Dynamic Semantics

Marcus Kracht *

1I. Mathematisches Institut
Freie Universitat Berlin

Arnimallee 3

D-14195 Berlin
kracht@math.fu-berlin.de

1 Introduction

Dynamic semantics is called ‘dynamic’ because it assumes that the meaning of
a sentence is not its truth condition but rather its impact on the hearer. In
contrast to standard semantics in terms of predicate logic (from now on also
called static semantics), where formulae are interpreted as conditions on models,
dynamic semantics interprets formulae as update functions on databases. The
change from the static to the dynamic view was necessitated by problems concern-
ing extrasentential anaphors, but nowadays many more applications of this new
semantics have been found. We will begin however with the classical problem.
Consider the following examples.

(1) There is a fat man at the metro entrance. He is selling souvenirs.

(2) If Alfred has a car, he washes it every weekend.

In Montague semantics, following the philosophical tradition, a sentence expresses
a proposition. A proposition corresponds to a closed formula in predicate logic.
Using some self-explanatory abbreviations, the above sentences may be rendered
as follows.

*I have benefitted from enlightening discussions with Fritz Hamm, Peter Staudacher, Kees
Vermeulen and Albert Visser.

(1a) (3z)(fat-man(x) A at—-metro—entrance(x) A sell-souvenirs(z))

(2a) (Vz)(car(xz) A own(a,x) — wash—every—week(a, x))

In the translation we have ignored certain details such as tense. The problem is to
arrive at the given translations in a systematic way, that is, using A—expressions
as in Montague semantics. Let us illustrate this with (1). (1) is composed from
two sentences; each of them is translated by a closed formula. If we assume
that the meaning of two sentences in sequence is simply the conjunction of the
meanings of the individual sentences we get the following translation.

(1b.1) (3z)(fat-man(z) A at-metro—entrance(z))
(1b.2) (Jx)sell-souvenirs(x)

(1b) (3z)(fat-man(z) A at-metro—entrance(z)) A (3x)sell-souvenirs(z)

The transliteration of (1b) is there is a fat man at the metro entrance and there
is someone selling souvenirs — which is not the meaning of (1). The problem
is that (1b) can be satisfied when there is a fat man at the metro entrance and
someone different, who is not fat but sells souvenirs. Notice that the choice of
the variable in (1b.1) and (1b.2) is completely immaterial. We can replace x by
any other variable.

Obviously, the problem lies in the translation of the pronoun. In our previous
attempt we have tacitly assumed that a pronoun is to be translated by a variable.
This strategy fails. Similar problems arise with sentence (2) above. Now what can
be done? One solution is to interpret a pronoun as a covert definite description.
Let us consider again example (1). After hearing the second sentence we may ask
ourselves who is meant by he. The obvious answer is: the fat man at the metro
entrance. So, rather than picking up a referent by means of a syntactic variable
we may pick it up by a suitable definite description. Without going into details
we may note that under this strategy (1) turns out to be synonymous with (3).

(3) There is a fat man at the metro entrance. The fat man at the metro entrance
is selling souvenirs.

This, however, is not without problems. For suppose there are two fat men at
the metro entrance and only one is selling souvenirs. Then (1) is still true, while
(3) is false since the definite description the fat man at the metro entrance fails
to refer.

Another possibility is to use open formulae as translations. Rather than
translating (1) as (1la) we may simply translate it as

2

(1c) fat-man(z) A at—-metro—entrance(z) A sell-souvenirs(z)

This allows to derive (lc) in a systematic way from the meaning of the two
sentences, which we give as (1c.1) and (1¢.2)

(1c.1) fat-man(z) A at-metro—entrance(z)

(1c.2) y = x A sell-souvenirs(y)

Here, selling souvenirs is rendered as sell-souvernirs(y), where y is a fresh variable,
and the pronoun he is rendered y = x. Again we will not go into details here. The
truth conditions for (1c) are different from the standard conditions in predicate
logic, where a free variable is treated as if universally quantified. Rather, a free
variable is treated as if existentially quantified. Let us say that (1lc) is true in
a model 9T under a valuation g if there exists a valuation h differing from ¢ in
at most x such that (lc) is true in 9% under the valuation h. This is, modulo
some minor variation, the solution presented in Discourse Representation Theory
(DRT) (see [4]). Note especially how it assigns truth conditions to an implication
such as (2). Namely, an implication ¢ = ¢ ! is true in a model 9 under a
valuation g if for every valuation h differing from ¢ in at most the free variables
of ¢ that makes ¢ true there is a valuation £ differing in at most the free variables
of 1 that are not free in ¢ such that that & makes 1) true. Let us apply this to
the translation of (2), (2¢).

(2¢) car(z);own(a,z) = y = x; wash—every—week(a, y)

(2¢) is true in (9, g) if for every h differing from ¢ in at most x, such that h
assigns for example j to z and j is a car and Alfred owns it in 91, then there is a
valuation k differing from A in at most y such that k(y) = k(x)(= j) and Alfred
washes k(y) every day. So, (2c) is true iff Alfred washes every car that he owns
every week. This is exactly as it should be.

This definition of truth anticipates certain features of dynamic semantics.
Although it still employs the static notion of satisfaction (or truth) in a model
it already works with dynamically changing assignments. In predicate logic,
only the truth conditions for quantifiers allow for a change in assignments, while
in DRT the standard logical connectives may also change them. Compare, for
example, the truth condition for an implication in predicate logic with that of
DRT. In the former, ¢ — 1 is true in (9, g) if either ¢ is false or ¢ is true in it.
The dynamic character of the simple connectives also allows DRT to dispense with

'We write = for the implication and ; for the conjunction of DRT in order not to get
confused with the standard symbols of predicate logic.

the usual quantifiers. For notice that (3x)¢(z) is equivalent to ¢(z) and (Vz)p(x)
is equivalent to = x = ¢(z). Consequently, DRT dispenses with quantifiers and
only introduces a separate head section in a DRS to annotate for which variables
the valuation may be changed. So, rather than ¢(x) we write [z : ¢(x)]. In this
way we can distinguish between a contextually unbound variable (corresponding
to an indefinite description) and a contextually bound variable (for example in
translating a pronoun by an expression y = x, where x has appeared already).

2 Dynamic Predicate Logic

In DRT, we have no quantifiers, only conditions on assignments. This may solve
the problem for the indefinite expressions and the existential quantifiers. How-
ever, DRT has no analogue for the universal quantifier. The reduction of the
universal quantifier to an implication is merely a formal trick and can in fact not
be used for other quantifiers. Several people have noticed independently that the
problems of anaphoric reference can only be solved if we allow to memorize the
value given to a certain variable. In DRT this is achieved by simply removing the
quantifier and readjusting the satisfaction clauses for free formulae. Yet another
path was followed by Peter Staudacher and, somewhat later but independently,
Jeroen Groenendijk and Martin Stokhof. (See [9] and [1]. A comparison of the
two approaches can be found in [10].) Hence our basic vocabulary consists of

1. a set Var of variables over individuals,
2. a set Con of constants for individuals,
3. some atomic relation symbols,

4. the boolean connectives T, L, =, A, V, —,

5. the quantifiers 4 and V.

(That we have no function symbols is just a question of simplicity. In the formal
definitions we will also often ignore the constants to keep the notation simple.)
As usual, a well-formed formula (simply called a formula) is defined by induction.

1. If R is an n—ary relation symbol and u; € Var U Con for all 1 <17 < n, then
R(uq,...,u,) is a formula.

2. T and L are formulae.

3. If ¢ is a formula, so is —¢.

4. If ¢ and ¢ are formulae then so are ¢ A, ¢ V¢ and ¢ — .

5. If z is a variable and ¢ a formula then (3x)¢ and (Vz)¢ are formulae.

Definition 1 A model is a pair (D, I), where D is a set, called the domain,
and I a function, the interpretation function, assigning to each constant an
element of D and to each n—ary relation R of the language a subset of D™. An

assignment or valuation is a function g : Var — D. The set of all assignments
into D is denoted by V(D).

We write (M, g) = ¢ if ¢ is true in 9. This is defined by induction. On the
basis of that we define the static meaning of ¢, [¢|on or simply [¢], to be

(9] :={g: (M, 9) F ¢}

Let us write g ~, h if g(y) = h(y) for all y # x.

Definition 2 (Static Meaning) Given a model I, the static meaning of a for-
mula ¢ is computed as follows.

[R(Z‘l,,l'n)] = {g <g(:1:'1),,g(xn)> EI(R)}
[T] = V(D)

[L] = o

o — V(D) [

6V) = [¢]U[y]

oA Y] = [¢ln[y]

[0 — 2] = (V(D)=[¢) U l¥]

[(3x))] = {g:emistsh~,g:he€l}
(V) o] = {g:forallh~,qg:held}

The idea of the dynamic interpretation is to keep the full syntax of predicate logic
and instead change the underlying notion of meaning. Rather than talking of an
assignment ¢ in a model 9 making a formula true we will now talk of ¢ being
processable or unprocessable under the assignment g. If ¢ is processable we may
further speak of ¢ taking us from the assignment g to an assignment h. We will
assume that the meaning of a formula ¢ of predicate logic is a binary relation on
the set of assignments of variables. We discuss this with our examples (1) and
(2). We translate (1) and (2) now as follows.

(1d) (3z)(fat-man(z) A at-metro—entrance(z)) A sell-souvenirs(z)

(2d) (3x)(car(x) A own(a,x)) — wash—every—week(a, x)

Notice that the last occurrence of x in (1d) is outside the scope of the quantifier.
Likewise the last occurrence of x in (2d). Notice furthermore that in (2d) the
indefinite expression is translated by an existential quantifier; we will see that this
nevertheless gives the right analysis. All three facts are vital for the possibility to
arrive at the translation in a compositional manner, but we will defer the details
for later. We shall assume now the following: the denotation of a formula ¢ in
a model 90 is a relation between assignments. We denote it by [¢]on or usually

by [¢]. We usually write g . h rather than (g,h) € [¢]. (Actually, to make the
dependency on the model 91 explicit we would have to write g —?gm h, but we
refrain from overly pedantic notation.) ¢ 2, / means that there exists a k such

that g Ok I g 2, \/ we say that ¢ is processable in g.

Definition 3 (Dynamic Meaning) Given a model 9, the dynamic meaning
of ¢ in M is computed as follows.

[R(z1,.. . 20)] = {{g,9): (M, g) F R(z1,...,2,)}

[T] = {{g.9) : g € V(D)}

[L] = O

[o A {(g,h):forsomek:ggkih}
[Vl = {5.9): 95 Vorg SV}

[6 —] = {{g.g): for allh:if g5 h thenh 5/}
[~¢] = {{g.9):mot: g >V}

[(3z)9] = {(g,h):emistskwxg:kgh}

[(V2)d] = {{g.g):forallh ~y g:h 2V}

In Figure 1 further below we show the dynamic meaning of two formulae, namely
Qz,y) A (Fx)(Jy)(x = y) and Q(x,y). We assume Var = {z,y}, D = {a,b} and
I(Q) = {{a,a),(a,b), (b,b)}. The assignments are listed as pairs (g(x), g(y)).

Definition 4 Let ¢ and v be two formulae. ¢ is called a tautology if [¢] = [T],
and a contradiction if [¢] = L. We say that ¢ and 1) are equivalent and write

¢~ if [¢] = [¢].

Notice that [¢] = [¢/] means that for all models M, [¢]am = [¢’]on, which in turn
means that for all 9T and all assignments g and h, g 2 hiff g 2 .

Definition 5 Given a model M and a formula ¢, ¢ is true under the assignment
g iff ¢ is processable in g iff there is a k such that (g,k) € [¢p]om. The set of all
g such that ¢ is true under g is denoted by \@\on. Dually,

Jo/m:={g: exists k : k 2, g}

\@\om is also called the satisfaction set in [1]. We skip the motivation for these

definitions and turn directly to our examples. (1d) is true in a model under an

d. d.
assignment ¢ iff there is are assignments h and k such that ¢ () h (42 k.

(1d.1) (3z)(fat-man(z) A at-metro—entrance(z))

(1d.2) sell-souvenirs(z)

d. . e . o
Now g () h iff for some m differing in at most x, the pair (m,m) is in the

interpretation of fat-man(z) A at-metro—entrance(z) and m = h. This is the case

simply when h = m and m(x) is a fat man in the metro entrance in 9. So,

g WD b it b differs from ¢ in at most x and h(z) is a fat man in the metro

entrance. h " kiff k = h and h(z) is selling souvenirs. This is as desired.

Now take (2d). The relation [(2d)] is exactly the set of all (g, g) such that

(2d) is true under g. (2d) is true under the assignment g if for every h such that

g iy h there is a k such that h e k.

(2d.1) (3z)(car(z) A own(a,x))

(2d.2) wash—every—week(a, x)

Now, g G h it b differs from g at most in z and h(z) is a car that Alfred

owns. b %) & iff k = h and Alfred washes h(x) every week. Thus, ¢ 29 g iff for
every = which is a car that Alfred owns, Alfred washes x every week. This is as
it should be.

So, the translations which we have given for the sentences turn out to be
correct. Let us see now that we can assign these translations to sentences in a
compositional way. We will highlight only the relevant details here. The assump-
tion is that a phrase of the form some NP or a(n) NP is translated by (3x)¢
where (a) x is a fresh variable and (b) ¢ is the translation of NP. The condition
on freshness of the variable is problematic (see Section 5), so we assume that the
input for the translation algorithm is a sentence enriched with indices which tell
us which variable to use. So the input for the translation are the sentences

(1') There is [a fat man]* at the metro entrance. He? is selling souvenirs.

(2) If Alfred* owns [a carP then he} washes ity every day.

Here the superscripts are used for newly introduced referents and the subscripts
for already existing referents. Pronouns have both a superscript and a subscript,

7

so they pick up a previously introduced referent and introduce a new one. The
translation now works exactly as in Montague semantics. Let (—) be the transla-
tion from natural language into A—expressions. Then the pronoun heé- is assigned
the meaning x; = x;; likewise for the other pronouns she, it. Case endings are ig-
nored. We give some sample translations for verbs, adjectives and nouns. (Here,
P is a variable of type (e, t).)

(heé»)Jr = AP3w,x; = x; A P(xy)
(a(n) NP")i = AP.3x, NP'(2;) A P(xy)
(every NPT = APNz.NP'(z;) — P(z;)
own' = Az.\y.own(y, z)

sell souvenirs' := \z.sell-souvenirs(z)

fat! = AP \z.fat(z) A P(x)
man! = Az.man(z)

(if S then)T = ST —TT

(S. T = STATT

From these translations we derive the following formulae for (1’) and (2'):

(1e) (3zy)(fat(xy) A man(z1) A at-metro—entrance(z))A
(Fz2) (21 = a9 A sell-souvenirs(xz))
(2e) (Jxy)(car(xa) Aown(a, z3)) —
(Fx3) (23 = a A (Fz4) (x4 = 22 A\ wash—every—week(a, x4)))

This translation is somewhat more detailed than the one we gave earlier. It
is easily checked that the satisfaction sets of the translations are the same as
before. Therefore, with respect to the truth conditions we have succeeded in
giving a compositional semantics. However, the situation is nevertheless not
entirely ideal. We repeat (1d) with x; replacing z.

(1d) (3zy)(fat-man(z1) A at-metro—entrance(x;)) A sell-souvenirs(z1)

Although (1d) and (1e) are truth requivalent, they do not have the same meaning
in terms of the relation. That is to say, we have \(1d)\ = \(1e)\ but we do not
have [(1d)] = [(1e)]. Likewise for (2d) and (2e). Suppose for the sake of the
argument that the variable z in (1d) is the same variable as x; in (1e). > Suppose
we have the assignment ¢ : 7 — John, x5 — Paul. Suppose further that John

and Paul are different and that John is fat and standing at the metro entrance

selling souvenirs. Let h : z; — John, x5 — John. Then it turns out that g ay

but that ¢ ugp h. The reason is easily identified: (1le) allows to change the value
of x; and xo while (1d) allows to change only z;. It may be thought that this
is an effect of the translation of variables as existentially quantified expressions

2In fact, if they were not identical, matters would be quite the same.

rather than simply variables. However, this is not so. Consider for simplicity the
two formulae (3z1)p(x1) and (Jxg)@(z2). (Think of ¢ as the translation of (1d).)

Proposition 6 Let ¢ be an expression with only one wvariable. Then for all
models IM:

\(Fz1)@(z1)\om = \(Fz2)d(22) \om
However in general

[(321)p(1)]om # [(F22)d(2)]om

Proof. Put ¢; := (Jz1)¢(x1) and ¢ := (Jz3)d(z2). Assume g ka\ /. Then
there exists a h such that h ~,, g and h(z;) satisfies ¢ in M. Put k(z2) := h(xy).

Then k ~,, g and k(z5) satisfies ¢ in M. So, ¢ 2 k. This shows one inclusion.
The other is similar. For the other assertion, let 9t have at least two elements, a

and b. Let g : x1 — a, x5 — b. Assume that a satisfies ¢ but not b. Then g ¥ g
but g % g. Q. E. D.

This is a pervasive feature of the dynamic interpretation and is a direct con-
sequence of what the dynamic semantics sought to achieve. The meaning of an
expression not only encodes its truth conditions but also its context behaviour.
The previous theorem is a direct consequence of this fact: while the two formu-
lae are true in the same models, they are nevertheless not substitutable in all
contexts without changing the truth. Here is a concrete example. Suppose that
Peter is watching John but not Albert. John is on the balcony. The valuation g
is such that g(z3) = Albert. Now under g (4) turns out to be false, while (5) is
true.

(4) Someone' is standing on the balcony. Peter watches hims.

(5) Someone? is standing on the balcony. Peter watches hims.

Here, the first sentence of these examples is translated by
(321 /2)(stand—on—balcony(x 7))
while the second is translated by
watch(p, z2)

Indeed, in (4) the existential quantifier sets z; to John. Everything else remains
the same. Therefore, under this new valuation z is still set to Albert. But Peter
does not watch Albert. Therefore, (4) is false. In (5), however, the existential
quantifier allows to change g to h, where h(zy) = John. Peter watches h(xs),
which is John. So, (5) is true.

We still owe the reader a definition of the logic corresponding to this new
interpretation. > Matters are a little bit difficult here. First of all, we will not
define a relation between sets of formulae and a formula but between sequences
of formulae and a single formula.

Definition 7 (Dynamic Consequence) Let ¢;, 1 < i <n, and) be formulae.

Then ¢; ;.. .5 ¢ F 4 if for all (I, g):
é1 P2 én . . o
g— 91— g2...— gn implies g, — /

This relation is called the dynamic consequence relation.

The reader may verify that the dynamic consequence relation satisfies very few of
the postulates for ordinary consequence relations. For example, if ® is a sequence
and ¢ occurs in ® then we ordinarily have ® |= ¢; but this fails for the dynamic
consequence relation. Also, the sequence ¢i; ¢, and the sequence ¢o;¢; have
different dynamic consequences. These facts easily fall out of the results of the
next section once some elementary facts are noted.

Proposition 8 (Deduction Theorem)

¢1;¢2;---§¢n):d?/) iff G1; @253 Pt):dcbn—’@/)

Proposition 9

Gri G bty O ECO i b0 A iy On EC O

The last theorem allows to reduce the dynamic consequence relation to a relation
between formulae. (In view of the deduction theorem we can even reduce this to
a set of theorems.) Two other relations between formulae come to mind, namely
the static entailment and the meaning inclusion.

Definition 10 Let ¢ and v be two formulae. ¢ statically implies ¢ if \¢\ C
\Y\. ¢ is meaning included in ¢ if [¢] C [¢].

It follows that ¢ ~ 1 iff ¢ is meaning included in v and v is meaning included
in ¢. Notice that a dynamic tautology is a formula ¢ such that =% ¢. In other
words, ¢ is a tautology iff it is processable in every assignment iff \¢\ = V(D)
iff ¢ is statically implied by T. However, this is not equivalent with [¢] 2 [T].
Here we see once again that the dynamic notion of truth is quite counterintuitive
and should not be seen as superseding the static notion of truth.

3This section is not essential for understanding of this paper and may be skipped.

10

3 Taking A Closer Look

In order to have a better grip on the mechanism of DPL we will prove some theo-
rems about it and illustrate its relationship with static predicate logic. First, how-
ever, we will introduce some simplification according to Albert Visser. Namely,
we will change the syntax of the existential quantifier in the following way. If x
is a variable then dx is an expression. Furthermore, we let

[Bz] == {9, h) : g ~a h}

Then note the following:

[Fzno] = {(g,h):exz’stsk:gﬁkgh}
= {(g,h):existsk:gkaandkgh}

This is exactly the semantics of (Jz)¢(x). This rather strange change in the
syntax can actually be rather nicely motivated from the ideology of dynamic
semantics. In the dynamic setting a formula can also be seen as a program to

change the state of the hearer. The statement g % h means that the hearer may
change from ¢ into h upon being told that ¢. We may also think of a formula as
denoting a nondeterministic program, exactly as in Dynamic Logic. ¢ So, in this
view, the formula ¢ A 1) is the consecutive execution of the programs ¢ and ; it
allows to change first via ¢ and next via ¥. Consequently, we may interpret Jx
as a random reset of x. Under this interpretation, dx A ¢ is the instruction to
first reset x randomly and then to execute ¢.

Definition 11 (Visser Style Syntax) Let ¢ be a formula of dynamic predicate
logic. Then its translation, ¢°, is defined by

R(xy1,...,2,)% = R(z1,...,2n)
TS = T

18 = L

(o) .

(@A x)° = P AX

(¢ — x)° = ¢ =P

(¢ Vx)* = v
(@) = WA
((‘v’a:)(b)§ = Jr — @b

We will in sequel prefer the Visser style syntax. Furthermore, we note that

GNWAX) = (@A) AX

4This connection has already been noted in [1].

11

(3]

Therefore — to save space — we will write *.” instead of A and drop brackets.
So, Jx.¢.1¢) denotes either of ((Jz)¢p) A ¢ or (Fz)(¢ A 1). Let us also note the
following equivalences, which allow us to reduce the set of basic logical symbols
rather drastically.

(va)p ~ oo
) ~ p— L
PVY = g =

The first equivalence has already been used implicitly to define the translation of
the universal quantifier. So, all connectives can be defined from 3, 1, — and A.
The logic of DPL is rather unusual otherwise. Various theorems of static logic
fail to hold. For example, A is not commutative and not idempotent. That is
to say, we neither have ¢.1) =~ 1.¢ nor ¢.¢ ~ ¢ for all ¢ and . Here are some
counterexamples.

Jz.P(x).3z.~P(x) % dr.—P(x).dz.P(x)
P(z).3z.—~P(x).P(x).3z.-P(x) % P(z).3x.—~P(x)

In fact, consider the set D = {a,b} and let P be true of a but not of b. Put
g(x) :=a and h(z) :=0b, g(y) = h(y) for all y # x. We have

ha—l;gpg)gﬁhﬂ)—(f)h

and
Jz P(x)
—

g p ~Pe) h=g g
On the other hand, (g, g) & [3x.P(z).3z.-P(z)] and (h, h) & [Fz.—P(z).3z.P(x)].
The reason is simply that otherwise in the first case we must have (g, k) €
[Fz.P(z).3z] for some k and (k,g) € [-P(z)]. But since g(x) = a, which does
not satisfy P, the latter cannot hold. Turning now to the second example notice
that the lower left hand side is a contradiction. For P(x).—~P(x) is a contradiction
and — as the reader may check — if ¢ is a contradiction, so is x.¢ and ¢.x. But

we have
P(x) 3z , -P(x)
—"h

An important characteristic of some connectives is the ability to change the

valuation. For example, we can have g 2, 1 for some h # g; take ¢ = Jxq.car(xq).
Think of the formula ¢ in this context as picking up ¢ and returning h. (Note
that due to the relational character, a formula may return many valuations.)
If ¢ is a complex formula, then this scheduling of picking up valuations and
returning other valuations can in fact become rather complex. For notice that
not all formulae return a different valuation; one example is —¢. Therefore, the
following definition is introduced.

Definition 12 A formula ¢ is a test if for all models M, g 2 implies g = h.

12

Figure 1: Dynamic Meaning: D = {a, b}, I(Q) = {{a, a), (a,b), (b,b)} and Var =
{z.y}.

[Q(z, y)] [Q(z,y).3z.3y.x = y]
(b, b) ool e
(b,a) t (b, a)
(a,b) + In l (a,b) + o o
(a,a) 1 Out (a,a) .
(0,a) (@b (o) (,0) @a) (@b (o) (.0

The diagonal is the set {(g,g) : g € V(D)} = [T]. A formula is a test iff its
meaning is a subset of the diagonal. The diagonal is inserted in both pictures of
Figure 1. Tests have a blob only along the diagonal. So, Q(z,y) is a test but
Q(x,y).dz.Jy.x = y is not. Tests behave in much the same way as their static
companion. To see this, note first of all the following.

Proposition 13 If ¢ ~ ¢ then \¢\ = \Y\ and /¢/ = /¢/. However, \T\ =
\Jz\ and /T /= /3z/ but [T] # [Fz].

(For those who like to see a proper DPL example, the formula (3z)T does the
trick instead of Jz.)

Proposition 14 For tests ¢ and i the following holds:

\O\=\O\ iff o/ =/v/ if o] =[]

For a proof note that

[9] = 1{(9,9) : g €\P\} ={{9,9) 19 € /o/}

All formulae of the following kind are tests:

1. Atomic formulae,
2. 2¢, ¢ — Y and ¢ V1,

13

Table 1: Dynamic Properties of Connectives

] H EXTERNAL \ INTERNAL \
+ +

- -

] <>
\

]
\

<C LW
|

3. ¢.¢, given that ¢ and ¢ are tests.

It follows that (Vz)¢ is a test, since it is of the form 3z — ¢. We may now note
the following.

\ =9\ = V(D) —\¢\

\oVi\ = \@\U\p\

\¢ =\ = (V(D)—\¢\)U\¥\
\(Vx)p\ = {g:forallh~,g:he\od\}

These are exactly the clauses of static predicate logic if we read \¢\ simply as
[¢]. Furthermore, if ¢ and 1 are tests then

\@.p\ = \@\ N\

This notion of a test can be further refined. A change in valuation can be either
internal or external to the formula. In the formula ¢.1, ¢ can reset the valuation,
for example if ¢ = dxy.x. The new value is then passed on to ©. Because of
this behaviour we call A internally dynamic. Furthermore, ¥ may also change
the valuation, and this latter change persists. That is to say, a formula to the
right of ¢.1 picks up the valuation from v, so to speak. Therefore we call ¢ A ¥
externally dynamic. By contrast, ¢ V1) is not internally dynamic (and so we say it
is internally static). For whatever change ¢ may produce, 1) cannot pick up that
new valuation; rather, it is evaluated against the same valuation as is ¢. ¢ V¢ is
also not externally dynamic: a formula at the right end of ¢V 1 also starts at the
same valuation as did ¢ V ¢. Hence, ¢ V ¢ is externally static. Externally static
formulae are exactly the tests. We can summarize the behaviour in Table 1. Of
course, the concept of internal dynamicity does not apply to unary connectives.
If ¢ is a formula, then ——¢ is a test. Moreover, we calculate that

[-=¢] = {{9:9) : 9 > vV} = {{9,9) - g € \&\}

14

Namely, [-¢] = {{g,9) : g A V/}, that is, the set of pairs (g, ¢) such that ¢ is
not processable in g. Hence, [-—¢] is the set of all pairs such that —¢ is not
processable in g, which is the set of all (g, g) such that ¢ is processable in g.

Proposition 15 Let ¢ be a formula. Then ——¢ is a test and \——¢\ = \o\.

We call =—¢ the static counterpart of ¢. In this way we can define new con-
nectives which are externally static, for example an externally static conjunction
(==(¢.10)) and an externally static existential quantifier (=—(3z.¢)). Likewise,
we can remove the internal dynamicity of a connective. For example, the following
connectives are internally static.

GAG = o
66 = o—u

And thirdly, the internal and external dynamicity can be cancelled together. In
this way, we get totally static connectives. The static conjunction and the static
implication are as follows.

QA Y = =(moV)
¢—="Y = 2V

It is however impossible to introduce a dynamicity into a connective. For ex-
ample, the connective —¢ — v is an internally and externally static disjunction
(equivalent to ¢ V 1)). So there is no way to dynamify essentially static connec-
tives. In a sense, this has to be expected. It is not clear a priori what for example
an externally dynamic implication should be like. In fact, implication, disjunction
and universal quantifiers are not externally dynamic. We give examples.

(6) If someone' is watching you, then you must be careful. *He, is from the
mafia.

1

(7) Either I am stupid or someone' is watching me. *Hey is from the mafia.

(8) Be careful with [everyone who watches youf*. *He, is from the mafia.

Notice that if the second sentence is in subjunctive mood (e. g. He might be
from the mafia.) then the continuation is generally acceptable (see [8]). This
means that the second sentence is attached not on the main level of discourse
but rather added into (generally) the second subformula. This phenomenon is
called subordination. However, the subordinated material is not added as a mere
conjunction, so subordination cannot be incorporated into the present semantics.
Here are the (somewhat liberal) renderings of the sentences into predicate logic,
showing the unacceptability of the pronoun in the second sentence.

15

(6a) (Jz;.watch(zy,you) — Obeware—of(you, z1)).mafioso(x1)
(7a) (stupid(me) V Jzy.watch(zq, me)).mafioso(z)

(8a) (Vxy)(watch(zy,you) — Obeware—of(you, z1)).mafioso(x;)
It has however been noted that disjunction can behave internally dynamic.

(9) Either Albert has not written any letter' or it; has been delayed.

(9a) —(3z;.wrote(a, z1)) V delayed(x;)

Formally, the translation, being of the form —¢ V v does not allow to export
the value of ¢ to ©. Hence, in dynamic logic the anaphoric reference is blocked.
Notice that by the laws of classical logic =¢ V 1 is equivalent to ¢ — 1, so in this
special circumstance we may resort to the translation ¢ — 1 in place of —¢ V 1.
In the latter the sharing of a referent between ¢ and v is legitimate and also
possible in dynamic logic. There are however problems with compositionality.
We may alternatively define a dynamic disjunction as follows.

[oVeiy] = {(g.9): 9> org s h5 /)

Notice that V¢ is a new connective, not definable from the previous ones.

4 Dynamic Binding and Scope

Recall from predicate logic the notion of the scope of a quantifier. Scope is a
structural notion designed to capture the domain within which occurrences of
the same variable invariably are interpreted as the same object in the model.
We will define again the scope of a quantifier and then proceed to the extended
binding domains of the dynamic quantifiers. We define the notion of a subformula
in the usual way. v is a subformula of ¢ if either ¢» = ¢ or ¢ = —x and ¥ is
a subformula of y, or ¢ = y1 Vxa or ¢ = x1 — x2 0r ¢ = x1 A x2 and ¢ is a
subformula of x; or of o, or ¢ = (Jz)y or ¢ = (Vx)x and ¢ is a subformula of
X. In Visser style syntax, dz is a formula and so the clauses for the quantifiers
can be dropped.

Definition 16 Let Q € {V,3}. Let ¢ be a formula and (Qx)x, ¢ be subformulae
of ¢. C s said to occur in the scope of Qx in ¢ iff it occurs as a subformula of
X. Qx binds a variable x iff it is the quantifier with smallest scope containing
x. A static binding pair of ¢ is a pair of occurrences of Qx and x, where Qx
binds x.

16

The dynamic notions are somewhat more roundabout. The definition of scope
remains the same, except for the Visser style syntax, in which it is obsolete.

Definition 17 Let ¢ be a formula. The dynamic accessibility relation of ¢ is a
relation between occurrences of subformulae of ¢, and it s defined as follows. x
is dynamically accessible for & (in ¢) if

1. x — & is a subformula of ¢ or

2. x.£ is a subformula of ¢ or

3. & occurs in p and x is dynamically accessible for p or

4. x.X" is a subformula of ¢ and x.x' is dynamically accessible for & or

5. xX'.x 18 a subformula of ¢ and x'.x is dynamically accessible for &.

If x 1s dynamically accessible for & we also say that £ is dynamaically accessible
from x.

The dynamic accessibility relation is used mainly with respect to atomic subfor-
mulae so that the bracketing of a conjunction is mostly irrelevant. In a sequence
O1.0a. ¢n, the formula ¢; is accessible for all subsequent ones, that is, for all
¢; with j > 4. Further, in ¢ — (x — v), ¢ and x are accessible for 1, and
¢ is accessible for xy. The same applies to (¢.x) — . By contrast, look at
(¢ — x) — 1. Here, ¢ is dynamically accessible for x but not for ¢). Roughly
speaking, the connective — in the antecedent ¢ — x destroys the accessibility of
¢ and x for other formulae.

Definition 18 Let ¢ be a formula. A dynamic binding pair of ¢ is a pair
of occurrences of Qx and x such that either (A) Q =V and the pair is a static
binding pair or (B) Q = 3 and either (i) the least formula containing 3z also
contains x or (ii) there is a & such that x occurs in & and £ is dynamically
accessible from dx. If dx and x form a dynamic binding pair of ¢ we say that
that dx dynamacally binds x.

The following is an immediate consequence.

Proposition 19 Let ¢ be a formula. Then if dx and x form a static binding
pair they also form a dynamic binding pair.

17

Figure 2: Immediate accessibility

XOC 0)%

° °
o——»

X ¢ X

The reader may check the following fact. Suppose ¢ is a formula and ¢% its trans-
lation into Visser style syntax. dz and x form a dynamic binding pair of ¢ iff
they form a dynamic binding pair of ¢!. This allows us to use both notations
interchangeably when talking about binding. The dynamic accessibility relation
can be defined purely in terms of the internal and external dynamicity of the
connectives. This is what we will do now; it gives us a deeper understanding of
these definitions and allows us to generalize them to formulae with other con-
nectives. Let ® be a binary connective and y ® ¢ a formula. If ® is internally
dynamic, we say that ¢ is immediately accessible from y. If ® is not internally
dynamic, we say that ¢ is inaccessible from y. ° If ® is externally dynamic we
say that y ® (is immediately accessible from (. If ® is not externally dynamic,
X © C is inaccessible from (. Now let ® be a unary connective and x a formula.
Then ®y is a formula. If ® is externally dynamic, @y is immediately accessible
from x; if ® is not externally dynamic, ®y is inaccesible from x. The immediate
accessibility relation might be pictured as in Figure 2 and Table 2. The internal
dynamicity is ‘horizontal’, going in the direction of the time—arrow, the external
dynamicity is ‘vertical’, going in the direction of the architecture of the formula.
Now, say that ¢ is accessible! from x in ¢ if there exists a chain of (occurrences
of) subformulae &3, &, ..., &, such that & = y and &, = ¢, and & is immedi-
ately accessible from &; for 1 < i < n. It may happen that n = 1, in which case
¢ = x. Hence, accessibility! is the reflexive and transitive closure of immediate
accessibility. Finally, we can give the following characterization.

Proposition 20 Let ¢ be a formula, and , x subformulae of ¢. (is dynamically
accessible from x if there exist a subformula (;®x1 of ¢ such that is a subformula

5To be accurate, we would have say that ¢ is not immediately accessible from y. However,
it will turn out that under the definition of dynamic accessibility these two will turn to be same
for the formula occurrences in question.

18

Table 2:

® | Immediate Accessibility
A OGO (GXAQ)

- {0}

vV | <

- | g

3| {(¢, @)}

vV | @

of C1, x a subformula of x1, (i accessiblet from ¢, and ® is internally dynamic.

This is again somewhat lengthy but quite a practical definition. Notice first that
if ¢ is accessible! from Y and does not contain x (as a subformula) then it is
accessible from y. Hence another characterization is as follows. (is dynamically
accessible from x if (i) ¢ does not contain y, and (ii) ¢ is a subformula of ¢; which
is accessible! from Y.

We give an example. Let a be the formula

((CVn).=(0.9)) = (x V)

The accessibility relation for « is as follows.

{{(¢Vn,~(0.9)), (Cvn,b), (CVn,),

(CVn,x V), (CVn,x), (CVn,v),
(—(0.0), x V1), (—(0.0),x), (—(0.0),v),
((CVn)=(0.9),x V), (((Vn)=(0.9),x), ((CVn)—(0.6),¢)}

5 Referent Systems

The advantage of DPL over static predicate logic is that it can handle the
transsentential anaphors of the type exemplified in (1) and (2). However, as
we have noted, one has to annotate the words in the sentences with indices in or-
der to get a systematic (= compositional) translation from surface structure into
DPL. The problem arises exactly as in Montague semantics with the pronouns
and the quantifiers. Rather than having only one quantifier and only one pronoun
we have infinitely many of them and we must be told beforehand (by means of
annotation) which one to choose. This state of affairs is rather unsatisfactory

19

because Montague semantics is otherwise successful in exploiting A—calculus to
get the variable management right. To see the effect of the A—calculus, suppose
we would say that the meaning of man is man(z) rather than Az.man(z). Then
every time we calculate the meaning of an expression containing the word man
we have to check which variable we have to use in place of . So we would have to
decide whether to put in man(x) or man(y), for example. Likewise if we choose to
translate tall by tall(z) rather than AP.Az.(tall(z) AP(z)). To take an easy exam-
ple, the expression tall man could in principle be translated as tall(y) A man(x)
rather than tall(z) A man(z) or tall(y) A man(y). To prevent this, we have to
see to it that whatever variable we use to translate tall that same variable is
used to translate man. In Montague semantics this problem does not arise by
choice of the translation (and the A—calculus, which renames variables automat-
ically for us when needed). But while Montague semantics solves this problem
elegantly, it nevertheless cannot solve the problem of quantifiers and pronouns
as we have seen. DPL actually is a step back from Montague semantics insofar
as it allows accidental capture of free variables and therefore cannot rely entirely
on A—calculus. (Notice, however, that this effect was intended, though not in all
of its consequences, as Peter Staudacher has brought to my attention.) There
is another problem of DPL, namely the accidental loss of variables. Suppose we
have the following text (10a) and we translate accidentally by (10b) rather than
by (10c).

(10a) There is a dog in the garden. There is a cat in the garden.
(10b) dx.dog(z).in—garden(z).3x.cat(x).in—garden(x)

(10c) Jz.dog(x).in—garden(x).3y.cat(y).in—garden(y)

The truth conditions of (10b) and (10c¢) are in fact the same. However, in (10b)
we have lost the possibility to refer back to the dog. Hence, the dynamic meanings
of the two formulae are not identical. This is rather unfortunate. What can be
done?

A solution to this circle of problems was outlined by Kees Vermeulen and
Albert Visser in [13] and [14]. Since the second paper is rather advanced and
technical we will concentrate on the first one, which introduces the so—called
referent systems. Referent systems will solve the problem only partly but that
will be enough for our purposes. Our solution is clearly intended by [13] and
[14] though the actual details might differ. First of all, referent systems take
a step back from Montague semantics in using no A\-expressions. The variable
management that was left implicit in Montague semantics is now made fully
explicit. So we will actually translate tall by tall(z) and man by man(z). The
expression tall man will be translated by the merge of the two translations. The

20

secret lies in the definition of the merge of representations. Basically, merge
should be seen as conjunction; each lexical entry provides some information and
these pieces of information are piled up. However, lexical items do also provide
information about the syntactic structure, and this information is ancillary in
finding the meaning of the sentence. For example, Montague semantics uses the
syntactic structure to steer the semantic translation. By virtue of the fact that
both words form a constituent and the adjective precedes the noun, the expression
tall man is translated as

(AP Az tall(x) A P(x))(Az.man(x)) ~ Az.tall(x) A man(x)

The linear order is directly visible whereas the syntactic structure is not. While
this is not such an apparent problem for English since constituents are as a rule
continuous segments of speech (text), in other languages the situation is not so
favourable. Take Latin. The following are acceptable sentences.

(11) Illustrem habet Cicero servum.
(11') Cicero has a famous slave.
(12) Magno fuerunt in horto.

(12") They were in a big garden.

In both cases, the Latin constituents highlighted by boldface type are not con-
tinuous segments in contrast to their English counterparts. This shows that
constituency is defined by other criteria than simply contiguity. ¢ To simplify
the matter rather greatly, we may say that in Latin the agreement suffizes de-
fine the constituency. To implement this, we introduce the notion of a referent
system.

Definition 21 Let N be a set. A referent system over N is a triple R =
(I, R, E), where R is a set, called the set of referents, I is a partial injective
function from N to R, called the import function, and E a partial injective
function from R to N, called the export function. N is the set of names.

When E(r) = A we say that R exports r under the name A, and when I(B) =r
we say that R imports r under the name B. It is not required that A = B!
Meaning units are pairs € = (R, ®) where R = (I, R, F) is a referent system over
some appropriate set of names and ® a set of formulae using only the referents
from R. Let (D, I) be a model. An assignment is a map from a set of referents

SEven English has discontinous constituents. For example in He rang me up. or in A man
talked to me who had an extraordinarily long beard.

21

into D. (R, ®) is satisfied in a model under the assignment h if h assigns a value
to each referent from R and all formulae from ® are true under h. Hence, the
satisfaction clauses are pretty much those of DRT. The consequence is that the
renaming of referents does not change satisfiability in a model.

Let €, = (R;, ®;), 7 € {1,2}, be meaning units. The merge &; o &, is defined
as follows. We define the merge PR3 := R, @ R, of referent systems plus injective
functions ¢; : Ry — Rs, 1o : Ry — R3, and then put

€10 &y = (Ry, 11[P1] U 12[P2])

We are left with a definition of the merge. We say first of all given two referents
r € Ry and s € Ry that r supervenes s if I,(Ey(r)) = s. Supervenience is a
relation C Ry X Ry. Let U be the set of supervened elements of Ry. Then we put

Ry = (R x{l}URyx{2})—U x {2}
ntr) = <r,(1> 1) ifsi db
a(s) = { <87, 2) else ' ’

Say that r [-preempts s if there is an A € N such that [;(A) = r and [,(A) = s;
and that s E-preempts r if Fy(s) = E1(r). Notice that r can both I-preempt and
supervene s. Finally, for a partial function f we write f(z) = 7 if f is undefined
on z, and f(x) = | if f is defined. The import and export functions are now as
follows.

(r,1y if L(A)=r
I3(A) = (s,2) if sis not [-preempted and I5(A) = s
T else

Es(s) if u=(t, 1) and t supervenes s

Ey(s) if u=(s,2) and s is not superverned

Ey(r) ifu=(r1),Fi(r) =] and is not E-preempted
T else

Some options are summarized in Table 3. We write [A : r : B] if r is a referent
that is imported under A and exported under the name B. We write [— : r : B
if 7 has no import name, and similarly [A :r: —] and [— : r : —]. The table does
not show the effect of the preemption. It can happen that two referents compete
for the same import (export) name. In that case they must be from different
referent systems (by the injectivity of the functions). Then the referent from the
first system wins the import name; if they compete for the export name, the one
from the second system wins the export name.

With the referent systems the Latin examples can be accounted for; as names
we choose the cases, and the verbs and prepositions are simply referent systems

22

Table 3: The Merge of Referent Systems

[A:r:B] e [B:s:C] = [A:(r,1):C]
[-:r:B] e [B:s:C] = [—:(r1):C]
[A:r:B] e [B:s:—| = [A:(r1):—]
[—:r:B] e [B:s:—] = [—:(r1):—]

importing referents under certain names, while inflected nouns export referents
under a given name. For example, Latin horto and magno are translated by

[— 7 :abl [abl : r : abl]
garden(r) big(r)

Their merge is — according to the definition above —:

[—: (r, 1) : abl]
garden((r, 1))
big((r, 1))

This is the translation of horto magno. Notice that magno horto would in this
system not get the right translation. We need to assume in fact that lexical entries
are associated with sets of referent systems, thereby allowing for different word
order (and the fact that both magno and horto can also be dative). Obviously,
this model is very simplistic, but it shows how one can incorporate morphological
information about the syntactic structure into the semantics.

How would referent systems handle our examples (1) and (2)? We will present
a solution, which is based on the following insight. Pronouns pick up their referent
not by an index (such an index is simply not part of the language) but rather by
the information that is resident in the semantics of the antecedent, the gender
of the pronoun and more. To make matters simple, we assume that we only
use gender information. Therefore the set of names consists of combinations of
gender and case. However, one or both of gender and case can be absent, and
this is represented by x. Hence the set of names is as follows:

{M, F,N, %} x {N, A, x}

(Here, N abbreviates nominative, A accusative, and F, M and N are the genders.)
A particular pair is written like a vector, for example (M, A). Notice that (M, x) is
a name in the technical sense, likewise (%, x) and (x, A). The cases will be used to
steer the syntactic translation, and the gender is used to get at the binding. To

23

make the whole thing work we have to play with the x to switch the assignment
of gender and case on and off. For example, the pronouns he and him have the
following semantics

[(M, %) : 2 : (M,N)] [(M,A) s 2 (M, %)]
1] 1]

The difference is that he has no case to the left and nominative to the right, while
him has accusative to the left and no case to the right. The semantics of fat, man
(nominative) and man (accusative) are as follows:

(@) o @]] [[n) iz ouN]] ([A) o ()]
fat(z) man(x) man(z)

Here the variable is instantiated to any appropriate value (in this case, genders
or * for a and case or x for). This is an extensions of the original proposal;
what we argue is that the variables are part of the lexical representation and get
instantiated after the representation has been inserted into the structure. The
indefinite determiner a(n) wipes out the gender to the left. It has the semantics

(%, 7) s 2 (0, 7))
(%)

Finally, the transitive verb see looks as follows

[(,N) s (%))
[(8,%) -y : (8, 4)]
see(, y)

We now take the sentence (1) in a slightly modified form. The bracketing (plus
case assignment) is given by the syntax.

(13) Susan (sees (a fat man (at the metro entrance))). He (is selling souvenirs).

We continue our policy to leave the phrases ‘at the metro entrance” and ‘is selling
souvenirs’ unanalyzed. Putting together the object noun phrase and renaming
the referents suitably gives

[(x,A) s 22 (M, *)]
fat(z), man(z)
at—-metro—entrance(x)

24

So the first sentence is translated thus:

— [(,N) = 2 (a, %)) (5, A) s @2 (M, %)]
51’2) Lo (B N)] o [(B,%) :y:(B,A)] | o |fat(x), man(x)
see(z,y) at-metro—entrance(z)

[(F, %) : 2 : (F,*)]

[k, %) 1y 2 (M, %)]

r = s, fat(y), man(y)
at—metro—entrance(y)
see(x,y)

Here, « is instantiated to F and § to M. ~ means that the structures are equal
only after some renaming of referents. The point is now that the referents are
open to anaphoric reference, but are syntactically inert since they carry the case
description *. Subsequently they can only be picked up by a pronoun. For
example, we can merge with

12

[(M,) =22 (M, *)]
sell-souvenirs(x)

This gives

[(F, %) : 2 : (F,*)]
[Ge, %) 2y (M, 5)]
x = s, fat(y), man(y)
at—-metro—entrance(y)

see(, y)
sell-souvenirs(y)

In order to be able to judge the success and failure of referent systems, compare
the result with a slightly different sentence.

(14) Paul sees a fat man at the metro entrance. He is selling souvenirs.

What will happen is that the phrase ‘a fat man at the metro entrance’ will get
a referent that is different from that for Paul. This is due to the fact that the
determiner blocks the gender to the left. But the referent also E-preempts the
referent for Paul since they export the same name before merge, (M, *). 7 The
pronoun ‘he’ can therefore not refer back to Paul. Hence referent systems do not
handle the facts correctly. In this case it is because the space of names is too
small to make enough distinctions. However, the fact that anaphoric reference is
blocked by antecedents which are less distant is not so far off the mark. This is a
topic that deserves attention. The analogue of example (2) is less straightforward,
since we have no means to represent the implication.

"Here is also a point where one has to be careful with the variables for names. We will not
explore that theme further, though.

25

6 Outlook

This article is only an introduction into dynamic semantics. A survey of the
various developments can be found in [7]. We will end with a few remarks about
the relationship between dynamic predicate logic and DRT as well as other uses
of DPL. First, with respect to DRT note that both DPL and DRT encode the
linearity of the text into the notion of accessibility. In DRT as well as in DPL, in
a formula ¢ — x, referents introduced in ¢ may be used in y and not vice versa.
In ¢ V x, neither can x access referents from ¢ (because V is internally static)
nor can ¢ access referents from x (since connectives work from left to right). We
have already mentioned the fact that disjunction may occasionally be internally
dynamic (but left—to-right). We will comment on the left-to-right character of
connectives below. DRT differs from DPL in the way in which conjunction and
existential quantification is treated. The existential quantifier is not so much a
problem. DRT employs an implicit quantifier, namely the head section of the
box. Recall that a DRS looks like this

Here, we may treat the variables of the upper section (z and y) as quantified
existentially (by a dynamic existential quantifier). So, the DRS is translated by

Fz.3y.¢(x).x(z,y).C(y, 2)

Conversely, dx of DPL is like putting x into the head section of the just created
DRS. The biggest difference is however conjunction. DRT has no conjunction in
the sense of the word, but we may for our purposes say that the joint occurrence
of formulae in a DRS means in practice that they are occurring in a conjunction.
Hence, we may read the DRS above also as

Ty
P(x) A x(z,y) A¢(y, 2)

If read in this way, DRT conjunction is fully commutative, in contrast to DPL
conjunction. However, notice that in the present circumstances no difference
arises. The reader may namely check the following.

Proposition 22 Let x1 and xo be atomic formulae. Then

[x1-x2] = Dx2-xa]

26

Therefore, when no quantifier intervenes in a conjunction, full commutativity
holds in DPL as well, and so we may disregard the order between the conjuncts,
as is done in DRT.

The left-to-right character of DRT and DPL is in many instances a problem-
atic feature and is not observed as rigorously as one may think. Several cases
may be noted. First, from a syntactic point of view, anaphors inside sentences
disregard the order of elements. They are only sensitive to the syntactic struc-
ture. This at least is the claim in Government and Binding theory. We will not
comment on the validity of the last claim (it is doubtfull as well) but simply note
the following examples.

(15a) Albert! looks quite funny with his; hat.

(15b) With his; hat, Albert! looks quite funny.

(16a) Albert gave Pete! a photograph with his; family on it.

(16b) Albert gave a photograph with his; family on it to Pete!.

(17a) Everybody! likes his; friends.

(17b) His; friends, everybody! likes.

In all examples, the pronoun can precede its referent. Moreover, it is known that
texts and dialogues are structured and that pronouns may only refer to objects

that are available at the right structural level. This structuring is not reflected
in DPL. (See [2].)

Finally, it has often been noted that there is a close connection between
anaphora and presupposition. Technically, the domains of accessibility turn out
to be those that are used in the projection algorithm for presuppositions. For ex-
ample, the (a) sentences are said to be free of presupposition because the sentence
of the left implies the presupposition of the sentence to the right. By contrast,
the (b) sentences contain a presupposition since the first sentence contains a
presupposition.

(18a) The series 1 + 2™ is convergent. The limit of 1 4 2" is 1.
(18b) The limit of the series 1 + 2" is 1. The series 1 4 2" is convergent.
(19a) If (a,) is convergent then the limit of (1 + a,) is 1 + lim(a,,).

(19b) If the limit of (1 + a,) is not 1 + lim(a,) then (a,) is not convergent.

27

The first to notice this connection is Rob van der Sandt in [11]. He in facts uses
DRT to give an integrated account for pressuposition and anaphora. Jan van
Eijck (see among other [12]) actually tries to lift DPL to a three valued dynamic
logic whereby replicating observations by Lauri Karttunen ([5]) and Irene Heim
([3]) in a dynamic setting. For a discussion about the use of three—valued logic
and dynamics in this connection see [6].

References

1]

2]

Jeroen Groenendijk and Martin Stokhof. Dynamic Predicate Logic. Lin-
guistics and Philosophy, 14:39 — 100, 1991.

B. Grosz and C. Sidner. Attention, intention and the structure of discourse.
Computational Linguistics, 12:175 — 204, 1986.

Irene Heim. On the projection problem for presuppositions. In M. Barlow
and D. Flickinger, D. Westcoat, editors, Proceedings of the 2nd West Coast
Conference on Formal Linguistics, pages 114 — 126, Stanford University,
1983.

Hans Kamp and Uwe Reyle. From Discourse to Logic, Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Kluwer, Dordrecht, 1993.

Lauri Karttunen. Presuppositions and linguistic context. Theoretical Lin-
guistics, 1:181 — 194, 1974.

Marcus Kracht. Logic and control: How they determine the behaviour of
presuppositions. In Jan van Eijck and Albert Visser, editors, Logic and
Information Flow, pages 88 — 111. MIT Press, Cambridge, Massachusetts,
1994.

Reinhard Muyskens, Johan van Benthem, and Albert Visser. Dynamics. In
Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and
Language, pages 587 — 648. Elsevier, 1997.

Craige Roberts. Modal Subordination and Pronominal Anaphora in Dis-
course. Linguistics and Philosophy, 12:683 — 723, 1989.

Peter Staudacher. Zur Semantik indefiniter Nominalphrasen. In Brigitte
Asbach-Schnitker and Johannes Roggenhofer, editors, Neuere Forschungen
zur Wortbildung und Historiographie der Linguistik. Festgabe fiir Herbert E.
Brekle zum 50. Geburtstag, pages 239 — 258. Gunter Narr Verlag, Tiibingen,
1987.

28

[10] Peter Staudacher. PLA und Dynamic Predicate Logic (PDL). unpublished,
1996.

[11] Rob A. van der Sandt. Presupposition as anaphora resolution. Journal of
Semantics, 9:333 — 377, 1992.

[12] Jan van Eijck. The dynamics of descriptions. Journal of Semantics, 10:239
— 267, 1993.

[13] Kees F. M. Vermeulen. Merging without Mystery or: Variables in Dynamic
Semantics. Journal of Philosophical Logic, 24:405 — 450, 1995.

[14] Kees F. M. Vermeulen and Albert Visser. Dynamic bracketing and discourse
representation. Notre Dame Journal of Formal Logic, 37:321 — 365, 1996.

29

