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Joint Knowledge

Marcus Kracht

Joint knowledge of a group is the maximal knowledge that members
of a group can attain only by talking to each other. I propose a formal
approach and show how — at least in principle — group members
can find out whether a proposition is jointly known.

1 The Problem

On the one hand, communication serves to distribute knowledge. On the other
hand, knowledge is presupposed in communication. This is not a contradiction.
The knowledge that is presupposed in communication is the so called common
knowledge, while that which is communicated cannot be, by pragmatic principles. If
ϕ is known by everyone, the Principle of Informativeness discourages utterance of ϕ.
As Williamson (2000) argues, an assertion is licit only when what gets communicated
is known to the speaker. This means that it should not be known to the hearer (as far
as the speaker knows, that is). The effect of the communication is that it makes the
assertion common knowledge, see Balbiani, Baltag, van Ditmarsch, Herzig, Hosi, and
de Lima (2008). The knowledge that can be so attained is limited to what is known
by all the speakers. This I call joint knowledge. This is the same as the “implicit
knowledge” defined in Halpern (1987), but that term strikes me as unfortunate.
A proposition is known jointly by a group if it follows from the union of all the
propositions known individually. The aim of this paper is to investigate this notion.

2 Definitions

Let G be a set, the group of agents. For each a ∈ G, let Ka be the operator “a
knows that”. I take it that Ka satisfies the postulates of some modal logic, be it KT
(Williamson (2000)), S4 (Hintikka (1962)) or S5 (Fagin, Halpern, Moses, and Vardi
(1995)). All these conditions are equivalent to universal elementary conditions on
Kripke-frames. I use the notation of propositional dynamic logic (PDL, see Goldblatt
(1987)). So, Ka is based on a so-called “program” κa, a ∈ G, which gets interpreted
as a relation between states, called here as usual worlds. We present the arguments
assuming tacitly that Ka satisfies S5, the relation associated with κa is an equivalence
relation Ea ⊆W ×W , but little hinges on that. Given w ∈W , the w-alternatives for
a are all b for which a Ea b. These are also called the epistemic alternatives for a
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at w. What is known to a at w is what is true in all w-alternatives for a. Thus Kaϕ

is tantamount to [κa]ϕ. The more alternatives w has, the less is known to a. It
follows that knowledge increases when the Ea gets refined (so that the equivalence
classes shrink). Now, for a group H ⊆ G denote by “CHϕ” the fact that it is common
knowledge for all a ∈ H that ϕ. The standard definition is this. CH is based on a
program γH defined by

(1) γH := (
⋃

a∈H

κa)
∗

This is to say that CHϕ is nothing but [γH]ϕ. As we close the union (reflexively and)
transitively, this is again an equivalence relation. Common knowledge satisfies again
the postulates of S5. Notice that nothing less than the transitive closure suffices, and
it has been argued that these steps of iteration are strictly required in pragmatics.
(See also the problems of imperfect communication in Halpern (1987).)

The definition of joint knowledge is however much simpler.

Definition 1. Let Ua be the set of propositions known to a and let H ⊆ G be nonempty.
The joint knowledge of H, UH , is the deductive closure of

⋃

a∈H Ua. “JHϕ” is short
for ϕ ∈ UH .

JH is based on the program ιH , which is defined as follows.

(2) ιH :=
⋂

a∈H

κa

Notice that we require that H is not empty. If you are desperate, let ι∅ be the total
relation on the frame. For a world w′ to be a w-alternative according to what the
members of H know jointly, it must be an alternative for every member of H, for
everyone needs to agree on the alternatives to the world w. Since the intersection
of equivalence relations is again an equivalence relation, JH also satisfies S5. This
generalises to the weaker logics KT and S4 as a consequence of the following
observation.

Theorem 2. Let P be a variable for binary relations, x i variables over worlds. Let
ϕ = ϕ(P, x) be a second order formula relations of the following kind. It is made
from formulae of the form x i P x j using conjunction, disjunction, and restricted and
unrestricted universal quantification (which have the form (∀x i)(x i P x j → ·) and (∀x i),
respectively). If R and S are relations on a set M satisfying ϕ, then also R∩ S satisfies ϕ.

Proof. Let ϕR (ϕS, ϕR∩S) be the result of inserting R (S, R∩S) for P in ϕ. By induction
on the formulae we show that for every first-order valuation β sending variables to
worlds, 〈M,β〉 � ϕR and 〈M,β〉 � ϕS implies 〈M,β〉 � ϕR∩S. For the atoms, this is
clear. If w R v and w S v then w (R∩ S) v. The inductive steps for conjunction and
disjunction are straightforward. Suppose now that 〈M,β〉 � (∀y)(x R y → ϕR) and
〈M,β〉 � (∀y)(x S y → ϕS). Choose a w and let β ′(y) := w be a y-variant of β . If w
is not a (R∩S)-successor of β(x), we trivially have 〈M,β ′〉 � (x P y → ϕ)R∩S, since this
formula is nothing but (x (R∩ S)y → ϕR∩S). Thus, let us assume that β(x) (R∩ S) w.
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Then β(x) R w and so 〈M,β ′〉 � ϕR. By the same reasoning, 〈M,β ′〉 � ϕS. Hence
〈M,β ′〉 � ϕR∩S, by inductive assumption, and so 〈M,β ′〉 � (x P y → ϕ)R∩S also in
this case. β ′ was an arbitrary y-variant of β . Hence 〈M,β〉 � (∀y)(x P y → ϕ)R∩S.
Unrestricted quantification is similar.

Notice how joint knowledge can be defined without an auxiliary notion (as the
EG operator, which codifies “everybody in the group knows”, whose transitive closure
is CG). Reflexivity is (∀x)(x R x), symmetry (∀x)(∀y)(x R y → y R x) and transitivity
is (∀x)(∀y)(x R y → (∀z)(y R z→ x R z)), and so all three conditions are of the form
required by the theorem.

The axiomatisation of common knowledge proceeds by axiomatising the closure,
which is already part of PDL. The intersection is not part of PDL, however. The
extension of PDL with intersection is not straightforward, since intersection is not
modally definable, see Passy and Tinchev (1991) for a discussion. Adding the axiom
〈α∩β〉ϕ→ 〈α〉ϕ∧〈β〉ϕ is not enough (the converse implication is clearly false), and
something much stronger needs to be added as well, for example nominals, for it
simply encodes that α∩ β is contained in α and β , not that it is identical to them.

3 Communicating Knowledge

The main point of this paper is however not the axiomatisation of joint knowledge.
The question is its role in communication. We refer here to the framework of Brandt
and Kracht (2011) for communication in a network. A network consists of a set G of
agents together with with a set C ⊆ ℘(G) of so-called channels. The communication
structure of Brandt and Kracht (2011) further adds an addressing mechanism, whose
role can be ignored here. A channel C ∈ C allows to transmit a message from one
member of C to all other members. To make matters simple, we allow only the
following kinds of messages to be sent: “?ϕ”, the question whether ϕ is true, to
which recipients may answer with “yes” (if they know that ϕ), “no” (if they know
that ¬ϕ) or “don’t know” (if they neither know that ϕ or that ¬ϕ); further, “!ϕ”, the
announcement that ϕ is true. To stay with the symmetrical flavour of Brandt and
Kracht (2011), “!ϕ” must be followed by the acknowledgment “ok” by each recipient.
As usual, we assume that all participants adhere to the pragmatic rules, in particular
we assume that they only answer truthfully.

The communicative steps always leave an effect. We concentrate here on the
accumulation of knowledge and leave the message scheduling out of consideration.
We will however later see that certain protocols are more apt than others for the
accumulation of knowledge. The announcement “!ϕ” as well as the answers to
the question “?ϕ”, if received by b via a channel C allow b to eliminate certain
epistemic alternatives. Thus, if a formal model is required, it will be a dynamically
changing Kripke-frame. However, it is not necessary to spell out the details to make
the arguments clear.

In what follows I shall be concerned only with knowledge of nonmodal proposi-
tions, as it is not subject to change by rounds of communication. Thus, the formula
ϕ unless otherwise indicated is assumed to be nonmodal.
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There are basically two ways in which joint knowledge can become common
knowledge. The first is described in Balbiani et al. (2008). Some speaker, a, sends out
the message “!ϕ” through the channel H ∈ C . After that, ϕ is common knowledge for
the group H. This is the “push”-method, where someone distributes the knowledge.
I should stress that this method is not as straightforward as it appears. In practice,
we need to know not only that a sent out “!ϕ” via some channel C . It must namely
also presupposed that the structure of the network is common knowledge. To see
this, think about some newsletter broadcast through the net by some administration.
Suppose I get that email and wonder whether a also got it. This in turn requires that
I know whether a is part of the email-list address to which this message was sent.
(The possibility of registering black carbon copies in email messages complicates
the picture a bit. Basically, a recipient of an email knows about all recipients except
other black carbon copy recipients.) Additional worries may be whether or not a has
actually read and understood the message. Even face to face communication is not
innocent in that respect. Even if there is no logical addressing mechanism involved,
people can hear the message only if they are close enough, for example. And we may
not always know who is within hearing distance (think your house and someone in
an adjacent room, or even wiretapping). It is therefore far from clear who physically
gets the message; that is, it is not clear what channel is actually being used.

Once all that is granted, however, as is done in this framework, then the broadcast
really turns the message into common knowledge among the members of the channel
as long as the return acknowledgement is sent through that same channel as well. The
second method is where some a wants to know whether ϕ holds and sends out a
request, “?ϕ”, through the channel H. This is the “pull”-method. It turns out, though,
that getting an answer to one’s question is not that easy. One problem is that the
channel might not reach everyone from the intended group H, so that what we get is
not what the entire set of agents know, but something weaker. The network structure
plays an important role in how we can gain access to knowledge. I shall ignore these
complications in the sequel.

To start we make even more drastic simplification and assume that each subset
H ⊆ G is a channel. To see that even in this simplified scenario matters are still not
so trivial, let us assume that b knows that p0, but not whether p1, while c knows
that p1 but not whether p0, and a wants to know whether or not p0 ∧ p1 is true. If a
simply sends out the request “?(p0 ∧ p1)” through the channel {a, b, c} then he would
get no further. Neither b nor c are in a position to answer his request and reply with
“don’t know”. However, if a sends out two requests, say “?p0” followed by “?p1”, he
will reach his goal. b answers “yes” to his first request and c answers “don’t know”,
while b answers “don’t know” to the second request, while c answers “yes”. After all
this is done, a knows that p0 ∧ p1. Moreover, if the replies are sent through the same
channel, b and c also know this. For then c knows that b answered the question “?p0”
by “yes”, and b knows that c answered the question “?p1” by “no”. If furthermore the
senders and channels of the messages are common knowledge, then p0 ∧ p1 becomes
common knowledge of {a, b, c}.

Consider now a second scenario. b knows that ¬p0 ∨ p1, c knows that p0 ∨¬p1
and d knows that p0 ∨ p1. In this situation, asking either “?p0” or “?p1” gets a no
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further. None of the others can answer positively or negatively to these questions. It
seems then that what a must ask depends on what the others know. Fortunately, the
situation is not that bad. Here is a strategy that always works.

Let “ϕ” be the formula about which a wants to know whether it is true. Consider
a conjunctive normal form δ of ϕ. This is a conjunction δ =

∧

j∈nχ j of maximal
disjunctions χ j. A maximal disjunction is a formula of the form stP , where P is a
subset of the set Var(ϕ) of variables of ϕ:

(3) stP :=
∨

p∈P

p ∨
∨

p∈Var(ϕ)−P

¬p

Now suppose that ϕ ≤ stP , that is, that ϕ implies stP . Then if I know ϕ I also know
stP . Moreover, by standard modal principles (distribution of Ka over conjunction),

(4) Kaϕ↔
∧

j∈n

Kaχ j

Hence, to obtain knowledge of ϕ it is enough if I obtain knowledge of every maximal
disjunction implied by ϕ.

Let’s consider such a disjunction stP . If a asks b about stP , the following may
occur: b answers “yes” if b knows that stP , b answers “no” if b knows that ¬ stP ,
and “don’t know” otherwise. What however are circumstances in which b knows
neither stP nor ¬ stP for any P? These are circumstances in which the knowledge of
b concerning the variables Var(ϕ) is zero, that is, if τ is a formula in the variables of
Var(ϕ) that is known by b, then τ is a tautology. For if b does not know ¬ stP , then
some alternative world does not satisfy ¬ stP . That is, some alternative satisfies stP .
If this is the case for all P ⊆ Var(ϕ), b in effect knows nothing. Thus, as long as b
knows something, he can answer “yes” or “no” to some of a’s questions.

It follows after some reflection that the following strategy works for a indepen-
dently of what the other agents know. For all subsets P ⊆ Var(ϕ) such that ϕ ≤ stP
a needs to send out the question “? stP”. If he gets the reply “yes” at least once, stP
is jointly known. If no recipient answers “yes”, stP (and therefore ϕ) is not jointly
known. ϕ is jointly known if (and only if) every such disjunct is jointly known.

Notice that the answer “no” played a subordinate role. Indeed, b will answer
“no” just in case his epistemic alternatives all satisfy ¬ stP . In that case, the joint
knowledge (since it is not inconsistent) is exactly ¬ stP . For a he could reach that
conclusion also by looking at the “yes” answers of b: b will answer “yes” to all stQ
where Q 6= P. Hence the above communication game can also be played with the
following convention. There are only two answers to “?ϕ”: “yes”, when the addressee
does know that ϕ, and “no”, when the addressee does not know that ϕ (but it is
unclear whether or not he knows ¬ϕ). Even more can be concluded: the strategy
works even when a does not know what the answer “no” factually means. The only
thing that a needs to know is that “yes” means that the addressee knows that ϕ.
(This situation is not uncommon. It is very often not clear whether people simply
deny a claim or whether they wish to assert its falsity.)
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4 Network Structure

The structure of the network has been assumed to be trivial, namely the powerset
of G. What if that is not the case? Let us go back to the initial scenario where a
sends out the request “?ϕ” through the channel H. This may be interpreted as a
request to get to know whether or not ϕ is joint knowledge for the group H only.
But mostly a simply intends to get an answer but cannot reach everyone through a
channel. Such is the case if H 6∈ C . There are two ways to look at the matter. The
first option is that a is indeed interested in knowing what the group H knows. In
that case he can simply send out the request “?JHϕ”, thus indicating that he wishes
to know whether or not ϕ is joint knowledge of the group H. This requires that
knowledge operators are transitive, however, since a asks what the individuals know
about the joint knowledge of ϕ not about their knowledge of ϕ directly. Let us grant
however that knowledge is transitive. It is to be seen whether that is a solution to
a’s predicament. Let us consider the case ϕ = stP . Suppose b is asked to answer
“?JH stP”. If stP is not an epistemic alternative for b, b knows that ¬ stP , and therefore
he also knows that ¬JH stP if b ∈ H. (If b 6∈ H, he has no first hand knowledge of
JH stP , but may acquire it in the communication process.) So he will answer “yes”. In
the other case, the answer may be “no” or “don’t know”, depending on how much b
knows about other people’s knowledge. a can thus obtain full knowledge about JHϕ.

This shows how a can find out about what is jointly known by some group. This
runs into difficulties, however, as soon as the group H is not a channel or a 6∈ H.
Clearly, this can be the case. For example, let H = {ai : i < n} and the network only
has the channels {ai , ai+1 mod n} (so the network is a cycle of length n) and a = a0.
In this case a can only send messages to a1 and an−1, but not to, say a2, if n> 3. In
this situation, a0 needs to rely on the willingness of the others to complete the task.
To achieve this, we need to change the protocol.

Specifically, we need to assume that when a0 sends a query “?JHϕ” to a1 and a1
cannot reply “yes”, then a1 will take up the matter and ask around to find out more.
So, a1 will ask in particular a2 who either knows the answer or goes to ask a3, and
so on. This looks like a valid algorithm. However, it has a drawback. There is no
guarantee that it terminates. Initially, one may think that once the request took a full
round to finally reach a0, a0 could simply interrupt the chain and not send out any
more requests. However, some messages might bypass a0. To see this, let me change
the network a little bit. Let C := {{ai , ai+1 mod n} : i < n} ∪ {{an−1, ai} : i < n− 1}}.
Suppose the query moves around the circle and finally reaches an−1. If an−1 does not
know the answer, he will contact one of the ai, and so set the entire chain once again
in motion.

Further problems concern the fact that since everyone is allowed to issue a
request it is not clear whether the request for “?ϕ” that reaches a0 is actually a
follow-up to a request he initiated (rather than a1 or a2). In the absence of an
external scheduling mechanism, calls into the network will not die out if everyone
is maximally cooperative. An example is where everyone knows that p0↔ p1, but
does not know whether p0 (and p1) or ¬p0 (and therefore ¬p1). If someone issues
the request ?p0, the algorithm will run forever. Still, the surprising fact is that if a is
chosing his requests carefully enough, termination is guaranteed. Let the protocol
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for queries of the form “?JHϕ” be as follows. If b 6∈ H, b will not give an answer and
instead issue the same query to all channels, unless b knows the answer offhand to
be “yes” or “no”. (Here we take advantage of the communication, because answers
to queries force updates across the network.) If b ∈ H and the answer to the query
is “yes” or “no” (because of this epistemic alternatives), that answer is sent and no
further action is taken. In the remaining case, b will not send out this answer and
instead send out “?JHϕ” to all channels. Upon receiving the answer “yes” or “no”,
b will answer back to a with that same answer. This means that the answer “don’t
know” is in fact never used.

Call H totally connected if for every a and b there is a chain of channels connecting
a and b. Alternatively, let a VC b if there is a C ∈ C such that a, b ∈ C . H is totally
connected if and only if V ∗C = H2.

Theorem 3. Let G be totally connected and H ⊆ G. Assume that ϕ is jointly known
by H. The maximally cooperative protocol for “?JHϕ” terminates if for all P ⊆ Var(ϕ)
sender sends out the request “?JH stP” for all stP ≥ ϕ in addition.

Proof. Here is the catch. Suppose that stP is true in every epistemic alternative for
b. Then b knows that stP and he will answer the request “?JH stP” with “yes”. His
answer will get known to the entire channel to which the request has been sent. ¬ stP
will cease to be an alternative for members of that channel. Thus, effectively, after
a few rounds ¬ stP will be eliminated throughout H. The protocol will then require
termination. If all requests are sent out, and ϕ is jointly known, then at some point
all alternatives incompatible with ϕ will eventually be eliminated. At this point the
answer to the question becomes known to everyone.

This is reminiscent of the muddy children paradox. The more answers appear the
more knowledge is acumulated and allows to give answers to questions to which no
helpful answer existed before. The glitch here is that a clever initialisation by a can
help to make even the maximally cooperative process terminate without scheduling
“from above”. However, the problem is that for this algorithm to terminate we need
that ϕ is known. We cannot eliminate it. Suppose for example that ϕ = p0 and
no one in the entire network knows either p0 or ¬p0. Then the algorithm never
terminates because no one is in a position to answer the request.

To remedy this, we propose a different algorithm. Instead of asking “?JH stP”,
a sends out the requests “J{b} stP” for every b ∈ H. Since b can always answer this
question, this is garanteed to terminate. The proof is now easy. Since b can be
reached (by connectedness) the request will eventually reach b provided that all
members of the network try to pass on requests to as many members as they are
connected to.

Theorem 4 (Guaranteed Termination). Let G be totally connected and H ⊆ G. The
maximally cooperative protocol for “?JHϕ” terminates if for all P ⊆ Var(ϕ) and all
b ∈ H sender sends out the request “?J{b} stP” in addition.

Consider again the query “?JH p0” in a network where no one knows p0 or ¬p0.
In this situation, b will respond “don’t know” to the question ?Jbp0”, and also to the
question “?Jb¬p0”. From this one can infer that both p0 and ¬p0 are possibilities for
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b. The algorithm terminates for the simple reason that there is no supposition that
anyone other than b himself will know more about what b knows. That is to say, we
assume that the protocol will not make b send out a request for help on questions
about his own knowledge.

Notice that the “envelope” JH and J{b} is crucial in allowing the participants to
route the requests. At the same time—because the message is interpreted as given
verbatim—they distort the original query because they ask about what the individuals
know to be their knowledge rather than asking about their knowledge directly. In
other words, we assume that knowledge satisfies S4.

Finally, there is a different solution to the problem. Change the protocol as
follows. On receiving the request “?JHϕ” an agent b will do the following. If b
knows the answer he will reply. Otherwise he will send out the request “JH−{b}ϕ” to
all channels, provided that this is not empty. However, H − {b} = ∅ exactly when
H = {b}. In that case, b will give the answer as best as he can. I call this the group
distribution protocol.

Theorem 5 (Guaranteed Termination). Let G be totally connected and H ⊆ G. The
group distribution protocol for “?JHϕ” terminates if for all P ⊆ Var(ϕ) and all b ∈ H
sender sends out the request “?J{b} stP” in addition.

How can we see that this is correct? At first, the query “JH stP” will be sent out
into the network and will distribute itself unchanged until it reaches some a ∈ H.
This will then create another query, namely “?JH−{a} stP”. And so on, until a query
of the form “?J{b} stP” is issued that eventually reaches b. b will answer the query,
and the answer will propagate through the network until everyone knows it. At
this point the query “?J{b} stP” will no longer be propagated and will die out. When
finally all such queries have been propagated, the answer to “?JH stP” becomes known
throughout the network, and the algorithm terminates. When this has happened for
all stP , the answer will be known for ϕ as well.

5 Conclusion

This paper is a modest attempt to characterise the notion of joint knowledge and
show how agents can find out whether a proposition is or is not jointly known by a
group. In closing, I would like to point out some wider significance of this endeavour.

Humans are thirsty for knowledge. Research or daily experience both continue
to give us new insights and knowledge. Thus, it is not to be expected that all joint
knowledge can one day become common knowledge given enough communication.
What is more, there is so much accumulated knowledge that it is not even possible
to store all knowledge everywhere. Thus, we seek to distribute the knowledge in a
network so as to share the burden of storing it. There is no difference in principle
between a bunch of humans and a server farm, in fact. There is a tradeoff between
distributing knowledge in a network and storing it at each location separately.
Similarly, as humans we need to balance knowing something by heart and having
it available from somewhere on need. The terms of the tradeoff are not logical: I
have shown how we can get the desired answer. The tradeoff is in terms of effort, of



9 Marcus Kracht

which I have said nothing above. I shall leave that to another occasion.
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