities. These
deficiencies will be discussed to some extent later.

Let us illustrate this with Ektian. If it uses the inferential regime, then
any permutation of the sequence eg ag um means the same, all circumstances
being equal. Furthermore, eg ag um means both ‘the cat chases the dog’ as
well as ‘the dog chases the cat’. In the positional regime it is declared, for
example, that the subject precedes the object (this is in fact all that is needed
in the present case). Then the sentences are unique in meaning. Thus, eg
ag um means ‘the cat chases the dog’, while ag eg um means ‘the dog chases
the cat’. When the marking regime is employed, we may either have cases,
say -su for subject and -ob for object. Then any permutation of the sequence
eg-su ag-ob um will mean ‘the cat chases the dog’, and any permutation of
the sequence eg-ob ag-su um will mean ‘the dog chases the cat’. If we finally
choose the head marking regime, we shall have certain prefixes, say e- for
cats and a- for dogs, and then any permutation of eg ag e-a-um means ‘the
cat chases the dog’, while any permutation of eg am a-e-um means ‘the dog
chases the cat’. So much for an illustration of the basic regimes.

6

The case marking regime actually splits into two further subregimes. The
first is called group marking and the second the word marking regime. Group
marking languages use only one item of a case marker, which appears either
peripherally or on the head. (For example, assume that Ektian has a word
bul, which means ‘blue’. Then bul-su eg-su means ‘blue cat’ in the nominative,
if Ektian is word marking, and bul eg-su if it is group marking. Alternatively,
we might have bul-su eg or even eg bul-su, depending in the way group mark-
ing works in particular.) Examples of group marking languages are Japanese,
Turkish, and Hungarian. In word marking languages, the case marker is it-
erated on every single word of the constituent. This definition is actually
somewhat inexact, and we shall return to this question below. Examples are
Finnish, German, Latin and Russian.

Some notes are in order. First, languages usually use a mixture of these
regimes. Indo–European languages usually have subject verb agreement in
addition to case marking (if present). The interested reader is referred to
Plank [21] for an exhaustive list of the simple and combined marking regimes
existing in natural languagaes. Furthermore, as we shall see, in languages
the systems are never pure enough to guarantee full disambiguation (for ex-
ample, in German there is no distinction between nominative and accusative
in feminine and neuter nouns as well as all plural nouns). In that case
some other regime jumps in. The interplay between different regimes caused
by syncretism, for example, has to our knowledge not been subject to ty-
pological investigation and can lead to misunderstandings in applying the
labels free/non–free word order. Second, a marker is to be understood as
an abstract entity. For example, intonation is also added as a cue for dis-
ambiguation. In the German case, the subject–first preference jumps in as
soon as the cases fail to distinguish nominative from accusative. This can be
overruled by adding intonation. Also, the context may help (then we are in
Regime 1). In what is to follow, we will exclude both possibilities. Third,
the markers can be suffixes or words or clitics. To keep matters simple, we
often act as if they are part of their host word, neither clitics nor separate
words. However, this will hardly make a difference. 8

8Terminologically, it is simpler if we think of the markers as affixes. For example,
we will show that pure word marking languages are uniquely readable even if they have
completely free word order. However, this can only be true if the markers are not separate
words. Otherwise, the association between a word and its marker is simply lost. In case
the markers are appositions, they must be exempt from permutation. This fact explains
why appositions tend to be very strict in the adjacency requirement with respect to their

7

Before we go on, we note some direct consequences. The head marking
regime and the dependent marking regime are very distinct in the following
sense. If the head marking regime is chosen, the reflex n1 of N1 depends on
the actual choice of N1. This can be a semantic property or what we call
a ritualized property. Here by ritualized we mean roughly must be learnt
by heart. These two, semantic and ritualized head marking, are not sharply
distinguished. Gender systems in Indo–European languages are semantically
motivated but to a large extent ritualized. If the reflex is semantic it can be
inferred from the meaning of N1. It may well be that the reflex depends on
the phonetic form of N1, but we ignore that choice as it makes no difference
in principle. A neutral term in place of semantic is inferential. In contrast
to head marking, dependent marking languages need to record in the lexi-
con what the cases of the actants must be. Again, this can be inferential
(i. e. mainly semantic) or ritualized. The first option is realized in Manipuri
(a Tibeto–Burman language, see [5]) and the second in Indo–European lan-
guages. Mixtures do occur. In Finnish, the case of the direct object varies
between accusative and partitive depending on the meaning of the sentence
and whether the object is entirely affected by the action etc.

Let us close with a remark on the null regime. In a language using only
this regime, (2.2) (and any permutation thereof) is ambiguous between (2.2a)
and (2.2b).

(2.2) eg ag um.
(2.2a) The dog chases the cat.
(2.2b) The cat chases the dog.

This can lead to the following regime. It is fixed that the sentence means
only one of the above. Typically, arguments are ranked (for agentivity) and
the higher ranked argument takes the role of subject. 9 To generate the
other meaning some other sentence must be used. An obvious possibility is
to have a marker on the verb (let it be inv) that exchanges the role of subject
and object. So, if (2.2) expresses (2.2a), (2.3) will express (2.2b), and if (2.2)
expresses (2.2b) then (2.3) will express (2.2a).

complements. Too much depends on finding out the argument status of constituents.
9The diligent reader may notice that nothing is said in the case when they have equal

rank. Languages have developed means to avoids this. In Plains Cree, for example, third
person arguments are assigned two possible discourse functions: proximate or remote. The
proximate argument is ranked higher than the remote argument. It is not allowed to have
more than one proximate argument.

8

(2.3) eg ag um-inv.

This leads to a regime known as inverse marking. An example is Plains
Cree (see [23]). In principle the problem could be solved also by marking
an argument as being ‘demoted’. So, assume that the suffix dem means ‘is
demoted’ (which is attached to the subject and says that it becomes the new
object). Then if (2.2) expresses (2.2a), (2.4) now expresses (2.2b), and if
(2.2) expresses (2.2a) then (2.5) expresses (2.2b).

(2.4) ag-dem eg um.
(2.5) ag eg-dem um.

(A note of clarity. If regimes other than the Positional Regime are employed,
the sentence above may in principle be replaced by any permutation of its
words with identical meaning.)

The list above is surely not complete. We could in principle invent a new
word per (for permuted) which functions just like inv, which however can
appear anywhere in the sentence. (See also the discussion surrounding the
reflexes, whether they are separate words.) We know of no language where
this option is chosen. There are obvious shortcomings of this regime, though
it is of course not prima facie excluded.

Some of the regimes discussed earlier have some gaps in them. Here
to contain a gap means that there exist sentences which are semantically
ambiguous if that regime is used alone. We shall use the term ambiguous in
a rather strict sense here: the sentence is counted as ambiguous if it can have
two meanings, judging from the mere string alone. Though it may mean one
thing in one context and another in a different context, it has two meanings,
if the context is not specified. This allows us to measure the disambiguating
potential of the regime alone. The higher the disambiguating potential of
the regime, the less context dependent the language is. We begin with the
inferential regime. Here matters are clear: any sentence where a verb has
two arguments is ambiguous.

Now consider head–marking. Suppose that there are two NPs with iden-
tical reflex. Then it is not possible to decide which of the two is subject
and which of the two is the object. We summarize this in the following
observation.

Observation. The Inferential Regime has gaps if there exist dif-
ferent arguments. The Head Marking Regime has gaps if there
exist two arguments of the same head with identical reflex.

9

The conditions mentioned in the observation are always satisfied in natu-
ral languages. There always exist transitive verbs in any language we know
of. Furthermore, head marking languages typically use some classification
system that distiguishes a few types of things. These are gender or class
systems. A more elaborate case is noun incorporation languages. In such
languages, object agreement is realized by a noun of the language rather
than an agreement marker of the usual sort. If we would make our language
into a noun incorporation language, we get the following sentences:

(2.6) eg ag-um
the cat dog-chase
the cat chases the dog

(2.7) ag eg-um
the dog cat-chase
the dog chase the cat

However, even this is not enough even though it avoids many of the above-
mentioned problems. It so happens in these languages that there is no in-
corporation when there is talk of people with names. So, we do not say in
such languages John Paul-hit, rather we say John Paul hit (or John hit Paul,
depending on the word order type). So, in these examples there is no in-
corporation. 10 Typically, this does not mean that there is no marking at
all. Mohawk, for example, also has a gender system. But, as we have seen,
gender systems have gaps. This concludes the discussion of incorporation.

What about the other two regimes? We will see shortly that in both cases
there exist idealized languages which have no gaps, that is, in which every
sentence is unambiguous! For languages with word order regimes this was
shown already in the 20’s. This is what we shall now turn to.

3 The Positional Regime: Polish Notation

It was observed by Lukasiewicz in the 20’s that it is possible to write down
unambiguously any formula without the use of brackets. All that needs to be
done is to put the function symbol always first (alternatively: always last).

10One wonders if there can be a formal proof that incorporation is insufficient. We are
quite confident that this is so, but it needs a precise definition of incorporation to begin
with. If the verb can simply form an entire constituent with its object, as seems to be
possible in Mohawk, then of course no ambiguities arise from this regime.

10

So, rather than writing (x + y) + (z - 3) one must write ++xy-z3. This
way of writing down formulae is known as Polish Notation. It has hardly
gained much popularity except in some logical literature and in some pocket
calculators. For reasons we shall not go into these calculators use the so–
called Reverse Polish Notation, which differs from the Polish Notation in
that the function symbol is put last rather than first. You first enter the
arguments (say, first 7 and then 14, separated by carriage return) and then
you press the function key (say, ×), rather than pressing first 7 then × and
finally 14.

A note on our notation. We shall use typewriter font to denote true
characters in print for a formal language. This helps to distinguish between
a metavariable and a variable. For example, x is a metavariable, but x is
a variable, used by the language itself. Moreover, concatenation is some-
times denoted by using the symbol a, especially when dealing with symbols
that merely denote strings. Between true characters in print, however, a is
superfluous and omitted.

An abstract definition of terms runs as follows. Let F be a set of symbols,
and Ω : F → N a function, where N denotes the set of natural numbers
including zero. F is assumed to be finite throughout this paper. The pair
〈F,Ω〉 is called a signature. We shall often write Ω in place of 〈F,Ω〉. Ω(f)
is called the arity of f .

Definition 1 Let Ω be a signature. A term over Ω is defined inductively as
follows.

1. If Ω(f) = 0, then f is a term.

2. If Ω(f) > 0 and ti, i < Ω(f), are terms, so is f(t0, . . . , tΩ(f)−1).

Terms are represented in Polish Notation by strings over F . The set of terms
is denoted by T . Define a mapping p from terms to strings over F in the
following way.

1. tp := t, if t ∈ F and Ω(t) = 0.

2. (f(t0, . . . , tn−1))
p := fatp0

a . . .a tpn−1, if n = Ω(f) > 0.

We say that ~x represents t if tp = ~x. Furthermore, we shall write PNΩ for
the set of strings representing some 〈F,Ω〉–term. PNΩ is context–free. Here

11

is a grammar that generates it:

S → F0

S → F1S

S → F2SS

. . .
F0 → f1

0 | f2
0 | . . .

F1 → f1
1 | f2

1 | . . .
F2 → f1

2 | f2
2 | . . .

. . .

(Here, fj
i is a symbol for the jth function of arity i.) Call this grammar GΩ.

We shall note some properties of this grammar. Before we can do so, we have
to define a few notions from the theory of context–free languages. A grammar
G assigns to a string ~x a set of derivations. In turn, each derivation defines a
parse tree in the usual way (see [9]). G is called ambiguous if there is a string
that is assigned more than one parse tree. A language L is context–free iff
it is recognized by some nondeterministic pushdown automaton. L is called
deterministic iff it is recognized by some deterministic pushdown automaton.

Let ~x be a string. A substring occurrence of ~y in ~x is a pair 〈~u,~v〉 such
that ~x = ~u~y~v. Given a parse tree (or analysis) P of ~x, we can associate with
each node of the tree a substring occurrence of some substring of ~x. Given
P , such a substring occurrence is called a constituent of ~x under the analysis
P . A constituent of ~x under some analysis P ′ which is not a constituent of
~x under P is called an accidental constituent of ~x in P . Now, a context–
free language is called transparent if no constituent occurrence in a given
string and analysis is accidental. 11 From this a deterministic parser is easily
constructed, for example a shift–reduce parser. Just note that whenever it
finds the right hand side of a rule on its stack, it can assume that this rule
has been applied and it can reduce the stack using that rule. This shows
that a transparent language is also deterministic.

Theorem 2 Let Ω be a signature. Then GΩ is a context–free transparent
grammar generating PNΩ. Consequently, PNΩ is deterministic.

One can show that each string represents at most one term.

Proposition 3 Suppose that ~x represents t and s. Then t = s.

11This terminology as well as the results are due to Kit Fine ([8]).

12

This follows from the transparency of the grammar and the fact that the
parse trees are in one–to–one conrrespondence with the Ω–terms. Now we
shall establish the following terminology. 12

Definition 4 Let ~x be a string. ~x is called a constituent if it represents
a term. Suppose that ~x represents t = fs0 . . . sn−1 and suppose that ~yi are
disjoint occurrences of substrings representing si, i < n. Finally, suppose
that ~yi occurs to the left of ~yj whenever i < j. Then we shall call f the head
of ~x, and ~yi the ith argument of ~x.

The main advantage of Polish Notation is that it does not use any syn-
categorematic symbols, ie brackets. Its disadvantage is among others the
complete regimentation of word order, and the fact that all arguments must
be present. If we allow certain arguments to be dropped, ambiguity arises.
Furthermore, a symbol has exactly one arity. If that is not the case, again
ambiguities may arise. For example, let f have arity 0 or 1 and g arity
2. Then the following string is ambiguous: gfff. It may either represent
g((f(f), f) or g(f, f(f)). 13

The semantics of such a language is straightforward to define. 14 An Ω–
algebra is a pair 〈A, I〉, where A is a non–empty set and I a function sending
each f ∈ F to a Ω(f)–ary function on A. So, the symbol + will denote a
binary function on the set of numbers, while 0 denotes a 0–ary function on
A (ie a constant). A complete expression is a term without variables. The
value of a complete expression is then simply an element of A. For example,
the term ×(+(3, 5), 7) is evaluated in the natural numbers (with the usual
interpretation of + and ×) to the number 56. Notice that terms such as
×(+(x, 5), 7) have no meaning since x is a variable.

Montague deviates from this picture in the following way. He starts with
typed first–order logic and defines λ–terms on top of it. He assumes that
there are only unary functions, whose values can also be functions rather

12This definition is somewhat roundabout in order to take care of the term representa-
tions that will follow. In actual fact, this definition must remin somewhat obscure for the
reason that term representations need not be straightforwardly homomorphic.

13In what is to follow we shall exclude that a symbol has more than one translation,
in particular that it has more than one arity. Of course, there are examples in natural
languages where this is not so, but if we disregard argument omission, this is actually a
negligeable phenomenon for the purpose at hand.

14Throughout this paper we shall ignore the question of typing. This will simplify the
discussion considerably.

13

than objects (Currying). In this way he gets full binary branching, but uses
typing in an essential way. So, if f is an n–ary symbol, the term ft0 . . . tn−1

is computed by applying f to t0, the result to t1 etc. So we are effectively
computing the value of (. . . ((ft0)t1) . . .)tn−1. In order to make this work for
natural language, Montague deviates from linguistical practice and makes
the object the functor in the VP and the subject the functor of the entire
sentence. Even though the verb is the head (and therefore intuitively plays
the role of f here), it is an argument of the associated function of the object.
This is necessitated by the need to give a compositional analysis of quantifiers.
The DP eg in its meaning ‘a cat’ is translated into two distinct formulae,
depending on whether it constitutes an object NP or a subject NP: 15

λP .∃x.cat′(x) ∧ P(x), λQ.λy.∃x.cat′(x) ∧Q(y)(x)

The verb um is translated by

λx.λy.chase′(y, x)

where — finally — chase′(y, x) means that y is chasing x.
If we assume the canonical regime with the functor last, only SOV lan-

guages are generated. So, only the sentences (3.1) and (3.2) are grammatical
and they mean (3.1a) and (3.2a), respectively.

(3.1) eg ag um
(3.1a) ∃y.∃x.cat′(y) ∧ dog′(x) ∧ chase′(y, x)
(3.2) ag eg um
(3.2a) ∃y.∃x.dog′(y) ∧ cat′(x) ∧ chase′(y, x)

In fact, Montague Semantics allows for more choices in the positional regime,
but we shall be concerned here only with this case.

If one wants to insist — as we shall need to do — that the verb is the
head of the construction, there is an easy fix. 16 We raise the verb over its
object and its subject and assume that it has the following meaning:

λO.λS.S(O(λx.λy.chase′(y, x)))

15Notice that the English equivalent of eg is not a word but a phrase, viz. ‘a cat’. Whence
the associated expressions might look unfamiliar. Notice also that we have stripped off
the intensionality.

16In fact, taking the verb a the functor rather than the argument appears already in
Keenan and Faltz [11]. There are differences in technical execuction, but we shall not be
concerned with the details here anyway.

14

Here, S is a variable over subject NPs and O a variable ranging over object
NPs. It is still the case that only SOV and VOS languages are generated,
but now the semantics is in line with the syntactic analysis.

We shall derive the translation of the sentence

(3.4) A woman sees every man.

We start with sees every man.

(λO.λS.S(O(λx.λy.see′(y, x))))(λQ.λy.∀x.man′(x) → Q(x)(y))
= λS.S((λQ.λy.∀x.man′(x) → Q(x)(y))(λx.λy.see′(y, x)))
= λS.S(λy.∀x.man′(x) → see′(y, x))

Next we apply this to some woman.

λS.S(λy.∀x.man′(x) → see′(y, x))(λP .∃x.woman′(x) ∧ P(x))
= (λP .∃x.woman′(x) ∧ P(x))(λy.∀x.man′(x) → see′(y, x))
= ∃x.woman′(x) ∧ (∀x′.man′(x′) → see′(x, x′))

So, this generates the desired result.

4 The Case Marking Regime

4.1 Group Marking

Now we shall move to case marking regimes. Again, we assume that a finite
signature 〈F,Ω〉 is given. Now, let µ := max{Ω(f) : f ∈ F}. For each i < µ
we assume to have a case marker ci. (Often, we shall also write 0 in place
of c0, 1 in place of c1, and so on.) Of course, we shall assume that all case
markers are distinct and that ci 6∈ F for all i < µ. The case markers can
be thought of as unary function symbols. Therefore, we may think of the
language as a language over an enriched signature, which we denote by Ωγ.

Define the right peripheral group marking language as follows. The map
r is defined by

1. tr := t, if t ∈ F and Ω(t) = 0.

2. (f(t0, . . . , tΩ(f)−1))
r := tr0c0t

r
1c1 . . . t

r
Ω(f)−1cΩ(f)−1f , Ω(f) > 0.

Now, let ~x = tr for some t. We understand the notions of constituent, head
and argument as defined in the previous section. Now let ~y result from ~x

15

by permuting within a constituent the arguments among each other. (This
induces a permutation of the occurrences of the ~yi representing the immediate
subterms si. After permutation, the occurrence of ~yi continues to be the ith
argument of t. Cf. Definition 4 for the notation.) Then ~y is said to rpg–
represent t. In particular, ~x rpg–represents t. For example, the arithmetical
term t := -(+(a, b), +(x, y)) is translated by r into

ac0bc1+c0xc0yc1+c1-

(Notice that the first argument is ac0bc1+ and the second one xc0yc1+.
Hence, the occurrences of the arguments and the functor do not add up
to the entire word! For the case markers of the arguments belong to neither
of them.) But also the following string rpg–represents t:

xc0yc1+c1bc1ac0+c0-

Definition 5 Let Ω be a signature. Then RPGΩ denotes the set of all strings
rpg–representing some Ω-term.

Theorem 6 RPGΩ is context–free. It is transparent and therefore determin-
istic.

The following is a grammar for that language:

S → F0

S → Sc0F1

S → Sc0Sc1F2

S → Sc1Sc0F2

S → Sc0Sc1Sc2F3

S → Sc0Sc2Sc1F3

S → Sc1Sc0Sc2F3

S → Sc1Sc2Sc0F3

S → Sc2Sc0Sc1F3

S → Sc2Sc1Sc0F3

. . .

(The rules for expanding Fn are as before in GΩ.) Call that grammar HΩ.

Theorem 7 Let Ω be a signature. Then HΩ is a transparent context–free
grammar generating RPGΩ. Consequently, RPGΩ is deterministic.

16

Proof. Let h be the following string–homomorphism. h(ci) := ε, h(f) = f
for all f ∈ F . It is easy to see that if ~x rpg–represents some term, then h(~x)
also represents some term (though not necessarily the same one). Further-
more, given a parse tree of ~x, every constituent occurrence of ~y is mapped
onto a constituent occurrence of h(~y). This is seen by showing that if h is
applied to a derivation in HΩ, it yields a GΩ derivation. This shows the claim
on the basis of Theorem 2. Q. E. D.

We note the following corollary.

Corollary 8 Let ~x rpg–represent s and t. Then s = t.

One can play different variations on that theme, allowing some more free-
dom or placing some restrictions. However, the following variant yields an
ambiguous language. Suppose that we allow the head to be placed anywhere
between its arguments. Suppose that in this case it takes its case marker
along. This type of regime is a group marking regime, where only the head
is marked, but is free in its relative position. Then unary function symbols
may be either before their arguments or following them. The following string
is then ambiguous: f0a0g0h. (Recall that we write 0 in place of c0.) It may
represent either h(f(g(a))) or h(g(f(a))). On the other hand, if we assume
that the head is free in its position but the case marker remains right periph-
eral, then we once again get a transparent language. In this language, the
case markers mark the right edge of the constituent. One can show, namely,
that there are no accidental minimal constituents, and the same arguments
go through once again. Let us call the language RCΩ. It too is context–free.
Here is a grammar generating it:

S → F0

S → Sc0F1

S → F1Sc0

S → Sc0Sc1F2

S → Sc0F2Sc1

S → F1Sc0Sc1

S → Sc1Sc0F2

S → Sc1F2Sc0

S → F2Sc1Sc0

. . .

Theorem 9 RCΩ is a transparent, deterministic context–free language.

17

The same applies to the mirror image of this language, where case markers
are consistently left peripheral. All these case marking languages (with the
exception of the language where the head is case marked) have the following
properties.

1. The case marker is consistently right (left) peripheral.

2. All semantic constituents are continuous.

To define the notion of a semantic constituent, we shall go back to the def-
inition of a string representing some term. If ~x represents t, we find a cor-
respondence between subterm occurrences in t and subparts of ~x. We shall
not spell out the details here. Suffice it to say that in this way each subterm
occurrence corresponds to a unique substring of ~x. The definition can be
made independent of the actual grammar generating the language. This is
why we call this a semantic constituent. The idea is to replace the subterm
by a fixed symbol, say Z, and to observe in what ways we must change ~x for
it to represent the new term.

The two abovementioned properties do constitute a positional regime.
The second condition restricts the word order in such a way that whatever is
a constituent must be a substring. The first condition is a positional regime
as soon as the case markers are words rather than morphemes. 17 In any case,
however, there is positional regime. It can be observed that many languages
do have such a regime. NPs tends to be continuous in virtually all languages
we know of, and deviations from this do occur but are severely restricted.
For example, Kayardild has a case marking regime that allows discontinuous
constituents without creating ambiguities. Yet, [7], page 249 states that ‘NP-
splitting obeys precise rules and has a clear semantic rationale. It always a
single modifier being split off; split NPs always straddle a verb.’

17In formal language theory this distinction is hardly made. We shall therefore introduce
the following terminology. There is a blank symbol �, and given a string ~x, each maximal
substring not containing � is called a word of ~x. Words may be composed from smaller
units by simple concatenation, while a word is a string with a right peripheral boundary
marker (see Section 8). Regimes in our sense are defined over words. We may therefore
call them syntactic regimes to distinguish them from morphological regimes. In virtually
all languages we know of, there is a morphological regime. (We have been told though by
Farrell Ackerman that there exist languages in Siberia where the order of verbal affixes is
free.) We will turn to this issue in Section 8.

18

Figure 1: A Tree Domain

00
�

�
�
�

01

0
�

�
�
�

ε

1

@
@

@
@

2
�

�
�

�
20 21

@
@

@
@
22

4.2 Word Marking

Word marking brings us to the last type of string representations, which
will define a language that needs no positional regime. Let w differ from r

in that the case markers are not distributed at the end of each phrase, but
at each individual word. Then what we get is the ideal model for a word
marking language. Unfortunately, this language is not definable by means of
a string homomorphism (this can be shown: otherwise the language would
be semilinear which it isn’t). So, we must choose a different approach. We
shall first define a set representing a term and on the basis of that set we
define the strings. The definitions are based on the notion of a tree domain.
A tree domain is a subset T of N∗ such that the following holds.

1. ε ∈ T .

2. If σσ′ ∈ T then σ ∈ T .

3. If σi ∈ T and j < i then also σj ∈ T .

Tree domains are useful because they allow us to write down a tree using
a set of sequences of natural numbers. We can define the relations < (less
than) and < (to the left of) as follows: τ < τ ′ iff τ ′ is a proper prefix of τ ,
and τ < τ ′ iff there exist σ, i, j such that τ < σai and τ < σaj and i < j.
(Figure 1 shows the tree domain {ε, 0, 00, 01, 1, 2, 20, 21, 22}.) Notice that
for every subset of N∗ it is decidable whether or not it is a tree domain, and
that two tree domains are identical iff they define isomorphic trees. Now, the
problem in parsing a sentence is that we are given a string of symbols but

19

we have to guess the syntactic structure. As we have just seen, the syntactic
structure can also be given by means of a tree domain.

The tree domain forms the tree on which we hang the term symbols.
An Ω–labelled tree domain is a pair 〈T, `〉 such that T is a tree domain and
` : T → F a function such that the number of daughters of σ ∈ T is exactly
Ω(`(x)). With a term we can associate a canonical labelled tree domain tδ as
follows. If t = g, Ω(g) = 0, we associate with t the tree domain {ε}, where ε
gets the label g. If tδi = 〈Ti, `i〉, are given for each i < Ω(f), we form a new
tree domain 〈S, `〉 as follows:

S := {ε} ∪
⋃

i<Ω(f){iaσ : σ ∈ Ti}

`(σ) :=

{
f if σ = ε
`j(τ) if σ = jaτ

This is the tree domain associated with f(t0, . . . , tΩ(f)−1). It is easy to see
that this representation is unique.

Define the transpose σT to be the transpose of σ (ie the string written in
reverse). For example, 213T = 312.

Definition 10 A bag over Ω is a set of the form ∆(T) := {faσ : `(σT) =
f}, where T is an Ω–labelled tree domain. A partial bag (over Ω) is a subset
of a bag.

Let us give an example. The terms +(-(x, y), z) and -(x, +(y, z)) correspond
to the sets

{+, z1, -0, x00, y10}, {-, x0, +1, y01, z11}
We have remarked above that a tree domain uniquely encodes an ordered
tree. This means that a bag uniquely encodes an ordered labelled tree. It
follows different bags correspond to different ordered trees. This shows that
we have unique readability for bags, despite the fact that the bag is a set
and not a sequence. Finally, let ∆ be a bag, and let ∆ = {δi : i ≤ n} be an
enumeration of its members. Then the string

δ1
aδ2

a . . . aδn−1
aδn

is said to be a ∆–string.

Definition 11 Let Ω be a signature. The ideal case marking language
over this signature is the set of all ∆–strings where ∆ is a bag over Ω. It
is denoted by ICMΩ. The weak ideal case marking language over Ω,
WICMΩ is the set of strings associated with subsets of bags over Ω.

20

We can also define the bags by a generating system over sets of sequences.
A unit is a sequence faσ, where f ∈ F and σ is a finite sequence of natural
numbers. (We may actually assume that no number of σ is larger than the
maximum of the Ω(f), f ∈ F .) The set of units is denoted by U . Now we shall
define sets of units, which correspond to terms. To do that, we shall use an
auxiliary symbol X. This symbol will allow us to define incomplete derivations.
We shall define S, the set of terms, as follows. For a set M let M+ be the
result of replacing an occurrence of Xaσ by {faσ}∪{Xaiaσ : 1 ≤ i ≤ n}. Let
S be the smallest set containing {X} and which is closed under the transition
from M to M+. We call S the set of partial terms. A bag is a set in S which
does not contain any occurrence of X.

The first bag is generated as follows.

{X}, {+, X0, X1}, {+, -0, X00, X01, X1},
{+, -0, x00, X10, X1}, {+, -0, x00, y10, X1}, {+, -0, x00, y10, z1}

The following can be shown.

Theorem 12 (Ebert) Let Ω be a signature. The languages ICMΩ and
WICMΩ are uniquely readable.

Further results will be established below. They will show that these two
languages are indeed very natural and can be recognized faster than context–
free languages.

5 A Compositional Semantics: A Worked Ex-

ample

We are now going to outline a semantics for word marking languages. The
basic principle is rather simple: variables will be identified with sequences of
case–functions. This is just a naming convention. 18 The semantics uses two
levels: a DRS–level, which contains DRSs, and a referent level, which talks

18This approach is actually not far fetched. In a run–off–the–mill logical language one
usually assumes that variables have the form xi, where i is a natural number. But this
defines an infinitary language to start with, since each variable is a distinct symbol. In
fact, if one manipulates these variables in a computer, one will end up coding variables as
sequences of the form xα, where α is a sequence of zeros and ones. This allows the com-
puter’s inbuilt arithmetical functions to perform substitutions, which must be explicitly
defined. So, if one wants to implement Montague Semantics, one will end up program-

21

about the names of the referents used by the DRS. Recall that a DRS has
the form [V : ∆], where V is a set of variables and ∆ a set of formulae or
DRSs. The meaning of V will not be of importance throughout this paper.

There is one additional symbol: ◦. It is a variable over names of referents.
A simple lexical entry, for example for the verb to teach looks — depending
on semantics analysis — like this:

/teach/
◦ : ◦
∅

teach′(◦);
act′(◦)

.
= noma◦;

thm′(◦)
.
= acca◦.

/teach/
◦ : ◦
∅

teach′(◦),noma◦).

Here, the upper part is the referent system, and the lower part an ordinary
DRS, with a head section containing a set of variables and a body section,
containing a set of clauses. This means that there is an event of teaching
whose actor is some x and whose theme or goal is y. However, it is not x
and y that appear here, as is usual. Rather, instead of x we find the variable
noma◦, and instead of y we find acca◦. So, x and y are metavariables, and
the actual variables are sequences of case markers followed by ◦. ◦ can be
instantiated to any sequence of case functions. Now the meaning of ◦ : ◦ is
as follows: it says that nothing is added to the sequence under merge, ◦ is
simply replaced by ◦. This will become clear in a minute.

We shall assume that the phrase a doctor in the nominative has the fol-
lowing semantics:

/a doctor/
◦ : ◦
{x}

doctor′(noma◦)

The two structures for /teach/ and /a doctor/ can merge by identifying ◦.

ming the substitutions, for which λ–calculus was originally responsible. However, in the
semantics we are going to propose here, this is already done. The reader is made aware of
the fact that this semantics needs no explication in terms of λ–calculus, since it is already
at a lower level. The substitutions, being defined as string substitutions (which in turn
are easily implemented), are computable in linear time using a regular transducer.

22

This means that they now unify ◦ to the same sequence. We will then get

/a doctor teach/
◦ : ◦
∅

teach′(◦);
act′(◦)

.
= noma◦;

thm′(◦)
.
= acca◦;

doctor′(noma◦).

If done in this way, we can merge any two constituents and get any kind of
semantics. However, the outcome is constrained in just the right way as we
shall see.

Now, a case suffix has the habit of adding something to the stack of cases.
We shall assume that in addition to any semantic effect that it might have it
contributes to the name of the variables in the following way. Their names
are prolonged by one function. To see how this works, let us write down the
semantics of, say, nominative:

/nom/
◦ : noma◦

∅
∅

Here we find the statement ◦ : noma◦. This says that when the above
structure is merged with another one, say ∆(◦), then the variable ◦ of ∆ is
instantiated to (or replaced by) noma◦. This means that the entire sequence
of case suffixes is increased by one element. As a result of the merge we shall
get however ◦ : ◦. In order that this is well defined, ∆ need not contain
exactly ◦ : ◦. If it contains, say, ◦ : acca◦, then we only have to stipulate how
the resulting sequence will be, ie whether we get ◦ : nomaacca◦ or whether
we get ◦ : accanoma◦. The choice is made so that merge is associative.
However, throughout this paper we shall make the assumption that merge
is successful only if one of the semantic structures has an upper line of the
form ◦ : ◦. Such a structure we shall also call plain.

To see the mechanism work, let us start with the following lexical entry

23

for a simple noun:
/doctor/
◦ : ◦
∅

doctor′(◦)

Now we shall compute the merge with the semantic structure for nominative:

/doctor/
◦ : ◦
∅

doctor′(◦)

⊕

/nom/
◦ : noma◦

∅
∅

=

/doctor + nom/
◦ : ◦
∅

doctor′(noma◦)

To see why this is so, notice that the symbol ◦ in the first structure is replaced
by noma◦ according to the laws of merge. Now, in order to understand the
potential of this proposal let us repeat this example with a relational noun,
teacher:

/teacher/
◦ : ◦
∅

teach′(◦,gena◦)

If we add the suffix nom, we get

/teacher + nom/
◦ : ◦
∅

teach′(noma◦,genanoma◦)

Notice that by the mechanics of replacement, it is not only the main variable
that changes its name but also the variable of the complement. This is what
we will make use of.

Cases may or may not have a semantics. This actually does not make
much of a difference for this calculus. Take the genitive, which in many
languages is used for marking possession:

/gen/
◦ : gena◦

∅
belong-to′(◦,gena◦)

24

So, when a genetive is attached, it says that the thing to which it attaches
owns something. Here, ◦ represents the thing that is possessed, while gena◦
is the thing that owns it. To see how this works, we shall turn to a real
example. The following is a construction of Old–Georgian, taken from [3],
Page 103.

(5.1) sarel-ita man-isa-jta
name-inst father-gen-inst
with father’s name

The first part is clear: sarel-ita is

(A)

/sarel-ita/
◦ : ◦
∅

name′(insta◦);
instr′(insta◦).

Now let us turn to man-isa-jta. First we attach the genetive to man:

/man/
◦ : ◦
∅

father′(◦,gena◦)

⊕

/isa/
◦ : gena◦

∅
belong-to′(◦,gena◦)

=

/man-isa/
◦ : ◦
∅

father′(gena◦,genagena◦);
belong-to′(◦,gena◦).

Next we attach the instrumental suffix:

(B)

/man-isa-jta/
◦ : ◦
∅

father′(genainsta◦,genagenainsta◦);
belong-to′(insta◦,genainsta◦).

Finally, the two structures (A) and (B) are merged to derive the final repre-

25

sentation (C).

(C)

/sarel-ita man-isa-jta/
◦ : ◦
∅

name′(insta◦);
father′(genainsta◦,genagenainsta◦);

instr′(insta◦);
belong-to′(insta◦,genainsta◦).

(C) is true in a model under an assignment for the variables if insta◦ is
instantiated to a thing x that is a name, and genainsta◦ is instantiated to
a thing y that is a father, and x belongs to y. And that y is a father of the
value of genagenainsta◦. This is exactly as it should be.

6 Semantics for the Ideal Case Marking Lan-

guage

The semantics outlined in the previous section can be used to give a com-
positional account of the semantics of the ideal case marking language. We
shall assume that the function symbol f is of arity Ω(f) and has meaning f.
We shall also assume that we have symbols 0, 1 etc. The lexical entry for f

is therefore the following:

f

◦ : ◦
∅

◦ .
= f(0a◦, 1a◦, . . . ,Ω(f)− 1a◦)

System variables like x and y are treated just like 0–ary function symbols:

x

◦ : ◦
{◦}
◦ .

= x

26

The elements 0, 1 have the following semantics:

0

◦ : 0a◦
∅
∅

There are only two conventions:

1. 0, 1 etc may only be suffixes.

2. 0, 1 etc may only be attached to simple expressions.

Here a simple expression is one that contains only one function or variable
symbol. A simple expression is one that corresponds to a single branch of
the tree domain. We shall understand that this is a syntactic restriction that
is not due to any semantics. We shall return to the implications of these
conventions below.

To see that this works as intended we shall reproduce an earlier example.
Take the arithmetical term +(-(x, y), z). It is represented by the following
string:

y10+-0x00z1

By the conventions, this must be parsed in the following way:

((y1)0)(+)(-0)((x0)0)(z1)

Among the terms enclosed in brackets, one must go from left to right other-
wise the merge is undefined. For all other terms, the direction is completely
irrelevant.

We start from the left end. We compose y and 1.

y1

◦ : ◦
{1a◦}
1a◦ .

= y

Next we compose with 0:
y10

◦ : ◦
{10a◦}
10a◦ .

= y

27

We compose with +:
y10+

◦ : ε

{10a◦, 0a◦}
10a◦ .

= y

◦ .
= +(0a◦, 1a◦)

Next we compose - and 0 and get

-0

◦ : ◦
{10a◦, 00a◦, 0a◦}

0a◦ .
= -(00a◦, 10a◦)

Together with the last this gives

y10+-0

◦ : ◦
{10a◦, 00a◦, 0a◦}

10a◦ .
= y

◦ .
= +(0a◦, 1a◦)

0a◦ .
= -(00a◦, 10a◦)

The term x00 is analogous to y10 and z1 to y0:

x00

◦ : ε

{00a◦}
00a◦ .

= x

z1

◦ : ◦
{1a◦}
1a◦ .

= z

Composing them with the above result we get:

y10+-0x00z1

◦ : ◦
{10a◦, 00a◦, 0a◦, 1a◦}

10a◦ .
= y

◦ .
= +(0a◦, 1a◦)

0a◦ .
= -(00a◦, 10a◦)
00a◦ .

= x

1a◦ .
= z

28

We shall verify that the value of ◦ is actually the same as the value of
+(-(x, y), z). This can be shown by reducing the system of equations. Notice
first of all that in the body of the DRS there is an equation saying that 00a◦
has the same value as x, 10a◦ the same value as y and 1a◦ the same value
as z. We may therefore reduce the body of the last structure to

◦ .
= +(0a◦, z)

0a◦ .
= -(x, y)

We may finally replace 0a◦ by -(x, y) in the first line. We then get

◦ .
= +(-(x, y), z)

Notice that the merge is always defined, so that any binary parse of the
string yields a string–to–meaning translation. However, not all of them can
be correct. A specific example and a thorough discussion of this will follow
in Section 8. So, we need a characterization of those strings that yield a
proper translation. Call a sequence of case markers a register. Call a string
of the form faσ a block, if f ∈ F and σ a register. Any string over Ωγ

can be naturally decomposed into a sequence of blocks. The grammar that
generates a parse is the following. (Here, S stands for string, B for block, C
for case, F for function, and R for register. | is the usual disjunction sign for
rules.)

S → B | SB
B → FR

R → ε | CR
F → f (f ∈ F)
C → ci (i < µ)

Theorem 13 A string ~x over Ωγ is in ICMΩ iff

1. No two blocks of ~x have the same register.

2. If σack is a register of ~x, then so is σ.

3. If faσ is a block of ~x, then

(a) there is no register of the form σack where k ≥ Ω(f),

(b) for all k < Ω(f) there is a register of the form σack.

29

The proof is rather straightforward and omitted. Likewise, the weak ideal
case marking language is characterized by omitting the existential clauses of
the previous definition:

Theorem 14 A string ~x over Ωγ is in WICMΩ iff

1. No two blocks of ~x have the same register.

2. If faσ is a block of ~x, then there is no register of the form σack where
k ≥ Ω(f).

We shall use these results to establish some complexity results about these
languages.

Definition 15 Let A = {ai : i < n} be a finite set and Nn the monoid of
n–tuples of natural numbers with 0 and addition as operations. Let ei := 〈δi

j :
j < n〉 where δi

j := 1 iff i = j and δi
j := 0 otherwise. Define ψ : A∗ → Nn

inductively as follows.

ψ(ε) := 0
ψ(~x · ai) := ψ(~x) + ei

Call S ⊆ A∗ linear if there are ui ∈ Nn, i < λ, such that

ψ[S] = {u0 +
λ∑

i=1

µiei : µi ∈ N, 1 ≤ i ≤ λ}

Finally, call S semilinear if it is a finite union of linear sets.

By a theorem of Parikh, context–free languages are semilinear (see [9] for a
proof). It can be shown that also linear indexed languages and MCTALs as
well as multiply context–free languages are semilinear. However, the follow-
ing is shown in [6], building on results of [16].

Theorem 16 (Ebert) ICMΩ and WICMΩ are not semilinear, unless they
are finite.

This does not mean, however, that these languages are complex. First, they
can be parsed using a Turing machine with linearly bounded space. Hence,
they are context–sensitive. Moreover, the parsing complexity is even poly-
nomial.

30

Theorem 17 (Ebert) Membership in ICMΩ and WICMΩ can be decided in
O(n3/2 log2 n) time on a deterministic multihead Turing machine with linearly
bounded space, or in O(n5/2 log2 n) time on a single head Turing machine with
linearly bounded space.

Context–free languages can be parsed in O(nlog2 7) steps on a multi–head Tur-
ing machine. The exponent is larger than 2.7, so the word marking languages
are faster to recognize than many context–free languages. Polish Notation
is however still faster. It is recognizable in linear time on a deterministic,
linearly space bounded two–head Turing machine.

The strategy of proof is to first order the blocks lexicographically (this
takes O(n3/2 · log2 n) time, using efficient sorting techniques, for example
Merge Sort). Compliance with the conditions is then verified in linear time.
Another strategy is as follows. It takes time linear in the input to construct
a semantic representation on the basis of a parse using the above grammar.
Since this grammar is deterministic, the translation is done in overall linear
time. The conditions can be checked on the semantics as well. For ICMΩ

there is even a completely semantic procedure. Namely, a string is in ICMΩ iff
its semantics can be reduced to a single term using a step by step elimination
of equations. This gives another way of checking membership in ICMΩ.
The two methods are of the same complexity. Notice also that the merge
operation in this semantics is of very low complexity: it is linear in the
length of the input structures, if the case stacks are implemented as pointer
structures. The set of all case stacks forms a tree rooted at ◦. Substitution
is nothing but putting one more cell at the root of the tree.

7 A Comparison

We have proposed in the previous sections two alternative ideal languages:
Polish Notation and the Ideal Case Marking Language. We have presented
them both in their pure abstract instantiation. Both enjoy unique readability
and with each we can associate a formal semantics. While Polish Notation
lends itself easily to a functional interpretation, the case marking languages
are better treated using a relational interpretation. 19 In this section we will
discuss in some depth the similarities and differences between the notations.

19Without going into much detail, we shall explain the basis of this remark. It is known
that in predicate logic, a theory formulated in an arbitrary signature can be replaced by a
theory that uses only relations. Namely, each n–ary function symbol f is replaced by an

31

A first difference that is worth noting is that Polish Notation neither
allows for word order variation nor for argument elision. While this does
not seem to be problematic for computer languages, natural languages are
different in this respect. Speakers like to drop all material in a sentence that
is given by the context. Although languages resist this (you cannot simply
omit what you want) there is generally some freedom. Specifically, those
languages with rich case marking do allow for argument elision. Australian
languages are generally very liberal in this respect. In Martuthunira one is
allowed to drop any constituent or word whatsoever (see Section 9, and [4]).

Now we are in a certain dilemma: we have shown that case marking
languages allow for free word order and free omission, but why is it that
rich case marking does not lead to random word order? There are two kinds
of answers. The first answer is historical: if a language starts with poor
morphology, it has strict word order. If it acquires richer morphology, there
is no need to free the word order in tandem. Languages do not generally
strive for word order freedom (see Lehmann [13] on this point). But here
again there is the question why this should be so. This brings us to the
second answer: the order of thought. If a language is free in its word order
this practically means that speakers can use a word when they need or want
to. That in turn means that they can map the order of thought almost
directly onto the linear order. If that is so, it is unlikely, for example, that
NPs or subordinate sentences become discontinuous just because there is the
possibility for that. However, omission of argument is much different. We
just choose not to say something, that’s all. There is no need to adapt the
mapping from thought to speech in any complicated way.

It has been suggested to me by some referee that lack of free word order
is usually due to topic focus articulation or other (mainly called pragmatic)
factors. This is a statement that can be found in the description of lan-
guages with free word order. A language with free word order is claimed
to have restricted word order since word order is constrained by pragmatic
principles. However, this simply rests on a terminological mismatch in what
is to count as free word order. First of all, languages vary on the degree of
pragmatic fixation of word order. While Hungarian and Finnish clearly show
pragmatically constrained word order this does not seem to be the case at

n + 1–ary relation symbol R. An equation f(x0, . . . , xn−1)
.= y is replaced by the formula

R(x0, . . . , xn−1, y). Terms are eliminated in a stepwise construction. As it turns out, the
semantics we are proposing here for word marking languages resembles exactly the result
of turning a functional signature (that of Montague Grammar) into a relational one.

32

all with many Australian languages (Alan Dench, p. c.). Now, we shall have
to dstinguish clearly two types of languages.

1. Languages where you simply cannot have different word orders at all,
holding constant the functor–argument relations. (This is effectively
what we have called the positional regime.)

2. Languages where you can have different word orders, holding constant
the functor–argument relations.

Now, if we have a language of the second kind, it is another matter if the
different word orders are made to signal additional meanings. So there are
the following subtypes.

2.a. Languages where we do not have different word orders, holding constant
the functor–argument relations as well as the (semantic/pragmatic)
meaning.

2.b. Languages where we do have different word orders, holding constant
the functor–argument relations as well as the (semantic/pragmatic)
meaning.

Thus, while we speak of language of Type 2 as free word order languages,
others prefer to reserve this for Type 2.b languages. We stick with our ter-
minology here. Let us call therefore Type 2.a semantically (pragmatically)
constrained. Throughout this paper we have been solely concerned with the
free/non–free word order dichotomy, and not with the constrained/unconstrained
dichotomy, and it is certainly wise to keep these two apart so as to be able
to control for the kinds of information that word order can give. It can be
syntactic (showing us the argument status of words) or it can indeed be se-
mantic or pragmatic. If it is syntactic, we are in Type 1, otherwise in Type
2. If it is semantic/pragmatic, we are in Type 2.a, otherwise in Type 2.b.
(Again, mixtures occur more often than not.)

Both of these models have wider application. In fact, languages do admit
ambiguity and the most favoured language in absence of morphology is SVO
(English). The ambiguities that formally arise are actually now welcome
because they reflect a basic trait of the language under analysis. In this
vein, the analysis can be extended to languages of type SVO, OVS, SOV and
VOS, and if one allows the verb to form a constituent with the subject, also

33

to the remaining types OSV and VSO. (See [10] for arguments that in such
languages the verb forms a constituent with its subject.)

The semantics for case marking languages works also for other types of
languages. In particular, it can be used for languages that are consistently
peripherally group marking. In these languages, the case marker is put either
in front or at the end of the entire phrase. If we want to do this, nothing
needs to be changed, except that the case marker will now be a phrasal affix
rather than a word affix. To illustrate this, we shall compute the semantics
of the phrase ‘good doctor’.

/nom/
◦ : noma◦

∅
∅

/good/
◦ : ◦
∅

good′(◦)

/doctor/
◦ : ◦
∅

doctor′(◦)

We may either compose both good and doctor with the nominative and then
compose the result, or we may first compose good and doctor and then com-
pose with the nominative. In both cases the result is the same:

/good doctor/
◦ : ◦
∅

good′(noma◦);
doctor′(noma◦).

We shall also prove this in a rather formal manner:

Proposition 18 Let A and B be plain, and let C be a case marker. Then

(A⊕B)⊕ C = (A⊕ C)⊕ (B ⊕ C) .

Proof. Let A = [◦ : ◦, [V : ∆]], B = [◦ : ◦, [V ′ : ∆′]] and C = [◦ : Na◦, [∅ :
∅]]. Denote by σ the substitution ◦ 7→ Na◦. Then A⊕ B = [◦ : ◦, [V ∪ V ′ :
∆ ∪ ∆′]] and so (A ⊕ B) ⊕ C = [◦ : ◦, [V σ ∪ V ′σ : ∆σ ∪ ∆′σ]]. On the other
hand, A ⊕ C = [◦ : ◦, [V σ : ∆σ]] and B ⊕ C = [◦ : ◦, [V ′σ : ∆′σ]] and so
(A ⊕ C) ⊕ (B ⊕ C) = [◦ : ◦, [V σ ∪ V ′σ : ∆σ ∪ ∆′σ]]. This shows the claim.
Q. E. D.

In languages which have phrasal case affixes, these affixes may actually
end up in a sequence, giving the appearance of suffixaufnahme (which is the

34

multiple case marking produced by the word marking regime). The following
is found in Sumerian (see [21]).

(7.1) é lugal-ak
house king-gen
house of the king

(7.2) é lugal-ak-a
house king-gen-loc
in the house of the king

(7.3) é šeš lugal-ak-ak-a
house brother king-gen-gen-loc
in the house of the brother of the king

Here, the case markers are phrasal suffixes, and the genitive complement also
follows the head noun. Hence the last example is to be bracketed as follows.

(é (̌seš (lugal)-ak)-ak)-a

This is admittedly a rare example, though we find in the abovementioned
source also examples from Late Elamite and Kanuri (a Nilo–Saharan lan-
guage).

Most languages are in between these types. Latin has case agreement,
but no stacking of cases. These languages are intermediate cases, since they
are neither entirely word marking (because then they would look like Ka-
yardild or Martuthunira) nor are they group marking. Nevertheless, if the
morphological and syntactic restrictions are properly implemented, the se-
mantics works for these examples, too. There is, however, a condition. If for
example, we wish to give a semantics for the genetive that parallels that of
Old Georgian, we must assume that a genetive specifier agrees in case with
the head noun. We must therefore posit an invisible case marker for the
specifier. Likewise, we must assume that relative clauses, in fact all clauses,
are case marked.

8 Semantic versus Syntactic Restrictions

The model which we have developed is ideal for so–called flat languages. It
assumes no phrase structure whatsoever and nevertheless gets the semantics
right. However, two issues must still be addressed: (1) what does it mean that
the syntax has flat structure and (2) are the restrictions on phrase structure
semantically or syntactically motivated?

35

To see that there is a problem, let us start with the words. The words
are composed from roots by adding the case suffixes. By the definition of
merge we can only attach a suffix to something that is not a suffix. But this
restriction is not enough to guarantee Conventions 1 and 2 to hold. For there
is nothing that says that cases are suffixes rather than prefixes and nothing
tells us that they can only be attached to a word rather than a complex
constituent. So, the right result is only obtained if we assume in addition a
grammar that allows only the right kind of parses. To see this, let us note
that if the cases can alternatively be prefixes as well as suffixes, an expression
of the form x1y is ambiguous, because it can be parsed alternatively as (x1)y
or as x(1y). In natural languages this problem does not arise with cases (since
they are not separated by a word boundary) but if the language has pre– as
well as postpositions a certain amount of ambiguity may arise. Secondly,
if cases can be also phrasal affixes we will not generate the right analyses
either. For example, notice that the following would be parsed as correct in
Old Georgian:

(8.1) sarel manisajta

Moreover, it would get the same translation as (5.1):

/sarel manisajta/
◦ : ◦
∅

name′(insta◦);
inst′(insta◦);

father′(genainsta◦,genagenainsta◦);
belong-to′(insta◦,genainsta◦).

Notice namely that the instrumental can also be added after the constituent
sarel manisa (= ‘name of the father’) has been formed.

This demonstrates the need for regimentation. A context–free grammar
defining the correct parses can easily be given. Let R denote the type of root,
F the type of a suffix, W the type of a word, and C the type of a complex unit.
Then we assume the following rules:

C → W | C C

W → R | W F

Thus, a complex constituent can be a word, or it can be made from two
complex constituents. These rules allow to parse a string of words in any

36

way one likes, as long as the structure is binary branching. A word is either
a stem or a word followed by a suffix. That this much regimentation is enough
is a consequence of the following

Proposition 19 Let A, B and C be plain semantic structures, that is, se-
mantic structures whose referent system consists of ◦ : ◦ only. Then we have
A⊕B = B ⊕ A and A⊕ (B ⊕ C) = (A⊕B)⊕ C.

The proof is easy and omitted. (Notice that we get identity, not just semantic
equivalence here.) Suffice it to say that if A and B are plain then the merge
is the Zeevat–merge:

/X/
◦ : ◦
V1

∆1

⊕

/Y/
◦ : ◦
V2

∆2

=

/X Y/
◦ : ◦
V1 ∪ V2

∆1 ∪∆2

So, given any string of symbols, we must first parse it according to the
grammar above and then assign the meanings to the parts and compose
them according to the obtained constituent analysis. Now, it is certainly
possible to constrain the syntax to be, for example, right branching on the
words. So, rather than the above grammar we might propose the following
one:

C → W | W C

W → R | W F

However, no one would propose such a structure for a language in absence
of any evidence even though that would be consistent with the data (and
the semantics just given). But why not? Apparently, in absence of anything
that would tell us about the constituent structure we assume that it is free.
This means however that the right kind of grammar would be as follows:

C → W+

W → R | W F

The first line is an abbreviation for a series of infinitely many rules. It means
that C may be replaced by any nonzero number of Ws. This is actually what
has been proposed for some Australian languages (eg Warlpiri 20). Here,

20The word order for Warlpiri is not completely free, so the proposed grammars are
actually slightly different.

37

a constituent can be analysed as a string of words of any length. However,
the semantics outlined so far does not allow for such an analysis on the
semantic level. Rather, it asks for a binary branching structure. To reconcile
the semantical analysis with the constituent structure we propose to call a
substring a syntactic constituent if it forms a unit in any semantical parse
that derives the desired meaning. This means that no sequence of words of
length > 1 which is not the entire sentence is a constituent since we could
always avoid forming that constituent in a semantic parse and nevertheless
get the same result. In this way, the syntactic analysis follows from the
semantical analysis in virtue of Proposition 19.

However, still we must account for the fact that the case suffixes cannot
be added to complex constituents, only to words. Up to this point this was
treated as a syntactic restriction. (In fact, it is most likely a morphological
restriction, but for the present argumentation this difference does not mat-
ter.) There is however a way to make that follow from the ‘semantics’. First,
we shall assume that a lexical item can state explicitly that it wants a com-
plement to one side rather than another. So, rather than writing ◦ : gena◦
into the header of the genitive case, we write 〈◦ : gena◦ : .〉. (The brackets
are inserted for readability only.) This means that the item in question seeks
a complement to its left and will substitute ◦ for gena◦. This will ensure
that the cases are always suffixes. Finally, we introduce another symbol, ∗,
in place of ◦. Its combinatorics is the same as that of ◦. It serves mainly as
a flag. Now lexical entries come in the form shown to the left rather than
that shown to the right.

∗ : ∗
V
∆

◦ : ◦
V
∆

We shall agree that composition is only defined if the two referent systems
have the form ∗ : ∗, or both ◦ : ◦, or if one has a statement of the form
∗ : αa◦ (◦ : αa∗) and the other of the form ∗ : ∗ (◦ : ◦). This serves to make
the merge well–defined. Case suffixes have the form

/gen/
〈∗ : gena∗ : .〉

∅
∅

38

Finally, we shall assume that the word boundary marker (#) has the following
semantics:

/#/
〈∗ : ◦ : .〉

∅
∅

The idea behind this proposal is quite simple. As long as we keep stacking
case suffixes, we are still at the level of a word. This is expressed by the
fact that the stack variable has the form ∗. The word is completed when
the word boundary marker is added to the right. Then the stack variable
changes from ∗ to ◦ and allows the word to compose with other full words,
but not with uncompleted words.

9 The Sentence Juncture

A text is a sequence of sentences. Texts are coherent, which shows up in
the possibility of referring back to previously mentioned objects, in ellipsis,
to name a few. In Australian languages of the kind considered here any
material that can be inferred from the context can be omitted. This leads
to structures that can from a traditional perspective hardly be considered
sentences. Here, however, any sequence of words is a semantic constituent
(though not a syntactic one as defined above). Hence there is no difficulty in
parsing such utterances, and hence no reason not to call them sentences (see
[4] for a defense). Notice that there is no need here to posit empty categories.
It might therefore be deemed possible to propose the same semantics for the
sentential juncture as we did sentence internally. Given that, the semantics
would be as follows:

/./
〈◦ : ◦ : .〉

∅
∅

Yet, such a proposal is easily seen to be insufficient. It would predict that any
main level nominative denotes the same object, so whenever in a sentence a
nominal appears bearing nominative case, it will be associated with just the
same individual as before. To exclude that, the following alternative might

39

be proposed:
/./

〈◦ : 1a◦ : .〉
∅
∅

Here, 1 is a formal element that is attached to the sequence so as to make the
set of variables of the first sentence disjoint from the set of variables of the
second sentence. This certainly works, but we again have to impose restric-
tions. It is obvious that the juncture may not be applied to an incomplete
sentence. Otherwise the result will be incorrect.

Now, we can follow the line of Section 8 and postulate a distinct stack
symbol • with which we introduce the word/sentence distinction into the
semantics. The rest is then rather straightforward. There are two types of
sentence junctures, one called ‘;’, which joins the material into the previous
sentence, and the other called ‘.’:

/;/
〈◦ : • : .〉

∅
∅

/./
〈◦ : 1a• : .〉

∅
∅

We shall illustrate the potential of the proposal by giving an analysis of a
dialogue in Martuthunira, taken from [4]:

(9.1) A: Ngayu kangku-lha mayiili-marnu-ngu
A: I take-past SoSo+1Poss-grp-acc

kulhampa-arta.
fish-all

I took a group of my grandchildren for fish.

(9.2) B: Nganangu-ngara pawulu-ngara?
B: whogen-pl child-pl?
Whose children are they?

(9.3) A: Ngurnu-ngara-a yaan-wirriwa-wura-a.
A: thatobl-pl-acc spouse-priv-belong-acc
(I took) the ones who belong to the one who is without

a spouse.

40

(9.4) B: Ngaa, purrkuru pala. Ngarraya-ngu-ngara-a.
B: Yes Okay it niece-gen-pl-acc
Yes. Okay that’s it (I understand). (You took) niece’s

ones.

The interesting thing about this dialogue is that the utterances that follow
the first one are highly elliptical and can only be understood in their context.
Yet, in the semantics we have presented there is actually no need to assume
that material is missing in them, and they can be interpreted as such, without
any context, although of course the meaning of the utterances appears a little
less fragmented when the context is given. We shall go through the dialogue
assuming that sentences are conjoined by ‘;’, even across speakers. We shall
not concern ourselves with indexicals or how exactly a dialogue or a question
is analysed. We will just show that any of the sentences can be interpreted
by itself and fitted into the context. Now, here are the relevant structures
for the particles that appear in the first text.

/marnu/
〈∗ : ∗ : .〉

∅
group′(∗)

/acc/
〈∗ : acca∗ : .〉

∅
theme′(∗)

.
= acca∗

/lha/
〈∗ : ∗ : .〉

∅
past′(∗)

/all/
〈∗ : alla∗ : .〉

∅
moves-to′(alla∗,acca∗, ∗).

The analysis of the accusative and the allative need comment. We construe
the meaning of the accusative as identifying the object as the theme. This
is of course superficial but does the trick here. Notice that in order for
this proposal to work properly, the word that is in the accusative needs to
be construed as the accusative object of some verb. Otherwise it is not
meaningful to say that it is a theme. The analysis of the allative is as
follows. It says that the accusative object of the verb moves towards the
thing in the allative during event time. (This is an exegesis of the gloss
moves-to.) It would be possible to make the semantics such that it does not
depend on the verb being transitive and the object moving, but that would
needlessly complicate matters. Now, nominative is treated like accusative.
We assume that the object comes together with an indefinite determiner.

41

(Moreover, nouns can be either bare or appear with an indefinite determiner.
Alternatively, one might posit an empty indefinite.) (9.1) is then translated
as follows:

(9.1)
〈• : •〉

{acca•}
sub′(•)

.
= me′; take′(•); past′(•);

theme′(•)
.
= acca•;

group′(acca•); grandson′(acca•);
belong′(acca•,me′); fish′(alla•);

move-to′(alla•,acca, •).

Now we turn to the second sentence.

/nganangu/
〈∗ : ∗〉

∅
who′(gena∗);

belong′(gena∗, ∗).

/ngara/
〈∗ : ∗ : .〉

∅
card′(∗) > 1.

The speaker asks about the identity of the variable •aacc of the first ut-
terance. This however is not restorable from the utterance. Rather, putting
everything together we get

(9.2)
〈• : •〉

∅
who′(gena•); belong′(•,gena•);

card′(•) > 1; child′(•).

At this point, we must make an additional assumption. The two discourses
can neither be linked directly (via ‘;’) nor using the full stop ‘.’). What
happens is that the object carrying • in the second discourse refers to the
object carrying acca• in the first. Therefore, we must substitute acca• for
• in the second discourse and then use ‘;’. However, this might not be what
is going on really. For, alternatively, Speaker B might have suffixed all the
constituents with the accusative as in the last sentence. So, Speaker B simply
refers to some discourse object, and as soon as that reference is resolved, an
appropriate substitution is chosen. We shall not attempt to scrutinize this

42

further, simply noticing that the processes we have described so far do not
work automatically at this point.

Now we turn to the third sentence. Here we encounter two more suffixes

/belong/
〈∗ : belonga∗ : .〉

∅
belong′(∗,belonga∗)

/priv/
〈∗ : priva∗ : .〉

∅

¬ {priva∗}
have′(∗,priva∗).

The full interpretation of (9.3) is as follows.

(9.3)
〈• : •〉

∅
belong′(belonga•,belongaacca•);

¬ {privabelongaacca•}
have′(belongaacca•,privabelongaacca•).

;

that′(acca•); card′(acca•) > 1.

Finally, we turn to (9.4). Omitting the first sentence we treat only the second
one, which consists of one single word. Its interpretation is

/ngarrayangungraraa./
〈• : •〉

∅
theme′(•)

.
= acca•;

card′(acca•) > 1;
belong′(acca•,genaacca•);

niece′(genaacca•).

It is now clear that (modulo adaptation of the second sentence) each of the
sentences can be merged into the discourse using the semicolon, ie without
adjusting the variables. This is so because the sentences are quite coherent,
just exchanging information about the very same situation or event at hand,
namely the taking for fishing of some people by speaker A.

43

10 Conclusion

We have shown in this paper that languages can and do employ various ways
of encoding dependencies: either by imposing word order, or by introducing
special markers, which are called agreement markers or case markers, de-
pending on the way they function in the syntax. These encodings are called
regimes. There are two regimes which can stand alone in the sense that each
sentence is unambiguous. These are the so–called Polish Notation (and its
reverse image) and the case marking regime which is consistently word mark-
ing. For the positional regimes, Montague has defined a semantics that allows
a compositional syntax–to–meaning translation. We have provided a seman-
tics for the case marking languages. This semantics gives correct results for
peripheral group marking languages as well as word marking languages, and
so is quite flexible. Notice that neither Montague Semantics nor the seman-
tics we have proposed here rely on the unambiguity of the language. Rather,
they will predict that sentences can and must be ambiguous if the semantic
mapping yields several distinct meanings, each corresponding to a different
parse of that sentence. However, we have excluded that question from our
discussion. In this way it was easier to motivate the usefulness of the various
regimes.

This motivation can of course work only if one accepts the thesis that lan-
guages strive to make their sentences unambiguous. 21 This therefore comes
down to claiming that avoiding ambiguity is a motor of language change.
However, this works canonically only in one direction. Namely, when the
morphology becomes unable to make enough distinctions, the languages tend

21A note of clarification is perhaps in order. It might be undisputed that speakers strive
to make their sentences unambiguous. (This is one of Grice’s maxims!) Since speakers can
normally take the context into account, they might not always produce fully unambiguous
sentences, and — as one learns — many sentences are ambiguous at closer look (see
Altman [1]). Yet, there are certain basic ambiguities that must in general be avoided,
such as a potential confusion between subject and object (John pestered Peter versus
Peter pestered John). If that is accepted, then it is clear that speakers will tend not to
use those kinds of constructions that are ambiguous. Initially, these constructions might
still be grammatical, but the less they are used the less grammatical they appear. In the
end, they will be judged ungrammatical, and then we say that the language has changed.
For example, scrambling in German can yield sentences that are disfavoured for precisely
the reason that they appear to be SOV but are intended as OSV. We predict therefore
that German moves in direction of a language in which scrambling of the direct object is
prohibited. In this way, pragmatic principles can bear on the question of language, and
we can attribute to language roughly the same tendencies as to individual speakers.

44

to become more rigorous with word order. When the language develops some
kind of marking mechanism, although it might afford to loosen the positional
regime, this need not happen. A particularly outspoken proponent of this
idea is Vennemann (see, for example, [24]). His claim is that languages with
basic SOV order become SVO when the morphological distinctions between
subject and object disappear as a consequence of the gradual morphological
attrition. This is attested for virtually all Indo–European languages, for ex-
ample. (See for example [14] for the development of Proto–IE to Late IE.)
Now, while Vennemann’s thesis is rather specific in the conditions and direc-
tions of change — he does not consider free word languages and the result is
a specific regime that appears to be less than optimal from our results — he
nevertheless emphasizes that it is the resulting ambiguity of sentences that
motivates the change. It is worth a separate study why SVO languages are
actually better suited than SOV languages. We shall briefly discuss some of
the reasons. An interesting one is that question words and relativizers are
clause initial and so a transitive question or relative clause would necessarily
be ambiguous. Of course, it is not logically necessary for the question word or
the relativizer to be clause initial, and this in turn means that the direction of
language change depends in part on other characteristics of language. These
might be universal or accidental, which means that Vennemann’s thesis may
actually be false in general should it turn out that some of the characteristics
are not universal. But this has not been the topic of the present paper. What
we were interested in are the formal (and therefore inescapable) consequences
of particular language characteristics, in order to provide the background for
such theories as those of Vennemann’s.

The model presented in this paper is however still too simplistic. Even
though there are languages which are consistently word marking, they do
not match the theoretical model in cases of modification and coordination.
A modifier does not case mark its argument, neither does a coordinator.
It follows therefore that even the consistently word marking languages must
have certain positional regimes or else a different semantic mapping algorithm
must be found. This question needs investigation.

References

[1] Gerry Altmann. The Ascent of Babel. MIT Press, Cambridge, Mas-
sachussetts, 1998.

45

[2] Mark C. Baker. The Polysynthesis Parameter. Oxford Studies in Com-
parative Syntax. Oxford University Press, 1996.

[3] Barry J. Blake. Case. Cambridge Textbooks in Linguistics. Cambridge
University Press, 1994.

[4] Alan C. Dench. Martuthunira. A Language of the Pilbara Region of
Western Australia. Number C–125 in Pacific Linguistics. Australian
National University, 1995.

[5] R. M. W. Dixon. Ergativity. Number 69 in Cambridge Studies in Lin-
guistics. Cambridge University Press, Cambridge, 1994.

[6] Christian Ebert. Formal Analysis of Languages with Stacked Cases.
Master’s thesis, Mathematisches Institut, Universität Heidelberg, 1999.

[7] Nicholas D. Evans. A Grammar of Kayardild. With Historical–
Comparative Notes on Tangkic. Mouton de Gruyter, Berlin, 1995.

[8] Kit Fine. Transparency, Part I: Reduction. Unpublished manuscript,
UCLA, 1992.

[9] Michael A. Harrison. Introduction to Formal Language Theory. Addison
Wesley, Reading (Mass.), 1978.

[10] Edward L. Keenan. On semantics and binding theory. In John A.
Hawkins, editor, Explaining Language Universals. 1988.

[11] Edward L. Keenan and Leonard M. Faltz. Boolean Semantics for Natural
Language. Number 23 in Synthese Language Library. Reidel, Dordrecht,
1985.

[12] Marcus Kracht. Agreement Morphology, Argument Struc-
ture and Syntax. Unpublished manuscript, available at
http://www.math.fu-berlin.de/ kracht, 1999.

[13] Christian Lehmann. Word order change by grammaticalization. In
Marinel Gerritsen and Dieter Stein, editors, Internal and External Fac-
tors in Language Change, number 61 in Trends in Linguistics, Studies
and Monographs, pages 395 – 416. Mouton de Gruyter.

46

[14] Winfred Lehmann. A Disucssion of Compound and Word Order. In
C. N. Li, editor, Word Order and Word Order Change, pages 149 – 161.
University of Texas Press, Austing and London, 1975.

[15] C. N. Li and S. A. Thompson. Subject and topic: A new typology
of language. In C. N. Li, editor, Subject and Topic, pages 458 – 489.
Academic Press, 1976.

[16] Jens Michaelis and Marcus Kracht. Semilinearity as a syntactic in-
variant. In Christian Rétoré, editor, Logical Aspects of Computational
Linguistics (LACL ’96), number 1328 in Lecture Notes in Computer
Science, pages 329 – 345, Heidelberg, 1997. Springer.

[17] Johanna Nichols. Head–marking and dependent–marking grammar.
Language, 62:56 – 119, 1986.

[18] Rachel Nordlinger. Constructive Case. Evidence from Australian Lan-
guages. Dissertations in Linguistics. CSLI, Stanford, 1998.

[19] Richard T. Oehrle. Multi–Dimensional Compositional Functions as a
Basis for Grammatical Analysis. In Emmon Bach Richard T. Oehrle and
Deirdre Wheeler, editors, Categorial Grammars and Natural Language
Structures, pages 349 – 389. Reidel, Dordrecht, 1988.

[20] Frank R. Palmer. Grammatical roles and relations. Cambridge Text-
books in Linguistics. Cambridge University Press, Cambridge, 1994.

[21] Frans Plank. (Re-)Introducing Suffixaufnahme. In Frans Plank, edi-
tor, Double Case. Agreement by Suffixaufnahme, pages 3–110. Oxford
University Press, 1995.

[22] Susan Stelle. Word Order Variation. A Typological Study. In Joseph H.
Greenberg, editor, Universals of Human Language. Vol 4: Syntax, pages
578 – 623. Stanford University Press, Stanford, 1978.

[23] Robert D. Van Valin and J. LaPolla, Randy. Syntax. Structure, meaning
and function. Cambridge Textbooks in Linguistics. Cambridge Univer-
sity Press, 1997.

[24] Theo Vennemann. An explanation of drift. In C. N. Li, editor, Word
Order and Word Order Change, pages 269 – 305. University of Texas
Press, Austing and London, 1975.

47

