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The Fine Structure of Spatial Expressions
In this paper I argue that the meaning of locative PPs is ob-
tained in several stages, more than hitherto assumed. Each of
these stages corresponds to a layer of the PP. This is in line
with recent developments indicating that the PPs have more
than just two heads (Svenonius (2006)). The main innovation
of this paper consists in a new way in which the semantics of
location denoting PPs is conceived. The idea is that these PPs
induce a momentary coordinate frame into which the space
is coded. This coding, called aspect, is also compositionally
defined. Therefore, in order to understand this process prop-
erly one needs to look not only at the meaning of the elements
but also at the accompanying aspect they induce on the space
around us.
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1. Introduction. This paper is a continuation of Kracht (2002).1 Recently,
new work has appeared or come to my awareness that has made it neces-
sary to rethink large parts of the earlier work. I am referring here especially
to O’Keefe (1996, 2003), Svenonius (2006), and Zwarts (2003, 2005). The
novelty of the present paper is that it uses in addition to the meaning of an
expression also the aspect, which is an encoding of the space surrounding us.

My main interest is in finding the exact nature of meanings of the vari-
ous parts involved in a locative expressions and how they work together to
form the overall meaning. Much of what I am going to say is not all that
new. However, it seems to me that there has been little interaction between—
especially—semantic field work and linguistic theory, notably formal seman-
tics. For example, there are studies on direction in language (see the collec-
tions (van der Zee and Slack, 2003), (Senft, 1997), (Bennardo, 2002), (Levin-
son and Wilkins, 2006), and the monograph (Levinson, 2003) among others),
yet formal semantics seems to be untouched by it. I am trying to rephrase
what has been said in other work in terms of conventional (=Montague style)
formal semantics in order to bridge this gap. In doing so, I also wish to get a
tighter grip on the conceptual issues raised by expressions for location.

2. The structure of Local PPs. The structure of locative PPs is traditionally
thought to be as follows (see Jackendoff (1983)):

(1) [PDir [PStat DP]]

Here, PStat is a static preposition2 and PDir is a preposition denoting a path or
a movement pattern, depending on conceptualisation. An exemplification of
this structure is

(2) [from [under the bridge]]

‘the bridge’ denotes a particular object; ‘under’ selects a location on the basis
of this object. Finally, ‘from’ describes a motion in space on the basis of the
location. Recently, it has emerged that there is more structure to locative PPs.
Based on data of Kham and other languages, Svenonius (2006) concludes
that inside PDir we also find a projection of PAxPart, describing axial parts of
an object (see also Pantcheva (2006)). Caponigro and Pearl (2006) argue for
the existence of a silent location creating preposition, which I call here PLoc.
Taking this together we arrive at the following structure.

(3) [PDir [PStat [PAxPart [PLoc DP]]]]

An example, analysed in detail in Section 7, is

(4) [Dir to [Stat in [AxPart front of [Loc e [DP Schumacher’s car]]]]].

The present paper will fill this structure with semantic detail. It will be seen
that each of these projections can independently be motivated and that they
are type theoretically different. (For the notation on types see Appendix B.)
This provides a convergence of purely semantic analysis on the one hand and
syntactic/morphological analysis on the other, which is so often lacking. Part
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of the reason that the relationship is so tight is in my opinion the fact that the
structure of PPs is less obscured due to movement than that of a clause.

3. Aspects of Space. This paper will be incomprehensible without getting
clear about certain fundamental distinctions. To make this more accessible to
a linguistic audience, I have moved the technical discussion to the end (see
Appendix A). Here I shall deal with the conceptual issues. One important
issue is the distinction between points, vectors and coordinates. On the one
hand there is an ontological distinction between them (see also Appendix A).
On the other hand the same space can be looked at essentially in three ways,
using points, using vectors, and using coordinates. These ways of looking at
the same object (the space) I call an aspect. The space consists of points (the
aspect is the identity). Points are given to us as locations of things. Based
on some fixed givens we can name the locations (or points) via some scheme.
The first scheme is by means of vectors. These are sets of pairs of points
(see Appendix A). A vector indicates motion. (The name comes from Latin
vehere ‘to carry, to drive’.) Given a set of cardinal points we can set up a
coordinate frame and associate with each point a tuple of numbers, called the
coordinates.

The distinction between these three notion is relevant even in the Euclidean
space R3, where points are triples of numbers, and vectors can be (and often
are) seen as members of the space itself. Even here the identification be-
tween points and vectors is not as innocent as it appears because the coordi-
nates of an object change as we change the cardinal points of our coordinate
frame. Thus, coordinates are not absolute; they are established with reference
to some other points. This makes them impractical in daily life. We shall
return to this issue below.

However, the distinction is perhaps best seen by looking at the nature of
physical spaces. Spaces are sets of points that have a particular topological
structure. They constitute what is called a differentiable manifold: if you have
an object moving in it you can define the derivative of motion, the motion
vector. The motion vector, unfortunately, cannot always be identified with a
vector of your manifold. Consider living, as we do, on the surface of a ball.
Then if some object, say a car, is in motion along a street, the motion vector
points straight ahead. If you follow that vector you are actually moving away
from the surface. The car, however, does not actually follow that vector even
if it appears to go straight; rather, it will constantly readjust its motion vector
so as to stay on the surface. (This is a consequence of the earth’s gravity. If
that did not exist, the car would really leave the surface.) One may check in
fact that any motion vector for some object has the same property: though it
points in the direction of motion, it can only be followed for a small distance
until it needs readjustment. One would like to dismiss these facts as hair-
splitting since the curvature is so small. But I plead caution: we shall argue
that many Oceanic systems are exactly like our cardinal directions; but be-
cause the singularity of the system is quite close to the speakers, the anomaly
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of such systems is clearly felt. Also, when sailing with a ship, these problem
really do matter. Vector fields arise naturally (cardinal directions are a case in
point) and we shall look at them below.

Thus vectors arise as the directions of momentary motion. How can we
actually represent them? The idea is this. Manifolds are subsets P of the
Euclidean space Rn for some n. Vectors are not objects of P, they are equiv-
alence classes of pairs of points. At each point x. of P there is a so-called
tangent space of vectors tangential to the surface of P. (Intuitively, it is the
space of all vectors from x. to z. , where z. is infinitesimally close to x. .) A vector
field is a function f from P into the vectors of Rn such that for each x. , f (x. ) is
a member of the tangent space at x. . Vectors can be added but points or pairs
of points cannot (see Appendix A). Typically, sentences do not talk about vec-
tors directly. Mostly, they qualify their length (by talking about speed). For
example, the following does not talk about a motion vector, it only gives us
begin and end points of a motion event.

(5) Jack was driving from Paris to Bordeaux.

A further distinction to make is that between points and their coordinates.
It is often taken for granted that points in space simply are triples of numbers.
The fact that this identification is possible in theory does not mean, however,
that it is practically speaking helpful. There is namely a difference between
talking abstractly about coordinates and actually calculating with them. There
are good arguments to reject the view that humans store locations of objects
by assigning absolute coordinates to them (a view, that has to my knowledge
never been explicitly proposed anyway):

(1) it is very difficult if not impossible to establish these coordinates in
the first place, and

(2) since we are ourselves moving in space we would either have to con-
stantly update our own position or else recalculate all coordinates of
the objects.

(3) there are no agreed upon coordinates of universal validity.
Instead, we establish coordinates—when needed—relative to some objects.
And so we express location relative to an object (the landmark) and all posi-
tions are calculated relative to this object. Thus whether or not an object is
seen as ‘moving’ depends on its relative position with respect to the landmark,
and not on its own movement.3

To see the difference, consider two racing cars, one steered by Schumacher
and the other by Alonzo. Alonzo is staying exactly 50m behind Schumacher
throughout the first lap. One way of saying this is as follows.

(6) Alonzo stayed behind Schumacher during the first lap.

It is clearly not the case that Alonzo’s car was at rest. It was, however, at rest
relative to the other car. To express this simple fact in absolute coordinates—
anchored, say in Greenwich—would be a painful exercise, and useless, too.
Instead, we think of Schumacher’s car as the origin of a coordinate frame
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relative to which the trajector’s location is defined. Now, if there is anything
we must take home from physics it is this: it does not matter where we choose
the origin of our coordinate system. All that changes is the triple of numbers
for each point.

The point ultimately is what actually is cognitively speaking the most con-
venient way to establish or find a location. We would expect on that basis that
absolute coordinates are rarely used as opposed to positions relative to known
landmarks (mountains, buildings etc). Moreover, we use polar coordinates,
separating distance and orientation, rather than Cartesian coordinates. This
has been established also experimentally (see Landau (2003) and O’Keefe
(2003) for just two sources).

However, as much as the present paper is informed about the cognitive
research on space, it is not the primary goal to go into any details of it. Rather,
I want to take the opportunity to develop a framework inside formal semantics
that takes as much advantage as it can from cognitive and foundational work
in order to present a coherent picture. Again, Joost Zwarts in the work cited
above has taken important steps in this direction. What is missing so far is a
complete, bottom-up picture of how spatial meanings are being built.

4. Orientation. We shall walk the reader through the three steps: from ob-
jects to axial parts, from there to locations, and finally to directions. (As will
become apparent later, some of these steps are optional.) The reader should
think about the example (4). At the bottom we have an object, from which
we extract a location. Using the object we establish some target location us-
ing polar coordinates: they consist in a direction combined with a distance.
While the distance is given by the metric of the space, the direction is estab-
lished with reference to some cardinal axes. Here is an example.

(7) We live 1/4 mile to the west of UCLA.

The reference point is (the location of) UCLA, the direction is ‘west’, and the
distance is 1/4 mile. We occasionally draw attention to the fact that statements
such as (7) must be understood with reference to some chosen ‘centre’ of the
region under discussion. For it is evident that distance from a region is not
well defined if that region is large, as in this case.

An example involving motion is this.

(8) They sailed north for 1000 miles.

The reference point is (the location of) the ship, direction is ‘north’, and the
distance covered is 1000 mile. There are significant differences between these
examples, as we shall see.

4.1. Origin. The calculations begin at the bottom, with the element e of (4).
It is usually empty. It derives a location o. from an object. Moreover, as it
does so, it provides us with a new aspect to our space: from now on we may
actually look at each of the space points as a vector. Namely we associate to
x. the vector −→o.x. .
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The DP provides us with the landmark (or ground, depending on usage).
From this we derive a region as follows. We assume that there is a function
loc′, which, given an object x and a time point t returns the region that x (or
more exactly the solid of x) occupies at t.

(9) loc′ : e × τ→ r

To define the origin of the coordinate frame, we can make several choices,
for example, we may choose the volumetric centre (see Appendix A for the
function c(·)):

(10) origo′ : e × τ→ p : (x, t) 7→ c(loc′(x, t))

4.2. Directions. Having established the origin, we now turn to coordinate
frame. The coordinate frame is the basis for defining any directions. It needs
three points that define what I call the cardinal directions, which we may,
loosely speaking, identify as ‘up’, ‘front’ and ‘left’, in that order.

Definition 1. A coordinatiser is a function from points of the space (and ad-
ditional parameters) into the set of coordinate systems such that f (x. ) is a
coordinate system anchored at x. .

Thus, coordinatisers are mappings from P × S into P4, such that f (o. , ~q) =
〈o. (~q), p. 1(~q), p. 2(~q), p. 3(~q)〉 is a coordinate system (where ~q ∈ S is a possibly
empty sequence of extra parameters). The intuitions behind this is that the
coordinate system represents an ideal viewer positioned at o. , facing p. 2, head
directed towards p. 1. Our definition therefore restricts the range of coordi-
natisers to right handed orthonormal systems. This can be relaxed; we may
allow vectors of any length for the coordinate systems (applying some rescal-
ing, so that the metrical structure is not affected) and we may even allow skew
coordinates (where the axes are not orthogonal to each other). Nothing will
affect the setup that I sketch here, so I shall remain with a more conservative
choice. Once a coordinate frame has been set up, our aspect on the space
changes again; now points are no longer assigned vectors, but rather triples of
numbers, called coordinates (Cartesian or polar).

Alternatively, a coordinatiser is a triple of maps

(11) (x. , · · · ) 7→ 〈u(x. , · · · ), f (x. , · · · ), `(x. , · · · )〉

where u(x. , · · · ), f (x. , · · · ) and `(x. , · · · ) form a right handed system of vectors.
Here the dots represent additional parameters on which the functions depend.
This allows to reduce coordinatisers to maps from P to vectors, as we shall
from now on assume. As Levinson (2003) explains, there are mainly three
systems, absolute, intrinsic and relative. The key difference between them is
the number of parameters that go into their definition.

4.2.1. Absolute Frames. The easiest case is provided by functions needing
no additional parameters. These are the absolute systems. The standard ab-
solute system derives from a coordinatiser which returns for every point on
earth three directions: up, north, and west. However, there is more flexibility.
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A absolute system creates a coordinate system based on only one input: the
origin.4 Given that we need three vectors, it is easy to see that an absolute
coordinatiser is a triple of vector fields.

Recall that a vector field is a function that returns for every point a vector.
Examples of vector fields are: the direction and string of wind on earth. There
is a theorem known as the Hairy Ball Theorem, which says that for every
continuous vector field over the earth there must be at least one point for
which the value of the vector field is the zero vector. Thus, there must always
be one point on earth where the wind is not blowing. There is an application
for absolute systems: no matter how an absolute system is defined, it is either
discontinuous or is undefined at certain points. Consider for example the
vector field λx. .north′(x. ) denoted by ‘north’, which returns for every point a
unit vector pointing north. By the Hairy Ball Theorem this is impossible.
Indeed, if you are standing on the north pole, there is no direction north any
more, while if you are standing on the south pole, any direction could be
called north. Similar systems are found in many Oceanic languages: these
generally have two directional terms, one meaning ‘seaward’ and the other
‘landward’ (see part 4.2 in the survey (Palmer, 2002)). The ‘landward’ vector
points from the location towards some specific location .̀ c on the island, say,
the peak of some mountain. (Oceania consists basically of plenty of relatively
small islands.) ‘Seaward’ points opposite to ‘landward’. Obviously, when
standing at that location .̀ c, neither ‘landward’ nor ‘seaward’ are defined any
more. If we were to extend the system over the entire surface of earth, there
would be analogous point (the antipode of .̀ c).5

The Oceanic systems work well on a small scale, while they become un-
usable on a large scale. Our cardinal directions are somewhat hard to use in
general, and people vary in their ability to use them consistently. Levinson
(2003) has argued that speakers of Guugu-Yimidhirr manage to keep track of
the direction of north, and has argued that this is due to the lack of intrin-
sic or relative frames. Such language is certainly extreme. Moreover, more
than just the influence of language seems to be needed. Ed Keenan (p.c.)
tells me that conversations in Malagasy can only be successful if the partici-
pants know where north is. In contrast to speakers of Guugu-Yimidhirr, who
seem to manage this orientational task with considerable ease, one does find
Malagasy speakers enter in a conversation with people in a foreign village
and, before starting the actual conversation, ask the other one “Tell me where
north is!”. Thus, setting up coordinate frames (and therefore coordinates) is a
considerable task, one that has been somewhat neglected in the work in formal
semantics of spatial expressions.

4.2.2. Intrinsic Frames. Coordinatisers that are not absolute are relative. A
subpart of the relative coordinatisers are the intrinsic coordinatisers. An in-
trinsic coordinatiser is one that uses the properties of the landmark alone. The
additional parameters are thus the landmark plus its orientation and posture.
One example is ‘in front of’, which defines an axis depending on the canonical
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front of the object. I will not go into much detail; the front is as much shape
dependent as it depends on use, for example. Suffice it to say that ‘in front
of’ is certainly not absolute since on the same spot objects can be oriented in
different ways. A distinct version of intrinsic frames is exemplified by ‘ahead’
or ‘behind’. The direction ‘front’ is here specified using the direction that the
landmark is taking at reference time. This is one use of ‘behind’, which is
distinct from another and which uses the canonical orientation rather than the
direction. This can lead to ambiguities. Consider the following sentence

(12) Alonzo is right behind Schumacher.

Imagine the situation where Schumacher is actually driving backwards. Then
there is a conflict between an understanding of ‘behind’ as deriving from ‘to-
wards the rear of the car’ and another understanding which is ‘against the
direction of movement’. Typically these are aligned: if someone is driving
forward, in order to face the people behind him he has to turn his head, that
is, look against the direction that he is driving. But when he is driving back-
wards, he is facing the people that are driving ‘behind’ him, in one sense of
‘behind’; but in another he is not. This ambiguity is pervasive. ‘Top’ can
mean among other: ‘against gravitational force’ (absolute), or ‘in direction of
its top’ (intrinsic).

In Niikanne (2003) it is reported that Finnish has postpositions that can
only be used when the landmark is in motion.

Buick on Volvon edellä.(13)
‘The Buick is driving such that it stays in front of the Volvo.’
Buick on Volvon edessä.(14)
‘The Buick is in front of the Volvo.’

I analyse this as follows. The postposition simply requires motion of the land-
mark. It is not clear to me whether this is because it establishes the coordinate
frame on the basis of the movement direction (since this would require mo-
tion). That will have to be established.

4.2.3. Viewer Oriented Frames. There is a third kind of coordinatiser,
called relative by Levinson; since the previous was also relative, let me call
this one viewer oriented. This one involves yet another point, namely the
point of a viewer. The latter is left undefined; under normal circumstances it
will be ‘speaker’s eyes’, but that is shiftable. One situation where this might
occur is in indirect speech or speech or attitude report. The viewer contributes
a canonical system in the following way. ‘Up’ is aligned with ‘top’ (so, if the
viewer is standing upside down, that may be what other people call ‘down’).
‘Front’ is aligned with the vector from viewer to landmark. (And here, as in
all cases, directions are established from centre of the solid to centre of the
solid, or, in the case of humans, using the ‘third eye’ in place of the volumetric
centre as origo.) ‘Top’ presents this third kind: I can use it with viewer cen-
tred coordinates. When I am standing upside down then what I call top is what
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other people call bottom. Let me note that viewer centred directions are sub-
ject to the same dichotomy as tenses: we can imagine them to pick as viewer
the one producing the utterance, or the one holding an attitude in an attitudi-
nal report or issuing the utterance in a speech report. In Pima (Uto-Aztecan),
verbs are obligatorily accompanied by particles that indicate whether the sit-
uation happens in front of the speaker or on the side or elsewhere.6 These
particles respond to the place of the person issuing the utterance; when used
in reported speech, they respond to issuer of the utterance in which they occur.
Thus, they are relative or shiftable.

I will briefly mention a subtlety concerning orientation. I am consistently
speaking of vectors. This means that given a point as origin and a line through
it, there are two unit vectors originating at this point, and they go in opposite
directions. This matters, though not always to the same degree. There is a
noticeable difference between ‘up’ and ‘front’ on the one hand and ‘left’ on
the other. The first two typically are distinguished form their antipodes ‘down’
and ‘back’, while many languages do not differentiate ‘left’ and ‘right’. This
happens in some Oceanic languages (see (Palmer, 2002), or (Hyslop, 2002)
for specific cases). Psychologically, confusion between ‘left’ and ‘right’ is not
uncommon, while the other directions are never confused with their antipodes.
This is important insofar as the idea that a preposition such as ‘behind’ needs
an entire coordinate system to be defined will strike one as an overkill: it
simply needs only one direction (direction of movement) and is otherwise
rotationally symmetric. Yet, it makes a (psychological) difference whether
that axis is the ‘up’ or ‘front’ axis as opposed to the ‘left axis’ (see work cited
in Niikanne (2003)), and so I opted for the more elaborate analysis.

Before closing this section, let me add some remarks on the life span of
a coordinate frame. In principle, any preposition can use its own coordinate
frame. Thus, when we say something is south of UCLA and to my right I am
issuing descriptions based on two different coordinate systems. Furthermore,
one is intrinsic and the other is absolute. Thus, whether at a given instance
we apply our own coordinate system or an intrinsic one or an absolute one
depends—in part—on the preposition. Thus part of the meaning of the prepo-
sition is contained in the coordinatiser. (This is why I have decided to gloss
‘in front of’ as containing the parts ‘in (direction)’ and ‘front of’. The second
is the coordinatiser.) Not all prepositions need a coordinatiser; I mention ‘in’
as an example. True body part expressions are another case in point. In the
latter case we talk about the close region projected from the volumetric cen-
tre through some specified region of the solid. This part—it seems to me—is
specified independently of the coordinate frame. A case in point is provided
by ‘back’ in Zapotec, see (Lillehaugen, 2006). It has two meanings: ‘behind’
and ‘at or on the back of’. These are distinct in the case of a deer, for ex-
ample. It seems, if only for historical reasons, beneficial not to force the true
body part nominals through the process of coordinatisation, and have them
establish the region directly through projection from the volumetric centre.
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This does throw up questions about the entire system of prepositional mean-
ings in a language and its interconnections because we need to know when
and how it is that a body part nominal is coerced into a purely spatial expres-
sion that functions by means of coordinatisation. The empirical side is well
documented (see (Svorou, 1993)). What I wish to provide here is a formal
framework within which these questions can be raised to sufficient degree of
precision.

Also, if a rocket is flying vertically upwards, then to fly behind the rocket
is the same as to fly upwards. The ‘front’ axis then seems to be aligned with
the ‘up’ axis. This, however, is a misunderstanding. Each spatial expres-
sions projects its own coordinate system; sometimes some of the expressions
are used with the same coordinatiser, for example, ‘south’ and ‘west’; and
similarly ‘front’ and ‘left’ in their intrinsic readings. Also, many coordinate
frames that appear to be skewed result from a conflict between the definitions
of the axes. Some axes are defined by the sun, others by the direction of winds
(e. g. the Monsun), yet others by the shape of the environment (the coastline,
rivers), see (Palmer, 2002) for details. In all these cases, it is generally as-
sured that different adpositions are based on the same coordinate frame and
therefore do not constitute evidence for skew coordinate systems.

4.3. Summary. The origo is defined as above. The ‘up’ axis is typically
defined to be ‘against gravitational force’. (Exceptions exist.) So, it remains
to specify ‘front’ and ‘left’. Here, considerable variation occurs.

À Absolute type. The directions are fixed by the origo o. alone. Typical
representatives: ‘north’, ‘west’.

Á Intrinsic type. The directions are fixed by properties of the landmark
x alone.
(a) ‘front’ is defined to be: ‘in direction of x’s motion’. This ob-

viously requires x to be in motion. Typical example: Finnish
‘edessä’ (see (Niikanne, 2003)); English ‘behind’.

(b) x has an inherent axis of the required kind (people, animals, cars,
chairs, buildings). Typical example: ‘in front of’.

Â Viewer oriented type. The directions are fixed with reference to a
second entity (typically the viewer). The front/back axis is determined
by drawing a line from viewer to the origo. Typical examples: ‘be-
hind’. (In Hausa, ‘in front of’ is used in this situation just like English
‘behind’, as if the object faces the same way as the viewer rather than
facing the opposite direction.)

It is noted that the Hausa preposition ‘in front of’ is classed as intrinsic, but
from a type theoretic point of view it must be seen as involving the viewer; it
is therefore viewer oriented.

Notice the qualifying phrase ‘of the right kind’ in Á(b). A flagpole, for
example, has an axis, but is significantly less felicitous with ‘in front of’ since
its canonical orientation is upward. It is interesting to note that if that same
flagpole was lying on the ground, still the phrase ‘in front of’ is not felicitous
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simply because the flagpole has no intrinsic front-axis. One should bear in
mind, though, that this is a convention of the phrase ‘in front of’ and the
English language.

It thus emerges that the sentence ‘the car turned left’ can have various dis-
tinct meanings. If the car is moving we may consider ourselves aligned with
its motion vector and determine the direction of ‘left’ using the direction of
our left arm. This is independent of which way the car or the driver is facing.
If you are sitting in the car facing opposite, ‘left’ then means exactly the other
direction. Still different is the meaning of the sentence uttered by an outside
observer, who may take his own perspective on the matter. Crucially, the dis-
tinctions have nothing to do with the direction of ‘left’ per se. They have to
do with the way the coordinate frame is established.

5. Location. When we are done with setting up the coordinate frame, our
space can be seen as fully coordinatised. Regions can be coded as subsets of
R3, with the coordinates established using the origin and the axis system. We
have therefore reached a third level of abstraction, where the spatial schema
is now represented using triples of numbers.

The location of the figure is determined on the basis of the location of the
landmark. This is typically done by giving a direction and a distance, both of
which are optional.

The library is 100m to the west from here.(15)
The squirrel is in front of the car.(16)
Hamburg is less than 300 km away from Berlin.(17)

The distance is determined by the metric and shall interest us no further; the
direction however makes use of the coordinate frame just established. A
preposition such as ‘in front of’ determines the direction where the figure
is found by comparing it with the direction of the front axis. This is in turn
the y-axis of the intrinsic landmark system.7 This is the idea behind templates
(from (Logan and Sadler, 1996)). A template is a function fromR3 to [0, 1] (of
type ξ → d). It measures the degree to which a given point is in the described
location (see also O’Keefe (1996, 2003)). A point will fit the description to
a certain degree and so there are not just two answers to the question ‘is x
in front of y’ but rather a continuum; I shall refer to the elements of [0, 1] as
truth degrees.

5.1. Spatial templates. A spatial template tells us how well the trajector
is located, based on its coordinates. It takes advantage of the coordinate
frame. O’Keefe (2003) gives specific formulae to calculate the value. The
formula correlates distance with aberration from the ‘front’ axis. For exam-
ple, O’Keefe (2003) uses the formula for the so-called boundary vector cells
(BVC), which predicts the strength of the stimulus in a cell (I have simplified
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the formula setting di = ϕi = 0; ∝ means ‘is proportional to’).

(18) g(r, θ) ∝ exp [−r2/2σ2
r ]/

√
2πσ2

r × exp [−θ2/2σ2
a]/

√
2πσ2

a

These templates have the shape of a raindrop. The idea here is that there is
a two way normal distribution across distance and aberration. From this we
can get a template ϕ(x) calculating the polar coordinates for x before submit-
ting this to g(r, θ).8 Therefore, the meaning of ‘in front of’ does not simply
establish two sorts of regions, those that are in front of and those that are
not. Rather, the judgement is graded. An object is not merely ‘in front of’
another object; it is ‘in front of’ that object to a certain degree. The degree of
fit is added through a process that is governed by cognitive processes which
are independent of the language in question.9 An additional consequence of
formulae like (18) is that the acceptability of ‘in front of’ decreases with dis-
tance, which is desired. All directionals have the tendency to become less
good at great distances.

If this template derives from the physiology of the visual apparatus, then
from a linguistic perspective it is enough to know that ‘in front of’ denotes a
certain axis. Linguistically, the meaning of ‘in front of’ resides entirely in the
coordinatiser (rather, the second component thereof). This at least is language
dependent. In Zapotec, for example, many objects have intrinsic parts (see
Levinson (2003)), and in Hausa trees have intrinsic fronts. We may learn that
‘front’ is determined by shape, use, direction to different degrees. However,
once we know all this there still is a residue that is encoded in the template
and seems to be quite independent of language, and more or less cognitively
determined. However, it is important to point out that the fact that ‘in front
of’ can be taught simply by saying which axis it establishes does not mean
that the axis alone is its real meaning. The addition of templates definitely
changes the extensional content of ‘in front of’ and must therefore be counted
in. It is the fact that language is taught from humans to humans that allows us
to omit certain details of meaning. Part of the meaning is simply ‘subliminal’;
but that does not mean it is not there.

In order to judge whether an object is ‘above’ or ‘in front of’ a landmark,
several factors must be taken into account. These are: the aberration from
the principal axis that the localiser is based on, the distance of the trajector,
and the shape of both trajector and landmark. As O’Keefe (2003) points out,
there is a correlation between distance and aberration. The larger the aber-
ration, the closer the trajector must be in order to still be in the relation. All
this is a matter of the precise formulation of the relation. What is however
substantial is that the functions proposed in (O’Keefe, 2003) do not define
precise regions. Rather, they are continuous functions from coordinates to
[0, 1]. This affords us two interpretations: we consider a prototypical notion
of ‘in front’: no aberration, and at a certain distance. We then assign all other
points in space a goodness of fit value (from [0, 1]) which declares how well
the location of that point fits the description ‘in front of’. Or, we declare the

12



function itself to be the meaning of ‘in front of’ (which we have to do in an
extensional setting).

5.2. Graded Neighbourhoods. A template assigns values to points. How-
ever, the location of an object is a region. Therefore, we need to see how that
point based template can be upgraded to regions. This could be done in sev-
eral ways. One is to reduce the region to a point, say, the volumetric centre;
another is to average over the entire region; the third is to take the maximum
value over the region. I am inclined to dismiss the last option. The reason is
twofold. Consider a ring around the landmark. If we take the maximum value
we would get that the ring is a perfect fit for ‘in front of’, but this is intuitively
not right. I am unable to choose between the other two options. If we choose
the first, we now have constructed the core meaning of ‘in front of’ as

(19) ξ(r) := λr.ϕ(c(r)) : ρ→ d

(Recall that ρ ranges over connected subset of R3, not to be confused with
actual regions. As with ξ, a path connected set of triples may denote many
regions; exactly which one it denotes depends on the coordinatisation.) More
serious problems arise with the landmark itself. We have so far pretended that
the landmark is a point at the origin. But how about expressions such as ‘in
front of the house’? Here, different proposals have been made, see (Carlson
et al., 2003). Overall, the idea is to reduce region based relations to point
based relations, the difference in the proposals are mainly with respect to the
formula that is being employed.

Now take again the phrase

(20) in front of the house

The meaning we have just arrived at for this expression is that of what I call
a graded neighbourhood. It tells us for any region r to what degree it fits
the description. The limiting case of such a neighbourhood is provided by a
function that has only two values: true and false. For that function, a region
either receives 1 (is in the neighbourhood) or 0 (is out of the neighbourhood).
This is precisely the definition of neighbourhood in Kracht (2002). Here we
use degrees of membership.

5.3. Parametrised neighbourhoods. Since both the landmark and the tra-
jector may be in motion there is a complex interaction between the motion of
the trajector and the actual description as its motion has to be coordinatised
through the position of the landmark. To stay behind Schumacher is not to
stand still; in fact, the spectators cannot be said to stay behind Schumacher.
However, another pilot, say Alonzo, can stay behind Schumacher, though he
in fact is also moving very fast. Thus, to uphold a stationary spatial relation-
ship with respect to a moving landmark one has to move as well.

Fortunately, matters are not that complex. Since the landmark is the centre
of the coordinate frame, the motion of landmark is already accounted for.
Only the relative motion is visible. Let us see how this goes. The ingredients
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into the meaning of ‘in front of’ are—at least—twofold. First, we are given a
coordinatiser κ(x, t), which yields a coordinate frame based on the landmark
x and time point t. The second ingredient is the template χ.

(21) σ(x, t) := (χ(loc′(x, t)κ(x,t)))κ(x,t) : p→ d

This function depends on the object and time point. To remove the time de-
pendency we abstract:

(22) σ := λx.λt.(χ(loc′(x, t)κ(x,t)))κ(x,t) : e→ t → p→ d

So, the meaning is a function from objects to functions from time points to
functions from points to values. It gives acceptability ratings for space points,
given a landmark and a time point.

5.4. Distance. Distance to the landmark is given in terms of phrases like ‘half
a mile’, ‘3mm’ and so on. The reflex of a syntactician is to label these phrases
as specifiers of the PP, which means they would semantically compose with
the P′. The meaning of the P′ as we have just indicated is a parametrised
region. To apply the meaning ‘half a mile’ to the parametrised neighbourhood
‘behind Schumacher’ requires considerable sophistication, though. This is
because it factually states the distance of the trajector from the landmark (the
r in polar coordinates), and such information is only indirectly present in the
parametrised neighbourhood, if at all. On the other hand, in and of itself
it can be construed as a relation between regions, and so there is a natural
interpretation of it as a modifier for P.

6. Directionality. We have now finished the semantics of the inner layers:
the meaning of PPStat is a function from time points to functions from space
points to the unit interval. There is a time dependency, which monitors the
position of the trajector relative to the landmark. The evaluation metric is
determined by the spatial template, which is part of the meaning of PStat.

Now we shall look at the outer layer. Directionality specifies change of the
trajector with respect to the landmark. Fong (1997) has analysed direction-
als as phase quantifiers. These are special functions from I to {0, 1}, the set
of truth-values. By contrast, Zwarts (2005) claims that directionality is best
described in terms of canonical paths. In (Kracht, 2002) directionals were
classed as event modifiers, and directionality was taken to be a phase quanti-
fier, though the definition of a phase quantifier was slightly more liberal. By
generalising the idea of phase quantification even more, we obtain a synthesis
of these views.

Let us call a path a function π from [0, x]→ R3, where x ≥ 0.10 The veloc-
ity is defined by the length of d

dtπ(t). (This requires that π is differentiable.) π
is canonical if its velocity is 1.

Lemma 2. Let π : J → R3 be a differentiable path. Then there is a positive
real number x, a monotone, bijective function σ : J → [0, x] and a canonical
path γ : [0, x]→ R3 such that π = γ ◦ σ. Both x and σ are unique.
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The number x is the length of the path π. Intuitively, γ represents the motion
pattern. It shows us in what order the object visits the space points. σ grounds
the abstract motion pattern in real time: it maps an interval of time points onto
the unit interval and shows how fast the movement is. Since d

dtγ = 1 we have

(23)
d
dt
σ =

∣∣∣∣∣ d
dt
π

∣∣∣∣∣
Since σ(0) is given, this completely defines σ.

Zwarts (2005) observes that movement patterns can be characterised as cer-
tain sets of canonical paths. We shall be content with a brief list.

À stative: the path stays inside the location;
Á cofinal: the path is moving into the location;
Â coinitial: the path is moving out of the location;
Ã approximative: the path moves closer to the location (but not neces-

sarily reaching it);
Ä recessive: the path moves away from the location.

The motion can in fact be recoded as a change in goodness of fit. Recall
that rather than giving us truth values, the spatial template actually supplies
real numbers between 0 and 1. These numbers depend—holding aberration
constant—directly on distance: the closer an object, the better the fit. It fol-
lows that a path is static if the goodness of fit remains constant and close to
1 throughout event time; cofinal if it improves (is upward monotone) during
event time and reaches 1 (or some sufficiently close neighbourhood); coinitial
if it decreases and approximative if it is monotone increasing. We can now
attempt a synthesis of these views in the following way.

Definition 3. A generalised phase quantifier is a function from [0, 1] to [0, 1]
(of type τ→ d).

The codomain is the domain of truth values, while the domain is actually
a unit time interval. Thus a generalised phase quantifier describes a change
in truth value. We expect this change to be continuous, but no such condition
has been put in. Directionality of movement can now be described entirely by
means of the (generalised) phase quantifier that it uses.

A movement is approximative if the phase quantifier is monotone increas-
ing, recessive if it is decreasing. Movement is cofinal if the quantifier is mono-
tone increasing and reaches 1, coinitial if it is monotone decreasing and starts
at 1.

7. The syntactic structure revisited. I shall now revisit the structure (3)
and retrace the types associated with the phrases. Our target phrase is the
somewhat stilted (4), repeated here as (24).

(24) [Dir to [Stat in [AxPart front of [Loc e [DP Schumacher’s car]]]]].

As we walk up the structure, not only do we get different objects, but also our
space gets structured differently; the aspect on it changes.
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Definition 4. An aspect on the space P is an injective function α : P→ Q for
some Q. The type of Q is the type of the aspect α.

We start with the identity aspect α : P→ P. on the space P. P is a manifold
embedded into some space Rn. The constant sc denotes Schumacher’s car.

7.1. PLoc. This element can be identified with loc′. Applied to an object
(denoted by the DP) and a time point (to be supplied), it yields a region.
Additionally, the region is compressed to a point, the gravitational centre.
This point serves as the origin of the coordinate frame. The space becomes
structured as a vector space (the tangent space to the manifold at the origin).11

The empty preposition argued for in (Caponigro and Pearl, 2006) is of the
kind PLoc.

Spatial points can be given as vectors. These vectors code the points as
follows: given ~x and the origin o. , the space point denoted by ~x is the unique
u such that (o. , u. ) ∈ ~x. If o. depends on time, so does u. . The aspect is the
function x. 7→ o., with o. the origin. It is of vector type (v). Thus, the contri-
bution of e is both in having a meaning and giving us an aspect. The phrase
[Loce [DPSchumacher’s car]] denotes the location of Schumacher’s car at t;
its aspect is the function assigning to each space point the momentary vector
from Schumacher’s car to that point.

Assume an object x. Assuming a time point t, we get an origo o. (t) :=
c(loc′(x, t)) and an aspect. Let ~·� denote the meaning assignment. Thus we
get three objects, the meaning, the origo, and the aspect:

~e� := λx.λt.loc′(x, t)
o. := λt.c(~e�(sc, t))

αe := λt.λx. .
−−−→
o. (t)x.

(25)

αe is a parametrised aspect. The entire phrase PPLoc is of type τ→ r (parametrised
region).

(26) ~e Schumacher’s car� = λt.loc′(sc, t)

The origo is the volumetric centre of Schumacher’s car. This is a time depen-
dent location, so of type τ→ p.

7.2. PAxPart. This element establishes a coordinate frame; more precisely,
it returns the three unit vectors. After this step, the space (more precisely
the tangent space) is fully coordinatised. We can now regard our space as
isomorphic to R3. A triple 〈x1, x2, x3〉 codes the vector

(27) ~x = x1e1 + x2e2 + x3e3

Let γ(x. ) := 〈u(x. ), f (x. ), `(x. )〉 be the canonical coordinatiser. (I am suppressing
the additional parameters on which it depends.) We assume that ‘front’ is
aligned with the y-axis, that is, with f (·). This is to say with more precision:
we assume that ‘front’ uses the coordinatiser γ and projects the result onto
the second component. In that case γ defines also the aspect change αfront
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contributed by the word ‘front’. This aspect change is not an aspect; it merely
takes us from vectors to triples, so it will be composed with αe to yield the
current aspect αg given further below.

~front� = λx. .λt. f (x. (t))

αfront = λt.λx. .λ~y.

 〈~y, u(x. (t))〉
〈~y, f (x. (t))〉
〈~y, `(x. (t))〉

(28)

(Notice that x. ranges over parametrised locations: τ→ p). The aspect is now
a (time dependent) function from P to R3. In the present case the aspect is
calculated using the origo, giving us a the contribution to the aspect by the
new word:

(29) αn := λt.λ~y.αfront(t)(o. ) = λt.λ~y.

 〈~y, u(o. (t))〉
〈~y, f (o. (t))〉
〈~y, `(o. (t))〉


The meaning of the entire phrase is obtained through the mediation of the
aspect. Let

(30) red := λr.λt.c(r(t))

This is a reduction from time dependent regions to time dependent points. It
should not be confused with the origo.

~front e Schumacher’s car�
=~front�(red(~e Schumacher’s car�))
=~front�((λr.λt.c(r(t)))(λt.loc(sc, t)))
=(λx. .λt. f (x. (t))(λt.c(loc′(sc, t)))
=λt. f (λt0.c(loc′(sc, t0)))
=λt. f (c(loc′(sc, t)))

(31)

The type of this expression is τ → v, a time dependent vector. Turning to the
aspects, we have αe(t) : p → v and αn(t) : v → ξ. The overall aspect is the
functional composition:

αg := λt.αn(t) ◦ αe(t) = λt.λx. .


〈
−−−→
o. (t)x. , u(o. (t))〉
〈
−−−→
o. (t)x. , f (o. (t))〉
〈
−−−→
o. (t)x. , `(o. (t))〉

(32)

7.3. PStat. This element picks out a location using a spatial template. This
yields a goodness of fit function: a function η : R3 → [0, 1], telling us for each
coordinate triple how well it fits.12 Using the aspect, this can be translated into
a goodness of fit for space points.

The phrase “front of Schumacher’s car” has type τ → v and aspect α of
type τ → p → ξ. This aspect is time dependent. It is used in establishing the
meaning of the element “in” (in the sense of “in direction of”):

(33) ~in� = λy.η(y)
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However, we do not want ‘in’ to act on triples but rather to locations. The
mediation is though the aspect. Thuse we want to get

(34) λα.λz. .λt.ξ(α(t)(z.))

The way to get this is by definition ‘aspectual encoding’. It returns for a
template i a recoding of the template in terms of the parametrised aspect:

(35) enc := λi.λα.λt.λx. .i(α(t)(x. ))

The aspect remains the same. Notice that this takes a space point (the location
of the trajector), transforms it into a coordinate triple using the aspect and
then measures its goodness of fit via η. The meaning of the entire phrase is
obtained by “aspect driven application”. The meaning of the head is applied
to the aspect of its complement using aspectual encoding.

~in front of e Schumacher’s car�
=enc(η)(αg)
=(λα.λz. .λt.η(α(t)(z.)))(αg)
=λz. .λt.η(αg(t)(z.))

(36)

which is of type p→ τ→ d.

7.4. PDir. The element describes a change of goodness of fit through time. Its
input is an interval (typically the event time) and an object (the trajector, the
mover of the event, see Kracht (2002)). Based on these two and the denotation
δ of PPStat we define the following generalised phase quantifier:

(37) π(x, I) := λt.(1/|I|)δ(c(loc(x, t)), t)

π(x, I) tells us how well the location of x fits the description within I. To
minimise distraction we assume that I = [0, 1]. Otherwise, we would have to
introduce a temporal aspect as well, in order to renormalise the time points.
This reduces the previous to

(38) π(x) := λt.δ(c(loc(x, t)), t)

The meaning of “to in front of Schumacher’s car” is the claim that the good-
ness of fit is increasing and reaches a certain threshold. So, define

(39) to := λq.((∀xy)(0 ≤ x < y ≤ 1→ q(x) < q(y)) ∧ q(1) > θ)

where θ ∈ [0, 1], but closer to 1 than to 0. to is a property of generalised
phase quantifiers saying that they are monotone increasing and reach some
threshold.

Now, let e be an event. Then time(e) returns the interval of e, which we
suppress, since it is [0, 1]) and mov(e) the trajector of e.

(40) ~to� = λπ.λe.to(π(mov(e)))
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Then, taking (24) to be an event modifier, we propose the semantics

~to in front of e Schumacher’s car�
=~to�(~in front of e Schumacher’s car�)
=(λπ.λe.to(π(mov(e))))(~in front of e Schumacher’s car�)
=λe.to(λt.~in front of e Schumacher’s car�(c(loc(mov(e)(t), t))))

(41)

This is of type ε → t, a property of events. It says that the degree to which
the mover of e is in the location of in front of Schumacher’s car during event
time increases and goes beyond θ.

8. Resilient cases. There are some expressions that do not fit the scheme as
outlined above. If the parallelism between syntax and semantics is perfect,
as I believe it is, they raise the question whether the projections postulated
in (3) are always present. A problematic case, already mentioned, is ‘in’.
There seems to be no need to establish coordinate systems in order to form an
opinion whether an object is in another object. There is no contradiction in
this; we may simply say that the semantics works without a coordinate system.
A second case is provided by ‘along’ and ‘around’. Here the decomposition
into an inner, static part and an outer, directional part is called into question.
For the static meaning of ‘along’ is the same as ‘near’, but the movement
pattern is not described using a generalised phase quantifier. Similarly for
‘around’. In this case, the movement must be described in different terms. We
are led to say that the directional part describes a certain kind of path in the
vicinity of the landmark.

9. Conclusion. The present paper has given a more fine grained picture of
how spatial meanings are built up from the basic meanings of words. In par-
ticular, the addition of the coordinatiser has led to considerable change in the
way this process is seen. For we must note that when people issue or process
spatial expressions there is no coordinate frame to begin with, or at least none
that is readily available. Hence, in many cases the first step must be to de-
fine an origo and coordinate axes. The choice of axes turns out to be subject
to many factors, as research has shown, and provides a fascinating topic in
itself. Once they are set, the meaning of axis directed Ps is actually in the
point case a single formula expressing a correlation between aberration from
the axis and distance from the landmark. This formula is called a template. It
takes values in [0, 1] and therefore allows to classify change in location using
a change in value. This feeds the final element of the locative expression, the
one that expresses movement with respect to the landmark.

The notion of aspect seems to be useful also for other areas of semantics.
We found the need to recode time points. The mechanics seems to be anal-
ogous, but a rigorous formulation still needs to be worked out. This must be
left to another occasion, though.
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Appendix A. Mathematical Preliminaries. I start with the following geo-
metrical structure. E is a three-dimensional Euclidean metric space. This
means the following. E consists of a set P or points, a set G ⊆ ℘(P) of lines,
and a set H ⊆ ℘(P) of planes, and a function d : P × P → R+, the dis-
tance function. d must be invariant under translations and rotations. Points
are henceforth denoted by a dot, like this: x. . The postulates are the typi-
cal postulates for three dimensional geometry: for any two different points
x. and z. there is exactly one line (denoted by x. z.) that contains them, for any
three points w. , x. and z. not on a line there is exactly one plane—denoted by
w. x. z.—that contains them, and so on.

Before I continue, I need to briefly discuss the status of these primitives.
It has been claimed repeatedly (see Gambarotto and Muller (2003) and refer-
ences therein) that the Euclidean geometry is not basic from a cognitive point
of view; and that it should be replaced by an approach based on regions. I
am sympathetic to these claims; however, as Howard (2004) explains, vision
is organised into several interacting layers of different degrees of abstraction,
and that shape recognition is only one such layer. Given that we are perfectly
able to recognise points within a region, I am not sure it is profitable to aban-
don the Euclidean space altogether. Ultimately, we can do something similar
to what has been done in research on time: there is a duality between an on-
tology based on time points and an ontology based on intervals. One can be
defined from the other. I should point out here one major difference between
my terminology and the one employed in mereotopology. A region is for me
not an arbitrary open subset of the space but rather a path-connected set (like
intervals on the real line). This is because I maintain that individuation of
objects crucially employs a notion of path-connectedness.

Let me now continue and explain how we derive the necessary geometric
concepts in E. Angles are measured by the length of the corresponding seg-
ments on the unit circle. Distance moreover introduces a topology via the
open balls. The open ball of radius δ around x. is the set

(42) Kδ(x. ) := {z. : d(x. , z.) < δ}

A set is open if and only if it is a union of finite intersections of unit balls. The
topologies on the lines and planes are introduced in such a way as to make the
map (x. , z.) 7→ x. z. (from pairs of different points to lines) and the intersection
(`1, `2) 7→ `1 ∩ `2 (from pairs of nonparallel lines to points) continuous with
respect to the topologies.

Given this, we can introduce the half line
7→
x. z. as the following set of points:

À
7→
x. z. ⊂ x. z. ; and x. , z. ∈

7→
x. z. ;

Á for every δ there is exactly one point in
7→
x. z. that has distance δ from x. ;

Â if z. and w. are such that d(x. , z.) > d(x. ,w. ), then

d(x. , z.) = d(x. ,w. ) + d(w. , z.)
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Having half lines, we can define the line segments by

(43) x. z. :=
7→
x. z. ∩

7→
z.x.

Given two points x. and z. , the ordered pair (x. , z.) defines a vector in the fol-
lowing way. We say (x. , z.) ∼ (v. ,w. ) if and only if (a) the lines x. z. and v.w.
are parallel, and (b) the lines x.v. and z.w. are parallel. In this case, the four
points form a parallelogram and opposing sides (the line segments) are of
equal length. A vector is an equivalence class of ∼. Vectors are denoted by
arrows, like this: −→x. z. (for the vector defined by the pair (x. , z.)). Given a point x.
and a vector ~v, there is a unique point z. such that (x. , z.) ∈ ~v.

Having introduced vectors, we can also introduce the scalar product. To
start, the norm of a vector −→x. z. is simply d(x. , z.). This is simply the length of any
of the line segments that are defined by pairs in the vector. Given two vectors
~x and ~y, we pick three points a. , b. and c. such that (a. , b. ) ∈ ~x and (a. , c.) ∈ ~y. Let
d. be the point obtained by drawing a line through b. perpendicular to a.c. . (This
is the ‘shadow projection’.) Then define

(44) 〈~x, ~y〉 :=
d(a. , d. )
d(a. , c.)

This number is independent of the representatives, and it also does not change
when the roles of ~x and ~y are interchanged. The form 〈−,−〉 is symmetric, and
linear in both components. Two vectors are orthogonal if 〈~x, ~y〉 = 0. That E is
three dimensional means that every sequence of pairwise orthogonal vectors
has length 3. Now fix any such sequence, 〈~e1, ~e2, ~e3〉. We require that these
vectors are of length 1. Given a vector ~x, we can now assign coordinates, x1,
x2 and x3, as follows

(45) x1 := 〈~x, ~e1〉, x2 := 〈~x, ~e2〉, x3 := 〈~x, ~e3〉

It is important to stress two things: these definitions apply to vectors, not to
points; and secondly, the coordinates are dependent on the coordinate vectors.
Both facts need close attention. The resulting triple is called a coordinate
vector.

First, three vectors alone do not allow to issue coordinates for points. In
order to do this, we must choose an origin. Given an origin o. , a given point
x. is now assigned the (unique) vector −→o.x. , and given the coordinate vectors
this latter vector is finally assigned a set of three coordinates. Coordinates
depend on the origin as follows. If we choose a different origin n. , the new
vector is obtained by adding (n. , o. ) to (o. , x. ), a vector that is independent of x. .
Coordinates also depend on the chosen vectors. First of all, the coordinate
vectors themselves also have coordinates. These are

(46)

 1
0
0

 ,
 0

1
0

 ,
 0

0
1
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The coordinate vectors are written vertically. The coordinate vectors are ob-
tained by

(47)

 x1

x2

x3

 =
 〈~e1, ~x〉
〈~e2, ~x〉
〈~e3, ~x〉


Let me briefly mention the following fact about coordinates. We may arrange
any three vectors ~x, ~y and~z into a matrix, by computing their coordinate triples
and arranging them in a sequence. If we do this with the unit vectors we get

(48)

 1 0 0
0 1 0
0 0 1


Now take three vectors ~a1, ~a2 and ~a3. These three vectors have three coordi-
nates each, called ai j for vector i, and so the sequence of these three vectors
form a matrix

(49) A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


Now, the following evidently holds for any coordinate vector x (on condition
that A is invertible):

(50) x = AA−1x

This is standardly seen as follows: the matrix A gives us the new coordinate
vectors, expressed in the old ones (so that we have numbers). Therefore,
A−1x gives us the vector x in the new coordinate system A. One says that
coordinates are contravariant, since you find them by applying the inverse of
A.

Generally, any invertible matrix can be used to recoordinatise the space.
However, for our purposes we can restrict attention to the following. A ma-
trix A is said to be special orthogonal if A−1 = AT , and A has determinant 1.
The group of special orthogonal matrices of E is denoted by SO(E). The ma-
trices describe either coordinate sets or transformations, just as triples stand
for points and vectors. We shall see how the ambiguity can be resolved. A
special orthogonal matrix describes a rotation in space. Thus, new coordinate
vectors A forming a special orthogonal matrix can be obtained by rotating the
original vectors.

Definition 5. A coordinate system is a quadruple (o. , e. 1, e. 2, e. 3) such that

À the vectors −→o. e. i have length 1;
Á −→o. e. i ⊥

−−→o. e. j if and only if i , j;
Â the system −−→o. e. 1,

−−→o. e. 2,
−−→o. e. 3 is right handed.

There are several definitions of right handedness. One is that the deter-
minant must be positive (in whatever coordinates, since it is independent of
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them); the other is that we can align them with thumb, index finger and mid-
dle finger of the right hand. Given a coordinate system C, we write x. C for the
triple of coordinates that identify x. in the coordinate frame C. Given a triple
~x of numbers, let ~xC denote the point that it defines in C.

A path is a continuous function π : I → P, where I is an interval. A region
is a path-connected subset of R3. Here, a set S is path-connected if for any
x, y ∈ S there is a path π : [0, 1] → S such that π(0) = x and π(1) = y.
Reg denotes the set of regions. Given a distance function for the space P, we
define the distance for regions R and S by

(51) d(R, S ) := inf{d(x. , z.) : x. ∈ R, z. ∈ S }

The volume of a region is defined as follows. Let C be a coordinate frame,
and RC := {x. C : x. ∈ R}.

(52) V(R) :=
∫

RC

dxdydz

Notice that this is independent of C (for this we require that the distance
function is invariant under translations and rotations). The volumetric centre
is now defined by

(53) c(R) :=
(

1
V(R)

∫
RC

d~x
)C

Notice that we have to first move to coordinates to do our calculations, and
then return to the points. The definition is independent of the actual coordi-
nates chosen.

Appendix B. Types. The semantics below makes use of type theory. Here
are my conventions. e is the type of objects; p is the type of space points,
v the type of vectors, ξ is the type of triples of reals; r the type of regions;
τ is the type of time points, i is the type of time intervals. p ranges over P,
our space, while v ranges over the set P × P/ ∼ and ρ over the set of path
connected subsets of R3. Finally, d is the type of truth degrees and t the type
of truth values.
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1I wish to thank Marcus Smith and Brook Lillehaugen and two anonymous referees for

insightful discussions. Thanks also to the audience of “Syntax and Semantics of Spatial P”
for their comments. Errors and omissions are my own responsibility.

2In this paper, I shall blur the distinction between pre-, post- and adpositions, as the exact
nature of the form does not matter. Also, I am not interested in whether what is a preposition
in one language is a case in another or something else.

3The reader may be aware that there is actually no such thing as an absolute coordinate
frame, so that even in physics it is pointless to ask which object is moving and which one is
not. In fact, constant motion cannot be differentiated from rest; only the change of velocity
can. Our earthly frame of coordinates, on which ‘north’ and ‘west’ and so on are defined
looks perfectly absolute, but as the earth is revolving around the sun the ‘absoluteness’ of this
frame only holds with respect to points on earth.

4I ignore here some fascinating complications. Some local expressions can be used only
within a certain range. For example, body parts may very often only be used if distances are
small. This is true even for English: you normally don’t say that Hamburg is to your left
when standing somewhere in Berlin facing north. The islands of Polynesia have a coordinate
system based on a seaward-landward axis as ‘front’. Such systems tend to be local, they are
confined to the (more or less) immediate surroundings of the island. For a specific example
of dependence on distance see (Florey and Kelly, 2002).

5It was Ben Keil who brought it to my attention that the Oceanic system is analogous to
our north-south system.

6Thanks to Marcus Smith for bringing this to my attention.
7More precisely, the way I’d like to think about it is to align ‘front’ with the x-axis, ‘left’

with the y-axis and ‘up’ with the z-axis. But this is a minor issue. Also notice that a language
can use several coordinatisers, and Ps select for one or the other. The details of this are
straightforward to implement.

8This is just a suggestion.
9It may depend on the number of oppositions the language provides, a point that I shall

suppress here for simplicity.
10I refrain from discussing the possibility of open or half open intervals. They are only rel-

evant in connection with aspect. Also, since we are now assuming that we have a coordinate
system, we treat space points as triples of reals. In general, paths are functions into the point
set.

11See (Kracht, 2002) for a discussion as to why objects and locations are conceptually
distinct in language.

12In the discrete case the function becomes a subset of R3, which must be a region. This
conflicts the claim in (Kracht, 2002) that we get a set of regions. However, to be accurate, we
must lift the goodness of fit function to regions!

26


